WO2017169127A1 - Secondary battery system - Google Patents

Secondary battery system Download PDF

Info

Publication number
WO2017169127A1
WO2017169127A1 PCT/JP2017/004293 JP2017004293W WO2017169127A1 WO 2017169127 A1 WO2017169127 A1 WO 2017169127A1 JP 2017004293 W JP2017004293 W JP 2017004293W WO 2017169127 A1 WO2017169127 A1 WO 2017169127A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
voltage
battery
balancing
battery system
Prior art date
Application number
PCT/JP2017/004293
Other languages
French (fr)
Japanese (ja)
Inventor
貴嗣 上城
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017169127A1 publication Critical patent/WO2017169127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery system.
  • the life of the battery system depends on the most deteriorated battery, the battery performance cannot be fully utilized and the life is shortened. Therefore, there is a need for a means for suppressing the acceleration of the deterioration in deterioration that occurs in the battery system and extending the life of the battery system.
  • SOC battery charging rate
  • the battery voltage in addition to the battery temperature.
  • the cell controller sets the battery operating voltage range or the operating SOC range of the entire battery system according to the diagnosis result of the deterioration state (hereinafter referred to as SOH) of the assembled battery, and performs charge / discharge control. Secondary battery systems have been reported.
  • Patent Document 1 suppresses deterioration of the assembled battery and the battery system by shifting the operating SOC range of the assembled battery to the high SOC side or the low SOC side according to the SOH of the assembled battery, and has a long service life. It has become.
  • Patent Document 1 since the battery system as a whole is similarly adjusted, acceleration of deterioration variation of each battery in the battery system cannot be suppressed, and the battery performance may not be used to the maximum extent. is there.
  • An object of the present invention is to suppress acceleration of deterioration variation in a battery system and extend the life of the battery system.
  • the means for solving the above problems are, for example, as follows.
  • the charging rate of the secondary battery is controlled by the voltage of the secondary battery, and the value of the voltage is determined for each secondary battery.
  • Secondary battery system set individually.
  • the charging rate of the secondary battery is controlled by the use range of the voltage, and the use range is individually set for each secondary battery.
  • the voltage is a secondary battery system that is set according to the temperature in the secondary battery system or the degree of deterioration.
  • the voltage is a balancing voltage determined for each secondary battery, and the balancing voltage is at least one of a charge start voltage, a charge end voltage, a discharge start voltage, and a discharge end voltage of the secondary battery,
  • the secondary battery system is a secondary battery system having an adjustment mechanism for adjusting the balancing voltage determined for each secondary battery for each secondary battery.
  • Example 1 of this invention it is a characteristic view which shows the deterioration estimation curve in the conditions where the technique of this invention and the technique of this invention were applied in the place which has a different battery temperature. It is a figure in Example 2 of this invention which shows the flow which updates each balancing voltage setting value from each battery degradation state. In Example 2 of this invention, it is a characteristic view which shows the deterioration estimation curve in the conditions where the technique of this invention and the technique of this invention were applied in the place which has a different battery temperature.
  • FIG. 1 the schematic of the internal structure of the lithium ion secondary battery in one Embodiment of this invention is shown.
  • an electrode group including a positive electrode 101, a separator 103, and a negative electrode 102 is installed and configured in a battery case 106.
  • the positive electrode 101 and the negative electrode 102 are arranged away from each other through a separator 103 containing an electrolytic solution, and the positive electrode 101 and the negative electrode 102 have no electron conductivity and have ionic conductivity.
  • the electrode group has a configuration in which the positive electrode 101, the separator 103, the negative electrode 102, and the separator 103 are alternately stacked and wound, or the positive electrode 101, the separator 103, the negative electrode 102, and the separator 103 are alternately stacked.
  • the shape of the battery includes a cylindrical shape, a flat oval shape, and a square shape when the electrode group is wound, and a rectangular shape and a laminate shape when the electrode group is wound. The shape may be selected.
  • the positive electrode terminal 104 and the negative electrode terminal 105 are energized with the positive electrode 101 and the negative electrode 102, respectively, and the lithium ion secondary battery 100 is charged / discharged from an external circuit via the positive electrode terminal 104, the negative electrode terminal 105, and the electronic circuit 110.
  • a voltage sensor 111 is connected to the positive terminal 104 and the negative terminal 105, and a current sensor 112 is incorporated in the electronic circuit 110, and the current value flowing in the lithium ion secondary battery 100, the potential difference between the positive and negative electrodes, That is, the battery voltage is detected.
  • FIG. 2 shows an example of a characteristic diagram showing the relationship between the SOC of the lithium ion secondary battery and the capacity deterioration coefficient with respect to the battery temperature
  • FIG. 3 shows a characteristic diagram showing the relation between the SOC of the lithium ion secondary battery and the resistance deterioration coefficient with respect to the battery temperature.
  • the capacity deterioration coefficient and the resistance deterioration coefficient each indicate an index of the deterioration rate, and the relationship between the deterioration and the deterioration coefficient is expressed by, for example, Expression (1).
  • Equation (1) y is the battery deterioration amount, k is the deterioration coefficient, t is the test time, and a and b are constants.
  • Expression (1) is a deterioration prediction expression based on a root rule that utilizes the fact that the battery deterioration amount is proportional to the 1 ⁇ 2 of the test time. This formula is based on a mechanism in which the speed of the side reaction in the battery is inversely proportional to the thickness of the film formed by the side reaction.
  • FIG. 2 and FIG. 3 are diagrams obtained from the results of calculating battery deterioration when a battery charged in each SOC is stored at various temperatures in a lithium ion secondary battery according to one embodiment. As an example, FIG.
  • FIG. 2 shows the capacity deterioration coefficient as an index of the capacity deterioration rate
  • FIG. 3 shows the capacity deterioration coefficient as an index of the resistance deterioration speed for the results of 35 ° C., 45 ° C., and 55 ° C.
  • the horizontal axis indicates the SOC
  • the vertical axis indicates the respective degradation coefficients. From the results of FIGS. 2 and 3, it can be seen that the battery deterioration is remarkable at high temperatures, but the deterioration coefficients are relatively moderate at low temperatures. It can also be seen that each degradation coefficient depends on the SOC. Therefore, the deterioration coefficient k in the equation (1) is expressed by an equation depending on the environmental temperature T and the SOC as in the equation (2).
  • the secondary battery system is a system in which a plurality of lithium ion secondary batteries are connected in series and in parallel.
  • the secondary battery system When the secondary battery system is operated, current flows through the system circuit, and the battery generates heat according to Joule's law.
  • the temperature in the secondary battery system rises due to the battery heat generation, but the heat distribution varies depending on the location inside the system, and thus a temperature distribution occurs in the secondary battery system.
  • the temperature at the center of the system is high and the temperature at the end of the system is low. In one embodiment, it was about 10 ° C.
  • the deterioration of the lithium ion secondary battery depends on the temperature, variation in the deterioration occurs in the secondary battery system.
  • the temperature in the central part of the system is generally high, and therefore, the secondary battery disposed in the central part of the system promotes more deterioration.
  • the central part of the system becomes higher in temperature and the deterioration is accelerated.
  • FIGS. 4 and 5 show capacity deterioration estimation curves and resistance deterioration estimation curves at different battery temperatures in the secondary battery system.
  • the operation period and the vertical axis indicate the capacity change rate and the resistance change rate.
  • A is assumed to be the end of the system, and B is assumed to be the center of the system.
  • the temperature difference between A and B is about 10 ° C.
  • A is 45 ° C.
  • B is 35 ° C.
  • the results of estimating the respective deterioration are shown. From the results of FIGS. 4 and 5, it is estimated that the battery deterioration estimated value is remarkably different depending on the temperature difference, and the deterioration variation is accelerated.
  • the deterioration variation in the secondary battery system is accelerated as the system operation period elapses. Since the life of the secondary battery system depends on the most deteriorated battery, the battery performance cannot be fully utilized and the life is shortened.
  • FIG. 6 is a configuration diagram of a secondary battery system having a battery balancing function in one embodiment for suppressing the acceleration of deterioration variation occurring in the secondary battery system.
  • the secondary battery system 400 has a configuration in which a plurality of sets are arranged in parallel, with the power conditioner 410, the battery panel 430, and the battery management unit 420 connected to the battery panel 430 as one series set.
  • the flowing AC wave is converted to DC by the power conditioner 410, and a DC current flows through the battery panel 430.
  • the battery management unit 420 is connected to the battery panel 430 and has a function of storing, analyzing, and managing each battery information transmitted from the battery panel 430.
  • battery modules 440 composed of a plurality of lithium ion secondary batteries 100 connected in series are connected in series.
  • the lithium ion secondary batteries 100 are stacked and arranged, for example, and in many cases, a temperature difference occurs depending on the position of the lithium ion secondary battery 100.
  • the value of the current flowing through each lithium ion secondary battery 100, the battery voltage, and the battery temperature are respectively obtained from a current sensor 451 connected in series with the battery, a voltage sensor 452 connected in parallel with the battery, and a temperature sensor 453 attached to the battery surface. Detected.
  • the current sensor 451, voltage sensor 452, and temperature sensor 453 are connected to the cell controller 456 and transmit each detected value to the battery management unit 420.
  • a bypass circuit is provided between the lithium ion secondary batteries 100 and is connected to the transistor 454 and the resistor 455. Using this bypass circuit, each lithium ion secondary battery 100 can be adjusted to a predetermined voltage. This function is hereinafter referred to as a voltage balancing function.
  • the flow of the battery balancing function is shown below.
  • a command is issued from the cell controller 456 to the transistor 454, and the switch is turned on.
  • the switch is turned on, the lithium ion secondary battery 100 is discharged and discharged to a predetermined voltage as time passes.
  • a command is issued from the cell controller 456 to the transistor 454, and the switch is turned OFF.
  • Balancing is performed by controlling the charging rate of the secondary battery.
  • the charging rate is controlled by the voltage of the secondary battery.
  • the working voltage range can be adjusted by an adjusting mechanism that determines and adjusts the balancing voltage (VBk) to each secondary battery.
  • a charge start voltage, a charge end voltage, a discharge start voltage, and a discharge end voltage can be set. By adjusting these voltages, you can use a secondary battery in a wide voltage range, use a secondary battery in a narrow range, or use a secondary battery in a low voltage range. Use can be adjusted and the burden on the secondary battery can be adjusted.
  • adjustment by a bypass circuit can be used as an adjustment mechanism for performing the operation (balancing) for adjusting these voltages.
  • the resistor 455 used for the bypass circuit is used to control the current value flowing through the bypass circuit.
  • the resistance value of the resistor 455 is not limited. However, if the resistance value is too large, it takes time to adjust the voltage. If the resistance value is too small, the discharge current is high and the battery is loaded. Therefore, although it depends on the application, it is desirable that the resistor 455 has a resistance value such that the value of the current flowing through the bypass circuit is about 0.5 C to 2 C. Further, a variable resistor whose resistance value varies depending on the value of the current flowing through the bypass circuit may be used for the resistor 455.
  • the voltage can be lowered by discharging from the secondary battery.
  • the charging is continued until the secondary battery exceeds the balancing voltage value through the power generation device provided in the secondary battery system or an external power source. It can be adjusted by a method such as operating the voltage balancing function.
  • Balancing is preferably performed, for example, at the end of charging, at the end of discharging, or during maintenance. At this time, the balancing is preferably performed until the next charging or discharging is started.
  • a predetermined voltage value determined when a command is transmitted to the transistor 454 has a common value. The purpose is to eliminate the voltage variation of each battery in the secondary battery system caused by operation.
  • a predetermined voltage value serving as a determination criterion is set in each lithium ion secondary battery.
  • the temperature in the central part of the system is high, and the deterioration is accelerated in the central part of the system.
  • the battery deterioration depends on the SOC, that is, the battery voltage. Therefore, it is preferable to set the SOC of the battery in the central part of the system so as to suppress the deterioration of the battery in the central part of the system where the deterioration is promoted.
  • SOC for example, it can be set by appropriately changing the start / end voltage of charge / discharge.
  • the SOC setting of the battery is changed, the battery voltage changes and the output changes. Therefore, in order not to change the rated output performance of the battery panel 430, not only the SOC setting change of the battery at the center of the system but also the SOC setting of the battery at the end of the system can be performed.
  • the SOC of the battery at the center of the system with high temperature and large deterioration may be set low, and the SOC of the battery at the end of the system with low temperature and low deterioration may be set high.
  • “low SOC” means, for example, that the SOC range to be used is narrowed (for example, a battery used in the range of 30 to 70% is used in the range of 32 to 68%), or a low SOC is used. It is possible to use such a setting that the battery is used (for example, the battery used in the range of 30 to 70% is used in the range of 28 to 68%). The latter is preferable from this viewpoint because the usable capacity decreases.
  • the precaution when re-setting the SOC is that the maximum output and energy capacity of the battery change when the SOC of the battery is changed. For example, when the SOC is lowered, the maximum output and energy capacity are reduced. Therefore, the maximum output and energy capacity after the SOC change satisfy the design values, and the estimated maximum output and energy capacity after SOC reset after long-term operation are the estimated maximum output and energy capacity during normal operation. It is necessary to determine the SOC setting value in consideration of whether the value is exceeded.
  • deterioration in the secondary battery system is established by setting a predetermined voltage value to be determined at the time of command transmission to the transistor 454 in each battery so that the SOC of each battery determined in this way is obtained. Variations can be eliminated and the life of the secondary battery system can be extended.
  • a predetermined voltage value (hereinafter referred to as a balancing voltage value) that is determined when a command is sent to the transistor 454 in the secondary battery system in consideration of the relationship of the battery deterioration with respect to the SOC and the battery temperature in the lithium ion secondary battery. was set for each battery depending on the position of the battery.
  • Example 1 uses a system applied to a hybrid vehicle (hereinafter referred to as HEV), the estimated value of the maximum output after long-term operation is higher in the method according to the present invention than in the conventional method and the method according to the present invention.
  • a predetermined voltage value that is determined when a command is transmitted to the transistor 454 is set in each battery.
  • an optimum balancing voltage value of each battery was calculated using a deterioration prediction formula calculated from the results of FIGS. 2 and 3, a database of deterioration results, and the like. The calculation method is specifically shown below.
  • Equation (3) such as environmental temperature T, SOC, It is expressed by an expression that depends on the operating time t.
  • Equation (9) is a limiting condition that the estimated value of the maximum output in a certain SOC after long-term operation in a high temperature environment of the secondary battery system is higher than the estimated value of the maximum output after long-term operation in the conventional method.
  • Formula (9) it calculated as 45 degreeC as high temperature environmental conditions, and 3650 days as long-term operation period.
  • the initial setting SOC of the conventional method is 50%.
  • FIG. 7 and FIG. 8 show the results reflecting the calculated values of the SOC optimum values using the equations (7), (8), and (9).
  • FIG. 7 shows the battery temperature, the set voltage, and the resistance deterioration coefficient in the conventional method in a place having different battery temperatures. It can be seen that in the place B where the temperature is high, the resistance deterioration coefficient is higher than in the place A where the temperature is low, and the deterioration easily proceeds.
  • FIG. 8 shows the battery temperature, the set voltage, and the resistance deterioration coefficient to which the method according to the present invention is applied in a place having different battery temperatures. The values of the system end A and the system center B are shown as representative points.
  • the “set voltage” can be, for example, a voltage that is reached when balancing starts and ends, or can be a center SOC.
  • the location B of high temperature is used under milder conditions than the location A of low temperature, or the location A of low temperature is used under stricter conditions than the location B of high temperature. Can be reduced.
  • FIG. 9 is a flowchart for explaining voltage balancing control in the first embodiment. The process shown in this control flowchart is called from the main routine and executed at a predetermined time when there is no current load in the system, such as at the start or end of system operation, or during periodic system maintenance.
  • Step S1> Each battery voltage V K detected from the voltage sensor 452 is compared with the balancing voltage value V BK in each battery, and it is determined whether each battery voltage V K is larger than each balancing voltage value V BK . As each cell voltage V K is determined to be greater than the balancing voltage value V BK (in step S1 YES), the processing proceeds to step S4. Each battery voltage V K is smaller than the balancing voltage value V BK (in step S1 NO), the process proceeds to step S2.
  • Step S2> It is determined from the value of the current sensor 453 whether or not the battery panel 430 is charged. If battery panel 430 is charged (YES in step S2), the process returns to the start, and the process starts again from step S1. If battery panel 430 is not charged (NO in step S2), the process proceeds to step S3.
  • Step S4 It is determined from the value of the current sensor 453 whether or not the battery panel 430 is charged. If battery panel 430 is charged (YES in step S4), the process proceeds to step S5. If battery panel 430 is not charged (NO in step S4), the process proceeds to step S6.
  • Step S5 Charging of the battery panel 430 is started. Thereafter, the process proceeds to step S6.
  • Step S6> It is determined whether or not the transistor 454 (k) installed in the bypass circuit of each battery is OFF. If each transistor 454 (k) is OFF (YES in step S6), the process proceeds to step S7. If each transistor 454 (k) is ON (NO in step S6), the process proceeds to step S8.
  • Step S7 Each transistor 454 (k) is turned on. By turning on each transistor 454 (k), the balancing function of each battery is turned on, and the battery is discharged until the respective balancing voltage VBK is reached. Thereafter, the process proceeds to step S8.
  • Step S8 Each battery voltage V K detected from the voltage sensor 452 is compared with the balancing voltage value V BK in each battery, and it is determined whether or not each battery voltage V K is smaller than each balancing voltage value V BK . As each cell voltage V K is determined to be smaller than the balancing voltage value V BK (in step S8 YES), the processing proceeds to step S9. Each battery voltage V K is smaller than the balancing voltage value V BK (in step S8 NO), the process proceeds to step S6.
  • Step S9 Each transistor 454 (k) is turned off. By turning off each transistor 454 (k), the voltage balancing function of each battery is turned off. Thereafter, the battery balancing process ends.
  • each battery voltage is periodically adjusted to the balancing voltage value, and the SOC distribution is taken depending on the location in the secondary battery system.
  • the acceleration can be eliminated and the life of the secondary battery system can be extended.
  • FIG. 10 shows the estimation results of the maximum output change at the system end A and the system center B in the secondary battery system.
  • the horizontal axis indicates the operation period, and the vertical axis indicates the maximum output change rate.
  • a result of the system end A according to the conventional method is shown as A1, a result of the system center B as B1, a result of the system end A according to the method of the present invention as A2, and a result of the system center B as B2.
  • the set voltage is lowered so as to suppress the deterioration of the system center B, and the set voltage value of the system end A so as to maintain the rated output of the battery panel.
  • the maximum output initial value of the system central portion B to which the method of the present invention is applied is lower than the maximum output initial value of the system central portion B in the conventional method.
  • the maximum output of the system central part B to which the method of the present invention is applied increases, and it has been shown that the life of the secondary battery system can be extended by the method of the present invention.
  • the setting value of each balancing voltage is updated according to the SOH of each battery calculated periodically.
  • the update period of the balancing voltage (VBk) may be any period, and may be one month, two months, or half a year.
  • Fig. 11 shows the flow of updating the setting value of the balancing voltage.
  • the current value, voltage value, and battery temperature of each battery are detected from the current sensor 451, voltage sensor 452, and temperature sensor 453, and transmitted to each cell controller 456.
  • Each cell data is transmitted from each cell controller 456 to the battery management unit 420, and the battery management unit 420 calculates the SOC and SOH of the battery using those data.
  • the calculation method of the SOC is calculated using, for example, the result of the accumulated charge / discharge capacity calculated from the battery voltage from a certain point in time and the transition of the current value from the certain point in time.
  • the SOH estimation method is calculated from, for example, a current value, a battery temperature, an estimated resistance value at the battery temperature, a difference value between the battery voltage and the open circuit voltage in the SOC calculated at that time, and the like.
  • the specific calculation method is basically the same as that of the first embodiment, and using the formulas (3) to (9), the set SOC, that is, the balancing voltage is set so that the maximum output value after long-term operation becomes maximum. Calculate the optimum value.
  • the transition of the resistance deterioration depends on SOH at a certain operation time t in addition to the environmental temperature T, the SOC, and the operation time t. Therefore, by reflecting the SOH calculated periodically in the prediction formula, it is possible to calculate a more appropriate setting SOC, that is, a balancing voltage value.
  • Expression (10) is used instead of Expression (3).
  • the battery management unit 420 uses the equations (4) to (9) and (10) to regularly set SOC, that is, balancing voltage value so that the maximum output value after long-term operation becomes maximum. Update the optimal value of.
  • the updated value of the balancing voltage value in each battery calculated by the battery management unit 420 is transmitted to each cell controller 456. After the transmission, each cell controller 456 activates the voltage balancing function using the updated balancing voltage value.
  • the same voltage balancing control flow as that of the flowchart of FIG. 9 of the first embodiment can be used.
  • the balancing voltage value is set based on the SOH and the temperature.
  • the balancing voltage value may be calculated based only on the SOH, or the balancing voltage value may be appropriately changed according to only the temperature.
  • FIG. 12 shows the estimation result of the maximum output change at the system end A and the system center B in the secondary battery system.
  • the horizontal axis indicates the operation period, and the vertical axis indicates the maximum output change rate.
  • a result of the system end A according to the conventional method is shown as A1, a result of the system center B as B1, a result of the system end A according to the method of the present invention as A2, and a result of the system center B as B2.
  • the update period was calculated as 30 days.
  • FIG. 12 by periodically updating the balancing voltage value to reflect the SOH of each battery, the acceleration of deterioration variation in a hot place is reduced as compared with the first embodiment, and the life of the secondary battery system is extended. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

The purpose of the present invention is to prevent acceleration of degradation fluctuations in a battery system and prolong the life of the battery system. Provided is a secondary battery system in which multiple secondary batteries are connected in series and in parallel, wherein the system is characterized in that the voltage balancing function is separately set for each of the secondary batteries.

Description

二次電池システムSecondary battery system
 本発明は、二次電池システムに関する。 The present invention relates to a secondary battery system.
 近年、環境対策を背景にリチウムイオン電池を用いた電池システムの市場が増加している。システム稼動によりリチウムイオン電池は容量低下や内部抵抗増加の劣化が生じ、高温環境下ほど劣化が加速する。電池システム内では温度分布が生じ、中央部で高温となるため、劣化ばらつきが生じ,中央部でより劣化が進む。劣化に伴う内部抵抗増加によって電池発熱量が増加するため、中央部はより高温になるため、劣化は加速する。このように、システム稼動期間が経過するほど、電池システム内における劣化ばらつきは加速する。電池システムの寿命は最も劣化した電池に依存するため、電池性能を最大限利用できず、低寿命となる。そのため、電池システム内で生じる劣化ばらつきが加速するのを抑制し、電池システムを長寿命化させる手段が必要である。リチウムイオン電池の劣化は電池温度の他に、電池充電率(以下、SOC)や電池電圧に依存することが知られている。この特徴から、特許文献1では、組電池の劣化状態(以下、SOH)の診断結果に応じて、セルコントローラは電池システム全体の電池作動電圧範囲または、作動SOC範囲を設定し、充放電制御する二次電池システムが報告されている。 In recent years, the market for battery systems using lithium ion batteries is increasing against the background of environmental measures. As the system operates, the capacity of the lithium-ion battery decreases and the internal resistance increases, and the deterioration accelerates as the temperature increases. In the battery system, a temperature distribution is generated and the temperature is high in the central portion, so that variation in deterioration occurs, and the deterioration further proceeds in the central portion. Since the amount of heat generated by the battery increases due to the increase in internal resistance accompanying the deterioration, the central portion becomes higher in temperature, and the deterioration accelerates. Thus, the deterioration variation in the battery system is accelerated as the system operation period elapses. Since the life of the battery system depends on the most deteriorated battery, the battery performance cannot be fully utilized and the life is shortened. Therefore, there is a need for a means for suppressing the acceleration of the deterioration in deterioration that occurs in the battery system and extending the life of the battery system. It is known that the deterioration of the lithium ion battery depends on the battery charging rate (hereinafter referred to as SOC) and the battery voltage in addition to the battery temperature. From this feature, in Patent Document 1, the cell controller sets the battery operating voltage range or the operating SOC range of the entire battery system according to the diagnosis result of the deterioration state (hereinafter referred to as SOH) of the assembled battery, and performs charge / discharge control. Secondary battery systems have been reported.
 特許文献1の技術は、組電池のSOHに応じて、組電池の作動SOC範囲を高SOC側、または低SOC側へシフトすることで、組電池、及び電池システムの劣化を抑制し、長寿命化させている。 The technology of Patent Document 1 suppresses deterioration of the assembled battery and the battery system by shifting the operating SOC range of the assembled battery to the high SOC side or the low SOC side according to the SOH of the assembled battery, and has a long service life. It has become.
特開2015-065119号公報Japanese Patent Laying-Open No. 2015-065119
 しかし、特許文献1においては、電池システムを全体として同様に調節しているため、電池システム内における各電池の劣化ばらつきの加速を抑制することはできなく、電池性能を最大限利用できない可能性がある。 However, in Patent Document 1, since the battery system as a whole is similarly adjusted, acceleration of deterioration variation of each battery in the battery system cannot be suppressed, and the battery performance may not be used to the maximum extent. is there.
 本発明は、電池システム内における劣化ばらつきの加速を抑制し、電池システムを長寿命化させることを目的とする。 An object of the present invention is to suppress acceleration of deterioration variation in a battery system and extend the life of the battery system.
 上記課題を解決する手段は例えば以下である。 The means for solving the above problems are, for example, as follows.
 複数の二次電池が直列または並列で接続された二次電池システムにおいて、前記二次電池の充電率は、前記二次電池の電圧により制御され、前記電圧の値は、前記二次電池ごとに個別に設定される二次電池システム。 In a secondary battery system in which a plurality of secondary batteries are connected in series or in parallel, the charging rate of the secondary battery is controlled by the voltage of the secondary battery, and the value of the voltage is determined for each secondary battery. Secondary battery system set individually.
 前記二次電池の充電率は、前記電圧の使用範囲により制御され、前記使用範囲は、前記二次電池ごとに個別に設定される二次電池システム。 The charging rate of the secondary battery is controlled by the use range of the voltage, and the use range is individually set for each secondary battery.
 前記電圧は、二次電池システム内の温度、または、劣化度に応じて設定される二次電池システム。 The voltage is a secondary battery system that is set according to the temperature in the secondary battery system or the degree of deterioration.
 前記電圧は、前記二次電池ごとに定められたバランシング電圧であり、前記バランシング電圧は、二次電池の充電開始電圧、充電終了電圧、放電開始電圧、放電終了電圧の少なくともいずれかであり、前記二次電池システムは、前記二次電池ごとに定められた前記バランシング電圧に調節する調節機構を前記二次電池ごとに有する二次電池システム。 The voltage is a balancing voltage determined for each secondary battery, and the balancing voltage is at least one of a charge start voltage, a charge end voltage, a discharge start voltage, and a discharge end voltage of the secondary battery, The secondary battery system is a secondary battery system having an adjustment mechanism for adjusting the balancing voltage determined for each secondary battery for each secondary battery.
 本発明により、電池システム内における劣化ばらつきの加速を抑制し、電池システムを長寿命化させることを可能とする。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, acceleration of deterioration variation in the battery system can be suppressed, and the battery system can be extended in life. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施形態におけるリチウムイオン二次電池の内部構成を示す概略図である。It is the schematic which shows the internal structure of the lithium ion secondary battery in one Embodiment of this invention. 本発明の一実施形態におけるリチウムイオン二次電池のSOCと電池温度と容量劣化係数の関係を示す特性図である。It is a characteristic view which shows the relationship between SOC of a lithium ion secondary battery in one Embodiment of this invention, battery temperature, and a capacity degradation coefficient. 本発明の一実施形態におけるリチウムイオン二次電池のSOCと電池温度と抵抗劣化係数の関係を示す特性図である。It is a characteristic view which shows the relationship between SOC of a lithium ion secondary battery in one Embodiment of this invention, battery temperature, and a resistance degradation coefficient. 本発明の一実施形態におけるリチウムイオン二次電池システムの異なる電池温度を持つ場所における容量劣化推定曲線を示す特性図である。It is a characteristic view which shows the capacity degradation estimation curve in the place with different battery temperature of the lithium ion secondary battery system in one Embodiment of this invention. 本発明の一実施形態におけるリチウムイオン二次電池システムの異なる電池温度を持つ場所における抵抗劣化推定曲線を示す特性図である。It is a characteristic view which shows the resistance deterioration estimation curve in the place with different battery temperature of the lithium ion secondary battery system in one Embodiment of this invention. 本発明の一実施形態における電池バランシング機能を有する二次電池システムの構成図である。It is a block diagram of the secondary battery system which has a battery balancing function in one Embodiment of this invention. 本発明の実施例1で示した異なる電池温度を持つ場所における従来手法における電池温度、設定電圧、抵抗劣化係数を示す表である。It is a table | surface which shows the battery temperature in a conventional method in the place with a different battery temperature shown in Example 1 of this invention, a setting voltage, and a resistance degradation coefficient. 本発明の実施例1で示した異なる電池温度を持つ場所における本発明を適用させた電池温度、設定電圧、抵抗劣化係数を示す表である。It is a table | surface which shows the battery temperature to which this invention was applied in the place which has a different battery temperature shown in Example 1 of this invention, a setting voltage, and a resistance degradation coefficient. 本発明の実施例1における電池バランシング機能を示すフローチャートである。It is a flowchart which shows the battery balancing function in Example 1 of this invention. 本発明の実施例1において、異なる電池温度を持つ場所における、従来手法と本発明の手法を適用させた条件における、劣化推定曲線を示す特性図である。In Example 1 of this invention, it is a characteristic view which shows the deterioration estimation curve in the conditions where the technique of this invention and the technique of this invention were applied in the place which has a different battery temperature. 本発明の実施例2における、各電池劣化状態から各バランシング電圧設定値を更新するフローを示す図である。It is a figure in Example 2 of this invention which shows the flow which updates each balancing voltage setting value from each battery degradation state. 本発明の実施例2において、異なる電池温度を持つ場所における、従来手法と本発明の手法を適用させた条件における、劣化推定曲線を示す特性図である。In Example 2 of this invention, it is a characteristic view which shows the deterioration estimation curve in the conditions where the technique of this invention and the technique of this invention were applied in the place which has a different battery temperature.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 初めに、二次電池システムに搭載するリチウムイオン二次電池について説明する。図1に、本発明の一実施形態におけるリチウムイオン二次電池の内部構成の概略図を示す。リチウムイオン二次電池100において、正極101、セパレータ103、負極102を含む電極群が電池ケース106内に設置され構成されている。 First, the lithium ion secondary battery installed in the secondary battery system will be described. In FIG. 1, the schematic of the internal structure of the lithium ion secondary battery in one Embodiment of this invention is shown. In the lithium ion secondary battery 100, an electrode group including a positive electrode 101, a separator 103, and a negative electrode 102 is installed and configured in a battery case 106.
 正極101、負極102は、電解液を含有したセパレータ103を通じて互いに離れて配置されており、正極101、負極102間は電子伝導性が無く、イオン導電性がある構成となっている。 The positive electrode 101 and the negative electrode 102 are arranged away from each other through a separator 103 containing an electrolytic solution, and the positive electrode 101 and the negative electrode 102 have no electron conductivity and have ionic conductivity.
 正極101から負極102に電流が流れることで、負極102中の活物質からリチウムイオンが脱離し、正極101中の活物質へリチウムイオンが挿入する反応が進行する。 When a current flows from the positive electrode 101 to the negative electrode 102, lithium ions are desorbed from the active material in the negative electrode 102, and a reaction in which lithium ions are inserted into the active material in the positive electrode 101 proceeds.
 電極群は正極101、セパレータ103、負極102、セパレータ103を交互に重ね合わせて捲回した構成、または、正極101、セパレータ103、負極102、セパレータ103を交互に重ね合わせて積層した構成となっている。電池の形状は、電極群が捲回された構成の場合、円筒型、偏平長円形型、角型であり、電極群が捲回された構成の場合、角型、ラミネート型などがあり、いずれの形状を選択してもよい。 The electrode group has a configuration in which the positive electrode 101, the separator 103, the negative electrode 102, and the separator 103 are alternately stacked and wound, or the positive electrode 101, the separator 103, the negative electrode 102, and the separator 103 are alternately stacked. Yes. The shape of the battery includes a cylindrical shape, a flat oval shape, and a square shape when the electrode group is wound, and a rectangular shape and a laminate shape when the electrode group is wound. The shape may be selected.
 正極端子104、負極端子105はそれぞれ正極101、負極102と通電しており、リチウムイオン二次電池100は正極端子104、負極端子105、電子回路110を介して外部回路から充放電される。正極端子104、負極端子105には電圧センサ111が接続され、電子回路110中には、電流センサ112が組み込まれており、リチウムイオン二次電池100に流れる電流値や、正負極間の電位差、すなわち電池電圧を検出する構成となっている。 The positive electrode terminal 104 and the negative electrode terminal 105 are energized with the positive electrode 101 and the negative electrode 102, respectively, and the lithium ion secondary battery 100 is charged / discharged from an external circuit via the positive electrode terminal 104, the negative electrode terminal 105, and the electronic circuit 110. A voltage sensor 111 is connected to the positive terminal 104 and the negative terminal 105, and a current sensor 112 is incorporated in the electronic circuit 110, and the current value flowing in the lithium ion secondary battery 100, the potential difference between the positive and negative electrodes, That is, the battery voltage is detected.
 リチウムイオン二次電池は使用することで、容量低下や内部抵抗増加の劣化が生じる。このような電池の劣化は、環境温度やSOC、すなわち電池電圧に依存することが知られている。SOCと電池電圧の関係は、SOCが高くなればなるほど電池電圧は高くなる。 When using lithium ion secondary batteries, the capacity decreases and the internal resistance increases. It is known that such battery deterioration depends on environmental temperature and SOC, that is, battery voltage. Regarding the relationship between the SOC and the battery voltage, the higher the SOC, the higher the battery voltage.
 図2にリチウムイオン二次電池のSOCと電池温度に対する容量劣化係数の関係を示す特性図の一例を、図3にリチウムイオン二次電池のSOCと電池温度に対する抵抗劣化係数の関係を示す特性図の一例を示す。容量劣化係数、抵抗劣化係数は、それぞれ劣化速度の指標を示し、劣化と劣化係数の関係は、例えば、式(1)のように示される。 FIG. 2 shows an example of a characteristic diagram showing the relationship between the SOC of the lithium ion secondary battery and the capacity deterioration coefficient with respect to the battery temperature, and FIG. 3 shows a characteristic diagram showing the relation between the SOC of the lithium ion secondary battery and the resistance deterioration coefficient with respect to the battery temperature. An example is shown. The capacity deterioration coefficient and the resistance deterioration coefficient each indicate an index of the deterioration rate, and the relationship between the deterioration and the deterioration coefficient is expressed by, for example, Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、yは電池劣化量,kは劣化係数,tは試験時間,a,bは定数を示す。式(1)は電池劣化量が試験時間の1 / 2乗に比例することを利用したルート則に基づいた劣化予測式である。この数式は、電池内部における副反応の進行速度が副反応により生成する皮膜の厚みに反比例するというメカニズムに基づいている。
図2、図3は、ある一つの実施形態におけるリチウムイオン二次電池において、各SOCに充電した電池を様々な温度で貯蔵した時の電池劣化を算出した結果から得られた図である。例として、図2では容量劣化速度の指標である容量劣化係数を、図3では抵抗劣化速度の指標である容量劣化係数を、35℃、45℃、55℃の結果について示している。横軸はSOC、縦軸はそれぞれの劣化係数を示している。図2、図3の結果より、高温では電池劣化が顕著である反面、低温では比較的、各劣化係数が緩やかであることがわかる。また、各劣化係数はSOCにも依存することがわかる。そのため、式(1)の劣化係数kは式(2)のような環境温度TとSOCに依存する式で示される。
In Equation (1), y is the battery deterioration amount, k is the deterioration coefficient, t is the test time, and a and b are constants. Expression (1) is a deterioration prediction expression based on a root rule that utilizes the fact that the battery deterioration amount is proportional to the ½ of the test time. This formula is based on a mechanism in which the speed of the side reaction in the battery is inversely proportional to the thickness of the film formed by the side reaction.
FIG. 2 and FIG. 3 are diagrams obtained from the results of calculating battery deterioration when a battery charged in each SOC is stored at various temperatures in a lithium ion secondary battery according to one embodiment. As an example, FIG. 2 shows the capacity deterioration coefficient as an index of the capacity deterioration rate, and FIG. 3 shows the capacity deterioration coefficient as an index of the resistance deterioration speed for the results of 35 ° C., 45 ° C., and 55 ° C. The horizontal axis indicates the SOC, and the vertical axis indicates the respective degradation coefficients. From the results of FIGS. 2 and 3, it can be seen that the battery deterioration is remarkable at high temperatures, but the deterioration coefficients are relatively moderate at low temperatures. It can also be seen that each degradation coefficient depends on the SOC. Therefore, the deterioration coefficient k in the equation (1) is expressed by an equation depending on the environmental temperature T and the SOC as in the equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、リチウムイオン二次電池が搭載された二次電池システムについて説明する。二次電池システムは、複数のリチウムイオン二次電池が直列、並列に接続されたシステムである。二次電池システムを稼働させると、システム回路に電流が流れるため、ジュールの法則により電池は発熱する。電池発熱により、二次電池システム中の温度は上昇するが、システム内部の場所によって放熱性が異なるため、二次電池システム中で温度分布が生じる。一般的に、システム中央部の温度が高く、システム端部の温度が低い。ある一つの実施形態においては、約10℃であった。 Next, a secondary battery system equipped with a lithium ion secondary battery will be described. The secondary battery system is a system in which a plurality of lithium ion secondary batteries are connected in series and in parallel. When the secondary battery system is operated, current flows through the system circuit, and the battery generates heat according to Joule's law. The temperature in the secondary battery system rises due to the battery heat generation, but the heat distribution varies depending on the location inside the system, and thus a temperature distribution occurs in the secondary battery system. Generally, the temperature at the center of the system is high and the temperature at the end of the system is low. In one embodiment, it was about 10 ° C.
 リチウムイオン二次電池の劣化は温度に依存するため、二次電池システム内において劣化のばらつきが生じる。例えば二次電池が積層配列された二次電池システムでは、一般的に、システム中央部の温度が高いため、システム中央部に配置されている二次電池でより劣化が促進する。さらに、劣化に伴う内部抵抗増加によって電池発熱量が増加するため、システム中央部はより高温になり、劣化は加速する。 Since the deterioration of the lithium ion secondary battery depends on the temperature, variation in the deterioration occurs in the secondary battery system. For example, in a secondary battery system in which secondary batteries are stacked and stacked, the temperature in the central part of the system is generally high, and therefore, the secondary battery disposed in the central part of the system promotes more deterioration. Further, since the amount of heat generated by the battery increases due to the increase in internal resistance accompanying the deterioration, the central part of the system becomes higher in temperature and the deterioration is accelerated.
 図4、図5に二次電池システム内の電池温度が異なる場所における、容量劣化推定曲線、抵抗劣化推定曲線を示す。稼働期間、縦軸は容量変化率、抵抗変化率を示している。Aはシステム端部,Bはシステム中央部を想定した。AとBの温度差は約10℃とし、Aは45℃,Bは35℃としてそれぞれの劣化を推定した結果を示している。図4、図5の結果より、温度差によって電池劣化推定値は顕著に異なり、劣化ばらつきが加速することが推定される。このように、システム稼動期間が経過するほど、二次電池システム内における劣化ばらつきは加速する。二次電池システムの寿命は最も劣化した電池に依存するため、電池性能を最大限利用できず、低寿命となる。 4 and 5 show capacity deterioration estimation curves and resistance deterioration estimation curves at different battery temperatures in the secondary battery system. The operation period and the vertical axis indicate the capacity change rate and the resistance change rate. A is assumed to be the end of the system, and B is assumed to be the center of the system. The temperature difference between A and B is about 10 ° C., A is 45 ° C., and B is 35 ° C., and the results of estimating the respective deterioration are shown. From the results of FIGS. 4 and 5, it is estimated that the battery deterioration estimated value is remarkably different depending on the temperature difference, and the deterioration variation is accelerated. Thus, the deterioration variation in the secondary battery system is accelerated as the system operation period elapses. Since the life of the secondary battery system depends on the most deteriorated battery, the battery performance cannot be fully utilized and the life is shortened.
 そこで、二次電池システム内で生じる劣化ばらつきの加速を抑制し、二次電池システムを長寿命化させる手段が必要となる。 Therefore, it is necessary to provide a means for suppressing the acceleration of deterioration variation occurring in the secondary battery system and extending the life of the secondary battery system.
 図6は、二次電池システム内で生じる劣化ばらつきの加速を抑制するための、ある一つの実施形態における電池バランシング機能を有する二次電池システムの構成図である。 FIG. 6 is a configuration diagram of a secondary battery system having a battery balancing function in one embodiment for suppressing the acceleration of deterioration variation occurring in the secondary battery system.
 図6において、二次電池システム400は、パワーコンディショナー410、電池盤430、及び電池盤430と接続された電池管理部420を一直列のセットとして、複数セットが並列された構成を持つ。二次電池システム400では、流れてくる交流波をパワーコンディショナー410で直流に変換し、電池盤430に直流電流が流れる設計となっている。電池管理部420は電池盤430と接続され、電池盤430から発信されるそれぞれの電池情報を蓄積、解析、管理する機能などを持つ。 6, the secondary battery system 400 has a configuration in which a plurality of sets are arranged in parallel, with the power conditioner 410, the battery panel 430, and the battery management unit 420 connected to the battery panel 430 as one series set. In the secondary battery system 400, the flowing AC wave is converted to DC by the power conditioner 410, and a DC current flows through the battery panel 430. The battery management unit 420 is connected to the battery panel 430 and has a function of storing, analyzing, and managing each battery information transmitted from the battery panel 430.
 電池盤430では、直列に接続された複数のリチウムイオン二次電池100で構成される電池モジュール440が直列に連なっている。各リチウムイオン二次電池100は例えば積層配列されており、リチウムイオン二次電池100の位置によって多くの場合、温度に差が生じる。各リチウムイオン二次電池100に流れる電流値、電池電圧、電池温度は、それぞれ、電池と直列接続された電流センサ451、電池と並列接続された電圧センサ452、電池表面に取り付けた温度センサ453から検出される。電流センサ451、電圧センサ452、温度センサ453はセルコントローラ456と接続されており、各検出値を電池管理部420へ送信している。それぞれのリチウムイオン二次電池100の間にはバイパス回路が設けられており、トランジスタ454、及び抵抗455と接続されている。このバイパス回路を用いて、それぞれのリチウムイオン二次電池100を所定の電圧に調整することができる。この機能を、以下、電圧バランシング機能と呼ぶ。 In the battery panel 430, battery modules 440 composed of a plurality of lithium ion secondary batteries 100 connected in series are connected in series. The lithium ion secondary batteries 100 are stacked and arranged, for example, and in many cases, a temperature difference occurs depending on the position of the lithium ion secondary battery 100. The value of the current flowing through each lithium ion secondary battery 100, the battery voltage, and the battery temperature are respectively obtained from a current sensor 451 connected in series with the battery, a voltage sensor 452 connected in parallel with the battery, and a temperature sensor 453 attached to the battery surface. Detected. The current sensor 451, voltage sensor 452, and temperature sensor 453 are connected to the cell controller 456 and transmit each detected value to the battery management unit 420. A bypass circuit is provided between the lithium ion secondary batteries 100 and is connected to the transistor 454 and the resistor 455. Using this bypass circuit, each lithium ion secondary battery 100 can be adjusted to a predetermined voltage. This function is hereinafter referred to as a voltage balancing function.
 電池バランシング機能の流れを以下に示す。初めに、リチウムイオン二次電池100が所定の電圧より大きいと、セルコントローラ456からトランジスタ454に指令を出し、スイッチをONとする。スイッチをONとすることでリチウムイオン二次電池100から放電され、時間の経過に伴い所定の電圧まで放電される。リチウムイオン二次電池が所定の電圧以下となると、セルコントローラ456からトランジスタ454に指令を出し、スイッチをOFFとする。以上の流れにより、それぞれのリチウムイオン二次電池100の電圧を調整することが可能となる。 The flow of the battery balancing function is shown below. First, when the lithium ion secondary battery 100 is larger than a predetermined voltage, a command is issued from the cell controller 456 to the transistor 454, and the switch is turned on. When the switch is turned on, the lithium ion secondary battery 100 is discharged and discharged to a predetermined voltage as time passes. When the lithium ion secondary battery becomes a predetermined voltage or lower, a command is issued from the cell controller 456 to the transistor 454, and the switch is turned OFF. With the above flow, the voltage of each lithium ion secondary battery 100 can be adjusted.
 バランシングは、二次電池の充電率を制御することで行われる。充電率は二次電池の電圧で制御されている。特に二次電池の使用電圧範囲を調節することでバランシングすることが好ましい。使用電圧範囲は、各二次電池でバランシング電圧(VBk)を定め、その電圧に調節する調節機構により調節することができる。 Balancing is performed by controlling the charging rate of the secondary battery. The charging rate is controlled by the voltage of the secondary battery. In particular, it is preferable to perform balancing by adjusting the operating voltage range of the secondary battery. The working voltage range can be adjusted by an adjusting mechanism that determines and adjusts the balancing voltage (VBk) to each secondary battery.
 バランシング電圧としては、例えば充電開始電圧、充電終了電圧、放電開始電圧、放電終了電圧を設定することができる。これら電圧を調節することで、広い電圧範囲で二次電池を使用したり、狭い範囲で二次電池を使用する、または低い電圧範囲で二次電池を使用する、高い電圧範囲で二次電池を使用する等の調節ができ、二次電池への負担を調節することができる。 As the balancing voltage, for example, a charge start voltage, a charge end voltage, a discharge start voltage, and a discharge end voltage can be set. By adjusting these voltages, you can use a secondary battery in a wide voltage range, use a secondary battery in a narrow range, or use a secondary battery in a low voltage range. Use can be adjusted and the burden on the secondary battery can be adjusted.
 これら電圧を調節する作業(バランシング)を行う調節機構としては例えばバイパス回路よる調節を用いることができる。バイパス回路に用いる抵抗455は、バイパス回路に流れる電流値を制御するために用いる。抵抗455の抵抗値は問わないが、抵抗値が大きすぎても電圧調整に時間がかかり、抵抗値が小さすぎても放電電流が高く、電池に負荷がかかる。そのため、アプリケーションに依存するが、バイパス回路に流れる電流値が、0.5C~2C程度であるような抵抗値を持つ抵抗455とすることが望ましい。また、抵抗455に抵抗値がバイパス回路に流れる電流値に依存して変化する可変抵抗を用いてもよい。 For example, adjustment by a bypass circuit can be used as an adjustment mechanism for performing the operation (balancing) for adjusting these voltages. The resistor 455 used for the bypass circuit is used to control the current value flowing through the bypass circuit. The resistance value of the resistor 455 is not limited. However, if the resistance value is too large, it takes time to adjust the voltage. If the resistance value is too small, the discharge current is high and the battery is loaded. Therefore, although it depends on the application, it is desirable that the resistor 455 has a resistance value such that the value of the current flowing through the bypass circuit is about 0.5 C to 2 C. Further, a variable resistor whose resistance value varies depending on the value of the current flowing through the bypass circuit may be used for the resistor 455.
 このようにトランジスタと抵抗を用いた場合、二次電池から放電することで電圧下げることができる。電圧を上げる調節をする際には、二次電池システムの内部に設けられた発電装置、または外部電源を通して、前記二次電池がそれぞれの前記バランシング電圧値を上回るまで充電を継続し、充電終了後、前記電圧バランシング機能を稼働させる等の方法で調節することができる。 When using transistors and resistors in this way, the voltage can be lowered by discharging from the secondary battery. When adjusting to increase the voltage, the charging is continued until the secondary battery exceeds the balancing voltage value through the power generation device provided in the secondary battery system or an external power source. It can be adjusted by a method such as operating the voltage balancing function.
 この電圧バランシング機能は、定期的にシステム運転開始時、終了時、または定期的なシステムメンテナンス時などの、システムに電流負荷が無い時において発動させることが望ましい。 It is desirable to activate this voltage balancing function when there is no current load in the system, such as when system operation starts, ends, or during regular system maintenance.
 バランシングは、例えば充電終了時、放電終了時、またメンテナンス時のいずれかに行われることが好ましい。この際にバランシングは次の充電、または放電が開始されるまでの間に行うことが好ましい。 Balancing is preferably performed, for example, at the end of charging, at the end of discharging, or during maintenance. At this time, the balancing is preferably performed until the next charging or discharging is started.
 次に、二次電池システム内で生じる劣化ばらつきの加速を抑制し、二次電池システムを長寿命化させる手段を示す。一般的に、二次電池システムにおいて、トランジスタ454への指令発信時に判断する所定の電圧値は、共通の値をとる。その目的は、稼働により生じる二次電池システム内における各電池の電圧ばらつきの解消である。本発明では、その判断基準となる所定の電圧値を、それぞれのリチウムイオン二次電池において、それぞれ設定する。 Next, a means for suppressing the acceleration of deterioration variation occurring in the secondary battery system and extending the life of the secondary battery system will be described. In general, in a secondary battery system, a predetermined voltage value determined when a command is transmitted to the transistor 454 has a common value. The purpose is to eliminate the voltage variation of each battery in the secondary battery system caused by operation. In the present invention, a predetermined voltage value serving as a determination criterion is set in each lithium ion secondary battery.
 二次電池システムにおいて、システム中央部の温度が高く、システム中央部で劣化が促進するため、劣化ばらつきが生じる。劣化ばらつきの解消にはシステム中央部の劣化を抑制する必要がある。図2、図3の結果より、電池劣化はSOC、すなわち電池電圧に依存することがわかっている。そのため、劣化が促進しているシステム中央部の電池の劣化を抑制するように、システム中央部の電池のSOCを設定するとよい。SOCを設定するには、例えば充放電の開始、終了電圧を適宜変更することで設定することがでる。電池のSOC設定を変更すると、電池電圧が変化し、出力が変化する。そのため、電池盤430の定格出力性能を変化させないように、システム中央部の電池のSOC設定変更だけでなく、システム端部の電池のSOC設定もすることができる。 In the secondary battery system, the temperature in the central part of the system is high, and the deterioration is accelerated in the central part of the system. In order to eliminate the deterioration variation, it is necessary to suppress deterioration at the center of the system. 2 and 3, it is known that the battery deterioration depends on the SOC, that is, the battery voltage. Therefore, it is preferable to set the SOC of the battery in the central part of the system so as to suppress the deterioration of the battery in the central part of the system where the deterioration is promoted. To set the SOC, for example, it can be set by appropriately changing the start / end voltage of charge / discharge. When the SOC setting of the battery is changed, the battery voltage changes and the output changes. Therefore, in order not to change the rated output performance of the battery panel 430, not only the SOC setting change of the battery at the center of the system but also the SOC setting of the battery at the end of the system can be performed.
 例えば、図2、図3の結果を用いると、温度が高く劣化が大きいシステム中央部の電池のSOCを低く、温度が低く劣化が小さいシステム端部の電池のSOCを高く設定すれば良い。ここで、「SOCを低く」ととしては、例えば、使用するSOC範囲を狭くする(例えば30~70%の範囲で使っている電池を32~68%の範囲で使用)、または、低いSOCで用いる(例えば30~70%の範囲で使っている電池を28~68%の範囲で使用)とするような設定を用いることができる。後者は使用可能容量が減る為、この観点からは前者が好ましい。 For example, using the results shown in FIGS. 2 and 3, the SOC of the battery at the center of the system with high temperature and large deterioration may be set low, and the SOC of the battery at the end of the system with low temperature and low deterioration may be set high. Here, “low SOC” means, for example, that the SOC range to be used is narrowed (for example, a battery used in the range of 30 to 70% is used in the range of 32 to 68%), or a low SOC is used. It is possible to use such a setting that the battery is used (for example, the battery used in the range of 30 to 70% is used in the range of 28 to 68%). The latter is preferable from this viewpoint because the usable capacity decreases.
 このように、SOC再設定時の注意点は、電池のSOCを変化させると、電池の最大出力やエネルギー容量が変化する点である。例えば、SOCを低くすると、最大出力やエネルギー容量が低下する。そのため、SOC変更後の最大出力やエネルギー容量が設計値を満たしているか、かつ、長期稼働後におけるSOC再設定後の最大出力やエネルギー容量の推定値が、通常時の最大出力やエネルギー容量の推定値を上回るかを考慮して、SOC設定値を決定する必要がある。 As described above, the precaution when re-setting the SOC is that the maximum output and energy capacity of the battery change when the SOC of the battery is changed. For example, when the SOC is lowered, the maximum output and energy capacity are reduced. Therefore, the maximum output and energy capacity after the SOC change satisfy the design values, and the estimated maximum output and energy capacity after SOC reset after long-term operation are the estimated maximum output and energy capacity during normal operation. It is necessary to determine the SOC setting value in consideration of whether the value is exceeded.
 二次電池システム内において、このように決定した各電池のSOCとなるように、それぞれの電池においてトランジスタ454への指令発信時に判断する所定の電圧値を設定することで、二次電池システムにおける劣化ばらつきを解消し、二次電池システムを長寿命化することができる。 In the secondary battery system, deterioration in the secondary battery system is established by setting a predetermined voltage value to be determined at the time of command transmission to the transistor 454 in each battery so that the SOC of each battery determined in this way is obtained. Variations can be eliminated and the life of the secondary battery system can be extended.
 これらの結果について、以下の実施例を用いて制御方法を説明する。 For these results, a control method will be described using the following examples.
 実施例1では、リチウムイオン二次電池におけるSOCや電池温度に対する電池劣化の関係を考慮し、二次電池システム内におけるトランジスタ454への指令発信時に判断する所定の電圧値(以下、バランシング電圧値)を電池の位置に応じて各電池に設定した。 In the first embodiment, a predetermined voltage value (hereinafter referred to as a balancing voltage value) that is determined when a command is sent to the transistor 454 in the secondary battery system in consideration of the relationship of the battery deterioration with respect to the SOC and the battery temperature in the lithium ion secondary battery. Was set for each battery depending on the position of the battery.
 実施例1はハイブリッド自動車(以下、HEV)に適用するシステムを用いたため、従来手法と本発明による手法を比較して、長期稼働後における最大出力の推定値が、本発明による手法の方が上回るよう考慮して、トランジスタ454への指令発信時に判断する所定の電圧値を各電池において設定した。設定には、例えば図2、図3の結果より算出される劣化予測式や劣化結果のデータベースなどを用いて、各電池の最適なバランシング電圧値を算出した。以下に計算方法を具体的に示す。 Since Example 1 uses a system applied to a hybrid vehicle (hereinafter referred to as HEV), the estimated value of the maximum output after long-term operation is higher in the method according to the present invention than in the conventional method and the method according to the present invention. In consideration of the above, a predetermined voltage value that is determined when a command is transmitted to the transistor 454 is set in each battery. For the setting, for example, an optimum balancing voltage value of each battery was calculated using a deterioration prediction formula calculated from the results of FIGS. 2 and 3, a database of deterioration results, and the like. The calculation method is specifically shown below.
 式(1)、式(2)より抵抗の劣化予測式は式(3)のように、環境温度T、SOC、
稼働時間tに依存する式で示される。
From Equations (1) and (2), the resistance deterioration prediction equation is as shown in Equation (3), such as environmental temperature T, SOC,
It is expressed by an expression that depends on the operating time t.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、電池電圧VとSOCの関係性を式(4)、最大出力Pmaxの計算式を式(5)
(6)に示す。ImaxはあるSOCにおける最大電流値を示す。
Further, the relationship between the battery voltage V and the SOC is expressed by equation (4), and the calculation formula for the maximum output P max is expressed by equation (5).
Shown in (6). I max indicates the maximum current value in a certain SOC.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
式(3)~(6)を組み合わせることで、ある環境温度、SOC、稼働時間における最大出力の劣化予測式Pmax(T,SOC,t)は式(7)のように示される。 By combining the equations (3) to (6), the maximum output deterioration prediction formula P max (T, SOC, t) at a certain environmental temperature, SOC, and operation time is expressed as the equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、制限条件を式(8)(9)のように設けて、長期稼働後の最大出力値が最大となるように、SOCの最適値を算出する。式(8)はあるSOCにおける最大出力Pmaxが設計出力値Pを満たす制限条件である。また、式(9)は二次電池システムの高温環境における長期稼働後の、あるSOCにおける最大出力の推定値が、従来手法における長期稼働後の最大出力の推定値よりも高くなる制限条件である。式(9)では、高温環境条件として45℃、長期稼働期間として3650日として算出した。また、従来手法の初期設定SOCは50%とした。 Here, limiting conditions are provided as in equations (8) and (9), and the optimum value of SOC is calculated so that the maximum output value after long-term operation is maximized. The maximum output P max in SOC in equation (8) is a limiting condition that meets the design output value P A. Equation (9) is a limiting condition that the estimated value of the maximum output in a certain SOC after long-term operation in a high temperature environment of the secondary battery system is higher than the estimated value of the maximum output after long-term operation in the conventional method. . In Formula (9), it calculated as 45 degreeC as high temperature environmental conditions, and 3650 days as long-term operation period. The initial setting SOC of the conventional method is 50%.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図7、図8に、式(7)(8)(9)を用いたSOC最適値の算出値を反映した結果を示す。 FIG. 7 and FIG. 8 show the results reflecting the calculated values of the SOC optimum values using the equations (7), (8), and (9).
 図7は、異なる電池温度を持つ場所における従来手法における電池温度、設定電圧、抵抗劣化係数を示す。温度が高い場所Bでは温度が低い場所Aに対して抵抗劣化係数が高く、劣化が進みやすいことが分かる。
また、図8は、異なる電池温度を持つ場所における本発明による手法を適用させた電池温度、設定電圧、抵抗劣化係数を示す。代表点としてシステム端部A,システム中央部Bの値を示した。ここで、「設定電圧」は例えばバランシングが開始して、終了する時に到達する電圧とすることができ、中心SOCとすることもできる。
FIG. 7 shows the battery temperature, the set voltage, and the resistance deterioration coefficient in the conventional method in a place having different battery temperatures. It can be seen that in the place B where the temperature is high, the resistance deterioration coefficient is higher than in the place A where the temperature is low, and the deterioration easily proceeds.
FIG. 8 shows the battery temperature, the set voltage, and the resistance deterioration coefficient to which the method according to the present invention is applied in a place having different battery temperatures. The values of the system end A and the system center B are shown as representative points. Here, the “set voltage” can be, for example, a voltage that is reached when balancing starts and ends, or can be a center SOC.
 温度が高い場所Bでは温度が低い場所Aよりも温和な条件で使用する、または、温度が低い場所Aでは温度が高い場所Bよりも厳しい条件で使用することで、両者の抵抗劣化係数の隔たりを小さくすることができる。 The location B of high temperature is used under milder conditions than the location A of low temperature, or the location A of low temperature is used under stricter conditions than the location B of high temperature. Can be reduced.
 図9は、実施例1において、電圧バランシング制御を説明するためのフローチャートである。なお、この制御フローチャートに示される処理は、システム運転開始時、終了時、または定期的なシステムメンテナンス時などの、システムに電流負荷が無い所定の時間において、メインルーチンから呼出されて実行される。 FIG. 9 is a flowchart for explaining voltage balancing control in the first embodiment. The process shown in this control flowchart is called from the main routine and executed at a predetermined time when there is no current load in the system, such as at the start or end of system operation, or during periodic system maintenance.
 図9の制御フローチャートを説明する。 The control flowchart of FIG. 9 will be described.
 <ステップS1>
 電圧センサ452から検出された各電池電圧Vと、各電池におけるバランシング電圧値VBKを比較し、各電池電圧Vが各バランシング電圧値VBKよりも大きいか否かを判定する。各電池電圧Vが各バランシング電圧値VBKよりも大きいと判定されると(ステップS1においてYES)、ステップS4へ処理を移行する。各電池電圧Vが各バランシング電圧値VBKよりも小さい(ステップS1においてNO)、ステップS2へ処理を移行する。
<Step S1>
Each battery voltage V K detected from the voltage sensor 452 is compared with the balancing voltage value V BK in each battery, and it is determined whether each battery voltage V K is larger than each balancing voltage value V BK . As each cell voltage V K is determined to be greater than the balancing voltage value V BK (in step S1 YES), the processing proceeds to step S4. Each battery voltage V K is smaller than the balancing voltage value V BK (in step S1 NO), the process proceeds to step S2.
 <ステップS2>
 電流センサ453の値から、電池盤430が充電されているか否かを判定する。電池盤430が充電されていると(ステップS2においてYES)、スタートまでリターンし、再びステップS1から処理を開始する。電池盤430が充電されていないと(ステップS2においてNO)、ステップS3へ処理を移行する。
<Step S2>
It is determined from the value of the current sensor 453 whether or not the battery panel 430 is charged. If battery panel 430 is charged (YES in step S2), the process returns to the start, and the process starts again from step S1. If battery panel 430 is not charged (NO in step S2), the process proceeds to step S3.
 <ステップS3> 
 電池盤430の充電を開始する。その後、スタートまでリターンし、再びステップS1から処理を開始する。
<Step S3>
Charging of the battery panel 430 is started. Thereafter, the process returns to the start, and the process starts again from step S1.
 <ステップS4>
 電流センサ453の値から、電池盤430が充電されているか否かを判定する。電池盤430が充電されていると(ステップS4においてYES)、ステップS5へ処理を移行する。電池盤430が充電されていないと(ステップS4においてNO)、ステップS6へ処理を移行する。
<Step S4>
It is determined from the value of the current sensor 453 whether or not the battery panel 430 is charged. If battery panel 430 is charged (YES in step S4), the process proceeds to step S5. If battery panel 430 is not charged (NO in step S4), the process proceeds to step S6.
 <ステップS5> 
 電池盤430の充電を開始する。その後、ステップS6へ処理を移行する。
<Step S5>
Charging of the battery panel 430 is started. Thereafter, the process proceeds to step S6.
 <ステップS6>
 各電池のバイパス回路に設置してあるトランジスタ454(k)がOFFか否かを判定する。各トランジスタ454(k)がOFFであると(ステップS6においてYES)、ステップS7へ処理を移行する。各トランジスタ454(k)がONであると(ステップS6においてNO)、ステップS8へ処理を移行する。
<Step S6>
It is determined whether or not the transistor 454 (k) installed in the bypass circuit of each battery is OFF. If each transistor 454 (k) is OFF (YES in step S6), the process proceeds to step S7. If each transistor 454 (k) is ON (NO in step S6), the process proceeds to step S8.
 <ステップS7> 
 各トランジスタ454(k)をONにする。各トランジスタ454(k)をONにすることで、各電池のバランシング機能がONとなり、それぞれのバランシング電圧VBKとなるまで、電池は放電される。その後、ステップS8へ処理を移行する。
<Step S7>
Each transistor 454 (k) is turned on. By turning on each transistor 454 (k), the balancing function of each battery is turned on, and the battery is discharged until the respective balancing voltage VBK is reached. Thereafter, the process proceeds to step S8.
 <ステップS8>
 電圧センサ452から検出された各電池電圧Vと、各電池におけるバランシング電圧値VBKを比較し、各電池電圧Vが各バランシング電圧値VBKよりも小さいか否かを判定する。各電池電圧Vが各バランシング電圧値VBKよりも小さいと判定されると(ステップS8においてYES)、ステップS9へ処理を移行する。各電池電圧Vが各バランシング電圧値VBKよりも小さい(ステップS8においてNO)、ステップS6へ処理を移行する。
<Step S8>
Each battery voltage V K detected from the voltage sensor 452 is compared with the balancing voltage value V BK in each battery, and it is determined whether or not each battery voltage V K is smaller than each balancing voltage value V BK . As each cell voltage V K is determined to be smaller than the balancing voltage value V BK (in step S8 YES), the processing proceeds to step S9. Each battery voltage V K is smaller than the balancing voltage value V BK (in step S8 NO), the process proceeds to step S6.
 <ステップS9> 
 各トランジスタ454(k)をOFFにする。各トランジスタ454(k)をOFFにすることで、各電池の電圧バランシング機能がOFFとなる。その後、電池バランシング処理が終了する。
<Step S9>
Each transistor 454 (k) is turned off. By turning off each transistor 454 (k), the voltage balancing function of each battery is turned off. Thereafter, the battery balancing process ends.
 図9のフローチャートに沿った制御により、二次電池システムにおいて、定期的に各電池電圧をバランシング電圧値まで調整し、二次電池システム内の場所によってSOC分布を取ることで、高温場所の劣化ばらつき加速を解消し、二次電池システムを長寿命化することができる。 By the control according to the flowchart of FIG. 9, in the secondary battery system, each battery voltage is periodically adjusted to the balancing voltage value, and the SOC distribution is taken depending on the location in the secondary battery system. The acceleration can be eliminated and the life of the secondary battery system can be extended.
 図10に二次電池システム内において、システム端部A,システム中央部Bにおける、最大出力変化の推定結果を示す。横軸は稼働期間、縦軸は最大出力変化率を示す。従来手法によるシステム端部Aの結果をA1、システム中央部Bの結果をB1、本発明手法によるシステム端部Aの結果をA2、システム中央部Bの結果をB2に示す。図7、図8に示すように、本発明手法の適用によって、システム中央部Bの劣化を抑制するように設定電圧を低く、電池盤の定格出力を保つようにシステム端部Aの設定電圧値を高く設定したため、本発明手法を適用したシステム中央部Bの最大出力初期値は、従来手法におけるシステム中央部Bの最大出力初期値よりも低い値を取った。しかし、稼働期間の経過につれて、本発明手法を適用したシステム中央部Bの最大出力が高くなり、本発明手法により二次電池システムを長寿命化できることが示された。 FIG. 10 shows the estimation results of the maximum output change at the system end A and the system center B in the secondary battery system. The horizontal axis indicates the operation period, and the vertical axis indicates the maximum output change rate. A result of the system end A according to the conventional method is shown as A1, a result of the system center B as B1, a result of the system end A according to the method of the present invention as A2, and a result of the system center B as B2. As shown in FIG. 7 and FIG. 8, by applying the method of the present invention, the set voltage is lowered so as to suppress the deterioration of the system center B, and the set voltage value of the system end A so as to maintain the rated output of the battery panel. Therefore, the maximum output initial value of the system central portion B to which the method of the present invention is applied is lower than the maximum output initial value of the system central portion B in the conventional method. However, as the operation period elapses, the maximum output of the system central part B to which the method of the present invention is applied increases, and it has been shown that the life of the secondary battery system can be extended by the method of the present invention.
 実施例2では、実施例1における、二次電池システム内における各電池のバランシング電圧値の設定に加えて、定期的に算出する各電池のSOHに応じて、各バランシング電圧の設定値を更新する。バランシング電圧(VBk)の更新期間は、どの期間でもよく、1ヶ月でも2カ月でも半年でもよい。 In the second embodiment, in addition to the setting of the balancing voltage value of each battery in the secondary battery system in the first embodiment, the setting value of each balancing voltage is updated according to the SOH of each battery calculated periodically. . The update period of the balancing voltage (VBk) may be any period, and may be one month, two months, or half a year.
 図11にバランシング電圧の設定値を更新する流れを示す。初めに、電流センサ451、電圧センサ452、温度センサ453から、各電池の電流値、電圧値、電池温度を検出し、各セルコントローラ456に送信される。各セルコントローラ456より、電池管理部420へ各電池データが送信され、電池管理部420にて、それらのデータを用いて電池のSOCとSOHが算出される。SOCの算出方法は例えば、ある時点からの電池電圧と、ある時点からの電流値の推移から算出される累積充放電容量の結果を用いて算出される。SOHの推定方法は例えば、電流値、電池温度、その電池温度における抵抗推定値、電池電圧とその時点で算出されるSOCにおける開回路電圧との差分値、などから算出される。 Fig. 11 shows the flow of updating the setting value of the balancing voltage. First, the current value, voltage value, and battery temperature of each battery are detected from the current sensor 451, voltage sensor 452, and temperature sensor 453, and transmitted to each cell controller 456. Each cell data is transmitted from each cell controller 456 to the battery management unit 420, and the battery management unit 420 calculates the SOC and SOH of the battery using those data. The calculation method of the SOC is calculated using, for example, the result of the accumulated charge / discharge capacity calculated from the battery voltage from a certain point in time and the transition of the current value from the certain point in time. The SOH estimation method is calculated from, for example, a current value, a battery temperature, an estimated resistance value at the battery temperature, a difference value between the battery voltage and the open circuit voltage in the SOC calculated at that time, and the like.
 次に、各電池の実温度、SOHの値と、例えば図2、図3の結果より算出される劣化予測式や劣化結果のデータベースなどを用いて、各電池の最適なバランシング電圧値の更新値を算出する。 Next, using the actual temperature and SOH value of each battery, and a deterioration prediction formula calculated from the results of FIGS. 2 and 3, for example, a database of deterioration results, etc., an updated value of the optimum balancing voltage value of each battery Is calculated.
 具体的な計算方法は、基本的には実施例1と同じで、式(3)~(9)を用いて、長期稼働後の最大出力値が最大となるように、設定SOC、すなわちバランシング電圧値の最適値を算出する。抵抗劣化の推移は、環境温度T、SOC、稼働時間t以外にも、ある稼働時間tにおけるSOHに依存する。そのため、定期的に算出されるSOHを予測式に反映することで、より適切な設定SOC、すなわちバランシング電圧値の算出が可能となる。今回、実施例2では劣化予測にSOHの値も用いるため、式(3)の代わりに式(10)を用いる。 The specific calculation method is basically the same as that of the first embodiment, and using the formulas (3) to (9), the set SOC, that is, the balancing voltage is set so that the maximum output value after long-term operation becomes maximum. Calculate the optimum value. The transition of the resistance deterioration depends on SOH at a certain operation time t in addition to the environmental temperature T, the SOC, and the operation time t. Therefore, by reflecting the SOH calculated periodically in the prediction formula, it is possible to calculate a more appropriate setting SOC, that is, a balancing voltage value. In this example, since the value of SOH is also used for the prediction of deterioration in Example 2, Expression (10) is used instead of Expression (3).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 以上より、電池管理部420において、式(4)~(9)、(10)を用いて、定期的に、長期稼働後の最大出力値が最大となるように、設定SOC、すなわちバランシング電圧値の最適値を更新する。電池管理部420にて算出された各電池におけるバランシング電圧値の更新値は、各セルコントローラ456に送信される。送信後は、各セルコントローラ456は更新されたそれぞれのバランシング電圧値を用いて、電圧バランシング機能を発動させる。電圧バランシング制御の流れは、実施例1の図9のフローチャートと同じものを用いることができる。 As described above, the battery management unit 420 uses the equations (4) to (9) and (10) to regularly set SOC, that is, balancing voltage value so that the maximum output value after long-term operation becomes maximum. Update the optimal value of. The updated value of the balancing voltage value in each battery calculated by the battery management unit 420 is transmitted to each cell controller 456. After the transmission, each cell controller 456 activates the voltage balancing function using the updated balancing voltage value. The same voltage balancing control flow as that of the flowchart of FIG. 9 of the first embodiment can be used.
 実施例2では、SOHと温度によりバランシング電圧値を設定したが、SOHのみによりバランシング電圧値を算出してもよく、温度のみに応じて適宜バランシング電圧値を変更するような方法でも構わない。 In the second embodiment, the balancing voltage value is set based on the SOH and the temperature. However, the balancing voltage value may be calculated based only on the SOH, or the balancing voltage value may be appropriately changed according to only the temperature.
 図12に二次電池システム内において、システム端部A,システム中央部Bにおける、最大出力変化の推定結果を示す。横軸は稼働期間、縦軸は最大出力変化率を示す。従来手法によるシステム端部Aの結果をA1、システム中央部Bの結果をB1、本発明手法によるシステム端部Aの結果をA2、システム中央部Bの結果をB2に示す。実施例2では、更新期間を30日として計算した。図12より、定期的に各電池のSOHを反映してバランシング電圧値を更新することで、実施例1よりも高温場所の劣化ばらつきの加速を低減し、二次電池システムを長寿命化することができる。 FIG. 12 shows the estimation result of the maximum output change at the system end A and the system center B in the secondary battery system. The horizontal axis indicates the operation period, and the vertical axis indicates the maximum output change rate. A result of the system end A according to the conventional method is shown as A1, a result of the system center B as B1, a result of the system end A according to the method of the present invention as A2, and a result of the system center B as B2. In Example 2, the update period was calculated as 30 days. As shown in FIG. 12, by periodically updating the balancing voltage value to reflect the SOH of each battery, the acceleration of deterioration variation in a hot place is reduced as compared with the first embodiment, and the life of the secondary battery system is extended. Can do.
100 リチウムイオン二次電池
101 正極
102 負極
103 セパレータ
104 正極端子
105 負極端子
106 電池ケース
110 電子回路
111 電圧センサ
112 電流センサ
400 二次電池システム
410 パワーコンディショナー
420 電池管理部
430 電池盤
440 電池モジュール
451 電流センサ
452 電圧センサ
453 温度センサ
454 トランジスタ
455 抵抗
456 セルコントローラ
DESCRIPTION OF SYMBOLS 100 Lithium ion secondary battery 101 Positive electrode 102 Negative electrode 103 Separator 104 Positive electrode terminal 105 Negative electrode terminal 106 Battery case 110 Electronic circuit 111 Voltage sensor 112 Current sensor 400 Secondary battery system 410 Power conditioner 420 Battery management part 430 Battery panel 440 Battery module 451 Current Sensor 452 Voltage sensor 453 Temperature sensor 454 Transistor 455 Resistance 456 Cell controller

Claims (9)

  1.  複数の二次電池が直列または並列で接続された二次電池システムにおいて、
     前記二次電池の充電率は、前記二次電池の電圧により制御され、
     前記電圧の値は、前記二次電池ごとに個別に設定される二次電池システム。
    In a secondary battery system in which a plurality of secondary batteries are connected in series or in parallel,
    The charging rate of the secondary battery is controlled by the voltage of the secondary battery,
    The value of the voltage is a secondary battery system set individually for each secondary battery.
  2.  請求項1において、
     前記二次電池の充電率は、前記電圧の使用範囲により制御され、
     前記使用範囲は、前記二次電池ごとに個別に設定される二次電池システム。
    In claim 1,
    The charging rate of the secondary battery is controlled by the usage range of the voltage,
    The use range is a secondary battery system that is individually set for each of the secondary batteries.
  3.  請求項1または請求項2において、
     前記電圧は、二次電池システム内の温度、または、劣化度に応じて設定される二次電池システム。
    In claim 1 or claim 2,
    The said voltage is a secondary battery system set according to the temperature in a secondary battery system, or a degradation degree.
  4.  請求項3において、
     前記電圧は、前記二次電池ごとに定められたバランシング電圧であり、
     前記バランシング電圧は、二次電池の充電開始電圧、充電終了電圧、放電開始電圧、放電終了電圧の少なくともいずれかであり、
     前記二次電池システムは、前記二次電池ごとに定められた前記バランシング電圧に調節する調節機構を前記二次電池ごとに有する二次電池システム。
    In claim 3,
    The voltage is a balancing voltage determined for each secondary battery,
    The balancing voltage is at least one of a charge start voltage, a charge end voltage, a discharge start voltage, and a discharge end voltage of the secondary battery,
    The secondary battery system is a secondary battery system having an adjustment mechanism for adjusting the balancing voltage determined for each secondary battery for each secondary battery.
  5.  請求項4において、
     前記二次電池を前記バランシング電圧に調節するバランシングは、前記調節機構により行われ、
     前記調節機構は、前記二次電池ごとに設けられた電流のバイパス回路であり、
     前記バイパス回路は抵抗とトランジスタを有する二次電池システム。
    In claim 4,
    Balancing to adjust the secondary battery to the balancing voltage is performed by the adjustment mechanism,
    The adjustment mechanism is a current bypass circuit provided for each secondary battery,
    The bypass circuit is a secondary battery system having a resistor and a transistor.
  6.  請求項5において、
     前記バランシングは、充電開始時、充電終了時、放電開始時、放電終了時、またメンテナンス時のいずれかに行われる二次電池。
    In claim 5,
    The balancing is a secondary battery that is performed at the start of charging, at the end of charging, at the start of discharging, at the end of discharging, or during maintenance.
  7.  請求項6において、
     前記バランシング時の前記電圧の調節は、前記トランジスタのON・OFFによりなされ、
     前記二次電池の電圧が前記バランシング電圧値よりも高い場合は、前記トランジスタをONとすることでバランシングを行い、前記二次電池の電圧が前記バランシング電圧値に到達すると前記トランジスタをOFFとする二次電池システム。
    In claim 6,
    Adjustment of the voltage at the time of balancing is made by turning the transistor on and off,
    When the voltage of the secondary battery is higher than the balancing voltage value, balancing is performed by turning on the transistor, and when the voltage of the secondary battery reaches the balancing voltage value, the transistor is turned off. Next battery system.
  8.  請求項7において、
     前記二次電池の電圧よりも高いバランス電圧に調節する際には、
     前記二次電池システムの内部に設けられた発電装置、または外部電源により、前記二次電池がそれぞれの前記バランシング電圧値を上回るまで充電、充電終了後、前記バランシングを行う二次電池システム。
    In claim 7,
    When adjusting the balance voltage higher than the voltage of the secondary battery,
    The secondary battery system that performs the balancing after the end of charging and the charging by the power generation device provided in the secondary battery system or an external power source until the secondary battery exceeds each balancing voltage value.
  9.  請求項8において、
     前記二次電池システムは、前記二次電池の温度をそれぞれ検出する温度検出部と、前記二次電池の電圧をそれぞれ検出する電圧検出部と、前記二次電池に流れる電流値を検出する電流検出部と、電池管理部を有し、
     前記電池管理部は、前記二次電池のそれぞれの充電率(SOC)を算出するSOC算出部と、それぞれの電池劣化状態(SOH)を算出するSOH算出部と、
     少なくとも前記二次電池それぞれの前記SOHを用いて、前記二次電池それぞれのバランシング電圧を算出するバランシング電圧算出部を備えることを特徴とする二次電池システム。
    In claim 8,
    The secondary battery system includes a temperature detection unit that detects a temperature of the secondary battery, a voltage detection unit that detects a voltage of the secondary battery, and a current detection that detects a current value flowing through the secondary battery. And a battery management unit,
    The battery management unit includes an SOC calculation unit that calculates a charge rate (SOC) of each of the secondary batteries, an SOH calculation unit that calculates a respective battery deterioration state (SOH),
    A secondary battery system comprising a balancing voltage calculation unit that calculates a balancing voltage of each of the secondary batteries using at least the SOH of each of the secondary batteries.
PCT/JP2017/004293 2016-03-28 2017-02-07 Secondary battery system WO2017169127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-062971 2016-03-28
JP2016062971A JP2019114324A (en) 2016-03-28 2016-03-28 Secondary battery system

Publications (1)

Publication Number Publication Date
WO2017169127A1 true WO2017169127A1 (en) 2017-10-05

Family

ID=59962796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004293 WO2017169127A1 (en) 2016-03-28 2017-02-07 Secondary battery system

Country Status (2)

Country Link
JP (1) JP2019114324A (en)
WO (1) WO2017169127A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102680305B1 (en) 2019-10-30 2024-06-28 주식회사 엘지에너지솔루션 Apparatus for Controlling Power of Parallel Multi Battery Pack and Method thereof
JP7191873B2 (en) 2020-01-17 2022-12-19 株式会社東芝 Charge/discharge control device, charge/discharge system, charge/discharge control method, and charge/discharge control program
KR102646533B1 (en) * 2022-06-29 2024-03-13 주식회사 모큐라텍 Battery cell charging/discharging device using SoH information and the method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299032A (en) * 1991-02-08 1992-10-22 Honda Motor Co Ltd Charger for battery
JP2010035285A (en) * 2008-07-25 2010-02-12 Panasonic Corp Imbalance reduction circuit, power supply unit and imbalance reduction method
JP2013013210A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Secondary battery system
JP2014171323A (en) * 2013-03-04 2014-09-18 Toyota Industries Corp Cell balance device
WO2015072061A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Equalizing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299032A (en) * 1991-02-08 1992-10-22 Honda Motor Co Ltd Charger for battery
JP2010035285A (en) * 2008-07-25 2010-02-12 Panasonic Corp Imbalance reduction circuit, power supply unit and imbalance reduction method
JP2013013210A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Secondary battery system
JP2014171323A (en) * 2013-03-04 2014-09-18 Toyota Industries Corp Cell balance device
WO2015072061A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Equalizing apparatus

Also Published As

Publication number Publication date
JP2019114324A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US9564768B2 (en) Discharge device for electricity storage device
KR101725701B1 (en) Secondary cell system having plurality of cells, and method for distributing charge/discharge electric power or current
WO2017154112A1 (en) Battery monitoring device and method
KR102160272B1 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
US20130147434A1 (en) Method for Balancing States of Charge of a Battery having a Plurality of Battery Cells as well as a Corresponding Battery Management System and a Battery
CN105846001A (en) Method and device for the temperature-dependent current limitation of an energy storage device for electrical energy
US20130020997A1 (en) Battery System
JP6867478B2 (en) Battery control and vehicle system
US20160285136A1 (en) Control system for secondary battery
JP2013509851A (en) A method of charging or discharging a battery for determining the end of charging or discharging based on current and temperature measurements
US11084385B2 (en) Battery control device, battery system, and vehicle
JP2009038876A (en) Voltage equalizer for battery pack
US20230046587A1 (en) Battery equalization method and device, and battery management system
WO2017169127A1 (en) Secondary battery system
WO2012147121A1 (en) Cell pack
JP2019187027A (en) Power storage device
WO2023001214A1 (en) Multi-battery-pack charging management method and apparatus, and energy storage device
JP2009017630A (en) Control method for battery capacity
CN113195291A (en) Improved method for controlling an energy storage system
KR20180057275A (en) Battery controlling method and apparatus
US20160104924A1 (en) Secondary Battery System
JP2015061426A (en) Secondary battery system, control method therefor and program
CN105489954B (en) Method of compensating state of charge of battery cell and battery system performing the same
JP6447446B2 (en) Battery control device for vehicle
JP2014017982A (en) Charge/discharge power distribution method and battery controller

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773676

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP