JP2014017982A - Charge/discharge power distribution method and battery controller - Google Patents

Charge/discharge power distribution method and battery controller Download PDF

Info

Publication number
JP2014017982A
JP2014017982A JP2012154101A JP2012154101A JP2014017982A JP 2014017982 A JP2014017982 A JP 2014017982A JP 2012154101 A JP2012154101 A JP 2012154101A JP 2012154101 A JP2012154101 A JP 2012154101A JP 2014017982 A JP2014017982 A JP 2014017982A
Authority
JP
Japan
Prior art keywords
secondary battery
power distribution
battery
charge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012154101A
Other languages
Japanese (ja)
Inventor
Masahiro Tohara
正博 戸原
Makoto Ide
誠 井出
Asami Mizutani
麻美 水谷
Tamotsu Endo
保 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012154101A priority Critical patent/JP2014017982A/en
Publication of JP2014017982A publication Critical patent/JP2014017982A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To extend a life of each of second batteries which are different types of second batteries having different SOC dependence of a deterioration characteristic without limiting the batteries' intrinsic performance, in a hybrid battery configured by combining the second batteries.SOLUTION: A charge/discharge power distribution method is for a hybrid battery composed of a secondary battery 2A whose deterioration speed in a high SOC region is higher than that in a low SOC region and a secondary battery 2B whose deterioration speed in the low SOC region is higher than that in the low SOC region which are connected in parallel. In the case that the secondary battery 2A has a SOC exceeding a predetermined high SOC in discharging power, a discharge power distribution ratio to the secondary battery 2A is made to be higher than power distribution ratios in the other states in the discharging. In the second case that the secondary battery 2B has a SOC less than a predetermined low SOC in charging power, a charge power distribution ratio to the secondary battery 2B is made to be higher than power distribution ratios in the other states in the charging.

Description

本発明の実施形態は、劣化速度が低SOC領域よりも高SOC領域で速い二次電池と劣化速度が高SOC領域よりも低SOC領域で速い二次電池とを並列接続したハイブリッド電池の充放電電力配分方法、及びハイブリッド電池に対する電池コントローラに関する。   Embodiments of the present invention charge and discharge a hybrid battery in which a secondary battery whose deterioration rate is higher in a high SOC region than in a low SOC region and a secondary battery whose deterioration rate is faster in a low SOC region than in a high SOC region are connected in parallel. The present invention relates to a power distribution method and a battery controller for a hybrid battery.

二次電池の応用範囲は多岐にわたっている。例えば、ハイブリット車(HEV)、電気自動車(EV)、あるいはプラグインハイブリット車(PHEV)等の車両用電源用途、太陽光や風力等の自然エネルギーを利用した発電あるいは負荷の変動抑制用途、変電所の平準化用途、電力需要の変動抑制、ピークシフト用途等を挙げることができる。   Secondary batteries have a wide range of applications. For example, power sources for vehicles such as hybrid vehicles (HEV), electric vehicles (EV), or plug-in hybrid vehicles (PHEV), power generation using natural energy such as sunlight or wind, or load fluctuation suppression applications, substations Leveling applications, power demand fluctuation suppression, peak shift applications, and the like.

二次電池は、必要な電圧値や電流値を得るために複数の電池セルが直並列に接続されて使用されることが多い。近年では、特性の異なる異種の二次電池を組み合わせてなる所謂ハイブリッド電池についての検討と実証が進められている。単一種類の均一な特性の電池のみを組み合わせるのではなく、特性の異なる異種の二次電池を組み合わせて、それぞれの特性を生かした使い方をすることによって、電池システム全体としての性能を高める、或いは寿命を延ばすことを目指すものである。   A secondary battery is often used with a plurality of battery cells connected in series and parallel in order to obtain a necessary voltage value and current value. In recent years, studies and demonstrations of so-called hybrid batteries in which different types of secondary batteries having different characteristics are combined have been promoted. Rather than combining only single types of batteries with uniform characteristics, combining different types of secondary batteries with different characteristics and using them to improve their performance as a whole battery system, or It aims to extend life.

例えば、異なる特性の電池を組合せたハイブリッド電池に関しては、特許文献1に示されているように、鉛電池とキャパシタとを電池セルのレベルでハードウェア的に並列接続したものが提示されている。   For example, regarding a hybrid battery in which batteries having different characteristics are combined, as shown in Patent Document 1, a battery in which a lead battery and a capacitor are connected in parallel at the battery cell level is proposed.

このようなハイブリッド電池において提案されている寿命延命化策は、例えば、密閉型ニッケル水素電池とキャパシタとのハイブリッド電池においては、急激な充放電指令電流値の変化に対して内部抵抗の違いによってキャパシタ側が多く負担するように電流を配分することにより、NiMH側の寿命を延命するものである。   For example, in a hybrid battery of a sealed nickel-metal hydride battery and a capacitor, a life extension measure proposed for such a hybrid battery is based on a difference in internal resistance against a sudden change in charge / discharge command current value. The life of the NiMH side is extended by distributing the current so that the side bears much.

その他、寿命延命化策としては、二次電池全般まで拡げると、特許文献2に示されているように、二次電池セルの容量劣化を抑制するために、劣化した二次電池に優先的に冷却風を配分することも提案されている。更には、特許文献3に示されているように、組電池の電力分配方法として、直列または直並列に接続した組電池に回生充電が行われる際、バイパス回路で充電量を制御することで特定電池の劣化を防止する方策が提案されている。   In addition, as a measure for extending the life of the secondary battery, as shown in Patent Document 2, in order to suppress the capacity deterioration of the secondary battery cell, it is given priority over the deteriorated secondary battery. It has also been proposed to distribute cooling air. Furthermore, as shown in Patent Document 3, as a power distribution method for an assembled battery, when regenerative charging is performed on an assembled battery connected in series or series-parallel, it is specified by controlling the charge amount with a bypass circuit. Measures have been proposed to prevent battery deterioration.

特開2011−95023号公報JP 2011-95023 A 特開2010−193588号公報JP 2010-193588 A 特開平09−182307号公報JP 09-182307 A

しかしながら、現状ハイブリッド電池において提案されている寿命延命化策は、単純に充放電回数に由来するサイクル劣化に対応したものであり、劣化特性にSOC依存性がある場合のカレンダ劣化の解決策を与えるものではない。例えば、鉛電池やリチウムイオン電池のハイブリッド電池においては、鉛電池やリチウムイオン電池の劣化特性に大きく影響を与えるのはSOCであるが、このSOCの影響は配慮されてはいない。   However, the life extension measures proposed in the current hybrid battery simply correspond to cycle deterioration derived from the number of charge / discharge cycles, and provide a solution for calendar deterioration when the deterioration characteristics are SOC-dependent. It is not a thing. For example, in a hybrid battery of a lead battery or a lithium ion battery, the SOC greatly affects the deterioration characteristics of the lead battery or the lithium ion battery, but the influence of the SOC is not considered.

また、単一電池を利用した変動抑制用途では、目標SOCを定め、SOCが極力その目標値に近づくように充放電に制約をかけるSOC制御も提案されている。これは本来の二次電池の充放電性能に制約をかけ、容量などの性能をフルに活かせないことになり、ハイブリッド電池として目指すべき個々特性に対応した寿命延命化方策とはいえない。   In addition, for fluctuation suppression applications using a single battery, SOC control is also proposed in which a target SOC is set and charging / discharging is restricted so that the SOC approaches the target value as much as possible. This restricts the charge / discharge performance of the original secondary battery and makes it impossible to make full use of the performance such as capacity, so it cannot be said that it is a life extension measure corresponding to individual characteristics that should be aimed at as a hybrid battery.

本発明の実施形態は、上記の課題を解消するために提案されたものであり、劣化特性についてのSOC依存性が異なる複数種類の二次電池を組み合わせたハイブリッド電池において、各二次電池が本来持つ性能を制約することなく、各二次電池の寿命を延命化する充放電電力配分方法及び電池コントローラを提供することを目的としている。   Embodiments of the present invention have been proposed in order to solve the above-described problems. In a hybrid battery in which a plurality of types of secondary batteries having different SOC dependencies with respect to deterioration characteristics are combined, each secondary battery is originally An object of the present invention is to provide a charge / discharge power distribution method and a battery controller that extend the life of each secondary battery without restricting the performance of the battery.

上記目的を達成するために、実施形態の充電電力配分方法は、劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとを並列接続したハイブリッド電池の充放電電力配分方法であって、放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、を特徴とする。   In order to achieve the above object, the charge power distribution method according to the embodiment includes a secondary battery A whose deterioration rate is faster in the high SOC region than in the low SOC region, and a secondary battery whose deterioration rate is faster in the low SOC region than in the high SOC region. A charge / discharge power distribution method for a hybrid battery in which a battery B is connected in parallel. In the first case where the secondary battery A exceeds a predetermined high SOC at the time of discharge, the other power distribution at the time of discharge In the second case where the secondary battery B is less than a predetermined low SOC at the time of charging, the power distribution ratio at the time of charging other than that is increased. The charging power distribution ratio to the secondary battery B is made higher than the ratio.

また、上記目的を達成するために、実施形態の電池コントローラは、劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとが並列接続されてなるハイブリッド電池に対する電池コントローラであって、
前記ハイブリッド電池に対する充電又は放電の指令値を受け取る入力部と、前記指令値に対応する充電電力又は放電電力を前記二次電池A及び前記二次電池Bに配分する配分量算出部と、を備え、前記配分量算出部は、放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、を特徴とする。
In order to achieve the above-described object, the battery controller of the embodiment includes a secondary battery A whose deterioration rate is faster in the high SOC region than in the low SOC region and a secondary battery whose deterioration rate is faster in the low SOC region than in the high SOC region. A battery controller for a hybrid battery in which a battery B is connected in parallel,
An input unit that receives a command value for charging or discharging the hybrid battery; and a distribution amount calculating unit that distributes charging power or discharging power corresponding to the command value to the secondary battery A and the secondary battery B. In the first case where the secondary battery A exceeds a predetermined high SOC at the time of discharge, the distribution amount calculation unit calculates the distribution amount to the secondary battery A from the other power distribution ratio at the time of discharge. In the second case where the secondary battery B is less than a predetermined low SOC during charging when the discharge power distribution ratio is increased, the secondary battery B is supplied to the secondary battery B more than the other power distribution ratio during charging. The charging power distribution ratio is increased.

第1の実施形態に係る電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the battery system which concerns on 1st Embodiment. 充放電電力配分のアルゴリズムを示す模式図である。It is a schematic diagram which shows the algorithm of charging / discharging electric power distribution. 電池コントローラと電池別制御部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of a battery controller and the control part classified by battery. 電圧とSOCの関係を示すグラフである。It is a graph which shows the relationship between a voltage and SOC. 二次電池の種類毎に劣化速度が急増する閾値が記憶されている状態を示す模式図である。It is a schematic diagram which shows the state in which the threshold value in which a deterioration rate increases rapidly for every kind of secondary battery is memorize | stored. 二次電池の定格容量が記憶されている状態を示す模式図である。It is a schematic diagram which shows the state by which the rated capacity of a secondary battery is memorize | stored. 第1の実施形態に係り、配分比補正係数r及びrの具体値が分類されて記憶されている状態を示す模式図である。Relates to the first embodiment, it is a schematic diagram showing a state where the specific value of the distribution ratio correction coefficient r A and r B are stored are classified. 充放電電力配分方法を示すフローチャートである。It is a flowchart which shows the charging / discharging electric power distribution method. 第1の実施形態に係り、ハイブリッド電池を構成する二次電池が同一種類である場合の充放電電力配分を示す模式図である。It is a schematic diagram which shows charge / discharge electric power distribution in case the secondary battery which comprises a 1st Embodiment and comprises a hybrid battery is the same kind. 第1の実施形態に係り、一方の二次電池が高出力特性を有し、他方の二次電池が相対的に低出力特性である場合の充放電電力配分を示す模式図である。FIG. 4 is a schematic diagram showing charge / discharge power distribution in the case where one secondary battery has high output characteristics and the other secondary battery has relatively low output characteristics according to the first embodiment. 第1の実施形態に係り、2種の二次電池の両SOCが劣化急進領域にない状態での放電電力配分を示す模式図である。It is a schematic diagram which shows discharge electric power distribution in the state which concerns on 1st Embodiment and both SOC of 2 types of secondary batteries is not in a deterioration rapid progress area | region. 第1の実施形態に係り、劣化速度が高SOC領域よりも低SOC領域で速い二次電池のSOCが劣化急進領域にある状態で充電電力配分を示す模式図である。FIG. 6 is a schematic diagram showing charge power distribution in a state where the SOC of a secondary battery having a deterioration rate that is faster in a low SOC region than in a high SOC region is in a rapid deterioration region according to the first embodiment. 第1の実施形態に係り、2種の二次電池の両SOCが劣化急進領域にない状態での充電電力配分を示す模式図である。It is a schematic diagram which shows charge power distribution in the state which concerns on 1st Embodiment and both SOC of two types of secondary batteries is not in a deterioration rapid progress area | region. 第1の実施形態に係り、劣化速度が高SOC領域よりも低SOC領域で速い二次電池のSOCが劣化急進領域にある状態で其の電池が満充電となっている状態での充電電力配分を示す模式図である。Relating to the first embodiment, charge power distribution in a state where the SOC of a secondary battery whose deterioration rate is faster in the low SOC region than in the high SOC region is in the deterioration rapid progress region and the battery is fully charged It is a schematic diagram which shows. 第1の実施形態に係り、劣化速度が低SOC領域よりも高SOC領域で速い二次電池のSOCが劣化急進領域にある状態で放電電力配分を示す模式図である。FIG. 4 is a schematic diagram illustrating discharge power distribution in a state where the SOC of a secondary battery whose deterioration rate is higher in a high SOC region than in a low SOC region is in the deterioration rapid progress region according to the first embodiment. 第2の実施形態に係る電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the battery system which concerns on 2nd Embodiment. 第3の実施形態に係り、配分比補正係数r及びrの具体値が分類されて記憶されている状態を示す模式図である。Relates to the third embodiment, a schematic diagram showing a state where the specific value of the distribution ratio correction coefficient r A and r B are stored are classified. 第4の実施形態に係り、2種の二次電池の放電電力配分を示す模式図である。It is a schematic diagram which concerns on 4th Embodiment and shows discharge electric power allocation of 2 types of secondary batteries. 第4の実施形態に係り、優先放電される二次電池が空の場合の放電電力配分を示す模式図である。It is a schematic diagram which shows discharge electric power distribution in the case of the secondary battery which concerns on 4th Embodiment and is discharged preferentially. 第4の実施形態に係り、2種の二次電池の充電電力配分を示す模式図である。It is a schematic diagram which concerns on 4th Embodiment and shows charge electric power distribution of 2 types of secondary batteries. 第4の実施形態に係り、優先充電される二次電池が満充電の場合の放電電力配分を示す模式図である。FIG. 10 is a schematic diagram illustrating discharge power distribution in a case where a secondary battery to be preferentially charged is fully charged according to the fourth embodiment.

以下、本実施形態に係る電力システムが備える電池コントローラの充放電電力配分方法に係る実施の形態について、図面を参照して具体的に説明する。   Hereinafter, an embodiment according to a charge / discharge power distribution method of a battery controller included in the power system according to the present embodiment will be specifically described with reference to the drawings.

(第1の実施形態)
(全体構成)
図1は、本実施形態に係る電池システム1の構成を示すブロック図である。図1に示すように、電池システム1は、上位システムであるEMS(Energy Management System)より充放電指令を受けて、電池の充放電を行うシステムである。この電池システム1には、複数の二次電池2A、2B・・・が直流バス9に並列に接続されて設置される。
(First embodiment)
(overall structure)
FIG. 1 is a block diagram showing a configuration of a battery system 1 according to the present embodiment. As shown in FIG. 1, the battery system 1 is a system that receives a charge / discharge command from an EMS (Energy Management System), which is a host system, and charges and discharges the battery. In the battery system 1, a plurality of secondary batteries 2A, 2B,...

直流バス9は、その他、発電機、負荷、電力系統等に接続されており、二次電池2A、2B・・・に対して充放電が可能となっている。発電機としては、太陽光発電機、風力発電機、燃料電池、負荷としては、電気自動車やハイブリッド車両の電源、家庭用電源、その他の各種が挙げられる。また、負荷の一例としては系統電力網が含まれる。   In addition, the DC bus 9 is connected to a generator, a load, a power system, and the like, and can charge and discharge the secondary batteries 2A, 2B,. Examples of the generator include a solar power generator, a wind power generator, a fuel cell, and examples of the load include a power source for an electric vehicle and a hybrid vehicle, a household power source, and other various types. An example of the load includes a system power network.

二次電池2A、2B・・・は、それぞれが単一の蓄電池セル21、22又は直列接続された複数の蓄電池セル21、22群である。尚、本実施形態では、説明の都合上、電池システム1が二次電池2A、2Bを有するものとする。   Each of the secondary batteries 2A, 2B,... Is a single storage battery cell 21, 22 or a plurality of storage battery cells 21, 22 connected in series. In the present embodiment, for convenience of explanation, it is assumed that the battery system 1 includes secondary batteries 2A and 2B.

この二次電池2A、2Bは、電池の種類が異なり、ハイブリッド電池を構成している。例えば、二次電池2Aはリチウムイオン電池であり、二次電池2Bは鉛電池である。そのため、二次電池2A、2Bとでは、電池の特性が異なり、特に劣化に対するSOC依存性が異なる。リチウムイオン電池である二次電池2Aは、一般に、高入出力、高容量単価であり、特に劣化速度が高SOC側で速い。一方、鉛電池である二次電池2Bは、一般に、リチウムイオン電池に比べて入出力能力は低いが、低容量単価であり、劣化速度は低SOC側で速い。SOCは、State Of Chargeの略であり、定格充電容量に対する残容量の割合である。   The secondary batteries 2A and 2B are different in battery type and constitute a hybrid battery. For example, the secondary battery 2A is a lithium ion battery, and the secondary battery 2B is a lead battery. Therefore, the secondary batteries 2A and 2B have different battery characteristics, and in particular, the SOC dependency on deterioration is different. The secondary battery 2A, which is a lithium ion battery, generally has a high input / output and a high capacity unit price, and the deterioration rate is particularly fast on the high SOC side. On the other hand, the secondary battery 2B, which is a lead battery, generally has a lower input / output capability than a lithium ion battery, but has a lower unit capacity and a faster deterioration rate on the low SOC side. SOC is an abbreviation for State Of Charge, and is the ratio of the remaining capacity to the rated charge capacity.

この二次電池2A、2Bに対して充放電を制御する電池システム1は、電池コントローラ3と、電池別制御部4A、4Bと、各種のセンサを備えている。各種センサは、電池システム1では、各電池セルに並列接続された電圧測定部5、二次電池2A、2Bの各一端に接続された電流測定部6、二次電池2A、2Bのそれぞれ近傍に設置された温度測定部7である。   The battery system 1 that controls charging / discharging of the secondary batteries 2A and 2B includes a battery controller 3, battery-specific control units 4A and 4B, and various sensors. In the battery system 1, various sensors are provided in the vicinity of the voltage measuring unit 5 connected in parallel to each battery cell, the current measuring unit 6 connected to each end of the secondary batteries 2A and 2B, and the secondary batteries 2A and 2B. It is the temperature measurement part 7 installed.

電池コントローラ3は、プロセッサ、メモリ、及び通信インターフェースを含み構成され、電池コントローラ3と、制御信号や電池情報信号を送受信するための信号線8で電池別制御部4A、4B及び各種センサと接続されている。信号線8は、例えばSMBus通信方式が利用され、2つの通信ラインであるデータラインとクロックラインを有し、データ信号等を送受信する。   The battery controller 3 includes a processor, a memory, and a communication interface. The battery controller 3 is connected to the battery-specific controllers 4A and 4B and various sensors through a signal line 8 for transmitting and receiving control signals and battery information signals. ing. The signal line 8 uses, for example, an SMBus communication system, has a data line and a clock line that are two communication lines, and transmits and receives data signals and the like.

この電池コントローラ3は、EMSからの充放電指令を受信して、二次電池2A、2Bの充放電制御を統括する。すなわち、電池コントローラ3は、充放電指令が示す充放電力量の二次電池2A、2Bへの配分を決定し、その配分量を電池別制御部4A、4Bに指示する。充放電電力配分の決定に際しては、二次電池2A、2Bの電池特性、特に劣化のSOC依存特性、及び各種センサが示す状況を加味する。   The battery controller 3 receives charge / discharge commands from the EMS and controls charge / discharge control of the secondary batteries 2A, 2B. That is, the battery controller 3 determines the distribution of the charge / discharge force amount indicated by the charge / discharge command to the secondary batteries 2A, 2B, and instructs the distribution control units 4A, 4B of the distribution amount. In determining the charge / discharge power distribution, the battery characteristics of the secondary batteries 2A and 2B, particularly the SOC-dependent characteristics of deterioration, and the conditions indicated by the various sensors are taken into account.

電池別制御部4A、4Bは、充放電のスイッチング及び二次電池2A、2Bに対して入出力する充放電量の制御を行う。電池別制御部4Aは、二次電池2Aの充放電を制御し、電池別制御部4Bは、二次電池2Bの充放電を制御する。   The control units 4A and 4B for each battery perform charge / discharge switching and control of charge / discharge amounts input / output to / from the secondary batteries 2A and 2B. The control unit 4A for each battery controls charging / discharging of the secondary battery 2A, and the control unit 4B for each battery controls charging / discharging of the secondary battery 2B.

この電池別制御部4A、4Bは、充電回路、放電回路、充電回路と放電回路を切り換えるスイッチングトランジスタ等からなるスイッチ、及び当該スイッチを切り換えるコントローラを備えたPCS(Power Conditioning System)であり、電池コントローラ3の決定した電力配分に従って実際に二次電池2A、2Bへの充放電を制御する。   Each of the battery control units 4A and 4B is a PCS (Power Conditioning System) including a charging circuit, a discharging circuit, a switch including a switching transistor for switching the charging circuit and the discharging circuit, and a controller for switching the switch. The charging / discharging to the secondary batteries 2A and 2B is actually controlled according to the power distribution determined in step 3.

電流測定部6は、例えば二次電池2A、2Bのそれぞれと直列な抵抗素子を有し、抵抗素子の両端に誘導される電圧を検出して、二次電池2A、2Bに流れる充放電電流を測定する。温度測定部7は、サーミスタ、PTC等であり、二次電池2A、2Bの表面に接触し、あるいは熱伝導材を介して接触し、あるいは二次電池2A、2Bの表面に接触して電池に熱結合されることで、二次電池2A、2Bの温度を測定する。   The current measurement unit 6 includes, for example, resistance elements in series with the secondary batteries 2A and 2B, detects the voltage induced at both ends of the resistance elements, and calculates the charge / discharge current flowing through the secondary batteries 2A and 2B. taking measurement. The temperature measuring unit 7 is a thermistor, a PTC, etc., which contacts the surface of the secondary batteries 2A, 2B, or contacts through the heat conduction material, or contacts the surface of the secondary batteries 2A, 2B. The temperature of the secondary batteries 2A and 2B is measured by being thermally coupled.

(電力配分アルゴリズム)
このような電池システム1における電池コントローラの、二次電池2A、2Bの電池特性、特に劣化のSOC依存特性、及び各種センサが示す状況を加味した、充放電電力配分のアルゴリズムについて、以下説明する。
(Power distribution algorithm)
The charging / discharging power distribution algorithm that takes into consideration the battery characteristics of the secondary batteries 2A and 2B of the battery controller 1 in such a battery system 1, particularly the SOC dependence characteristics of deterioration, and the conditions indicated by various sensors will be described below.

まず、このアルゴリズムは、SOCに依存する電池のカレンダ劣化を抑制するものであり、その方針は、図2に示すように、高SOC側で劣化速度の大きい二次電池2Aは、出来るだけ低SOC側の滞在時間を長くし、低SOC側で劣化速度の大きい二次電池2Bは、出来るだけ高SOC側の滞在時間を長くすることにある。また、電池の温度上昇を極力抑えるべく、発生熱量が電流の二乗に比例することを考慮して、一方の電池への電力配分の偏重を避け、二次電池2Aと2Bとの充放電電力配分は相応に分担させる。   First, this algorithm suppresses battery-related calendar deterioration that depends on the SOC. As shown in FIG. 2, the secondary battery 2A, which has a high deterioration rate on the high SOC side, has a low SOC as much as possible. The secondary battery 2B having a long deterioration time on the low SOC side and a large deterioration rate is to make the residence time on the high SOC side as long as possible. In order to suppress the temperature rise of the battery as much as possible, considering that the amount of generated heat is proportional to the square of the current, avoid the power distribution to one battery and distribute the charge / discharge power between the secondary batteries 2A and 2B. Will be shared accordingly.

そこで、電力コントローラ3は、以下の3形態に配分パターンを分け、状況に応じて何れかの配分パターンを選択する。   Therefore, the power controller 3 divides the distribution pattern into the following three forms, and selects one of the distribution patterns according to the situation.

(1)基本形態
基本的には、EMSから指示された充放電電力を、二次電池2Aと二次電池2Bの充放電余裕容量比と一致させて配分する。例えば、二次電池2Aの残容量がX(Ah)で、二次電池2Bの残容量が2Xであれば、二次電池2Aと2Bの放電量比が1:2となるように、電力システム1全体の放電電力を配分する。また、例えば、二次電池2Aの充電余裕容量がY(Ah)で、二次電池2Bの充電余裕容量が2Yであれば、二次電池2Aと2Bの充電量比が1:2となるように、電力システム1全体の充電電力を配分する。
(1) Basic form Basically, the charge / discharge power instructed from EMS is distributed in accordance with the charge / discharge margin capacity ratio of the secondary battery 2A and the secondary battery 2B. For example, if the remaining capacity of the secondary battery 2A is X (Ah) and the remaining capacity of the secondary battery 2B is 2X, the power system is set so that the discharge amount ratio between the secondary batteries 2A and 2B is 1: 2. 1. Distribute the entire discharge power. For example, if the charge capacity of the secondary battery 2A is Y (Ah) and the charge capacity of the secondary battery 2B is 2Y, the charge amount ratio between the secondary batteries 2A and 2B is 1: 2. In addition, the charging power of the entire power system 1 is distributed.

(2)二次電池2AのSOCがSOCa超の場合
SOCaは、二次電池2Aの劣化速度がその値を超えると急増するようなSOCの閾値である。この場合、充電時においては、上記基本形態よりも二次電池2Aへの放電電力配分を高める。例えば、二次電池2AがEMSから指示された充電電力のほとんど全てを分担する。
(2) When SOC of Secondary Battery 2A is Over SOCa SOCa is an SOC threshold value that rapidly increases when the deterioration rate of secondary battery 2A exceeds the value. In this case, at the time of charging, the distribution of discharge power to the secondary battery 2A is higher than that in the basic mode. For example, the secondary battery 2A shares almost all of the charging power instructed by the EMS.

(3)二次電池2BのSOCがSOCb未満の場合
SOCbは、二次電池2Bの劣化速度がその値を下回ると急増するようなSOCの閾値である。この場合、充電時においては、上記基本形態よりも二次電池2Bへの充電電力配分を高める。例えば、二次電池2BがEMSから指示された充電電力のほとんど全てを分担する。
(3) When the SOC of the secondary battery 2B is less than SOCb SOCb is a SOC threshold value that rapidly increases when the deterioration rate of the secondary battery 2B falls below that value. In this case, at the time of charging, the distribution of charging power to the secondary battery 2B is higher than that in the basic mode. For example, the secondary battery 2B shares almost all of the charging power instructed from the EMS.

このような方針における基本形態は、以下の考え方により具現化される。まず、二次電池2Aと2Bとが同一種類で同一定格容量を有する場合には、上記方針に基づき、以下の基本計算式(1)及び計算式(2)を立てることができる。   The basic form of such a policy is embodied by the following concept. First, when the secondary batteries 2A and 2B are the same type and have the same rated capacity, the following basic calculation formula (1) and calculation formula (2) can be established based on the above policy.

Figure 2014017982
Figure 2014017982
P(Tn):時刻TnでのEMSからの充電又は放電の合計電力指令値(kW)
Pa(Tn):時刻Tnにおける二次電池2Aへの配分値(kW)
Pb(Tn):時刻Tnにおける二次電池2Bへの配分値(kW)
Carem:時刻Tnでの二次電池2Aの充電余裕容量又は放電余裕容量(Ah)であり、充電指令時には充電余裕容量、放電指令時には放電余裕容量。
Cbrem:時刻Tnでの二次電池2Bの充電余裕容量又は放電余裕容量(Ah)であり、充電指令時には充電余裕容量、放電指令時には放電余裕容量。
Figure 2014017982
Figure 2014017982
P (Tn): Total power command value for charging or discharging from EMS at time Tn (kW)
Pa (Tn): Distribution value to secondary battery 2A at time Tn (kW)
Pb (Tn): Distribution value to secondary battery 2B at time Tn (kW)
Ca rem : Charging margin capacity or discharging margin capacity (Ah) of the secondary battery 2A at time Tn, charging margin capacity at the time of charging command, and discharging margin capacity at the time of discharging command.
Cb rem : Charging margin capacity or discharging margin capacity (Ah) of secondary battery 2B at time Tn, charging margin capacity when charging command, discharging margin capacity when discharging command.

この計算式(1)及び(2)によれば、二次電池2Aと二次電池2Bの双方のSOCが片方に偏ることなく、ほぼ同時に使い切ることが期待できる。   According to the calculation formulas (1) and (2), it can be expected that the SOCs of both the secondary battery 2A and the secondary battery 2B are used up almost simultaneously without biasing to one side.

ここで、二次電池2Aがリチウムイオン電池であり、高出力特性、高容量単価であり、二次電池2Bが鉛電池であり、相対的に低出力、低容量単価であることを考慮すると、二次電池2Bは安価に大容量が確保できるため、一般に二次電池2Aの定格容量は二次電池2Bの定格容量より小さいこと(例えば1/10程度)であることが想定される。   Here, considering that the secondary battery 2A is a lithium ion battery and has a high output characteristic and a high capacity unit price, and the secondary battery 2B is a lead battery and has a relatively low output and a low capacity unit price, Since the secondary battery 2B can secure a large capacity at low cost, it is generally assumed that the rated capacity of the secondary battery 2A is smaller than the rated capacity of the secondary battery 2B (for example, about 1/10).

この場合、計算式(1)及び(2)を基本形態として、二次電池2Aの負担量Pa(Tn)が二次電池2Bの負担量Pb(Tn)より格段に小さくならず、換言すると、二次電池2Aの出力レートを二次電池2Bに比べて極端に低くならないよいように、二次電池2Aの特徴である高出力特性を生かした修正が望ましい。   In this case, based on the calculation formulas (1) and (2), the burden amount Pa (Tn) of the secondary battery 2A is not significantly smaller than the burden amount Pb (Tn) of the secondary battery 2B. It is desirable to make corrections that make use of the high output characteristics that are characteristic of the secondary battery 2A so that the output rate of the secondary battery 2A does not become extremely low compared to the secondary battery 2B.

そこで、以下の計算式(3)及び(4)のように、補正係数kを導入して計算式(1)及び(2)を補正することが望ましい。この計算式(3)及び(4)に倣うことで、二次電池2Aと二次電池2Bの発生熱量を同等にすべきという要件にも適う。 Therefore, it is desirable to correct the calculation formulas (1) and (2) by introducing the correction coefficient k A as in the following calculation formulas (3) and (4). By following the calculation formulas (3) and (4), it also meets the requirement that the generated heat amounts of the secondary battery 2A and the secondary battery 2B should be equal.

Figure 2014017982
Figure 2014017982
Figure 2014017982
Figure 2014017982

すなわち、充放電余裕量Caremに対して補正係数kを掛ける。補正係数kは、例えば数倍程度であり、双方の出力特性の比に相当することが望ましい。出力特性とは、瞬時にどれだけ大電流を流せるかを示し、出力密度で表すこともできる。出力密度は、重量当たり又は体積当たりの出力である。 That is, the charge / discharge margin amount Ca rem is multiplied by the correction coefficient k A. The correction coefficient k A is, for example, about several times, and preferably corresponds to the ratio between the output characteristics of both. The output characteristics indicate how much large current can be flowed instantaneously, and can also be expressed by output density. The power density is the power per weight or volume.

更に、SOC領域に応じた劣化速度の差に対応して計算式(3)及び(4)を修正すると、最終的な計算式は以下の計算式(5)乃至(10)となる。計算式(5)乃至(10)によると、劣化が速いSOC領域の早期脱出による劣化抑制効果が期待できる。   Further, when the calculation formulas (3) and (4) are corrected in accordance with the difference in deterioration rate according to the SOC region, the final calculation formulas are the following calculation formulas (5) to (10). According to the calculation formulas (5) to (10), it is possible to expect a deterioration suppressing effect due to early escape of the SOC region where the deterioration is fast.

Figure 2014017982
係数rは、二次電池2Aの残容量が高SOC領域にあるときの放電時の配分比補正係数であり、例えば、閾値SOCa=70%とすると、SOCが70%以上である場合には放電時の配分比補正係数rを20とする。
Figure 2014017982
The coefficient r A is a distribution ratio correction coefficient at the time of discharging when the remaining capacity of the secondary battery 2A is in the high SOC region. For example, when the threshold SOCa = 70%, the SOC is 70% or more. the distribution ratio correction coefficient r a during discharge and 20.

Figure 2014017982
係数rは、二次電池2Aの残容量が低SOC領域にあるときの充電時の配分比補正係数であり、例えば、SOCb=80%とすると、SOCが80%以下である場合には充電時の配分比補正係数rを100とする。
Figure 2014017982
The coefficient r B is a distribution ratio correction coefficient at the time of charging when the remaining capacity of the secondary battery 2A is in the low SOC region. For example, when SOCb = 80%, charging is performed when the SOC is 80% or less. The hourly distribution ratio correction coefficient r B is set to 100.

Figure 2014017982
Figure 2014017982

上記計算式(5)及び(6)においては、係数r=1、上記計算式(7)及び(8)においては、係数r=1、上記計算式(9)及び(10)においては、係数r=1且つ係数r=1と言い換えることもできる。 In the calculation formulas (5) and (6), the coefficient r B = 1, in the calculation formulas (7) and (8), the coefficient r A = 1, and in the calculation formulas (9) and (10) In other words, the coefficient r A = 1 and the coefficient r B = 1.

(詳細構成)
このような電力配分アルゴリズムを実現する電池コントローラ3の構成を更に詳細に説明する。図3は、電池コントローラ3と電池別制御部4A、4Bの詳細構成を示すブロック図である。つまり、EMSから出力された充放電指令に対する電力配分の決定方法と其の決定された電力配分に基づく充放電の具体例を示している。
(Detailed configuration)
The configuration of the battery controller 3 that realizes such a power distribution algorithm will be described in more detail. FIG. 3 is a block diagram showing detailed configurations of the battery controller 3 and the battery-specific control units 4A and 4B. That is, the specific example of the charging / discharging based on the determination method of the electric power allocation with respect to the charging / discharging instruction | command output from EMS and the determined electric power distribution is shown.

図3に示すように、電池コントローラ3は、指令値受信部31、SOC算出部32、配分方法判断部33、電池情報記憶部34、充放電余裕量算出部35、配分量算出部36、及び係数記憶部37を備えている。   As shown in FIG. 3, the battery controller 3 includes a command value receiving unit 31, an SOC calculation unit 32, an allocation method determination unit 33, a battery information storage unit 34, a charge / discharge margin calculation unit 35, an allocation amount calculation unit 36, and A coefficient storage unit 37 is provided.

指令値受信部31は、LANケーブル等の通信線が接続された通信インターフェースを含み構成され、EMSから指令を受信する。EMSからの指令には、充電又は放電を示す充放電種別情報、及び充電又は放電の合計電力指令値P(Tn)が含まれている。   The command value receiving unit 31 includes a communication interface to which a communication line such as a LAN cable is connected, and receives a command from the EMS. The command from EMS includes charge / discharge type information indicating charging or discharging, and a total power command value P (Tn) for charging or discharging.

SOC算出部32は、プロセッサを含み構成され、電力配分方法を決定するための要素である二次電池2A、2BのSOCを算出する。EMSからの指令が放電であるときは、劣化速度が低SOCよりも高SOCで高い二次電池2AのSOCを計算する。EMSからの指令が充電であるときは、劣化速度が高SOCよりも低SOCで高い二次電池2BのSOCを計算する。   The SOC calculation unit 32 includes a processor, and calculates the SOC of the secondary batteries 2A and 2B, which are elements for determining the power distribution method. When the command from the EMS is discharge, the SOC of the secondary battery 2 </ b> A is calculated in which the deterioration rate is higher and higher than the low SOC. When the command from the EMS is charging, the SOC of the secondary battery 2 </ b> B is calculated in which the deterioration rate is lower and higher than the high SOC.

SOCの計算方法は、特に限定されるものではないが、例えば、SOC算出部32は、電圧測定部5が測定した二次電池2A又は2Bの電圧値からSOCを計算する。電池記憶部34は、フラッシュメモリやHDD等の不揮発性メモリを含み構成されているが、この電池記憶部34には、図4に模式的に示すような、電圧とSOCとの関係を示す電圧−SOC関係データを電池の種類毎に予め記憶している。SOC算出部32は、電圧測定部5から入力された電圧値に対応づけられているSOCを電池記憶部34から検索することにより、SOCを計算する。   The SOC calculation method is not particularly limited. For example, the SOC calculation unit 32 calculates the SOC from the voltage value of the secondary battery 2A or 2B measured by the voltage measurement unit 5. The battery storage unit 34 includes a non-volatile memory such as a flash memory or an HDD. The battery storage unit 34 includes a voltage indicating a relationship between the voltage and the SOC as schematically shown in FIG. -SOC-related data is stored in advance for each battery type. The SOC calculation unit 32 calculates the SOC by searching the battery storage unit 34 for an SOC associated with the voltage value input from the voltage measurement unit 5.

配分方法判断部33は、プロセッサを含み構成され、指令が放電且つ二次電池2AがSOCa超であるか、指令が充電且つ二次電池2BがSOCb未満であるか、あるいは其れ以外であるかを判定する。   Allocation method determination unit 33 is configured to include a processor, and whether the command is discharged and secondary battery 2A exceeds SOCa, whether the command is charged and secondary battery 2B is less than SOCb, or otherwise. Determine.

具体的には、指令に含まれる充放電種別情報の内容に応じて二次電池2A又は2Bのうちの一方を判定対象とし、また当該内容に応じて閾値SOCa又はSOCbの何れかを選択し、判定対象と選択値とを比較する。電池情報記憶部34には、図5に示すように、閾値SOCa及びSOCbが記憶されている。   Specifically, one of the secondary batteries 2A or 2B is set as a determination target according to the content of the charge / discharge type information included in the command, and one of the threshold values SOCa or SOCb is selected according to the content, The determination target is compared with the selected value. As shown in FIG. 5, threshold values SOCa and SOCb are stored in the battery information storage unit 34.

充放電余裕量算出部35は、プロセッサを含み構成され、二次電池2Aと二次電池2Bの充放電余裕量CaremとCbremを算出する。EMSからの指令が放電であれば、充放電余裕量CaremとCbremは残容量であり、放電であれば、充放電余裕量CaremとCbremは受入可能容量である。 The charge / discharge margin calculation unit 35 includes a processor, and calculates charge / discharge margins Ca rem and Cb rem of the secondary battery 2A and the secondary battery 2B. If the command from the EMS is discharge, the charge / discharge margins Ca rem and Cb rem are the remaining capacity, and if it is discharge, the charge / discharge margins Ca rem and Cb rem are the acceptable capacity.

充放電余裕量の算出方法は、特に限定されるものではないが、例えば、充放電余裕量算出部35は、指令が放電であれば、定格容量のSOCで示される割合を計算する。また、充放電余裕量算出部35は、指令が充電であれば、定格容量の(100−SOC)%で示される割合を計算する。電池情報記憶部34には、図6に示すように、予め、二次電池2Aと2Bの定格容量が記憶されている。   The method for calculating the charge / discharge margin is not particularly limited. For example, if the command is discharge, the charge / discharge margin calculation unit 35 calculates the ratio indicated by the SOC of the rated capacity. Moreover, the charge / discharge margin calculation part 35 will calculate the ratio shown by (100-SOC)% of a rated capacity, if instruction | command is charge. In the battery information storage unit 34, as shown in FIG. 6, the rated capacities of the secondary batteries 2A and 2B are stored in advance.

配分量算出部36は、プロセッサを含み構成され、電力配分アルゴリズムに従って、二次電池2Aと二次電池2Bに配分する充放電量を算出する。具体的には、配分比補正係数r及びrの具体値を配分方法判断部33の判定結果に応じて選択し、上記計算式(5)乃至(10)を纏めた以下の計算式(11)及び(12)を計算する。 The distribution amount calculation unit 36 includes a processor, and calculates a charge / discharge amount to be distributed to the secondary battery 2A and the secondary battery 2B according to a power distribution algorithm. Specifically, specific values of the distribution ratio correction coefficients r A and r B are selected according to the determination result of the distribution method determination unit 33, and the following calculation formulas (5) to (10) are summarized as follows: 11) and (12) are calculated.

Figure 2014017982
Figure 2014017982

配分比補正係数r及びrの具体値、及び補正係数kの具体値は、フラッシュメモリやHDD等の不揮発性メモリを含み構成される係数記憶部37に予め記憶されている。図7に示すように、配分比補正係数r及びrの具体値は、充放電種別情報及び配分方法判断部33の判定結果のパターンに応じて分類されて記憶されている。 The specific values of the distribution ratio correction coefficients r A and r B and the specific value of the correction coefficient k A are stored in advance in a coefficient storage unit 37 including a nonvolatile memory such as a flash memory or an HDD. As illustrated in FIG. 7, the specific values of the distribution ratio correction coefficients r A and r B are classified and stored according to the charge / discharge type information and the pattern of the determination result of the distribution method determination unit 33.

配分量算出部36は、二次電池2Aの種類に応じて定数である補正係数kを係数記憶部37から読み出し、EMSからの充放電種別情報及び配分方法判断部33が示した判定結果に対応づけられている配分比補正係数r及びrを係数記憶部37から読み出し、充放電余裕量算出部35が算出した充放電余裕量CaremとCbremを読み出し、指令値受信部31が受信した合計電力指令値P(Tn)を読み出し、上記計算式(11)及び(12)を計算する。 The distribution amount calculation unit 36 reads the correction coefficient k A , which is a constant according to the type of the secondary battery 2A, from the coefficient storage unit 37, and displays the charge / discharge type information from the EMS and the determination result indicated by the distribution method determination unit 33. The associated distribution ratio correction coefficients r A and r B are read from the coefficient storage unit 37, the charge / discharge margins Ca rem and Cb rem calculated by the charge / discharge margin calculation unit 35 are read, and the command value receiving unit 31 The received total power command value P (Tn) is read, and the above formulas (11) and (12) are calculated.

配分量算出部36の計算結果である配分量Pa(Tn)は、二次電池2Aを制御する電池別制御部4Aに信号線8を介して出力され、配分量Pb(Tn)は、二次電池2Bを制御する電池別制御部4Bに信号線8を介して出力される。   The distribution amount Pa (Tn), which is the calculation result of the distribution amount calculation unit 36, is output via the signal line 8 to the battery-specific control unit 4A that controls the secondary battery 2A, and the distribution amount Pb (Tn) is the secondary amount. The signal is output via the signal line 8 to the battery-specific control unit 4B that controls the battery 2B.

尚、電池別制御部4Aと4Bは、充放電量算出部42と指令値比較部41とスイッチ43とを備え、受信した配分量Pa(Tn)とPb(Tn)を満たすように二次電池2Aと2Bの充放電を制御する。充放電算出部42は、プロセッサを含み構成され、二次電池2Aと2Bの充放電量を算出する。充放電量の算出方法は、特に限定されるものではないが、例えば、電流測定部6の測定値と経過時間とを乗算する。指令値比較部41は、比較回路を含み構成され、充放電算出部42が算出した充放電量と配分量Pa(Tn)やPb(Tn)を比較する。そして、比較の結果に応じてスイッチ43を開閉する。   The battery-specific control units 4A and 4B each include a charge / discharge amount calculation unit 42, a command value comparison unit 41, and a switch 43, and satisfy the received distribution amounts Pa (Tn) and Pb (Tn). Control charging / discharging of 2A and 2B. The charge / discharge calculation unit 42 includes a processor, and calculates the charge / discharge amounts of the secondary batteries 2A and 2B. Although the calculation method of charging / discharging amount is not specifically limited, For example, the measured value of the electric current measurement part 6 and elapsed time are multiplied. The command value comparison unit 41 includes a comparison circuit, and compares the charge / discharge amount calculated by the charge / discharge calculation unit 42 with the distribution amounts Pa (Tn) and Pb (Tn). Then, the switch 43 is opened and closed according to the comparison result.

(動作)
この電池コントローラ3の電力配分動作の一例をフローチャートに示す。図8は、充放電電力配分方法を示すフローチャートである。
(Operation)
An example of the power distribution operation of the battery controller 3 is shown in the flowchart. FIG. 8 is a flowchart showing a charge / discharge power distribution method.

まず、電池コントローラ3は、配分比補正係数をr=1及びr=1に予め初期化しておく(ステップS01)。この状態で、EMSから充放電指令を受信すると(ステップS02)、充放電指令に含まれる充放電種別情報が充電指令であるか(ステップS03)、放電指令であるか(ステップS04)を判断する。 First, the battery controller 3 initializes the distribution ratio correction coefficient to r A = 1 and r B = 1 in advance (step S01). When a charge / discharge command is received from the EMS in this state (step S02), it is determined whether the charge / discharge type information included in the charge / discharge command is a charge command (step S03) or a discharge command (step S04). .

充電指令の場合(ステップS03,Yes)、二次電池2BのSOCが閾値SOCb未満であるか判断する(ステップS05)。二次電池2BのSOC<SOCbである場合(ステップS04,Yes)、二次電池2Bに対する配分比補正係数をr=100に変更する(ステップS05)。 In the case of a charge command (step S03, Yes), it is determined whether the SOC of the secondary battery 2B is less than the threshold SOCb (step S05). When SOC <SOCb of the secondary battery 2B (step S04, Yes), the distribution ratio correction coefficient for the secondary battery 2B is changed to r B = 100 (step S05).

電池コントローラ3は、配分比補正係数r=100に変更した後、又は二次電池2BのSOC≧SOCbである場合(ステップS04,No)、充放電余裕量をCarem=Aha×(1−SOC_A)、及びCbrem=Ahb×(1−SOC_B)とする(ステップS07)。ここで、Ahaは、二次電池2Aの定格容量、Ahbは、二次電池2Bの定格容量であり、SOC_Aは、二次電池2AのSOCで表される割合を比に換算した小数(70%であれば0.7)、SOC_Bは、二次電池2BのSOCで表される割合を比に換算した小数である。 The battery controller 3 changes the distribution ratio correction coefficient r B = 100, or when SOC ≧ SOCb of the secondary battery 2B (step S04, No), the charge / discharge margin amount is set to Ca rem = Aha × (1− SOC_A) and Cb rem = Ahb × (1-SOC_B) (step S07). Here, Aha is the rated capacity of the secondary battery 2A, Ahb is the rated capacity of the secondary battery 2B, and SOC_A is a fraction (70%) converted to a ratio expressed by the SOC of the secondary battery 2A. If 0.7, SOC_B is a decimal number obtained by converting the ratio represented by the SOC of the secondary battery 2B into a ratio.

一方、充放電種別情報が充電指令ではなく(ステップS03,No)、放電指令の場合(ステップS04,Yes)、二次電池2AのSOCが閾値SOCa超であるか判断する(ステップS08)。二次電池2AのSOC>SOCaである場合(ステップS08,Yes)、二次電池2Aに対する配分比補正係数をr=20に変更する(ステップS09)。 On the other hand, when the charge / discharge type information is not a charge command (step S03, No) but is a discharge command (step S04, Yes), it is determined whether the SOC of the secondary battery 2A exceeds the threshold SOCa (step S08). When SOC of secondary battery 2A is higher than SOCa (step S08, Yes), the distribution ratio correction coefficient for secondary battery 2A is changed to r A = 20 (step S09).

電池コントローラ3は、配分比補正係数r=20に変更した後、又は二次電池2AのSOC≦SOCaである場合(ステップS08,No)、充放電余裕量をCarem=Aha×SOC_A、及びCbrem=Ahb×SOC_Bとする(ステップS10)。 The battery controller 3 changes the distribution ratio correction coefficient r A = 20, or when SOC ≦ SOCa of the secondary battery 2A (step S08, No), the charge / discharge margin amount is set to Ca rem = Aha × SOC_A, and Cb rem = Ahb × SOC_B (step S10).

全ての係数値が設定されると、電池コントローラ3は、上記計算式(11)及び(12)を計算することで、二次電池2Aと二次電池2Bに対する電力配分を決定する(ステップS11)。   When all the coefficient values are set, the battery controller 3 determines the power distribution to the secondary battery 2A and the secondary battery 2B by calculating the calculation formulas (11) and (12) (step S11). .

(作用)
このような電池コントローラ3によると、二次電池2Aと二次電池2Bが同一種類である場合の充放電電力配分を次のようになる。図9は、二次電池2Aと二次電池2Bが同一種類である場合の充放電電力配分を示す模式図である。
(Function)
According to such a battery controller 3, the charge / discharge power distribution when the secondary battery 2A and the secondary battery 2B are of the same type is as follows. FIG. 9 is a schematic diagram showing charge / discharge power distribution when the secondary battery 2A and the secondary battery 2B are of the same type.

二次電池2Aと二次電池2Bが同一種類である場合には、配分比補正係数r=1及びr=1であり、補正係数k=1となる。そのため、図9に示すように、二次電池2Aと二次電池2Bとは、充放電余裕容量と同比で充放電電力が配分されることになり、同一割合で充放電される。 When the secondary battery 2A and the secondary battery 2B are of the same type, the distribution ratio correction coefficient r A = 1 and r B = 1, and the correction coefficient k A = 1. Therefore, as shown in FIG. 9, the secondary battery 2 </ b> A and the secondary battery 2 </ b> B are charged / discharged at the same rate because the charge / discharge power is distributed in the same ratio as the charge / discharge margin capacity.

次に、図10に、二次電池2Aが高出力特性を有し、二次電池2Bが相対的に低出力特性である場合の充放電電力配分を示す。この場合、配分比補正係数はr=1及びr=1であるが、補正係数は例えばk=10となる。 Next, FIG. 10 shows charge / discharge power distribution when the secondary battery 2A has a high output characteristic and the secondary battery 2B has a relatively low output characteristic. In this case, the distribution ratio correction coefficient is r A = 1 and r B = 1, but the correction coefficient is, for example, k A = 10.

そうすると、図10に示すように、二次電池2Aには、充放電余裕容量の比よりも高い配分で充放電がなされることにより、二次電池2Aが優先的に使用されることとなる。   Then, as shown in FIG. 10, the secondary battery 2 </ b> A is preferentially used by charging / discharging the secondary battery 2 </ b> A with a distribution higher than the charge / discharge margin capacity ratio.

更に、図11乃至15に、二次電池2Aと2Bとは種類が異なり、二次電池2Aの劣化速度が低SOCよりも高SOCで高く、二次電池2Bの劣化速度が高SOCよりも低SOCで高い場合の充放電電力配分を示す。この場合、補正係数は例えばk=10、配分比補正係数は、例えば、放電時にr=20及びr=1、充電時にr=1及びr=100となる。 Further, in FIGS. 11 to 15, the types of secondary batteries 2A and 2B are different, the deterioration rate of the secondary battery 2A is higher at a higher SOC than the low SOC, and the deterioration rate of the secondary battery 2B is lower than the high SOC. The charge / discharge power distribution when the SOC is high is shown. In this case, the correction coefficient is, for example, k A = 10, and the distribution ratio correction coefficient is, for example, r A = 20 and r B = 1 during discharging, and r A = 1 and r B = 100 during charging.

図11の(a)に示すように、二次電池2Aと二次電池2BのSOCとが双方とも劣化急進領域にない状態でEMSから放電指令があった場合には、配分比補正係数r=1及びr=1とし、放電余裕容量と同比で放電電力が配分することにより、図11の(b)のように、二次電池2Aと二次電池2Bの残容量は同一割合で減少する。 As shown in (a) of FIG. 11, when a discharge command is issued from the EMS in a state where both the secondary battery 2A and the SOC of the secondary battery 2B are not in the rapid deterioration region, the distribution ratio correction coefficient r A = 1 and r B = 1, and the discharge power is distributed in the same ratio as the discharge margin capacity, thereby reducing the remaining capacity of the secondary battery 2A and the secondary battery 2B at the same rate as shown in FIG. 11B. To do.

図12の(b)に示すように、劣化速度が高SOCよりも低SOCで高い二次電池2BのSOCが劣化急進領域にある状態でEMSから充電指令があった場合には、配分比補正係数r=1及びr=100とすることで、二次電池2Bに対し、充電余裕容量の比よりも高く充電電力を配分することで、図12の(c)に示すように、早期に二次電池2BのSOCが劣化急進領域から離脱する。 As shown in FIG. 12 (b), when a charge command is issued from the EMS in a state in which the SOC of the secondary battery 2B is higher in SOC than the high SOC and high in the secondary battery 2B, the distribution ratio is corrected. By setting the coefficients r A = 1 and r B = 100, the charging power is allocated to the secondary battery 2B higher than the ratio of the charging capacity, so that as shown in FIG. In addition, the SOC of the secondary battery 2B is detached from the deterioration rapid progress region.

図13の(c)に示すように、二次電池2Aと二次電池2BのSOCとが双方とも劣化急進領域にない状態でEMSから充電指令があった場合には、配分比補正係数r=1及びr=1とし、充電余裕容量と同比で充電電力が配分することにより、図13の(d)のように、二次電池2Aと二次電池2Bの受入可能容量は同一割合で減少する。 As shown in FIG. 13C, when a charge command is issued from the EMS in a state where both the secondary battery 2A and the SOC of the secondary battery 2B are not in the rapid deterioration region, the distribution ratio correction coefficient r A = 1 and r B = 1, and the charging power is distributed at the same ratio as the charging capacity, so that the receivable capacities of the secondary battery 2A and the secondary battery 2B are the same as shown in FIG. 13 (d). Decrease.

図14の(d)に示すように、二次電池2BのSOCが劣化急進領域にある状態でEMSから充電指令があった場合には、配分比補正係数r=1及びr=100とし、二次電池2Bに対して充電余裕容量の比よりも高く充電電力を配分するが、図14の(e)のように、途中で二次電池Bが満充電となった場合には、図14の(f)に示すように、その二次電池へ配分するはずだった残りの充電電力を他方の二次電池Aに振り分けられる。 As shown in FIG. 14 (d), when a charge command is issued from EMS in a state where the SOC of the secondary battery 2B is in the rapid deterioration region, the distribution ratio correction coefficient r A = 1 and r B = 100 are set. The charging power is distributed to the secondary battery 2B higher than the ratio of the surplus charging capacity, but when the secondary battery B is fully charged halfway as shown in FIG. As shown in 14 (f), the remaining charging power that should have been distributed to the secondary battery is distributed to the other secondary battery A.

そして、図15の(f)に示すように、劣化速度が低SOCよりも高SOCで高い二次電池2AのSOCが劣化急進領域にある状態でEMSから放電指令があった場合には、配分比補正係数r=20及びr=1とすることで、二次電池2Aに対し、放電余裕容量の比よりも高く放電電力を配分することで、図15の(g)に示すように、早期に二次電池2AのSOCが劣化急進領域から離脱する。 Then, as shown in FIG. 15 (f), when a discharge command is issued from the EMS in a state where the SOC of the secondary battery 2A in which the deterioration rate is higher than the low SOC and the secondary battery 2A is in the rapid deterioration region, the distribution is performed. By setting the ratio correction coefficient r A = 20 and r B = 1, the discharge power is allocated to the secondary battery 2A higher than the ratio of the discharge capacity, as shown in FIG. 15 (g). As a result, the SOC of the secondary battery 2 </ b> A is detached from the rapid deterioration region.

(効果)
以上のように、本実施形態では、劣化速度が低SOC領域よりも高SOC領域で速い二次電池2Aと劣化速度が高SOC領域よりも低SOC領域で低い二次電池2Bとを並列接続した場合、放電時において、二次電池2Aが所定の高SOC超である場合には、それ以外の放電時の電力配分比よりも、二次電池2Aへの放電電力配分比を高くし、充電時において、二次電池2Bが所定の低SOC未満である場合には、それ以外の充電時の電力配分比よりも、二次電池2Bへの充電電力配分比を高くするようにした。これにより、劣化についてのSOC依存特性が異なる種類の二次電池2Aと2Bとを組み合わせたハイブリッド電池であっても、二次電池2Aと2Bの充放電性能に制約をかけることなく、各二次電池2Aと2Bの寿命延命を図ることができる。
(effect)
As described above, in the present embodiment, the secondary battery 2A whose deterioration rate is higher in the high SOC region than in the low SOC region and the secondary battery 2B whose deterioration rate is lower in the lower SOC region than in the high SOC region are connected in parallel. In this case, when the secondary battery 2A exceeds a predetermined high SOC at the time of discharge, the discharge power distribution ratio to the secondary battery 2A is made higher than the other power distribution ratio at the time of discharge, When the secondary battery 2B is less than the predetermined low SOC, the charging power distribution ratio to the secondary battery 2B is made higher than the other power distribution ratios during charging. Thereby, even if it is a hybrid battery which combined the secondary battery 2A and 2B of a kind from which the SOC dependence characteristic about deterioration differs, each secondary battery 2A and 2B, without restricting charging / discharging performance, It is possible to extend the life of the batteries 2A and 2B.

それ以外の充放電時での電力配分比は、二次電池2Aと二次電池2Bの充放電余裕容量の比と一致させることが望ましい。これにより、原則的には二次電池2Aと二次電池2Bの双方の充放電余裕容量が片方に偏ることなく、ほぼ同時に使い切ることが期待できる。   It is desirable that the other power distribution ratios at the time of charging / discharging coincide with the ratio of the charging / discharging surplus capacity of the secondary battery 2A and the secondary battery 2B. Thereby, in principle, it can be expected that the charge / discharge marginal capacity of both the secondary battery 2A and the secondary battery 2B is used almost simultaneously without being biased to one side.

また、それ以外の充放電時での電力配分比は、二次電池2Aと二次電池2Bとの出力特性の比で補正することが望ましい。これにより、二次電池2Aと二次電池2Bの発生熱量を同等にし、ジュール熱による損失を抑制することができる。   Moreover, it is desirable to correct the other power distribution ratios during charging / discharging by the ratio of the output characteristics of the secondary battery 2A and the secondary battery 2B. Thereby, the generated heat amount of the secondary battery 2A and the secondary battery 2B can be made equal, and the loss due to Joule heat can be suppressed.

(第2の実施形態)
第1の実施形態では、2種類の二次電池2Aと2Bとを組にしたハイブリッド電池を例に説明したが、これに限らず、3種類以上の二次電池を組にしたハイブリッド電池に対しても第1の実施形態の同様の充放電電力配分方法を適用することができる。
(Second Embodiment)
In the first embodiment, the hybrid battery in which two types of secondary batteries 2A and 2B are combined is described as an example. However, the present invention is not limited to this, and the hybrid battery in which three or more types of secondary batteries are combined is used. However, the same charge / discharge power distribution method of the first embodiment can be applied.

例えば、図16に示すように、3種の二次電池2Aと2Bと2Cとを組にしたバイブリッド電池に対しては、二次電池2C用の電池別制御部4Cを備えるようにし、電池コントローラ3が以下の計算式(13)乃至(15)を計算することで、第1の実施形態と同じ方針を具現化できる。   For example, as shown in FIG. 16, for a hybrid battery in which three types of secondary batteries 2A, 2B, and 2C are combined, a battery-specific control unit 4C for the secondary battery 2C is provided. The controller 3 calculates the following calculation formulas (13) to (15), thereby realizing the same policy as that of the first embodiment.

Figure 2014017982
Pc(Tn):時刻Tnにおける二次電池2Cへの配分値(kW)
Ccrem:時刻Tnでの二次電池2Cの充電余裕容量又は放電余裕容量(Ah)
:二次電池2Cに対する配分比補正係数
Figure 2014017982
Pc (Tn): Distribution value to secondary battery 2C at time Tn (kW)
Cc rem : Charging margin capacity or discharging margin capacity (Ah) of secondary battery 2C at time Tn
r c : distribution ratio correction coefficient for secondary battery 2C

(第3の実施形態)
第3の実施形態においては、第1の実施形態と比べて二次電池2Aと2Bの温度条件も加味して充放電電力配分を決定している。すなわち、電池の温度が所定以上となると劣化進行が顕著になる場合に、劣化急進領域から速やかに離脱させるべく、配分比補正係数r又はrを1超の数値とする。
(Third embodiment)
In the third embodiment, the charge / discharge power distribution is determined in consideration of the temperature conditions of the secondary batteries 2A and 2B as compared to the first embodiment. That is, when the battery temperature rises above a predetermined level, when the progress of deterioration becomes significant, the distribution ratio correction coefficient r A or r B is set to a numerical value greater than 1 in order to quickly leave the rapid deterioration region.

具体的には、図17に示すように、係数記憶部37には、配分比補正係数r及びrの具体値が、充放電種別情報及び配分方法判断部33の判定結果のパターンに加えて、電池温度に応じて分類されて記憶されている。配分量算出部36は、温度測定部7から温度測定値を信号線8を介して取得し、その温度測定値が、劣化進行が顕著なるZ℃以上であると、その温度条件に対応づけられた配分比補正係数r及びrの具体値を読み出し、充放電電力配分を決定する。 Specifically, as illustrated in FIG. 17, the coefficient storage unit 37 adds the specific values of the distribution ratio correction coefficients r A and r B to the charge / discharge type information and the pattern of the determination result of the distribution method determination unit 33. And classified according to the battery temperature. The distribution amount calculation unit 36 acquires the temperature measurement value from the temperature measurement unit 7 via the signal line 8, and if the temperature measurement value is equal to or higher than Z ° C. at which the progress of deterioration is significant, the distribution amount calculation unit 36 is associated with the temperature condition. The specific values of the distribution ratio correction coefficients r A and r B are read to determine the charge / discharge power distribution.

このように、劣化進行が顕著になる所定の高温領域であって、二次電池2AのSOCが劣化急進領域にある場合には、二次電池2Aの放電電力配分比を高め、劣化進行が顕著になる所定の高温領域であって、二次電池2BのSOCが劣化急進領域にある場合には、二次電池2Bの充電電力配分比を高めるようにした。これにより、異なる種類の二次電池2Aと2Bの寿命延命を図るとともに、二次電池2Aと2Bの充放電性能の制約を更に緩和することができる。   As described above, when the SOC of the secondary battery 2A is in the rapid deterioration region in the predetermined high temperature region where the deterioration progress becomes remarkable, the discharge power distribution ratio of the secondary battery 2A is increased, and the deterioration progress is remarkable. When the SOC of the secondary battery 2B is in the rapid deterioration region, the charging power distribution ratio of the secondary battery 2B is increased. As a result, the life of the different types of secondary batteries 2A and 2B can be extended, and the restrictions on the charge / discharge performance of the secondary batteries 2A and 2B can be further relaxed.

(第4の実施形態)
第4の実施形態に係る充放電電力配分方法のように、二次電池2Aと2Bとには、充放電方向によって完全に片側を優先するように、配分比補正係数r及びrを設定するようにしてもよい。図18乃至21は、第4の実施形態に係る二次電池2Aと2Bへの充放電電力配分方法を示した模式図である。
(Fourth embodiment)
As in the charge / discharge power distribution method according to the fourth embodiment, the distribution ratio correction coefficients r A and r B are set in the secondary batteries 2A and 2B so that one side is completely prioritized according to the charge / discharge direction. You may make it do. FIGS. 18 to 21 are schematic diagrams showing a charge / discharge power distribution method to the secondary batteries 2A and 2B according to the fourth embodiment.

図18に示すように、放電時には、EMSから指示された放電量の全てを二次電池2Aから放電させるようにしてもよい。図19に示すように、二次電池2Aが空になったときにのみ、指示された放電量の残り分を二次電池2Bから放電させるようにしてもよい。   As shown in FIG. 18, at the time of discharging, all of the discharge amount instructed by EMS may be discharged from the secondary battery 2A. As shown in FIG. 19, the remaining amount of the instructed discharge amount may be discharged from the secondary battery 2B only when the secondary battery 2A is empty.

また、図20に示すように、充電時には、EMSから指示された充電量の全てを二次電池2Bに充電するようにしてもよい。図21に示すように、二次電池2Bが満充電になったときにのみ、指示された充電量の残り分を二次電池2Aに充電するようにしてもよい。   Moreover, as shown in FIG. 20, at the time of charge, you may make it charge the secondary battery 2B with all the charge amount instruct | indicated from EMS. As shown in FIG. 21, only when the secondary battery 2B is fully charged, the remaining amount of the instructed charge may be charged to the secondary battery 2A.

(その他の実施の形態)
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、各種の過酷な充電条件の設定方法の全て又はいずれかを組み合わせたもの等も包含される。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. Specifically, a combination of all or any of various harsh charging condition setting methods is also included. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

1 電池システム
2A 二次電池
2B 二次電池
2C 二次電池
21 蓄電池セル
22 蓄電池セル
3 電池コントローラ
31 指令値受信部
32 SOC算出部
33 配分方法判断部
34 電池情報記憶部
35 充放電余裕量算出部
36 配分量算出部
37 係数記憶部
4A 電池別制御部
4B 電池別制御部
4C 電池別制御部
41 指令値比較部
42 充放電量算出部
43 スイッチ
5 電圧測定部
6 電流測定部
7 温度測定部
8 信号線
9 直流バス
DESCRIPTION OF SYMBOLS 1 Battery system 2A Secondary battery 2B Secondary battery 2C Secondary battery 21 Storage battery cell 22 Storage battery cell 3 Battery controller 31 Command value receiving part 32 SOC calculation part 33 Distribution method judgment part 34 Battery information storage part 35 Charge / discharge margin calculation part 36 Allocation amount calculation unit 37 Coefficient storage unit 4A Battery control unit 4B Battery control unit 4C Battery control unit 41 Command value comparison unit 42 Charge / discharge amount calculation unit 43 Switch 5 Voltage measurement unit 6 Current measurement unit 7 Temperature measurement unit 8 Signal line 9 DC bus

Claims (10)

劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとを並列接続したハイブリッド電池の充放電電力配分方法であって、
放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、
充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、
を特徴とする充放電電力配分方法。
This is a charge / discharge power distribution method for a hybrid battery in which a secondary battery A whose deterioration rate is faster in a high SOC region than in a low SOC region and a secondary battery B whose deterioration rate is faster in a low SOC region than in a high SOC region are connected in parallel. And
At the time of discharging, in the first case where the secondary battery A exceeds a predetermined high SOC, the discharge power distribution ratio to the secondary battery A is made higher than the power distribution ratio at the time of other discharges,
When charging, in the second case where the secondary battery B is less than a predetermined low SOC, the charging power distribution ratio to the secondary battery B is made higher than the other power distribution ratios during charging. ,
Charging / discharging power distribution method characterized by this.
前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bの充放電余裕容量の比と一致させること、
を特徴とする請求項1記載の充放電電力配分方法。
Making the power distribution ratio at the time of other charge / discharge coincide with the ratio of the charge / discharge marginal capacity of the secondary battery A and the secondary battery B,
The charge / discharge power distribution method according to claim 1.
前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bとの出力特性の比で補正すること、
を特徴とする請求項1又は2記載の充放電電力配分方法。
Correcting the power distribution ratio at the time of other charge / discharge by the ratio of the output characteristics of the secondary battery A and the secondary battery B,
The charge / discharge power distribution method according to claim 1 or 2.
劣化進行が顕著になる所定の高温領域、且つ前記第1の場合に、前記二次電池Aの放電電力配分比を高め、
劣化進行が顕著になる所定の高温領域、且つ前記第2の場合に、前記二次電池Bの充電電力配分比を高めること、
を特徴とする請求項1乃至3の何れかに記載の充放電電力配分方法。
In a predetermined high-temperature region where deterioration progress becomes remarkable, and in the first case, the discharge power distribution ratio of the secondary battery A is increased,
Increasing the charge power distribution ratio of the secondary battery B in a predetermined high temperature region where the deterioration progress is noticeable and in the second case;
The charge / discharge power distribution method according to any one of claims 1 to 3.
前記ハイブリッド電池は、劣化速度が速くなるSOC領域が異なる3種類以上の二次電池を並列接続してなること、
を特徴とする請求項1乃至4の何れかに記載の充放電電力配分方法。
The hybrid battery is formed by connecting in parallel three or more types of secondary batteries having different SOC regions in which the deterioration rate increases.
The charge / discharge power distribution method according to claim 1, wherein:
劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとが並列接続されてなるハイブリッド電池に対する電池コントローラであって、
前記ハイブリッド電池に対する充電又は放電の指令値を受け取る入力部と、
前記指令値に対応する充電電力又は放電電力を前記二次電池A及び前記二次電池Bに配分する配分量算出部と、
を備え、
前記配分量算出部は、
放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、
充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、
を特徴とする電池コントローラ。
A battery controller for a hybrid battery in which a secondary battery A whose deterioration rate is higher in a high SOC region than in a low SOC region and a secondary battery B whose deterioration rate is faster in a low SOC region than in a high SOC region are connected in parallel. ,
An input unit for receiving a command value for charging or discharging the hybrid battery;
A distribution amount calculation unit that distributes charging power or discharging power corresponding to the command value to the secondary battery A and the secondary battery B;
With
The distribution amount calculation unit
At the time of discharging, in the first case where the secondary battery A exceeds a predetermined high SOC, the discharge power distribution ratio to the secondary battery A is made higher than the power distribution ratio at the time of other discharges,
When charging, in the second case where the secondary battery B is less than a predetermined low SOC, the charging power distribution ratio to the secondary battery B is made higher than the other power distribution ratios during charging. ,
A battery controller characterized by
前記配分量算出部は、
前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bの充放電余裕容量の比に基づきと一致させること、
を特徴とする請求項6記載の電池コントローラ。
The distribution amount calculation unit
Matching the power distribution ratio at the time of other charge / discharge based on the ratio of charge / discharge margin capacity of the secondary battery A and the secondary battery B,
The battery controller according to claim 6.
前記配分量算出部は、
前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bとの出力特性の比で補正すること、
を特徴とする請求項6又は7記載の電池コントローラ。
The distribution amount calculation unit
Correcting the power distribution ratio at the time of other charge / discharge by the ratio of the output characteristics of the secondary battery A and the secondary battery B,
The battery controller according to claim 6 or 7.
劣化進行が顕著になる所定の高温領域、且つ前記第1の場合に、前記二次電池Aの放電電力配分比を高め、
劣化進行が顕著になる所定の高温領域、且つ前記第2の場合に、前記二次電池Bの充電電力配分比を高めること、
を特徴とする請求項6乃至8の何れかに記載の電池コントローラ。
In a predetermined high-temperature region where deterioration progress becomes remarkable, and in the first case, the discharge power distribution ratio of the secondary battery A is increased,
Increasing the charge power distribution ratio of the secondary battery B in a predetermined high temperature region where the deterioration progress is noticeable and in the second case;
The battery controller according to any one of claims 6 to 8.
劣化速度が速くなるSOC領域が異なる3種類以上の二次電池の充放電電力配分を制御すること、
を特徴とする請求項6乃至9の何れかに記載の電池コントローラ。
Controlling the charge / discharge power distribution of three or more types of secondary batteries having different SOC regions in which the deterioration rate increases,
The battery controller according to any one of claims 6 to 9.
JP2012154101A 2012-07-09 2012-07-09 Charge/discharge power distribution method and battery controller Pending JP2014017982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154101A JP2014017982A (en) 2012-07-09 2012-07-09 Charge/discharge power distribution method and battery controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154101A JP2014017982A (en) 2012-07-09 2012-07-09 Charge/discharge power distribution method and battery controller

Publications (1)

Publication Number Publication Date
JP2014017982A true JP2014017982A (en) 2014-01-30

Family

ID=50112183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154101A Pending JP2014017982A (en) 2012-07-09 2012-07-09 Charge/discharge power distribution method and battery controller

Country Status (1)

Country Link
JP (1) JP2014017982A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113437A1 (en) * 2011-11-07 2013-05-09 Sony Corporation Control apparatus, control method and control system
JP2014171335A (en) * 2013-03-04 2014-09-18 Toshiba Corp Secondary battery system comprising a plurality of batteries and distribution method for charge/discharge power and the like
WO2019186659A1 (en) * 2018-03-26 2019-10-03 株式会社東芝 Power storage control device, power storage system and control method
WO2023018133A1 (en) * 2021-08-09 2023-02-16 주식회사 엘지에너지솔루션 Power distribution method and energy storage system using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113437A1 (en) * 2011-11-07 2013-05-09 Sony Corporation Control apparatus, control method and control system
US9929570B2 (en) * 2011-11-07 2018-03-27 Sony Corporation Control apparatus to control discharge from battery units
JP2014171335A (en) * 2013-03-04 2014-09-18 Toshiba Corp Secondary battery system comprising a plurality of batteries and distribution method for charge/discharge power and the like
US9825474B2 (en) 2013-03-04 2017-11-21 Kabushiki Kaisha Toshiba Secondary battery system with plural batteries and method of distributing charge/discharge power
WO2019186659A1 (en) * 2018-03-26 2019-10-03 株式会社東芝 Power storage control device, power storage system and control method
JPWO2019186659A1 (en) * 2018-03-26 2021-01-14 株式会社東芝 Power storage control device, power storage system and control method
WO2023018133A1 (en) * 2021-08-09 2023-02-16 주식회사 엘지에너지솔루션 Power distribution method and energy storage system using same

Similar Documents

Publication Publication Date Title
CN107078520B (en) Method for managing the operating range of a battery
US10048322B2 (en) Method of measuring battery pack current and correcting offsets of a current sensor
US8963501B2 (en) Voltage equalization device, method, program, and power storage system
JP5082011B2 (en) Battery power supply and battery power supply system
US20140021925A1 (en) Battery power supply apparatus and battery power supply system
JP6174963B2 (en) Battery control system
WO2012169062A1 (en) Battery control device and battery system
JP6495257B2 (en) System and method for regulating the temperature of an electrochemical cell
JP2009081981A (en) Charge state optimizing apparatus and battery pack system provided therewith
KR101555660B1 (en) Apparatus and method for maintaining of secondary battery&#39;s states of charge
WO2012147121A1 (en) Cell pack
JP2010273519A (en) Method of controlling charging and discharging
JP2013183509A (en) Charge/discharge amount prediction system and charge/discharge amount prediction method
WO2020014474A1 (en) Integration of second-use li-ion batteries in power generation
JP2014017982A (en) Charge/discharge power distribution method and battery controller
JP5861063B2 (en) Power storage device and power supply system
JP7276893B2 (en) Power supply system and management device
TW201926840A (en) Energy storage system and charging and discharging method
CN117220384B (en) Current distribution method for parallel operation of batteries and battery parallel system
JP2016167928A (en) Charge and discharge system
CN104808151B (en) The remaining capacity estimating device of electrical storage device
CN114295988A (en) Battery pack fault detection circuit and battery pack fault detection method
CN105406015B (en) A kind of type power battery pack in groups of connecting
CN115800417B (en) Battery control method, energy storage system, device, computer equipment and storage medium
CN112829636A (en) Balancing battery cells of traction batteries using statistical analysis