WO2017168933A1 - ライト点灯制御装置 - Google Patents

ライト点灯制御装置 Download PDF

Info

Publication number
WO2017168933A1
WO2017168933A1 PCT/JP2017/000588 JP2017000588W WO2017168933A1 WO 2017168933 A1 WO2017168933 A1 WO 2017168933A1 JP 2017000588 W JP2017000588 W JP 2017000588W WO 2017168933 A1 WO2017168933 A1 WO 2017168933A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage value
circuit
terminal
emitting diode
voltage
Prior art date
Application number
PCT/JP2017/000588
Other languages
English (en)
French (fr)
Inventor
英斗 塚越
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Publication of WO2017168933A1 publication Critical patent/WO2017168933A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights

Definitions

  • the present invention relates to a light lighting control device, and more particularly to a light lighting control device using a light emitting diode as a light source.
  • a light emitting diode with high power consumption and high light emission intensity is increasingly used as a light source for a vehicle or other vehicle.
  • a light lighting control circuit intended to ensure the light quantity of the light and the life of the light emitting diode by driving the light emitting diode with a constant current may be used.
  • Some of these lighting control circuits are provided with a manual lighting switch for turning on and off the light emitting diode near the battery.
  • Patent Document 1 relates to a light-emitting diode lamp lighting device to which a lamp driving power source and a switch unit are connected.
  • the lamp driving power source has a constant current control function and a constant voltage control function, and is in normal operation.
  • a configuration is disclosed in which a constant current operation is performed in which a constant current is supplied to a plurality of light emitting diode lamps in a light emitting diode unit when the light emitting diode lamp is not broken.
  • the present invention has been made through the above-described studies, and an object thereof is to provide a light lighting control device capable of suppressing a decrease in the life of a light emitting diode.
  • the present invention provides a light lighting control device including an arithmetic processing device that controls a driving state of a light emitting diode that is a light source of a light, and a booster circuit.
  • a switch-on detection unit that detects that a lighting switch that turns on and off the light-emitting diode is switched from an off state to an on state; and the switch-on detection unit that the lighting switch is switched from the off state to the on state
  • the first step is to make the output voltage value of the booster circuit lower than the forward voltage value of the light emitting diode by stopping the boosting operation of the booster circuit.
  • the arithmetic processing device further includes a low voltage detection unit that detects that the output voltage value of the booster circuit is lower than a forward voltage value of the light emitting diode.
  • the arithmetic processing unit flows into the light emitting diode after the low voltage detection unit detects that the output voltage value of the booster circuit is lower than the forward voltage value of the light emitting diode.
  • a second aspect is to control the output voltage value of the booster circuit so that the current value becomes a target value.
  • the present invention provides a voltage or current applied to the third terminal while the first terminal and the second terminal are connected between the booster circuit and the light emitting diode.
  • a protection device comprising a switching element in which a current flowing between the first terminal and the second terminal is controlled, and a resistance element connected in parallel between the first terminal and the second terminal of the switching element. And further comprising a bypass circuit, wherein the switch-on detection unit includes a voltage value upstream of the protective bypass circuit corresponding to the output voltage value of the booster circuit and the protective bypass corresponding to the forward voltage value of the light emitting diode.
  • a third aspect is to make the output voltage value of the booster circuit lower than the forward voltage value of the light emitting diode.
  • the present invention provides a voltage or current applied to the third terminal while the first terminal and the second terminal are connected between the booster circuit and the light emitting diode.
  • a protection device comprising a switching element in which a current flowing between the first terminal and the second terminal is controlled, and a resistance element connected in parallel between the first terminal and the second terminal of the switching element.
  • the switch-on detection unit detects a voltage value downstream of the protection bypass circuit, the arithmetic processing unit, when the lighting switch is switched from the off state to the on state, In response to detecting that the voltage value on the downstream side of the protection bypass circuit is equal to or higher than a predetermined voltage value, by stopping the boosting operation of the booster circuit, the boost circuit To the the output voltage value lower than the forward voltage of the light emitting diode and the fourth aspect.
  • the present invention further includes a discharge circuit that discharges the output voltage of the booster circuit when the boosting operation of the booster circuit stops. To do.
  • the arithmetic processing unit includes the switch-on detection unit that detects that the lighting switch that turns on and off the light-emitting diode is switched from the off state to the on state.
  • the switch-on detection unit detects that the lighting switch has switched from the off state to the on state
  • the boosting operation of the boosting circuit is stopped, so that the output voltage value of the boosting circuit is greater than the forward voltage value of the light emitting diode. Therefore, when the lighting switch is switched from the OFF state to the ON state, the inrush current flows to the light emitting diode before the suppression by the feedback control of the driving current starts, and the life of the light emitting diode is reduced. Can be suppressed.
  • the arithmetic processing unit includes the low voltage detection unit that detects that the output voltage value of the booster circuit is lower than the forward voltage value of the light emitting diode.
  • the arithmetic processing unit detects that the output voltage value of the booster circuit is lower than the forward voltage value of the light emitting diode by the low voltage detection unit, the current value flowing through the light emitting diode becomes the target value. Since the output voltage value of the booster circuit is controlled so that the light-emitting light source that uses the light-emitting diode as a light source can be lit with a long life after the lighting switch is switched from the off state to the on state. .
  • the switch-on detection unit converts the upstream voltage value of the protection bypass circuit corresponding to the output voltage value of the booster circuit and the forward voltage value of the light emitting diode.
  • the differential value with the voltage value on the downstream side of the corresponding protection bypass circuit is detected, and when the arithmetic processing unit switches the lighting switch from the OFF state to the ON state, the voltage value on the upstream side of the protection bypass circuit and the protection bypass circuit.
  • the boosting operation of the boosting circuit is stopped, so that the output voltage value of the boosting circuit is changed in the order of the light emitting diodes.
  • the switch-on detection unit detects the voltage value on the downstream side of the protection bypass circuit, and the arithmetic processing unit switches the lighting switch from the off state to the on state.
  • the output voltage value of the booster circuit is emitted by stopping the booster operation of the booster circuit in response to detecting that the voltage value on the downstream side of the protection bypass circuit has exceeded the predetermined voltage value. Since it is lower than the forward voltage value of the diode, when the lighting switch is switched from the off state to the on state, the inrush current flows to the light emitting diode before the suppression by the feedback control of the drive current enters, and the light emission The life of the diode can be reliably suppressed with a simpler configuration.
  • the light lighting control device further includes a discharge circuit that discharges the output voltage of the booster circuit when the boosting operation stops, and therefore emits the output voltage value of the booster circuit. It can be lowered more quickly and reliably than the forward voltage value of the diode.
  • FIG. 1 is a block diagram showing a configuration of a light lighting control device according to an embodiment of the present invention.
  • FIG. 2 is a timing chart for explaining the operation of the light lighting control device according to this embodiment.
  • FIG. 3 is a flowchart showing the flow of on / off monitoring processing executed by the microcomputer of the light lighting control device according to this embodiment.
  • FIG. 1 is a block diagram showing a configuration of a light lighting control device in the present embodiment.
  • the light lighting control device 1 in the present embodiment is typically mounted on a vehicle such as a motorcycle and forms a part of an electronic control device that is not shown.
  • the LED (Light Emitting Diode) light L is controlled to turn on and off a plurality of light emitting diodes D connected in series so as to constitute a light source.
  • the lighting control device 1 includes a booster circuit 2, an AND circuit 3, a control circuit 4, a protective bypass circuit 5, a microcomputer 6, and a discharge circuit 7 as main components.
  • the booster circuit 2 constitutes a part of the protective bypass circuit 5 by executing a boost operation for boosting the power supply battery voltage from the battery (not shown) according to the control signal from the control circuit 4 and outputting the boosted voltage.
  • This is an electric circuit that supplies LED driving current, which is a forward current, to a plurality of light emitting diodes D through a FET (Field Effect Transistor) element Q1, a resistance element R2, and an external switch SW in order.
  • the booster circuit 2 is basically operated in order to set the input voltage (hereinafter referred to as terminal voltage) to the plurality of light emitting diodes D to be equal to or higher than the forward voltage while the LED light L is turned on.
  • the power supply voltage from the battery is typically not supplied individually to the booster circuit 2 but is supplied via the power supply voltage from the battery supplied to the electronic control unit.
  • the external switch SW is attached to an instrument panel, a handle or the like outside the light lighting control device 1, typically outside the electronic control device.
  • the AND circuit 3 performs an AND operation on the output signals FET_OUT1 and FET_OUT2 which are output correspondingly from the control circuit 4 and the microcomputer 6 and have high and low voltage levels, respectively, and output an output voltage corresponding to the logical product.
  • This is an electric circuit for turning on / off the FET element Q1 by applying it to the gate terminal G of the FET element Q1.
  • the control circuit 4 is an electric circuit that performs feedback control so that the LED drive current supplied to the plurality of light emitting diodes D matches the constant current value in cooperation with the microcomputer 6.
  • the control circuit 4 outputs a control signal to the booster circuit 2 to control the boosting operation under the input of the enable signal ENA_OUT from the microcomputer 6, and outputs an output signal FET_OUT1 to the AND circuit 3.
  • This is an electric circuit capable of controlling the on / off operation of the FET element Q1 via the circuit 3, and has an enable terminal 4a to which an enable signal ENA_OUT is input.
  • the control circuit 4 monitors the value of the LED drive current from the potential difference between the upstream side and the downstream side of the resistance element R2.
  • Such a control circuit 4 may be considered functionally to constitute an arithmetic processing unit together with the microcomputer 6.
  • the control circuit 4 may be integrated.
  • the protection bypass circuit 5 is an electric circuit composed of a P-type FET element Q1 and a resistance element R1.
  • the FET element Q1 has a source terminal S and a drain terminal D (first terminal and second terminal) connected between the booster circuit 2 and the plurality of light emitting diodes D, and AND circuit.
  • the current to flow between the source terminal S and the drain terminal D is controlled by performing an on / off operation in accordance with a voltage level applied from the control circuit 4 to the gate terminal G (third terminal) via the circuit 3.
  • the resistance element R1 is connected in parallel between the source terminal S and the drain terminal D of the FET element Q1, and the overcurrent does not flow to the light emitting diode D when the FET element Q1 is in the OFF state.
  • the current flowing between the source terminal S and the drain terminal D is controlled by using the P-type FET element Q1, but a switching element such as a bipolar transistor element other than the FET element is used.
  • the current flowing between the collector terminal and the emitter terminal may be controlled by using.
  • the microcomputer 6 reads the control program from a memory (not shown) and executes it to determine the LED drive current to be supplied to the plurality of light emitting diodes D via the booster circuit 2 in cooperation with the control circuit 4. This is an arithmetic processing unit that performs feedback control so as to match the current value.
  • the microcomputer 6 functions as a switch-on detection unit 6a and a low voltage detection unit 6b by executing a control program.
  • the switch-on detection unit 6a detects a difference value between the boosted voltage output from the booster circuit 2 and the input voltages (hereinafter referred to as terminal voltages) to the plurality of light-emitting diodes D, thereby detecting the plurality of light-emitting diodes. It is detected that the external switch SW that turns D on and off switches from the off state to the on state.
  • the switch-on detection unit 6a includes a voltage on the upstream side of the protection bypass circuit 5 corresponding to the boosted voltage output from the booster circuit 2 and a voltage on the downstream side of the protection bypass circuit 5 corresponding to the terminal voltage.
  • the switch-on detection unit 6a is configured such that the difference between the upstream voltage of the protection bypass circuit 5 corresponding to the boosted voltage output from the booster circuit 2 and the downstream voltage of the protection bypass circuit 5 corresponding to the terminal voltage. It is detected that the value is less than a predetermined difference value.
  • the switch-on detection unit 6a may detect the value of the terminal voltage itself instead of the difference value. That is, the switch-on detection unit 6a may detect that the external switch SW has been switched from the off state to the on state by detecting that the value of the terminal voltage has reached a predetermined threshold value or more. It may be detected that the value of the terminal voltage is less than a predetermined threshold.
  • the low voltage detection unit 6b detects that the boosted voltage output from the booster circuit 2 is equal to or lower than the low voltage detection voltage.
  • the low voltage detection voltage is set in advance as a predetermined voltage value lower than the value of the forward voltage of the terminal voltage.
  • the microcomputer 6 typically sets the voltage level of the enable signal ENA_OUT to be output to the control circuit 4 from a high level to a low level when the difference value between the terminal voltage and the boosted voltage is equal to or greater than a predetermined difference value.
  • the control operation including the output operation of the control circuit 4 is stopped, and a high-level control signal DC_ON instructing the discharge circuit 7 to execute the discharge operation is output.
  • the microcomputer 6 typically changes the voltage level of the enable signal ENA_OUT output to the control circuit 4 from a low level to a high level when the boosted voltage output from the booster circuit 2 becomes lower than the low voltage detection voltage.
  • the control operation including the output operation of the control circuit 4 is enabled by switching to the level, and the voltage level of the control signal DC_ON is switched from the high level to the low level instructing the discharge circuit 7 to stop the discharge operation.
  • the voltage level of FET_OUT2 to be output to is switched from the low level to the high level.
  • the discharge circuit 7 is an electric circuit that discharges the boosted voltage output from the booster circuit 2 when the control circuit 4 stops the booster operation of the booster circuit 2. Specifically, the discharge circuit 7 starts the discharge operation when the high level control signal DC_ON is input from the microcomputer 6 and when the low level control signal DC_ON is input from the microcomputer 6 Stop the discharge operation.
  • FIG. 2 is a timing chart for explaining the operation of the light lighting control device 1 in the present embodiment.
  • the control circuit 4 stops the boosting operation by controlling the boosting circuit 2 and switches the output signal FET_OUT1 output to the AND circuit 3 from the high level to the low level.
  • the AND circuit 3 By outputting a level voltage and applying it to the gate terminal G of the FET element Q1, the FET element Q1 is switched from the ON state to the OFF state. Further, as shown in (i) of FIG.
  • the microcomputer 6 switches the output signal FET_OUT2 output to the AND circuit 3 from the high level to the low level, and changes the output voltage from the AND circuit 3 to the low level. In order to maintain the level, the FET element Q1 is maintained in the off state.
  • the enable signal ENA_OUT input from the microcomputer 6 to the enable terminal 4a of the control circuit 4 is at a high (enable) level. Note that the value of the boost voltage monitored by the control circuit 4 is the value of the voltage on the downstream side of the boost circuit 2.
  • the boosted voltage gradually decreases with the passage of time by being discharged through the control circuit 4 and other attached circuits, and the terminal is accordingly accompanied.
  • the voltage gradually decreases.
  • the control circuit 4 controls the booster circuit 2 to increase the boosted voltage.
  • the FET element Q1 since the FET element Q1 is maintained in the OFF state, the current due to the boosted voltage is downstream via the resistor element R1. Flowing into.
  • the enable signal ENA_OUT input from the microcomputer 6 to the enable terminal 4a of the control circuit 4 is at a high (enable) level.
  • the microcomputer 6 when the switch-on detection unit 6a detects that the difference value between the terminal voltage and the boosted voltage is equal to or greater than a predetermined difference value, The microcomputer 6 outputs a low-level enable signal ENA_OUT instructing the stop of the control operation including the output operation of the control circuit 4 to the enable terminal 4a of the control circuit 4, and in response to this, the control circuit 4 performs the output operation. Stops the control operation including. At this time, the microcomputer 6 outputs a high level control signal DC_ON instructing execution of the discharge operation to the discharge circuit 7, thereby causing the discharge circuit 7 to start the discharge operation and boosting the voltage by the booster circuit 2. Discharge the boosted voltage in the middle of the drop.
  • the switch-on detection unit 6a detects the terminal voltage value itself instead of the difference value, the switch-on detection unit 6a detects that the terminal voltage value is equal to or greater than a predetermined threshold value. Then, the microcomputer 6 outputs the low-level enable signal ENA_OUT that instructs the stop of the control operation including the output operation of the control circuit 4 to the enable terminal 4 a of the control circuit 4.
  • the difference value between the terminal voltage and the boosted voltage is a predetermined difference value (in the figure, the predetermined difference value is zero). If the switch-on detection unit 6a detects that the difference value between the terminal voltage and the boosted voltage is less than the predetermined difference value, the microcomputer 6 continues to be the enable terminal of the control circuit 4. 4a outputs a low-level enable signal ENA_OUT instructing the stop of the control operation including the output operation. In response to this, the control circuit 4 is maintained in a state where the control operation including the output operation is stopped.
  • the switch-on detection unit 6a detects that the terminal voltage value is less than a predetermined threshold value. Similarly, the microcomputer 6 continues to output the low-level enable signal ENA_OUT that instructs the enable terminal 4a of the control circuit 4 to stop the control operation including the output operation.
  • the low voltage detection unit is shown in FIG. 6b detects that the boosted voltage is equal to or lower than the low voltage detection voltage, and the microcomputer 6 outputs to the enable terminal 4a of the control circuit 4 a high-level control signal ENA_OUT that instructs execution of the control operation including the output operation.
  • a low-level control signal DC_ON instructing to stop the discharge operation is output to the discharge circuit 7.
  • the microcomputer 6 outputs a high-level output signal FET_OUT2 to the AND circuit 3.
  • the boosting operation of the booster circuit 2 is started, and the FET element Q1 is switched from the off state to the on state. Thereafter, the microcomputer 6 starts the energization control for feedback control of the current flowing through the light emitting diode D to the target current value which is a constant current value by controlling the output voltage of the booster circuit 2 in cooperation with the control circuit 4. Will do.
  • FIG. 3 is a flowchart showing a flow of on / off monitoring processing executed by the microcomputer 6 of the light lighting control device 1 in the present embodiment.
  • the on / off monitoring process shown in FIG. 3 is executed at a predetermined control cycle during the period in which the lighting control device 1 is operating. If the on / off monitoring process is started, it is a step first. The process proceeds to S1.
  • step S5 the output voltage level of the control signal DC_ON instructing the microcomputer 6 to execute the discharging operation output to the discharging circuit 7 is set to a high level (ON: discharging) (to (j) in FIG. 2).
  • Time T T5
  • step S6 it is determined whether or not the boosted voltage is sufficiently lowered by using both the processes of step S6 and step S7. In order to simplify the off-monitoring process, such a determination may be made by only one of these processes.
  • the switch on detection unit 6a is connected to the booster circuit 2.
  • the boosting operation of the booster circuit 2 is stopped, whereby the output voltage of the booster circuit 2 Since the value is lower than the forward voltage value of the light emitting diode D, the inrush current is reduced before the suppression by the feedback control of the driving current is entered when the external switch SW is switched from the off state to the on state.
  • the external switch SW for turning on and off the light emitting diode D is provided between the light lighting control device 1 and the plurality of light emitting diodes D and outside the light lighting control device 1.
  • the external switch SW can intermittently supply power from the battery supplied to the light lighting control device 1, and it is not necessary to provide a power line dedicated to the light emitting diode D, and the entire light system can be reduced in size. Can be realized.
  • the microcomputer 6 includes the low voltage detection unit 6b that detects that the output voltage value of the booster circuit 2 is lower than the forward voltage value of the light emitting diode D. Furthermore, after the microcomputer 6 detects that the output voltage value of the booster circuit 2 is lower than the forward voltage value of the light emitting diode D by the low voltage detection unit 6b, the current value flowing through the light emitting diode D is Since the output voltage value of the booster circuit 2 is controlled so as to reach the target value, the light L using the light-emitting diode D as a light source is saved and has a long life after the lighting switch SW is switched from the off state to the on state. Can be lit.
  • the switch-on detection unit 6a has the voltage value upstream of the protection bypass circuit 5 corresponding to the output voltage value of the booster circuit 2 and the forward voltage of the light emitting diode D.
  • the microcomputer 6 detects the difference value with the voltage value on the downstream side of the protection bypass circuit 5 corresponding to the value, and the microcomputer 6 is switched from the OFF state to the ON state, the voltage on the upstream side of the protection bypass circuit 5
  • the output of the booster circuit 2 Since the voltage value is lower than the forward voltage value of the light-emitting diode D, feedback control of the drive current is performed when the lighting switch SW is switched from the off state to the on state. Suppression inrush current will flow to the light emitting diode D before entering, that the life of the light emitting diode
  • the detection of the switching from the OFF state to the ON state in the lighting switch SW is performed by detecting the voltage value on the upstream side of the protection bypass circuit 5 corresponding to the output voltage value of the booster circuit 2 in the present embodiment and the light emitting diode D.
  • the downstream voltage value of the protective bypass circuit 5 is used to detect that this is equal to or higher than the predetermined voltage value. It may be done by doing. Accordingly, when the lighting switch SW is switched from the off state to the on state, the inrush current flows to the light emitting diode D before the suppression by the feedback control of the driving current is entered, and the life of the light emitting diode D is reduced. It can be reliably suppressed with a simple configuration.
  • control circuit 4 further includes the discharge circuit 7 that discharges the output voltage of the booster circuit 2 when the booster operation of the booster circuit 2 is stopped.
  • the output voltage value of the booster circuit 2 can be lowered more quickly and reliably than the forward voltage value of the light emitting diode D.
  • the lighting switch is an external switch connected between the light lighting control device 1 and the LED light L.
  • the present invention is not limited to this, and for example, an electric signal instructing lighting of the light
  • the microcomputer 6 may be configured to detect a lighting instruction (switch-on) by taking
  • control circuit 4 and the microcomputer 6 are configured separately, but the function of the control circuit 4 may be incorporated in the microcomputer 6 to integrate them.
  • the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
  • the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
  • it can be changed as appropriate without departing from the scope.
  • the present invention can provide a lighting control circuit for a light that can prevent the life of a light-emitting diode from decreasing, and because of its universal character, it can be used for a vehicle light such as a motorcycle. It is expected to be widely applicable to the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

ライト点灯制御装置(1)では、マイコン(6)が、外部スイッチ(SW)がオフ状態からオン状態へ切り替わったときに、スイッチオン検出部(6a)が昇圧回路(2)の出力電圧値と発光ダイオード(D)の順方向電圧値との差分値が所定電圧値以上となったことを検出することにより、昇圧回路(2)の昇圧動作を停止することによって、昇圧回路(2)の出力電圧値を発光ダイオード(D)の順方向電圧値よりも低くする。

Description

ライト点灯制御装置
 本発明は、ライト点灯制御装置に関し、特に、発光ダイオードを光源とするライト点灯制御装置に関する。
 近年、自動車等の乗り物体においては、ライトの光源として省消費電力で高発光強度の発光ダイオードを用いる場合が増えてきている。
 かかる場合には、発光ダイオードを定電流で駆動することによって、ライトの光量や発光ダイオードの寿命を確保することを企図したライト点灯制御回路が用いられることがある。また、このような点灯制御回路の中には、発光ダイオードをオン及びオフする手動の点灯スイッチがバッテリの近く等に取り付けられているものもある。
 かかる状況下で、特許文献1は、ランプ駆動電源及びスイッチ部が接続された発光ダイオードランプ点灯装置に関し、ランプ駆動電源は、定電流制御機能と定電圧制御機能とを備えており、通常動作時(発光ダイオードランプが故障していないとき)には、発光ダイオードユニット内の複数の発光ダイオードランプに一定の電流を流す定電流動作を行う構成を開示している。
特開2014-120444号公報
 しかしながら、本発明者の検討によれば、特許文献1の構成においては、点灯スイッチがオフ状態からオン状態へ切り替わったときに、駆動電流のフィードバック制御による抑制が入る前に突入電流が発光ダイオードに流れてしまい、発光ダイオードの寿命が低下する可能性が考えられて、改良の余地がある。
 本発明は、以上の検討を経てなされたものであり、発光ダイオードの寿命が低下することを抑制可能なライト点灯制御装置を提供することを目的とする。
 以上の目的を達成するべく、本発明は、ライトの光源である発光ダイオードの駆動状態を制御する演算処理装置と、昇圧回路と、を備えたライト点灯制御装置において、前記演算処理装置は、前記発光ダイオードをオン及びオフする点灯スイッチがオフ状態からオン状態へ切り替わったことを検出するスイッチオン検出部を備え、前記点灯スイッチが前記オフ状態から前記オン状態へ切り替わったことを前記スイッチオン検出部が検出することにより、前記昇圧回路の昇圧動作を停止することによって、前記昇圧回路の出力電圧値を前記発光ダイオードの順方向電圧値よりも低くすることを第1の局面とする。
 本発明は、第1の局面に加えて、前記演算処理装置は、前記昇圧回路の前記出力電圧値が前記発光ダイオードの順方向電圧値よりも低くなったことを検出する低電圧検出部を更に備え、前記演算処理装置は、前記低電圧検出部により前記昇圧回路の前記出力電圧値が前記発光ダイオードの前記順方向電圧値よりも低くなったことが検知された後は、前記発光ダイオードに流れる電流値が目標値になるように前記昇圧回路の前記出力電圧値を制御すること第2の局面とする。
 本発明は、第1又は第2の局面に加えて、前記昇圧回路と前記発光ダイオードの間に第1の端子及び第2の端子が接続されると共に第3の端子に加えられる電圧又は電流で前記第1の端子及び前記第2の端子間に流れる電流が制御されるスイッチング素子と、前記スイッチング素子の前記第1の端子及び前記第2の端子間に並列に接続された抵抗素子からなる保護バイパス回路を更に備え、前記スイッチオン検出部は、前記昇圧回路の前記出力電圧値に相当する前記保護バイパス回路の上流側の電圧値と前記発光ダイオードの前記順方向電圧値に相当する前記保護バイパス回路の下流側の電圧値との差分値を検出し、前記演算処理装置は、前記点灯スイッチが前記オフ状態から前記オン状態へ切り替わったときに、前記保護バイパス回路の前記上流側の電圧値と前記保護バイパス回路の前記下流側の前記電圧値との前記差分値が所定電圧値以上となったことを検出することに応じて、前記昇圧回路の前記昇圧動作を停止することにより、前記昇圧回路の前記出力電圧値を前記発光ダイオードの前記順方向電圧値よりも低くすることを第3の局面とする。
 本発明は、第1又は第2の局面に加えて、前記昇圧回路と前記発光ダイオードの間に第1の端子及び第2の端子が接続されると共に第3の端子に加えられる電圧又は電流で前記第1の端子及び前記第2の端子間に流れる電流が制御されるスイッチング素子と、前記スイッチング素子の前記第1の端子及び前記第2の端子間に並列に接続された抵抗素子からなる保護バイパス回路を更に備え、前記スイッチオン検出部は、前記保護バイパス回路の下流側の電圧値を検出し、前記演算処理装置は、前記点灯スイッチが前記オフ状態から前記オン状態へ切り替わったときに、前記保護バイパス回路の前記下流側の前記電圧値が所定電圧値以上となったことを検出することに応じて、前記昇圧回路の前記昇圧動作を停止することにより、前記昇圧回路の前記出力電圧値を前記発光ダイオードの前記順方向電圧値よりも低くすることを第4の局面とする。
 本発明は、第1から第4のいずれかの局面に加えて、前記昇圧回路の昇圧動作が停止したときに前記昇圧回路の出力電圧を放電する放電回路を更に備えることを第5の局面とする。
 本発明の第1の局面にかかるライト点灯制御装置によれば、演算処理装置が、発光ダイオードをオン及びオフする点灯スイッチがオフ状態からオン状態へ切り替わったことを検出するスイッチオン検出部を備え、点灯スイッチがオフ状態からオン状態へ切り替わったことをスイッチオン検出部が検出することにより、昇圧回路の昇圧動作を停止することによって、昇圧回路の出力電圧値を発光ダイオードの順方向電圧値よりも低くするものであるため、点灯スイッチがオフ状態からオン状態へ切り替わったときに駆動電流のフィードバック制御による抑制が入る前に突入電流が発光ダイオードに流れてしまい、発光ダイオードの寿命が低下することを抑制することができる。
 本発明の第2の局面にかかるライト点灯制御装置によれば、演算処理装置が、昇圧回路の出力電圧値が発光ダイオードの順方向電圧値よりも低くなったことを検出する低電圧検出部を更に備え、演算処理装置が、低電圧検出部により昇圧回路の出力電圧値が発光ダイオードの順方向電圧値よりも低くなったことが検知された後は、発光ダイオードに流れる電流値が目標値になるように昇圧回路の出力電圧値を制御するものであるため、点灯スイッチがオフ状態からオン状態へ切り替わった後に、省電力である発光ダイオードを光源とするライトを高寿命で点灯することができる。
 本発明の第3の局面にかかるライト点灯制御装置によれば、スイッチオン検出部が、昇圧回路の出力電圧値に相当する保護バイパス回路の上流側の電圧値と発光ダイオードの順方向電圧値に相当する保護バイパス回路の下流側の電圧値との差分値を検出し、演算処理装置が、点灯スイッチがオフ状態からオン状態へ切り替わったときに、保護バイパス回路の上流側の電圧値と保護バイパス回路の下流側の電圧値との差分値が所定電圧値以上となったことを検出することに応じて、昇圧回路の昇圧動作を停止することにより、昇圧回路の出力電圧値を発光ダイオードの順方向電圧値よりも低くするものであるため、点灯スイッチがオフ状態からオン状態へ切り替わったときに駆動電流のフィードバック制御による抑制が入る前に突入電流が発光ダイオードに流れてしまい、発光ダイオードの寿命が低下することを、簡便な構成で確実に抑制することができる。
 本発明の第4の局面にかかるライト点灯制御装置によれば、スイッチオン検出部が、保護バイパス回路の下流側の電圧値を検出し、演算処理装置が、点灯スイッチがオフ状態からオン状態へ切り替わったときに、保護バイパス回路の下流側の電圧値が所定電圧値以上となったことを検出することに応じて、昇圧回路の昇圧動作を停止することにより、昇圧回路の出力電圧値を発光ダイオードの順方向電圧値よりも低くするものであるため、点灯スイッチがオフ状態からオン状態へ切り替わったときに駆動電流のフィードバック制御による抑制が入る前に突入電流が発光ダイオードに流れてしまい、発光ダイオードの寿命が低下することを、より簡便な構成で確実に抑制することができる。
 本発明の第5の局面にかかるライト点灯制御装置によれば、昇圧動作が停止したときに昇圧回路の出力電圧を放電する放電回路を更に備えるものであるため、昇圧回路の出力電圧値を発光ダイオードの順方向電圧値よりもより迅速かつ確実に低くすることができる。
図1は、本発明の実施形態におけるライト点灯制御装置の構成を示すブロック図である。 図2は、本実施形態におけるライト点灯制御装置の動作を説明するためのタイミングチャートである。 図3は、本実施形態におけるライト点灯制御装置のマイコンが実行するオン/オフ監視処理の流れを示すフローチャートである。
 以下、図面を適宜参照して、本発明の実施形態におけるライト点灯制御装置につき、詳細に説明する。
 [構成]
 まず、図1を参照して、本実施形態におけるライト点灯制御装置の構成について説明する。
 図1は、本実施形態におけるライト点灯制御装置の構成を示すブロック図である。
 図1に示すように、本実施形態におけるライト点灯制御装置1は、典型的には自動二輪車等の車両等に搭載されると共に図示を省略した電子制御装置の一部をなすものであって、LED(Light Emitting Diode)ライトLの光源を構成するように直列接続された複数の発光ダイオードDの点灯及び消灯を制御するものである。点灯制御装置1は、昇圧回路2、AND回路3、制御回路4、保護バイパス回路5、マイコン6、及び放電回路7を主な構成要素として備えている。
 昇圧回路2は、制御回路4からの制御信号に従って図示を省略したバッテリからの電源バッテリ電圧を昇圧する昇圧動作を実行してその昇圧電圧を出力することによって、保護バイパス回路5の一部を構成するFET(Field Eeffect Transistor)素子Q1、抵抗素子R2及び外部スイッチSWを順に介して複数の発光ダイオードDに順方向電流であるLED駆動電流を供給する電気回路である。かかる昇圧回路2は、基本的にはLEDライトLの点灯中に複数の発光ダイオードDへの入力電圧(以下、端子電圧と記す)を順方向電圧以上にするために動作されるものである。なお、バッテリからの電源電圧は、典型的には、昇圧回路2に個別に与えられるものではなく、電子制御装置へ与えられるバッテリからの電源電圧を介して与えられるものである。また、外部スイッチSWは、ライト点灯制御装置1外、典型的には電子制御装置外のインストルメントパネルやハンドル等に取り付けられているものである。
 AND回路3は、制御回路4及びマイコン6から対応して出力されると共に各々がハイレベル及びローレベルの電圧レベルを有する出力信号FET_OUT1及びFET_OUT2同士を論理積演算して、それに応じた出力電圧をFET素子Q1のゲート端子Gに印加することによって、FET素子Q1をオン/オフ動作させる電気回路である。
 制御回路4は、マイコン6と協働して、複数の発光ダイオードDへ供給するLED駆動電流を定電流値に一致するようにフィードバック制御する電気回路である。また、制御回路4は、マイコン6からのイネーブル信号ENA_OUTの入力の下で、昇圧回路2に制御信号を出力してその昇圧動作を制御すると共に、AND回路3に出力信号FET_OUT1を出力し、AND回路3を介してFET素子Q1のオン/オフ動作を制御することが可能な電気回路であり、イネーブル信号ENA_OUTが入力されるイネーブル端子4aを有する。また、制御回路4は、抵抗素子R2の上流側及び下流側の電位差からLED駆動電流の値を監視する。かかる制御回路4は、機能的には、マイコン6と共に演算処理装置を構成していると考えてもかまわない。なお、制御回路4は、集積回路化されていてもよい。
 保護バイパス回路5は、P型のFET素子Q1及び抵抗素子R1からなる電気回路である。保護バイパス回路5においては、FET素子Q1は、昇圧回路2と複数の発光ダイオードDとの間にソース端子S及びドレイン端子D(第1の端子及び第2の端子)が接続されると共に、AND回路3を介して制御回路4からゲート端子G(第3の端子)に加えられる電圧レベルに応じてオン/オフ動作することによって、ソース端子Sとドレイン端子Dとの間に流れるべき電流を制御し、抵抗素子R1は、FET素子Q1のソース端子Sとドレイン端子Dとの間に並列に接続されていると共に、FET素子Q1がオフ状態であるときに発光ダイオードDに過電流が流れない程度の大きさの抵抗値を有するものである。なお、保護バイパス回路5では、P型のFET素子Q1を用いることによってソース端子S及びドレイン端子D間に流れる電流が制御されることとしたが、かかるFET素子以外のバイポーラトランジスタ素子等のスイッチング素子を用いることによって、コレクタ端子及びエミッタ端子間に流れる電流が制御されるものであってもよい。
 マイコン6は、図示を省略するメモリから制御プログラムを読み出してそれを実行することによって、制御回路4と協働して、昇圧回路2を介して複数の発光ダイオードDへ供給するLED駆動電流を定電流値に一致するようにフィードバック制御する演算処理装置である。また、マイコン6は、制御プログラムを実行することによって、スイッチオン検出部6a及び低電圧検出部6bとして機能する。
 スイッチオン検出部6aは、昇圧回路2から出力された昇圧電圧と、複数の発光ダイオードDへの入力電圧(以下、端子電圧と記す)と、の差分値を検知することにより、複数の発光ダイオードDをオン及びオフする外部スイッチSWがオフ状態からオン状態へ切り替わったことを検出する。詳しくは、スイッチオン検出部6aは、昇圧回路2から出力された昇圧電圧に相当する保護バイパス回路5の上流側の電圧と、端子電圧に相当する保護バイパス回路5の下流側の電圧と、の差分値が所定差分値以上となったことを検知することにより、外部スイッチSWがオフ状態からオン状態へ切り替わったことを検出する。更に、スイッチオン検出部6aは、昇圧回路2から出力された昇圧電圧に相当する保護バイパス回路5の上流側の電圧と、端子電圧に相当する保護バイパス回路5の下流側の電圧と、の差分値が所定差分値未満になったことを検知する。なお、スイッチオン検出部6aは、かかる差分値に代え端子電圧の値自体を検知するものであってもよい。つまり、スイッチオン検出部6aは、端子電圧の値が所定の閾値以上となったことを検知することにより、外部スイッチSWがオフ状態からオン状態へ切り替わったことを検出してもよく、更に、端子電圧の値が所定の閾値未満になったことを検知してもよい。
 低電圧検出部6bは、昇圧回路2から出力された昇圧電圧が低電圧検知電圧以下となったことを検出する。ここで、低電圧検知電圧は、端子電圧の順方向電圧の値よりも低い所定の電圧値として予め設定されている。
 マイコン6は、典型的には、端子電圧と昇圧電圧との間の差分値が所定差分値以上になった場合には、制御回路4に出力するイネーブル信号ENA_OUTの電圧レベルをハイレベルからローレベルに切り替えて制御回路4の出力動作を含む制御動作を停止すると共に、放電回路7にその放電動作の実行を指示するハイレベルの制御信号DC_ONを出力する。また、マイコン6は、典型的には、昇圧回路2から出力された昇圧電圧が低電圧検知電圧以下となった場合には、制御回路4に出力するイネーブル信号ENA_OUTの電圧レベルをローレベルからハイレベルに切り替えて制御回路4の出力動作を含む制御動作を可能とすると共に、制御信号DC_ONの電圧レベルをハイレベルから放電回路7にその放電動作の停止を指示するローレベルに切り替え、AND回路3に出力するFET_OUT2の電圧レベルをローレベルからハイレベルに切り替える。
 放電回路7は、制御回路4が昇圧回路2の昇圧動作を停止したときに、昇圧回路2から出力された昇圧電圧を放電する電気回路である。具体的には、放電回路7は、マイコン6からハイレベルの制御信号DC_ONが入力されたときに、その放電動作を開始し、マイコン6からローレベルの制御信号DC_ONが入力されたときに、その放電動作を停止する。
 [装置全体の動作]
 次に、図2を参照して、本実施形態におけるライト点灯制御装置の動作について説明する。
 図2は、本実施形態におけるライト点灯制御装置1の動作を説明するためのタイミングチャートである。
 ライト点灯制御装置1では、図2の(a)に示すように、時刻T=T1において、外部スイッチ(点灯スイッチ)SWがオン状態からオフ状態へ切り替わると、LEDライトLに電流が流れなくなるため、図2の(b)に示すように、LED駆動電流(LED電流)の値はゼロとなり、図2の(c)に示すように、それまで順方向電圧レベルであった昇圧電圧が上昇する。
 次に、時刻T=T2において昇圧電圧が予め設定された過電圧検知電圧以上になったことを制御回路4が検知すると、図2の(f)、(g)及び(h)に示すように、制御回路4は、昇圧回路2を制御することによってその昇圧動作を停止させると共に、AND回路3へ出力する出力信号FET_OUT1をハイレベルからローレベルに切り替え、これに応じて、AND回路3は、ローレベルの電圧を出力してFET素子Q1のゲート端子Gに印加することにより、FET素子Q1をオン状態からオフ状態に切り替える。また、図2の(i)に示すように、時刻T=T3において、マイコン6は、AND回路3へ出力する出力信号FET_OUT2をハイレベルからローレベルに切り替え、AND回路3からの出力電圧をローレベルに維持するため、FET素子Q1はオフ状態に維持される。この際、マイコン6から制御回路4のイネーブル端子4aに入力されるイネーブル信号ENA_OUTはハイ(イネーブル)レベルである。なお、制御回路4が監視する昇圧電圧の値は、昇圧回路2の下流側の電圧の値である。
 これにより、図2の(c)及び(d)に示すように、昇圧電圧は、時間の経過と共に、制御回路4やその他の付属回路を通して放電されることによって徐々に低下し、これに伴い端子電圧も徐々に低下する。
 次に、時刻T=T4において、昇圧電圧が予め設定された過電圧検知解除電圧を下回ったことを制御回路4が検知すると、図2の(f)、(g)及び(h)に示すように、制御回路4は、昇圧回路2を制御することによって昇圧電圧を上昇させ、この際、FET素子Q1がオフ状態に維持されているため、かかる昇圧電圧による電流は抵抗素子R1を介して下流側に流れる。この際、マイコン6から制御回路4のイネーブル端子4aに入力されるイネーブル信号ENA_OUTはハイ(イネーブル)レベルである。そして、かかる場合に外部スイッチSWがオフ状態のままである場合には、時刻T=T2及び時刻T=T3のときと同様、昇圧電圧が過電圧検知電圧まで上昇するので、時刻T=T2及び時刻T=T3のときの動作(昇圧停止動作、FET素子オフ状態切り替え動作及びFET素子オフ状態維持動作)と、時刻T=T4のときの動作(昇圧動作)と、が繰り返し実行されることになる。
 次に、時刻T=T5において、図2の(a)に示すように、昇圧停止動作と昇圧動作とが繰り返し実行されている間に外部スイッチSWがオフ状態からオン状態に切り替えられた場合には、図2の(c)及び(d)に示すように、端子電圧が発光ダイオードDの順方向電圧であるVf電圧付近まで低下するのに対して、昇圧電圧は、時間の経過と共に、時刻T=T2から時刻T=T3の間で示されるようななだらかな減小推移を示すため、端子電圧と昇圧電圧との間に差分値が生じる。そこで、図2の(j)及び(k)に示すように、スイッチオン検出部6aが端子電圧と昇圧電圧との間の差分値が所定差分値以上になったことを検知した場合には、マイコン6は、制御回路4の出力動作を含む制御動作の停止を指示するローベルのイネーブル信号ENA_OUTを制御回路4のイネーブル端子4aに出力し、これに応じて、制御回路4は、その出力動作を含む制御動作を停止する。また、この際、マイコン6は、放電動作の実行を指示するハイレベル制御信号DC_ONを放電回路7に出力することによって、放電回路7に放電動作を開始させて昇圧回路2によって昇圧された後に電圧降下途中の昇圧電圧を放電させる。なお、スイッチオン検出部6aが差分値に代え端子電圧の値自体を検知するものである場合には、スイッチオン検出部6aは、端子電圧の値が所定の閾値以上となったことを検知すると、マイコン6が制御回路4の出力動作を含む制御動作の停止を指示するローベルのイネーブル信号ENA_OUTを制御回路4のイネーブル端子4aに出力することになる。
 次に、時刻T=T6において、図2の(c)及び(d)に示すように、端子電圧と昇圧電圧との間の差分値が所定差分値(図中では、かかる所定差分値をゼロとして示す)未満になると、スイッチオン検出部6aが端子電圧と昇圧電圧との間の差分値が所定差分値未満になったことを検知しても、マイコン6は、引き続き制御回路4のイネーブル端子4aに出力動作を含む制御動作の停止を指示するローレベルのイネーブル信号ENA_OUTを出力し、これに応じて、制御回路4は、その出力動作を含む制御動作を停止した状態を維持される。なお、スイッチオン検出部6aが差分値に代え端子電圧の値自体を検知するものである場合には、スイッチオン検出部6aが端子電圧の値が所定の閾値未満になったことを検知しても、マイコン6は、同様に制御回路4のイネーブル端子4aに出力動作を含む制御動作の停止を指示するローレベルのイネーブル信号ENA_OUTを出力し続けることになる。
 そして、時刻T=T7において、図2の(c)に示すように、昇圧電圧が予め設定した低電圧検知電圧以下となった場合、図2の(l)に示すように、低電圧検出部6bは、昇圧電圧が低電圧検知電圧以下であることを検出し、マイコン6は、出力動作を含む制御動作の実行を指示するハイレベルの制御信号ENA_OUTを制御回路4のイネーブル端子4aに出力すると共に、放電動作の停止を指示するローレベルの制御信号DC_ONを放電回路7に出力する。また、マイコン6は、ハイレベルの出力信号FET_OUT2をAND回路3に出力する。これに応じて、昇圧回路2の昇圧動作が開始されると共に、FET素子Q1がオフ状態からオン状態に切り替えられる。以降、マイコン6は、制御回路4と協働して、昇圧回路2の出力電圧を制御することにより、発光ダイオードDに流れる電流を定電流値である目標電流値にフィードバック制御する通電制御を開始することになる。
 [マイコンのオン/オフ監視処理]
 次に、図3を参照して、本実施形態におけるライト点灯制御装置1のマイコン6の動作(オン/オフ監視処理)について説明する。
 図3は、本実施形態におけるライト点灯制御装置1のマイコン6が実行するオン/オフ監視処理の流れを示すフローチャートである。
 図3に示すオン/オフ監視処理は、点灯制御装置1が稼働している期間中は所定の制御周期で実行されるものであり、オン/オフ監視処理が開始されたならば、それはまずステップS1の処理に進む。
 ステップS1の処理では、マイコン6が、昇圧電圧が解除電圧以上であるか否かを判別する。判別の結果、昇圧電圧が解除電圧以上である場合(ステップS1でYesの場合:図2の(c)に示す時刻T=T2)、マイコン6は、オン/オフ監視処理をステップS2の処理に進める。一方、昇圧電圧が解除電圧未満である場合には(ステップS1でNoの場合)、マイコン6は、オン/オフ監視処理にステップS1の処理を繰り返させる。
 ステップS2の処理では、マイコン6が、AND回路3へ出力する出力信号FET_OUT2の出力電圧レベルをローレベル(オフ)にする(図2の(i)に示す時刻T=T3)。これにより、ステップS2の処理は完了し、オン/オフ監視処理はステップS3の処理に進む。
 ステップS3の処理では、スイッチオン検出部6aが、端子電圧と昇圧電圧との間の差分値が所定差分値以上であるか否かを判別する。判別の結果、端子電圧と昇圧電圧との間の差分値が所定差分値以上である場合(ステップS3でYesの場合:図2の(c)及び(d)に示す時刻T=T5)、マイコン6は、オン/オフ監視処理をステップS4の処理に進める。一方、端子電圧と昇圧電圧との間の差分値が所定差分値以上である場合には(ステップS3でNoの場合:図2の(c)及び(d)に示す時刻T=T3から時刻T=T5の間の期間)、マイコン6は、オン/オフ監視処理にステップS3の処理を繰り返させる。
 ステップS4の処理では、マイコン6が、制御回路4のイネーブル端子4aへ出力するイネーブル信号ENA_OUTの出力電圧レベルをローレベル(停止)にして、制御回路4の出力動作を含む制御動作を停止する(図2の(k)に示す時刻T=T5)。これにより、ステップS4の処理は完了し、オン/オフ監視処理はステップS5の処理に進む。
 ステップS5の処理では、マイコン6が、放電回路7へ出力する放電動作を実行することを指示する制御信号DC_ONの出力電圧レベルをハイレベル(オン:放電)にする(図2の(j)に示す時刻T=T5)。これにより、ステップS5の処理は完了し、オン/オフ監視処理はステップS6の処理に進む。
 ステップS6の処理では、スイッチオン検出部6aが、端子電圧と昇圧電圧との間の差分値が所定差分値未満であるか否かを判別する。判別の結果、端子電圧と昇圧電圧との間の差分値が所定差分値未満である場合(ステップS6でYesの場合:図2の(c)及び(d)に示す時刻T=T6)、マイコン6は、オン/オフ監視処理をステップS7の処理に進める。一方、端子電圧と昇圧電圧との間の差分値が所定差分値以上の場合には(ステップS6でNoの場合)、マイコン6は、オン/オフ監視処理にステップS6の処理を繰り返させる。
 ステップS7の処理では、低電圧検出部6bが、昇圧電圧が予め定められた低電圧検知電圧以下であるか否かを判別する。判別の結果、昇圧電圧が低電圧検知電圧以下である場合(ステップS7でYesの場合:図2の(c)に示す時刻T=T7)、マイコン6は、オン/オフ監視処理をステップS8の処理に進める。一方、昇圧電圧が低電圧検知電圧より大きい場合には(ステップS7でNoの場合)、マイコン6は、オン/オフ監視処理をステップS6の処理に戻す。なお、突入電流が発光ダイオードDへ流れないように、ステップS6及びステップS7の双方の処理を用いて昇圧電圧が十分に低下しているか否かを判断しているが、必要に応じてオン/オフ監視処理を簡素化するために、これらの内のいずれか一方の処理だけでこのような判断をしてもよい。
 ステップS8の処理では、マイコン6が、放電回路7へ出力する制御信号DC_ONの出力電圧レベルをローレベル(停止)にすることによって放電回路7による昇圧電圧の放電動作を停止する(図2の(j)に示す時刻T=T7)。これにより、ステップS8の処理は完了し、オン/オフ監視処理はステップS9の処理に進む。
 ステップS9の処理では、マイコン6が、AND回路3へ出力する出力信号FET_OUT2の出力電圧レベルをハイレベル(オン)にする(図2の(i)に示す時刻T=T7)。これにより、ステップS9の処理は完了し、オン/オフ監視処理はステップS10の処理に進む。
 ステップS10の処理では、マイコン6が、制御回路4のイネーブル端子4aに出力する制御信号ENA_OUTの出力電圧レベルをハイレベル(動作)にして、制御回路4の出力動作を含む制御動作を許容する(図2の(k)に示す時刻T=T7)。これにより、ステップS10の処理は完了し、オン/オフ監視処理はステップS1の処理に戻る。
 以上の説明から明らかなように、本実施形態におけるライト点灯制御装置1によれば、マイコン6が、外部スイッチSWがオフ状態からオン状態へ切り替わったときに、スイッチオン検出部6aが昇圧回路2の出力電圧値と発光ダイオードDの順方向電圧値との差分値が所定電圧値以上となったことを検出することにより、昇圧回路2の昇圧動作を停止することによって、昇圧回路2の出力電圧値を発光ダイオードDの順方向電圧値よりも低くするものであるため、外部スイッチSWがオフ状態からオン状態へ切り替わったときに駆動電流のフィードバック制御による抑制が入る前に突入電流が発光ダイオードDに流れてしまい、発光ダイオードDの寿命が低下することを抑制ですることがきる。併せて、典型的には、発光ダイオードDをオン及びオフする外部スイッチSWがライト点灯制御装置1と複数の発光ダイオードDとの間であってライト点灯制御装置1の外部に設けられているため、かかる場合に、外部スイッチSWは、ライト点灯制御装置1に供給されるバッテリからの電力を断続することができることになり、発光ダイオードD専用の電源線を設ける必要が無くなり、ライトシステム全体の小型化を実現することができる。
 また、本実施形態におけるライト点灯制御装置1によれば、マイコン6が、昇圧回路2の出力電圧値が発光ダイオードDの順方向電圧値よりも低くなったことを検出する低電圧検出部6bを更に備え、マイコン6が、低電圧検出部6bにより昇圧回路2の出力電圧値が発光ダイオードDの順方向電圧値よりも低くなったことが検知された後は、発光ダイオードDに流れる電流値が目標値になるように昇圧回路2の出力電圧値を制御するものであるため、点灯スイッチSWがオフ状態からオン状態へ切り替わった後に、発光ダイオードDを光源とするライトLを省電力かつ高寿命で点灯することができる。
 また、本実施形態におけるライト点灯制御装置1によれば、スイッチオン検出部6aが、昇圧回路2の出力電圧値に相当する保護バイパス回路5の上流側の電圧値と発光ダイオードDの順方向電圧値に相当する保護バイパス回路5の下流側の電圧値との差分値を検出し、マイコン6が、点灯スイッチSWがオフ状態からオン状態へ切り替わったときに、保護バイパス回路5の上流側の電圧値と保護バイパス回路5の下流側の電圧値との差分値が所定電圧値以上となったことを検出することに応じて、昇圧回路2の昇圧動作を停止することにより、昇圧回路2の出力電圧値を発光ダイオードDの順方向電圧値よりも低くするものであるため、点灯スイッチSWがオフ状態からオン状態へ切り替わったときに駆動電流のフィードバック制御による抑制が入る前に突入電流が発光ダイオードDに流れてしまい、発光ダイオードDの寿命が低下することを、簡便な構成で確実に抑制することができる。
 ここで、点灯スイッチSWにおけるオフ状態からオン状態への切り替わりの検出は、前述した本実施形態における昇圧回路2の出力電圧値に相当する保護バイパス回路5の上流側の電圧値と発光ダイオードDの順方向電圧値に相当する保護バイパス回路5の下流側の電圧値との差分値に代えて、保護バイパス回路5の下流側の電圧値を用いて、これが所定電圧値以上となったことを検出することにより行ってもよい。これによって、点灯スイッチSWがオフ状態からオン状態へ切り替わったときに駆動電流のフィードバック制御による抑制が入る前に突入電流が発光ダイオードDに流れてしまい、発光ダイオードDの寿命が低下することを、簡便な構成で確実に抑制することができる。
 また、本実施形態におけるライト点灯制御装置1によれば、制御回路4が昇圧回路2の昇圧動作を停止したときに昇圧回路2の出力電圧を放電する放電回路7を更に備えるものであるため、昇圧回路2の出力電圧値を発光ダイオードDの順方向電圧値よりもより迅速かつ確実に低くすることができる。
 なお、本実施形態では、点灯スイッチをライト点灯制御装置1とLEDライトLとの間に接続された外部スイッチとしているが、それに限定されるものではなく、例えば、ライトの点灯を指示する電気信号をマイコン6に取り込むことで、マイコン6が点灯指示(スイッチオン)の検出を行なう構成のものであってもよい。
 また、本実施形態では、制御回路4とマイコン6とが別体の構成になっているが、マイコン6に制御回路4の機能を組み込んで、これらを一体化した演算処理装置としてもよい。
 なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。
 以上のように、本発明は、発光ダイオードの寿命が低下することを抑制可能なライトの点灯制御回路を提供することができるものであり、その汎用普遍的な性格から自動二輪車等の車両のライトシステムに広く適用され得るものと期待される。

Claims (5)

  1.  ライトの光源である発光ダイオードの駆動状態を制御する演算処理装置と、
     昇圧回路と、
    を備えたライト点灯制御装置において、
     前記演算処理装置は、
     前記発光ダイオードをオン及びオフする点灯スイッチがオフ状態からオン状態へ切り替わったことを検出するスイッチオン検出部を備え、
     前記点灯スイッチが前記オフ状態から前記オン状態へ切り替わったことを前記スイッチオン検出部が検出することにより、前記昇圧回路の昇圧動作を停止することによって、前記昇圧回路の出力電圧値を前記発光ダイオードの順方向電圧値よりも低くすることを特徴とするライト点灯制御装置。
  2.  前記演算処理装置は、前記昇圧回路の前記出力電圧値が前記発光ダイオードの順方向電圧値よりも低くなったことを検出する低電圧検出部を更に備え、
     前記演算処理装置は、前記低電圧検出部により前記昇圧回路の前記出力電圧値が前記発光ダイオードの前記順方向電圧値よりも低くなったことが検知された後は、前記発光ダイオードに流れる電流値が目標値になるように前記昇圧回路の前記出力電圧値を制御することを特徴とする請求項1に記載のライト点灯制御装置。
  3.  前記昇圧回路と前記発光ダイオードの間に第1の端子及び第2の端子が接続されると共に第3の端子に加えられる電圧又は電流で前記第1の端子及び前記第2の端子間に流れる電流が制御されるスイッチング素子と、前記スイッチング素子の前記第1の端子及び前記第2の端子間に並列に接続された抵抗素子からなる保護バイパス回路を更に備え、
     前記スイッチオン検出部は、前記昇圧回路の前記出力電圧値に相当する前記保護バイパス回路の上流側の電圧値と前記発光ダイオードの前記順方向電圧値に相当する前記保護バイパス回路の下流側の電圧値との差分値を検出し、
     前記演算処理装置は、前記点灯スイッチが前記オフ状態から前記オン状態へ切り替わったときに、前記保護バイパス回路の前記上流側の電圧値と前記保護バイパス回路の前記下流側の前記電圧値との前記差分値が所定電圧値以上となったことを検出することに応じて、前記昇圧回路の前記昇圧動作を停止することにより、前記昇圧回路の前記出力電圧値を前記発光ダイオードの前記順方向電圧値よりも低くすることを特徴とする請求項1又は2に記載のライト点灯制御装置。
  4.  前記昇圧回路と前記発光ダイオードの間に第1の端子及び第2の端子が接続されると共に第3の端子に加えられる電圧又は電流で前記第1の端子及び前記第2の端子間に流れる電流が制御されるスイッチング素子と、前記スイッチング素子の前記第1の端子及び前記第2の端子間に並列に接続された抵抗素子からなる保護バイパス回路を更に備え、
     前記スイッチオン検出部は、前記保護バイパス回路の下流側の電圧値を検出し、
     前記演算処理装置は、前記点灯スイッチが前記オフ状態から前記オン状態へ切り替わったときに、前記保護バイパス回路の前記下流側の前記電圧値が所定電圧値以上となったことを検出することに応じて、前記昇圧回路の前記昇圧動作を停止することにより、前記昇圧回路の前記出力電圧値を前記発光ダイオードの前記順方向電圧値よりも低くすることを特徴とする請求項1又は2に記載のライト点灯制御装置。
  5.  前記昇圧回路の昇圧動作が停止したときに前記昇圧回路の出力電圧を放電する放電回路を更に備える請求項1から4のいずれかに記載のライト点灯制御装置。
PCT/JP2017/000588 2016-03-28 2017-01-11 ライト点灯制御装置 WO2017168933A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063726A JP6247712B2 (ja) 2016-03-28 2016-03-28 ライト点灯制御装置
JP2016-063726 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017168933A1 true WO2017168933A1 (ja) 2017-10-05

Family

ID=59963990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000588 WO2017168933A1 (ja) 2016-03-28 2017-01-11 ライト点灯制御装置

Country Status (2)

Country Link
JP (1) JP6247712B2 (ja)
WO (1) WO2017168933A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686064A (zh) * 2019-03-02 2019-04-26 浙江弘电智能科技有限公司 一种智能楼宇照明控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189101A (ja) * 2008-02-04 2009-08-20 Power System:Kk 突入電流対応非絶縁型昇圧電源装置
JP2010055824A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Led駆動装置、照明装置及び照明器具
JP2013229384A (ja) * 2012-04-24 2013-11-07 Panasonic Corp Led駆動回路及び照明装置、車両用照明装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374757B2 (ja) * 2010-03-25 2013-12-25 星和電機株式会社 電源装置、led装置及び光源装置
JP2013004370A (ja) * 2011-06-17 2013-01-07 Sharp Corp 照明装置
JP2014157785A (ja) * 2013-02-18 2014-08-28 Koito Mfg Co Ltd 駆動回路、車輌用灯具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189101A (ja) * 2008-02-04 2009-08-20 Power System:Kk 突入電流対応非絶縁型昇圧電源装置
JP2010055824A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Led駆動装置、照明装置及び照明器具
JP2013229384A (ja) * 2012-04-24 2013-11-07 Panasonic Corp Led駆動回路及び照明装置、車両用照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686064A (zh) * 2019-03-02 2019-04-26 浙江弘电智能科技有限公司 一种智能楼宇照明控制系统

Also Published As

Publication number Publication date
JP6247712B2 (ja) 2017-12-13
JP2017182903A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6199721B2 (ja) 車両用灯具
US10728980B2 (en) Switch driving device, light-emitting device, and vehicle
JP5901966B2 (ja) Ledショート検出回路、led駆動装置、led照明装置、車両
CN107852803B (zh) 点灯电路、车辆用灯具
US8222839B2 (en) Dimming control system for vehicular lamp
US20130009547A1 (en) Led driving circuit with open-circuit protection
US20190132918A1 (en) Controller, light source driving circuit and method for controlling light source module
JP6237301B2 (ja) 点灯装置および照明器具
US10426013B2 (en) Ground fault detection circuit, abnormality detection circuit, light emitting device, vehicle
JP2015118809A (ja) 点灯装置及び照明装置
WO2017168933A1 (ja) ライト点灯制御装置
JP6135366B2 (ja) 低電流保護回路
JP6717652B2 (ja) Ledランプ点灯装置
JP6662675B2 (ja) ライト点灯制御回路
JP2009009818A (ja) Led点灯制御装置およびled点灯装置
JP7282609B2 (ja) 点灯制御装置、点灯制御方法、車両用灯具
JP6587054B2 (ja) 点灯装置及び照明器具
JP6299295B2 (ja) 点灯装置および照明器具
JP6569344B2 (ja) Led点灯回路及びled照明装置
JP7520248B2 (ja) 消灯フェード時間制御
JP6337649B2 (ja) Ledランプユニットおよび車両用ランプ装置
JP6249549B2 (ja) 車両用灯具
TW201329936A (zh) 顯示螢幕發光二極體控制電路
CN117480865A (zh) 点亮控制装置、点亮控制方法、照明装置
JP2020100180A (ja) 光源の点灯制御装置、車両用灯具

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773483

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773483

Country of ref document: EP

Kind code of ref document: A1