WO2017168867A1 - Light extraction film and organic electroluminescent light emitting device - Google Patents

Light extraction film and organic electroluminescent light emitting device Download PDF

Info

Publication number
WO2017168867A1
WO2017168867A1 PCT/JP2016/087235 JP2016087235W WO2017168867A1 WO 2017168867 A1 WO2017168867 A1 WO 2017168867A1 JP 2016087235 W JP2016087235 W JP 2016087235W WO 2017168867 A1 WO2017168867 A1 WO 2017168867A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
film
light extraction
barrier layer
Prior art date
Application number
PCT/JP2016/087235
Other languages
French (fr)
Japanese (ja)
Inventor
井 宏元
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018508388A priority Critical patent/JPWO2017168867A1/en
Publication of WO2017168867A1 publication Critical patent/WO2017168867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to a light extraction film and an organic electroluminescence light emitting device having the light extraction film.
  • Organic electroluminescence devices using organic electroluminescence are thin-film, completely solid-state devices that can emit light at a low voltage of several volts to several tens of volts. It has many excellent features such as high luminous efficiency, thinness and light weight. Therefore, an organic EL element using a gas barrier film having a gas barrier layer on a thin and lightweight resin base material as a backlight of various displays, a display plate such as a signboard or an emergency light, and a surface light emitter such as an illumination light source. Attention has been paid.
  • Patent Document 1 In such an organic EL element, it has been proposed to use a light extraction film as a base material in order to further increase the luminous efficiency (see, for example, Patent Document 1).
  • a lens layer having an uneven surface is provided as a light extraction layer in order to extract light emitted from the organic EL element to the outside.
  • the light extraction layer which consists of this lens layer is bonded together by the one surface of the base material with the adhesive layer.
  • Patent Document 1 describes an organic EL light-emitting device in which an organic EL element is formed on the surface of the base material opposite to the light extraction layer.
  • the light extraction film described above has a structure in which the light extraction layer composed of the lens layer is in direct contact with the pressure-sensitive adhesive layer.
  • the light extraction layer composed of the lens layer is in direct contact with the pressure-sensitive adhesive layer.
  • the light extraction layer is applied to the light extraction film, light is extracted by the outgas from the pressure-sensitive adhesive layer as time passes after the light extraction film is produced.
  • the layer deteriorates and the transparency of the light extraction layer is greatly reduced.
  • transparency of a light extraction film will fall by the fall of transparency of this light extraction layer.
  • an organic EL element is provided on this light extraction film, the light emission efficiency of the organic EL light-emitting device decreases due to a decrease in transparency of the light extraction film. Accordingly, there is a need for a highly reliable light extraction film that suppresses a decrease in light transmittance by suppressing deterioration of the light extraction layer, and an organic EL light emitting device that can suppress a decrease in light emission efficiency. Yes.
  • the present invention provides a light extraction film capable of improving reliability and an organic electroluminescence light emitting device capable of suppressing a decrease in light emission efficiency.
  • the light extraction film of the present invention includes a first gas barrier layer, a second gas barrier layer, an adhesive layer containing at least one resin selected from an epoxy resin and an acrylic resin, and a light extraction layer.
  • the first gas barrier layer and the second gas barrier layer are laminated via an adhesive layer, and the first gas barrier layer or the second gas barrier layer is interposed between the light extraction layer and the adhesive layer.
  • the organic EL light-emitting device of the present invention includes an organic EL element on the light extraction film.
  • the present invention it is possible to provide a light extraction film capable of improving reliability and an organic electroluminescence light emitting device capable of suppressing a decrease in light emission efficiency.
  • Embodiment 2 of light extraction film Embodiment of organic electroluminescence light emitting device
  • the light extraction film has a first gas barrier layer, a second gas barrier layer, a light extraction layer, and an adhesive layer. And the 1st gas barrier layer and the 2nd gas barrier layer are laminated
  • the light extraction film has a configuration in which the first gas barrier layer and the second gas barrier layer are bonded together via an adhesive layer, and the gas barrier layer is laminated. Since the light extraction film has a plurality of gas barrier layers stacked, the gas barrier property can be improved as compared with a case where the gas barrier layer is a single layer.
  • the light extraction film has a light extraction layer
  • the light extraction efficiency from the element can be improved when a light emitting element is provided on the light extraction film.
  • the influence of discoloration etc. of the light extraction layer by outgas can be suppressed, and permeation
  • the pressure-sensitive adhesive layer contains at least one resin selected from an epoxy resin and an acrylic resin. And it is preferable that the mass change rate when the adhesive which comprises an adhesive layer is heated from the temperature range 30 degreeC to 140 degreeC with the temperature increase rate of 5 degree-C / min is 0.50% or less.
  • the first gas barrier layer is formed on one surface (first main surface) of the film base material (first film base material), and further, the film base material (first film base material) It is preferable that an adhesive layer is formed on the other surface (second main surface). Furthermore, in the light extraction film, the second gas barrier layer is preferably disposed on the main surface side of the pressure-sensitive adhesive layer opposite to the film base material (first film base material).
  • the light extraction film includes a first film base material in which a first gas barrier layer is formed on the first main surface side, and a second film base material in which a second gas barrier layer is formed on the first main surface side.
  • the structure bonded by the adhesive layer is preferable.
  • an adhesive layer is provided on the second main surface side, and on the second film substrate side, an adhesive layer is provided on the second gas barrier layer side.
  • the second film base material, the second gas barrier layer, the pressure-sensitive adhesive layer, the first film base material, and the first gas barrier layer are preferably laminated in this order.
  • the light extraction film only needs to have at least two gas barrier layers of the first gas barrier layer and the second gas barrier layer, and an adhesive layer disposed between the two gas barrier layers. .
  • the light extraction film may be further laminated with a gas barrier layer other than these.
  • the gas barrier layer to be laminated is also preferably laminated via the above-mentioned pressure-sensitive adhesive layer.
  • a layer other than the gas barrier layer or the film substrate may be interposed between the gas barrier layer and the pressure-sensitive adhesive layer or between other layers.
  • the total light transmittance of the light extraction film is preferably 70% or more.
  • the total light transmittance is based on the method described in JIS K7105: 1981.
  • the total light transmittance and the amount of scattered light are measured using an integrating sphere light transmittance measuring device, and the diffuse transmittance is subtracted from the total light transmittance.
  • the calculation method can be used.
  • FIG. 1 shows a schematic configuration of the light extraction film.
  • the light extraction film 10 shown in FIG. 1 has a first gas barrier film 18 composed of a first film substrate 11 and a first gas barrier layer 12 formed on the first main surface of the first film substrate 11. Furthermore, the light extraction film 10 includes a second gas barrier film 19 including a second film base 14 and a second gas barrier layer 15 formed on the first main surface of the second film base 14. The first gas barrier film 18 and the second gas barrier film 19 are bonded together by the pressure-sensitive adhesive layer 13.
  • the pressure-sensitive adhesive layer 13 is between the second main surface side of the first film substrate 11 of the first gas barrier film 18 and the surface of the second gas barrier layer 15 (surface opposite to the second film substrate 14). Is provided. For this reason, in the light extraction film 10, it bonds together so that the 2nd main surface of the 1st film base material 11 and the 1st main surface of the 2nd film base material 14 may oppose.
  • the light extraction film 10 has a light extraction layer 16 on the second main surface of the second film substrate 14. Further, an antistatic layer 17 is provided on the surface of the light extraction layer 16 opposite to the surface on which the second gas barrier film 19 is provided. That is, the light extraction film 10 is [antistatic layer 17 / light extraction layer 16 / second film substrate 14 / second gas barrier layer 15 / adhesive layer 13 / first film substrate 11 / first gas barrier layer 12]. It has the laminated structure.
  • the light extraction film 10 shown in FIG. 1 has a configuration in which a first gas barrier film 18 and a second gas barrier film 19 are laminated. For this reason, it has gas barrier property higher than the structure provided with a gas barrier layer by a single layer.
  • the light extraction film 10 has a configuration in which the second gas barrier layer 15 of the second gas barrier film 19 is interposed between the light extraction layer 16 and the pressure-sensitive adhesive layer 13. It is considered that the outgas generated in the pressure-sensitive adhesive layer 13 causes the light extraction layer 16 to deteriorate such as discoloration and causes the light extraction film 10 to have a reduced light transmittance. For this reason, by interposing the second gas barrier layer 15 between the light extraction layer 16 and the pressure-sensitive adhesive layer 13, the influence of the outgas on the light extraction layer 16 is suppressed, and the light transmittance of the light extraction film 10 is reduced. The decrease can be suppressed.
  • the light extraction film 10 can comprise a light extraction film having a more multilayer structure by further laminating a film substrate and a gas barrier layer via an adhesive layer.
  • a new gas barrier layer or a gas barrier film may be provided on the first gas barrier layer 12 of the first gas barrier film 18 of the light extraction film 10 and a gas barrier layer may be further laminated.
  • a film substrate (third film substrate) having a gas barrier layer (third gas barrier layer) on the first gas barrier layer 12 via a new adhesive layer (second adhesive layer). can be pasted together.
  • the pressure-sensitive adhesive layer first 2 adhesive layers
  • the pressure-sensitive adhesive layer are preferably arranged on the surface (second main surface) opposite to the surface (first main surface) on which the gas barrier layer (third gas barrier layer) of the film base (third film base) is formed.
  • the light extraction film 10 may not include a film base material for forming a gas barrier layer, such as the first film base material 11 and the second film base material 14.
  • a film base material for forming a gas barrier layer such as the first film base material 11 and the second film base material 14.
  • the structure which has only one of the 1st film base material 11 and the 2nd film base material 14, or the structure which does not have both film base materials may be sufficient.
  • the second gas barrier layer 15 is formed on one surface of the second film substrate 14, and the light extraction layer 16 is formed on the other surface of the second film substrate 14. Is preferable in the manufacturing process. Therefore, the stacking order shown in FIG. 1 is preferable.
  • the stacking order of the light extraction film 10 is preferably the order shown in FIG. 1, but in the light extraction film 10, the stacking order of the first gas barrier film 18 and the second gas barrier film 19 may be different.
  • the pressure-sensitive adhesive layer 13 is formed on one surface of the second film substrate 14, the second gas barrier layer 15 is formed on the other surface, and light is applied on the second gas barrier layer 15.
  • a configuration in which the extraction layer 16 is formed is also possible. Even in such a configuration in which the second gas barrier layer 15 is interposed between the second film substrate 14 and the light extraction layer 16, the first gas barrier layer 12 and the second gas barrier layer 15 are interposed via the pressure-sensitive adhesive layer 13.
  • the second gas barrier layer 15 is interposed between the pressure-sensitive adhesive layer 13 and the light extraction layer 16. For this reason, the said effect in the light extraction film 10 can be acquired.
  • the first film substrate 11 and the second film substrate 14 are supports for the first gas barrier layer 12 and the second gas barrier layer 15.
  • operativity in the manufacturing process of the light extraction film 10 improves.
  • the film formability of the first gas barrier layer 12 and the second gas barrier layer 15 and the workability at the time of bonding with the adhesive layer 13 are improved.
  • the 1st film base material 11 and the 2nd film base material 14 may be formed from the same material, and may be formed from a different material.
  • first film substrate 11 and the second film substrate 14 include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, Polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin Examples thereof include base materials including thermoplastic resins such as copolymers, fluorene ring-modified polycarbonate resins, alicyclic ring-modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the 1st film base material 11 and the 2nd film base material 14 can be used individually or in combination of 2 or more types.
  • the first film substrate 11 and the second film substrate 14 are preferably made of a heat-resistant material. Specifically, a material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • Tg glass transition temperature
  • the Tg and linear expansion coefficient of the first film base material 11 and the second film base material 14 can be adjusted by an additive or the like.
  • the light extraction film 10 When producing an organic EL element using the light extraction film 10, the light extraction film 10 may be exposed to a process at 150 ° C. or higher. In this case, when the linear expansion coefficient of the base material in the light extraction film 10 exceeds 100 ppm / K, the substrate dimensions are not stabilized in the above-described thermal process, and the barrier performance is deteriorated with thermal expansion and contraction. Or it is easy to produce the malfunction that it cannot endure a heat process. If the linear expansion coefficient of the 1st film base material 11 and the 2nd film base material 14 is less than 15 ppm / K, flexibility and a softness
  • the first film substrate 11 and the second film substrate 14 may be unstretched films or stretched films.
  • the 1st film base material 11 and the 2nd film base material 14 can be manufactured by a conventionally well-known general method. Regarding the production method of these base materials, the matters described in paragraphs [0051] to [0055] of International Publication No. 2013/002026 can be appropriately employed.
  • the first film substrate 11 and the second film substrate 14 may be a single layer or a laminated structure of two or more layers.
  • each 1st film base material 11 and the 2nd film base material 14 may be the same kind, and are different kinds. There may be.
  • the thickness of the first film substrate 11 and the second film substrate 14 (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m. preferable.
  • the 1st film base material 11 and the 2nd film base material 14 may have a hard-coat layer on the surface (one side or both surfaces).
  • Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used alone or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a material containing a monomer having an ethylenically unsaturated double bond is preferably used. This material is cured by irradiating active energy rays such as ultraviolet rays and electron beams to form a layer containing a cured product of the active energy ray curable resin, that is, a hard coat layer.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. Moreover, you may use the commercially available 1st film base material 11 and the 2nd film base material 14 with which the hard-coat layer was previously formed.
  • the first gas barrier layer 12 and the second gas barrier layer 15 are not particularly limited as long as they have gas barrier properties, and a conventionally known configuration can be applied.
  • the gas barrier property required for the light extraction film 10 is, for example, a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS-K-7129-1992. Is 0.01 g / (m 2 ⁇ 24 hours) or less, and the oxygen permeability measured by a method according to JIS-K-7126-1987 is 10 -3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less.
  • the first gas barrier layer 12 and the second gas barrier layer 15 may be configured so that the gas barrier property can be realized in the light extraction film 10.
  • first gas barrier layer 12 and the second gas barrier layer 15 may have the same configuration or different configurations as long as they have the required gas barrier properties. Further, each of the first gas barrier layer 12 and the second gas barrier layer 15 may be formed as a single layer, or may be a laminate including a plurality of layers.
  • At least one of the first gas barrier layer 12 and the second gas barrier layer 15 constituting the light extraction film 10 has a silicon-containing layer obtained by applying and drying a coating liquid containing a silicon-containing compound.
  • the silicon-containing layer preferably has a polysilazane modified layer formed by modifying a coating film containing polysilazane.
  • the polysilazane modified layer is a layer having at least a part of polysilazane (polysilazane modified portion) modified by irradiating an energy beam such as excimer light to a coating film formed from a coating liquid containing a polysilazane compound. is there.
  • an energy beam such as excimer light
  • a modified part of polysilazane is formed on the surface irradiated with energy rays.
  • the light extraction film 10 can ensure high barrier properties by having a gas barrier layer composed of a polysilazane modified layer. Moreover, since the polysilazane modified layer has high smoothness, the occurrence of defects due to the irregularities of the gas barrier layer can be suppressed even when an organic EL element is formed on the polysilazane modified layer.
  • the silicon-containing layer obtained by applying and drying a coating solution containing a silicon-containing compound has a specific composition and exhibits gas barrier properties.
  • the silicon-containing layer is hardly contaminated with particles or the like during film formation, and a gas barrier layer with very few defects can be formed.
  • the film thickness per layer of the silicon-containing layers constituting the first gas barrier layer 12 and the second gas barrier layer 15 is 10 to 1000 nm from the viewpoint of gas barrier performance. It is preferably 50 nm to 600 nm, more preferably 50 nm to 300 nm. If it is this range, the balance of gas-barrier property and durability will become favorable.
  • Examples of the silicon-containing compound for forming the silicon-containing layer include polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, polycarbosilane, and the like. Among these, it is preferable to have at least one selected from the group consisting of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond.
  • the silicon-containing compound is a polysilazane having a silicon-nitrogen bond and a silicon-hydrogen bond, a polysiloxazan having a silicon-nitrogen bond, a polysiloxane having a silicon-hydrogen bond, and a polysilsesqui having a silicon-hydrogen bond.
  • Oxane, polysilane having a silicon-silicon bond can be used. It is preferable to use a silicon-containing compound having any one of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond.
  • polysiloxane examples include compounds described in paragraphs [0093] to [0121] of JP2012-116101A.
  • hydrogenated (hydrogen) polysiloxane is particularly preferable.
  • polysilane is not particularly limited, and may be a non-cyclic polysilane (linear polysilane, branched polysilane, network polysilane, etc.), a homopolymer such as cyclic polysilane, a random copolymer, It may be a copolymer such as a block copolymer, an alternating copolymer, or a comb copolymer.
  • the terminal group (terminal substituent) of the polysilane may be a hydrogen atom, a halogen atom (such as a chlorine atom), an alkyl group, a hydroxyl group, an alkoxy group, or a silyl group. May be.
  • polysilanes include polydialkylsilanes such as polydimethylsilane, poly (methylpropylsilane), poly (methylbutylsilane), poly (methylpentylsilane), poly (dibutylsilane), poly (dihexylsilane), poly Polydiarylsilanes such as (diphenylsilane), homopolymers such as poly (methylphenylsilane) and poly (alkylarylsilane), and copolymerization of dialkylsilanes such as dimethylsilane-methylhexylsilane copolymer with other dialkylsilanes Polymers, arylsilane-alkylarylsilane copolymers such as phenylsilane-methylphenylsilane copolymer, dimethylsilane-methylphenylsilane copolymer, dimethylsilane-phenylhexylsilane copolymer, di
  • Polycarbosilane is a polymer compound having a (—Si—C—) bond in the main chain in the molecule.
  • As polycarbosilane what contains the repeating unit represented by following formula (a) is preferable.
  • Rw and Rv each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, an aryl group, an alkenyl group, or a monovalent heterocyclic group.
  • a plurality of Rw and Rv may be the same or different.
  • R represents an alkylene group, an arylene group or a divalent heterocyclic group.
  • the weight average molecular weight of the polycarbosilane having a repeating unit represented by the formula (a) is usually from 400 to 12,000.
  • the heterocyclic ring of the monovalent heterocyclic group of Rw and Rv is not particularly limited as long as it is a 3- to 10-membered cyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom.
  • the monovalent heterocyclic group include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-thienyl group, 3-thienyl group, 2-furyl group, 3-furyl group, and 3-pyrazolyl.
  • alkylene group of R examples include alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group.
  • arylene group examples include arylene groups having 6 to 20 carbon atoms such as a p-phenylene group, a 1,4-naphthylene group, and a 2,5-naphthylene group.
  • the alkylene group and arylene group of R may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or a halogen atom at an arbitrary position.
  • the divalent heterocyclic group for R may be a divalent group derived from a 3- to 10-membered heterocyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom.
  • the divalent heterocyclic group include thiophene diyl groups such as 2,5-thiophenediyl group, frangyl groups such as 2,5-furandiyl group, and selenophene such as 2,5-selenophenediyl group.
  • Diyl group pyrrole diyl group such as 2,5-pyrrole diyl group, 2,5-pyridinediyl group, pyridinediyl group such as 2,6-pyridinediyl group, 2,5-thieno [3,2-b] thiophenediyl group Thienothiophene diyl group such as 2,5-thieno [2,3-b] thiophenediyl group, Quinoline diyl group such as 2,6-quinolinediyl group, 1,4-isoquinolinediyl group, 1,5-isoquinolinediyl group, etc.
  • Isoquinolinediyl group quinoxalinediyl group such as 5,8-quinoxalinediyl group, and benzo [4,7-benzo [1,2,5] thiadiazolediyl group , 2,5] thiadiazole diyl group, benzothiazole diyl group such as 4,7-benzothiazole diyl group, carbazole diyl group such as 2,7-carbazole diyl group, 3,6-carbazole diyl group, 3,7-phenoxy Phenoxazinediyl group such as sazinediyl group, phenothiazinediyl group such as 3,7-phenothiazinediyl group, dibenzosiloldiyl group such as 2,7-dibenzosiloldiyl group, 2,6-benzo [1,2-b: 4,5-b ′] dithiophenediyl group, 2,6-benzo [1,2-b: 5,4-b ′] dithi
  • Rw and Rv are each independently a hydrogen atom, an alkyl group or an aryl group
  • polycarbosilane containing a repeating unit in which R is an alkylene group or an arylene group is more preferable.
  • polycarbosilane containing a repeating unit in which Rw and Rv are each independently a hydrogen atom or an alkyl group and R is an alkylene group is preferable.
  • Polysilazane is more preferable as a material for forming the silicon-containing layer.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • polysilazane preferably has a structure represented by the following general formula (I).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different.
  • n is an integer, and it is preferable that the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane what has a structure represented by the following general formula (II) is preferable.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred. Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom
  • R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group
  • R 5' compound represents a vinyl group
  • R 1 ', R 3' , A compound in which R 4 ′ and R 6 ′ each represent a hydrogen atom and R 2 ′ and R 5 ′ each represent a methyl group is preferred.
  • polysilazane what has a structure represented by the following general formula (III) is preferable.
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. Preferably, it is defined. Note that n ′′, p ′′ and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the ceramic film made of brittle polysilazane can be tough. For this reason, even when the thickness (average) of the silicon-containing layer is increased, there is an advantage that generation of cracks can be suppressed. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is approximately 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Polysilazane is commercially available in a solution in an organic solvent, and the commercially available product can be used as it is as a silicon-containing coating solution for forming a silicon-containing layer.
  • Examples of commercially available polysilazane solutions include NN120, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials. . These polysilazane solutions can be used alone or in combination of two or more.
  • polysilazane used for forming the silicon-containing layer As another example of polysilazane used for forming the silicon-containing layer, the following polysilazane can be mentioned.
  • a silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with the above polysilazane Japanese Patent Laid-Open No. 5-238827
  • a glycidol-added polysilazane obtained by reacting glycidol Japanese Patent Laid-Open No.
  • JP-A-6-240208 an alcohol Alcohol-added polysilazane obtained by reaction
  • metal carboxylate-added polysilazane JP-A-6-299118
  • JP-A-6-306329 an acetylacetonate complex containing a metal Acetylacetonate complex-added polysilazane
  • JP-A-7-196986 metal-silica-added polysilazane
  • the content of polysilazane in the silicon-containing layer before irradiation with vacuum ultraviolet rays can be 100% by mass when the total mass of the silicon-containing layer is 100% by mass.
  • the silicon-containing layer before irradiation with vacuum ultraviolet rays contains a material other than polysilazane
  • the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass. % Or less, more preferably 70% by mass or more and 95% by mass or less.
  • the solvent for preparing the coating solution (silicon-containing coating solution) for forming the silicon-containing layer is not particularly limited as long as it can dissolve the silicon-containing compound.
  • the solvent an organic solvent which does not contain water and reactive groups (for example, hydroxyl group or amine group) that easily react with the silicon-containing compound and is inert to the silicon-containing compound is preferable. Protic organic solvents are more preferred.
  • the solvent includes an aprotic solvent, for example, an aliphatic hydrocarbon such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and terpene, and a hydrocarbon such as alicyclic hydrocarbon and aromatic hydrocarbon.
  • an aprotic solvent for example, an aliphatic hydrocarbon such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and terpene
  • a hydrocarbon such as alicyclic hydrocarbon and aromatic hydrocarbon.
  • Solvents such as methylene chloride and trichloroethane, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran, ethers such as alicyclic ethers Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of the silicon-containing compound in the silicon-containing coating solution is not particularly limited.
  • the concentration of the silicon-containing compound in the silicon-containing coating solution varies depending on the thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 40% by mass. %.
  • the silicon-containing coating solution contains a catalyst for promoting the modification.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N , N ′, N′-tetramethyl-1,3-diaminopropane, amine catalysts such as N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, Examples thereof include Pd compounds such as propionic acid Pd, metal catalysts such as Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the catalyst addition amount within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
  • the following additives can be used as necessary.
  • cellulose ethers such as ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins such as rubber, rosin resin
  • synthetic resins such as polymerization resins
  • condensation resins such as, for example, Aminoplasts, particularly urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyester resins or modified polyester resins, epoxy resins, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • a conventionally known appropriate wet coating method can be employed as a method for applying the silicon-containing coating solution.
  • Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
  • the coating thickness is appropriately set according to the preferred thickness and purpose.
  • the coating film After applying the silicon-containing coating solution, the coating film is dried. By drying the coating film, the organic solvent contained in the coating film is removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable silicon-containing layer can be obtained. The remaining solvent is removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the drying temperatures are the first film substrate 11 and the second film due to heat.
  • Tg glass transition temperature
  • the temperature is set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film obtained by applying the silicon-containing coating solution may be subjected to a treatment for removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays.
  • a method of removing moisture a method of dehumidifying by holding a coating film in a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable mode is shown by the dew point temperature for the treatment for removing moisture.
  • a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), and a more preferable dew point temperature is ⁇ 5 ° C. or lower (temperature 25 ° C./humidity 10%).
  • the time for maintaining the coating film in a low humidity environment is preferably set as appropriate. Specifically, it is preferable that the dew point temperature is ⁇ 5 ° C. or lower and the maintaining time is 1 minute or longer.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. Since the dehydration reaction of the silicon-containing layer converted to silanol is promoted, it is preferable to perform a treatment for removing moisture before or during the modification treatment.
  • the coating film containing the silicon-containing compound formed as described above can be applied as it is to the gas barrier layer as a silicon-containing layer.
  • the conversion reaction (modification) of the silicon-containing layer is performed by irradiation with vacuum ultraviolet rays.
  • the silicon-containing layer containing polysilazane is irradiated with vacuum ultraviolet rays to form a polysilazane modified layer.
  • Vacuum ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shapes of the first film substrate 11 and the second film substrate 14 to be used.
  • it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known, and for example, an ultraviolet baking furnace manufactured by I-Graphics can be used.
  • an ultraviolet-ray can be continuously irradiated in the drying zone which equipped the ultraviolet-ray generation source, conveying this.
  • the time required for the ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the base material used and the composition and concentration of the silicon-containing compound.
  • the modification by vacuum ultraviolet irradiation uses light energy having a wavelength of 100 to 200 nm, which is larger than the interatomic bonding force in the silicon-containing compound (especially polysilazane compound).
  • light energy having a wavelength of 100 to 180 nm is used.
  • an oxidation reaction with active oxygen or ozone is advanced while directly breaking the atomic bonds by the action of only photons called photon processes.
  • a film containing silicon oxynitride can be formed at a relatively low temperature (about 200 ° C. or less).
  • the vacuum ultraviolet ray source may be any source that generates light having a wavelength of 100 to 180 nm.
  • Suitable vacuum ultraviolet radiation sources include an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), a low pressure mercury vapor lamp having an emission line at about 185 nm, a medium pressure and high pressure mercury vapor lamp having a wavelength component of 230 nm or less, And an excimer lamp having a maximum emission at about 222 nm.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. Moreover, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds.
  • the coating film can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power. Further, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated at a short wavelength in the ultraviolet region, so that an increase in the surface temperature of the irradiation object can be suppressed. For this reason, it is suitable for flexible film materials such as PET, which are likely to be affected by heat.
  • the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 20000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10000 volume ppm (0.005 to 1 volume%). More preferred.
  • the water vapor concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 1000 to 4000 ppm by volume.
  • the gas satisfying the irradiation atmosphere used for the vacuum ultraviolet irradiation is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ⁇ 160mW / cm 2. If the illuminance of the vacuum ultraviolet ray is 1 mW / cm 2 or more, the reforming efficiency is improved. When the illuminance of the vacuum ultraviolet ray is 10 W / cm 2 or less, ablation occurring in the coating film and damage to the first film substrate 11 and the second film substrate 14 can be reduced.
  • the amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays onto the surface of the coating film is preferably 1 to 10 J / cm 2 , and more preferably 3 to 7 J / cm 2 . If it is this range, generation
  • the vacuum ultraviolet rays used for irradiating the surface of the coating film may be generated from plasma formed by a gas containing at least one of CO, CO 2 and CH 4 .
  • a gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but the rare gas or H 2 is used as the main gas. It is preferable to add a small amount of the contained gas.
  • a method for generating plasma capacitively coupled plasma and the like can be given.
  • a coating film obtained by applying and drying a coating solution containing a silicon-containing compound is 5 to 40 ° C. and relative humidity is 0 to 60.
  • the silicon-containing layer is formed by storing for 1 to 1000 hours under the condition of% RH.
  • the pressure-sensitive adhesive layer 13 is provided for bonding the first gas barrier film 18 and the second gas barrier film 19 together.
  • the pressure-sensitive adhesive layer 13 is not particularly limited as long as an adhesive force required for bonding the first gas barrier film 18 and the second gas barrier film 19 in the light extraction film 10 can be obtained. Can be used.
  • the pressure-sensitive adhesive layer 13 satisfies the mass change rate when the temperature rises as defined below.
  • the generation (foaming) of bubbles in the pressure-sensitive adhesive layer under vacuum or high temperature is a problem in the process of producing an electronic device such as an organic EL element.
  • the foaming in the pressure-sensitive adhesive layer is considered to be caused by the generation of gas from the pressure-sensitive adhesive.
  • gas generated from the pressure-sensitive adhesive is enclosed in the pressure-sensitive adhesive layer by the laminated gas barrier layer.
  • the generated gas is not released to the outside of the light extraction film, and bubbles remain in the light extraction film. If bubbles remain in the light extraction film, the adhesive strength of the gas barrier film in the pressure-sensitive adhesive layer is lowered, which causes peeling. Further, when a light extraction film is applied to the organic EL element, whitening of the light extraction film due to bubbles and a decrease in light extraction efficiency become problems.
  • the temperature rise rate is higher than the temperature rise rate of 5 ° C./min in the temperature rise of the pressure-sensitive adhesive layer, non-uniform alteration occurs due to a rapid temperature change. This non-uniform alteration affects the measurement of mass change rate as an error, resulting in a decrease in measurement accuracy.
  • the rate of temperature rise is lower than the rate of temperature rise of 5 ° C./min, bubbles generated in the pressure-sensitive adhesive layer are absorbed in the pressure-sensitive adhesive layer or relaxed, etc. Will fall.
  • the mass change rate of the pressure-sensitive adhesive layer can be determined under the following conditions.
  • a pressure-sensitive pressure-sensitive adhesive As the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer 13, a pressure-sensitive pressure-sensitive adhesive is preferably used.
  • the pressure sensitive adhesive has cohesive strength and elasticity, and can maintain stable adhesiveness for a long time. Moreover, when forming an adhesive layer, the requirements, such as a heat
  • the material for forming the pressure-sensitive adhesive layer 13 a material having excellent transparency is preferable.
  • the adhesive for forming the adhesive layer 13 include an adhesive including an epoxy resin, an acrylic resin, a rubber resin, a urethane resin, a vinyl ether resin, and a silicon resin. it can.
  • a solvent type, an emulsion type, and a hot melt type can be used as the form of the pressure-sensitive adhesive.
  • various additives can be used from the viewpoint of improving the physical properties of the pressure-sensitive adhesive layer 13.
  • natural resins such as rosin, modified rosin, rosin and modified rosin derivatives, polyterpene resins, terpene modified products, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, phenolic resins, alkyl- Tackifiers such as phenol-acetylene resins, coumarone-indene resins, vinyltoluene- ⁇ -methylstyrene copolymers, anti-aging agents, stabilizers, and softeners can be used as necessary. . Two or more of these may be used as necessary.
  • organic ultraviolet absorbers such as a benzophenone series and a benzotriazole series, can also be added to an adhesive.
  • the light extraction layer 16 is a layer having a function of improving the extraction efficiency of light emitted from the light emitting element provided on the light extraction film 10 to the outside.
  • the light extraction layer for example, a method of forming an unevenness on the substrate surface and introducing an interface that prevents total reflection at the substrate and air interface (for example, US Pat. No. 4,774,435), an interlayer (between the substrate and the outside world) And a method of introducing a diffraction grating (including Japanese Patent Application Laid-Open No. 11-283951), a structure in which a light scattering layer having light scattering particles and a binder is provided (Japanese Patent Application Laid-Open No. 2004-319331), and the like.
  • the interface that prevents total reflection by unevenness or the method of introducing a diffraction grating uses the property that the direction of light can be changed in a specific direction different from refraction by Bragg diffraction such as first-order diffraction and second-order diffraction. To do. Accordingly, light that does not go out due to total reflection between layers or the like is introduced into the diffraction grating and diffracted, whereby the light can be taken out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because emitted light is generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction, only light traveling in a specific direction is diffracted. The take-out efficiency is not so high. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the diffraction grating is desirably introduced in the vicinity of the outermost layer of the light extraction film 10. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • a microlens array can be used as the light extraction layer 16, for example.
  • a microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m.
  • the light extraction layer 16 for example, a conventionally known light collecting sheet that has been put into practical use in an LED backlight of a liquid crystal display device can be used.
  • the condensing sheet for example, an optical film in which a prism pattern such as a brightness enhancement film (BEF) manufactured by Sumitomo 3M Co., Ltd. is uniformly and precisely formed can be used.
  • BEF brightness enhancement film
  • the substrate may have a triangle with a 90 ° apex angle and a 50 ⁇ m pitch triangular cross section, or the apex angle may be rounded and the pitch may be changed randomly. It may be a shaped shape or other shapes.
  • a light diffusion film capable of obtaining white light emission by scattering light in the area in the plane direction can also be used.
  • a light diffusion film for example, a diffusion film (light-up, optosaber) manufactured by Kimoto Co., Ltd. can be used.
  • the antistatic layer 17 is composed of an antistatic agent and a binder resin for holding the antistatic agent.
  • the antistatic layer 17 is provided on the surface of the light extraction film 10 opposite to the surface on which the second gas barrier film 19 of the light extraction layer 16 is disposed. Note that the above-described other configuration may be provided between the light extraction layer 16 and the antistatic layer 17. Even in this case, the antistatic layer 17 is preferably provided in the outermost layer of the light extraction film 10.
  • antistatic performance can be imparted to the light extraction film 10. For this reason, when the light extraction film 10 is wound into a roll shape by the roll-to-roll method, and when the light extraction film 10 is unwound from the roll and conveyed, charging of the light extraction film 10 can be suppressed.
  • the antistatic layer 17 preferably contains an organic antistatic agent as an antistatic agent.
  • the organic antistatic agent contained in the antistatic layer 17 preferably contains one or more selected from conjugated polymers and ionic polymers. Further, the antistatic layer 17 may be configured to include other conductive polymers and antistatic agents.
  • the antistatic layer 17 preferably does not contain metal oxide particles that are easily desorbed during lamination as an antistatic agent.
  • the content of the metal oxide particles with respect to the total mass of the antistatic layer 17 is preferably 5% by mass or less, more preferably 2% by mass or less, and particularly preferably a configuration containing no metal oxide particles.
  • metal oxide particles that are preferably not contained in the antistatic layer 17 include, for example, ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO, MoO 2 , V 2 O 5, etc. Or these complex oxides can be mentioned.
  • SiO 2 is excluded from the definition of metal oxide particles that are preferably not contained in the antistatic layer 17.
  • the organic antistatic agent is basically composed of an organic material having antistatic ability.
  • the organic antistatic agent has a sheet resistance value of 1 ⁇ 10 11 ⁇ / sq.
  • organic antistatic agent examples include conventionally known surfactant type antistatic agents, silicone antistatic agents, organic boric acid antistatic agents, polymeric antistatic agents, and antistatic polymer materials.
  • an ion conductive material or the like is a material containing ions exhibiting electrical conductivity.
  • Examples of the ion conductive substance include conjugated polymers and ionic polymers.
  • conjugated polymer examples include ⁇ -electron conductive polymer composites of polymers having the following (1) to (8) in the side chain via a connecting group.
  • Aliphatic conjugated system a carbon-carbon conjugated system, such as polyacetylene, which is continuously long alternately. For example, polyacetylene, poly (1,6-heptadiene), etc.
  • Aromatic conjugated system poly (3) Heterocyclic conjugated systems such as polypyrrole, polythiophene, etc. (3) Heterocyclic conjugated systems such as polypyrrole and polythiophene.
  • cyclic compounds such as polypyrrole and its derivatives, polyfuran and its derivatives, polythiophene and its derivatives, polyisothionaphthene and its derivatives, polyselenophene and its derivatives, etc.
  • Heteroatom-containing conjugated system Aliphatic or aromatic conjugated systems such as polyaniline bonded with heteroatoms Polymers such as polyaniline and derivatives thereof, poly (paraphenylene sulfide) and derivatives thereof, poly (paraphenylene oxide) and derivatives thereof, poly (paraphenylene selenide) and derivatives thereof, and poly (vinylene sulfide) in aliphatic systems ), Poly (vinylene oxide), poly (vinylene selenide), etc.
  • Double chain conjugated system Conjugated system with multiple conjugated chains in the molecule, aromatic Polymers having a structure close to a group conjugated system, such as polyperinaphthalene, etc.
  • Metal phthalocyanine series Metal phthalocyanines or polymers in which these molecules are bonded with hetero atoms or conjugated systems, such as metal phthalocyanine (8)
  • Conductive composite a polymer obtained by graft copolymerization of the conjugated polymer chain to a saturated polymer and a composite obtained by polymerizing the conjugated polymer in a saturated polymer, for example, polythiophene of (3) And its derivatives, polypyrrole and its derivatives, (4) polyaniline and its derivatives, etc., and (5) poly (paraphenylenevinylene) and its derivatives, poly (thiophene vinylene) and its derivatives, etc.
  • Examples of the ionic polymer include the following (1) to (3).
  • Ionene type polymer having a group (3) JP-B 53-13223, JP-B 57-15376, JP-B 53-45231, JP-B 55-145783, JP-B 55-65950, Japanese Patent Publication No. 55-67746, Japanese Patent Publication No. 57-11342, Japanese Patent Publication No. 57-19735, Japanese Patent Publication No. 58-56858, Japanese Patent Publication No. 61- 7853 JP, are described in JP-B 62-9346 Patent Publication, cationic pendant polymer having a cationic dissociative group in the side chain
  • Examples of the conductive polymer constituting the antistatic layer 17 include an ionene conductive polymer or a quaternary ammonium cation conductive polymer having intermolecular crosslinking described in JP-A-9-203810. Can do.
  • antistatic agents examples include antistatic hard coats described in JP-A-2006-265271, JP-A-2007-70456, JP-A-2009-62406, and the like.
  • An agent can be used.
  • an antistatic agent available from Aika Kogyo Co., Ltd. which is available as a commercial product, can be appropriately selected and used.
  • Binder resin examples of the binder resin for holding the antistatic agent in the antistatic layer 17 include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate, polyvinyl acetate, and polystyrene.
  • Polyesters such as polycarbonate, polybutylene terephthalate, or copolybutylene / tere / isophthalate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl alcohol derivatives such as polyvinyl benzal, norbornene-based polymers containing norbornene compounds, polymethyl Methacrylate, polyethylmethacrylate, polypropyltyl methacrylate, polybutylmethacrylate Rate, acrylic resins such as polymethyl acrylate, and copolymer of acrylic resin and other resins.
  • a cellulose derivative and an acrylic resin are preferable, and an acrylic resin is most preferably used.
  • the binder resin used for the antistatic layer 17 is preferably a thermoplastic resin having a weight average molecular weight of 400,000 or more and a glass transition temperature in the range of 80 to 110 ° C.
  • the glass transition temperature can be determined by the method described in JIS K7121.
  • the binder resin used here is 60 mass% or more, more preferably 80 mass% or more of the total resin mass constituting the antistatic layer 17.
  • an actinic radiation curable resin or a thermosetting resin can be applied as necessary.
  • the manufacturing method of the above-mentioned light extraction film 10 is demonstrated.
  • the 1st film base material 11 and the 2nd film base material 14 are prepared.
  • the 1st gas barrier layer 12 is formed in the 1st main surface of the 1st film base material 11, and the 1st gas barrier property film 18 is produced.
  • the 2nd gas barrier layer 15 is formed in the 1st main surface of the 2nd film base material 14, and the 2nd gas barrier film 19 is produced.
  • the light extraction layer 16 is formed on the second main surface of the second film substrate 14.
  • the first gas barrier layer 12 and the second gas barrier layer 15 are formed by forming a silicon-containing layer by the above-described method and performing a polysilazane modified layer by excimer irradiation treatment. It is preferable to apply the method of forming.
  • a method of forming a diffraction grating on the resin layer by using a nanoimprint technique a method of forming a light scattering layer by applying a resin containing light scattering particles, and applying a resin is applied. can do.
  • first gas barrier film 18 and the second gas barrier film 19 commercially available gas barrier films can also be used.
  • the pressure-sensitive adhesive layer 13 is sandwiched between the first gas barrier film 18 and the second gas barrier film 19.
  • the first gas barrier film 18 and the second gas barrier film 19 are arranged with the second main surface side of the first film substrate 11 and the second gas barrier layer 15 facing each other.
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer 13 is applied to one or both of the second main surface side of the first film substrate 11 and the second gas barrier layer 15.
  • the first gas barrier film 18, the pressure-sensitive adhesive layer 13, and the second gas barrier film 19 that are laminated are pressurized, and the first gas barrier film 18 and the second gas barrier film 19 are bonded together.
  • a pressure-sensitive adhesive is used for the pressure-sensitive adhesive layer 13
  • the first gas barrier film 18 and the second gas barrier film 19 can be bonded together with the pressure-sensitive adhesive layer 13 only by applying pressure.
  • a thermosetting pressure-sensitive adhesive is used for the pressure-sensitive adhesive layer 13
  • the pressure-sensitive adhesive may be cured by heating in a vacuum atmosphere of 1000 Pa or less.
  • an antistatic layer 17 is formed on the light extraction layer 16.
  • a coating liquid containing an organic antistatic agent is applied onto the light extraction layer 16 and the coating film is dried, followed by heating or energy beam irradiation to cure the binder. Thereby, the antistatic layer 17 containing an organic antistatic agent is produced, and the light extraction film 10 provided with the antistatic layer 17 is produced.
  • an organic electroluminescence light emitting device (organic EL light emitting device) using the above-described light extraction film will be described.
  • the organic EL light-emitting device of this embodiment uses the above-described light extraction film as a base material having high light extraction efficiency and high gas barrier properties. And on this light extraction film, the organic electroluminescent element (organic EL element) which consists of a transparent electrode, the light emitting unit which has 1 or more layers of the light emitting layer containing an organic luminescent material, and a counter electrode is provided. For this reason, in the following description of the organic EL light emitting device, detailed description of the same configuration as the above-described light extraction film is omitted.
  • the configuration of the organic EL light emitting device is shown in FIG.
  • the organic EL light emitting device 20 shown in FIG. 2 includes a transparent electrode 24, a light emitting unit 26, and a counter electrode 25 on the surface (first main surface) of the light extraction film 10 where the antistatic layer 17 is not formed.
  • An organic EL element 21 is provided.
  • the light extraction film 10 has the same configuration as that of FIG.
  • the layer configuration of the organic EL element 21 is not particularly limited, and may be a general layer structure.
  • the transparent electrode 24 functions as an anode (anode) and the counter electrode 25 functions as a cathode (cathode)
  • the light-emitting unit 26 is arranged in order from the transparent electrode 24 side, the hole injection layer 26a / the hole transport layer 26b / light emission.
  • the layer 26c / electron transport layer 26d / electron injection layer 26e may be stacked.
  • the organic EL light emitting device 20 may include a plurality of the light emitting units according to a desired emission color. A known organic EL material can be appropriately selected and used for the organic EL light emitting device 20.
  • the transparent electrode 24 is preferably formed directly on the first gas barrier layer 12.
  • the configuration in which the transparent electrode 24 is formed immediately above the first gas barrier layer 12 has higher sealing performance than the configuration in which another layer is interposed between the transparent electrode 24 and the first gas barrier layer 12. For this reason, the reliability of the organic EL light emitting device 20 is improved by forming the transparent electrode 24 immediately above the first gas barrier layer 12.
  • the light extraction layer 16 is disposed on the side opposite to the side where the transparent electrode 24 is provided when viewed from the pressure-sensitive adhesive layer 13 and the second gas barrier layer 15.
  • the organic EL light-emitting device 20 is less affected by the outgas generated from the pressure-sensitive adhesive layer 13. A decrease in light extraction efficiency of the EL light emitting device 20 can be suppressed.
  • the organic EL light emitting device 20 may be sealed with a sealing member (not shown) for the purpose of preventing deterioration of the light emitting unit 26 configured using an organic material or the like.
  • the sealing member is a plate-like (film-like) member that covers the upper surface of the organic EL light-emitting device 20, and is fixed to the light extraction film 10 side by an adhesive portion.
  • the sealing member may be a sealing film.
  • Such a sealing member is provided in a state in which the electrode terminal portion of the organic EL light emitting device 20 is exposed and at least the light emitting unit 26 is covered.
  • the structure which provides an electrode in a sealing member and makes the electrode terminal part of the organic EL light-emitting device 20 and the electrode of a sealing member electrically connect may be sufficient.
  • a protective member such as a protective film or a protective plate may be provided.
  • the protective member is disposed at a position where the organic EL light emitting device 20 and the sealing member are sandwiched between the light extraction film 10.
  • the sealing member is a sealing film
  • mechanical protection for the organic EL light emitting device 20 is not sufficient, and thus such a protective member is preferably provided.
  • the light extraction film 10 is produced by the manufacturing method described above.
  • the transparent electrode 24 is formed on the first main surface of the light extraction film 10 by an appropriate film forming method such as a vapor deposition method or a sputtering method.
  • the hole injection layer 26 a, the hole transport layer 26 b, the light emitting layer 26 c, the electron transport layer 26 d, and the electron injection layer 26 e are sequentially formed on the transparent electrode 24 to form the light emitting unit 26.
  • conventionally known conditions can be appropriately selected.
  • the counter electrode 25 is formed thereon by a conventionally known film forming method such as a vapor deposition method or a sputtering method. At this time, the counter electrode 25 is patterned in a shape in which a terminal portion is drawn from the upper side of the light emitting unit 26 to the periphery of the light extraction film 10 while being kept insulated from the transparent electrode 24 by the light emitting unit 26. Thereby, the organic EL light emitting device 20 is manufactured. Further, a sealing member that covers at least the light emitting unit 26 is provided in a state where the terminal portions of the extraction electrode and the counter electrode 25 in the organic EL light emitting device 20 are exposed.
  • the organic EL element 21 can be produced on the light extraction film 10, and the organic EL light-emitting device 20 can be produced.
  • the light extraction film 10 is taken out from the vacuum atmosphere on the way and is different. A film forming method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • a clear hard coat layer (CHC) having a thickness of 2 ⁇ m was formed on the first main surface side of a 100 ⁇ m-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48) manufactured by Toray Industries, Inc.) subjected to easy adhesion treatment on both sides.
  • a UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Co. was applied to a dry film thickness of 2 ⁇ m, dried at 80 ° C., and further irradiated in air using a high-pressure mercury lamp. Curing was performed by irradiating energy rays under conditions of an energy amount of 0.5 J / cm 2 .
  • a clear hard coat layer (CHC) having an anti-block function having a thickness of 0.5 ⁇ m was formed on the second main surface side of the PET film.
  • CHC clear hard coat layer
  • a UV curable resin manufactured by Aika Kogyo Co., Ltd., product number: Z731L
  • Z731L high-pressure mercury lamp in the air.
  • curing was performed by irradiating energy rays under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • the film base material with a hard-coat layer was obtained by the above method.
  • this film substrate with a hard coat layer is simply referred to as a first film substrate for convenience.
  • a first gas barrier layer was formed on the first main surface of the first film substrate according to the following method.
  • a silicon-containing compound a dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials, NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6- Dihydrohexane containing 20% by mass of dihydrohexane containing diaminohexane (TMDAH) (manufactured by AZ Electronic Materials, NAX120-20) was mixed at a ratio of 4: 1 (mass ratio), and the dry film thickness was adjusted. Therefore, it was appropriately diluted with dibutyl ether to prepare a coating solution.
  • the coating solution was applied onto the first film substrate by spin coating so that the dry film thickness was 150 nm, and dried at 80 ° C. for 2 minutes.
  • the shortest distance between the vacuum ultraviolet irradiation apparatus (external layer surface of the sample and the excimer lamp tube surface) having an Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a wavelength of 172 nm 3 mm), and a vacuum ultraviolet ray irradiation treatment was performed with a vacuum ultraviolet ray irradiation energy amount (irradiation amount) of 2.5 J / cm 2 .
  • the 1st gas barrier layer which consists of a polysilazane modified layer was formed on the 1st main surface of the 1st film base material.
  • the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C.
  • the energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation step was measured using a 172 nm sensor head using an ultraviolet integrated light meter: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics.
  • the sensor head was installed at the center of the sample stage of the vacuum ultraviolet irradiation apparatus so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head was 3 mm, and the atmosphere in the apparatus chamber was Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the vacuum ultraviolet irradiation step, and the sample stage was moved at a speed of 0.5 m / min.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement. Based on the irradiation energy obtained by this measurement, the moving speed of the sample stage was adjusted so that the above-mentioned irradiation energy was obtained.
  • the vacuum ultraviolet irradiation was performed after aging for 10 minutes.
  • Second Gas Barrier Film Formation of Second Gas Barrier Layer
  • an Optsaver STC3 without an adhesive layer
  • the gas barrier layer (2nd gas barrier layer) which consists of a polysilazane modified layer was produced by the method similar to the above-mentioned 1st gas barrier property film in the surface in which the light extraction layer of this film base material was not formed.
  • a second gas barrier film having a second gas barrier layer formed on the second film substrate was produced.
  • ITO indium tin oxide having a thickness of 150 nm was formed by sputtering on the first gas barrier layer of the light extraction film, and patterned by photolithography to produce a first electrode.
  • each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
  • a hole-injecting hole transporting material serving as both a hole-injecting layer and a hole-transporting layer made of ⁇ -NPD is heated by energizing a heating boat containing ⁇ -NPD represented by the following structural formula as a hole-transporting injecting material.
  • a layer was formed on the first electrode. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 140 nm.
  • each of the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were energized independently, respectively.
  • a light emitting layer composed of the photoluminescent compound Ir-4 was formed on the hole transport injection layer.
  • the layer thickness was 30 nm.
  • a hole-blocking layer made of BAlq was formed on the light-emitting layer by heating a heated boat containing BAlq represented by the following structural formula as a hole-blocking material.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
  • a heating boat containing the following compound 10 and a heating boat containing potassium fluoride are energized independently to form an electron transport layer composed of the compound 10 and potassium fluoride on the hole blocking layer. did.
  • the layer thickness was 30 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
  • a sealing member having the same configuration as that of the first gas barrier film is prepared, and a thermosetting liquid adhesive (epoxy resin) is thickened as a sealing resin layer on the gas barrier layer side of the sealing member. Formed at 25 ⁇ m. And the sealing member which provided this sealing resin layer was piled up on the sample in which even the 2nd electrode was formed.
  • the sealing member has a sealing resin layer forming surface of the sealing member continuous to the gas barrier film side of the organic EL element so that the end portions of the extraction portions of the first electrode and the second electrode come out. Superimposed.
  • the sample to which the sealing member was bonded was placed in a decompression device, and pressed at 90 ° C. under a decompression condition of 0.1 MPa and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
  • the above sealing step is performed under an atmospheric pressure of nitrogen having a moisture content of 1 ppm or less, in accordance with JIS B 9920, with a measured cleanliness of class 100, a dew point temperature of ⁇ 80 ° C. or less, and an oxygen concentration of 0.8 ppm or less I went there.
  • an organic EL element was produced on the light extraction film, and an organic EL light emitting device of Sample 101 was produced.
  • the description regarding formation of the extraction part from a 1st electrode and a 2nd electrode was abbreviate
  • Table 1 below shows the configuration of the light extraction films of the samples 101 to 108 described above.
  • Table 1 the laminated structure of the light extraction film is shown from the side where the organic EL element is formed, and the polysilazane modified layer constituting the gas barrier layer is expressed as PHPS.
  • the Ca method evaluation sample (type evaluated by permeation concentration) prepared as described below was stored in an 85 ° C. and 85% RH environment, and the corrosion rate of Ca was observed at regular intervals. After 1 hour, 5 hours, 10 hours, 20 hours, and thereafter, observation and transmission density measurement (average of 4 points) were performed every 20 hours, and the measured transmission density was less than 50% of the initial transmission density value. The observation time at the time was used as an index of storage stability of the organic EL light emitting device. 5: 400 hours or more 4: 300 hours or more and less than 400 hours 3: 200 hours or more and less than 300 hours 2: 100 hours or more and less than 200 hours 1: 1: 100 hours or less
  • a 50 mm ⁇ 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned.
  • Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center of the glass plate using the vacuum evaporation apparatus by an LS technology company.
  • the thickness of Ca was 80 nm.
  • the Ca vapor-deposited glass plate was moved into the glove box, placed so that the sealing resin layer surface of the gas barrier film and the Ca vapor-deposited surface of the glass plate were in contact, and bonded by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and the sheet-like adhesive was cured for 30 minutes to produce a Ca method evaluation cell.
  • Luminescence efficiency Each of the produced organic EL light emitting devices was turned on at a constant current density of 2.5 mA / cm 2 at room temperature (25 ° C.), and a spectral radiance meter CS-2000 (manufactured by Konica Minolta) was used. The light emission luminance of each organic EL light emitting device was measured, and the light emission efficiency (power efficiency) at the current value was determined. The light emission efficiency was evaluated according to the following criteria with respect to a relative value with the light emission efficiency of the organic EL light emitting device of Sample 106 as 100.
  • the captured image was cut out in a 2 mm square, and the presence or absence of dark spots was observed for each image. From the observation results, the ratio of the dark spot generation area to the light emission area was determined, and the dark spot resistance was evaluated according to the following criteria.
  • Table 2 shows the evaluation results of the light extraction films of the samples 101 to 108 and the storage stability (Ca method), mass change rate, bubbles, luminous efficiency, and folding storage stability in the organic EL light emitting device.
  • an organic EL light emitting device using a light extraction film having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / second gas barrier layer / second film substrate / light extraction layer] 101, sample 103) is an organic material using a light extraction film having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / light extraction layer / second film substrate / second gas barrier layer].
  • the result of the storage stability is better than that of the EL light emitting device (sample 102, sample 104). Further, the organic EL light emitting devices of the sample 101 and the sample 103 have better luminous efficiency than the organic EL light emitting devices of the sample 102 and the sample 104. Therefore, by interposing a gas barrier layer between the light extraction layer and the pressure-sensitive adhesive layer and disposing the light extraction layer outside the light extraction film, the storability of the organic EL light emitting device is improved and the light emission efficiency is also improved. To do. That is, with the above configuration, a light extraction film capable of improving reliability can be configured, and further, an organic EL light emitting device capable of achieving both reliability and light emission efficiency can be configured.
  • the results of bubble generation amount, storage stability (Ca method), and folding storage stability are correlated with the results of mass change rate.
  • Table 2 the results of the bubble generation amount, storage stability (Ca method) and folding storage stability of the sample 101 using the adhesive with the smallest mass change rate are the best, and the adhesive with the largest mass change rate is The results of the bubble generation amount, storage stability (Ca method) and folding storage stability of the sample 106 used are the lowest.
  • each evaluation result tends to be better as the mass change rate is smaller.
  • the smaller the mass change rate of the pressure-sensitive adhesive of the light extraction film the less bubbles were generated.
  • the tendency for the preservability of an organic electroluminescent light emitting device to improve was acquired, so that there were few bubble generation
  • SYMBOLS 10 Light extraction film, 11 ... 1st film base material, 12 ... 1st gas barrier layer, 13 ... Adhesive layer, 14 ... 2nd film base material, 15 ... 1st 2 gas barrier layers, 16 ... light extraction layer, 17 ... antistatic layer, 18 ... first gas barrier film, 19 ... second gas barrier film, 20 ... organic EL light emitting device, 21 ... Organic EL element, 24 ... Transparent electrode, 25 ... Counter electrode, 26 ... Light emitting unit 26a ... Hole injection layer, 26b ... Hole transport layer, 26c ... Light emission Layer, 26d ... electron transport layer, 26e ... electron injection layer

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

To provide a light extraction film whereby reliability can be improved. A light extraction film of the present invention is configured by being provided with: a first gas barrier layer; a second gas barrier layer; an adhesive layer containing at least one type of resin selected from among epoxy resins and acrylic resins; and a light extraction layer. The first gas barrier layer and the second gas barrier layer are laminated to each other with the adhesive layer therebetween, and the first gas barrier layer or the second gas barrier layer is disposed between the light extraction layer and the adhesive layer.

Description

光取り出しフィルム、及び、有機エレクトロルミネッセンス発光装置Light extraction film and organic electroluminescence light emitting device
 本発明は、光取り出しフィルム、及び、光取り出しフィルムを有する有機エレクトロルミネッセンス発光装置に係わる。 The present invention relates to a light extraction film and an organic electroluminescence light emitting device having the light extraction film.
 有機材料のエレクトロルミネッセンス(electroluminescence:以下、単にELともいう)を利用した有機エレクトロルミネッセンス素子は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、及び軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として、薄型・軽量な樹脂基材にガスバリア層を有するガスバリア性フィルムを用いた、有機EL素子が注目されている。 Organic electroluminescence devices using organic electroluminescence (hereinafter also simply referred to as EL) are thin-film, completely solid-state devices that can emit light at a low voltage of several volts to several tens of volts. It has many excellent features such as high luminous efficiency, thinness and light weight. Therefore, an organic EL element using a gas barrier film having a gas barrier layer on a thin and lightweight resin base material as a backlight of various displays, a display plate such as a signboard or an emergency light, and a surface light emitter such as an illumination light source. Attention has been paid.
 このような有機EL素子において、より発光効率を高めるために、基材として光取り出しフィルムを用いることが提案されている(例えば、特許文献1参照)。特許文献1に記載の光取り出しフィルムでは、有機EL素子から放出される光を外部に取り出すために、凹凸面を有するレンズ層が光取り出し層として設けられている。そして、このレンズ層からなる光取り出し層が粘着剤層によって基材の一方の面に貼り合わされている。さらに、特許文献1には、基材の光取り出し層とは逆側の面に有機EL素子が形成された、有機EL発光装置が記載されている。 In such an organic EL element, it has been proposed to use a light extraction film as a base material in order to further increase the luminous efficiency (see, for example, Patent Document 1). In the light extraction film described in Patent Document 1, a lens layer having an uneven surface is provided as a light extraction layer in order to extract light emitted from the organic EL element to the outside. And the light extraction layer which consists of this lens layer is bonded together by the one surface of the base material with the adhesive layer. Furthermore, Patent Document 1 describes an organic EL light-emitting device in which an organic EL element is formed on the surface of the base material opposite to the light extraction layer.
特開2015-170696号公報JP2015-170696A
 しかしながら、上述の光取り出しフィルムでは、レンズ層からなる光取り出し層が粘着剤層と直に接する構造である。
 このように、光取り出し層が粘着剤層と直に接する構造を光取り出しフィルムに適用した場合には、光取り出しフィルムを作製してからの時間経過とともに、粘着剤層からのアウトガス等によって光取り出し層が劣化し、光取り出し層の透明性が大きく低下してしまう。そして、この光取り出し層の透明性の低下により、光取り出しフィルムの透明性が低下してしまう。また、この光取り出しフィルム上に有機EL素子を設けた場合には、光取り出しフィルムの透明性の低下によって、有機EL発光装置の発光効率が低下してしまう。従って、光取り出し層の劣化を抑制することにより、光透過率の低下を抑制した信頼性の高い光取り出しフィルム、及び、発光効率の低下を抑制することが可能な有機EL発光装置が求められている。
However, the light extraction film described above has a structure in which the light extraction layer composed of the lens layer is in direct contact with the pressure-sensitive adhesive layer.
As described above, when a structure in which the light extraction layer is in direct contact with the pressure-sensitive adhesive layer is applied to the light extraction film, light is extracted by the outgas from the pressure-sensitive adhesive layer as time passes after the light extraction film is produced. The layer deteriorates and the transparency of the light extraction layer is greatly reduced. And transparency of a light extraction film will fall by the fall of transparency of this light extraction layer. Moreover, when an organic EL element is provided on this light extraction film, the light emission efficiency of the organic EL light-emitting device decreases due to a decrease in transparency of the light extraction film. Accordingly, there is a need for a highly reliable light extraction film that suppresses a decrease in light transmittance by suppressing deterioration of the light extraction layer, and an organic EL light emitting device that can suppress a decrease in light emission efficiency. Yes.
 上述した問題の解決のため、本発明においては、信頼性の向上が可能な光取り出しフィルム、及び、発光効率の低下を抑制することが可能な有機エレクトロルミネッセンス発光装置を提供するものである。 In order to solve the above-described problems, the present invention provides a light extraction film capable of improving reliability and an organic electroluminescence light emitting device capable of suppressing a decrease in light emission efficiency.
 本発明の光取り出しフィルムは、第1ガスバリア層と、第2ガスバリア層と、エポキシ系樹脂、及び、アクリル系樹脂から選ばれる少なくとも1種の樹脂を含む粘着剤層と、光取り出し層とを備え、第1ガスバリア層と第2ガスバリア層とが粘着剤層を介して積層され、光取り出し層と粘着剤層との間に、第1ガスバリア層、又は、第2ガスバリア層が介在する。
 また、本発明の有機EL発光装置は、上記光取り出しフィルム上に有機EL素子を備える。
The light extraction film of the present invention includes a first gas barrier layer, a second gas barrier layer, an adhesive layer containing at least one resin selected from an epoxy resin and an acrylic resin, and a light extraction layer. The first gas barrier layer and the second gas barrier layer are laminated via an adhesive layer, and the first gas barrier layer or the second gas barrier layer is interposed between the light extraction layer and the adhesive layer.
Moreover, the organic EL light-emitting device of the present invention includes an organic EL element on the light extraction film.
 本発明によれば、信頼性の向上が可能な光取り出しフィルム、及び、発光効率の低下を抑制することが可能な有機エレクトロルミネッセンス発光装置を提供することができる。 According to the present invention, it is possible to provide a light extraction film capable of improving reliability and an organic electroluminescence light emitting device capable of suppressing a decrease in light emission efficiency.
光取り出しフィルムの構成を示す図である。It is a figure which shows the structure of a light extraction film. 有機EL発光装置の構成を示す図である。It is a figure which shows the structure of an organic electroluminescent light-emitting device. 実施例で用いた粘着剤の体積変化率の測定グラフである。It is a measurement graph of the volume change rate of the adhesive used in the Example. 実施例で用いた粘着剤の体積変化率の測定グラフである。It is a measurement graph of the volume change rate of the adhesive used in the Example. 実施例で用いた粘着剤の体積変化率の測定グラフである。It is a measurement graph of the volume change rate of the adhesive used in the Example. 実施例で用いた粘着剤の体積変化率の測定グラフである。It is a measurement graph of the volume change rate of the adhesive used in the Example.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.光取り出しフィルムの実施の形態
2.有機エレクトロルミネッセンス発光装置の実施の形態
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. Embodiment 2 of light extraction film Embodiment of organic electroluminescence light emitting device
〈1.光取り出しフィルムの実施の形態〉
 以下、光取り出しフィルムの実施の形態について説明する。
 光取り出しフィルムは、第1ガスバリア層と、第2ガスバリア層と、光取り出し層と、粘着剤層とを有する。そして、第1ガスバリア層と第2ガスバリア層とが粘着剤層を介して積層されている。さらに、光取り出し層と粘着剤層との間に、第1ガスバリア層、第2ガスバリア層の少なくともいずれか一方が介在している。
<1. Embodiment of Light Extraction Film>
Hereinafter, embodiments of the light extraction film will be described.
The light extraction film has a first gas barrier layer, a second gas barrier layer, a light extraction layer, and an adhesive layer. And the 1st gas barrier layer and the 2nd gas barrier layer are laminated | stacked through the adhesive layer. Furthermore, at least one of the first gas barrier layer and the second gas barrier layer is interposed between the light extraction layer and the pressure-sensitive adhesive layer.
 光取り出しフィルムは、第1ガスバリア層と第2ガスバリア層とが粘着剤層を介して貼り合わされ、ガスバリア層が積層された構成を有する。光取り出しフィルムは、積層された複数のガスバリア層を有することにより、ガスバリア層を単層で有する場合に比べて、ガスバリア性を高めることができる。 The light extraction film has a configuration in which the first gas barrier layer and the second gas barrier layer are bonded together via an adhesive layer, and the gas barrier layer is laminated. Since the light extraction film has a plurality of gas barrier layers stacked, the gas barrier property can be improved as compared with a case where the gas barrier layer is a single layer.
 さらに、光取り出しフィルムは、光取り出し層を有することにより、この光取り出しフィルム上に発光素子を設けた場合等に、素子からの光取り出し効率を向上させることができる。そして、光取り出し層と粘着剤層との間に第1ガスバリア層又は第2ガスバリア層が介在することにより、アウトガスによる光取り出し層の変色等の影響を抑制することができ、光取り出しフィルムの透過率や光取り出し効率の低下を充分に抑制することができる。 Furthermore, since the light extraction film has a light extraction layer, the light extraction efficiency from the element can be improved when a light emitting element is provided on the light extraction film. And by interposing a 1st gas barrier layer or a 2nd gas barrier layer between a light extraction layer and an adhesive layer, the influence of discoloration etc. of the light extraction layer by outgas can be suppressed, and permeation | transmission of a light extraction film The decrease in the rate and the light extraction efficiency can be sufficiently suppressed.
 また、粘着剤層は、エポキシ系樹脂、及び、アクリル系樹脂から選ばれる少なくとも1種の樹脂を含む。そして、粘着剤層を構成する粘着剤は、温度領域30℃から140℃まで、昇温速度5℃/分で加熱したときの質量変化率が0.50%以下であることが好ましい。 The pressure-sensitive adhesive layer contains at least one resin selected from an epoxy resin and an acrylic resin. And it is preferable that the mass change rate when the adhesive which comprises an adhesive layer is heated from the temperature range 30 degreeC to 140 degreeC with the temperature increase rate of 5 degree-C / min is 0.50% or less.
 光取り出しフィルムに用いる粘着剤が上記条件を満たすことにより、粘着剤層から発生するアウトガスが極めて少ない。このため、アウトガスによる光取り出し層の変色等への影響を抑制することができ、光取り出しフィルムの透過率や光取り出し効率の低下を充分に抑制することができる。さらに、光取り出しフィルムを有機エレクトロルミネッセンス(EL)素子の作製に適用した場合にも、製造工程中において気泡の発生を抑制することができ、発光効率の低下を抑制することができる。 When the pressure-sensitive adhesive used for the light extraction film satisfies the above conditions, outgas generated from the pressure-sensitive adhesive layer is extremely small. For this reason, the influence on discoloration etc. of the light extraction layer by outgas can be suppressed, and the fall of the transmittance | permeability and light extraction efficiency of a light extraction film can fully be suppressed. Furthermore, even when the light extraction film is applied to the production of an organic electroluminescence (EL) element, generation of bubbles can be suppressed during the manufacturing process, and a decrease in luminous efficiency can be suppressed.
 また、光取り出しフィルムにおいて第1ガスバリア層は、フィルム基材(第1フィルム基材)の一方の面(第1主面)に形成され、さらに、このフィルム基材(第1フィルム基材)の他方の面(第2主面)に粘着剤層が形成されていることが好ましい。さらに、光取り出しフィルムにおいて第2ガスバリア層は、粘着剤層の上記フィルム基材(第1フィルム基材)と反対側の主面側に配置されていることが好ましい。 Further, in the light extraction film, the first gas barrier layer is formed on one surface (first main surface) of the film base material (first film base material), and further, the film base material (first film base material) It is preferable that an adhesive layer is formed on the other surface (second main surface). Furthermore, in the light extraction film, the second gas barrier layer is preferably disposed on the main surface side of the pressure-sensitive adhesive layer opposite to the film base material (first film base material).
 さらに、光取り出しフィルムは、第1主面側に第1ガスバリア層が形成された第1フィルム基材と、第1主面側に第2ガスバリア層が形成された第2フィルム基材とが、粘着剤層で貼り合わされている構成が好ましい。第1フィルム基材では、第2主面側に粘着剤層が設けられ、第2フィルム基材側では、第2ガスバリア層側に粘着剤層が設けられていることが好ましい。具体的には、第2フィルム基材、第2ガスバリア層、粘着剤層、第1フィルム基材、及び、第1ガスバリア層の順に積層されていることが好ましい。 Furthermore, the light extraction film includes a first film base material in which a first gas barrier layer is formed on the first main surface side, and a second film base material in which a second gas barrier layer is formed on the first main surface side. The structure bonded by the adhesive layer is preferable. In the first film substrate, it is preferable that an adhesive layer is provided on the second main surface side, and on the second film substrate side, an adhesive layer is provided on the second gas barrier layer side. Specifically, the second film base material, the second gas barrier layer, the pressure-sensitive adhesive layer, the first film base material, and the first gas barrier layer are preferably laminated in this order.
 なお、光取り出しフィルムは、第1ガスバリア層と第2ガスバリア層との少なくとも2層のガスバリア層と、この2層のガスバリア層との間に配置された粘着剤層とを有していればよい。このため、光取り出しフィルムは、これら以外のガスバリア層がさらに積層されていてもよい。さらに積層されるガスバリア層も、上述の粘着剤層を介して積層されていることが好ましい。また、ガスバリア層やフィルム基材以外の層が、ガスバリア層と粘着剤層との間や、それ以外の層間に介在していてもよい。 The light extraction film only needs to have at least two gas barrier layers of the first gas barrier layer and the second gas barrier layer, and an adhesive layer disposed between the two gas barrier layers. . For this reason, the light extraction film may be further laminated with a gas barrier layer other than these. Further, the gas barrier layer to be laminated is also preferably laminated via the above-mentioned pressure-sensitive adhesive layer. In addition, a layer other than the gas barrier layer or the film substrate may be interposed between the gas barrier layer and the pressure-sensitive adhesive layer or between other layers.
 光取り出しフィルムの全光線透過率は、70%以上であることが好ましい。全光線透過率は、JIS K7105:1981に記載の方法に準拠し、積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出する方法を用いることができる。 The total light transmittance of the light extraction film is preferably 70% or more. The total light transmittance is based on the method described in JIS K7105: 1981. The total light transmittance and the amount of scattered light are measured using an integrating sphere light transmittance measuring device, and the diffuse transmittance is subtracted from the total light transmittance. The calculation method can be used.
[光取り出しフィルムの構成]
 図1に光取り出しフィルムの概略構成を示す。図1に示す光取り出しフィルム10は、第1フィルム基材11と、第1フィルム基材11の第1主面に形成された第1ガスバリア層12とからなる第1ガスバリア性フィルム18を有する。さらに、光取り出しフィルム10は、第2フィルム基材14と、第2フィルム基材14の第1主面に形成された第2ガスバリア層15とからなる第2ガスバリア性フィルム19を有する。そして、第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とが、粘着剤層13によって貼り合わされている。
[Configuration of light extraction film]
FIG. 1 shows a schematic configuration of the light extraction film. The light extraction film 10 shown in FIG. 1 has a first gas barrier film 18 composed of a first film substrate 11 and a first gas barrier layer 12 formed on the first main surface of the first film substrate 11. Furthermore, the light extraction film 10 includes a second gas barrier film 19 including a second film base 14 and a second gas barrier layer 15 formed on the first main surface of the second film base 14. The first gas barrier film 18 and the second gas barrier film 19 are bonded together by the pressure-sensitive adhesive layer 13.
 粘着剤層13は、第1ガスバリア性フィルム18の第1フィルム基材11の第2主面側と、第2ガスバリア層15の表面(第2フィルム基材14と反対側の面)との間に設けられている。このため、光取り出しフィルム10では、第1フィルム基材11の第2主面と、第2フィルム基材14の第1主面とが対向するように貼り合わされている。 The pressure-sensitive adhesive layer 13 is between the second main surface side of the first film substrate 11 of the first gas barrier film 18 and the surface of the second gas barrier layer 15 (surface opposite to the second film substrate 14). Is provided. For this reason, in the light extraction film 10, it bonds together so that the 2nd main surface of the 1st film base material 11 and the 1st main surface of the 2nd film base material 14 may oppose.
 また、光取り出しフィルム10は、第2フィルム基材14の第2主面上に光取り出し層16を有する。さらに、光取り出し層16の第2ガスバリア性フィルム19が設けられている面と反対側の面に、帯電防止層17が設けられている。すなわち、光取り出しフィルム10は、[帯電防止層17/光取り出し層16/第2フィルム基材14/第2ガスバリア層15/粘着剤層13/第1フィルム基材11/第1ガスバリア層12]の積層構造を有する。 Further, the light extraction film 10 has a light extraction layer 16 on the second main surface of the second film substrate 14. Further, an antistatic layer 17 is provided on the surface of the light extraction layer 16 opposite to the surface on which the second gas barrier film 19 is provided. That is, the light extraction film 10 is [antistatic layer 17 / light extraction layer 16 / second film substrate 14 / second gas barrier layer 15 / adhesive layer 13 / first film substrate 11 / first gas barrier layer 12]. It has the laminated structure.
 図1に示す光取り出しフィルム10は、第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とが積層された構成である。このため、ガスバリア層を単層で備える構成よりも、高いガスバリア性を有する。 The light extraction film 10 shown in FIG. 1 has a configuration in which a first gas barrier film 18 and a second gas barrier film 19 are laminated. For this reason, it has gas barrier property higher than the structure provided with a gas barrier layer by a single layer.
 また、光取り出しフィルム10は、光取り出し層16と粘着剤層13との間に、第2ガスバリア性フィルム19の第2ガスバリア層15が介在する構成である。粘着剤層13で発生するアウトガスは光取り出し層16に変色等の劣化を発生させ、光取り出しフィルム10に光透過率の低下をもたらすと考えられる。このため、光取り出し層16と粘着剤層13との間に、第2ガスバリア層15を介在させることにより、アウトガスによる光取り出し層16への影響を抑制し、光取り出しフィルム10の光透過率の低下を抑制することができる。 The light extraction film 10 has a configuration in which the second gas barrier layer 15 of the second gas barrier film 19 is interposed between the light extraction layer 16 and the pressure-sensitive adhesive layer 13. It is considered that the outgas generated in the pressure-sensitive adhesive layer 13 causes the light extraction layer 16 to deteriorate such as discoloration and causes the light extraction film 10 to have a reduced light transmittance. For this reason, by interposing the second gas barrier layer 15 between the light extraction layer 16 and the pressure-sensitive adhesive layer 13, the influence of the outgas on the light extraction layer 16 is suppressed, and the light transmittance of the light extraction film 10 is reduced. The decrease can be suppressed.
 なお、光取り出しフィルム10は、さらに粘着剤層を介してフィルム基材とガスバリア層とを積層することにより、より多層構造の光取り出しフィルムを構成することができる。例えば、光取り出しフィルム10の第1ガスバリア性フィルム18における第1ガスバリア層12上に、新たなガスバリア層やガスバリア性フィルムを設け、さらにガスバリア層が積層された構成とすることができる。より具体的には、第1ガスバリア層12上に新たな粘着剤層(第2粘着剤層)を介して、ガスバリア層(第3ガスバリア層)を有するフィルム基材(第3フィルム基材)を貼り合せることができる。フィルム基材(第3フィルム基材)のガスバリア層(第3ガスバリア層)が形成されている面(第1主面)と逆側の面(第2主面)側に、粘着剤層(第2粘着剤層)を配置することが好ましい。 In addition, the light extraction film 10 can comprise a light extraction film having a more multilayer structure by further laminating a film substrate and a gas barrier layer via an adhesive layer. For example, a new gas barrier layer or a gas barrier film may be provided on the first gas barrier layer 12 of the first gas barrier film 18 of the light extraction film 10 and a gas barrier layer may be further laminated. More specifically, a film substrate (third film substrate) having a gas barrier layer (third gas barrier layer) on the first gas barrier layer 12 via a new adhesive layer (second adhesive layer). Can be pasted together. On the surface (second main surface) opposite to the surface (first main surface) on which the gas barrier layer (third gas barrier layer) of the film base (third film base) is formed, the pressure-sensitive adhesive layer (first 2 adhesive layers) are preferably arranged.
 また、光取り出しフィルム10は、第1フィルム基材11や第2フィルム基材14等の、ガスバリア層を形成するためのフィルム基材を備えていなくてもよい。例えば、光取り出しフィルム10において、第1フィルム基材11及び第2フィルム基材14いずれか一方のみを有する構成や、両方のフィルム基材を有さない構成であってもよい。 Further, the light extraction film 10 may not include a film base material for forming a gas barrier layer, such as the first film base material 11 and the second film base material 14. For example, in the light extraction film 10, the structure which has only one of the 1st film base material 11 and the 2nd film base material 14, or the structure which does not have both film base materials may be sufficient.
 但し、光取り出しフィルム10の製造では、基材上にガスバリア層を形成し、このガスバリア層を形成したフィルム基材同士を粘着剤層で貼り合せる方法が容易、且つ効率的である。特に、第2ガスバリア性フィルム19においては、第2フィルム基材14の一方の面に第2ガスバリア層15を形成し、第2フィルム基材14の他方の面に光取り出し層16を形成することが製造工程上好ましい。このため、図1に示す積層順とすることが好ましい。 However, in the production of the light extraction film 10, it is easy and efficient to form a gas barrier layer on the substrate and to bond the film substrates on which the gas barrier layer is formed with an adhesive layer. In particular, in the second gas barrier film 19, the second gas barrier layer 15 is formed on one surface of the second film substrate 14, and the light extraction layer 16 is formed on the other surface of the second film substrate 14. Is preferable in the manufacturing process. Therefore, the stacking order shown in FIG. 1 is preferable.
 また、光取り出しフィルム10の積層順は、好ましくは図1の順であるが、光取り出しフィルム10において、第1ガスバリア性フィルム18や第2ガスバリア性フィルム19の積層順が異なっていてもよい。例えば、第2ガスバリア性フィルム19において、第2フィルム基材14の一方の面に粘着剤層13が形成され、他方の面に第2ガスバリア層15が形成され、第2ガスバリア層15上に光取り出し層16が形成される構成とすることも可能である。このような第2フィルム基材14と光取り出し層16との間に第2ガスバリア層15が介在する構成においても、粘着剤層13を介して第1ガスバリア層12と第2ガスバリア層15とが積層され、粘着剤層13と光取り出し層16との間に第2ガスバリア層15が介在する。このため、光取り出しフィルム10における上記効果を得ることができる。 Further, the stacking order of the light extraction film 10 is preferably the order shown in FIG. 1, but in the light extraction film 10, the stacking order of the first gas barrier film 18 and the second gas barrier film 19 may be different. For example, in the second gas barrier film 19, the pressure-sensitive adhesive layer 13 is formed on one surface of the second film substrate 14, the second gas barrier layer 15 is formed on the other surface, and light is applied on the second gas barrier layer 15. A configuration in which the extraction layer 16 is formed is also possible. Even in such a configuration in which the second gas barrier layer 15 is interposed between the second film substrate 14 and the light extraction layer 16, the first gas barrier layer 12 and the second gas barrier layer 15 are interposed via the pressure-sensitive adhesive layer 13. The second gas barrier layer 15 is interposed between the pressure-sensitive adhesive layer 13 and the light extraction layer 16. For this reason, the said effect in the light extraction film 10 can be acquired.
[フィルム基材]
 第1フィルム基材11及び第2フィルム基材14は、第1ガスバリア層12及び第2ガスバリア層15の支持体である。第1ガスバリア層12及び第2ガスバリア層15を支持体である第1フィルム基材11及び第2フィルム基材14上に設けることにより、光取り出しフィルム10の製造工程における作業性が向上する。例えば、第1ガスバリア層12及び第2ガスバリア層15の成膜性や、粘着剤層13で貼り合せる際の作業性が向上する。第1フィルム基材11と第2フィルム基材14とは、同じ材料から形成されていてもよく、異なる材料から形成されていてもよい。
[Film substrate]
The first film substrate 11 and the second film substrate 14 are supports for the first gas barrier layer 12 and the second gas barrier layer 15. By providing the 1st gas barrier layer 12 and the 2nd gas barrier layer 15 on the 1st film base material 11 and the 2nd film base material 14 which are a support body, the workability | operativity in the manufacturing process of the light extraction film 10 improves. For example, the film formability of the first gas barrier layer 12 and the second gas barrier layer 15 and the workability at the time of bonding with the adhesive layer 13 are improved. The 1st film base material 11 and the 2nd film base material 14 may be formed from the same material, and may be formed from a different material.
 第1フィルム基材11及び第2フィルム基材14としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。第1フィルム基材11と第2フィルム基材14は、単独又は2種以上組み合わせて用いることができる。 Specific examples of the first film substrate 11 and the second film substrate 14 include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, Polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin Examples thereof include base materials including thermoplastic resins such as copolymers, fluorene ring-modified polycarbonate resins, alicyclic ring-modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds. The 1st film base material 11 and the 2nd film base material 14 can be used individually or in combination of 2 or more types.
 第1フィルム基材11と第2フィルム基材14は耐熱性を有する材料からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下、且つ、ガラス転移温度(Tg)が100℃以上300℃以下の材料が使用される。第1フィルム基材11と第2フィルム基材14のTgや線膨張係数は、添加剤などによって調整することができる。 The first film substrate 11 and the second film substrate 14 are preferably made of a heat-resistant material. Specifically, a material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used. The Tg and linear expansion coefficient of the first film base material 11 and the second film base material 14 can be adjusted by an additive or the like.
 光取り出しフィルム10を用いて有機EL素子を作製する場合に、光取り出しフィルム10が150℃以上の工程に曝されることがある。この場合、光取り出しフィルム10における基材の線膨張係数が100ppm/Kを超えると、上述の熱工程で基板寸法が安定せず、熱膨張及び収縮に伴い、遮断性性能が劣化する。或いは、熱工程に耐えられないという不具合が生じやすい。第1フィルム基材11と第2フィルム基材14の線膨張係数が15ppm/K未満では、可撓性や柔軟性が低下し、光取り出しフィルム10ガラスのように割れてしまう場合がある。 When producing an organic EL element using the light extraction film 10, the light extraction film 10 may be exposed to a process at 150 ° C. or higher. In this case, when the linear expansion coefficient of the base material in the light extraction film 10 exceeds 100 ppm / K, the substrate dimensions are not stabilized in the above-described thermal process, and the barrier performance is deteriorated with thermal expansion and contraction. Or it is easy to produce the malfunction that it cannot endure a heat process. If the linear expansion coefficient of the 1st film base material 11 and the 2nd film base material 14 is less than 15 ppm / K, flexibility and a softness | flexibility will fall and it may break like the light extraction film 10 glass.
 第1フィルム基材11及び第2フィルム基材14として用いることができる熱可塑性樹脂のより好ましい具体例としては、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。 More preferable specific examples of the thermoplastic resin that can be used as the first film substrate 11 and the second film substrate 14 include polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate ( PC: 140 ° C.), alicyclic polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C., manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C.), polyethersulfone (PES: 220 ° C.), polysulfone (PSF) : 190 ° C.), cycloolefin copolymer (COC: compound described in JP-A-2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C., manufactured by Mitsubishi Gas Chemical Company), fluorene ring-modified polycarbonate (BCF-PC: JP 2000 227603 compound: 225 ° C., alicyclic modified polycarbonate (IP-PC: JP 2000-227603 compound: 205 ° C.), acryloyl compound (JP 2002-80616 Compound: 300 ° C. or higher), etc. (in parentheses indicate Tg).
 また、第1フィルム基材11と第2フィルム基材14は、未延伸フィルムでもよく、延伸フィルムでもよい。第1フィルム基材11と第2フィルム基材14は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落[0051]~[0055]の記載された事項を適宜採用することができる。 The first film substrate 11 and the second film substrate 14 may be unstretched films or stretched films. The 1st film base material 11 and the 2nd film base material 14 can be manufactured by a conventionally well-known general method. Regarding the production method of these base materials, the matters described in paragraphs [0051] to [0055] of International Publication No. 2013/002026 can be appropriately employed.
 第1フィルム基材11と第2フィルム基材14の表面には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、又は、プラズマ処理等が行われていてもよく、必要に応じて上記処理が組み合わされて行われていてもよい。 Various known processes for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, are performed on the surfaces of the first film substrate 11 and the second film substrate 14. Alternatively, the above processes may be combined as necessary.
 第1フィルム基材11と第2フィルム基材14は、単層でもよいし2層以上の積層構造であってもよい。第1フィルム基材11と第2フィルム基材14が2層以上の積層構造である場合、各第1フィルム基材11と第2フィルム基材14は同じ種類であってもよいし異なる種類であってもよい。第1フィルム基材11と第2フィルム基材14の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。 The first film substrate 11 and the second film substrate 14 may be a single layer or a laminated structure of two or more layers. When the 1st film base material 11 and the 2nd film base material 14 are laminated structure of two or more layers, each 1st film base material 11 and the 2nd film base material 14 may be the same kind, and are different kinds. There may be. The thickness of the first film substrate 11 and the second film substrate 14 (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 μm, more preferably 20 to 150 μm. preferable.
(ハードコート層)
 第1フィルム基材11と第2フィルム基材14は、表面(片面又は両面)にハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独又は2種以上組み合わせて用いることができる。
(Hard coat layer)
The 1st film base material 11 and the 2nd film base material 14 may have a hard-coat layer on the surface (one side or both surfaces). Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used alone or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む材料が好ましく用いられる。この材料を、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層を形成する。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。また、予めハードコート層が形成されている市販の第1フィルム基材11と第2フィルム基材14を用いてもよい。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a material containing a monomer having an ethylenically unsaturated double bond is preferably used. This material is cured by irradiating active energy rays such as ultraviolet rays and electron beams to form a layer containing a cured product of the active energy ray curable resin, that is, a hard coat layer. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. Moreover, you may use the commercially available 1st film base material 11 and the 2nd film base material 14 with which the hard-coat layer was previously formed.
[ガスバリア層]
 第1ガスバリア層12及び第2ガスバリア層15は、ガスバリア性を有する層であれば、特に限定されることなく、従来公知の構成を適用することができる。光取り出しフィルム10において要求されるガスバリア性としては、例えば、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24時間)以下、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が10-3ml/(m・24時間・atm)以下である。光取り出しフィルム10において上記ガスバリア性が実現できるように、第1ガスバリア層12及び第2ガスバリア層15が構成されていればよい。
[Gas barrier layer]
The first gas barrier layer 12 and the second gas barrier layer 15 are not particularly limited as long as they have gas barrier properties, and a conventionally known configuration can be applied. The gas barrier property required for the light extraction film 10 is, for example, a water vapor transmission rate (25 ± 0.5 ° C., relative humidity 90 ± 2% RH) measured by a method according to JIS-K-7129-1992. Is 0.01 g / (m 2 · 24 hours) or less, and the oxygen permeability measured by a method according to JIS-K-7126-1987 is 10 -3 ml / (m 2 · 24 hours · atm) or less. . The first gas barrier layer 12 and the second gas barrier layer 15 may be configured so that the gas barrier property can be realized in the light extraction film 10.
 また、要求されるガスバリア性を有していれば、第1ガスバリア層12と第2ガスバリア層15とは、同じ構成であってもよく、異なる構成であってもよい。さらに、第1ガスバリア層12及び第2ガスバリア層15は、それぞれ単層で形成されていてもよく、複数の層からなる積層体であってもよい。 Further, the first gas barrier layer 12 and the second gas barrier layer 15 may have the same configuration or different configurations as long as they have the required gas barrier properties. Further, each of the first gas barrier layer 12 and the second gas barrier layer 15 may be formed as a single layer, or may be a laminate including a plurality of layers.
[ケイ素含有層]
 光取り出しフィルム10を構成する第1ガスバリア層12と第2ガスバリア層15の少なくとも1層以上は、ケイ素含有化合物を含有する塗布液を、塗布及び乾燥することで得られるケイ素含有層を有することが好ましい。特に、ケイ素含有層として、ポリシラザンを含む塗膜の改質により形成された、ポリシラザン改質層を有することが好ましい。
[Silicon-containing layer]
At least one of the first gas barrier layer 12 and the second gas barrier layer 15 constituting the light extraction film 10 has a silicon-containing layer obtained by applying and drying a coating liquid containing a silicon-containing compound. preferable. In particular, the silicon-containing layer preferably has a polysilazane modified layer formed by modifying a coating film containing polysilazane.
 ポリシラザン改質層とは、ポリシラザン化合物を含む塗布液から形成した塗布膜に、エキシマ光等のエネルギー線を照射して改質されたポリシラザン(ポリシラザン改質部)を、少なくとも一部に有する層である。一般的には、エネルギー線を照射した表面にポリシラザンの改質部が形成される。 The polysilazane modified layer is a layer having at least a part of polysilazane (polysilazane modified portion) modified by irradiating an energy beam such as excimer light to a coating film formed from a coating liquid containing a polysilazane compound. is there. Generally, a modified part of polysilazane is formed on the surface irradiated with energy rays.
 光取り出しフィルム10は、ポリシラザン改質層からなるガスバリア層を有することにより、高いバリア性を確保することができる。また、ポリシラザン改質層は高い平滑性を有するため、ポリシラザン改質層上に有機EL素子を形成する場合にも、ガスバリア層の凹凸に起因する不良発生を抑制することができる。 The light extraction film 10 can ensure high barrier properties by having a gas barrier layer composed of a polysilazane modified layer. Moreover, since the polysilazane modified layer has high smoothness, the occurrence of defects due to the irregularities of the gas barrier layer can be suppressed even when an organic EL element is formed on the polysilazane modified layer.
 ケイ素含有化合物を含有する塗布液を、塗布及び乾燥することで得られるケイ素含有層は、特定の組成を有することでガスバリア性を発現する。また、気相成膜法で形成される場合とは異なり、ケイ素含有層は、成膜時にパーティクル等の異物混入がほとんどなくなり、欠陥が非常に少ないガスバリア層を形成することが可能となる。 The silicon-containing layer obtained by applying and drying a coating solution containing a silicon-containing compound has a specific composition and exhibits gas barrier properties. In addition, unlike the case where the silicon-containing layer is formed by a vapor deposition method, the silicon-containing layer is hardly contaminated with particles or the like during film formation, and a gas barrier layer with very few defects can be formed.
 第1ガスバリア層12及び第2ガスバリア層15を構成するケイ素含有層の1層あたりの膜厚(2層以上の積層構造である場合はその総厚)は、ガスバリア性能の観点から、10~1000nmであることが好ましく、50~600nmであることがより好ましく、50~300nmであることがさらに好ましい。この範囲であれば、ガスバリア性と耐久性とのバランスが良好となる。 The film thickness per layer of the silicon-containing layers constituting the first gas barrier layer 12 and the second gas barrier layer 15 (the total thickness in the case of a laminated structure of two or more layers) is 10 to 1000 nm from the viewpoint of gas barrier performance. It is preferably 50 nm to 600 nm, more preferably 50 nm to 300 nm. If it is this range, the balance of gas-barrier property and durability will become favorable.
 ケイ素含有層を形成するためのケイ素含有化合物としては、例えば、ポリシロキサン、ポリシルセスキオキサン、ポリシラザン、ポリシロキサザン、ポリシラン、ポリカルボシラン等を挙げることができる。これらの中でも、ケイ素-窒素結合、ケイ素-水素結合、及び、ケイ素-ケイ素結合からなる群より選ばれる少なくとも1種を有することが好ましい。 Examples of the silicon-containing compound for forming the silicon-containing layer include polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, polycarbosilane, and the like. Among these, it is preferable to have at least one selected from the group consisting of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond.
 ケイ素含有化合物としてより好ましくは、ケイ素-窒素結合とケイ素-水素結合とを有するポリシラザン、ケイ素-窒素結合を有するポリシロキサザン、ケイ素-水素結合を有するポリシロキサン、ケイ素-水素結合を有するポリシルセスキオキサン、ケイ素-ケイ素結合を有するポリシランを用いることができる。ケイ素-窒素結合、ケイ素-水素結合、及び、ケイ素-ケイ素結合のいずれかを有するケイ素含有化合物を用いることが好ましい。 More preferably, the silicon-containing compound is a polysilazane having a silicon-nitrogen bond and a silicon-hydrogen bond, a polysiloxazan having a silicon-nitrogen bond, a polysiloxane having a silicon-hydrogen bond, and a polysilsesqui having a silicon-hydrogen bond. Oxane, polysilane having a silicon-silicon bond can be used. It is preferable to use a silicon-containing compound having any one of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond.
 ポリシロキサン、ポリシルセスキオキサン、及び、ポリシロキサザンの具体例としては、特開2012-116101号公報の段落[0093]~[0121]に記載の化合物が挙げられる。ポリシロキサンとしては、特に水素化(ハイドロジェン)ポリシロキサンが好ましい。 Specific examples of polysiloxane, polysilsesquioxane, and polysiloxazan include compounds described in paragraphs [0093] to [0121] of JP2012-116101A. As the polysiloxane, hydrogenated (hydrogen) polysiloxane is particularly preferable.
 ポリシランの形態は特に制限されず、非環状ポリシラン(直鎖状ポリシラン、分岐鎖状ポリシラン、網目状ポリシラン等)や、環状ポリシラン等の単独重合体であってもよく、また、ランダム共重合体、ブロック共重合体、交互共重合体、くし型共重合体等の共重合体であってもよい。 The form of polysilane is not particularly limited, and may be a non-cyclic polysilane (linear polysilane, branched polysilane, network polysilane, etc.), a homopolymer such as cyclic polysilane, a random copolymer, It may be a copolymer such as a block copolymer, an alternating copolymer, or a comb copolymer.
 ポリシランが非環状ポリシランである場合は、ポリシランの末端基(末端置換基)は、水素原子であっても、ハロゲン原子(塩素原子等)、アルキル基、ヒドロキシル基、アルコキシ基、シリル基等であってもよい。 When the polysilane is an acyclic polysilane, the terminal group (terminal substituent) of the polysilane may be a hydrogen atom, a halogen atom (such as a chlorine atom), an alkyl group, a hydroxyl group, an alkoxy group, or a silyl group. May be.
 ポリシランの具体例としては、ポリジメチルシラン、ポリ(メチルプロピルシラン)、ポリ(メチルブチルシラン)、ポリ(メチルペンチルシラン)、ポリ(ジブチルシラン)、ポリ(ジヘキシルシラン)等のポリジアルキルシラン、ポリ(ジフェニルシラン)等のポリジアリールシラン、ポリ(メチルフェニルシラン)、ポリ(アルキルアリールシラン)等のホモポリマー、ジメチルシラン-メチルヘキシルシラン共重合体等のジアルキルシランと他のジアルキルシランとの共重合体、フェニルシラン-メチルフェニルシラン共重合体等のアリールシラン-アルキルアリールシラン共重合体、ジメチルシラン-メチルフェニルシラン共重合体、ジメチルシラン-フェニルヘキシルシラン共重合体、ジメチルシラン-メチルナフチルシラン共重合体、メチルプロピルシラン-メチルフェニルシラン共重合体のジアルキルシラン-アルキルアリールシラン共重合体等のコポリマー等が挙げられる。 Specific examples of polysilanes include polydialkylsilanes such as polydimethylsilane, poly (methylpropylsilane), poly (methylbutylsilane), poly (methylpentylsilane), poly (dibutylsilane), poly (dihexylsilane), poly Polydiarylsilanes such as (diphenylsilane), homopolymers such as poly (methylphenylsilane) and poly (alkylarylsilane), and copolymerization of dialkylsilanes such as dimethylsilane-methylhexylsilane copolymer with other dialkylsilanes Polymers, arylsilane-alkylarylsilane copolymers such as phenylsilane-methylphenylsilane copolymer, dimethylsilane-methylphenylsilane copolymer, dimethylsilane-phenylhexylsilane copolymer, dimethylsilane-methylnaphthylsilane Polymers, methyl propyl silane - include copolymers such as alkyl aryl silane copolymer - dialkylsilane methyl phenyl silane copolymer.
 ポリカルボシランは、分子内の主鎖に(-Si-C-)結合を有する高分子化合物である。ポリカルボシランとしては、下記式(a)で表される繰り返し単位を含むものが好ましい。 Polycarbosilane is a polymer compound having a (—Si—C—) bond in the main chain in the molecule. As polycarbosilane, what contains the repeating unit represented by following formula (a) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、Rw、Rvは、それぞれ独立して、水素原子、ヒドロキシル基、アルキル基、アリール基、アルケニル基、又は、1価の複素環基を表す。複数のRw、Rvは、それぞれ同一であっても異なっていてもよい。Rは、アルキレン基、アリーレン基又は2価の複素環基を表す。
 式(a)で表される繰り返し単位を有するポリカルボシランの重量平均分子量は、通常400~12000である。
In the formula, Rw and Rv each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, an aryl group, an alkenyl group, or a monovalent heterocyclic group. A plurality of Rw and Rv may be the same or different. R represents an alkylene group, an arylene group or a divalent heterocyclic group.
The weight average molecular weight of the polycarbosilane having a repeating unit represented by the formula (a) is usually from 400 to 12,000.
 Rw、Rvの1価の複素環基の複素環としては、炭素原子の他に酸素原子、窒素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む3~10員の環状化合物であれば特に制約はない。1価の複素環基の具体例としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-チエニル基、3-チエニル基、2-フリル基、3-フリル基、3-ピラゾリル基、4-ピラゾリル基、2-イミダゾリル基、4-イミダゾリル基、1,2,4-トリアジン-3-イル基、1,2,4-トリアジン-5-イル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、3-ピリダジル基、4-ピリダジル基、2-ピラジル基、2-(13,5-トリアジル)基、3-(1,2,4-トリアジル)基、6-(1,2,4-トリアジル)基、2-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、5-イソチアゾリル基、2-(13,4-チアジアゾリル)基、3-(1,2,4-チアジアゾリル)基、2-オキサゾリル基、4-オキサゾリル基、3-イソオキサゾリル基、5-イソオキサゾリル基、2-(13,4-オキサジアゾリル)基、3-(1,2,4-オキサジアゾリル)基、5-(1,2,3-オキサジアゾリル)基等が挙げられる。これらの基は、任意の位置に、アルキル基、アリール基、アルコキシ基、アリールオキシ基等の置換基を有していてもよい。 The heterocyclic ring of the monovalent heterocyclic group of Rw and Rv is not particularly limited as long as it is a 3- to 10-membered cyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom. There is no. Specific examples of the monovalent heterocyclic group include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-thienyl group, 3-thienyl group, 2-furyl group, 3-furyl group, and 3-pyrazolyl. Group, 4-pyrazolyl group, 2-imidazolyl group, 4-imidazolyl group, 1,2,4-triazin-3-yl group, 1,2,4-triazin-5-yl group, 2-pyrimidyl group, 4- Pyrimidyl group, 5-pyrimidyl group, 3-pyridyl group, 4-pyridazyl group, 2-pyrazyl group, 2- (13,5-triazyl) group, 3- (1,2,4-triazyl) group, 6- ( 1,2,4-triazyl) group, 2-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 5-isothiazolyl group, 2- (13,4-thiadiazolyl) group, 3- (1,2,4- Thiadiazolyl) group, 2-oxazolyl group 4-oxazolyl group, 3-isoxazolyl group, 5-isoxazolyl group, 2- (13,4-oxadiazolyl) group, 3- (1,2,4-oxadiazolyl) group, 5- (1,2,3-oxadiazolyl) Groups and the like. These groups may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or an aryloxy group at an arbitrary position.
 Rのアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基等の炭素数1~10のアルキレン基が挙げられる。アリーレン基としては、p-フェニレン基、1,4-ナフチレン基、2,5-ナフチレン基等の炭素数6~20のアリーレン基が挙げられる。Rのアルキレン基、アリーレン基は、任意の位置に、アルキル基、アリール基、アルコキシ基、ハロゲン原子等の置換基を有していてもよい。 Examples of the alkylene group of R include alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group. Examples of the arylene group include arylene groups having 6 to 20 carbon atoms such as a p-phenylene group, a 1,4-naphthylene group, and a 2,5-naphthylene group. The alkylene group and arylene group of R may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or a halogen atom at an arbitrary position.
 Rの2価の複素環基としては、炭素原子の他に酸素原子、窒素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む3~10員の複素環化合物から導かれる2価の基であれば特に制約はない。2価の複素環基の具体例としては、2,5-チオフェンジイル基等のチオフェンジイル基、2,5-フランジイル基等のフランジイル基、2,5-セレノフェンジイル基等のセレノフェンジイル基、2,5-ピロールジイル基等のピロールジイル基、2,5-ピリジンジイル基、2,6-ピリジンジイル基等のピリジンジイル基、2,5-チエノ[3,2-b]チオフェンジイル基、2,5-チエノ[2,3-b]チオフェンジイル基等のチエノチオフェンジイル基、2,6-キノリンジイル基等のキノリンジイル基、1,4-イソキノリンジイル基、1,5-イソキノリンジイル基等のイソキノリンジイル基、5,8-キノキサリンジイル基等のキノキサリンジイル基、4,7-ベンゾ[1,2,5]チアジアゾールジイル基等のベンゾ[1,2,5]チアジアゾールジイル基、4,7-ベンゾチアゾールジイル基等のベンゾチアゾールジイル基、2,7-カルバゾールジイル基、3,6-カルバゾールジイル基等のカルバゾールジイル基、3,7-フェノキサジンジイル基等のフェノキサジンジイル基、3,7-フェノチアジンジイル基等のフェノチアジンジイル基、2,7-ジベンゾシロールジイル基等のジベンゾシロールジイル基、2,6-ベンゾ[1,2-b:4,5-b’]ジチオフェンジイル基、2,6-ベンゾ[1,2-b:5,4-b’]ジチオフェンジイル基、2,6-ベンゾ[2,1-b:3,4-b’]ジチオフェンジイル基、2,6-ベンゾ[1,2-b:3,4-b’]ジチオフェンジイル基等のベンゾジチオフェンジイル基等が挙げられる。Rの2価の複素環基は、任意の位置に、アルキル基、アリール基、アルコキシ基、ハロゲン原子等の置換基を有していてもよい。 The divalent heterocyclic group for R may be a divalent group derived from a 3- to 10-membered heterocyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom. There are no particular restrictions. Specific examples of the divalent heterocyclic group include thiophene diyl groups such as 2,5-thiophenediyl group, frangyl groups such as 2,5-furandiyl group, and selenophene such as 2,5-selenophenediyl group. Diyl group, pyrrole diyl group such as 2,5-pyrrole diyl group, 2,5-pyridinediyl group, pyridinediyl group such as 2,6-pyridinediyl group, 2,5-thieno [3,2-b] thiophenediyl group Thienothiophene diyl group such as 2,5-thieno [2,3-b] thiophenediyl group, Quinoline diyl group such as 2,6-quinolinediyl group, 1,4-isoquinolinediyl group, 1,5-isoquinolinediyl group, etc. Isoquinolinediyl group, quinoxalinediyl group such as 5,8-quinoxalinediyl group, and benzo [4,7-benzo [1,2,5] thiadiazolediyl group , 2,5] thiadiazole diyl group, benzothiazole diyl group such as 4,7-benzothiazole diyl group, carbazole diyl group such as 2,7-carbazole diyl group, 3,6-carbazole diyl group, 3,7-phenoxy Phenoxazinediyl group such as sazinediyl group, phenothiazinediyl group such as 3,7-phenothiazinediyl group, dibenzosiloldiyl group such as 2,7-dibenzosiloldiyl group, 2,6-benzo [1,2-b: 4,5-b ′] dithiophenediyl group, 2,6-benzo [1,2-b: 5,4-b ′] dithiophenediyl group, 2,6-benzo [2,1-b: 3, Benzodithiophene diyl groups such as 4-b ′] dithiophene diyl group and 2,6-benzo [1,2-b: 3,4-b ′] dithiophene diyl group. The divalent heterocyclic group for R may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or a halogen atom at an arbitrary position.
 これらの中でも、式(a)において、Rw、Rvがそれぞれ独立して、水素原子、アルキル基又はアリール基であり、Rがアルキレン基又はアリーレン基である繰り返し単位を含むポリカルボシランがより好ましい。さらに、Rw、Rvがそれぞれ独立して、水素原子又はアルキル基であり、Rがアルキレン基である繰り返し単位を含むポリカルボシランが好ましい。 Among these, in formula (a), Rw and Rv are each independently a hydrogen atom, an alkyl group or an aryl group, and polycarbosilane containing a repeating unit in which R is an alkylene group or an arylene group is more preferable. Furthermore, polycarbosilane containing a repeating unit in which Rw and Rv are each independently a hydrogen atom or an alkyl group and R is an alkylene group is preferable.
 ケイ素含有層の形成材料として、ポリシラザンがより好ましい。
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。具体的には、ポリシラザンは、好ましくは下記一般式(I)に示す構造を有する。
Polysilazane is more preferable as a material for forming the silicon-containing layer.
Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer. Specifically, polysilazane preferably has a structure represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(I)において、R、R及びRは、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R、R及びRは、それぞれ、同じであっても、異なっていてもよい。また、上記一般式(I)において、nは整数であり、上記一般式(I)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザンである。
In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. In the general formula (I), n is an integer, and it is preferable that the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol.
In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
 また、ポリシラザンとしては、下記一般式(II)で表される構造を有するものが好ましい。 Moreover, as polysilazane, what has a structure represented by the following general formula (II) is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’及びR6’は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’及びR6’は、それぞれ、同じであっても、異なっていてもよい。また、上記一般式(II)において、n’及びpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’及びpは、同じであっても、異なっていてもよい。 In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. In the general formula (II), n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred. Note that n ′ and p may be the same or different.
 上記一般式(II)のポリシラザンのうち、R1’、R3’及びR6’が各々水素原子を表し、R2’、R4’及びR5’が各々メチル基を表す化合物、R1’、R3’及びR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物、又は、R1’、R3’、R4’及びR6’が各々水素原子を表し、R2’及びR5’が各々メチル基を表す化合物が好ましい。 Of the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group, R 1 ', R 3' and R 6 'are each a hydrogen atom, R 2', R 4 'are each a methyl group, R 5' compound represents a vinyl group, or, R 1 ', R 3' , A compound in which R 4 ′ and R 6 ′ each represent a hydrogen atom and R 2 ′ and R 5 ′ each represent a methyl group is preferred.
 また、ポリシラザンとしては、下記一般式(III)で表される構造を有するものが好ましい。 Moreover, as polysilazane, what has a structure represented by the following general formula (III) is preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”及びR9”は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”及びR9”は、それぞれ、同じであっても、異なっていてもよい。 In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different.
 また、上記一般式(III)において、n”、p”及びqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p及びqは、同じであっても、異なっていてもよい。 In the general formula (III), n ″, p ″ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. Preferably, it is defined. Note that n ″, p and q may be the same or different.
 上記一般式(III)のポリシラザンのうち、R1”、R3”及びR6”が各々水素原子を表し、R2”、R4”、R5”及びR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基又は水素原子を表す化合物が好ましい。 Among the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができる。このため、ケイ素含有層の膜厚(平均)を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The ceramic film made of brittle polysilazane can be tough. For this reason, even when the thickness (average) of the silicon-containing layer is increased, there is an advantage that generation of cracks can be suppressed. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
 パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造とが存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体又は固体の物質があり、その状態は分子量により異なる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is approximately 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there are liquid or solid substances, and the state varies depending on the molecular weight.
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままケイ素含有層を形成するためのケイ素含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ社製のNN120、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。これらポリシラザン溶液は、単独で又は2種以上組み合わせて用いることもできる。 Polysilazane is commercially available in a solution in an organic solvent, and the commercially available product can be used as it is as a silicon-containing coating solution for forming a silicon-containing layer. Examples of commercially available polysilazane solutions include NN120, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials. . These polysilazane solutions can be used alone or in combination of two or more.
 ケイ素含有層の形成に用いるポリシラザンの別の例として、以下のポリシラザンを挙げることができる。例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。 As another example of polysilazane used for forming the silicon-containing layer, the following polysilazane can be mentioned. For example, a silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with the above polysilazane (Japanese Patent Laid-Open No. 5-238827), a glycidol-added polysilazane obtained by reacting glycidol (Japanese Patent Laid-Open No. 6-122852), and an alcohol Alcohol-added polysilazane (JP-A-6-240208) obtained by reaction, metal carboxylate-added polysilazane (JP-A-6-299118) obtained by reacting a metal carboxylate, and an acetylacetonate complex containing a metal Acetylacetonate complex-added polysilazane (JP-A-6-306329) obtained by reacting with metal, and metal-silica-added polysilazane (JP-A-7-196986) obtained by adding metal fine particles, etc. Policy Than, and the like.
 ケイ素含有層の形成にポリシラザンを用いる場合、真空紫外線照射前のケイ素含有層中におけるポリシラザンの含有率は、ケイ素含有層の全質量を100質量%としたとき、100質量%とすることができる。また、真空紫外線照射前のケイ素含有層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。 When polysilazane is used for forming the silicon-containing layer, the content of polysilazane in the silicon-containing layer before irradiation with vacuum ultraviolet rays can be 100% by mass when the total mass of the silicon-containing layer is 100% by mass. When the silicon-containing layer before irradiation with vacuum ultraviolet rays contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass. % Or less, more preferably 70% by mass or more and 95% by mass or less.
(ケイ素含有塗布液)
 ケイ素含有層を形成するための塗布液(ケイ素含有塗布液)を調製する溶剤としては、ケイ素含有化合物を溶解できるものであれば特に制限されない。溶剤としては、ケイ素含有化合物と容易に反応してしまう水及び反応性基(例えば、ヒドロキシル基、又は、アミン基等)を含まず、ケイ素含有化合物に対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤、例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類、例えば、テトラヒドロフラン、ジブチルエーテル、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)等を挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。
(Silicon-containing coating solution)
The solvent for preparing the coating solution (silicon-containing coating solution) for forming the silicon-containing layer is not particularly limited as long as it can dissolve the silicon-containing compound. As the solvent, an organic solvent which does not contain water and reactive groups (for example, hydroxyl group or amine group) that easily react with the silicon-containing compound and is inert to the silicon-containing compound is preferable. Protic organic solvents are more preferred. Specifically, the solvent includes an aprotic solvent, for example, an aliphatic hydrocarbon such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and terpene, and a hydrocarbon such as alicyclic hydrocarbon and aromatic hydrocarbon. Solvents, halogen hydrocarbon solvents such as methylene chloride and trichloroethane, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran, ethers such as alicyclic ethers Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 ケイ素含有塗布液におけるケイ素含有化合物の濃度は、特に制限されない。ケイ素含有塗布液におけるケイ素含有化合物の濃度は、層の厚さや塗布液のポットライフによっても異なるが、好ましくは1~80質量%、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。 The concentration of the silicon-containing compound in the silicon-containing coating solution is not particularly limited. The concentration of the silicon-containing compound in the silicon-containing coating solution varies depending on the thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 40% by mass. %.
 ケイ素含有層の改質を行う場合には、ケイ素含有塗布液に改質を促進するための触媒が含有されていることが好ましい。改質を促進するための触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けることができる。 When modifying the silicon-containing layer, it is preferable that the silicon-containing coating solution contains a catalyst for promoting the modification. As the catalyst for promoting the reforming, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N , N ′, N′-tetramethyl-1,3-diaminopropane, amine catalysts such as N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, Examples thereof include Pd compounds such as propionic acid Pd, metal catalysts such as Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the catalyst addition amount within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
 ケイ素含有塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類、例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂、例えば、ゴム、ロジン樹脂等、合成樹脂、例えば、重合樹脂等、縮合樹脂、例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル樹脂若しくは変性ポリエステル樹脂、エポキシ樹脂、ポリイソシアネート又はブロック化ポリイソシアネート、ポリシロキサン等である。 In the silicon-containing coating solution, the following additives can be used as necessary. For example, cellulose ethers, cellulose esters, such as ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins, such as rubber, rosin resin, synthetic resins, such as polymerization resins, condensation resins, such as, for example, Aminoplasts, particularly urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyester resins or modified polyester resins, epoxy resins, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
(塗布方法)
 ケイ素含有塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法を採用できる。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、好ましい厚さや目的に応じて適切に設定される。
(Application method)
As a method for applying the silicon-containing coating solution, a conventionally known appropriate wet coating method can be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
The coating thickness is appropriately set according to the preferred thickness and purpose.
 ケイ素含有塗布液を塗布した後は、塗膜を乾燥させる。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去する。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なケイ素含有層が得られる。なお、残存した溶媒は後に除去される。 After applying the silicon-containing coating solution, the coating film is dried. By drying the coating film, the organic solvent contained in the coating film is removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable silicon-containing layer can be obtained. The remaining solvent is removed later.
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。例えば、ガラス転移温度(Tg)が70℃のポリエチレンテレフタレートフィルムを第1フィルム基材11と第2フィルム基材14として用いる場合には、乾燥温度は、熱による第1フィルム基材11と第2フィルム基材14の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネス等を使用することによって設定される。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 The drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C. For example, when a polyethylene terephthalate film having a glass transition temperature (Tg) of 70 ° C. is used as the first film substrate 11 and the second film substrate 14, the drying temperatures are the first film substrate 11 and the second film due to heat. It is preferable to set the temperature to 150 ° C. or lower in consideration of deformation of the film substrate 14 and the like. The temperature is set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
 ケイ素含有塗布液を塗布して得られた塗膜に対し、真空紫外線の照射前又は真空紫外線の照射中に、水分を除去する処理を行なってもよい。水分を除去する方法としては、低湿度環境に、塗膜を保持して除湿する方法が好ましい。低湿度環境における湿度は温度により変化するため、水分を除去する処理は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-5℃以下(温度25℃/湿度10%)である。塗膜を低湿度環境に維持する時間は適宜設定することが好ましい。具体的には、露点温度が-5℃以下で、維持される時間が1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。シラノールに転化したケイ素含有層の脱水反応が促進されるため、改質処理前、又は、改質処理中に水分を除去する処理を行うことが好ましい。 The coating film obtained by applying the silicon-containing coating solution may be subjected to a treatment for removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays. As a method of removing moisture, a method of dehumidifying by holding a coating film in a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable mode is shown by the dew point temperature for the treatment for removing moisture. A preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), and a more preferable dew point temperature is −5 ° C. or lower (temperature 25 ° C./humidity 10%). The time for maintaining the coating film in a low humidity environment is preferably set as appropriate. Specifically, it is preferable that the dew point temperature is −5 ° C. or lower and the maintaining time is 1 minute or longer. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher, and preferably −40 ° C. or higher. Since the dehydration reaction of the silicon-containing layer converted to silanol is promoted, it is preferable to perform a treatment for removing moisture before or during the modification treatment.
(真空紫外線照射)
 上記のようにして形成されたケイ素含有化合物を含む塗膜は、そのままの状態でケイ素含有層としてガスバリア層に適用することができるが、真空紫外線を照射してケイ素含有層の転化反応(改質)を行うことが好ましい。特に、ポリシラザンを含むケイ素含有層に対して、真空紫外線を照射し、ポリシラザン改質層を形成することが好ましい。
(Vacuum UV irradiation)
The coating film containing the silicon-containing compound formed as described above can be applied as it is to the gas barrier layer as a silicon-containing layer. However, the conversion reaction (modification) of the silicon-containing layer is performed by irradiation with vacuum ultraviolet rays. ) Is preferable. In particular, it is preferable that the silicon-containing layer containing polysilazane is irradiated with vacuum ultraviolet rays to form a polysilazane modified layer.
 真空紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する第1フィルム基材11と第2フィルム基材14の形状によって適宜選定することができる。例えば、バッチ処理の場合には、紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス社製の紫外線焼成炉を使用することができる。また、対象が長尺フィルム状である場合には、これを搬送させながら紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することができる。紫外線照射に要する時間は、使用する基材やケイ素含有化合物の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 Vacuum ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shapes of the first film substrate 11 and the second film substrate 14 to be used. For example, in the case of batch processing, it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source. The ultraviolet baking furnace itself is generally known, and for example, an ultraviolet baking furnace manufactured by I-Graphics can be used. Moreover, when a target is a long film form, an ultraviolet-ray can be continuously irradiated in the drying zone which equipped the ultraviolet-ray generation source, conveying this. The time required for the ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the base material used and the composition and concentration of the silicon-containing compound.
 真空紫外線照射による改質は、ケイ素含有化合物(特にポリシラザン化合物)内の原子間結合力より大きい100~200nmの波長の光エネルギーを用いる。好ましくは100~180nmの波長の光エネルギーを用いる。この真空紫外線照射により、光量子プロセスと呼ばれる光子のみの作用で、原子の結合を直接切断しながら、活性酸素やオゾンによる酸化反応を進行させる。これにより、比較的低温(約200℃以下)で、酸窒化ケイ素を含む膜の形成を行うことができる。なお、下記のエキシマ照射処理を行う際は、エキシマ照射処理に熱処理を併用することが好ましい。 The modification by vacuum ultraviolet irradiation uses light energy having a wavelength of 100 to 200 nm, which is larger than the interatomic bonding force in the silicon-containing compound (especially polysilazane compound). Preferably, light energy having a wavelength of 100 to 180 nm is used. By this vacuum ultraviolet irradiation, an oxidation reaction with active oxygen or ozone is advanced while directly breaking the atomic bonds by the action of only photons called photon processes. Thus, a film containing silicon oxynitride can be formed at a relatively low temperature (about 200 ° C. or less). In addition, when performing the following excimer irradiation processing, it is preferable to use heat processing together with excimer irradiation processing.
 真空紫外線源は、100~180nmの波長の光を発生させるものであればよい。好適な真空紫外線源は、約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、230nm以下の波長成分を有する中圧及び高圧水銀蒸気ランプ、及び、約222nmに最大放射を有するエキシマランプである。 The vacuum ultraviolet ray source may be any source that generates light having a wavelength of 100 to 180 nm. Suitable vacuum ultraviolet radiation sources include an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), a low pressure mercury vapor lamp having an emission line at about 185 nm, a medium pressure and high pressure mercury vapor lamp having a wavelength component of 230 nm or less, And an excimer lamp having a maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間で塗膜の改質を実現できる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. Moreover, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. The coating film can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域の短い波長でエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる。このため、熱の影響を受けやすいとされるPET等のフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. Further, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated at a short wavelength in the ultraviolet region, so that an increase in the surface temperature of the irradiation object can be suppressed. For this reason, it is suitable for flexible film materials such as PET, which are likely to be affected by heat.
 真空紫外線照射による反応では酸素が必要となるが、真空紫外線は酸素による吸収があるため、紫外線照射工程の効率が酸素によって低下しやすい。このため、真空紫外線の照射は、可能な限り酸素濃度及び水蒸気濃度が低い状態で行うことが好ましい。即ち、真空紫外線照射の際の酸素濃度は、10~20000体積ppm(0.001~2体積%)とすることが好ましく、50~10000体積ppm(0.005~1体積%)とすることがより好ましい。また、真空紫外線照射の際の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。 Oxygen is required for the reaction by irradiation with vacuum ultraviolet rays, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency of the ultraviolet irradiation process is likely to be reduced by oxygen. For this reason, it is preferable to perform the irradiation with vacuum ultraviolet rays in a state where the oxygen concentration and the water vapor concentration are as low as possible. That is, the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 20000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10000 volume ppm (0.005 to 1 volume%). More preferred. Further, the water vapor concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外線照射に用いる照射雰囲気を満たすガスは、乾燥不活性ガスであることが好ましく、特にコストの観点から乾燥窒素ガスであることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス及び不活性ガスの流量を計測し、流量比を変えることで調整できる。 The gas satisfying the irradiation atmosphere used for the vacuum ultraviolet irradiation is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射工程において、塗膜が受ける塗膜面での真空紫外線の照度は1mW/cm~10W/cmであることが好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。真空紫外線の照度が1mW/cm以上であれば、改質効率が向上する。真空紫外線の照度が10W/cm以下であれば、塗膜に生じるアブレーションや、第1フィルム基材11と第2フィルム基材14へのダメージを低減することができる。 In the vacuum ultraviolet ray irradiation step, the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ~ 160mW / cm 2. If the illuminance of the vacuum ultraviolet ray is 1 mW / cm 2 or more, the reforming efficiency is improved. When the illuminance of the vacuum ultraviolet ray is 10 W / cm 2 or less, ablation occurring in the coating film and damage to the first film substrate 11 and the second film substrate 14 can be reduced.
 塗膜の表面への真空紫外線の照射エネルギー量(照射量)は、1~10J/cmであることが好ましく、3~7J/cmであることがより好ましい。この範囲であれば、過剰改質によるクラックの発生や、第1フィルム基材11と第2フィルム基材14の熱変形を抑制することができ、また生産性が向上する。 The amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays onto the surface of the coating film is preferably 1 to 10 J / cm 2 , and more preferably 3 to 7 J / cm 2 . If it is this range, generation | occurrence | production of the crack by excessive modification | reformation and the thermal deformation of the 1st film base material 11 and the 2nd film base material 14 can be suppressed, and productivity will improve.
 塗膜の表面への照射に用いられる真空紫外線は、CO、CO及びCHの少なくとも一種を含むガスによって形成されるプラズマから発生させてもよい。さらに、CO、CO及びCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガス又はHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマ等が挙げられる。 The vacuum ultraviolet rays used for irradiating the surface of the coating film may be generated from plasma formed by a gas containing at least one of CO, CO 2 and CH 4 . Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but the rare gas or H 2 is used as the main gas. It is preferable to add a small amount of the contained gas. As a method for generating plasma, capacitively coupled plasma and the like can be given.
 なお、ケイ素含有層を形成する際に真空紫外線照射を行わない場合には、ケイ素含有化合物を含有する塗布液を塗布及び乾燥して得られる塗膜を、5~40℃、相対湿度0~60%RHの条件下で1~1000時間保管してケイ素含有層を形成する。 In the case where vacuum ultraviolet irradiation is not performed when forming the silicon-containing layer, a coating film obtained by applying and drying a coating solution containing a silicon-containing compound is 5 to 40 ° C. and relative humidity is 0 to 60. The silicon-containing layer is formed by storing for 1 to 1000 hours under the condition of% RH.
[粘着剤層]
 粘着剤層13は、第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とを貼り合せるために設けられている。粘着剤層13は、光取り出しフィルム10において、第1ガスバリア性フィルム18と第2ガスバリア性フィルム19との貼り合せに要求される粘着力を得ることができれば、特に限定されずに従来公知の材料を用いることができる。
[Adhesive layer]
The pressure-sensitive adhesive layer 13 is provided for bonding the first gas barrier film 18 and the second gas barrier film 19 together. The pressure-sensitive adhesive layer 13 is not particularly limited as long as an adhesive force required for bonding the first gas barrier film 18 and the second gas barrier film 19 in the light extraction film 10 can be obtained. Can be used.
(粘着剤層の質量変化率)
 粘着剤層13は、下記の規定の温度上昇時の質量変化率を満たすことが好ましい。
 従来の粘着剤層を用いた光取り出しフィルムでは、有機EL素子等の電子機器を作製する工程において、真空下や高温下での粘着剤層における気泡の発生(発泡)が問題となっている。この粘着剤層における発泡は、粘着剤からのガスの発生が一因と考えられている。特に、ガスバリア性フィルムで挟持される構成の光取り出しフィルムでは、粘着剤から発生するガスが、積層されたガスバリア層によって粘着剤層内に封じ込められる。このため、発生したガスが光取り出しフィルムの外部に放出されず、光取り出しフィルムに気泡が残存する。光取り出しフィルム内に気泡が残存すると、粘着剤層におけるガスバリア性フィルムの接着強度が低下し、剥離の原因となる。また、有機EL素子に光取り出しフィルムを適用した際には、気泡による光取り出しフィルムの白色化や、光取出し効率の低下が問題となる。
(Mass change rate of adhesive layer)
It is preferable that the pressure-sensitive adhesive layer 13 satisfies the mass change rate when the temperature rises as defined below.
In the light extraction film using the conventional pressure-sensitive adhesive layer, the generation (foaming) of bubbles in the pressure-sensitive adhesive layer under vacuum or high temperature is a problem in the process of producing an electronic device such as an organic EL element. The foaming in the pressure-sensitive adhesive layer is considered to be caused by the generation of gas from the pressure-sensitive adhesive. In particular, in a light extraction film configured to be sandwiched between gas barrier films, gas generated from the pressure-sensitive adhesive is enclosed in the pressure-sensitive adhesive layer by the laminated gas barrier layer. For this reason, the generated gas is not released to the outside of the light extraction film, and bubbles remain in the light extraction film. If bubbles remain in the light extraction film, the adhesive strength of the gas barrier film in the pressure-sensitive adhesive layer is lowered, which causes peeling. Further, when a light extraction film is applied to the organic EL element, whitening of the light extraction film due to bubbles and a decrease in light extraction efficiency become problems.
 このような問題に対し、粘着剤層の温度上昇時の質量変化率と、粘着剤層での発泡とに関連があることがわかった。すなわち、粘着剤層の温度上昇時の質量変化率を規定することにより、有機EL素子等の電子機器を作製する工程での発泡が抑制されることが見いだされた。具体的には、昇温速度5℃/分で温度領域30℃から140℃まで加熱したときの粘着剤層の質量変化率が、0.50%以下であると、有機EL素子等の電子機器を作製する工程での発泡を、電子機器の特性に影響ない範囲に抑制できることが見いだされた。 It was found that for such a problem, there is a relation between the mass change rate when the temperature of the pressure-sensitive adhesive layer is increased and foaming in the pressure-sensitive adhesive layer. That is, it has been found that by regulating the mass change rate when the temperature of the pressure-sensitive adhesive layer rises, foaming in the process of producing an electronic device such as an organic EL element is suppressed. Specifically, when the rate of mass change of the pressure-sensitive adhesive layer is 0.50% or less when heated from a temperature range of 30 ° C. to 140 ° C. at a rate of temperature increase of 5 ° C./min, an electronic device such as an organic EL element It has been found that foaming in the process of producing can be suppressed within a range that does not affect the characteristics of the electronic device.
 粘着剤層の温度上昇において、昇温速度が昇温速度5℃/分よりも大きいと、急激な温度変化により不均一な変質が発生してしまう。そして、この不均一な変質は質量変化率の測定において誤差として影響を与えるため、測定精度が低下してしまう。また、昇温速度が昇温速度5℃/分よりも小さいと、粘着剤層において発生した気泡が、粘着剤層中で吸収される、又は、変質するなどして緩和されるため、測定精度が低下してしまう。
 具体的には、粘着剤層の質量変化率は、下記の条件で求めることができる。
When the temperature rise rate is higher than the temperature rise rate of 5 ° C./min in the temperature rise of the pressure-sensitive adhesive layer, non-uniform alteration occurs due to a rapid temperature change. This non-uniform alteration affects the measurement of mass change rate as an error, resulting in a decrease in measurement accuracy. In addition, if the rate of temperature rise is lower than the rate of temperature rise of 5 ° C./min, bubbles generated in the pressure-sensitive adhesive layer are absorbed in the pressure-sensitive adhesive layer or relaxed, etc. Will fall.
Specifically, the mass change rate of the pressure-sensitive adhesive layer can be determined under the following conditions.
(粘着剤層の質量変化率;熱重量測定(TG)分析)
 測定器:TG/DTA6200 日立ハイテクサイエンス製
 試料:約6mgを掻きとってアルミ製オープン容器の中に入れて測定する。リファレンスとして同じアルミ容器の空容器を使用する。
 昇温条件:30℃から150℃まで、5℃/minにて昇温
 雰囲気ガス:窒素を200mL/minで流しながら測定
(Mass change rate of pressure-sensitive adhesive layer; thermogravimetry (TG) analysis)
Measuring instrument: TG / DTA6200 manufactured by Hitachi High-Tech Science Sample: About 6 mg is scraped and placed in an aluminum open container for measurement. Use the same aluminum container as a reference.
Temperature rising condition: Temperature rising from 30 ° C. to 150 ° C. at 5 ° C./min. Atmospheric gas: Measured while flowing nitrogen at 200 mL / min.
(粘着剤)
 粘着剤層13に使用する粘着剤としては、感圧粘着剤を用いることが好ましい。感圧粘着剤は、凝集力と弾性を有し、長時間にわたり安定した粘着性を維持できる。また、粘着剤層を形成する際に、熱や有機溶媒等の要件を必要とせず、圧力を加えるだけで第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とを貼り合せることができる。
(Adhesive)
As the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer 13, a pressure-sensitive pressure-sensitive adhesive is preferably used. The pressure sensitive adhesive has cohesive strength and elasticity, and can maintain stable adhesiveness for a long time. Moreover, when forming an adhesive layer, the requirements, such as a heat | fever and an organic solvent, are not required, but the 1st gas barrier film 18 and the 2nd gas barrier film 19 can be bonded together only by applying a pressure.
 粘着剤層13を形成するための材料としては、透明性に優れる材料が好ましい。粘着剤層13を形成するための粘着剤としては、例えば、エポキシ系樹脂、アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、ビニルエーテル系樹脂、及び、シリコン系樹脂等を含む粘着剤を挙げることができる。粘着剤の形態としては、例えば、溶剤型、エマルション型、及び、ホットメルト型等を用いることができる。 As the material for forming the pressure-sensitive adhesive layer 13, a material having excellent transparency is preferable. Examples of the adhesive for forming the adhesive layer 13 include an adhesive including an epoxy resin, an acrylic resin, a rubber resin, a urethane resin, a vinyl ether resin, and a silicon resin. it can. As the form of the pressure-sensitive adhesive, for example, a solvent type, an emulsion type, and a hot melt type can be used.
 また、粘着剤に含まれる上記樹脂類の他に、粘着剤層13の物性向上の観点から、各種添加剤を用いることができる。例えば、ロジン等の天然樹脂、変性ロジン、ロジン及び変性ロジンの誘導体、ポリテルペン系樹脂、テルペン変性体、脂肪族系炭化水素樹脂、シクロペンタジエン系樹脂、芳香族系石油樹脂、フェノール系樹脂、アルキル-フェノール-アセチレン系樹脂、クマロン-インデン系樹脂、ビニルトルエン-α-メチルスチレン共重合体をはじめとする粘着付与剤、老化防止剤、安定剤、及び軟化剤等を必要に応じて用いることができる。これらは必要に応じて2種以上用いることもできる。また、耐光性を上げるために、粘着剤にベンゾフェノン系やベンゾトリアゾール系等の有機系紫外線吸収剤を添加することもできる。 In addition to the above resins contained in the pressure-sensitive adhesive, various additives can be used from the viewpoint of improving the physical properties of the pressure-sensitive adhesive layer 13. For example, natural resins such as rosin, modified rosin, rosin and modified rosin derivatives, polyterpene resins, terpene modified products, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, phenolic resins, alkyl- Tackifiers such as phenol-acetylene resins, coumarone-indene resins, vinyltoluene-α-methylstyrene copolymers, anti-aging agents, stabilizers, and softeners can be used as necessary. . Two or more of these may be used as necessary. Moreover, in order to improve light resistance, organic ultraviolet absorbers, such as a benzophenone series and a benzotriazole series, can also be added to an adhesive.
[光取り出し層]
 光取り出し層16は、光取り出しフィルム10上に設けた発光素子から放出される光の、外部への取り出し効率を向上させる機能を有する層である。光取り出し層としては、例えば、基板表面に凹凸を形成し、基板と空気界面での全反射を防ぐ界面を導入する方法(例えば、米国特許第4774435号明細書)、層間(基板と外界間を含む)に回折格子を導入する方法(特開平11-283751号公報)、光散乱粒子とバインダとを有する光散乱層を設ける構成(特開2004-319331号公報)等が挙げられる。
[Light extraction layer]
The light extraction layer 16 is a layer having a function of improving the extraction efficiency of light emitted from the light emitting element provided on the light extraction film 10 to the outside. As the light extraction layer, for example, a method of forming an unevenness on the substrate surface and introducing an interface that prevents total reflection at the substrate and air interface (for example, US Pat. No. 4,774,435), an interlayer (between the substrate and the outside world) And a method of introducing a diffraction grating (including Japanese Patent Application Laid-Open No. 11-283951), a structure in which a light scattering layer having light scattering particles and a binder is provided (Japanese Patent Application Laid-Open No. 2004-319331), and the like.
 凹凸により全反射を防ぐ界面、又は、回折格子を導入する方法では、1次回折や2次回折等のブラッグ回折によって、屈折とは異なる特定の方向に光の向きを変えることができる性質を利用する。これにより、層間での全反射等によって外に出ない光を、回折格子に導入して回折させることで、光を外に取り出すことができる。 The interface that prevents total reflection by unevenness or the method of introducing a diffraction grating uses the property that the direction of light can be changed in a specific direction different from refraction by Bragg diffraction such as first-order diffraction and second-order diffraction. To do. Accordingly, light that does not go out due to total reflection between layers or the like is introduced into the diffraction grating and diffracted, whereby the light can be taken out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光する光があらゆる方向に発生するため、一方の方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because emitted light is generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction, only light traveling in a specific direction is diffracted. The take-out efficiency is not so high. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
 回折格子は、光取り出しフィルム10の最外層の近傍に導入することが望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、2次元的に配列が繰り返されることが好ましい。 The diffraction grating is desirably introduced in the vicinity of the outermost layer of the light extraction film 10. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
 また、光取り出し層16としては、例えば、マイクロレンズアレイを用いることもできる。マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。 Further, as the light extraction layer 16, for example, a microlens array can be used. As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 to 100 μm.
 また、光取り出し層16としては、例えば、液晶表示装置のLEDバックライトで実用化されている、従来公知の集光シートを用いることもできる。集光シートとしては、例えば、住友スリーエム社製の輝度上昇フィルム(BEF)等のプリズムパターンを均一に精密成形した光学フィルムを用いることができる。プリズムパターンの形状としては、例えば、基板に頂角90度、ピッチ50μmの断面三角形状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状又はその他の形状であってもよい。 Further, as the light extraction layer 16, for example, a conventionally known light collecting sheet that has been put into practical use in an LED backlight of a liquid crystal display device can be used. As the condensing sheet, for example, an optical film in which a prism pattern such as a brightness enhancement film (BEF) manufactured by Sumitomo 3M Co., Ltd. is uniformly and precisely formed can be used. As the shape of the prism pattern, for example, the substrate may have a triangle with a 90 ° apex angle and a 50 μm pitch triangular cross section, or the apex angle may be rounded and the pitch may be changed randomly. It may be a shaped shape or other shapes.
 また、光取り出し層16としては、面方向の領域で光を散乱させて白色発光を得ることが可能な光拡散フィルムを用いることもできる。このような光拡散フィルムとしては、例えば、きもと社製の拡散フィルム(ライトアップ、オプトセーバー)等を用いることができる。 Also, as the light extraction layer 16, a light diffusion film capable of obtaining white light emission by scattering light in the area in the plane direction can also be used. As such a light diffusion film, for example, a diffusion film (light-up, optosaber) manufactured by Kimoto Co., Ltd. can be used.
[帯電防止層]
 帯電防止層17は、帯電防止剤と、帯電防止剤を保持するためのバインダ樹脂から構成される。帯電防止層17は光取り出しフィルム10において、光取り出し層16の第2ガスバリア性フィルム19が配置される面と反対側の面に設けられている。なお、光取り出し層16と帯電防止層17との間に、上述の他の構成が設けられていてもよい。この場合においても、帯電防止層17は、光取り出しフィルム10の最外層に設けられていることが好ましい。
[Antistatic layer]
The antistatic layer 17 is composed of an antistatic agent and a binder resin for holding the antistatic agent. The antistatic layer 17 is provided on the surface of the light extraction film 10 opposite to the surface on which the second gas barrier film 19 of the light extraction layer 16 is disposed. Note that the above-described other configuration may be provided between the light extraction layer 16 and the antistatic layer 17. Even in this case, the antistatic layer 17 is preferably provided in the outermost layer of the light extraction film 10.
 光取り出しフィルム10の最外層に帯電防止層17が設けられることにより、光取り出しフィルム10に帯電防止性能を付与することができる。このため、ロールtoロール方式で、光取り出しフィルム10をロール状に巻き取る際、及び、ロールから巻き出して搬送する際に、光取り出しフィルム10の帯電を抑制することができる。 By providing the antistatic layer 17 on the outermost layer of the light extraction film 10, antistatic performance can be imparted to the light extraction film 10. For this reason, when the light extraction film 10 is wound into a roll shape by the roll-to-roll method, and when the light extraction film 10 is unwound from the roll and conveyed, charging of the light extraction film 10 can be suppressed.
 帯電防止層17は、帯電防止剤として有機帯電防止剤を含有することが好ましい。帯電防止層17が含有する有機帯電防止剤としては、共役系ポリマー、及び、イオン性ポリマーから選ばれる一種以上を含むことが好ましい。また、帯電防止層17は、その他の導電性ポリマーや帯電防止剤を含んで構成されていてもよい。 The antistatic layer 17 preferably contains an organic antistatic agent as an antistatic agent. The organic antistatic agent contained in the antistatic layer 17 preferably contains one or more selected from conjugated polymers and ionic polymers. Further, the antistatic layer 17 may be configured to include other conductive polymers and antistatic agents.
 帯電防止層17においては、積層時に脱着しやすい金属酸化物粒子を帯電防止剤として含有しないことが好ましい。このため、帯電防止層17の全質量に対する金属酸化物粒子の含有量は、5質量%以下であることが好ましく、2質量%以下がより好ましく、金属酸化物粒子を含有しない構成が特に好ましい。帯電防止層17に含有されないことが好ましい金属酸化物粒子としては、例えば、ZnO、TiO、SnO、Al、In、MgO、BaO、MoO、V等、又は、これらの複合酸化物を挙げることができる。ただし、SiOは帯電防止層17に含有されないことが好ましい金属酸化物粒子の規定からは除外する。 The antistatic layer 17 preferably does not contain metal oxide particles that are easily desorbed during lamination as an antistatic agent. For this reason, the content of the metal oxide particles with respect to the total mass of the antistatic layer 17 is preferably 5% by mass or less, more preferably 2% by mass or less, and particularly preferably a configuration containing no metal oxide particles. Examples of metal oxide particles that are preferably not contained in the antistatic layer 17 include, for example, ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO, MoO 2 , V 2 O 5, etc. Or these complex oxides can be mentioned. However, SiO 2 is excluded from the definition of metal oxide particles that are preferably not contained in the antistatic layer 17.
(有機帯電防止剤)
 有機帯電防止剤とは、基本的には帯電防止能を有する有機材料から構成されている。有機帯電防止剤は、帯電防止層17を形成する際に、帯電防止層17の裏面側のシート抵抗値を1×1011Ω/sq.以下、好ましくは1×1010Ω/sq.以下、さらに好ましくは1×10Ω/sq.以下とすることができる材料である。
(Organic antistatic agent)
The organic antistatic agent is basically composed of an organic material having antistatic ability. The organic antistatic agent has a sheet resistance value of 1 × 10 11 Ω / sq. On the back side of the antistatic layer 17 when the antistatic layer 17 is formed. Hereinafter, preferably 1 × 10 10 Ω / sq. Hereinafter, more preferably 1 × 10 9 Ω / sq. A material that can be:
 有機帯電防止剤としては、従来公知の界面活性剤型帯電防止剤、シリコーン系帯電防止剤、有機ホウ酸系帯電防止剤、高分子系帯電防止剤、帯電防止ポリマー材料等を挙げることができる。特に、有機帯電防止剤として、イオン導電性物質等を用いることが、帯電防止層17の帯電防止の観点から好ましい。イオン導電性物質は、電気伝導性を示すイオンを含有する物質である。イオン導電性物質としては、例えば、共役系ポリマーやイオン性ポリマーを挙げることができる。 Examples of the organic antistatic agent include conventionally known surfactant type antistatic agents, silicone antistatic agents, organic boric acid antistatic agents, polymeric antistatic agents, and antistatic polymer materials. In particular, it is preferable to use an ion conductive material or the like as the organic antistatic agent from the viewpoint of antistatic of the antistatic layer 17. The ion conductive material is a material containing ions exhibiting electrical conductivity. Examples of the ion conductive substance include conjugated polymers and ionic polymers.
(共役系ポリマー)
 共役系ポリマーとしては、下記(1)~(8)を、接続基を介して側鎖に持つポリマーのπ電子導電性ポリマー複合体等を挙げることができる。
 (1)脂肪族共役系:ポリアセチレンのような炭素-炭素の共役系で交互に長く連なっているポリマーで、例えば、ポリアセチレン、ポリ(1,6-ヘプタジエン)等
 (2)芳香族共役系:ポリ(パラフェニレン)のような芳香族炭化水素が長く結合する共役が発達したポリマーで、例えば、ポリパラフェニレン、ポリナフタレン、ポリアントラセン等
 (3)複素環式共役系:ポリピロール、ポリチオフェンのような複素環式化合物が結合して共役系が発達したポリマーで、例えば、ポリピロールとその誘導体、ポリフランとその誘導体、ポリチオフェンとその誘導体、ポリイソチオナフテンとその誘導体、ポリセレノフェンとその誘導体等
 (4)含ヘテロ原子共役系:ポリアニリンのような脂肪族又は芳香族の共役系をヘテロ原子で結合したポリマーで、ポリアニリンとその誘導体等、ポリ(パラフェニレンスルフィド)とその誘導体、ポリ(パラフェニレンオキシド)とその誘導体、ポリ(パラフェニレンセレニド)とその誘導体、また脂肪族系ではポリ(ビニレンスルフィド)、ポリ(ビニレンオキシド)、ポリ(ビニレンセレニド)等
 (5)混合型共役系:ポリ(フェニレンビニレン)のような上記共役系の構成単位が交互に結合した構造を持つ共役系ポリマーで、例えば、ポリ(パラフェニレンビニレン)とその誘導体、ポリ(ピロールビニレン)とその誘導体、ポリ(チオフェンビニレン)とその誘導体、ポリ(フランビニレン)とその誘導体、ポリ(2,2′-チエニルピロール)とその誘導体等
 (6)複鎖型共役系:分子中に複数の共役鎖を持つ共役系で、芳香族共役系に近い構造を有しているポリマー、例えば、ポリペリナフタレン等
 (7)金属フタロシアニン系:金属フタロシアニン類又はこれらの分子間をヘテロ原子や共役系で結合したポリマーで、例えば、金属フタロシアニン等
 (8)導電性複合体:上記共役系ポリマー鎖を飽和ポリマーにグラフト共重合したポリマー及び飽和ポリマー中で上記共役系ポリマーを重合することで得られる複合体で、例えば、(3)のポリチオフェンとその誘導体、ポリピロールとその誘導体、(4)のポリアニリンとその誘導体等を、また、(5)のポリ(パラフェニレンビニレン)とその誘導体、ポリ(チオフェンビニレン)とその誘導体等
(Conjugated polymer)
Examples of the conjugated polymer include π-electron conductive polymer composites of polymers having the following (1) to (8) in the side chain via a connecting group.
(1) Aliphatic conjugated system: a carbon-carbon conjugated system, such as polyacetylene, which is continuously long alternately. For example, polyacetylene, poly (1,6-heptadiene), etc. (2) Aromatic conjugated system: poly (3) Heterocyclic conjugated systems such as polypyrrole, polythiophene, etc. (3) Heterocyclic conjugated systems such as polypyrrole and polythiophene. Polymers in which a conjugated system is developed by combining cyclic compounds, such as polypyrrole and its derivatives, polyfuran and its derivatives, polythiophene and its derivatives, polyisothionaphthene and its derivatives, polyselenophene and its derivatives, etc. (4) Heteroatom-containing conjugated system: Aliphatic or aromatic conjugated systems such as polyaniline bonded with heteroatoms Polymers such as polyaniline and derivatives thereof, poly (paraphenylene sulfide) and derivatives thereof, poly (paraphenylene oxide) and derivatives thereof, poly (paraphenylene selenide) and derivatives thereof, and poly (vinylene sulfide) in aliphatic systems ), Poly (vinylene oxide), poly (vinylene selenide), etc. (5) Mixed conjugated system: a conjugated polymer having a structure in which structural units of the conjugated system such as poly (phenylene vinylene) are alternately bonded, for example, Poly (paraphenylene vinylene) and derivatives thereof, poly (pyrrole vinylene) and derivatives thereof, poly (thiophene vinylene) and derivatives thereof, poly (furanylene) and derivatives thereof, poly (2,2'-thienylpyrrole) and derivatives thereof Etc. (6) Double chain conjugated system: Conjugated system with multiple conjugated chains in the molecule, aromatic Polymers having a structure close to a group conjugated system, such as polyperinaphthalene, etc. (7) Metal phthalocyanine series: Metal phthalocyanines or polymers in which these molecules are bonded with hetero atoms or conjugated systems, such as metal phthalocyanine (8) Conductive composite: a polymer obtained by graft copolymerization of the conjugated polymer chain to a saturated polymer and a composite obtained by polymerizing the conjugated polymer in a saturated polymer, for example, polythiophene of (3) And its derivatives, polypyrrole and its derivatives, (4) polyaniline and its derivatives, etc., and (5) poly (paraphenylenevinylene) and its derivatives, poly (thiophene vinylene) and its derivatives, etc.
(イオン性ポリマー)
 イオン性ポリマーとしては、下記(1)~(3)等を挙げることができる。
 (1)特公昭49-23828号公報、特公昭49-23827号公報、特公昭47-28937号公報等に記載されているアニオン性高分子化合物
 (2)特公昭55-734号公報、特開昭50-54672号公報、特公昭59-14735号公報、特公昭57-18175号公報、特公昭57-18176号公報、特公昭57-56059号公報等に記載されている、主鎖中に解離基を持つアイオネン型ポリマー
 (3)特公昭53-13223号公報、特公昭57-15376号公報、特公昭53-45231号公報、特公昭55-145783号公報、特公昭55-65950号公報、特公昭55-67746号公報、特公昭57-11342号公報、特公昭57-19735号公報、特公昭58-56858号公報、特開昭61-27853号公報、特公昭62-9346号公報等に記載されている、側鎖中にカチオン性解離基を持つカチオン性ペンダント型ポリマー
(Ionic polymer)
Examples of the ionic polymer include the following (1) to (3).
(1) Anionic polymer compounds described in JP-B-49-23828, JP-B-49-23827, JP-B-47-28937, etc. (2) JP-B-55-734, JP Dissociation in the main chain described in Japanese Patent Publication No. 50-54672, Japanese Patent Publication No. 59-14735, Japanese Patent Publication No. 57-18175, Japanese Patent Publication No. 57-18176, Japanese Patent Publication No. 57-56059, etc. Ionene type polymer having a group (3) JP-B 53-13223, JP-B 57-15376, JP-B 53-45231, JP-B 55-145783, JP-B 55-65950, Japanese Patent Publication No. 55-67746, Japanese Patent Publication No. 57-11342, Japanese Patent Publication No. 57-19735, Japanese Patent Publication No. 58-56858, Japanese Patent Publication No. 61- 7853 JP, are described in JP-B 62-9346 Patent Publication, cationic pendant polymer having a cationic dissociative group in the side chain
(導電性ポリマー)
 帯電防止層17を構成する導電性ポリマーとしては、特開平9-203810号公報に記載されている、アイオネン導電性ポリマー、又は、分子間架橋を有する第4級アンモニウムカチオン導電性ポリマー等を挙げることができる。
(Conductive polymer)
Examples of the conductive polymer constituting the antistatic layer 17 include an ionene conductive polymer or a quaternary ammonium cation conductive polymer having intermolecular crosslinking described in JP-A-9-203810. Can do.
(その他の帯電防止剤)
 帯電防止層17を構成するその他の帯電防止剤としては、例えば、特開2006-265271号公報、特開2007-70456号公報、特開2009-62406号公報等に記載されている帯電防止ハードコート剤を用いることができる。また、市販品としても入手可能な、例えば、アイカ工業社の帯電防止剤等も適宜選択して用いることができる。
(Other antistatic agents)
Examples of other antistatic agents constituting the antistatic layer 17 include antistatic hard coats described in JP-A-2006-265271, JP-A-2007-70456, JP-A-2009-62406, and the like. An agent can be used. In addition, for example, an antistatic agent available from Aika Kogyo Co., Ltd., which is available as a commercial product, can be appropriately selected and used.
(バインダ樹脂)
 帯電防止層17において帯電防止剤を保持するためのバインダ樹脂としては、例えば、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートフタレート、又はセルロースナイトレート等のセルロース誘導体、ポリ酢酸ビニル、ポリスチレン、ポリカーボネート、ポリブチレンテレフタレート、又はコポリブチレン/テレ/イソフタレート等のポリエステル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、ポリビニルベンザール等のポリビニルアルコール誘導体、ノルボルネン化合物を含有するノルボルネン系ポリマー、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルチルメタクリレート、ポリブチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、アクリル樹脂と他の樹脂との共重合体を用いることができる。特に、セルロース誘導体、及び、アクリル樹脂が好ましく、さらにアクリル樹脂が最も好ましく用いられる。
(Binder resin)
Examples of the binder resin for holding the antistatic agent in the antistatic layer 17 include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate, polyvinyl acetate, and polystyrene. Polyesters such as polycarbonate, polybutylene terephthalate, or copolybutylene / tere / isophthalate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl alcohol derivatives such as polyvinyl benzal, norbornene-based polymers containing norbornene compounds, polymethyl Methacrylate, polyethylmethacrylate, polypropyltyl methacrylate, polybutylmethacrylate Rate, acrylic resins such as polymethyl acrylate, and copolymer of acrylic resin and other resins. In particular, a cellulose derivative and an acrylic resin are preferable, and an acrylic resin is most preferably used.
 帯電防止層17に用いられるバインダ樹脂としては、重量平均分子量が40万以上、ガラス転移温度が80~110℃の範囲内にある熱可塑性樹脂が好ましい。ガラス転移温度は、JIS K 7121に記載の方法で求めることができる。ここで使用するバインダ樹脂は、帯電防止層17を構成する全樹脂質量の60質量%以上、さらに好ましくは80質量%以上である。バインダ樹脂には、必要に応じて活性線硬化性樹脂、又は熱硬化樹脂を適用することもできる。 The binder resin used for the antistatic layer 17 is preferably a thermoplastic resin having a weight average molecular weight of 400,000 or more and a glass transition temperature in the range of 80 to 110 ° C. The glass transition temperature can be determined by the method described in JIS K7121. The binder resin used here is 60 mass% or more, more preferably 80 mass% or more of the total resin mass constituting the antistatic layer 17. As the binder resin, an actinic radiation curable resin or a thermosetting resin can be applied as necessary.
[光取り出しフィルムの製造方法]
 次に、上述の光取り出しフィルム10の製造方法を説明する。
 まず、第1フィルム基材11と、第2フィルム基材14とを準備する。そして、第1フィルム基材11の第1主面に第1ガスバリア層12を形成し、第1ガスバリア性フィルム18を作製する。また、第2フィルム基材14の第1主面に第2ガスバリア層15を形成し、第2ガスバリア性フィルム19を作製する。さらに、第2フィルム基材14の第2主面に、光取り出し層16を形成する。
[Method for producing light extraction film]
Next, the manufacturing method of the above-mentioned light extraction film 10 is demonstrated.
First, the 1st film base material 11 and the 2nd film base material 14 are prepared. And the 1st gas barrier layer 12 is formed in the 1st main surface of the 1st film base material 11, and the 1st gas barrier property film 18 is produced. Moreover, the 2nd gas barrier layer 15 is formed in the 1st main surface of the 2nd film base material 14, and the 2nd gas barrier film 19 is produced. Further, the light extraction layer 16 is formed on the second main surface of the second film substrate 14.
 第1ガスバリア層12及び第2ガスバリア層15の作製において、第1ガスバリア層12及び第2ガスバリア層15の形成には、上述の方法でケイ素含有層を形成し、エキシマ照射処理によりポリシラザン改質層を形成する方法を適用することが好ましい。また、光取り出し層16の形成には、ナノインプリント技術を用いて樹脂層に回折格子を形成する方法や、光散乱粒子を含む樹脂を塗布した後に硬化して光散乱層を形成する方法等を適用することができる。 In the production of the first gas barrier layer 12 and the second gas barrier layer 15, the first gas barrier layer 12 and the second gas barrier layer 15 are formed by forming a silicon-containing layer by the above-described method and performing a polysilazane modified layer by excimer irradiation treatment. It is preferable to apply the method of forming. For the formation of the light extraction layer 16, a method of forming a diffraction grating on the resin layer by using a nanoimprint technique, a method of forming a light scattering layer by applying a resin containing light scattering particles, and applying a resin is applied. can do.
 また、第1ガスバリア性フィルム18及び第2ガスバリア性フィルム19として、市販のガスバリア性フィルムを用いることもできる。 Further, as the first gas barrier film 18 and the second gas barrier film 19, commercially available gas barrier films can also be used.
 次に、粘着剤層13を第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とで挟持する。第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とは、第1フィルム基材11の第2主面側と、第2ガスバリア層15とを対向させて配置する。また、粘着剤層13を形成するための粘着剤は、第1フィルム基材11の第2主面側、及び、第2ガスバリア層15上のいずれか一方又は両方に塗布する。 Next, the pressure-sensitive adhesive layer 13 is sandwiched between the first gas barrier film 18 and the second gas barrier film 19. The first gas barrier film 18 and the second gas barrier film 19 are arranged with the second main surface side of the first film substrate 11 and the second gas barrier layer 15 facing each other. The pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer 13 is applied to one or both of the second main surface side of the first film substrate 11 and the second gas barrier layer 15.
 次に、積層した第1ガスバリア性フィルム18、粘着剤層13、及び、第2ガスバリア性フィルム19を加圧して、第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とを貼り合わせる。粘着剤層13に感圧粘着剤を使用する場合には、圧力を加えるだけで第1ガスバリア性フィルム18と第2ガスバリア性フィルム19とを粘着剤層13で貼り合わせることができる。
 なお、粘着剤層13に熱硬化型の粘着剤を使用する場合には、1000Pa以下の真空雰囲気下で加熱して粘着剤を硬化してもよい。また、粘着剤層13にエネルギー硬化型の粘着剤を使用する場合には、粘着剤を硬化するためのエネルギー線を照射してもよい。
Next, the first gas barrier film 18, the pressure-sensitive adhesive layer 13, and the second gas barrier film 19 that are laminated are pressurized, and the first gas barrier film 18 and the second gas barrier film 19 are bonded together. When a pressure-sensitive adhesive is used for the pressure-sensitive adhesive layer 13, the first gas barrier film 18 and the second gas barrier film 19 can be bonded together with the pressure-sensitive adhesive layer 13 only by applying pressure.
When a thermosetting pressure-sensitive adhesive is used for the pressure-sensitive adhesive layer 13, the pressure-sensitive adhesive may be cured by heating in a vacuum atmosphere of 1000 Pa or less. Moreover, when using an energy curing type adhesive for the adhesive layer 13, you may irradiate the energy ray for hardening an adhesive.
 次に、光取り出し層16上に帯電防止層17を作製する。例えば、有機帯電防止剤を含む塗布液を光取り出し層16上に塗布し、塗膜を乾燥した後に、加熱又はエネルギー線照射を行い、バインダを硬化する。これにより、有機帯電防止剤を含む帯電防止層17を作製し、帯電防止層17を備える光取り出しフィルム10を作製する。 Next, an antistatic layer 17 is formed on the light extraction layer 16. For example, a coating liquid containing an organic antistatic agent is applied onto the light extraction layer 16 and the coating film is dried, followed by heating or energy beam irradiation to cure the binder. Thereby, the antistatic layer 17 containing an organic antistatic agent is produced, and the light extraction film 10 provided with the antistatic layer 17 is produced.
〈2.有機エレクトロルミネッセンス発光装置の実施の形態〉
 次に、上述の光取り出しフィルムを用いた有機エレクトロルミネッセンス発光装置(有機EL発光装置)について説明する。本実施形態の有機EL発光装置は、高い光取り出し効率と高いガスバリア性とを有する基材として上述の光取り出しフィルムを用いる。そして、この光取り出しフィルム上に、透明電極と、有機発光材料を含む発光層を1層以上有する発光ユニットと、対向電極とからなる有機エレクトロルミネッセンス素子(有機EL素子)が設けられる。このため、以下の有機EL発光装置の説明では、上述の光取り出しフィルムと同じ構成については、詳細な説明を省略する。
<2. Embodiment of Organic Electroluminescence Light Emitting Device>
Next, an organic electroluminescence light emitting device (organic EL light emitting device) using the above-described light extraction film will be described. The organic EL light-emitting device of this embodiment uses the above-described light extraction film as a base material having high light extraction efficiency and high gas barrier properties. And on this light extraction film, the organic electroluminescent element (organic EL element) which consists of a transparent electrode, the light emitting unit which has 1 or more layers of the light emitting layer containing an organic luminescent material, and a counter electrode is provided. For this reason, in the following description of the organic EL light emitting device, detailed description of the same configuration as the above-described light extraction film is omitted.
[有機EL発光装置の構成]
 有機EL発光装置の構成を図2に示す。図2に示す有機EL発光装置20は、光取り出しフィルム10の帯電防止層17が形成されていない面(第1主面)上に、透明電極24と、発光ユニット26と、対向電極25とからなる有機EL素子21を備える。光取り出しフィルム10は、上述の図1と同様の構成である。
[Configuration of organic EL light emitting device]
The configuration of the organic EL light emitting device is shown in FIG. The organic EL light emitting device 20 shown in FIG. 2 includes a transparent electrode 24, a light emitting unit 26, and a counter electrode 25 on the surface (first main surface) of the light extraction film 10 where the antistatic layer 17 is not formed. An organic EL element 21 is provided. The light extraction film 10 has the same configuration as that of FIG.
 有機EL発光装置20において、有機EL素子21の層構成は特に限定されることはなく、一般的な層構造であってよい。例えば、透明電極24がアノード(陽極)として機能し、対向電極25がカソード(陰極)として機能する場合、発光ユニット26を透明電極24側から順に正孔注入層26a/正孔輸送層26b/発光層26c/電子輸送層26d/電子注入層26eを積層した構成とすることができる。有機EL発光装置20は、所望の発光色に応じて、当該発光ユニットを複数備えていてもよい。
 有機EL発光装置20には、公知の有機EL材料を適宜選択して使用することができる。
In the organic EL light emitting device 20, the layer configuration of the organic EL element 21 is not particularly limited, and may be a general layer structure. For example, when the transparent electrode 24 functions as an anode (anode) and the counter electrode 25 functions as a cathode (cathode), the light-emitting unit 26 is arranged in order from the transparent electrode 24 side, the hole injection layer 26a / the hole transport layer 26b / light emission. The layer 26c / electron transport layer 26d / electron injection layer 26e may be stacked. The organic EL light emitting device 20 may include a plurality of the light emitting units according to a desired emission color.
A known organic EL material can be appropriately selected and used for the organic EL light emitting device 20.
 有機EL発光装置20において、透明電極24は第1ガスバリア層12上に直接形成されることが好ましい。透明電極24が第1ガスバリア層12の直上に形成される構成は、透明電極24と第1ガスバリア層12との間に他の層が介在する構成よりも封止性が高い。このため、第1ガスバリア層12の直上に透明電極24を形成することにより、有機EL発光装置20の信頼性が向上する。 In the organic EL light emitting device 20, the transparent electrode 24 is preferably formed directly on the first gas barrier layer 12. The configuration in which the transparent electrode 24 is formed immediately above the first gas barrier layer 12 has higher sealing performance than the configuration in which another layer is interposed between the transparent electrode 24 and the first gas barrier layer 12. For this reason, the reliability of the organic EL light emitting device 20 is improved by forming the transparent electrode 24 immediately above the first gas barrier layer 12.
 また、光取り出し層16は、粘着剤層13及び第2ガスバリア層15から見て、透明電極24が設けられる側と反対側に配置されることが好ましい。有機EL発光装置20において、光取り出し層16が、粘着剤層13及び第2ガスバリア層15よりも外側に配置されることにより、粘着剤層13から発生するアウトガスの影響を受けにくくなるため、有機EL発光装置20の光取り出し効率の低下を抑制できる。 Further, it is preferable that the light extraction layer 16 is disposed on the side opposite to the side where the transparent electrode 24 is provided when viewed from the pressure-sensitive adhesive layer 13 and the second gas barrier layer 15. In the organic EL light emitting device 20, since the light extraction layer 16 is disposed outside the pressure-sensitive adhesive layer 13 and the second gas barrier layer 15, the organic EL light-emitting device 20 is less affected by the outgas generated from the pressure-sensitive adhesive layer 13. A decrease in light extraction efficiency of the EL light emitting device 20 can be suppressed.
[封止部材]
 有機EL発光装置20は、有機材料等を用いて構成された発光ユニット26の劣化を防止することを目的として、図示しない封止部材で封止されていてもよい。封止部材は、有機EL発光装置20の上面を覆う板状(フィルム状)の部材であって、接着部によって光取り出しフィルム10側に固定される。また、封止部材は、封止膜であってもよい。このような封止部材は、有機EL発光装置20の電極端子部分を露出させ、少なくとも発光ユニット26を覆う状態で設けられている。また、封止部材に電極を設け、有機EL発光装置20の電極端子部分と、封止部材の電極とを導通させる構成でもよい。
[Sealing member]
The organic EL light emitting device 20 may be sealed with a sealing member (not shown) for the purpose of preventing deterioration of the light emitting unit 26 configured using an organic material or the like. The sealing member is a plate-like (film-like) member that covers the upper surface of the organic EL light-emitting device 20, and is fixed to the light extraction film 10 side by an adhesive portion. The sealing member may be a sealing film. Such a sealing member is provided in a state in which the electrode terminal portion of the organic EL light emitting device 20 is exposed and at least the light emitting unit 26 is covered. Moreover, the structure which provides an electrode in a sealing member and makes the electrode terminal part of the organic EL light-emitting device 20 and the electrode of a sealing member electrically connect may be sufficient.
 また、有機EL発光装置20を機械的に保護するために、保護膜又は保護板等の保護部材(図示省略)を設けてもよい。保護部材は、有機EL発光装置20及び封止部材を、光取り出しフィルム10とで挟む位置に配置される。特に封止部材が封止膜である場合には、有機EL発光装置20に対する機械的な保護が十分ではないため、このような保護部材を設けることが好ましい。 Further, in order to mechanically protect the organic EL light emitting device 20, a protective member (not shown) such as a protective film or a protective plate may be provided. The protective member is disposed at a position where the organic EL light emitting device 20 and the sealing member are sandwiched between the light extraction film 10. In particular, when the sealing member is a sealing film, mechanical protection for the organic EL light emitting device 20 is not sufficient, and thus such a protective member is preferably provided.
[有機EL素子の製造方法]
 次に、図2に示す有機EL発光装置20の製造方法の一例を説明する。
 まず、上述の製造方法により光取り出しフィルム10を作製する。そして、光取り出しフィルム10の第1主面上に、透明電極24を、蒸着法やスパッタ法等の適宜の成膜法によって形成する。そして、透明電極24上に、正孔注入層26a、正孔輸送層26b、発光層26c、電子輸送層26d、及び、電子注入層26eを順に成膜し、発光ユニット26を形成する。これらの各層の成膜方法としては、従来公知の各条件を適宜選択することができる。
[Method of manufacturing organic EL element]
Next, an example of a manufacturing method of the organic EL light emitting device 20 shown in FIG. 2 will be described.
First, the light extraction film 10 is produced by the manufacturing method described above. Then, the transparent electrode 24 is formed on the first main surface of the light extraction film 10 by an appropriate film forming method such as a vapor deposition method or a sputtering method. Then, the hole injection layer 26 a, the hole transport layer 26 b, the light emitting layer 26 c, the electron transport layer 26 d, and the electron injection layer 26 e are sequentially formed on the transparent electrode 24 to form the light emitting unit 26. As a method for forming these layers, conventionally known conditions can be appropriately selected.
 発光ユニット26を形成した後、この上部に対向電極25を、蒸着法やスパッタ法等の従来公知の成膜法によって形成する。この際、対向電極25を、発光ユニット26によって透明電極24に対して絶縁状態を保ちつつ、発光ユニット26の上方から光取り出しフィルム10の周縁に端子部分を引き出した形状にパターン形成する。これにより、有機EL発光装置20を製造する。さらに、有機EL発光装置20における取り出し電極及び対向電極25の端子部分を露出させた状態で、少なくとも発光ユニット26を覆う封止部材を設ける。 After the light emitting unit 26 is formed, the counter electrode 25 is formed thereon by a conventionally known film forming method such as a vapor deposition method or a sputtering method. At this time, the counter electrode 25 is patterned in a shape in which a terminal portion is drawn from the upper side of the light emitting unit 26 to the periphery of the light extraction film 10 while being kept insulated from the transparent electrode 24 by the light emitting unit 26. Thereby, the organic EL light emitting device 20 is manufactured. Further, a sealing member that covers at least the light emitting unit 26 is provided in a state where the terminal portions of the extraction electrode and the counter electrode 25 in the organic EL light emitting device 20 are exposed.
 以上により、光取り出しフィルム10上に有機EL素子21を作製し、有機EL発光装置20を作製することができる。このような有機EL発光装置20の作製においては、1回の真空引きで一貫して透明電極24から対向電極25まで作製するのが好ましいが、途中で真空雰囲気から光取り出しフィルム10を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 By the above, the organic EL element 21 can be produced on the light extraction film 10, and the organic EL light-emitting device 20 can be produced. In the production of such an organic EL light emitting device 20, it is preferable to produce from the transparent electrode 24 to the counter electrode 25 consistently by a single evacuation. However, the light extraction film 10 is taken out from the vacuum atmosphere on the way and is different. A film forming method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
〈試料101の有機EL発光装置の作製〉
[第1ガスバリア性フィルムの作製;第1フィルム基材]
 両面に易接着処理した厚さ100μmのポリエチレンテレフタレートフィルム(東レ社製、ルミラー(登録商標)(U48))の第1主面側に厚さ2μmのクリアハードコート層(CHC)を形成した。CHCは、JSR社製、UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように塗布した後、80℃で乾燥し、さらに、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件でエネルギー線を照射して硬化を行った。
<Production of Organic EL Light-Emitting Device of Sample 101>
[Production of first gas barrier film; first film substrate]
A clear hard coat layer (CHC) having a thickness of 2 μm was formed on the first main surface side of a 100 μm-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48) manufactured by Toray Industries, Inc.) subjected to easy adhesion treatment on both sides. For CHC, a UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Co. was applied to a dry film thickness of 2 μm, dried at 80 ° C., and further irradiated in air using a high-pressure mercury lamp. Curing was performed by irradiating energy rays under conditions of an energy amount of 0.5 J / cm 2 .
 次に、上記PETフィルムの第2主面側に、厚さ0.5μmのアンチブロック機能を有するクリアハードコート層(CHC)を形成した。CHCは、UV硬化型樹脂(アイカ工業社製、品番:Z731L)を、乾燥膜厚が0.5μmになるように塗布した後、80℃で乾燥し、さらに、空気下において高圧水銀ランプを用いて、照射エネルギー量0.5J/cmの条件でエネルギー線を照射して硬化を行った。 Next, a clear hard coat layer (CHC) having an anti-block function having a thickness of 0.5 μm was formed on the second main surface side of the PET film. For CHC, a UV curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied so that the dry film thickness was 0.5 μm, then dried at 80 ° C., and further using a high-pressure mercury lamp in the air. Then, curing was performed by irradiating energy rays under the condition of an irradiation energy amount of 0.5 J / cm 2 .
 以上の方法により、ハードコート層付フィルム基材を得た。以降、各試料の説明においては、便宜上、このハードコート層付フィルム基材を単に第1フィルム基材と称する。 The film base material with a hard-coat layer was obtained by the above method. Hereinafter, in the description of each sample, this film substrate with a hard coat layer is simply referred to as a first film substrate for convenience.
[第1ガスバリア性フィルムの作製;第1ガスバリア層の形成]
 次に、第1フィルム基材の第1主面上に、下記の方法に従って、第1ガスバリア層を形成した。
 ケイ素含有化合物として、パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ社製、NN120-20)と、アミン触媒(N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し、塗布液を調製した。
[Production of First Gas Barrier Film; Formation of First Gas Barrier Layer]
Next, a first gas barrier layer was formed on the first main surface of the first film substrate according to the following method.
As a silicon-containing compound, a dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials, NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6- Dihydrohexane containing 20% by mass of dihydrohexane containing diaminohexane (TMDAH) (manufactured by AZ Electronic Materials, NAX120-20) was mixed at a ratio of 4: 1 (mass ratio), and the dry film thickness was adjusted. Therefore, it was appropriately diluted with dibutyl ether to prepare a coating solution.
 次に、上記第1フィルム基材上に、スピンコート法により塗布液を乾燥膜厚が150nmになるよう塗布し、80℃で2分間乾燥した。次に、乾燥した塗膜に対して、波長172nmのXeエキシマランプ(エキシマランプ光強度:130mW/cm)を有する真空紫外線照射装置(試料の塗布層表面とエキシマランプ管面との最短距離が3mm)を用い、真空紫外線の照射エネルギー量(照射量)2.5J/cmで真空紫外線照射処理を行った。これにより、第1フィルム基材の第1主面上に、ポリシラザン改質層からなる第1ガスバリア層を形成した。 Next, the coating solution was applied onto the first film substrate by spin coating so that the dry film thickness was 150 nm, and dried at 80 ° C. for 2 minutes. Next, with respect to the dried coating film, the shortest distance between the vacuum ultraviolet irradiation apparatus (external layer surface of the sample and the excimer lamp tube surface) having an Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a wavelength of 172 nm 3 mm), and a vacuum ultraviolet ray irradiation treatment was performed with a vacuum ultraviolet ray irradiation energy amount (irradiation amount) of 2.5 J / cm 2 . Thereby, the 1st gas barrier layer which consists of a polysilazane modified layer was formed on the 1st main surface of the 1st film base material.
 ポリシラザン改質層の形成の際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。真空紫外線照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを真空紫外線照射装置の試料ステージ中央に設置し、かつ、装置チャンバー内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージを0.5m/minの速度で移動させた。測定に先立ち、Xeエキシマランプの照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。この測定で得られた照射エネルギーを元に、上述の照射エネルギーとなるように試料ステージの移動速度を調整した。尚、真空紫外線照射に際しては、10分間のエージング後に行った。 During the formation of the polysilazane modified layer, the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C. The energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation step was measured using a 172 nm sensor head using an ultraviolet integrated light meter: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics. At the time of measurement, the sensor head was installed at the center of the sample stage of the vacuum ultraviolet irradiation apparatus so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head was 3 mm, and the atmosphere in the apparatus chamber was Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the vacuum ultraviolet irradiation step, and the sample stage was moved at a speed of 0.5 m / min. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement. Based on the irradiation energy obtained by this measurement, the moving speed of the sample stage was adjusted so that the above-mentioned irradiation energy was obtained. The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
 以上の工程により、第1フィルム基材上に第1ガスバリア層が形成された第1ガスバリア性フィルムを作製した。 Through the above steps, a first gas barrier film having a first gas barrier layer formed on the first film substrate was produced.
[第2ガスバリア性フィルムの作製;第2ガスバリア層の形成]
 光取り出し層付きのフィルム基材として、きもと社製のオプトセーバーSTC3(粘着剤層がないもの)を準備した。そして、このフィルム基材の光取り出し層が形成されていない面に、上述の第1ガスバリア性フィルムと同様の方法で、ポリシラザン改質層からなるガスバリア層(第2ガスバリア層)を作製した。
 以上の工程により、第2フィルム基材上に第2ガスバリア層が形成された第2ガスバリア性フィルムを作製した。
[Production of Second Gas Barrier Film; Formation of Second Gas Barrier Layer]
As a film substrate with a light extraction layer, an Optsaver STC3 (without an adhesive layer) manufactured by Kimoto was prepared. And the gas barrier layer (2nd gas barrier layer) which consists of a polysilazane modified layer was produced by the method similar to the above-mentioned 1st gas barrier property film in the surface in which the light extraction layer of this film base material was not formed.
Through the above steps, a second gas barrier film having a second gas barrier layer formed on the second film substrate was produced.
[光取り出しフィルムの作製;貼り合せ]
 上記の方法で作製した第1ガスバリア性フィルムの第1フィルム基材側に、綜研化学社製のSKダイン2147を厚さ25μmで塗布し、粘着剤層を形成した。そして、上記の方法で作製した第2ガスバリア性フィルムの第2ガスバリア層形成面を、上記粘着剤層に貼り合せた。この後、第1ガスバリア性フィルム、粘着剤層、及び、第2ガスバリア性フィルムからなる積層体を、搬送速度3m/min、積層体の張力110N/m、ニップ圧25kPaの条件で貼り合せた。
 以上の方法により、[第1ガスバリア層/第1フィルム基材/粘着剤層/第2ガスバリア層/第2フィルム基材/光取り出し層]の積層構造を有する試料101の光取り出しフィルムを作製した。
[Production of light extraction film; bonding]
On the first film base side of the first gas barrier film produced by the above method, SK Dyne 2147 made by Soken Chemical Co., Ltd. was applied at a thickness of 25 μm to form an adhesive layer. And the 2nd gas barrier layer formation surface of the 2nd gas barrier film produced by said method was bonded together to the said adhesive layer. Then, the laminated body which consists of a 1st gas barrier film, an adhesive layer, and a 2nd gas barrier film was bonded on the conditions of the conveyance speed of 3 m / min, the tension | tensile_strength of the laminated body of 110 N / m, and the nip pressure of 25 kPa.
By the above method, a light extraction film of sample 101 having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / second gas barrier layer / second film substrate / light extraction layer] was produced. .
[有機EL素子の作製;第1電極の作製]
 次に、光取り出しフィルムの第1ガスバリア層上に、厚さ150nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極を作製した。
[Production of organic EL element; Production of first electrode]
Next, ITO (indium tin oxide) having a thickness of 150 nm was formed by sputtering on the first gas barrier layer of the light extraction film, and patterned by photolithography to produce a first electrode.
[有機EL素子の作製;発光ユニットの作製]
 次に、第1電極が形成された光取り出しフィルムを、中央部に幅30mm×30mmの開口部があるマスクと重ねて市販の真空蒸着装置の基板ホルダーに固定した。また真空蒸着装置内の加熱ボートの各々に、発光ユニットを構成する各材料を、それぞれの層の形成に最適な量で充填した。なお、加熱ボートはタングステン製抵抗加熱用材料で作製されたものを用いた。
[Production of organic EL element; Production of light-emitting unit]
Next, the light extraction film on which the first electrode was formed was fixed on a substrate holder of a commercially available vacuum deposition apparatus by being overlapped with a mask having an opening with a width of 30 mm × 30 mm at the center. Moreover, each material which comprises a light emission unit was filled in each heating boat in a vacuum evaporation system in the optimal quantity for formation of each layer. In addition, the heating boat used what was produced with the resistance heating material made from tungsten.
 次に、真空蒸着装置の蒸着室内を真空度4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下のように各層を形成した。
 まず、正孔輸送注入材料として下記構造式に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDからなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、第1電極上に形成した。この際、蒸着速度0.1~0.2nm/秒、層厚140nmとした。
Next, the inside of the vapor deposition chamber of the vacuum vapor deposition apparatus was depressurized to a vacuum degree of 4 × 10 −4 Pa, and each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
First, a hole-injecting hole transporting material serving as both a hole-injecting layer and a hole-transporting layer made of α-NPD is heated by energizing a heating boat containing α-NPD represented by the following structural formula as a hole-transporting injecting material. A layer was formed on the first electrode. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 140 nm.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 次に、下記構造式に示すホスト材料H4の入った加熱ボートと、下記構造式に示すリン光発光性化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4とリン光発光性化合物Ir-4とからなる発光層を、正孔輸送注入層上に形成した。この際、蒸着速度がホスト材料H4:リン光発光性化合物Ir-4=100:6となるように、加熱ボートの通電を調節した。また層厚を30nmとした。
 次に、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqからなる正孔阻止層を、発光層上に形成した。この際、蒸着速度0.1~0.2nm/秒、層厚10nmとした。
Next, each of the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were energized independently, respectively. A light emitting layer composed of the photoluminescent compound Ir-4 was formed on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was the host material H4: phosphorescent compound Ir-4 = 100: 6. The layer thickness was 30 nm.
Next, a hole-blocking layer made of BAlq was formed on the light-emitting layer by heating a heated boat containing BAlq represented by the following structural formula as a hole-blocking material. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 その後、下記化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、化合物10とフッ化カリウムとからなる電子輸送層を、正孔阻止層上に形成した。この際、蒸着速度が化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また層厚30nmとした。
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムからなる電子注入層を、電子輸送層上に形成した。この際、蒸着速度0.01~0.02nm/秒、層厚1nmとした。
Thereafter, a heating boat containing the following compound 10 and a heating boat containing potassium fluoride are energized independently to form an electron transport layer composed of the compound 10 and potassium fluoride on the hole blocking layer. did. At this time, the energization of the heating boat was adjusted so that the deposition rate was compound 10: potassium fluoride = 75: 25. The layer thickness was 30 nm.
Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[有機EL素子の作製;第2電極の作製~封止]
 発光ユニットまで形成した光取り出しフィルムを、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた第2真空槽へ、真空状態を保持したまま移送した。そして、第1電極と直行するように配置された幅20mm×20mmの開口部があるマスクと重ねて固定した。次に、処理室内において、成膜速度0.3~0.5nm/秒で、膜厚100nmのAlからなる反射性の第2電極をカソードとして成膜した。
[Preparation of organic EL element; preparation and sealing of second electrode]
The light extraction film formed up to the light emitting unit was transferred to a second vacuum tank equipped with a tungsten resistance heating boat containing aluminum (Al) while maintaining a vacuum state. And it overlapped and fixed to the mask with the opening part of width 20mm * 20mm arrange | positioned so that it may be orthogonal to the 1st electrode. Next, a reflective second electrode made of Al having a thickness of 100 nm was formed as a cathode at a film formation rate of 0.3 to 0.5 nm / second in the processing chamber.
 次に、第1ガスバリア性フィルムと同様の構成の封止部材を準備し、この封止部材のガスバリア層側に、封止樹脂層として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで形成した。そして、この封止樹脂層を設けた封止部材を、第2電極までを形成した試料に重ね合わせた。なお、封止部材は、第1電極及び第2電極の取出し部の端部が外に出るように、封止部材の封止樹脂層形成面を、有機EL素子のガスバリア性フィルム側に連続的に重ね合わせた。 Next, a sealing member having the same configuration as that of the first gas barrier film is prepared, and a thermosetting liquid adhesive (epoxy resin) is thickened as a sealing resin layer on the gas barrier layer side of the sealing member. Formed at 25 μm. And the sealing member which provided this sealing resin layer was piled up on the sample in which even the 2nd electrode was formed. In addition, the sealing member has a sealing resin layer forming surface of the sealing member continuous to the gas barrier film side of the organic EL element so that the end portions of the extraction portions of the first electrode and the second electrode come out. Superimposed.
 次に、封止部材を貼り合せた試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させた。 Next, the sample to which the sealing member was bonded was placed in a decompression device, and pressed at 90 ° C. under a decompression condition of 0.1 MPa and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
 上記封止工程は、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧下で行った。 The above sealing step is performed under an atmospheric pressure of nitrogen having a moisture content of 1 ppm or less, in accordance with JIS B 9920, with a measured cleanliness of class 100, a dew point temperature of −80 ° C. or less, and an oxygen concentration of 0.8 ppm or less I went there.
 以上の方法により、光取り出しフィルム上に有機EL素子を作製し、試料101の有機EL発光装置を作製した。なお、有機EL素子の作製工程において、第1電極及び第2電極からの取出し部等の形成に関する記載は省略した。 By the above method, an organic EL element was produced on the light extraction film, and an organic EL light emitting device of Sample 101 was produced. In addition, in the manufacturing process of an organic EL element, the description regarding formation of the extraction part from a 1st electrode and a 2nd electrode was abbreviate | omitted.
〈試料102の有機EL発光装置の作製〉
 第1ガスバリア性フィルムと第2ガスバリア性フィルムとの貼り合せ工程において、第2ガスバリア性フィルムの光取り出し層形成面を粘着剤層に貼り合せた以外は、上述の試料101の光取り出しフィルムと同様の方法で、[第1ガスバリア層/第1フィルム基材/粘着剤層/光取り出し層/第2フィルム基材/第2ガスバリア層]の積層構造を有する試料102の光取り出しフィルムを作製した。
 そして、この試料102の光取り出しフィルムの第1ガスバリア層上に、上述の試料101と同様の方法で有機EL素子を作製し、試料102の有機EL発光装置を作製した。
<Production of Organic EL Light-Emitting Device of Sample 102>
In the step of bonding the first gas barrier film and the second gas barrier film, the same as the light extraction film of the sample 101 described above, except that the light extraction layer forming surface of the second gas barrier film is bonded to the adhesive layer. The light extraction film of sample 102 having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / light extraction layer / second film substrate / second gas barrier layer] was prepared by the method.
Then, an organic EL element was produced on the first gas barrier layer of the light extraction film of the sample 102 in the same manner as the sample 101 described above, and an organic EL light emitting device of the sample 102 was produced.
〈試料103の有機EL発光装置の作製〉
 第1ガスバリア性フィルムと第2ガスバリア性フィルムとの貼り合せ工程において、日東電工社製のNo.5911を厚さ25μmで塗布し、粘着剤層を形成した以外は、上述の試料101の光取り出しフィルムと同様の方法で、[第1ガスバリア層/第1フィルム基材/粘着剤層/第2ガスバリア層/第2フィルム基材/光取り出し層]の積層構造を有する試料103の光取り出しフィルムを作製した。
 そして、この試料103の光取り出しフィルムの第1ガスバリア層上に、上述の試料101と同様の方法で有機EL素子を作製し、試料103の有機EL発光装置を作製した。
<Production of Organic EL Light-Emitting Device of Sample 103>
In the bonding process of the first gas barrier film and the second gas barrier film, No. manufactured by Nitto Denko Corporation. [First gas barrier layer / first film substrate / adhesive layer / second] in the same manner as the light extraction film of sample 101 described above, except that 5911 was applied in a thickness of 25 μm to form an adhesive layer. A light extraction film of Sample 103 having a laminated structure of gas barrier layer / second film substrate / light extraction layer] was produced.
Then, an organic EL element was produced on the first gas barrier layer of the light extraction film of the sample 103 by the same method as the sample 101 described above, and an organic EL light emitting device of the sample 103 was produced.
〈試料104の有機EL発光装置の作製〉
 第1ガスバリア性フィルムと第2ガスバリア性フィルムとの貼り合せ工程において、第2ガスバリア性フィルムの光取り出し層形成面を粘着剤層に貼り合せた以外は、上述の試料103の光取り出しフィルムと同様の方法で、[第1ガスバリア層/第1フィルム基材/粘着剤層/光取り出し層/第2フィルム基材/第2ガスバリア層]の積層構造を有する試料104の光取り出しフィルムを作製した。
 そして、この試料104の光取り出しフィルムの第1ガスバリア層上に、上述の試料101と同様の方法で有機EL素子を作製し、試料104の有機EL発光装置を作製した。
<Production of Organic EL Light-Emitting Device of Sample 104>
Similar to the light extraction film of the sample 103 described above, except that the light extraction layer forming surface of the second gas barrier film is bonded to the adhesive layer in the bonding step of the first gas barrier film and the second gas barrier film. The light extraction film of sample 104 having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / light extraction layer / second film substrate / second gas barrier layer] was prepared by the method described above.
Then, an organic EL element was manufactured on the first gas barrier layer of the light extraction film of the sample 104 by the same method as the sample 101 described above, and an organic EL light emitting device of the sample 104 was manufactured.
〈試料105の有機EL発光装置の作製〉
 第1ガスバリア性フィルムと第2ガスバリア性フィルムとの貼り合せ工程において、パナック社製のPDS1を厚さ25μmで塗布し、粘着剤層を形成した以外は、上述の試料101の光取り出しフィルムと同様の方法で、[第1ガスバリア層/第1フィルム基材/粘着剤層/第2ガスバリア層/第2フィルム基材/光取り出し層]の積層構造を有する試料105の光取り出しフィルムを作製した。
 そして、この試料105の光取り出しフィルムの第1ガスバリア層上に、上述の試料101と同様の方法で有機EL素子を作製し、試料105の有機EL発光装置を作製した。
<Production of Organic EL Light-Emitting Device of Sample 105>
In the bonding process of the first gas barrier film and the second gas barrier film, similar to the light extraction film of the sample 101 described above, except that PDS1 manufactured by Panac Co. was applied at a thickness of 25 μm to form an adhesive layer. By this method, a light extraction film of Sample 105 having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / second gas barrier layer / second film substrate / light extraction layer] was produced.
Then, an organic EL element was produced on the first gas barrier layer of the light extraction film of the sample 105 in the same manner as the sample 101 described above, and an organic EL light emitting device of the sample 105 was produced.
〈試料106の有機EL発光装置の作製〉
 第1ガスバリア性フィルムと第2ガスバリア性フィルムとの貼り合せ工程において、日東電工社製のCS9862UAを厚さ25μmで塗布し、粘着剤層を形成した以外は、上述の試料101の光取り出しフィルムと同様の方法で、[第1ガスバリア層/第1フィルム基材/粘着剤層/第2ガスバリア層/第2フィルム基材/光取り出し層]の積層構造を有する試料106の光取り出しフィルムを作製した。
 そして、この試料106の光取り出しフィルムの第1ガスバリア層上に、上述の試料101と同様の方法で有機EL素子を作製し、試料106の有機EL発光装置を作製した。
<Production of Organic EL Light-Emitting Device of Sample 106>
In the bonding process of the first gas barrier film and the second gas barrier film, the light extraction film of the sample 101 described above except that CS9862UA manufactured by Nitto Denko Corporation was applied at a thickness of 25 μm to form an adhesive layer. In the same manner, a light extraction film of Sample 106 having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / second gas barrier layer / second film substrate / light extraction layer] was produced. .
Then, an organic EL element was manufactured on the first gas barrier layer of the light extraction film of the sample 106 by the same method as the sample 101 described above, and an organic EL light emitting device of the sample 106 was manufactured.
〈試料107の有機EL発光装置の作製〉
 第2ガスバリア性フィルムの作製において第2ガスバリア層を形成せず、第2フィルム基材側に粘着剤層を形成した以外は、上述の試料101の光取り出しフィルムと同様の方法で、[第1ガスバリア層/第1フィルム基材/粘着剤層/第2フィルム基材/光取り出し層]の積層構造を有する試料107の光取り出しフィルムを作製した。
 そして、この試料107の光取り出しフィルムの第1ガスバリア層上に、上述の試料101と同様の方法で有機EL素子を作製し、試料107の有機EL発光装置を作製した。
<Production of Organic EL Light-Emitting Device of Sample 107>
In the production of the second gas barrier film, the second gas barrier layer was not formed, and the pressure-sensitive adhesive layer was formed on the second film substrate side, and the same method as the light extraction film of the sample 101 described above was used. A light extraction film of Sample 107 having a laminated structure of gas barrier layer / first film substrate / adhesive layer / second film substrate / light extraction layer] was produced.
Then, an organic EL element was produced on the first gas barrier layer of the light extraction film of the sample 107 by the same method as the sample 101 described above, and an organic EL light emitting device of the sample 107 was produced.
〈試料108の有機EL発光装置の作製〉
 第1ガスバリア性フィルムと第2ガスバリア性フィルムとの貼り合せ工程において、日東電工社製のCS9862UAを厚さ25μmで塗布し、粘着剤層を形成した以外は、上述の試料107の光取り出しフィルムと同様の方法で、[第1ガスバリア層/第1フィルム基材/粘着剤層/第2フィルム基材/光取り出し層]の積層構造を有する試料108の光取り出しフィルムを作製した。
 そして、この試料108の光取り出しフィルムの第1ガスバリア層上に、上述の試料101と同様の方法で有機EL素子を作製し、試料108の有機EL発光装置を作製した。
<Production of Organic EL Light-Emitting Device of Sample 108>
In the bonding process of the first gas barrier film and the second gas barrier film, the light extraction film of the sample 107 described above was used except that CS9862UA manufactured by Nitto Denko Corporation was applied at a thickness of 25 μm to form an adhesive layer. In the same manner, a light extraction film of Sample 108 having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / second film substrate / light extraction layer] was produced.
Then, an organic EL element was produced on the first gas barrier layer of the light extraction film of the sample 108 by the same method as the sample 101 described above, and an organic EL light emitting device of the sample 108 was produced.
 下記表1に、上述の試料101~108の光取り出しフィルムの構成を示す。なお、表1において、光取り出しフィルムの積層構造は、有機EL素子が形成される面側から示し、ガスバリア層を構成するポリシラザン改質層をPHPSとして表記している。 Table 1 below shows the configuration of the light extraction films of the samples 101 to 108 described above. In Table 1, the laminated structure of the light extraction film is shown from the side where the organic EL element is formed, and the polysilazane modified layer constituting the gas barrier layer is expressed as PHPS.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〈評価方法〉
 作製した試料101~108の光取り出しフィルム、及び、有機EL発光装置に対し、下記の評価を行なった。
<Evaluation methods>
The following evaluations were performed on the light extraction films and the organic EL light-emitting devices of the produced samples 101 to 108.
[保存性:光取り出しフィルムのCa法評価]
 下記のようにして作製したCa法評価試料(透過濃度により評価するタイプ)を85℃85%RH環境に保存して一定時間ごとに、Caの腐食率を観察した。1時間、5時間、10時間、20時間、それ以降は20時間ごとに観察及び透過濃度測定(任意4点の平均)を行い、測定した透過濃度が透過濃度初期値の50%未満となった時点の観察時間を有機EL発光装置の保存性の指標とした。
 5:400時間以上
 4:300時間以上400時間未満
 3:200時間以上300時間未満
 2:100時間以上200時間未満
 1:100時間未満
[Preservation: Ca method evaluation of light extraction film]
The Ca method evaluation sample (type evaluated by permeation concentration) prepared as described below was stored in an 85 ° C. and 85% RH environment, and the corrosion rate of Ca was observed at regular intervals. After 1 hour, 5 hours, 10 hours, 20 hours, and thereafter, observation and transmission density measurement (average of 4 points) were performed every 20 hours, and the measured transmission density was less than 50% of the initial transmission density value. The observation time at the time was used as an index of storage stability of the organic EL light emitting device.
5: 400 hours or more 4: 300 hours or more and less than 400 hours 3: 200 hours or more and less than 300 hours 2: 100 hours or more and less than 200 hours 1: 1: 100 hours or less
(Ca法評価試料)
 各試料101~108において作製した光取り出しフィルムに対し、光取り出しフィルムの一方の面に露出するガスバリア層(第1ガスバリア層)の表面をUV洗浄した後、ガスバリア層面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。
(Ca method evaluation sample)
The surface of the gas barrier layer (first gas barrier layer) exposed on one surface of the light extraction film was UV washed on the light extraction film prepared in each of the samples 101 to 108, and then thermally cured as a sealing resin layer on the gas barrier layer surface. A mold sheet-like adhesive (epoxy resin) was pasted at a thickness of 20 μm. This was punched out to a size of 50 mm × 50 mm, then placed in a glove box and dried for 24 hours.
 次に、50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。そして、エイエルエステクノロジー社製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。さらに、Ca蒸着済のガラス板をグローブボックス内に移し、ガスバリア性フィルムの封止樹脂層面と、ガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより貼合した。この際、110℃の加熱を行った。さらに、試料を110℃に設定したホットプレート上にガラス板を下にして置き、シート状接着剤を30分間硬化させて、Ca法評価用セルを作製した。 Next, one side of a 50 mm × 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned. And Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center of the glass plate using the vacuum evaporation apparatus by an LS technology company. The thickness of Ca was 80 nm. Furthermore, the Ca vapor-deposited glass plate was moved into the glove box, placed so that the sealing resin layer surface of the gas barrier film and the Ca vapor-deposited surface of the glass plate were in contact, and bonded by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and the sheet-like adhesive was cured for 30 minutes to produce a Ca method evaluation cell.
[質量変化率]
 試料101~108の光取り出しフィルムの作製に使用した粘着剤に対し、下記の測定条件で、加熱時の質量変化率を測定した。測定結果を図3~6に示す。また、測定結果から求められた質量変化率を表2に示す。
[Mass change rate]
With respect to the pressure-sensitive adhesive used for preparing the light extraction films of Samples 101 to 108, the mass change rate during heating was measured under the following measurement conditions. The measurement results are shown in FIGS. Table 2 shows the mass change rate obtained from the measurement results.
(粘着剤層の質量変化率;熱重量測定(TG)分析)
 測定器:TG/DTA6200 日立ハイテクサイエンス製
 試料:約6mgを掻きとってアルミ製オープン容器の中に入れて測定する。リファレンスとして同じアルミ容器の空容器を使用する。
 昇温条件:30℃から150℃まで、5℃/minにて昇温
 雰囲気ガス:窒素200mL/minを流しながら測定
(Mass change rate of pressure-sensitive adhesive layer; thermogravimetry (TG) analysis)
Measuring instrument: TG / DTA6200 manufactured by Hitachi High-Tech Science Sample: About 6 mg is scraped and placed in an aluminum open container for measurement. Use the same aluminum container as a reference.
Temperature rising condition: Temperature rising from 30 ° C. to 150 ° C. at 5 ° C./min Atmospheric gas: Measured while flowing 200 mL / min of nitrogen
[気泡評価]
 各試料101~108の有機EL発光装置の発光面を観察し、100cmあたりの0.5mm以上の気泡を数え、下記の基準により粘着剤層の気泡の発生を評価した。
 5:2個未満
 4:2個以上10個未満
 3:11個以上20個未満
 2:21個以上50個未満
 1:50個以上
[Bubble evaluation]
The light emitting surface of the organic EL light emitting device of each sample 101 to 108 was observed, the number of bubbles of 0.5 mm or more per 100 cm 2 was counted, and the generation of bubbles in the adhesive layer was evaluated according to the following criteria.
5: Less than 2 4: 2 or more and less than 10 3: 11 or more and less than 20 2: 21 or more and less than 50 1: 50 or more
[発光効率]
 作製した各有機EL発光装置に対し、室温(25℃)で、2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、各有機EL発光装置の発光輝度を測定し、当該電流値における発光効率(電力効率)を求めた。発光効率は、試料106の有機EL発光装置の発光効率を100とする相対値を下記の基準で評価した。
 5:発光効率(相対値)140以上
 4:発光効率(相対値)120以上140未満
 3:発光効率(相対値)100以上120未満
 2:発光効率(相対値)80以上100未満
 1:発光効率(相対値)80未満
[Luminescence efficiency]
Each of the produced organic EL light emitting devices was turned on at a constant current density of 2.5 mA / cm 2 at room temperature (25 ° C.), and a spectral radiance meter CS-2000 (manufactured by Konica Minolta) was used. The light emission luminance of each organic EL light emitting device was measured, and the light emission efficiency (power efficiency) at the current value was determined. The light emission efficiency was evaluated according to the following criteria with respect to a relative value with the light emission efficiency of the organic EL light emitting device of Sample 106 as 100.
5: Luminous efficiency (relative value) 140 or more 4: Luminous efficiency (relative value) 120 or more and less than 140 3: Luminous efficiency (relative value) 100 or more and less than 120 2: Luminous efficiency (relative value) 80 or more and less than 100 1: Luminous efficiency (Relative value) less than 80
[折り曲げ保存性試験]
 各試料101~108の有機EL発光装置を、曲率が6mmφのプラスチック製ローラーに、有機EL発光装置形成面が外側になるように巻き付けた状態で、85℃、85%RHの環境下で、500時間保存した。その後、ローラーからはずした各有機EL発光装置に、1mA/cmの電流を印加して発光させた。次に、100倍の光学顕微鏡(モリテックス社製 MS-804、レンズMP-ZE25-200)で、有機EL発光装置の発光部の一部分を拡大して撮影した。次に、撮影画像を2mm四方に切り抜き、それぞれの画像について、ダークスポット発生の有無を観察した。観察結果より、発光面積に対するダークスポットの発生面積比率を求め、下記の基準に従って、ダークスポット耐性を評価した。
[Bending preservation test]
In a state where the organic EL light emitting device of each of the samples 101 to 108 is wound around a plastic roller having a curvature of 6 mmφ so that the surface on which the organic EL light emitting device is formed is on the outside, in an environment of 85 ° C. and 85% RH, 500 Saved for hours. Thereafter, a current of 1 mA / cm 2 was applied to each organic EL light emitting device removed from the roller to emit light. Next, a part of the light emitting portion of the organic EL light emitting device was magnified and photographed with a 100 × optical microscope (MS-804, lens MP-ZE25-200, manufactured by Moritex Corporation). Next, the captured image was cut out in a 2 mm square, and the presence or absence of dark spots was observed for each image. From the observation results, the ratio of the dark spot generation area to the light emission area was determined, and the dark spot resistance was evaluated according to the following criteria.
 5:ダークスポットの発生は全く認められない
 4:ダークスポットの発生面積が、0.1%以上、1.0%未満である
 3:ダークスポットの発生面積が、1.0%以上、3.0%未満である
 2:ダークスポットの発生面積が、3.0%以上、6.0%未満である
 1:ダークスポットの発生面積が、6.0%以上である
5: Generation of dark spots is not recognized at all 4: Dark spot generation area is 0.1% or more and less than 1.0% 3: Dark spot generation area is 1.0% or more; Less than 0% 2: Dark spot generation area is 3.0% or more and less than 6.0% 1: Dark spot generation area is 6.0% or more
 上記試料101~108の光取り出しフィルム、有機EL発光装置における保存性(Ca法)、質量変化率、気泡、発光効率、及び、折り曲げ保存性の評価結果を表2に示す。 Table 2 shows the evaluation results of the light extraction films of the samples 101 to 108 and the storage stability (Ca method), mass change rate, bubbles, luminous efficiency, and folding storage stability in the organic EL light emitting device.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2に示すように、第1ガスバリア層と第2ガスバリア層とを有する試料101~106の有機EL発光装置は、第2ガスバリア層を有していない試料107及び試料108の有機EL発光装置に比べて、保存性(Ca法)の結果が良好である。また、[第1ガスバリア層/第1フィルム基材/粘着剤層/第2ガスバリア層/第2フィルム基材/光取り出し層]の積層構造を有する光取り出しフィルムを用いた有機EL発光装置(試料101、試料103)が、[第1ガスバリア層/第1フィルム基材/粘着剤層/光取り出し層/第2フィルム基材/第2ガスバリア層]の積層構造を有する光取り出しフィルムを用いた有機EL発光装置(試料102、試料104)よりも、保存性(Ca法)の結果が良好である。
 さらに、試料101及び試料103の有機EL発光装置は、試料102及び試料104の有機EL発光装置よりも発光効率が良好である。
 従って、光取り出し層と粘着剤層との間に、ガスバリア層を介在させ、光取り出し層を光取り出しフィルムの外側に配置することにより、有機EL発光装置の保存性が良好となり、発光効率も向上する。すなわち、上記構成により、信頼性の向上が可能な光取り出しフィルムを構成することができ、さらに、信頼性と発光効率との両立が可能な有機EL発光装置構成することができる。
As shown in Table 2, the organic EL light emitting devices of Samples 101 to 106 having the first gas barrier layer and the second gas barrier layer are different from the organic EL light emitting devices of Sample 107 and Sample 108 that do not have the second gas barrier layer. Compared with the results of storage stability (Ca method). Also, an organic EL light emitting device (sample) using a light extraction film having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / second gas barrier layer / second film substrate / light extraction layer] 101, sample 103) is an organic material using a light extraction film having a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / light extraction layer / second film substrate / second gas barrier layer]. The result of the storage stability (Ca method) is better than that of the EL light emitting device (sample 102, sample 104).
Further, the organic EL light emitting devices of the sample 101 and the sample 103 have better luminous efficiency than the organic EL light emitting devices of the sample 102 and the sample 104.
Therefore, by interposing a gas barrier layer between the light extraction layer and the pressure-sensitive adhesive layer and disposing the light extraction layer outside the light extraction film, the storability of the organic EL light emitting device is improved and the light emission efficiency is also improved. To do. That is, with the above configuration, a light extraction film capable of improving reliability can be configured, and further, an organic EL light emitting device capable of achieving both reliability and light emission efficiency can be configured.
 また、光取り出しフィルムが[第1ガスバリア層/第1フィルム基材/粘着剤層/第2ガスバリア層/第2フィルム基材/光取り出し層]の積層構造を有する試料101、試料103、試料105、及び、試料106は、気泡発生量、保存性(Ca法)及び折り曲げ保存性の結果が、質量変化率の結果と相関関係にある。表2に示すように、最も質量変化率が小さい粘着剤を用いた試料101の気泡発生量、保存性(Ca法)及び折り曲げ保存性の結果が最もよく、最も質量変化率が大きい粘着剤を用いた試料106の気泡発生量、保存性(Ca法)及び折り曲げ保存性の結果が最も低い。同様に、試料103及び試料104においても、質量変化率が小さい程各評価結果が良好となる傾向である。このように、光取り出しフィルムの粘着剤の質量変化率が小さい程、気泡の発生が少なくなる傾向が得られた。そして、光取り出しフィルムにおいて気泡の発生が少ない程、有機EL発光装置の保存性が向上する傾向が得られた。特に、粘着剤の質量変化率が0.50%未満の試料101、試料105に比べ、粘着剤の質量変化率が0.50%を超える試料104、試料106は、気泡の発生数が大きく、有機EL発光装置の信頼性が大きく低下している。 Sample 101, sample 103, and sample 105 in which the light extraction film has a laminated structure of [first gas barrier layer / first film substrate / adhesive layer / second gas barrier layer / second film substrate / light extraction layer]. In the sample 106, the results of bubble generation amount, storage stability (Ca method), and folding storage stability are correlated with the results of mass change rate. As shown in Table 2, the results of the bubble generation amount, storage stability (Ca method) and folding storage stability of the sample 101 using the adhesive with the smallest mass change rate are the best, and the adhesive with the largest mass change rate is The results of the bubble generation amount, storage stability (Ca method) and folding storage stability of the sample 106 used are the lowest. Similarly, in the sample 103 and the sample 104, each evaluation result tends to be better as the mass change rate is smaller. Thus, there was a tendency that the smaller the mass change rate of the pressure-sensitive adhesive of the light extraction film, the less bubbles were generated. And the tendency for the preservability of an organic electroluminescent light emitting device to improve was acquired, so that there were few bubble generation | occurrence | production in a light extraction film. In particular, the sample 104 and the sample 106 in which the mass change rate of the adhesive exceeds 0.50% compared to the sample 101 and the sample 105 in which the mass change rate of the adhesive is less than 0.50%, The reliability of the organic EL light emitting device is greatly reduced.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10・・・光取り出しフィルム、11・・・第1フィルム基材、12・・・第1ガスバリア層、13・・・粘着剤層、14・・・第2フィルム基材、15・・・第2ガスバリア層、16・・・光取り出し層、17・・・帯電防止層、18・・・第1ガスバリア性フィルム、19・・・第2ガスバリア性フィルム、20・・・有機EL発光装置、21・・・有機EL素子、24・・・透明電極、25・・・対向電極、26・・・発光ユニット26a・・・正孔注入層、26b・・・正孔輸送層、26c・・・発光層、26d・・・電子輸送層、26e・・・電子注入層 DESCRIPTION OF SYMBOLS 10 ... Light extraction film, 11 ... 1st film base material, 12 ... 1st gas barrier layer, 13 ... Adhesive layer, 14 ... 2nd film base material, 15 ... 1st 2 gas barrier layers, 16 ... light extraction layer, 17 ... antistatic layer, 18 ... first gas barrier film, 19 ... second gas barrier film, 20 ... organic EL light emitting device, 21 ... Organic EL element, 24 ... Transparent electrode, 25 ... Counter electrode, 26 ... Light emitting unit 26a ... Hole injection layer, 26b ... Hole transport layer, 26c ... Light emission Layer, 26d ... electron transport layer, 26e ... electron injection layer

Claims (7)

  1.  第1ガスバリア層と、
     第2ガスバリア層と、
     エポキシ系樹脂、及び、アクリル系樹脂から選ばれる少なくとも1種の樹脂を含む粘着剤層と、
     光取り出し層と、を備え、
     前記第1ガスバリア層と前記第2ガスバリア層とが前記粘着剤層を介して積層され、
     前記光取り出し層と前記粘着剤層との間に、前記第1ガスバリア層、又は、前記第2ガスバリア層が介在する
     光取り出しフィルム。
    A first gas barrier layer;
    A second gas barrier layer;
    An adhesive layer containing at least one resin selected from an epoxy resin and an acrylic resin;
    A light extraction layer,
    The first gas barrier layer and the second gas barrier layer are laminated via the pressure-sensitive adhesive layer,
    A light extraction film in which the first gas barrier layer or the second gas barrier layer is interposed between the light extraction layer and the pressure-sensitive adhesive layer.
  2.  昇温速度5℃/分で温度領域30℃から140℃まで加熱したときの前記粘着剤層の質量変化率が、0.50%以下である請求項1に記載の光取り出しフィルム。 2. The light extraction film according to claim 1, wherein a mass change rate of the pressure-sensitive adhesive layer when heated from a temperature region of 30 ° C. to 140 ° C. at a temperature rising rate of 5 ° C./min is 0.50% or less.
  3.  前記第1ガスバリア層が、第1フィルム基材上に形成されている請求項1に記載の光取り出しフィルム。 The light extraction film according to claim 1, wherein the first gas barrier layer is formed on a first film substrate.
  4.  前記第1フィルム基材の一方の面に設けられた前記第1ガスバリア層と、前記第1フィルム基材の他方の面に形成された前記粘着剤層とを備える請求項3に記載の光取り出しフィルム。 The light extraction of Claim 3 provided with the said 1st gas barrier layer provided in one surface of the said 1st film base material, and the said adhesive layer formed in the other surface of the said 1st film base material. the film.
  5.  前記粘着剤層において、前記第1フィルム基材と逆側の面に前記第2ガスバリア層を有する請求項4に記載の光取り出しフィルム。 The light extraction film according to claim 4, wherein the pressure-sensitive adhesive layer has the second gas barrier layer on a surface opposite to the first film substrate.
  6.  第2フィルム基材を備え、前記第2フィルム基材の一方の面に前記第2ガスバリア層が形成され、前記第2フィルム基材の他方の面に前記光取り出し層が形成されている請求項5に記載の光取り出しフィルム。 A second film substrate is provided, wherein the second gas barrier layer is formed on one surface of the second film substrate, and the light extraction layer is formed on the other surface of the second film substrate. 5. The light extraction film according to 5.
  7.  光取り出しフィルム上に有機エレクトロルミネッセンス素子が形成された有機エレクトロルミネッセンス発光装置であって、
     前記光取り出しフィルムが、第1ガスバリア層と、第2ガスバリア層と、エポキシ系樹脂、及び、アクリル系樹脂から選ばれる少なくとも1種の樹脂を含む粘着剤層と、第1ガスバリア層と第2ガスバリア層と、光取り出し層とを有し、
     前記第1ガスバリア層と前記第2ガスバリア層とが前記粘着剤層を介して積層され、
     前記光取り出し層と前記粘着剤層との間に、前記第2ガスバリア層が介在し、
     前記第1ガスバリア層上に、前記有機エレクトロルミネッセンス素子が形成される
     有機エレクトロルミネッセンス発光装置。
    An organic electroluminescence light-emitting device in which an organic electroluminescence element is formed on a light extraction film,
    The light extraction film includes a first gas barrier layer, a second gas barrier layer, an adhesive layer containing at least one resin selected from an epoxy resin and an acrylic resin, a first gas barrier layer, and a second gas barrier. A layer, and a light extraction layer,
    The first gas barrier layer and the second gas barrier layer are laminated via the pressure-sensitive adhesive layer,
    Between the light extraction layer and the pressure-sensitive adhesive layer, the second gas barrier layer is interposed,
    The organic electroluminescence light emitting device, wherein the organic electroluminescence element is formed on the first gas barrier layer.
PCT/JP2016/087235 2016-03-30 2016-12-14 Light extraction film and organic electroluminescent light emitting device WO2017168867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508388A JPWO2017168867A1 (en) 2016-03-30 2016-12-14 Light extraction film and organic electroluminescence light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069182 2016-03-30
JP2016-069182 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017168867A1 true WO2017168867A1 (en) 2017-10-05

Family

ID=59962945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087235 WO2017168867A1 (en) 2016-03-30 2016-12-14 Light extraction film and organic electroluminescent light emitting device

Country Status (2)

Country Link
JP (1) JPWO2017168867A1 (en)
WO (1) WO2017168867A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163384A (en) * 2013-04-04 2013-08-22 Nippon Zeon Co Ltd Optical laminate
JP2015062184A (en) * 2005-03-10 2015-04-02 コニカミノルタ株式会社 Organic electroluminescent film substrate and organic electroluminescent device
JP2015179171A (en) * 2014-03-19 2015-10-08 富士フイルム株式会社 Functional laminate material, manufacturing method for the same, and organic electroluminescent device having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062184A (en) * 2005-03-10 2015-04-02 コニカミノルタ株式会社 Organic electroluminescent film substrate and organic electroluminescent device
JP2013163384A (en) * 2013-04-04 2013-08-22 Nippon Zeon Co Ltd Optical laminate
JP2015179171A (en) * 2014-03-19 2015-10-08 富士フイルム株式会社 Functional laminate material, manufacturing method for the same, and organic electroluminescent device having the same

Also Published As

Publication number Publication date
JPWO2017168867A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
JP5716752B2 (en) Method for producing gas barrier film, gas barrier film and electronic device
JP6298177B2 (en) Organic electronic device and manufacturing method thereof
JP6438678B2 (en) Film member having an uneven structure
CN104736336B (en) The manufacture method of gas barrier film, gas barrier film and electronic equipment
KR20160032218A (en) Method for manufacturing substrate having textured structure
US10675842B2 (en) Transparent electrode and organic electronic device including the same
EP2919557A1 (en) Electronic device and gas barrier film fabrication method
KR20170038824A (en) Method for manufacturing member having irregular pattern
WO2016136842A1 (en) Gas barrier film
JP6094577B2 (en) Transparent gas barrier film, method for producing the same, and electronic device
TWI669840B (en) Light-emitting element
JPWO2016136842A6 (en) Gas barrier film
JP5381734B2 (en) Barrier film and organic electronic device
JP2013208867A (en) Gas barrier film, and electronic device
JP2017077668A (en) Gas barrier laminate and organic electroluminescent element
JP5549448B2 (en) Barrier film, method for producing barrier film, and organic electronic device
WO2017221681A1 (en) Organic electroluminescent element and method for producing organic electroluminescent element
WO2016163215A1 (en) Organic electroluminescent element
WO2017168867A1 (en) Light extraction film and organic electroluminescent light emitting device
JP5552979B2 (en) Method for producing gas barrier film, organic electronic device having the gas barrier film
JP6812429B2 (en) Light extraction film and organic electroluminescence light emitting device
JP2013052569A (en) Method for manufacturing moisture vapor barrier film, moisture vapor barrier film, and electric equipment
JP2016171038A (en) Method for manufacturing electronic device
JP2018065328A (en) Water vapor barrier laminate and organic electroluminescent element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508388

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897083

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897083

Country of ref document: EP

Kind code of ref document: A1