WO2017168835A1 - Ground fault detection circuit diagnosing device - Google Patents

Ground fault detection circuit diagnosing device Download PDF

Info

Publication number
WO2017168835A1
WO2017168835A1 PCT/JP2016/085768 JP2016085768W WO2017168835A1 WO 2017168835 A1 WO2017168835 A1 WO 2017168835A1 JP 2016085768 W JP2016085768 W JP 2016085768W WO 2017168835 A1 WO2017168835 A1 WO 2017168835A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
fault detection
circuit
resistor
detection circuit
Prior art date
Application number
PCT/JP2016/085768
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 智之
守 倉石
慎司 広瀬
宏昌 吉澤
和寛 新村
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2017168835A1 publication Critical patent/WO2017168835A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a ground fault detection circuit diagnostic device for diagnosing whether or not a ground fault detection circuit is normal.
  • Patent Document 1 As an existing ground fault detection circuit diagnostic device, for example, there is one using a zero-phase current transformer. For example, see Patent Document 1. Further, as related techniques, for example, there are Patent Document 2 and Patent Document 3.
  • JP 2000-019211 A JP-A-10-221395 JP2015-032602A
  • the objective which concerns on one side of this invention provides the ground fault detection circuit diagnostic apparatus which can diagnose whether the ground fault detection circuit provided in the output stage of the power converter circuit in a charger is normal. That is.
  • a ground fault detection circuit diagnostic apparatus includes a resistor, a ground fault detection circuit, a first ground fault detection diagnostic circuit, and a control unit. A current in the first direction flows through the resistor when the power supply line on the output side of the power conversion circuit is grounded.
  • the ground fault detection circuit detects that the power supply line is grounded when a current in the first direction flows through the resistor.
  • the first ground fault detection diagnostic circuit passes a current in the first direction through the resistor.
  • the control unit controls the operation of the first ground fault detection diagnostic circuit to pass a current in the first direction through the resistor
  • the ground fault detection circuit detects that the power supply line is grounded. Then, the ground fault detection circuit is diagnosed as normal.
  • the present invention it is possible to diagnose whether or not the ground fault detection circuit provided at the output stage of the power conversion circuit in the charger is normal.
  • Drawing 1 is a figure showing an example of a charger with which a ground fault detection circuit diagnostic device of an embodiment is provided.
  • the charger 10 shown in FIG. 1 converts AC power supplied from the commercial power source P into DC power and supplies it to the battery pack 20.
  • the battery pack 20 is mounted on a vehicle such as an electric forklift, for example, and includes a battery B, a relay Re, and a control unit 21.
  • the battery B is composed of, for example, a plurality of lithium ion batteries, and supplies power to a load such as an inverter circuit that drives a traveling motor.
  • the relay Re is constituted by, for example, a mechanical relay or a semiconductor relay such as a MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor), and is connected to the positive terminal or the negative terminal of the battery B.
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor
  • the control unit 21 is configured by, for example, a CPU (Central Processing Unit) or a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc.), and controls ON / OFF of the relay Re.
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • PLD Programmable Logic Device
  • the charger 10 includes a plurality of power conversion circuits 11, a resistor R1, and a ground fault detection circuit diagnostic device 12.
  • Each power conversion circuit 11 converts AC power supplied from the commercial power source P into DC power.
  • the power conversion circuits 11 are connected in parallel to each other. That is, the plus output terminal of each power conversion circuit 11 is connected to the plus side power supply line Lp (the feed side power supply line of the power conversion circuit 11), and the minus output terminal of each power conversion circuit 11 is respectively the minus side feed line Ln. It is connected to (feed line on the output side of the power conversion circuit 11).
  • the minus side power supply line Ln is connected to a housing ground FG (Frame Ground) via a Y capacitor C.
  • the case ground FG is connected to a protective ground PE (Protective Earth).
  • the plus output terminal of each power conversion circuit 11 is connected to the plus terminal of the battery B via the plus-side power supply line Lp and the relay Re, respectively.
  • the negative output terminal of each power conversion circuit 11 is connected to the negative terminal of the battery B via the negative power supply line Ln.
  • relay Re is turned on and power is output from each power conversion circuit 11, power is supplied to battery B and battery B is charged.
  • the resistor R1 is provided between the plus-side power supply line Lp and the minus-side power supply line Ln, and reduces a noise component included in the combined power output from each power conversion circuit 11.
  • the ground fault detection circuit diagnostic device 12 includes a resistor R2 (second resistor), a resistor R3 (third resistor), a resistor R4 (resistance), a ground fault detection circuit 121, and a first ground fault detection diagnosis.
  • the circuit 122, the 2nd ground fault detection diagnostic circuit 123, and the control part 124 are provided.
  • One end of the resistor R2 is connected to the plus side feed line Lp, one end of the resistor R3 is connected to the minus side feed line Ln, one end of the resistor R4 is connected to the protective ground PE, and each of the resistors R2 to R4 is connected. The other ends are connected to each other.
  • the positive side feed line Lp Is grounded when the positive-side power supply line Lp is short-circuited to the protective ground PE, the negative-side power supply is supplied from the positive-side power supply line Lp via the protective ground PE, the resistor R4, the connection point p between the resistors R2 to R4, and the resistor R3.
  • the positive side feed line Lp Causes a current I1 in the first direction (from the protective ground PE toward the connection point p of the resistors R2 to R4) to flow through the resistor R4. Further, for example, when the first ground fault detection diagnostic circuit 122 and the second ground fault detection diagnostic circuit 123 are not operating and when power is output from the power conversion circuit 11, the negative side supply is performed.
  • the negative side of the positive side feed line Lp is connected via the resistor R2, the connection point p of the resistors R2 to R4, the resistor R4, and the protective ground PE.
  • a current flows to the side power supply line Ln. That is, when the first ground fault detection diagnostic circuit 122 and the second ground fault detection diagnostic circuit 123 are not operating and when power is output from the power conversion circuit 11, the negative side feed line Ln Causes a current I2 in the second direction opposite to the first direction (the direction from the connection point p of the resistors R2 to R4 to the protective ground PE) to flow through the resistor R4.
  • the ground fault detection circuit 121 is configured by, for example, a comparator, a bipolar transistor, and the like.
  • the power supply on the output side of each power conversion circuit 11 is supplied. It is detected that the electric wire (plus side feed line Lp or minus side feed line Ln) is grounded, and the ground fault detection circuit detection signal Sdec sent to the control unit 124 is changed from the high level to the low level.
  • the first ground fault detection diagnostic circuit 122 includes a photocoupler Ph1 (first photocoupler) and a switching element SW1.
  • the collector terminal of the phototransistor of the photocoupler Ph1 is connected to the positive power supply line Lp, and the emitter terminal of the phototransistor of the photocoupler Ph1 is connected to one end of the resistor R4.
  • a predetermined voltage is applied to the anode terminal of the light emitting diode of the photocoupler Ph1.
  • the switching element SW1 is, for example, a MOSFET, the drain terminal of the switching element SW1 is connected to the cathode terminal of the light emitting diode of the photocoupler Ph1, and the source terminal of the switching element SW1 is connected to the housing ground FG.
  • the photocoupler Ph1 when the + -PE ground fault start signal S1 input to the gate terminal of the switching element SW1 changes from low level to high level and the switching element SW1 is turned on to turn on the light emitting diode of the photocoupler Ph1, the photocoupler Ph1 is turned on. The phototransistor is turned on. At this time, if the plus-side feed line Lp and the minus-side feed line Ln are not grounded and power is output from the power conversion circuit 11, the phototransistor of the photocoupler Ph1 and the resistor R4 are output from the plus-side feed line Lp. Then, a current flows to the negative power supply line Ln through the connection point p of the resistors R2 to R4 and the resistor R3.
  • the second ground fault detection diagnostic circuit 123 includes a photocoupler Ph2 (second photocoupler) and a switching element SW2.
  • the collector terminal of the phototransistor of the photocoupler Ph2 is connected to one end of the resistor R4, and the emitter terminal of the phototransistor of the photocoupler Ph1 is connected to the negative power supply line Ln.
  • a predetermined voltage is applied to the anode terminal of the light emitting diode of the photocoupler Ph2.
  • the switching element SW2 is, for example, a MOSFET, the drain terminal of the switching element SW2 is connected to the cathode terminal of the light emitting diode of the photocoupler Ph2, and the source terminal of the switching element SW2 is connected to the housing ground FG.
  • the photocoupler Ph2 is turned on.
  • the phototransistor is turned on.
  • the plus-side feed line Lp and the minus-side feed line Ln are not grounded and power is output from the power conversion circuit 11, the plus-side feed line Lp is connected to the resistors R2 and R2-R4. A current flows to the negative power supply line Ln via the point p, the resistor R4, and the phototransistor of the photocoupler Ph2.
  • the control unit 124 is constituted by, for example, a CPU or a programmable device (FPGA or PLD).
  • the control unit 124 sends an instruction for turning the relay Re from on to off to the control unit 21 of the battery pack 20.
  • the control unit 21 controls the relay Re from on to off. If the relay Re is turned off from on while the battery B is being charged, the positive side power supply line Lp and the negative side power supply line Ln of the charger 10 are opened.
  • the control unit 124 sends an instruction for outputting power (voltage) from the power conversion circuit 11 to at least one power conversion circuit 11. When receiving the instruction, the power conversion circuit 11 outputs power (voltage).
  • control unit 124 controls the operation of the first ground fault detection diagnostic circuit 122 to flow the current I1 in the first direction through the resistor R4. Further, the control unit 124 controls the operation of the second ground fault detection / diagnosis circuit 123 to flow the current I2 in the second direction through the resistor R4. Further, when the ground fault detection circuit detection signal Sdec changes from the high level to the low level, the control unit 124 detects that the power supply line on the output side of each power conversion circuit 11 is grounded by the ground fault detection circuit 121. Judge that In addition, the control unit 124 controls the operation of the first ground fault detection diagnostic circuit 122 to pass the current I1 in the first direction through the resistor R4.
  • the ground fault detection diagnostic circuit 123 is controlled to pass a current I2 in the second direction through the resistor R4.
  • the ground fault detection circuit 121 detects that the power supply line on the output side of each power conversion circuit 11 is grounded, the ground fault detection circuit 121 is diagnosed as normal.
  • FIG. 2 is a flowchart illustrating an example of the operation of the control unit 124 during normal diagnosis of the ground fault detection circuit 121.
  • the control unit 124 opens the positive power supply line Lp and the negative power supply line Ln of the charger 10 (S21), and outputs power (voltage) from at least one power conversion circuit 11 (S22).
  • control unit 124 controls the operation of the first ground fault detection diagnostic circuit 122 to flow the current I1 in the first direction through the resistor R4 (S23), and the ground fault detection circuit 121 causes the ground of the feeder line to flow. It is determined whether or not a fault has been detected (S24).
  • the control unit 124 determines that the ground fault of the feeder line is not detected by the ground fault detection circuit 121 when the current I1 in the first direction is flowing through the resistor R4 (S24: No), the ground fault detection circuit It is diagnosed that 121 is not normal (the ground fault detection circuit 121 is abnormal) (S25).
  • the control unit 124 determines that the ground fault of the feeder line is detected by the ground fault detection circuit 121 when the current I1 in the first direction is flowing through the resistor R4 (S24: Yes)
  • the second By controlling the operation of the ground fault detection diagnostic circuit 123, the current I2 in the second direction is caused to flow through the resistor R4 (S26), and it is determined whether or not the ground fault of the feeder line is detected by the ground fault detection circuit 121. (S27).
  • the control unit 124 determines that the ground fault of the feeder line is not detected by the ground fault detection circuit 121 when the current I2 in the second direction is flowing through the resistor R4 (S27: No), the ground fault detection circuit It is diagnosed that 121 is not normal (the ground fault detection circuit 121 is abnormal) (S25).
  • control unit 124 determines that the ground fault of the feeder line is detected by the ground fault detection circuit 121 when the current I2 in the second direction is flowing through the resistor R4 (S27: Yes), the ground fault is detected. It is diagnosed that the detection circuit 121 is normal (S28).
  • the control unit 124 sends an instruction for turning the relay Re from on to off to the control unit 21 of the battery pack 20, and then the power (voltage) from the power conversion circuit 11. Is sent to at least one power conversion circuit 11. Then, power (voltage) is output from the instructed power conversion circuit 11, and as shown in FIG. 3, the voltage Vout applied to the plus-side power supply line Lp changes from the low level to the high level at time t1.
  • the control unit 124 changes the + -PE ground fault start signal S1 from the low level to the high level from time t2 to time t3. Then, the photocoupler Ph1 of the first ground fault detection diagnostic circuit 122 is turned on, and the current I1 in the first direction flows through the resistor R4. When the ground fault detection circuit 121 detects that the current I1 in the first direction flows through the resistor R4 and the power supply line on the output side of each power conversion circuit 11 is grounded, as shown in FIG. The detection circuit diagnostic signal Sdec changes from the high level to the low level.
  • the control unit 124 When the ground fault detection circuit diagnostic signal Sdec becomes low level during the period (time t2 to time t3) during which the + -PE ground fault start signal S1 is at the high level, the control unit 124 The fault start signal S1 is returned from the high level to the low level, and after a predetermined time has elapsed, as shown in FIG. 3, the ground fault start signal S2 between --PE is changed from the low level to the high level from time t4 to time t5. Then, the photocoupler Ph2 of the second ground fault detection diagnostic circuit 122 is turned on, and the current I2 in the second direction flows through the resistor R4.
  • ground fault detection circuit 121 detects that the power supply line on the output side of each power conversion circuit 11 is grounded by the current I2 flowing in the second direction through the resistor R4, as shown in FIG.
  • the ground fault detection circuit diagnostic signal Sdec changes from the high level to the low level.
  • the control unit 124 detects the ground fault detection circuit 121. As shown in FIG. 3, the ground fault detection circuit diagnosis end signal is changed from the low level to the high level.
  • the power conversion circuit 11 stops outputting power (voltage) when the ground fault detection circuit diagnosis end signal changes from low level to high level. Then, as shown in FIG. 3, the voltage Vout changes from the high level to the low level.
  • the resistance R4 is controlled by controlling the operation of the first ground fault detection diagnostic circuit 122 when the output power supply line of each power conversion circuit 11 is opened.
  • the ground fault detection circuit 121 detects that the power supply line on the output side of each power conversion circuit 11 is grounded, and the second ground fault detection diagnosis
  • the ground fault detection circuit 121 may cause a ground fault on the output side of each power conversion circuit 11.
  • the ground fault detection circuit 121 is diagnosed as normal.
  • ground fault detection circuit 121 is normal by intentionally grounding the power supply line on the output side of each power conversion circuit 11 when the power supply line on the output side of each power conversion circuit 11 is opened. Is diagnosed. Thereby, it is possible to diagnose whether or not the ground fault detection circuit 121 provided at the output stage of each power conversion circuit 11 in the charger 10 is normal.
  • the first ground fault detection diagnostic circuit 122 is connected to the point where the output power supply lines Lp on the output side of each power conversion circuit 11 are connected to each other.
  • the ground fault detection circuit 121 is provided in both the period in which the current I1 in the first direction flows through the resistor R4 and the period in which the current I2 in the second direction flows through the resistor R4.
  • the control unit 124 diagnoses that the ground fault detection circuit 121 is normal. However, only when the current I1 in the first direction flows through the resistor R4, the ground fault is detected.
  • the control unit 124 may diagnose that the ground fault detection circuit 121 is normal.
  • the 2nd ground fault detection diagnostic circuit 123 can be abbreviate
  • the positive power supply line Lp and the negative power supply line Ln of the charger 10 are opened by turning off the relay Re provided in the battery pack 20.
  • a relay may be provided on the side power supply line Lp, and the relay may be controlled from on to off by the control unit 124 so that the plus side power supply line Lp and the minus side power supply line Ln are opened.
  • the structure provided only with one power converter circuit 11 in the charger 10 may be sufficient.
  • the ground fault detection circuit 121 detects a ground fault of the feeder line
  • the ground fault detection circuit diagnostic signal Sdec is changed from the high level to the low level.
  • the ground fault detection circuit diagnostic signal Sdec is low. A configuration in which the level is changed to a high level may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A ground fault detection circuit diagnosing device 12 is configured to be provided with: a resistor R4 through which electric current I1 flows in a first direction when a positive-side power supply line Lp on the output side of a power conversion circuit 11 is grounded; a ground fault detection circuit 121 which, when the electric current flows in the first direction through the resistor R4, detects that the positive-side power supply line Lp or a negative-side power supply line Ln is grounded; a first ground fault detection diagnosing circuit 122 which causes the electric current I1 to flow in the first direction through the resistor R4; and a control unit 124 which, when the ground fault detection circuit 121 detects that the positive-side power supply line Lp or the negative-side power supply line Ln is grounded while an operation of the first ground fault detection diagnosing circuit 122 is controlled so as to cause the electric current I1 to flow in the first direction through the resistor R4, diagnoses that the ground fault detection circuit 121 is normal.

Description

地絡検知回路診断装置Ground fault detection circuit diagnostic device
 本発明は、地絡検知回路が正常であるか否かを診断する地絡検知回路診断装置に関する。 The present invention relates to a ground fault detection circuit diagnostic device for diagnosing whether or not a ground fault detection circuit is normal.
 既存の地絡検知回路診断装置として、例えば、零相変流器を用いたものがある。例えば、特許文献1参照。また、関連する技術として、例えば、特許文献2や特許文献3がある。 As an existing ground fault detection circuit diagnostic device, for example, there is one using a zero-phase current transformer. For example, see Patent Document 1. Further, as related techniques, for example, there are Patent Document 2 and Patent Document 3.
 ところで、電動フォークリフトなど、電動モータの動力を利用して駆動する車両の普及に伴い、車両に搭載される電池パック内の電池を充電するための技術の向上が図られている。 Incidentally, with the widespread use of vehicles driven by the power of electric motors such as electric forklifts, improvements in technology for charging batteries in battery packs mounted on vehicles have been attempted.
 また、そのような電池を充電するための充電器内の電力変換回路の出力段に設けられる地絡検知回路が正常であるか否かを診断することが望まれている。 Also, it is desired to diagnose whether or not the ground fault detection circuit provided at the output stage of the power conversion circuit in the charger for charging such a battery is normal.
特開2000-019211号公報JP 2000-019211 A 特開平10-221395号公報JP-A-10-221395 特開2015-032602号公報JP2015-032602A
 本発明の一側面に係る目的は、充電器内の電力変換回路の出力段に設けられる地絡検知回路が正常であるか否かを診断することが可能な地絡検知回路診断装置を提供することである。 The objective which concerns on one side of this invention provides the ground fault detection circuit diagnostic apparatus which can diagnose whether the ground fault detection circuit provided in the output stage of the power converter circuit in a charger is normal. That is.
 本発明に係る一つの形態である地絡検知回路診断装置は、抵抗と、地絡検知回路と、第1の地絡検知診断回路と、制御部とを備える。
 上記抵抗には、電力変換回路の出力側の給電線が地絡しているとき、第1の方向の電流が流れる。
A ground fault detection circuit diagnostic apparatus according to one embodiment of the present invention includes a resistor, a ground fault detection circuit, a first ground fault detection diagnostic circuit, and a control unit.
A current in the first direction flows through the resistor when the power supply line on the output side of the power conversion circuit is grounded.
 地絡検知回路は、抵抗に第1の方向の電流が流れると、給電線が地絡していることを検知する。
 第1の地絡検知診断回路は、抵抗に第1の方向の電流を流す。
The ground fault detection circuit detects that the power supply line is grounded when a current in the first direction flows through the resistor.
The first ground fault detection diagnostic circuit passes a current in the first direction through the resistor.
 制御部は、第1の地絡検知診断回路の動作を制御することにより抵抗に第1の方向の電流を流しているとき、地絡検知回路により給電線が地絡していることが検知されると、地絡検知回路が正常であると診断する。 When the control unit controls the operation of the first ground fault detection diagnostic circuit to pass a current in the first direction through the resistor, the ground fault detection circuit detects that the power supply line is grounded. Then, the ground fault detection circuit is diagnosed as normal.
 本発明によれば、充電器内の電力変換回路の出力段に設けられる地絡検知回路が正常であるか否かを診断することができる。 According to the present invention, it is possible to diagnose whether or not the ground fault detection circuit provided at the output stage of the power conversion circuit in the charger is normal.
実施形態の地絡検知回路診断装置が備えられる充電器の一例を示す図である。It is a figure which shows an example of the charger with which the ground fault detection circuit diagnostic apparatus of embodiment is provided. 地絡検知回路の正常診断時の制御部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the control part at the time of the normal diagnosis of a ground fault detection circuit. 電力変換回路の出力、+‐PE間地絡発生信号、-‐PE間地絡発生信号、地絡検知回路診断信号、及び地絡検知回路診断終了信号の一例を示す図である。It is a figure which shows an example of the output of a power converter circuit, a ground fault generation signal between + -PE, a ground fault generation signal between --PE, a ground fault detection circuit diagnostic signal, and a ground fault detection circuit diagnosis end signal.
 以下図面に基づいて実施形態について詳細を説明する。
 図1は、実施形態の地絡検知回路診断装置が備えられる充電器の一例を示す図である。
 図1に示す充電器10は、商用電源Pから供給される交流電力を直流電力に変換し、電池パック20に供給する。
Hereinafter, embodiments will be described in detail with reference to the drawings.
Drawing 1 is a figure showing an example of a charger with which a ground fault detection circuit diagnostic device of an embodiment is provided.
The charger 10 shown in FIG. 1 converts AC power supplied from the commercial power source P into DC power and supplies it to the battery pack 20.
 電池パック20は、例えば、電動フォークリフトなどの車両に搭載され、電池Bと、リレーReと、制御部21とを備える。
 電池Bは、例えば、複数のリチウムイオン電池により構成され、走行用モータを駆動するインバータ回路などの負荷に電力を供給する。
The battery pack 20 is mounted on a vehicle such as an electric forklift, for example, and includes a battery B, a relay Re, and a control unit 21.
The battery B is composed of, for example, a plurality of lithium ion batteries, and supplies power to a load such as an inverter circuit that drives a traveling motor.
 リレーReは、例えば、機械式リレーまたはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体リレーにより構成され、電池Bのプラス端子またはマイナス端子に接続されている。 The relay Re is constituted by, for example, a mechanical relay or a semiconductor relay such as a MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor), and is connected to the positive terminal or the negative terminal of the battery B.
 制御部21は、例えば、CPU(Central Processing Unit)またはプログラマブルデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)により構成され、リレーReのオン、オフを制御する。 The control unit 21 is configured by, for example, a CPU (Central Processing Unit) or a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc.), and controls ON / OFF of the relay Re.
 充電器10は、複数の電力変換回路11と、抵抗R1と、地絡検知回路診断装置12とを備える。
 各電力変換回路11は、それぞれ、商用電源Pから供給される交流電力を直流電力に変換する。また、各電力変換回路11は、互いに並列接続されている。すなわち、各電力変換回路11のプラス出力端子はそれぞれプラス側給電線Lp(電力変換回路11の出力側の給電線)に接続され、各電力変換回路11のマイナス出力端子はそれぞれマイナス側給電線Ln(電力変換回路11の出力側の給電線)に接続されている。マイナス側給電線Lnは、YコンデンサCを介して筐体接地FG(Frame Ground)に接続されている。筐体接地FGは保護接地PE(Protective Earth)に接続されている。充電器10と電池パック20が充電コネクタや充電ケーブルなどを介して接続されると、各電力変換回路11のプラス出力端子はそれぞれプラス側給電線Lp及びリレーReを介して電池Bのプラス端子に接続され、各電力変換回路11のマイナス出力端子はそれぞれマイナス側給電線Lnを介して電池Bのマイナス端子に接続される。このとき、リレーReがオンするとともに、各電力変換回路11から電力が出力されると、電池Bへ電力が供給され電池Bが充電される。なお、図1では電力変換回路11は2つだが、3つ以上並列接続されていてもよい。
The charger 10 includes a plurality of power conversion circuits 11, a resistor R1, and a ground fault detection circuit diagnostic device 12.
Each power conversion circuit 11 converts AC power supplied from the commercial power source P into DC power. The power conversion circuits 11 are connected in parallel to each other. That is, the plus output terminal of each power conversion circuit 11 is connected to the plus side power supply line Lp (the feed side power supply line of the power conversion circuit 11), and the minus output terminal of each power conversion circuit 11 is respectively the minus side feed line Ln. It is connected to (feed line on the output side of the power conversion circuit 11). The minus side power supply line Ln is connected to a housing ground FG (Frame Ground) via a Y capacitor C. The case ground FG is connected to a protective ground PE (Protective Earth). When the charger 10 and the battery pack 20 are connected via a charging connector or a charging cable, the plus output terminal of each power conversion circuit 11 is connected to the plus terminal of the battery B via the plus-side power supply line Lp and the relay Re, respectively. The negative output terminal of each power conversion circuit 11 is connected to the negative terminal of the battery B via the negative power supply line Ln. At this time, when relay Re is turned on and power is output from each power conversion circuit 11, power is supplied to battery B and battery B is charged. In FIG. 1, there are two power conversion circuits 11, but three or more power conversion circuits 11 may be connected in parallel.
 抵抗R1は、プラス側給電線Lpとマイナス側給電線Lnとの間に設けられ、各電力変換回路11から出力される電力の合成後の電力に含まれるノイズ成分を低減する。
 地絡検知回路診断装置12は、抵抗R2(第2の抵抗)と、抵抗R3(第3の抵抗)と、抵抗R4(抵抗)と、地絡検知回路121と、第1の地絡検知診断回路122と、第2の地絡検知診断回路123と、制御部124とを備える。
The resistor R1 is provided between the plus-side power supply line Lp and the minus-side power supply line Ln, and reduces a noise component included in the combined power output from each power conversion circuit 11.
The ground fault detection circuit diagnostic device 12 includes a resistor R2 (second resistor), a resistor R3 (third resistor), a resistor R4 (resistance), a ground fault detection circuit 121, and a first ground fault detection diagnosis. The circuit 122, the 2nd ground fault detection diagnostic circuit 123, and the control part 124 are provided.
 抵抗R2の一方端はプラス側給電線Lpに接続され、抵抗R3の一方端はマイナス側給電線Lnに接続され、抵抗R4の一方端は保護接地PEに接続され、抵抗R2~R4のそれぞれの他方端は互いに接続されている。例えば、第1の地絡検知診断回路122及び第2の地絡検知診断回路123が動作していないときで、かつ、電力変換回路11から電力が出力されているときに、プラス側給電線Lpが地絡すると(プラス側給電線Lpが保護接地PEに短絡すると)、プラス側給電線Lpから保護接地PE、抵抗R4、抵抗R2~R4の接続点p、及び抵抗R3を介してマイナス側給電線Lnへ電流が流れる。すなわち、第1の地絡検知診断回路122及び第2の地絡検知診断回路123が動作していないときで、かつ、電力変換回路11から電力が出力されているときに、プラス側給電線Lpが地絡すると、抵抗R4に第1の方向(保護接地PEから抵抗R2~R4の接続点pへ向かう方向)の電流I1が流れる。また、例えば、第1の地絡検知診断回路122及び第2の地絡検知診断回路123が動作していないときで、かつ、電力変換回路11から電力が出力されているときに、マイナス側給電線Lnが地絡すると(マイナス側給電線Lnが保護接地PEに短絡すると)、プラス側給電線Lpから抵抗R2、抵抗R2~R4の接続点p、抵抗R4、及び保護接地PEを介してマイナス側給電線Lnへ電流が流れる。すなわち、第1の地絡検知診断回路122及び第2の地絡検知診断回路123が動作していないときで、かつ、電力変換回路11から電力が出力されているときに、マイナス側給電線Lnが地絡すると、抵抗R4に第1の方向とは逆方向の第2の方向(抵抗R2~R4の接続点pから保護接地PEへ向かう方向)の電流I2が流れる。 One end of the resistor R2 is connected to the plus side feed line Lp, one end of the resistor R3 is connected to the minus side feed line Ln, one end of the resistor R4 is connected to the protective ground PE, and each of the resistors R2 to R4 is connected. The other ends are connected to each other. For example, when the first ground fault detection diagnostic circuit 122 and the second ground fault detection diagnostic circuit 123 are not operating and when power is output from the power conversion circuit 11, the positive side feed line Lp Is grounded (when the positive-side power supply line Lp is short-circuited to the protective ground PE), the negative-side power supply is supplied from the positive-side power supply line Lp via the protective ground PE, the resistor R4, the connection point p between the resistors R2 to R4, and the resistor R3. A current flows to the electric wire Ln. That is, when the first ground fault detection diagnostic circuit 122 and the second ground fault detection diagnostic circuit 123 are not operating and when power is output from the power conversion circuit 11, the positive side feed line Lp Causes a current I1 in the first direction (from the protective ground PE toward the connection point p of the resistors R2 to R4) to flow through the resistor R4. Further, for example, when the first ground fault detection diagnostic circuit 122 and the second ground fault detection diagnostic circuit 123 are not operating and when power is output from the power conversion circuit 11, the negative side supply is performed. When the electric wire Ln is grounded (when the negative side feed line Ln is short-circuited to the protective ground PE), the negative side of the positive side feed line Lp is connected via the resistor R2, the connection point p of the resistors R2 to R4, the resistor R4, and the protective ground PE. A current flows to the side power supply line Ln. That is, when the first ground fault detection diagnostic circuit 122 and the second ground fault detection diagnostic circuit 123 are not operating and when power is output from the power conversion circuit 11, the negative side feed line Ln Causes a current I2 in the second direction opposite to the first direction (the direction from the connection point p of the resistors R2 to R4 to the protective ground PE) to flow through the resistor R4.
 地絡検知回路121は、例えば、コンパレータやバイポーラトランジスタなどにより構成され、抵抗R4に第1の方向の電流I1または第2の方向の電流I2が流れると、各電力変換回路11の出力側の給電線(プラス側給電線Lpまたはマイナス側給電線Ln)が地絡していることを検知し、制御部124へ送る地絡検知回路検知信号Sdecをハイレベルからローレベルに変化させる。 The ground fault detection circuit 121 is configured by, for example, a comparator, a bipolar transistor, and the like. When the current I1 in the first direction or the current I2 in the second direction flows through the resistor R4, the power supply on the output side of each power conversion circuit 11 is supplied. It is detected that the electric wire (plus side feed line Lp or minus side feed line Ln) is grounded, and the ground fault detection circuit detection signal Sdec sent to the control unit 124 is changed from the high level to the low level.
 第1の地絡検知診断回路122は、フォトカプラPh1(第1のフォトカプラ)と、スイッチング素子SW1とを備える。フォトカプラPh1のフォトトランジスタのコレクタ端子はプラス側給電線Lpに接続され、フォトカプラPh1のフォトトランジスタのエミッタ端子は抵抗R4の一方端に接続されている。また、フォトカプラPh1の発光ダイオードのアノード端子には所定電圧が印加されている。スイッチング素子SW1は、例えば、MOSFETであり、スイッチング素子SW1のドレイン端子はフォトカプラPh1の発光ダイオードのカソード端子に接続され、スイッチング素子SW1のソース端子は筐体接地FGに接続されている。例えば、スイッチング素子SW1のゲート端子に入力される+‐PE間地絡開始信号S1がローレベルからハイレベルになり、スイッチング素子SW1がオンしてフォトカプラPh1の発光ダイオードがオンすると、フォトカプラPh1のフォトトランジスタがオンする。このとき、プラス側給電線Lp及びマイナス側給電線Lnが地絡しておらず、電力変換回路11から電力が出力されていると、プラス側給電線LpからフォトカプラPh1のフォトトランジスタ、抵抗R4、抵抗R2~R4の接続点p、及び抵抗R3を介してマイナス側給電線Lnへ電流が流れる。すなわち、プラス側給電線Lp及びマイナス側給電線Lnが地絡しておらず、電力変換回路11から電力が出力されているとき、フォトカプラPh1がオンすると、抵抗R4に第1の方向の電流I1が流れる。なお、このとき、第2の地絡検知診断回路123は動作していないものとする。 The first ground fault detection diagnostic circuit 122 includes a photocoupler Ph1 (first photocoupler) and a switching element SW1. The collector terminal of the phototransistor of the photocoupler Ph1 is connected to the positive power supply line Lp, and the emitter terminal of the phototransistor of the photocoupler Ph1 is connected to one end of the resistor R4. A predetermined voltage is applied to the anode terminal of the light emitting diode of the photocoupler Ph1. The switching element SW1 is, for example, a MOSFET, the drain terminal of the switching element SW1 is connected to the cathode terminal of the light emitting diode of the photocoupler Ph1, and the source terminal of the switching element SW1 is connected to the housing ground FG. For example, when the + -PE ground fault start signal S1 input to the gate terminal of the switching element SW1 changes from low level to high level and the switching element SW1 is turned on to turn on the light emitting diode of the photocoupler Ph1, the photocoupler Ph1 is turned on. The phototransistor is turned on. At this time, if the plus-side feed line Lp and the minus-side feed line Ln are not grounded and power is output from the power conversion circuit 11, the phototransistor of the photocoupler Ph1 and the resistor R4 are output from the plus-side feed line Lp. Then, a current flows to the negative power supply line Ln through the connection point p of the resistors R2 to R4 and the resistor R3. That is, when the plus-side feed line Lp and the minus-side feed line Ln are not grounded and power is output from the power conversion circuit 11, when the photocoupler Ph1 is turned on, a current in the first direction flows through the resistor R4. I1 flows. At this time, it is assumed that the second ground fault detection diagnostic circuit 123 is not operating.
 第2の地絡検知診断回路123は、フォトカプラPh2(第2のフォトカプラ)と、スイッチング素子SW2とを備える。フォトカプラPh2のフォトトランジスタのコレクタ端子は抵抗R4の一方端に接続され、フォトカプラPh1のフォトトランジスタのエミッタ端子はマイナス側給電線Lnに接続されている。また、フォトカプラPh2の発光ダイオードのアノード端子には所定電圧が印加されている。スイッチング素子SW2は、例えば、MOSFETであり、スイッチング素子SW2のドレイン端子はフォトカプラPh2の発光ダイオードのカソード端子に接続され、スイッチング素子SW2のソース端子は筐体接地FGに接続されている。例えば、スイッチング素子SW2のゲート端子に入力される-‐PE間地絡開始信号S2がローレベルからハイレベルになり、スイッチング素子SW2がオンしてフォトカプラPh2の発光ダイオードがオンすると、フォトカプラPh2のフォトトランジスタがオンする。このとき、プラス側給電線Lp及びマイナス側給電線Lnが地絡しておらず、電力変換回路11から電力が出力されていると、プラス側給電線Lpから抵抗R2、抵抗R2~R4の接続点p、抵抗R4、及びフォトカプラPh2のフォトトランジスタを介してマイナス側給電線Lnへ電流が流れる。すなわち、プラス側給電線Lp及びマイナス側給電線Lnが地絡しておらず、電力変換回路11から電力が出力されているとき、フォトカプラPh2がオンすると、抵抗R4に第2の方向の電流I2が流れる。なお、このとき、第1の地絡検知診断回路122は動作していないものとする。 The second ground fault detection diagnostic circuit 123 includes a photocoupler Ph2 (second photocoupler) and a switching element SW2. The collector terminal of the phototransistor of the photocoupler Ph2 is connected to one end of the resistor R4, and the emitter terminal of the phototransistor of the photocoupler Ph1 is connected to the negative power supply line Ln. A predetermined voltage is applied to the anode terminal of the light emitting diode of the photocoupler Ph2. The switching element SW2 is, for example, a MOSFET, the drain terminal of the switching element SW2 is connected to the cathode terminal of the light emitting diode of the photocoupler Ph2, and the source terminal of the switching element SW2 is connected to the housing ground FG. For example, when the ground fault start signal S2 input to the gate terminal of the switching element SW2 changes from low level to high level and the switching element SW2 is turned on and the light emitting diode of the photocoupler Ph2 is turned on, the photocoupler Ph2 is turned on. The phototransistor is turned on. At this time, if the plus-side feed line Lp and the minus-side feed line Ln are not grounded and power is output from the power conversion circuit 11, the plus-side feed line Lp is connected to the resistors R2 and R2-R4. A current flows to the negative power supply line Ln via the point p, the resistor R4, and the phototransistor of the photocoupler Ph2. That is, when the plus-side feed line Lp and the minus-side feed line Ln are not grounded and power is being output from the power conversion circuit 11, when the photocoupler Ph2 is turned on, a current in the second direction flows through the resistor R4. I2 flows. At this time, it is assumed that the first ground fault detection diagnostic circuit 122 is not operating.
 制御部124は、例えば、CPUやプログラマブルデバイス(FPGAまたはPLDなど)により構成される。また、制御部124は、リレーReをオンからオフにさせるための指示を電池パック20の制御部21に送る。制御部21は、その指示を受け取ると、リレーReをオンからオフに制御する。電池Bの充電中において、リレーReがオンからオフになると、充電器10のプラス側給電線Lp及びマイナス側給電線Lnが開放される。また、制御部124は、電力変換回路11から電力(電圧)を出力させるための指示を少なくとも1以上の電力変換回路11に送る。電力変換回路11はその指示を受け取ると、電力(電圧)を出力する。また、制御部124は、第1の地絡検知診断回路122の動作を制御することにより抵抗R4に第1の方向の電流I1を流す。また、制御部124は、第2の地絡検知診断回路123の動作を制御することにより抵抗R4に第2の方向の電流I2を流す。また、制御部124は、地絡検知回路検知信号Sdecがハイレベルからローレベルになると、地絡検知回路121により各電力変換回路11の出力側の給電線が地絡していることが検知されたと判断する。また、制御部124は、第1の地絡検知診断回路122の動作を制御することにより抵抗R4に第1の方向の電流I1を流しているとき、地絡検知回路121により各電力変換回路11の出力側の給電線が地絡していることが検知され、かつ、第2の地絡検知診断回路123の動作を制御することにより抵抗R4に第2の方向の電流I2を流しているとき、地絡検知回路121により各電力変換回路11の出力側の給電線が地絡していることが検知されると、地絡検知回路121が正常であると診断する。 The control unit 124 is constituted by, for example, a CPU or a programmable device (FPGA or PLD). In addition, the control unit 124 sends an instruction for turning the relay Re from on to off to the control unit 21 of the battery pack 20. When receiving the instruction, the control unit 21 controls the relay Re from on to off. If the relay Re is turned off from on while the battery B is being charged, the positive side power supply line Lp and the negative side power supply line Ln of the charger 10 are opened. In addition, the control unit 124 sends an instruction for outputting power (voltage) from the power conversion circuit 11 to at least one power conversion circuit 11. When receiving the instruction, the power conversion circuit 11 outputs power (voltage). Further, the control unit 124 controls the operation of the first ground fault detection diagnostic circuit 122 to flow the current I1 in the first direction through the resistor R4. Further, the control unit 124 controls the operation of the second ground fault detection / diagnosis circuit 123 to flow the current I2 in the second direction through the resistor R4. Further, when the ground fault detection circuit detection signal Sdec changes from the high level to the low level, the control unit 124 detects that the power supply line on the output side of each power conversion circuit 11 is grounded by the ground fault detection circuit 121. Judge that In addition, the control unit 124 controls the operation of the first ground fault detection diagnostic circuit 122 to pass the current I1 in the first direction through the resistor R4. Is detected and the second ground fault detection diagnostic circuit 123 is controlled to pass a current I2 in the second direction through the resistor R4. When the ground fault detection circuit 121 detects that the power supply line on the output side of each power conversion circuit 11 is grounded, the ground fault detection circuit 121 is diagnosed as normal.
 図2は、地絡検知回路121の正常診断時の制御部124の動作の一例を示すフローチャートである。
 まず、制御部124は、充電器10のプラス側給電線Lp及びマイナス側給電線Lnを開放させ(S21)、少なくとも1以上の電力変換回路11から電力(電圧)を出力させる(S22)。
FIG. 2 is a flowchart illustrating an example of the operation of the control unit 124 during normal diagnosis of the ground fault detection circuit 121.
First, the control unit 124 opens the positive power supply line Lp and the negative power supply line Ln of the charger 10 (S21), and outputs power (voltage) from at least one power conversion circuit 11 (S22).
 次に、制御部124は、第1の地絡検知診断回路122の動作を制御することにより抵抗R4に第1の方向の電流I1を流し(S23)、地絡検知回路121により給電線の地絡が検知されているか否かを判断する(S24)。 Next, the control unit 124 controls the operation of the first ground fault detection diagnostic circuit 122 to flow the current I1 in the first direction through the resistor R4 (S23), and the ground fault detection circuit 121 causes the ground of the feeder line to flow. It is determined whether or not a fault has been detected (S24).
 制御部124は、抵抗R4に第1の方向の電流I1を流しているとき、地絡検知回路121により給電線の地絡が検知されていないと判断すると(S24:No)、地絡検知回路121が正常でない(地絡検知回路121が異常である)と診断する(S25)。 When the control unit 124 determines that the ground fault of the feeder line is not detected by the ground fault detection circuit 121 when the current I1 in the first direction is flowing through the resistor R4 (S24: No), the ground fault detection circuit It is diagnosed that 121 is not normal (the ground fault detection circuit 121 is abnormal) (S25).
 一方、制御部124は、抵抗R4に第1の方向の電流I1を流しているとき、地絡検知回路121により給電線の地絡が検知されていると判断すると(S24:Yes)、第2の地絡検知診断回路123の動作を制御することにより抵抗R4に第2の方向の電流I2を流し(S26)、地絡検知回路121により給電線の地絡が検知されているか否かを判断する(S27)。 On the other hand, when the control unit 124 determines that the ground fault of the feeder line is detected by the ground fault detection circuit 121 when the current I1 in the first direction is flowing through the resistor R4 (S24: Yes), the second By controlling the operation of the ground fault detection diagnostic circuit 123, the current I2 in the second direction is caused to flow through the resistor R4 (S26), and it is determined whether or not the ground fault of the feeder line is detected by the ground fault detection circuit 121. (S27).
 制御部124は、抵抗R4に第2の方向の電流I2を流しているとき、地絡検知回路121により給電線の地絡が検知されていないと判断すると(S27:No)、地絡検知回路121が正常でない(地絡検知回路121が異常である)と診断する(S25)。 When the control unit 124 determines that the ground fault of the feeder line is not detected by the ground fault detection circuit 121 when the current I2 in the second direction is flowing through the resistor R4 (S27: No), the ground fault detection circuit It is diagnosed that 121 is not normal (the ground fault detection circuit 121 is abnormal) (S25).
 一方、制御部124は、抵抗R4に第2の方向の電流I2を流しているとき、地絡検知回路121により給電線の地絡が検知されていると判断すると(S27:Yes)、地絡検知回路121が正常であると診断する(S28)。 On the other hand, when the control unit 124 determines that the ground fault of the feeder line is detected by the ground fault detection circuit 121 when the current I2 in the second direction is flowing through the resistor R4 (S27: Yes), the ground fault is detected. It is diagnosed that the detection circuit 121 is normal (S28).
 例えば、地絡検知回路121の正常診断時、制御部124は、リレーReをオンからオフにさせるための指示を電池パック20の制御部21に送った後、電力変換回路11から電力(電圧)を出力させるための指示を少なくとも1以上の電力変換回路11に送る。すると、指示された電力変換回路11から電力(電圧)が出力され、図3に示すように、時刻t1において、プラス側給電線Lpにかかる電圧Voutがローレベルからハイレベルになる。 For example, at the time of normal diagnosis of the ground fault detection circuit 121, the control unit 124 sends an instruction for turning the relay Re from on to off to the control unit 21 of the battery pack 20, and then the power (voltage) from the power conversion circuit 11. Is sent to at least one power conversion circuit 11. Then, power (voltage) is output from the instructed power conversion circuit 11, and as shown in FIG. 3, the voltage Vout applied to the plus-side power supply line Lp changes from the low level to the high level at time t1.
 次に、制御部124は、図3に示すように、時刻t2~時刻t3において、+‐PE間地絡開始信号S1をローレベルからハイレベルにする。すると、第1の地絡検知診断回路122のフォトカプラPh1がオンして抵抗R4に第1の方向の電流I1が流れる。抵抗R4に第1の方向の電流I1が流れ、各電力変換回路11の出力側の給電線が地絡していることを地絡検知回路121が検知すると、図3に示すように、地絡検知回路診断信号Sdecがハイレベルからローレベルになる。 Next, as shown in FIG. 3, the control unit 124 changes the + -PE ground fault start signal S1 from the low level to the high level from time t2 to time t3. Then, the photocoupler Ph1 of the first ground fault detection diagnostic circuit 122 is turned on, and the current I1 in the first direction flows through the resistor R4. When the ground fault detection circuit 121 detects that the current I1 in the first direction flows through the resistor R4 and the power supply line on the output side of each power conversion circuit 11 is grounded, as shown in FIG. The detection circuit diagnostic signal Sdec changes from the high level to the low level.
 次に、制御部124は、+‐PE間地絡開始信号S1をハイレベルにしている期間(時刻t2~時刻t3)において、地絡検知回路診断信号Sdecがローレベルになると+‐PE間地絡開始信号S1をハイレベルからローレベルへ戻し、所定時間経過後、図3に示すように、時刻t4~時刻t5において、-‐PE間地絡開始信号S2をローレベルからハイレベルにする。すると、第2の地絡検知診断回路122のフォトカプラPh2がオンして抵抗R4に第2の方向の電流I2が流れる。抵抗R4に第2の方向の電流I2が流れることにより、各電力変換回路11の出力側の給電線が地絡していることを地絡検知回路121が検知すると、図3に示すように、地絡検知回路診断信号Sdecがハイレベルからローレベルになる。 Next, when the ground fault detection circuit diagnostic signal Sdec becomes low level during the period (time t2 to time t3) during which the + -PE ground fault start signal S1 is at the high level, the control unit 124 The fault start signal S1 is returned from the high level to the low level, and after a predetermined time has elapsed, as shown in FIG. 3, the ground fault start signal S2 between --PE is changed from the low level to the high level from time t4 to time t5. Then, the photocoupler Ph2 of the second ground fault detection diagnostic circuit 122 is turned on, and the current I2 in the second direction flows through the resistor R4. When the ground fault detection circuit 121 detects that the power supply line on the output side of each power conversion circuit 11 is grounded by the current I2 flowing in the second direction through the resistor R4, as shown in FIG. The ground fault detection circuit diagnostic signal Sdec changes from the high level to the low level.
 そして、制御部124は、-‐PE間地絡開始信号S2をハイレベルにしている期間(時刻t4~時刻t5)において、地絡検知回路診断信号Sdecがローレベルになると、地絡検知回路121が正常であると診断し、図3に示すように、地絡検知回路診断終了信号をローレベルからハイレベルにする。電力変換回路11は、地絡検知回路診断終了信号がローレベルからハイレベルになると、電力(電圧)の出力を停止する。すると、図3に示すように、電圧Voutがハイレベルからローレベルになる。 When the ground fault detection circuit diagnostic signal Sdec becomes low level during the period (time t4 to time t5) during which the --PE ground fault start signal S2 is set to high level, the control unit 124 detects the ground fault detection circuit 121. As shown in FIG. 3, the ground fault detection circuit diagnosis end signal is changed from the low level to the high level. The power conversion circuit 11 stops outputting power (voltage) when the ground fault detection circuit diagnosis end signal changes from low level to high level. Then, as shown in FIG. 3, the voltage Vout changes from the high level to the low level.
 このように、実施形態の地絡検知回路診断装置12では、各電力変換回路11の出力側の給電線の開放時、第1の地絡検知診断回路122の動作を制御することにより抵抗R4に第1の方向の電流I1を流しているとき、地絡検知回路121により各電力変換回路11の出力側の給電線が地絡していることが検知され、かつ、第2の地絡検知診断回路123の動作を制御することにより抵抗R4に第2の方向の電流I2を流しているとき、地絡検知回路121により各電力変換回路11の出力側の給電線が地絡していることが検知されると、地絡検知回路121が正常であると診断している。すなわち、各電力変換回路11の出力側の給電線の開放時、各電力変換回路11の出力側の給電線を意図的に地絡させることで、地絡検知回路121が正常であるか否かを診断している。これにより、充電器10内の各電力変換回路11の出力段に設けられる地絡検知回路121が正常であるか否かを診断することができる。 As described above, in the ground fault detection circuit diagnostic device 12 according to the embodiment, the resistance R4 is controlled by controlling the operation of the first ground fault detection diagnostic circuit 122 when the output power supply line of each power conversion circuit 11 is opened. When the current I1 in the first direction is flowing, the ground fault detection circuit 121 detects that the power supply line on the output side of each power conversion circuit 11 is grounded, and the second ground fault detection diagnosis When the current I2 in the second direction is caused to flow through the resistor R4 by controlling the operation of the circuit 123, the ground fault detection circuit 121 may cause a ground fault on the output side of each power conversion circuit 11. When detected, the ground fault detection circuit 121 is diagnosed as normal. That is, whether or not the ground fault detection circuit 121 is normal by intentionally grounding the power supply line on the output side of each power conversion circuit 11 when the power supply line on the output side of each power conversion circuit 11 is opened. Is diagnosed. Thereby, it is possible to diagnose whether or not the ground fault detection circuit 121 provided at the output stage of each power conversion circuit 11 in the charger 10 is normal.
 また、実施形態の地絡検知回路診断装置12は、各電力変換回路11の出力側のプラス側給電線Lpが互いに接続される点に第1の地絡検知診断回路122が接続され、各電力変換回路11の出力側のマイナス側給電線Lnが互いに接続される点に第2の地絡検知診断回路122が接続される構成、すなわち、複数の電力変換回路11に対して1つの地絡検知回路診断装置12を備える構成であるため、各電力変換回路11にそれぞれ地絡検知回路診断装置を設ける場合に比べて、回路面積、コスト、及び地絡診断時間を削減することができる。 In the ground fault detection circuit diagnostic device 12 of the embodiment, the first ground fault detection diagnostic circuit 122 is connected to the point where the output power supply lines Lp on the output side of each power conversion circuit 11 are connected to each other. A configuration in which the second ground fault detection diagnostic circuit 122 is connected to the point where the negative side power supply lines Ln on the output side of the conversion circuit 11 are connected to each other, that is, one ground fault detection for a plurality of power conversion circuits 11. Since the circuit diagnosis device 12 is provided, the circuit area, cost, and ground fault diagnosis time can be reduced as compared with the case where each power conversion circuit 11 is provided with a ground fault detection circuit diagnostic device.
 また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
 上記実施形態では、抵抗R4に第1の方向の電流I1を流している期間と、抵抗R4に第2の方向の電流I2を流している期間の両方の期間において、それぞれ、地絡検知回路121により地絡が検知されると、地絡検知回路121が正常であると制御部124が診断する構成であるが、抵抗R4に第1の方向の電流I1が流れている期間のみにおいて、地絡検知回路121により地絡が検知されると、地絡検知回路121が正常であると制御部124が診断するように構成してもよい。このように構成しても、充電器10の出力段に設けられる地絡検知回路121が正常であるか否かを診断することができる。また、このように構成する場合、第2の地絡検知診断回路123を省略することができ、その分、回路面積、コスト、及び地絡診断時間を削減することができる。
The present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention.
In the above embodiment, the ground fault detection circuit 121 is provided in both the period in which the current I1 in the first direction flows through the resistor R4 and the period in which the current I2 in the second direction flows through the resistor R4. When the ground fault is detected by the control unit 124, the control unit 124 diagnoses that the ground fault detection circuit 121 is normal. However, only when the current I1 in the first direction flows through the resistor R4, the ground fault is detected. When the ground fault is detected by the detection circuit 121, the control unit 124 may diagnose that the ground fault detection circuit 121 is normal. Even if comprised in this way, it can be diagnosed whether the ground fault detection circuit 121 provided in the output stage of the charger 10 is normal. Moreover, when comprised in this way, the 2nd ground fault detection diagnostic circuit 123 can be abbreviate | omitted, and a circuit area, cost, and ground fault diagnostic time can be reduced by that much.
 また、上記実施形態では、電池パック20に設けられるリレーReをオフすることにより、充電器10のプラス側給電線Lp及びマイナス側給電線Lnが開放される構成であるが、充電器10のプラス側給電線Lp上にリレーを設け、そのリレーを制御部124によりオンからオフに制御することで、プラス側給電線Lp及びマイナス側給電線Lnが開放されるように構成してもよい。 Further, in the above embodiment, the positive power supply line Lp and the negative power supply line Ln of the charger 10 are opened by turning off the relay Re provided in the battery pack 20. A relay may be provided on the side power supply line Lp, and the relay may be controlled from on to off by the control unit 124 so that the plus side power supply line Lp and the minus side power supply line Ln are opened.
 また、上記実施形態では、充電器10に複数の電力変換回路11を備える構成であるが、充電器10に1つの電力変換回路11のみ備える構成でもよい。
 また、上記実施形態では、地絡検知回路121が給電線の地絡を検知すると地絡検知回路診断信号Sdecがハイレベルからローレベルになる構成であるが、地絡検知回路診断信号Sdecがローレベルからハイレベルになる構成でもよい。
Moreover, in the said embodiment, although it is the structure provided with the some power converter circuit 11 in the charger 10, the structure provided only with one power converter circuit 11 in the charger 10 may be sufficient.
In the above-described embodiment, when the ground fault detection circuit 121 detects a ground fault of the feeder line, the ground fault detection circuit diagnostic signal Sdec is changed from the high level to the low level. However, the ground fault detection circuit diagnostic signal Sdec is low. A configuration in which the level is changed to a high level may be used.
10 充電器
11 電力変換回路
12 地絡検知回路診断装置
121 地絡検知回路
122 第1の地絡検知診断回路
123 第2の地絡検知診断回路
124 制御部
R1~R4 抵抗
 
DESCRIPTION OF SYMBOLS 10 Charger 11 Power conversion circuit 12 Ground fault detection circuit diagnostic apparatus 121 Ground fault detection circuit 122 1st ground fault detection diagnostic circuit 123 2nd ground fault detection diagnostic circuit 124 Control part R1-R4 Resistance

Claims (5)

  1.  電力変換回路の出力側の給電線が地絡しているとき、第1の方向の電流が流れる抵抗と、
     前記抵抗に前記第1の方向の電流が流れると、前記給電線が地絡していることを検知する地絡検知回路と、
     前記抵抗に前記第1の方向の電流を流す第1の地絡検知診断回路と、
     前記第1の地絡検知診断回路の動作を制御することにより前記抵抗に前記第1の方向の電流を流しているとき、前記地絡検知回路により前記給電線が地絡していることが検知されると、前記地絡検知回路が正常であると診断する制御部と、
     を備えることを特徴とする地絡検知回路診断装置。
    When the power supply line on the output side of the power conversion circuit has a ground fault, a resistance through which a current in the first direction flows;
    When a current in the first direction flows through the resistor, a ground fault detection circuit that detects that the feed line is grounded;
    A first ground fault detection diagnostic circuit for passing a current in the first direction through the resistor;
    By controlling the operation of the first ground fault detection diagnostic circuit, it is detected by the ground fault detection circuit that the feeder line is grounded when a current in the first direction flows through the resistor. A controller that diagnoses that the ground fault detection circuit is normal;
    A ground fault detection circuit diagnostic apparatus comprising:
  2.  請求項1に記載の地絡検知回路診断装置であって、
     前記第1の地絡検知診断回路は、複数の電力変換回路の出力側の給電線が互いに接続される点に接続されている
     ことを特徴とする地絡検知回路診断装置。
    The ground fault detection circuit diagnostic device according to claim 1,
    The first ground fault detection diagnostic circuit is connected to a point where power supply lines on the output side of a plurality of power conversion circuits are connected to each other.
  3.  請求項1または請求項2に記載の地絡検知回路診断装置であって、
     前記抵抗に前記第1の方向と逆方向の第2の方向の電流を流す第2の地絡検知診断回路を備え、
     前記抵抗は、前記給電線が地絡しているとき、前記第1の方向の電流または前記第2の方向の電流が流れ、
     前記地絡検知回路は、前記抵抗に前記第1の方向の電流または前記第2の方向の電流が流れると、前記給電線が地絡していることを検知し、
     前記制御部は、前記第1の地絡検知診断回路の動作を制御することにより前記抵抗に前記第1の方向の電流を流しているとき、前記地絡検知回路により前記給電線が地絡していることが検知され、かつ、前記第2の地絡検知診断回路の動作を制御することにより前記抵抗に前記第2の方向の電流を流しているとき、前記地絡検知回路により前記給電線が地絡していることが検知されると、前記地絡検知回路が正常であると診断する
     ことを特徴とする地絡検知回路診断装置。
    The ground fault detection circuit diagnostic device according to claim 1 or 2,
    A second ground fault detection diagnostic circuit for causing a current in a second direction opposite to the first direction to flow through the resistor;
    The resistor has a current in the first direction or a current in the second direction when the power supply line is grounded,
    When the current in the first direction or the current in the second direction flows through the resistor, the ground fault detection circuit detects that the power supply line is grounded,
    The control unit controls the operation of the first ground fault detection diagnostic circuit, and when the current in the first direction flows through the resistor, the ground fault detection circuit causes the power supply line to ground. And when the current in the second direction flows through the resistor by controlling the operation of the second ground fault detection diagnostic circuit, the ground fault detection circuit causes the feeder line to When it is detected that a ground fault is detected, the ground fault detection circuit is diagnosed as normal.
  4.  請求項3に記載の地絡検知回路診断装置であって、
     前記第2の地絡検知診断回路は、複数の電力変換回路の出力側の給電線が互いに接続される点に接続されている
     ことを特徴とする地絡検知回路診断装置。
    The ground fault detection circuit diagnostic device according to claim 3,
    The second ground fault detection diagnostic circuit is connected to a point where output power supply lines of a plurality of power conversion circuits are connected to each other.
  5.  請求項3に記載の地絡検知回路診断装置であって、
     第2及び第3の抵抗を備え、
     前記第1の地絡検知診断回路は、第1のフォトカプラを備え、
     前記第2の地絡検知診断回路は、第2のフォトカプラを備え、
     前記抵抗の一方端は、前記第1のフォトカプラのフォトトランジスタのエミッタ端子、前記第2のフォトカプラのフォトトランジスタのコレクタ端子、及び保護接地に接続され、
     前記第2の抵抗の一方端及び前記第1のフォトカプラのフォトトランジスタのコレクタ端子は、前記電力変換回路のプラス出力端子に接続されるプラス側給電線に接続され、
     前記第3の抵抗の一方端及び前記第2のフォトカプラのフォトトランジスタのエミッタ端子は、前記電力変換回路のマイナス出力端子に接続されるマイナス側給電線に接続され、
     前記抵抗、前記第2の抵抗、及び前記第3の抵抗のそれぞれの他方端は、互いに接続され、
     前記制御部は、前記第1のフォトカプラをオンさせることにより前記抵抗に前記第1の方向の電流を流しているとき、前記地絡検知回路により前記給電線が地絡していることが検知され、かつ、前記第2のフォトカプラをオンさせることにより前記抵抗に前記第2の方向の電流を流しているとき、前記地絡検知回路により前記給電線が地絡していることが検知されると、前記地絡検知回路が正常であると診断する
     ことを特徴とする地絡検知回路診断装置。
     
    The ground fault detection circuit diagnostic device according to claim 3,
    Comprising second and third resistors;
    The first ground fault detection and diagnosis circuit includes a first photocoupler,
    The second ground fault detection diagnostic circuit includes a second photocoupler,
    One end of the resistor is connected to an emitter terminal of the phototransistor of the first photocoupler, a collector terminal of the phototransistor of the second photocoupler, and a protective ground,
    One end of the second resistor and the collector terminal of the phototransistor of the first photocoupler are connected to a positive power supply line connected to a positive output terminal of the power conversion circuit,
    One end of the third resistor and the emitter terminal of the phototransistor of the second photocoupler are connected to a negative power supply line connected to a negative output terminal of the power conversion circuit,
    The other ends of the resistor, the second resistor, and the third resistor are connected to each other,
    The control unit detects that the power supply line is grounded by the ground fault detection circuit when a current in the first direction flows through the resistor by turning on the first photocoupler. When the second photocoupler is turned on, and the current in the second direction flows through the resistor, the ground fault detection circuit detects that the power supply line is grounded. Then, the ground fault detection circuit diagnosis apparatus characterized in that the ground fault detection circuit is diagnosed as normal.
PCT/JP2016/085768 2016-03-30 2016-12-01 Ground fault detection circuit diagnosing device WO2017168835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-068442 2016-03-30
JP2016068442A JP2017181288A (en) 2016-03-30 2016-03-30 Grounding fault detection circuit diagnosis device

Publications (1)

Publication Number Publication Date
WO2017168835A1 true WO2017168835A1 (en) 2017-10-05

Family

ID=59964023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085768 WO2017168835A1 (en) 2016-03-30 2016-12-01 Ground fault detection circuit diagnosing device

Country Status (2)

Country Link
JP (1) JP2017181288A (en)
WO (1) WO2017168835A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221395A (en) * 1997-02-07 1998-08-21 Denso Corp System for detecting ground fault of electric vehicle
JP2013061216A (en) * 2011-09-13 2013-04-04 Denso Corp Earth detector
JP2015162908A (en) * 2014-02-26 2015-09-07 住友電気工業株式会社 DC voltage supply circuit and ground fault detection circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221395A (en) * 1997-02-07 1998-08-21 Denso Corp System for detecting ground fault of electric vehicle
JP2013061216A (en) * 2011-09-13 2013-04-04 Denso Corp Earth detector
JP2015162908A (en) * 2014-02-26 2015-09-07 住友電気工業株式会社 DC voltage supply circuit and ground fault detection circuit

Also Published As

Publication number Publication date
JP2017181288A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5414818B2 (en) Electric vehicle power converter
US8970155B2 (en) Power inverter
WO2011118259A1 (en) Discharge control device
JP6106729B1 (en) Vehicle power supply device and fault diagnosis method thereof
WO2013190733A1 (en) Leak detection device
US20140049215A1 (en) Method for monitoring the charging mode of an energy store in a vechile and charging system for charging an energy store in a vechile
JP6493363B2 (en) Electric car
US9843184B2 (en) Voltage conversion apparatus
JP6469894B2 (en) Power converter
EP2910405A1 (en) Output power protection apparatus and method of operating the same
US20130020972A1 (en) Load drive apparatus
JP4941461B2 (en) In-vehicle charger
JP5611300B2 (en) Power converter and control method thereof
KR102542960B1 (en) Fault diagnosis system of power converter for electric vehicle
JP2013150525A (en) Electric vehicle
WO2017168835A1 (en) Ground fault detection circuit diagnosing device
JP2011223837A (en) Power supply unit
JP2017041928A (en) Power system
JP2006262608A (en) Charger
JP6696370B2 (en) Power supply for motor
JP5945692B2 (en) Inverter device
JP5932465B2 (en) Secondary battery device
JP5926796B2 (en) Leak detector
CN112564258A (en) Power control device
CN112564257A (en) Power control device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897051

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897051

Country of ref document: EP

Kind code of ref document: A1