WO2017168701A1 - 無線通信システム、無線機器、リレーノード、及び、基地局 - Google Patents

無線通信システム、無線機器、リレーノード、及び、基地局 Download PDF

Info

Publication number
WO2017168701A1
WO2017168701A1 PCT/JP2016/060750 JP2016060750W WO2017168701A1 WO 2017168701 A1 WO2017168701 A1 WO 2017168701A1 JP 2016060750 W JP2016060750 W JP 2016060750W WO 2017168701 A1 WO2017168701 A1 WO 2017168701A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
relay
information
relay node
Prior art date
Application number
PCT/JP2016/060750
Other languages
English (en)
French (fr)
Inventor
紅陽 陳
剛史 下村
田中 良紀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP16896918.6A priority Critical patent/EP3439335B1/en
Priority to JP2018508295A priority patent/JP6696566B2/ja
Priority to CN201680084156.XA priority patent/CN108886673A/zh
Priority to PCT/JP2016/060750 priority patent/WO2017168701A1/ja
Publication of WO2017168701A1 publication Critical patent/WO2017168701A1/ja
Priority to US16/127,518 priority patent/US20190029017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the technology described in this specification relates to a wireless communication system, a wireless device, a relay node, and a base station.
  • IoT Internet of Things
  • Various “things” equipped with a communication function can communicate with each other by connecting to the Internet or a wireless access network, or between the “things”.
  • “Communication between“ things ” is sometimes referred to as“ D2D (device-to-device) communication ”,“ MTC (machine-type communication) ”, or the like.
  • “things” equipped with a communication function may be referred to as D2D devices, MTC devices, or the like.
  • a relay node that relays data transmission of a plurality of MTC devices to the base station may be arranged in the wireless communication system.
  • the MTC device does not transmit directly to the base station, but transmits to the relay node.
  • the MTC device is restricted from direct uplink (UL) communication addressed to the base station.
  • UL direct uplink
  • the base station cannot directly acquire information on timing advance (timing advance, TA) for adjusting the transmission timing from the MTC device to the relay node from the MTC device.
  • timing advance timing advance
  • the base station may not be able to appropriately control the transmission timing of each MTC device connected to the relay node. If the transmission timings of the individual MTC devices are not properly controlled, interference occurs between signals transmitted by the individual MTC devices, and the probability that the relay node will fail to receive signals from the MTC devices increases.
  • one of the objects of the technology described in this specification is to enable appropriate control of transmission timing for a relay node of a wireless device in which UL communication with a base station is restricted.
  • the wireless communication system may include a base station, a relay node, and a wireless device.
  • the wireless device receives a downlink signal from the base station without passing through the relay node, and transmits an uplink signal to the base station via the relay node.
  • the base station may control the timing at which the wireless device transmits the uplink signal using the downlink signal, using information related to timing advance between the base station and the relay node.
  • the wireless device may include a communication unit and a control unit.
  • the communication unit may receive a downlink signal from a base station without passing through a relay node, and transmit an uplink signal to the base station via the relay node.
  • the control unit is determined by the base station using information related to timing advance between the base station and the relay node, and received by the downlink signal from the base station in the communication unit,
  • the uplink signal transmission timing may be controlled by information for controlling the uplink signal transmission timing.
  • the relay node may relay uplink communication between the wireless device and the base station.
  • the relay node may include a communication unit and a transmission unit.
  • the communication unit may relay an uplink signal transmitted by the wireless device that receives a downlink signal from the base station to the base station.
  • the transmission unit is information related to timing advance between the base station and the relay node as information used by the base station to control the transmission timing of the uplink signal by the wireless device using the downlink signal. May be transmitted to the base station.
  • the base station may transmit a downlink signal to the wireless device.
  • the base station may include a receiving unit and a control unit.
  • the receiving unit may receive information related to timing advance between the relay node and the base station from a relay node that relays an uplink signal transmitted by the wireless device.
  • the control unit may control the timing at which the wireless device transmits the uplink signal by using the downlink signal to the wireless device, using information on the timing advance.
  • FIG. 3 is a sequence diagram illustrating an operation example according to the first embodiment of the wireless communication system illustrated in FIG. 1. It is a block diagram which shows the structural example of the radio
  • FIG. 8 is a sequence diagram for explaining an example of TA estimation processing illustrated in FIG. 7. It is a block diagram which shows the structural example of the radio
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment.
  • the radio communication system 1 illustrated in FIG. 1 may include, for example, a base station 11, a plurality of UEs (User Equipment) 12, and a relay (Relay) UE 13.
  • UEs User Equipment
  • Relay relay
  • the base station 11 forms a wireless area 100.
  • One radio area 100 may be formed by one base station 11, or a plurality of radio areas 100 may be formed.
  • the wireless area 100 is determined according to the reach of wireless radio waves transmitted by the base station 11 (may be referred to as “coverage”).
  • Wireless area may be referred to as “cell”, “coverage area” or “communication area”.
  • the “cell” may be divided into “sector cells”.
  • the base station 11 may be referred to as a “base station (BS)”, “node B (NB)”, or “enhanced NB (eNB)”.
  • BS base station
  • NB node B
  • eNB enhanced NB
  • the UE 12 and the relay UE 13 can perform radio communication with the base station 11.
  • UE12 and UE13 are examples of wireless devices.
  • the UEs 12 and 13 may be referred to as wireless devices, mobile terminals, or terminal devices.
  • the UE 12 may be a sensor device or a meter (measuring instrument) having a wireless communication function that forms a sensor network.
  • the relay UE 13 may be a mobile phone or a smartphone as a non-limiting example.
  • the wireless communication between the eNB 11 and the UEs 12 and 13 may be referred to as “cellular communication” for convenience.
  • cellular communication For example, 3GPP (3rd Generation Generation Partnership Project) LTE (Long Termination Evolution) or a wireless communication system based on LTE-Advanced may be applied to the “cellular communication”.
  • LTE Long Termination Evolution
  • the cellular communication signal may be abbreviated as a cellular signal for convenience.
  • the UE 12 does not transmit a signal directly to the eNB 11 but transmits a signal via the relay UE 13.
  • uplink (Uplink, UL) communication from the UE 12 to the eNB 11 may be performed via the relay UE 13.
  • downlink (Downlink, DL) communication from the eNB 11 to the UE 12 may be performed via the relay UE 13 or may be performed directly without using the relay UE 13.
  • the UE 12 can receive the signal transmitted by the eNB 11 via the relay UE 13 or can directly receive the signal.
  • the relay UE 13 When the relay UE 13 relays the UL communication of the UE 12 to the eNB 11, the UE 12 can perform the UL communication with less power than when the signal is transmitted directly to the base station 11.
  • the eNB 11 allocates UL and DL radio resources to the relay UE 13, it is not necessary to individually allocate UL communication radio resources to many UEs 12. Therefore, it is possible to improve the utilization efficiency of radio resources for UL communication.
  • D2D Device-to-Device
  • the UE 12 may be referred to as “D2D UE 12”, “MTC UE 12”, “remote MTC UE 12”, “MTC device 12”, “MTC node 12”, or the like for convenience.
  • MTC UE12 may be abbreviated as “MUE12”.
  • the relay UE 13 may be referred to as a “relay node 13” for convenience.
  • the MUE 12 such as a sensor device or a meter may be arranged in a place where radio waves are difficult to reach compared to outdoors with good visibility and the wireless environment is not good, for example, indoors or underground. Therefore, it may be preferable for the MUE 12 to be able to extend the standard coverage provided by the eNB 11 (coverage enhancement, CE).
  • CE coverage enhancement
  • a coverage extension of about several dB to several tens of dB may be desired rather than the standard coverage in LTE or LTE-Advanced. Therefore, as an example of the CE technique, a technique called “repetitions” may be used.
  • “Repetition” is a technology that repeatedly transmits the same signal at different times.
  • the eNB 11 can improve the reception success rate at the MUE 12 by repeating the transmission of the same DL data signal and the same control signal a finite number of times. Therefore, the coverage of DL communication can be expanded.
  • communication functions can be installed in various “things” by IoT.
  • Various “things” equipped with a communication function may correspond to the MUE 12. Therefore, the number of MUEs 12 that can be connected to a radio access network such as LTE can also be large.
  • the amount of data that each MUE 12 transmits at one time tends to be smaller than that of a UE such as a mobile phone or a smartphone.
  • the MUE 12 may be referred to as a low cost (LC-) MTC device 12.
  • the MTC performed by the LC-MTC device 12 may be referred to as LC-MTC.
  • LC-MTC whenever the transmission data is generated in the MUE 12, for example, when the eNB 11 controls the transmission timing of each MUE 12, the resource consumption of the control channel increases.
  • the eNB 11 can control the TTI (transmission time interval) of each MUE 12 by transmitting a TA (timing advance) command using a DL control channel such as PDCCH (physical downlink control channel).
  • a DL control channel such as PDCCH (physical downlink control channel).
  • TTI bundling it is possible to instruct the UE that the same transmission data may be continuously transmitted over a plurality of TTIs with a single TA command. Therefore, the resource consumption of the control channel used for transmitting the TA command can be suppressed.
  • the eNB 11 transmits a TA command to the relay UE 13 instead of the individual MUE 12. I will do better.
  • TA information information about the TA for the MUE 12 (hereinafter may be abbreviated as “TA information”).
  • the eNB 11 cannot appropriately control the transmission timings of the individual MUEs 12. Therefore, if there are many MUEs 12, interference may occur between UL communications from the MUEs 12 to the relay UEs 13. When interference occurs, the probability that the relay UE 13 fails to receive a signal from the MUE 12 increases.
  • FIG. 2 illustrates an example in which interference occurs between signals (for example, subframes) transmitted by two MUEs # 1 and # 2. Note that the “subframe” has a frame length of 1 ms in the case of LTE.
  • the propagation delay from the eNB 11 to the MUE # 1 is t1
  • the propagation delay from the eNB 11 to the MUE # 2 is t2.
  • the propagation delay from MUE # 1 to relay UE13 is ⁇ 1
  • the propagation delay from MUE # 2 to relay UE13 is ⁇ 2. It is assumed that t1 + ⁇ 1> t2 + ⁇ 2.
  • the eNB 11 allocates a certain radio resource (for example, an LTE resource block (RB)) for D2D communication to the MUE # 1 at the start timing T of the UL subframe. Assume that the assigned RB is “RB # 3”.
  • a certain radio resource for example, an LTE resource block (RB)
  • the start timing of the subframe transmitted by the MUE # 1 by D2D communication is (T + t1). Since the subframe transmitted by MUE # 1 to the relay UE13 through D2D communication is subjected to a propagation delay of ⁇ 1, the relay UE13 receives the subframe at the timing (T + t1 + ⁇ 1), and the reception is completed at the timing (T + 1 + t1 + ⁇ 1).
  • the eNB 11 assigns RB # 3 for D2D communication to MUE # 2 at the start timing (T + 1) of the next subframe. Since MUE # 2 receives the signal from eNB11 with propagation delay t2, the start timing of the subframe that MUE # 2 transmits in D2D communication is (T + 1 + t2).
  • the relay UE13 Since the subframe transmitted by MUE # 2 to the relay UE through D2D communication is subjected to a propagation delay of ⁇ 2, the relay UE13 receives the subframe at a timing of (T + 1 + t2 + ⁇ 2), and the reception is completed at a timing of (T + 2 + t2 + ⁇ 2).
  • the reception start timing (T + 1 + t2 + ⁇ 2) of the subframe transmitted by MUE # 2 is earlier than the reception end timing (T + 1 + t1 + ⁇ 1) of the subframe transmitted by MUE # 1. Therefore, at least a part of the two subframes overlap.
  • the MUE 12 can adjust the transmission timing of the MUE 12 by the TA command even in a situation where direct UL transmission to the eNB 11 is not available.
  • the eNB 11 determines the actual transmission timing for the MUE 12 to transmit the data signal of the D2D communication to the relay UE 13 with the assistance of the relay UE 13.
  • the following two examples are described.
  • the eNB 11 may use the TA information of the relay UE 13 for determination and control of the actual D2D transmission timing of the MUE 12.
  • the relay UE 13 estimates the TA information of the MUE 12 and reports the estimated TA information to the eNB 11.
  • the eNB 11 may determine and control the actual transmission timing of the MUE 12 based on the TA information of the MUE 12 and the TA information of the relay UE 13 reported from the relay UE 13.
  • TA information of relay UE 13 means TA information between relay UE 13 and eNB 11, and is an example of first TA information. Since the relay UE 13 can directly perform communication between the eNB 11 and the UL and DL, the relay UE 13 can receive the TA command from the eNB 11 regularly or irregularly.
  • the relay UE 13 may store and update TA information indicated by the TA command received regularly or irregularly in the storage unit.
  • the TA information stored in the storage unit may be transmitted from the relay UE 13 to the eNB 11 as “TA information of the relay UE 13”.
  • TA information of MUE2 estimated by the relay UE13 means TA information between the MUE2 and the relay UE13, and is an example of second TA information.
  • FIG. 3 shows an operation example of the radio communication system according to the first embodiment.
  • the eNB 11 transmits paging information (may be referred to as a “paging signal”) to the DL via the CE (step S1).
  • the paging information is an example of information transmitted on a paging channel that is an example of a control channel.
  • MUE12 may transmit a discovery signal (DS), if the paging information which eNB11 transmitted with DL paging channel is received (step S2).
  • DS is an example of a signal for searching for and discovering relay UE13.
  • the DS may include S-TMSI.
  • S-TMSI is an abbreviation of “SAE temporary mobile subscriber identity”
  • SAE is an abbreviation of “System Architecture Evolution”.
  • S-TMSI is an example of a temporary identifier (MUE ID) assigned to the MUE 12.
  • the relay UE 13 may transmit the information (for example, S-TMSI) of the MUE 12 and the TA information of the relay UE 13 to the eNB 11 (step S3).
  • the relay UE 13 may transmit these pieces of information to the eNB 11 using PRACH, PUCCH (physical / uplink / control / channel), PUSCH (physical / uplink / shared channel), and the like.
  • the PRACH is used when the relay UE 13 accesses the eNB 11 for the first time, or when re-establishing an RRC (radio resource control) connection with the eNB 11.
  • RRC radio resource control
  • the relay UE 13 may notify the eNB 11 of the information of the MUE 12 and the TA information of the relay UE 13 using a random access (RA) preamble, or notify the eNB 11 using an RRC connection re-establishment request signal. May be.
  • RA random access
  • the eNB 11 may transmit an RRC connection reconfiguration (RRC connection reconfiguration) signal to the relay UE 13 (step S4).
  • the relay UE 13 can transmit the RRC connection re-establishment request signal to the eNB 11 by receiving the RRC connection re-setting signal.
  • the relay UE 13 uses the PUCCH or PUSCH to obtain the information on the MUE 12 and the TA information on the relay UE 13. You may notify eNB11.
  • the eNB 11 When the eNB 11 receives the information of the MUE 12 and the TA information of the relay UE 13 from the relay UE 13, the eNB 11 transmits the C-RNTI and the layer 2 identifier (relay UE L2 ID) of the relay UE 13 to the MUE 12 by the CE of DL. Good (step S5).
  • C-RNTI is an abbreviation of “cell-radio network temporary identifier” and is an example of a temporary cell identifier assigned to the MUE 12 by the eNB 11.
  • PDSCH which is an example of a DL data channel, may be used for transmission of C-RNTI and relay UE layer 2 ID.
  • the eNB 11 may notify the MUE 12 of the C-RNTI and the relay UE layer 2 ID using a random access response (response) message transmitted to the MUE 12 by PDSCH.
  • a random access response response
  • the network relay is a layer 3 relay, but can be extended to a layer 2 relay to assist the eNB 11. Therefore, the eNB 11 may transmit the layer 2 ID to the MUE 12.
  • the received radio (RF) signal may be demodulated and decoded, and then encoded and modulated again to transmit the RF signal. Since the layer 2 relay re-encodes and modulates the received signal, it can be expected to improve the reception characteristics due to interference from other cells and noise amplification. Layer 2 relays do not require user data retransmission or transmission.
  • the eBN 11 may transmit resource allocation information used by the MUE 12 for D2D communication with the relay UE 13 and a TA command determined based on the TA information of the relay UE 13 to the MUE 12 (step S6).
  • the resource used for D2D communication may be referred to as “D2D resource” for convenience.
  • PDCCH which is an example of a DL control channel
  • PDCCH may be used for transmission of D2D resource allocation information and TA command.
  • step S5 and step S6 may be integrated into one step.
  • the MUE 12 may transmit an SA (scheduling assignment) message to the relay UE 13 in accordance with the D2D resource assignment information received from the eNB 11 (step S7).
  • the SA exemplarily indicates a position in a frequency domain and a time domain of a reception resource associated with a physical channel through which a transmission data signal of the MUE 12 propagates.
  • the MUE 12 may transmit the D2D data signal to the relay UE 13 to the relay UE 13 at the transmission timing specified by the TA command (step S8).
  • the relay UE 13 may transfer the received D2D data signal to the eNB 11 (step S9).
  • the eNB 11 is not able to use direct UL communication with the eNB 11 based on the TA information of the relay UE 13 (in other words, for the MUE 12 that is restricted).
  • TA information can be determined and a TA command can be transmitted to the MUE 12.
  • the eNB 11 is not based on the TA information between the individual MUE 12 and the relay UE 13, but based on the TA information between the relay UE 13 and the eNB 11, the eNB 11 transmits the D2D data signal transmitted to the relay UE 13.
  • the transmission timing may be adjusted or controlled.
  • FIG. 4 is a block diagram illustrating a configuration example of the MUE 12.
  • the MUE 12 illustratively includes a transmission processing unit 121 and a reception processing unit 122 for cellular communication, a transmission processing unit 123 and a reception processing unit 124 for D2D communication, and a control unit 125. You may be prepared.
  • the reception processing unit 122 for cellular communication and the transmission processing unit 123 for D2D communication receive a DL signal from the eNB 11 without passing through the relay UE 13, and transmit a UL signal to the eNB 11 through the relay UE 13. It may be considered as an example.
  • the transmission processing unit 121 for cellular communication includes a channel encoder 1211, an inverse fast Fourier transformer (IFFT) 1212, a CP adder (Cyclic Prefix Adder) 1213, a radio (RF) transmission unit 1214, and a transmission antenna. 1215 may be provided.
  • IFFT inverse fast Fourier transformer
  • CP adder Cyclic Prefix Adder
  • RF radio
  • the channel encoder 1211 exemplarily channel-encodes data traffic transmitted by UL cellular communication.
  • the IFFT 1212 exemplarily performs IFFT (Inverse Fast Fourier ⁇ Transform) on channel-encoded data traffic.
  • Data traffic that is a frequency domain signal eg, baseband signal
  • IFFT Inverse Fast Fourier ⁇ Transform
  • the CP adder 1213 illustratively adds a CP to the time domain signal obtained by the IFFT 1212. By adding a CP, it is possible to suppress intersymbol interference and intersubcarrier interference in the transmission signal.
  • the RF transmission unit 1214 illustratively converts the transmission baseband signal to which the CP is added into a radio frequency and transmits it through the transmission antenna 1215.
  • the reception processing unit 122 for cellular communication may include, for example, a reception antenna 1220, an RF reception unit 1221, a CP remover (Cyclic Prefix Remover) 1222, and a PDSCH demodulation unit 1223.
  • a reception antenna 1220 may include, for example, a reception antenna 1220, an RF reception unit 1221, a CP remover (Cyclic Prefix Remover) 1222, and a PDSCH demodulation unit 1223.
  • the RF receiving unit 1221 illustratively converts a DL cellular communication radio signal received through the receiving antenna 1220 into a baseband signal.
  • CP remover 1222 illustratively removes the CP added to the received baseband signal.
  • the PDSCH demodulator 1223 illustratively demodulates a PDSCH signal, which is an example of a DL data channel, from the received baseband signal from which the CP has been removed.
  • the transmission processing unit 123 for D2D communication includes, for example, an SA (Schedule Assignment) generation unit 1231, a D2D data generation unit 1232, a DS (Discovery Signal) generation unit 1233, an RF transmission unit 1234, and a transmission antenna 1235. It's okay.
  • the SA generation unit 1231 exemplarily generates the above-described SA.
  • the D2D data generation unit 1232 illustratively generates a D2D data signal.
  • the DS generation unit 1233 exemplarily generates the above-described discovery signal (DS) for searching for and discovering the relay UE 13.
  • the RF transmission unit 1234 illustratively converts the signals generated by the above-described generation units 1231 to 1233 into radio frequency signals and transmits them from the transmission antenna 1235.
  • the block including the DS generation unit 1233 and the RF transmission unit 1234 may be regarded as an example of a transmission unit that transmits a DS.
  • the reception processing unit 124 for D2D communication may include a reception antenna 1240, an RF reception unit 1241, a D2D DS detection unit 1242, and a D2D data signal demodulation unit 1243, for example.
  • the RF receiving unit 1241 converts a radio signal of D2D communication received by the receiving antenna 1240 into a baseband signal.
  • the D2D DS detection unit 1242 illustratively detects a DS transmitted by another UE 12 from the received baseband signal.
  • the D2D data signal demodulator 1243 illustratively demodulates the D2D data signal from the received baseband signal.
  • the control unit 125 of the MUE 12 may control the transmission timing of the UL signal, for example, by using TA information that controls the transmission timing of the UL signal received from the eNB 11 as a DL signal.
  • the TA information is information determined by the eNB 11 using the TA information between the eNB 11 and the relay UE 13.
  • control unit 125 may include a resource configuration / TA command unit 1251 and a D2D scheduler 1253.
  • the resource setting / TA command unit 1251 illustratively performs D2D resource configuration based on the resource allocation information and the TA command obtained from the signal demodulated by the PDSCH demodulation unit 1223.
  • D2D resource based on the TA command, it is possible to control the transmission timing of the D2D data signal to the timing according to the TA command.
  • the D2D scheduler 1253 exemplarily performs scheduling of D2D resources respectively used for transmission of the above-described SA, D2D data signal, and DS according to the resource setting by the resource setting / TA command unit 1251.
  • FIG. 5 is a block diagram illustrating a configuration example of the relay UE 13.
  • the relay UE 13 exemplarily includes a transmission processing unit 131 and a reception processing unit 132 for cellular communication, a transmission processing unit 133 and a reception processing unit 134 for D2D communication, a control unit 135, May be provided.
  • the reception processing unit 134 for D2D communication and the transmission processing unit 131 for cellular communication are, by way of example, an example of a communication unit that relays a UL signal transmitted by the MUE 12 that receives a DL signal from the eNB 11 to the eNB 11. You may think that there is.
  • the transmission processing unit 131 for cellular communication transmits TA information between the eNB 11 and the relay UE 13 to the eNB 11 as information used for the eNB 11 to control the transmission timing of the UL signal by the MUE 12 using the DL signal. It is an example of a part.
  • the transmission processing unit 131 may include a channel encoder 1311, a UL signal generation unit 1312, an IFFT 1313, a CP adder 1314, an RF transmission unit 1315, and a transmission antenna 1316.
  • the channel encoder 1311 illustratively performs channel coding on data traffic to be transmitted by UL cellular communication.
  • the data traffic encoded by the channel encoder 1311 is not limited to the data traffic generated by the relay UE 13, but may include the traffic of the D2D data signal received by the reception processing unit 134 for D2D communication.
  • the UL signal generation unit 1312 exemplarily generates a UL signal (for example, a PRACH signal, an RRC connection re-establishment request signal, a PUCCH signal, a PUSCH signal, etc.) addressed to the eNB 11.
  • a UL signal for example, a PRACH signal, an RRC connection re-establishment request signal, a PUCCH signal, a PUSCH signal, etc.
  • the UL signal generation unit 1312 when notifying the eNB 11 of the MUE ID and the TA information of the relay UE 13 using the PRACH, the UL signal generation unit 1312 generates a PRACH signal including an RA preamble indicating these pieces of information. May be generated.
  • the UL signal generation unit 1312 may generate an RRC connection re-establishment request signal including these information sets.
  • the UL signal generation unit 1312 may generate a PUCCH signal including these information sets.
  • the UL signal generation unit 1312 may generate a PUSCH signal including these information sets.
  • the IFFT 1313 performs IFFT on the output signals of the channel encoder 1311 and the UL signal generation unit 1312 to convert the output signal from a frequency domain to a time domain signal.
  • CP adder 1314 adds a CP to a time-domain transmission baseband signal that is an output signal of IFFT 1313.
  • the RF transmission unit 1315 illustratively converts the transmission baseband signal to which the CP is added into a radio frequency and transmits it through the transmission antenna 1316.
  • the reception processing unit 132 for cellular communication may include, for example, a reception antenna 1320, an RF reception unit 1321, a CP remover 1322, and a PDSCH demodulation unit 1323.
  • the RF reception unit 1321 illustratively exemplarily converts a radio signal for DL cellular communication received through the reception antenna 1320 into a baseband signal.
  • CP remover 1322 illustratively removes the CP added to the received baseband signal.
  • the PDSCH demodulator 1323 illustratively demodulates a PDSCH signal, which is an example of a DL data channel, from the received baseband signal from which the CP has been removed.
  • the transmission processing unit 133 for D2D communication may include an SA generation unit 1331, a D2D data generation unit 1332, a DS generation unit 1333, an RF transmission unit 1334, and a transmission antenna 1335, for example.
  • the SA generation unit 1331 exemplarily generates an SA.
  • the D2D data generation unit 1332 exemplarily generates a D2D data signal.
  • the DS generation unit 1333 illustratively generates a DS for searching for and discovering the UE 12 or another UE 13.
  • the RF transmission unit 1334 illustratively converts the signals generated by the above-described generation units 1331 to 1333 into radio frequency signals and transmits them from the transmission antenna 1335.
  • the reception processing unit 134 for D2D communication may include, for example, a reception antenna 1340, an RF reception unit 1341, a D2D DS detection unit 1342, and a D2D data demodulation unit 1343.
  • the RF receiving unit 1341 converts a radio signal of D2D communication received by the receiving antenna 1340 into a baseband signal.
  • the D2D DS detection unit 1342 illustratively detects the DS transmitted from the UE 12 or another UE 13 from the received baseband signal.
  • the block including the RF receiver 1341 and the D2D DS detector 1342 may be regarded as an example of a receiver that receives the DS transmitted by the MUE 12.
  • the D2D data demodulator 1343 illustratively demodulates the D2D data signal from the received baseband signal.
  • the demodulated D2D data signal may be channel-encoded by the channel encoder 1311 and transmitted from the transmission antenna 1316 to the eNB 11.
  • control unit 135 of the relay UE 13 may include a resource setting / TA command unit 1351 and a D2D scheduler 1353.
  • the resource setting / TA command unit 1351 illustratively performs D2D resource configuration based on the resource allocation information and the TA command obtained from the signal demodulated by the PDSCH demodulating unit 1323.
  • D2D resource based on the TA command, it is possible to control the transmission timing of the D2D data signal to the timing according to the TA command.
  • the resource setting / TA command unit 1351 may output the MUE ID included in the DS detected by the D2D DS detection unit 1342 to the UL signal generation unit 1312 together with the TA information of the relay UE 13.
  • the D2D scheduler 1353 exemplarily performs scheduling of D2D resources respectively used for transmission of the above-described SA, data signal, and DS according to the resource setting by the resource setting / TA command unit 1351.
  • FIG. 6 is a block diagram illustrating a configuration example of the eNB 11.
  • the eNB 11 may include, for example, a UL reception processing unit 111, a DL transmission processing unit 112, and a control unit 113.
  • the reception processing unit 111 may be regarded as an example of a receiving unit that receives TA information between the relay UE 13 and the eNB 12 from the relay UE 13 that relays the UL signal transmitted by the MUE 12.
  • the reception processing unit 111 may exemplarily include a reception antenna 1110, an RF reception unit 1111, a CP remover 1112, an FFT (Fast Fourier Transformer) 1113, and a physical channel separator 1114.
  • the reception processing unit 111 may include a data signal demodulation unit 1115, a control signal demodulation unit 1117, and channel decoders 1116 and 1118.
  • the RF receiving unit 1111 converts a wireless signal of UL cellular communication received through the receiving antenna 1110 into a baseband signal.
  • the CP remover 1112 illustratively removes the CP added to the received baseband signal.
  • the FFT 1113 performs fast Fourier transform (FFT) on the received baseband signal from which the CP is removed, thereby converting the received baseband signal from a time domain to a frequency domain signal.
  • FFT fast Fourier transform
  • the physical channel separator 1114 illustratively separates the received baseband signal in the frequency domain after the FFT into a signal for each UL physical channel.
  • An example of a UL physical channel is PUSCH, PUCCH, and PRACH.
  • PUSCH is an example of a UL data channel.
  • PUCCH is an example of a UL control channel.
  • the data signal demodulator 1115 illustratively demodulates the data channel signal separated by the physical channel separator 1114.
  • the channel decoder 1116 illustratively decodes the data channel signal demodulated by the data signal demodulator 1115.
  • the control signal demodulator 1117 illustratively demodulates the control channel signal (which may be referred to as a “control signal”) separated by the physical channel separator 1114.
  • the channel decoder 1118 illustratively decodes the control signal demodulated by the control signal demodulator 1117.
  • the DL transmission processing unit 112 exemplarily includes a paging signal generation unit 1121, a DL data signal generation unit 1122, a DL control signal generation unit 1123, an IFFT 1124, a CP adder 1125, an RF transmission unit 1126, and a transmission antenna. 1127 may be provided.
  • the paging signal generation unit 1121 exemplarily generates the paging signal exemplified in step S3 of FIG.
  • the block including the paging signal generation unit 1121, the IFFT 1124, the CP adder 1125, and the RF transmission unit 1126 may be regarded as an example of a transmission unit that transmits a paging signal.
  • the DL data signal generation unit 1122 exemplarily generates a DL data signal (for example, a PDSCH signal).
  • the DL data signal may be generated based on D2D resource allocation information by a D2D resource scheduler 1133 described later of the control unit 113.
  • the DL control signal generation unit 1123 illustratively generates a DL control signal (for example, a PDCCH signal).
  • the DL control signal may include the above-described C-RNTI and relay UE layer 2 ID in step S5 of FIG. Further, TA information determined by a determination unit 1132 (to be described later) of the control unit 113 may be included in the DL control signal.
  • IFFT 1124 exemplarily performs signal conversion from the frequency domain to the time domain by performing IFFT on the signals generated by the generation units 1121 to 1123 described above.
  • the CP adder 1125 exemplarily adds a CP to the time domain signal obtained by the IFFT 1124.
  • the RF transmission unit 1126 illustratively converts the signal (transmission baseband signal) to which the CP is added by the CP adder 1125 into a radio frequency and transmits the radio frequency through the transmission antenna 1127.
  • the control unit 113 of the eNB 11 illustratively uses the TA information received from the relay UE 13 to control the timing at which the MUE 12 transmits a UL signal using the DL signal to the MUE 12.
  • control unit 113 may include a determination unit 1132 that determines relay UE layer 2 ID, MUE ID, and TA information, and a D2D resource scheduler 1133.
  • the determination unit 1132 is configured to notify the MUE 12 in steps S5 and S6 of FIG. 3 based on the control signal decoded by the channel decoder 1118 (eg, relay UE layer 2 ID, C-RNTI, and TA). Information).
  • the channel decoder 1118 eg, relay UE layer 2 ID, C-RNTI, and TA. Information
  • the D2D resource scheduler 1133 illustratively determines information to be notified to the MUE 12 in step S6 of FIG. 3 (eg, D2D resource allocation information) based on the control signal decoded by the channel decoder 1118.
  • the eNB 11 transmits paging information to the DL as in the first embodiment (steps S11 and S12).
  • the relay UE 13 may transmit a DS to search for and discover the MUE 12 that performs D2D communication with the relay UE 13 (step S13).
  • the MUE 12 may transmit a DS response signal, which is a response, to the DS UE relay UE 13 (step S 14).
  • the DS response signal may include S-TMSI as an example of the MUE ID.
  • the relay UE 13 may estimate TA information between the MUE 12 and the relay UE 13 (step S15).
  • the transmission timing of the DS transmitted by the relay UE 13 in step S13 is “t0” and the timing at which the MUE 12 receives the DS is “t1”.
  • the transmission timing of the DS response signal transmitted by the MUE 12 in step S14 is “t2”, and the timing when the relay UE 13 receives the DS response signal is “t3”.
  • the information on the timing difference (t2 ⁇ t1) may be transmitted from the MUE 12 to the relay UE 13 as an example.
  • the MUE 12 may include information on the DS timing difference (t2-t1) in the DS response signal.
  • TA information estimation method is merely an example, and other estimation methods may be used.
  • TA information may be estimated using the correlation of the RA preamble in the random access procedure between the MUE 12 and the relay UE 13.
  • the relay UE 13 may transmit the MUE ID, the estimated TA information, and the TA information of the relay UE 13 to the eNB 11 as illustrated in FIG. 7 (step S16). .
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the PRACH is used when the relay UE 13 accesses the eNB 11 for the first time, or when re-establishing an RRC (radio resource control) connection with the eNB 11.
  • RRC radio resource control
  • the relay UE 13 may notify the eNB 11 of the MUE ID, the estimated TA information, and the TA information of the relay UE 13 to the eNB 11 using a random access (RA) preamble, or send an RRC connection re-establishment request signal. May be used to notify the eNB 11.
  • RA random access
  • the eNB 11 may transmit an RRC connection reconfiguration (RRC connection reconfiguration) signal to the relay UE 13.
  • RRC connection reconfiguration RRC connection reconfiguration
  • the relay UE 13 can transmit the RRC connection re-establishment request signal to the eNB 11 by receiving the RRC connection re-setting signal.
  • the relay UE 13 notifies the eNB 11 of the above three information using the PUCCH and PUSCH. Good.
  • ENB11 may determine TA information for MUE12, if the said 3 information is received from relay UE13 (step S17).
  • the eNB 11 uses the smaller TA information of the TA information estimated by the relay UE 13 and the TA information of the relay UE 13 or the average value of each TA information as the TA information for the MUE 12. You may decide.
  • the relay UE 13 may transmit the C-RNTI and the layer 2 identifier (relay UE L2 ID) of the relay UE 13 to the MUE 12 by the CE of the DL (step S18).
  • the C-RNTI and the layer 2 identifier for example, PDSCH, which is an example of a DL data channel, may be used for transmission of C-RNTI and relay UE layer 2 ID.
  • the eNB 11 may notify the MUE 12 of the C-RNTI and the relay UE layer 2 ID using a random access response (response) message transmitted to the MUE 12 by PDSCH.
  • a random access response response
  • the eBN 11 may transmit the D2D resource allocation information between the MUE 12 and the relay UE 13 and the TA command corresponding to the TA information determined in Step S17 to the MUE 12 (Step S19).
  • the allocation of D2D resources may be performed according to “mode 1” described in “3GPP Release 12”, for example. “Mode 1” is also referred to as “Scheduled resource allocation”.
  • the MUE 12 makes a resource allocation request to the eNB 11 in a state where the RRC connection is established with the eNB 11.
  • the eNB 11 schedules resources used for transmission / reception of a physical sidelink control channel and a data channel with the request source MUE 12.
  • the MUE 12 transmits “ProSE BSR” to the eNB 11, notifies the eNB 11 of information related to the data amount to be transmitted directly to the eNB 11, and then transmits a scheduling request (SR) to the eNB 11.
  • SR scheduling request
  • ProSE BSR is an abbreviation for “proximity-based” services ”buffer” status ”report”.
  • the SR may be transmitted on a dedicated channel (dedicated SR) or may be transmitted on a random access channel.
  • ENB11 schedules the resource according to the data amount which MUE12 wants to transmit based on "ProSE BSR" received from MUE12.
  • D2D resource allocation may be performed in accordance with “mode 1”.
  • PDCCH which is an example of a DL control channel
  • PDCCH may be used for transmission of D2D resource allocation information and TA command in step S19 of FIG. Note that step S18 and step S19 may be integrated into one step.
  • the MUE 12 may transmit an SA message to the relay UE 13 according to the D2D resource allocation information received from the eNB 11 (step S20).
  • the MUE 12 may transmit the D2D data signal to the relay UE 13 to the relay UE 13 at the transmission timing specified by the TA command (step S21).
  • the relay UE 13 may transfer the received D2D data signal to the eNB 11 (step S22).
  • the eNB 11 includes the TA information between each MUE 12 and the relay UE 13 and the TA information between the relay UE 13 and the eNB 11. Based on the above, the transmission timing of the MUE 12 is adjusted or controlled.
  • FIG. 9 is a block diagram illustrating a configuration example of the MUE 12 according to the second embodiment.
  • the configuration example illustrated in FIG. 9 is different from the configuration example illustrated in FIG. 4 of the first embodiment in that a DS response generation unit 1244 is additionally provided.
  • the control unit 125 is different from the resource setting / TA command unit 1251 in that a resource setting / TA command unit 1251a is provided.
  • the DS response generation unit 1244 when the DS signal exemplified in step S13 of FIG. 7 is detected by the D2D DS detection unit 1242, the DS response generation unit 1244 generates the DS response signal exemplified in step S14 of FIG.
  • the DS response signal generated by the DS response generation unit 1244 is transmitted from the transmission antenna 1235 to the relay UE 13 through the RF transmission unit 1234, for example.
  • the resource setting / TA command unit 1251a exemplarily sets the D2D resource based on the resource allocation information and the TA command obtained from the signal demodulated by the PDSCH demodulating unit 1223, as in the first embodiment. Similar to the first embodiment, the transmission timing of the D2D data signal can be controlled to the timing according to the TA command by setting the D2D resource based on the TA command.
  • the TA command obtained from the signal demodulated by the PDSCH demodulator 1223 is the TA information determined by the eNB 11 based on the TA information estimated by the relay UE 13 and the TA information of the relay UE 13. It is an example.
  • control unit 125 in the MUE 12 of the second embodiment controls the transmission timing of the UL signal by the TA command determined in the eNB 11 based on the TA information estimated by the relay UE 13 and the TA information of the relay UE 13. become.
  • FIG. 10 is a block diagram illustrating a configuration example of the relay UE 13 according to the second embodiment.
  • the configuration example illustrated in FIG. 10 is different from the configuration example illustrated in FIG. 5 of the first embodiment in that a DS response detection unit 1344 is provided instead of the D2D DS detection unit 1342, for example. Further, the control unit 135 is additionally provided with a TA estimation unit 1352.
  • the DS response detection unit 1344 illustratively detects the DS response signal transmitted by the MUE 12 as illustrated in step S14 of FIG.
  • the TA estimation unit 1352 when the DS response detection unit 1344 detects a DS response signal, the TA estimation unit 1352, as illustrated in FIG. 8, for example, TA information between the transmission source MUE 12 of the DS response signal and the relay UE 13 Is estimated.
  • the estimated TA information may be provided to the resource setting / TA command unit 1351 together with the ID of the transmission source MUE 12 of the DS response signal, for example.
  • the resource setting / TA command unit 1351 may provide the MUE ID, the TA information estimated by the TA estimation unit 1352, and the TA information between the relay UE 13 and the eNB 13 to the MUE IDUL signal generation unit 1312. .
  • the UL signal generation unit 1312 can generate a UL signal addressed to the eNB 11 including the MUE ID, the TA information estimated by the TA estimation unit 1352, and the TA information between the relay UE 13 and the eNB 13.
  • the generated UL signal is transmitted to the eNB 11 through the RF transmission unit 1315 and the transmission antenna 1316 as illustrated in step S16 of FIG.
  • FIG. 11 is a block diagram illustrating a configuration example of the eNB 11 according to the second embodiment.
  • the configuration example illustrated in FIG. 11 is different from the configuration example illustrated in FIG. 6 of the first embodiment in that a determination unit 1132a is provided instead of the determination unit 1132 in FIG.
  • the determination unit 1132a performs the determination process illustrated in step S17 of FIG. 7 on the basis of information obtained through demodulation and decoding by the control signal demodulation unit 1117 and the channel decoder 1118 from the UL control signal transmitted by the relay UE13. .
  • the determination unit 1132a determines the relay UE layer 2 ID, the MUE ID (for example, C-RNTI), and the TA information for the MUE 12.
  • the information acquired through demodulation and decoding by the control signal demodulator 1117 and the channel decoder 1118 includes TA information between the MUE 12 and the relay UE 13 and TA information between the relay UE 13 and the eNB 11. It is.
  • the determination unit 1132a may determine the smaller TA information of the two TA information or the average value of each TA information as the TA information for the MUE 12, as described in step S17 of FIG.
  • the information set determined by the determination unit 1132a may be provided to the DL control signal generation unit 1123.
  • the DL control signal generation unit 1123 illustratively includes one or more of the relay UE layer 2 ID, the MUE ID, and the TA information for the MUE 12 determined by the determination unit 1132a. Can be generated.
  • the generated DL control signal is transmitted to the MUE 12 through the RF transmission unit 1126 and the transmission antenna 1127.
  • the relay UE 13 operates according to the first embodiment when it can be determined that the distances of the plurality of MUEs 12 with respect to the relay UE 13 are the same, and according to the second embodiment when it can be determined that the distance varies. May work.
  • the presence / absence of the variation regarding the distance may be exemplarily determined in the relay UE 13 based on a quality index such as the received power of the signal received from the MUE 12, or the position information of the MUE 12 obtained using GPS or the like. You may determine based on. “GPS” is an abbreviation for “global positioning system”.
  • 1 wireless communication system 11 base station (eNB) 111 Reception Processing Unit (UL) 1110 Receive antenna 1111 RF receiver 1112 CP remover 1113 FFT (Fast Fourier Transformer) 1114 Physical channel separator 1115 Data signal demodulator 1116, 1118 Channel decoder 1117 Control signal demodulator 112 Transmission processor (DL) 1121 Paging signal generator 1122 DL data signal generator 1123 DL control signal generator 1124 IFFT 1125 CP adder 1126 RF transmission unit 1127 transmission antenna 113 control unit 1132, 1132a relay UE layer 2 ID and C-RNTI determination unit 1133 D2D resource scheduler 12 UE (MUE) 121 Transmission processing unit (cellular communication) 1211 channel encoder 1212 IFFT 1213 CP adder 1214 Wireless (RF) transmission unit 1215 Transmission antenna 122 Reception processing unit (cellular communication) 1220 reception antenna 1221 RF reception unit 1222 CP remover 1223 PDSCH demodulation unit 123 transmission processing unit (D2D communication) 1231 SA generation unit 1232 D

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムは、基地局(11)と、リレーノード(13)と、無線機器(12)と、を備えてよい。無線機器(12)は、リレーノード(13)を介さずに基地局(11)からダウンリンク(DL)の信号を受信し、リレーノード(13)を介して基地局(11)へアップリンク(UL)の信号を送信してよい。基地局(11)は、基地局(11)とリレーノード(12)との間のタイミングアドバンス(TA)に関する情報を用いて、無線機器(12)がULの信号を送信するタイミングをDLの信号によって制御してよい。

Description

無線通信システム、無線機器、リレーノード、及び、基地局
 本明細書に記載する技術は、無線通信システム、無線機器、リレーノード、及び、基地局に関する。
 IoT(Internet of Things)によって、様々な「物」に通信機能が搭載され得る。通信機能を搭載した様々な「物」は、インターネットや無線アクセス網等に接続して通信を行なったり、「物」同士で通信を行なったりすることができる。
 「物」同士の通信は、「D2D(device to device)通信」、「MTC(machine type communications)」等と称されることがある。そのため、通信機能を搭載した「物」は、D2Dデバイス、MTCデバイス等と称されることがある。
国際公開第2014/087719号 国際公開第2015/029953号
3GPP TS 36.211 V13.0.0 (2015-12), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 13)
 多数のMTCデバイスが個々に基地局に接続してデータ送信を行なってしまうと、基地局の処理能力が不足したり、無線リソースの利用効率が低下したりする。そのため、複数のMTCデバイスのデータ送信を基地局に中継するリレーノードが無線通信システムに配置されることがある。
 この場合、MTCデバイスは、基地局宛にダイレクトには送信を行なわずに、リレーノード宛に送信を行なう。別言すると、MTCデバイスは、基地局宛のダイレクトなアップリンク(UL)の通信が制限される。
 そのため、基地局は、例えばMTCデバイスからリレーノードへの送信タイミングを調整するためのタイミングアドバンス(timing advance, TA)に関する情報を、当該MTCデバイスからダイレクトには取得できない。
 よって、基地局は、リレーノードに接続する個々のMTCデバイスの送信タイミングを適切に制御できないことがある。個々のMTCデバイスの送信タイミングが適切に制御されないと、個々のMTCデバイスが送信した信号間に干渉が生じて、リレーノードがMTCデバイスからの信号受信に失敗する確率が高くなる。
 1つの側面では、本明細書に記載する技術の目的の1つは、基地局に対するUL通信が制限された無線機器のリレーノードに対する送信タイミングを適切に制御できるようにすることにある。
 1つの側面において、無線通信システムは、基地局と、リレーノードと、無線機器と、を備えてよい。無線機器は、前記リレーノードを介さずに前記基地局からダウンリンクの信号を受信し、前記リレーノードを介して前記基地局へアップリンクの信号を送信する。前記基地局は、前記基地局と前記リレーノードとの間のタイミングアドバンスに関する情報を用いて、前記無線機器が前記アップリンクの信号を送信するタイミングを前記ダウンリンクの信号によって制御してよい。
 また、1つの側面において、無線機器は、通信部と、制御部と、を備えてよい。通信部は、リレーノードを介さずに基地局からダウンリンクの信号を受信し、前記リレーノードを介して前記基地局へアップリンクの信号を送信してよい。制御部は、前記基地局と前記リレーノードとの間のタイミングアドバンスに関する情報を用いて前記基地局で決定されて、前記通信部において前記基地局から前記ダウンリンクの信号にて受信された、前記アップリンクの信号の送信タイミングを制御する情報によって、前記アップリンクの信号の送信タイミングを制御してよい。
 更に、1つの側面において、リレーノードは、無線機器と基地局との間のアップリンクの通信を中継してよい。当該リレーノードは、通信部と、送信部と、を備えてよい。通信部は、前記基地局からダウリンクの信号を受信する前記無線機器が送信したアップリンクの信号を前記基地局へ中継してよい。送信部は、前記無線機器による前記アップリンクの信号の送信タイミングを前記基地局が前記ダウンリンクの信号によって制御するために用いる情報として、前記基地局と前記リレーノードとの間のタイミングアドバンスに関する情報を、前記基地局へ送信してよい。
 また、1つの側面において、基地局は、無線機器へダウンリンクの信号を送信してよい。当該基地局は、受信部と、制御部と、を備えてよい。受信部は、前記無線機器が送信したアップリンクの信号を中継するリレーノードから、前記リレーノードと前記基地局との間のタイミングアドバンスに関する情報を受信してよい。制御部は、前記タイミングアドバンスに関する情報を用いて、前記無線機器が前記アップリンクの信号を送信するタイミングを、前記無線機器への前記ダウンリンクの信号によって制御してよい。
 1つの側面として、基地局に対するアップリンクの通信が制限された無線機器の、リレーノードに対する送信タイミングを適切に制御できる。
一実施形態に係る無線通信システムの一例を示す図である。 複数の無線機器がリレーノードに送信した信号に干渉が生じる例を説明するためのタイミングチャートである。 図1に例示した無線通信システムの第1実施例に係る動作例を示すシーケンス図である。 第1実施例に係る無線機器(MUE)の構成例を示すブロック図である。 第1実施例に係るリレーノード(リレーUE)の構成例を示すブロック図である。 第1実施例に係る基地局(eNB)の構成例を示すブロック図である。 第2実施例に係る無線通信システムの動作例を示すシーケンス図である。 図7に例示したTA推定処理の一例を説明するためのシーケンス図である。 第2実施例に係る無線機器(MUE)の構成例を示すブロック図である。 第2実施例に係るリレーノード(リレーUE)の構成例を示すブロック図である。 第2実施例に係る基地局(eNB)の構成例を示すブロック図である。
 以下、図面を参照して実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。また、以下に説明する各種の例示的態様は、適宜に組み合わせて実施しても構わない。なお、以下の実施形態で用いる図面において、同一符号を付した部分は、特に断らない限り、同一若しくは同様の部分を表す。
 図1は、一実施形態に係る無線通信システムの一例を示す図である。図1に示す無線通信システム1は、例示的に、基地局11と、複数のUE(User Equipment)12と、リレー(Relay)UE13と、を備えてよい。
 基地局11は、無線エリア100を形成する。1つの基地局11によって、1つの無線エリア100が形成されてもよいし、複数の無線エリア100が形成されてもよい。無線エリア100は、基地局11が送信する無線電波の到達範囲(「カバレッジ」と称してもよい)に応じて定まる。
 「無線エリア」は、「セル」、「カバレッジエリア」あるいは「通信エリア」と称してもよい。「セル」は「セクタセル」に分割されていてもよい。
 基地局11は、「ベースステーション(BS)」、「ノードB(NB)」あるいは「エンハンスドNB(eNB)」と称されてもよい。
 UE12及びリレーUE13は、無線エリア100内に位置している場合に、基地局11と無線通信することが可能である。UE12及びUE13は、無線機器の一例である。UE12及び13は、無線機器、移動端末、又は、端末装置と称されてもよい。
 UE12は、非限定的な一例として、センサネットワークを成す、無線通信機能を具備したセンサデバイスやメータ(測定器)等であってよい。リレーUE13は、非限定的な一例として、携帯電話やスマートフォン等であってよい。
 eNB11とUE12及び13との間の無線通信は、便宜的に、「セルラー通信」と称してよい。「セルラー通信」には、例示的に、3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)やLTE-Advancedに準拠した無線通信方式が適用されてよい。セルラー通信の信号は、便宜的に、セルラー信号と略称してよい。
 ただし、UE12は、eNB11宛にダイレクトには信号を送信せず、リレーUE13を介して信号を送信する。別言すると、UE12からeNB11への上り(Uplink, UL)通信は、リレーUE13を介して行なわれてよい。
 これに対し、eNB11からUE12への下り(Downlink, DL)通信は、リレーUE13を介して行なわれてもよいし、リレーUE13を介さずに、ダイレクトに行なわれてもよい。別言すると、UE12は、eNB11が送信した信号を、リレーUE13を介して受信することもできるし、ダイレクトに受信することもできる。
 UE12のUL通信をリレーUE13がeNB11に中継することで、UE12は、基地局11宛にダイレクトに信号を送信する場合よりも、少ない電力でUL通信を行なうことができる。
 また、eNB11は、リレーUE13に対してUL及びDLの無線リソースを割り当てれば、多数のUE12に対して個々にUL通信の無線リソースを割り当てなくて済む。したがって、UL通信用の無線リソースの利用効率を向上できる。
 UE12とリレーUE13との間の通信は、既述のように、「D2D(Device-to-Device)」通信と称されることがある。
 UE12は、便宜的に、「D2D UE12」、「MTC UE12」、「リモートMTC UE12」、「MTCデバイス12」、「MTCノード12」等と称されてもよい。「MTC UE12」は、「MUE12」と略称されてよい。リレーUE13は、便宜的に、「リレーノード13」と称されてもよい。
 センサデバイスやメータ等のMUE12は、見通しの良い屋外等と比べて無線電波が到達しにくく無線環境が良好とはいえない場所、例えば、屋内や地下に配置されることがある。そのため、MUE12に対しては、eNB11が提供する標準的なカバレッジを拡張(coverage enhancement, CE)できることが好ましい場合がある。
 例えば、LTEやLTE-Advancedにおける標準のカバレッジよりも数dB~数十dB(例示的に、20dB)程度のカバレッジ拡張が望まれることがある。そこで、CE技術の一例として、「レペティション(repetitions)」と呼ばれる技術が用いられることがある。
 「レペティション」は、同じ信号を異なる時間に繰り返し送信する技術である。例えば、eNB11は、同じDLのデータ信号や同じ制御信号の送信を有限の回数だけ繰り返すことで、MUE12での受信成功率を向上することができる。したがって、DL通信のカバレッジを拡張できる。
 ところで、IoTによって、様々な「物」に通信機能が搭載され得る。通信機能を搭載した様々な「物」が、MUE12に該当し得る。そのため、LTE等の無線アクセス網に接続し得るMUE12の数も大量になり得る。
 センサデバイスや計測器のようなMUE12の場合、個々のMUE12が1回あたりに送信するデータ量は、携帯電話やスマートフォン等のUEに比べて、小さい傾向にある。
 そのため、MUE12は、低コスト(LC-)MTCデバイス12と称されることがある。LC-MTCデバイス12が実施するMTCは、LC-MTCと称されることがある。
 LC-MTCにおいて、MUE12に送信データが発生する毎に、例えばeNB11が、個々のMUE12の送信タイミングを制御するとなると、制御チャネルのリソース消費量が増大する。
 例えば、eNB11は、個々のMUE12のTTI(transmission time interval)を、PDCCH(physical downlink control channel)のようなDLの制御チャネルにてTA(timing advance)コマンドを送信することで制御することができる。
 しかし、1回あたりの送信データ量が小さいMUE12に送信要求が生じる毎に、1つのTAコマンドで1つのTTIを制御すると、TAコマンドの送信に用いる制御チャネルのリソース消費量が増大する。
 そこで、LTEでは、「TTIバンドリング」と呼ばれる技術が用いられることがある。TTIバンドリングでは、1回のTAコマンドで、同一の送信データを複数TTIにわたって連続送信してよいことをUEに指示できる。したがって、TAコマンドの送信に用いる制御チャネルのリソース消費量を抑えることができる。
 TTIバンドリングを用いるとしても、無線通信システム1において、大量のMUE12が配置されると、eNB11による大量のTAコマンドの送信が必要になる。
 そこで、既述のように、MUE12のUL通信を、リレーUE13に集約してリレーUE13を介した通信に制限することで、eNB11は、個々のMUE12ではなく、リレーUE13に対してTAコマンドを送信すればよくなる。
 しかし、既述のように、MUE12からeNB11へのダイレクトなUL通信が制限されていると、MUE12からeNB11へPRACH(physical random access channel)信号を送信できない。そのため、eNB11は、MUE12のためのTAに関する情報(以下「TA情報」と略称することがある。)を推定できない。
 TA情報を推定できないと、eNB11は、個々のMUE12の送信タイミングを適切に制御できないから、MUE12が多数存在すると、MUE12からリレーUE13へのUL通信間で干渉が生じ得る。干渉が生じると、リレーUE13がMUE12からの信号受信に失敗する確率が高くなる。
 図2に、2台のMUE#1及び#2が送信した信号(例示的に、サブフレーム)間に干渉が生じる例示する。なお、「サブフレーム」は、LTEの場合、1msのフレーム長を有する。
 図2の例において、eNB11からMUE#1への伝搬遅延はt1であり、eNB11からMUE#2への伝搬遅延はt2である。また、MUE#1からリレーUE13への伝搬遅延はΔ1であり、MUE#2からリレーUE13への伝搬遅延はΔ2である。なお、t1+Δ1>t2+Δ2であると仮定する。
 eNB11は、MUE#1に対して、ULのサブフレームの開始タイミングTでD2D通信のための或る無線リソース(例えば、LTEのリソースブロック(RB))を割り当てると仮定する。割り当てられたRBは、仮に「RB#3」であるとする。
 MUE#1は、eNB11から信号を伝搬遅延t1で受信するから、MUE#1がD2D通信で送信するサブフレームの開始タイミングは、(T+t1)である。MUE#1がD2D通信でリレーUE13へ送信したサブフレームは、Δ1の伝搬遅延を受けるから、リレーUE13において、(T+t1+Δ1)のタイミングで受信され、(T+1+t1+Δ1)のタイミングで受信が完了する。
 ここで、次のサブフレームの開始タイミング(T+1)において、eNB11が、MUE#2に対しても、D2D通信のためのRB#3を割り当てたと仮定する。MUE#2は、eNB11から信号を伝搬遅延t2で受信するから、MUE#2がD2D通信で送信するサブフレームの開始タイミングは、(T+1+t2)である。
 MUE#2がD2D通信でリレーUEへ送信したサブフレームは、Δ2の伝搬遅延を受けるから、リレーUE13において、(T+1+t2+Δ2)のタイミングで受信され、(T+2+t2+Δ2)のタイミングで受信が完了する。
 ここで、リレーUE13において、MUE#2が送信したサブフレームの受信開始タイミング(T+1+t2+Δ2)は、MUE#1が送信したサブフレームの受信終了タイミング(T+1+t1+Δ1)よりも前である。そのため、2つのサブフレームの少なくとも一部が重複する。
 したがって、MUE#1及び#2のリレーUE13に対する送信タイミングを調整しなければ、サブフレーム間に干渉が生じて、リレーUE13は、D2D通信のサブフレームの受信に失敗し易くなる。
 そこで、以下に説明する実施形態では、MUE12が、eNB11へのダイレクトなUL送信が利用可能でない状況においても、MUE12の送信タイミングをTAコマンドによって調整できるようにする例について説明する。
 例えば、eNB11は、MUE12がD2D通信のデータ信号をリレーUE13へ送信するための実際の送信タイミングを、リレーUE13のアシストによって決定する。例示的に、以下の2つの実施例について説明する。
 (1)例えば、eNB11は、リレーUE13のTA情報をMUE12の実際のD2D送信タイミングの決定、制御に用いてよい。
 (2)例えば、リレーUE13が、MUE12のTA情報を推定し、推定したTA情報をeNB11に報告する。eNB11は、リレーUE13から報告された、MUE12のTA情報とリレーUE13のTA情報と、を基に、MUE12の実際の送信タイミングを決定、制御してよい。
 なお、「リレーUE13のTA情報」とは、リレーUE13とeNB11との間のTA情報を意味し、第1のTA情報の一例である。リレーUE13は、eNB11とUL及びDLの通信をいずれもダイレクトに行なうことができるから、eNB11から定期又は不定期にTAコマンドを受信できる。
 リレーUE13は、定期又は不定期に受信したTAコマンドによって示されるTA情報を記憶部に記憶、更新してよい。当該記憶部に記憶されたTA情報が、「リレーUE13のTA情報」として、リレーUE13からeNB11へ送信されてよい。
 これに対し、リレーUE13が推定する「MUE2のTA情報」とは、MUE2とリレーUE13との間のTA情報を意味し、第2のTA情報の一例である。
 (第1実施例)
 図3に、第1実施例に係る無線通信システムの動作例を示す。
 図3に例示するように、eNB11は、ページング情報(「ページング信号」と称してもよい。)をCEにてDLへ送信する(ステップS1)。ページング情報は、制御チャネルの一例であるページングチャネルにて伝送される情報の一例である。
 MUE12は、eNB11がDLのページングチャネルで送信したページング情報を受信すると、ディスカバリ信号(DS)を送信してよい(ステップS2)。DSは、リレーUE13を探索、発見するための信号の一例である。DSには、S-TMSIが含められてよい。
 「S-TMSI」は、「SAE temporary mobile subscriber identity」の略称であり、「SAE」は、「System Architecture Evolution」の略称である。S-TMSIは、MUE12に割り当てられる一時的な識別子(MUE ID)の一例である。
 リレーUE13は、MUE12が送信したDSを受信すると、MUE12の情報(例えば、S-TMSI)と、リレーUE13のTA情報と、をeNB11宛に送信してよい(ステップS3)。例示的に、リレーUE13は、これらの情報を、PRACHや、PUCCH(physical uplink control channel)、PUSCH(physical uplink shared channel)等を利用してeNB11宛に送信してよい。
 PRACHは、リレーUE13が、eNB11に初回アクセスする場合、あるいは、eNB11との間でRRC(radio resource control)コネクションを再確立(re-establishment)する場合に用いられる。
 例えば、リレーUE13は、MUE12の情報とリレーUE13のTA情報とを、ランダムアクセス(RA)プリアンブルを用いて、eNB11に通知してもよいし、RRCコネクション再確立要求信号を用いてeNB11に通知してもよい。
 RRCコネクション再確立要求信号を用いる場合、eNB11は、RRCコネクション再設定(RRC connection reconfiguration)信号をリレーUE13へ送信してよい(ステップS4)。リレーUE13は、RRCコネクション再設定信号を受信することで、RRCコネクション再確立要求信号をeNB11へ送信することが可能になる。
 一方、リレーUE13とeNB11との間のRRCコネクションが確立済みで、PUCCHやPUSCHが利用可能な状態にあれば、リレーUE13は、PUCCHやPUSCHにて、MUE12の情報とリレーUE13のTA情報とをeNB11に通知してよい。
 eNB11は、リレーUE13から、MUE12の情報とリレーUE13のTA情報とを受信すると、C-RNTI及びリレーUE13のレイヤ2の識別子(relay UE L2 ID)を、DLのCEによってMUE12宛に送信してよい(ステップS5)。
 「C-RNTI」は、「cell-radio network temporary identifier」の略称であり、eNB11によってMUE12に割り当てられる一時的なセル識別子の一例である。C-RNTI及びリレーUEレイヤ2IDの送信には、例示的に、DLのデータチャネルの一例であるPDSCHが用いられてよい。
 例えば、eNB11は、PDSCHにてMUE12へ送信されるランダムアクセス応答(レスポンス)メッセージを用いて、C-RNTI及びリレーUEレイヤ2IDをMUE12に通知してよい。
 なお、ネットワークリレーは、レイヤ3リレーであるが、eNB11をアシストするために、レイヤ2リレーに拡張できる。そのため、eNB11は、MUE12宛に、レイヤ2のIDを送信してよい。
 レイヤ2リレーでは、受信した無線(RF)信号を復調及び復号してから、再度、符号化及び変調を行なってRF信号を送信してよい。レイヤ2のリレーでは、受信信号の再度の符号化及び変調を行なうため、他セル干渉や雑音増幅による受信特性劣化の改善効果が期待できる。レイヤ2のリレーでは、ユーザデータの再送処理や伝送処理は不要でよい。
 eBN11は、MUE12がリレーUE13との間のD2D通信に用いるリソースの割当情報と、リレーUE13のTA情報を基に決定したTAコマンドとを、MUE12宛に送信してよい(ステップS6)。D2D通信に用いるリソースは、便宜的に、「D2Dリソース」と称してよい。
 D2Dリソースの割当情報及びTAコマンドの送信には、例示的に、DLの制御チャネルの一例であるPDCCHが用いられてよい。なお、ステップS5とステップS6とは、1つのステップに統合されてもよい。
 MUE12は、eNB11から受信したD2Dリソースの割当情報に従って、SA(scheduling assignment)メッセージをリレーUE13宛に送信してよい(ステップS7)。SAは、例示的に、MUE12の送信データ信号が伝搬する物理チャネルに関連付いた受信リソースの周波数領域及び時間領域における位置を示す。
 その後、MUE12は、リレーUE13へD2Dデータ信号を、TAコマンドで指定された送信タイミングで、リレーUE13へ送信してよい(ステップS8)。リレーUE13は、MUE12からD2Dデータ信号を受信すると、受信したD2Dデータ信号をeNB11宛に転送してよい(ステップS9)。
 以上のように、第1実施例によれば、eNB11は、リレーUE13のTA情報を基に、eNB11に対して直接のUL通信が利用可能でない(別言すると、制限された)MUE12のためのTA情報を決定して当該MUE12へTAコマンドを送信できる。
 別言すると、eNB11は、個々のMUE12とリレーUE13との間のTA情報には基づかずに、リレーUE13とeNB11との間のTA情報を基に、MUE12がリレーUE13に送信するD2Dデータ信号の送信タイミングを調整あるいは制御してよい。
 その理由は、複数のMUE12がリレーUE13に接続可能な状況では、個々のMUE12とリレーUE13との間の距離は同じであるか異なっていても大きなバラツキは無いと近似的に扱ってよい場合があるからである。
 そのような場合、簡易的に、リレーUE13とeNB11との間のTA情報に基づいて、個々のMUE12のリレーUE13に対する送信タイミングを制御したとしても、異なるMUE12の送信信号間に干渉が生じる確率を或る程度は低減できる。
 (MUE、リレーUE、及び、eNBの構成例)
 次に、上述した第1実施例に係るMUE12、リレーUE13、及び、eNB11の構成例について、それぞれ、図4~図6を参照して説明する。
 (MUE12の構成例)
 図4は、MUE12の構成例を示すブロック図である。図4に示すように、MUE12は、例示的に、セルラー通信向けの送信処理部121及び受信処理部122と、D2D通信向けの送信処理部123及び受信処理部124と、制御部125と、を備えてよい。
 セルラー通信向けの受信処理部122及びD2D通信向けの送信処理部123は、リレーUE13を介さずにeNB11からDLの信号を受信し、リレーUE13を介してeNB11へULの信号を送信する通信部の一例であると捉えてよい。
 セルラー通信向けの送信処理部121は、例示的に、チャネルエンコーダ1211、逆高速フーリエ変換器(IFFT)1212、CP付加器(Cyclic Prefix Adder)1213、無線(RF)送信部1214、及び、送信アンテナ1215を備えてよい。
 チャネルエンコーダ1211は、例示的に、ULのセルラー通信で送信するデータトラフィックをチャネル符号化する。
 IFFT1212は、例示的に、チャネル符号化されたデータトラフィックにIFFT(Inverse Fast Fourier Transform)を施す。IFFTによって周波数領域の信号(例えば、ベースバンド信号)であるデータトラフィックが時間領域の信号に変換される。
 CP付加器1213は、例示的に、IFFT1212にて得られた時間領域の信号に対してCPを付加する。CPの付加によって、送信信号のシンボル間干渉やサブキャリア間干渉を抑制できる。
 RF送信部1214は、例示的に、CPが付加された送信ベースバンド信号を無線周波数に変換して送信アンテナ1215を通じて送信する。
 一方、セルラー通信向けの受信処理部122は、例示的に、受信アンテナ1220、RF受信部1221、CP除去器(Cyclic Prefix Remover)1222、及び、PDSCH復調部1223を備えてよい。
 RF受信部1221は、例示的に、受信アンテナ1220を通じて受信した、DLのセルラー通信の無線信号をベースバンド信号に変換する。
 CP除去器1222は、例示的に、受信ベースバンド信号に付加されているCPを除去する。
 PDSCH復調部1223は、例示的に、CPが除去された受信ベースバンド信号から、DLのデータチャネルの一例であるPDSCHの信号を復調する。
 D2D通信向けの送信処理部123は、例示的に、SA(Schedule Assignment)生成部1231、D2Dデータ生成部1232、DS(Discovery Signal)生成部1233、RF送信部1234、及び、送信アンテナ1235を備えてよい。
 SA生成部1231は、例示的に、既述のSAを生成する。
 D2Dデータ生成部1232は、例示的に、D2Dデータ信号を生成する。
 DS生成部1233は、例示的に、リレーUE13を探索、発見するための既述のディスカバリ信号(DS)を生成する。
 RF送信部1234は、例示的に、上述した各生成部1231~1233で生成された信号を無線周波数の信号に変換して送信アンテナ1235から送信する。
 DS生成部1233及びRF送信部1234を含むブロックは、DSを送信する送信部の一例であると捉えてよい。
 一方、D2D通信向けの受信処理部124は、例示的に、受信アンテナ1240、RF受信部1241、D2D DS検出部1242、及び、D2Dデータ信号復調部1243を備えてよい。
 RF受信部1241は、受信アンテナ1240で受信された、D2D通信の無線信号をベースバンド信号に変換する。
 D2D DS検出部1242は、例示的に、受信ベースバンド信号から、他のUE12が送信したDSを検出する。
 D2Dデータ信号復調部1243は、例示的に、受信ベースバンド信号から、D2Dデータ信号を復調する。
 MUE12の制御部125は、例示的に、eNB11からDLの信号にて受信された、ULの信号の送信タイミングを制御するTA情報によって、ULの信号の送信タイミングを制御してよい。当該TA情報は、eNB11とリレーUE13との間のTA情報を用いてeNB11で決定された情報である。
 非限定的な一例として、制御部125は、リソース設定(Resource Configuration)/TAコマンド部1251、及び、D2Dスケジューラ1253を備えてよい。
 リソース設定/TAコマンド部1251は、例示的に、PDSCH復調部1223で復調された信号から得られるリソース割当情報及びTAコマンドを基に、D2Dリソースの設定(configuration)を行なう。TAコマンドに基づくD2Dリソースの設定によって、D2Dデータ信号の送信タイミングをTAコマンドに応じたタイミングに制御することが可能である。
 D2Dスケジューラ1253は、例示的に、リソース設定/TAコマンド部1251によるリソース設定に従って、既述のSA、D2Dデータ信号、及び、DSの送信にそれぞれ用いるD2Dリソースのスケジューリングを行なう。
 (リレーUE13の構成例)
 図5は、リレーUE13の構成例を示すブロック図である。図5に示すように、リレーUE13は、例示的に、セルラー通信向けの送信処理部131及び受信処理部132と、D2D通信向けの送信処理部133及び受信処理部134と、制御部135と、を備えてよい。
 D2D通信向けの受信処理部134、及び、セルラー通信向けの送信処理部131は、例示的に、eNB11からDLの信号を受信するMUE12が送信したULの信号をeNB11へ中継する通信部の一例であると捉えてよい。
 セルラー通信向けの送信処理部131は、MUE12によるULの信号の送信タイミングをeNB11がDLの信号によって制御するために用いる情報として、eNB11とリレーUE13との間のTA情報を、eNB11へ送信する送信部の一例である。
 非限定的な一例として、送信処理部131は、チャネルエンコーダ1311、UL信号生成部1312、IFFT1313、CP付加器1314、RF送信部1315、及び、送信アンテナ1316を備えてよい。
 チャネルエンコーダ1311は、例示的に、ULのセルラー通信で送信するデータトラフィックをチャネル符号化する。チャネルエンコーダ1311で符号化されるデータトラフィックには、リレーUE13で生成されたデータトラフィックに限らず、D2D通信向けの受信処理部134で受信されたD2Dデータ信号のトラフィックが含まれてよい。
 UL信号生成部1312は、例示的に、eNB11宛のULの信号(例えば、PRACH信号やRRCコネクション再確立要求信号、PUCCH信号、PUSCH信号等)を生成する。
 図3のステップS3に例示したように、PRACHを用いてMUE IDとリレーUE13のTA情報とをeNB11に通知する場合、UL信号生成部1312は、これらの情報を示すRAプリアンブルを含むPRACH信号を生成してよい。
 RRCコネクション再確立要求信号を用いてMUE IDとリレーUE13のTA情報とをeNB11に通知する場合、UL信号生成部1312は、これらの情報セットを含むRRCコネクション再確立要求信号を生成してよい。
 PUCCHを用いてMUE IDとリレーUE13のTA情報とをeNB11に通知する場合、UL信号生成部1312は、これらの情報セットを含むPUCCH信号を生成してよい。
 PUSCHを用いてMUE IDとリレーUE13のTA情報とをeNB11に通知する場合、UL信号生成部1312は、これらの情報セットを含むPUSCH信号を生成してよい。
 IFFT1313は、例示的に、チャネルエンコーダ1311及びUL信号生成部1312の出力信号にIFFTを施すことで、当該出力信号を周波数領域から時間領域の信号に変換する。
 CP付加器1314は、IFFT1313の出力信号である時間領域の送信ベースバンド信号に対してCPを付加する。
 RF送信部1315は、例示的に、CPが付加された送信ベースバンド信号を無線周波数に変換して送信アンテナ1316を通じて送信する。
 一方、セルラー通信向けの受信処理部132は、例示的に、受信アンテナ1320、RF受信部1321、CP除去器1322、及び、PDSCH復調部1323を備えてよい。
 RF受信部1321は、例示的に、例示的に、受信アンテナ1320を通じて受信した、DLのセルラー通信の無線信号をベースバンド信号に変換する。
 CP除去器1322は、例示的に、受信ベースバンド信号に付加されているCPを除去する。
 PDSCH復調部1323は、例示的に、CPが除去された受信ベースバンド信号から、DLのデータチャネルの一例であるPDSCHの信号を復調する。
 D2D通信向けの送信処理部133は、例示的に、SA生成部1331、D2Dデータ生成部1332、DS生成部1333、RF送信部1334、及び、送信アンテナ1335を備えてよい。
 SA生成部1331は、例示的に、SAを生成する。
 D2Dデータ生成部1332は、例示的に、D2Dデータ信号を生成する。
 DS生成部1333は、例示的に、UE12又は他のUE13を探索、発見するためのDSを生成する。
 RF送信部1334は、例示的に、上述した各生成部1331~1333で生成された信号を無線周波数の信号に変換して送信アンテナ1335から送信する。
 一方、D2D通信向けの受信処理部134は、例示的に、受信アンテナ1340、RF受信部1341、D2D DS検出部1342、及び、D2Dデータ復調部1343を備えてよい。
 RF受信部1341は、受信アンテナ1340で受信された、D2D通信の無線信号をベースバンド信号に変換する。
 D2D DS検出部1342は、例示的に、受信ベースバンド信号から、UE12又は他のUE13が送信したDSを検出する。
 RF受信部1341及びD2D DS検出部1342を含むブロックは、MUE12が送信したDSを受信する受信部の一例であると捉えてよい。
 D2Dデータ復調部1343は、例示的に、受信ベースバンド信号から、D2Dデータ信号を復調する。復調されたD2Dデータ信号は、チャネルエンコーダ1311にてチャネル符号化されてeNB11宛に送信アンテナ1316から送信されてよい。
 リレーUE13の制御部135は、例示的に、リソース設定/TAコマンド部1351、及び、D2Dスケジューラ1353を備えてよい。
 リソース設定/TAコマンド部1351は、例示的に、PDSCH復調部1323で復調された信号から得られるリソース割当情報及びTAコマンドを基に、D2Dリソースの設定(configuration)を行なう。TAコマンドに基づくD2Dリソースの設定によって、D2Dデータ信号の送信タイミングをTAコマンドに応じたタイミングに制御することが可能である。
 また、リソース設定/TAコマンド部1351は、D2D DS検出部1342で検出されたDSに含まれるMUE IDを、リレーUE13のTA情報と共に、UL信号生成部1312へ出力してよい。
 D2Dスケジューラ1353は、例示的に、リソース設定/TAコマンド部1351によるリソース設定に従って、既述のSA、データ信号、及び、DSの送信にそれぞれ用いるD2Dリソースのスケジューリングを行なう。
 (eNB11の構成例)
 図6は、eNB11の構成例を示すブロック図である。図6に示すように、eNB11は、例示的に、ULの受信処理部111、DLの送信処理部112、及び、制御部113を備えてよい。
 受信処理部111は、MUE12が送信したULの信号を中継するリレーUE13から、リレーUE13とeNB12との間のTA情報を受信する受信部の一例であると捉えてよい。
 非限定的な一例として、受信処理部111は、例示的に、受信アンテナ1110、RF受信部1111、CP除去器1112、FFT(Fast Fourier Transformer)1113、及び、物理チャネルセパレータ1114を備えてよい。また、受信処理部111は、データ信号復調部1115、制御信号復調部1117、及び、チャネルデコーダ1116,1118を備えてよい。
 RF受信部1111は、受信アンテナ1110を通じて受信した、ULのセルラー通信の無線信号をベースバンド信号に変換する。
 CP除去器1112は、例示的に、受信ベースバンド信号に付加されているCPを除去する。
 FFT1113は、例示的に、CPが除去された受信ベースバンド信号に高速フーリエ変換(FFT)を施すことで、受信ベースバンド信号を時間領域から周波数領域の信号に変換する。
 物理チャネルセパレータ1114は、例示的に、FFT後の周波数領域の受信ベースバンド信号をULの物理チャネル毎の信号に分離する。ULの物理チャネルの一例は、PUSCH、PUCCH、PRACHである。
 PUSCHは、ULのデータチャネルの一例である。PUCCHは、ULの制御チャネルの一例である。
 データ信号復調部1115は、例示的に、物理チャネルセパレータ1114で分離されたデータチャネル信号を復調する。
 チャネルデコーダ1116は、例示的に、データ信号復調部1115で復調されたデータチャネル信号を復号する。
 制御信号復調部1117は、例示的に、物理チャネルセパレータ1114で分離された、制御チャネルの信号(「制御信号」と称してよい。)を復調する。
 チャネルデコーダ1118は、例示的に、制御信号復調部1117で復調された制御信号を復号する。
 一方、DLの送信処理部112は、例示的に、ページング信号生成部1121、DLデータ信号生成部1122、DL制御信号生成部1123、IFFT1124、CP付加器1125、RF送信部1126、及び、送信アンテナ1127を備えてよい。
 ページング信号生成部1121は、例示的に、図3のステップS3に例示したページング信号を生成する。
 ページング信号生成部1121、IFFT1124、CP付加器1125、及び、RF送信部1126を含むブロックは、ページング信号を送信する送信部の一例であると捉えてよい。
 DLデータ信号生成部1122は、例示的に、DLのデータ信号(例えば、PDSCH信号)を生成する。DLのデータ信号は、制御部113の後述するD2Dリソーススケジューラ1133によるD2Dリソースの割当情報に基づいて生成されてよい。
 DL制御信号生成部1123は、例示的に、DLの制御信号(例えば、PDCCH信号)を生成する。当該DLの制御信号に、図3のステップS5にて既述のC-RNTI及びリレーUEレイヤ2IDが含められてよい。また、制御部113の後述する決定部1132で決定されたTA情報が、DLの制御信号に含められてよい。
 IFFT1124は、例示的に、上述した各生成部1121~1123で生成された信号にIFFTを施して周波数領域から時間領域への信号変換を行なう。
 CP付加器1125は、例示的に、IFFT1124にて得られた時間領域の信号にCPを付加する。
 RF送信部1126は、例示的に、CP付加器1125にてCPが付加された信号(送信ベースバンド信号)を無線周波数に変換して送信アンテナ1127を通じて送信する。
 eNB11の制御部113は、例示的に、リレーUE13から受信したTA情報を用いて、MUE12がULの信号を送信するタイミングを、MUE12へのDLの信号によって制御する。
 非限定的な一例として、制御部113は、リレーUEレイヤ2ID、MUE ID及びTA情報を決定する決定部1132と、D2Dリソーススケジューラ1133と、を備えてよい。
 決定部1132は、例示的に、チャネルデコーダ1118で復号された制御信号を基に、図3のステップS5及びS6でMUE12に通知する情報(例:リレーUEレイヤ2ID、C-RNTI、及び、TA情報)を決定する。
 D2Dリソーススケジューラ1133は、例示的に、チャネルデコーダ1118で復号された制御信号を基に、図3のステップS6でMUE12に通知する情報(例:D2Dリソースの割当情報)を決定する。
 (第2実施例)
 次に、図7を参照して第2実施例の動作例について説明する。
 図7に例示するように、eNB11は、第1実施例と同様に、ページング情報をDLへ送信する(ステップS11及びS12)。
 ページング情報がリレーUE13にて受信されると、リレーUE13は、リレーUE13とD2D通信を行なうMUE12を探索、発見するために、DSを送信してよい(ステップS13)。
 MUE12は、リレーUE13が送信したDSを受信すると、その応答であるDS応答信号を、DS送信元のリレーUE13宛に送信してよい(ステップS14)。DS応答信号には、MUE IDの一例としてS-TMSIが含められてよい。
 リレーUE13は、MUE12からDS応答信号を受信すると、当該MUE12とリレーUE13との間のTA情報を推定してよい(ステップS15)。
 例えば図8に示すように、ステップS13でリレーUE13が送信したDSの送信タイミングが「t0」であり、当該DSをMUE12が受信したタイミングが「t1」であったと仮定する。
 また、ステップS14でMUE12が送信したDS応答信号の送信タイミングが「t2」であり、当該DS応答信号をリレーUE13が受信したタイミングが「t3」であったと仮定する。
 この場合、MUE12とリレーUE13との間の伝搬遅延tdは、td=[(t3-t0)-(t2-t1)]/2と推定できる。よって、リレーUE13は、MUE12のためのTA情報を2×tdとして推定できる。なお、上記のタイミング差分(t2-t1)の情報は、例示的に、MUE12がリレーUE13へ送信してよい。例えば、MUE12は、上記のDS応答信号にDSタイミング差分(t2-t1)の情報を含めてよい。
 なお、上記のTA情報の推定方法は、一例に過ぎず、他の推定方法を用いてもよい。例えば、MUE12とリレーUE13との間のランダムアクセスプロシージャにおいて、RAプリアンブルの相関性を用いてTA情報が推定されてもよい。
 TA情報が推定されると、リレーUE13は、図7に例示するように、MUE IDと、推定したTA情報と、リレーUE13のTA情報と、を、eNB11宛に送信してよい(ステップS16)。
 これらの情報の送信には、例示的に、PRACHや、PUCCH、PUSCH等を利用してよい。
 PRACHは、リレーUE13が、eNB11に初回アクセスする場合、あるいは、eNB11との間でRRC(radio resource control)コネクションを再確立(re-establishment)する場合に用いられる。
 例えば、リレーUE13は、MUE IDと、推定したTA情報と、リレーUE13のTA情報と、を、ランダムアクセス(RA)プリアンブルを用いてeNB11に通知してもよいし、RRCコネクション再確立要求信号を用いてeNB11に通知してもよい。
 RRCコネクション再確立要求信号を用いる場合、eNB11は、RRCコネクション再設定(RRC connection reconfiguration)信号をリレーUE13へ送信してよい。リレーUE13は、RRCコネクション再設定信号を受信することで、RRCコネクション再確立要求信号をeNB11へ送信することが可能になる。
 一方、リレーUE13とeNB11との間のRRCコネクションが確立済みで、PUCCHやPUSCHが利用可能な状態にあれば、リレーUE13は、PUCCHやPUSCHを用いて、上記3つの情報をeNB11に通知してよい。
 eNB11は、リレーUE13から上記3つの情報を受信すると、MUE12のためのTA情報を決定してよい(ステップS17)。非限定的な一例として、eNB11は、リレーUE13で推定されたTA情報と、リレーUE13のTA情報と、のうち小さいTA情報、あるいは、各TA情報の平均値を、MUE12のためのTA情報に決定してよい。
 MUE12のためのTA情報が決定すると、リレーUE13は、C-RNTI及びリレーUE13のレイヤ2の識別子(relay UE L2 ID)を、DLのCEによってMUE12宛に送信してよい(ステップS18)。C-RNTI及びリレーUEレイヤ2IDの送信には、例示的に、DLのデータチャネルの一例であるPDSCHが用いられてよい。
 例えば、eNB11は、PDSCHにてMUE12へ送信されるランダムアクセス応答(レスポンス)メッセージを用いて、C-RNTI及びリレーUEレイヤ2IDをMUE12に通知してよい。
 更に、eBN11は、MUE12がリレーUE13との間のD2Dリソースの割当情報と、ステップS17で決定したTA情報に応じたTAコマンドとを、MUE12宛に送信してよい(ステップS19)。
 D2Dリソースの割当は、例示的に、「3GPP Release 12」に記述されている「モード1」に従って行なわれてよい。「モード1」は、「Scheduled resource allocation」とも称される。
 「モード1」では、MUE12は、eNB11とRRCコネクションが確立した状態において、eNB11に対してリソースの割当要求を行なう。eNB11は、当該要求を受信すると、要求元MUE12との間で物理サイドリンク(physical sidelink)の制御チャネル及びデータチャネルの送受信に用いるリソースをスケジューリングする。
 MUE12は、eNB11へ「ProSE BSR」を送信することで、eNB11にダイレクトに送信したいデータ量に関する情報をeNB11に通知した上で、スケジューリングリクエスト(SR)をeNB11宛に送信する。
 「ProSE BSR」は、「proximity-based services buffer status report」の略称である。SRは、個別チャネルで送信されてもよいし(dedicated SR)、ランダムアクセスチャネルで送信されてもよい。
 eNB11は、MUE12から受信した「ProSE BSR」を基に、MUE12が送信したいデータ量に見合ったリソースをスケジューリングする。なお、図3に例示したステップS6においても、D2Dリソースの割当は「モード1」に従って実施されてよい。
 図7のステップS19におけるD2Dリソースの割当情報及びTAコマンドの送信には、例示的に、DLの制御チャネルの一例であるPDCCHが用いられてよい。なお、ステップS18とステップS19とは、1つのステップに統合されてもよい。
 MUE12は、eNB11から受信したD2Dリソースの割当情報に従って、SAメッセージをリレーUE13宛に送信してよい(ステップS20)。
 その後、MUE12は、リレーUE13へD2Dデータ信号を、TAコマンドで指定された送信タイミングで、リレーUE13へ送信してよい(ステップS21)。リレーUE13は、MUE12からD2Dデータ信号を受信すると、受信したD2Dデータ信号をeNB11宛に転送してよい(ステップS22)。
 以上のように、第2実施例によれば、第1実施例とは異なって、eNB11は、個々のMUE12とリレーUE13との間のTA情報と、リレーUE13とeNB11との間のTA情報と、を基に、MUE12の送信タイミングを調整あるいは制御する。
 したがって、eNB11に対してダイレクトなUL通信が制限された複数のMUE12がリレーUE13宛に送信した信号間に干渉が生じる確率を、第1実施例よりも低減できる。
 (MUE、リレーUE、及び、eNBの構成例)
 次に、上述した第2実施例に係るMUE12、リレーUE13、及び、eNB11の構成例について、それぞれ、図9~図11を参照して説明する。
 (MUE12の構成例)
 図9は、第2実施例に係るMUE12の構成例を示すブロック図である。図9に例示する構成例は、第1実施例の図4に例示した構成例と比較して、DS応答生成部1244を追加的に備える点が異なる。また、制御部125において、リソース設定/TAコマンド部1251に代えて、リソース設定/TAコマンド部1251aが備えられる点も異なる。
 DS応答生成部1244は、例えば、図7のステップS13に例示したDS信号がD2D DS検出部1242で検出されると、図7のステップS14に例示したDS応答信号を生成する。DS応答生成部1244で生成されたDS応答信号は、例示的に、RF送信部1234を通じて送信アンテナ1235からリレーUE13に向けて送信される。
 リソース設定/TAコマンド部1251aは、第1実施例と同様に、例示的に、PDSCH復調部1223で復調された信号から得られるリソース割当情報及びTAコマンドを基に、D2Dリソースの設定を行なう。第1実施例と同様、TAコマンドに基づくD2Dリソースの設定によって、D2Dデータ信号の送信タイミングをTAコマンドに応じたタイミングに制御することが可能である。
 ただし、第2実施例において、PDSCH復調部1223で復調された信号から得られるTAコマンドは、リレーUE13が推定したTA情報と、リレーUE13のTA情報と、を基にeNB11が決定したTA情報の一例である。
 したがって、第2実施例のMUE12における制御部125は、リレーUE13が推定したTA情報とリレーUE13のTA情報とを基にeNB11において決定されたTAコマンドによって、ULの信号の送信タイミングを制御することになる。
 (リレーUE13の構成例)
 図10は、第2実施例に係るリレーUE13の構成例を示すブロック図である。図10に例示する構成例は、第1実施例の図5に例示した構成例と比較して、例えば、D2D DS検出部1342に代えて、DS応答検出部1344が備えられる点が異なる。また、制御部135に、TA推定部1352が追加的に備えられる点が異なる。
 DS応答検出部1344は、例示的に、図7のステップS14に例示したように、MUE12が送信したDS応答信号を検出する。
 TA推定部1352は、例示的に、DS応答検出部1344でDS応答信号が検出されると、例えば図8に例示したように、DS応答信号の送信元MUE12とリレーUE13との間のTA情報を推定する。
 推定したTA情報は、例示的に、DS応答信号の送信元MUE12のIDと共に、リソース設定/TAコマンド部1351に提供されてよい。リソース設定/TAコマンド部1351は、MUE IDと、TA推定部1352で推定されたTA情報と、リレーUE13とeNB13との間のTA情報と、を、MUE IDUL信号生成部1312に提供してよい。
 これにより、UL信号生成部1312は、MUE IDと、TA推定部1352で推定されたTA情報と、リレーUE13とeNB13との間のTA情報と、を含む、eNB11宛のUL信号を生成できる。生成されたUL信号は、RF送信部1315及び送信アンテナ1316を通じて、図7のステップS16に例示したように、eNB11宛に送信される。
 (eNB11の構成例)
 図11は、第2実施例に係るeNB11の構成例を示すブロック図である。図11に例示する構成例は、第1実施例の図6に例示した構成例に比して、図6の決定部1132に代えて、決定部1132aが備えられる点が異なる。
 決定部1132aは、リレーUE13が送信したULの制御信号から、制御信号復調部1117及びチャネルデコーダ1118による復調及び復号を通じて取得される情報を基に、図7のステップS17に例示した決定処理を行なう。
 例えば、決定部1132aは、リレーUEレイヤ2ID、MUE ID(例えば、C-RNTI)、及び、MUE12のためのTA情報を決定する。
 ここで、制御信号復調部1117及びチャネルデコーダ1118による復調及び復号を通じて取得される情報には、MUE12とリレーUE13との間のTA情報と、リレーUE13とeNB11との間のTA情報と、が含まれる。
 したがって、決定部1132aは、図7のステップS17で既述のとおり、2つのTA情報のうち小さいTA情報、あるいは、各TA情報の平均値を、MUE12のためのTA情報に決定してよい。
 決定部1132aで決定された情報セットは、DL制御信号生成部1123に提供されてよい。これにより、DL制御信号生成部1123は、例示的に、決定部1132aで決定された、リレーUEレイヤ2ID、MUE ID、及び、MUE12のためのTA情報のいずれか1以上を含むDLの制御信号を生成できる。生成されたDLの制御信号は、RF送信部1126及び送信アンテナ1127を通じて、MUE12宛に送信される。
 (その他)
 上述した第1実施例と第2実施例とは、組み合わせて実施されてもよい。例えば、リレーUE13は、当該リレーUE13に対する複数のMUE12の距離が同程度であると判定できる場合に、第1実施例に従って動作し、距離にバラツキがあると判定できる場合に、第2実施例に従って動作してよい。
 距離に関するバラツキの有無は、例示的に、リレーUE13において、MUE12から受信される信号の受信電力等の品質指標に基づいて判定してもよいし、GPS等を利用して得られるMUE12の位置情報に基づいて判定してもよい。「GPS」は、「global positioning system」の略称である。
 1 無線通信システム
 11 基地局(eNB)
 111 受信処理部(UL)
 1110 受信アンテナ
 1111 RF受信部
 1112 CP除去器
 1113 FFT(Fast Fourier Transformer)
 1114 物理チャネルセパレータ
 1115 データ信号復調部
 1116,1118 チャネルデコーダ
 1117 制御信号復調部
 112 送信処理部(DL)
 1121 ページング信号生成部
 1122 DLデータ信号生成部
 1123 DL制御信号生成部
 1124 IFFT
 1125 CP付加器
 1126 RF送信部
 1127 送信アンテナ
 113 制御部
 1132,1132a リレーUEレイヤ2ID及びC-RNTI決定部
 1133 D2Dリソーススケジューラ
 12 UE(MUE)
 121 送信処理部(セルラー通信)
 1211 チャネルエンコーダ
 1212 IFFT
 1213 CP付加器
 1214 無線(RF)送信部
 1215 送信アンテナ
 122 受信処理部(セルラー通信)
 1220 受信アンテナ
 1221 RF受信部
 1222 CP除去器
 1223 PDSCH復調部
 123 送信処理部(D2D通信)
 1231 SA生成部
 1232 D2Dデータ生成部
 1233 DS生成部
 1234 RF送信部
 1235 送信アンテナ
 124 受信処理部(D2D通信)
 1240 受信アンテナ
 1241 RF受信部
 1242 D2D DS検出部
 1243 D2Dデータ復調部
 1244 DS応答生成部
 125 制御部
 1251,1251a リソース設定/TAコマンド部
 1253 D2Dスケジューラ
 13 リレーUE
 131 送信処理部(セルラー通信)
 1311 チャネルエンコーダ
 1312 UL信号生成部
 1313 IFFT
 1314 CP付加器
 1315 RF送信部
 1316 送信アンテナ
 132 受信処理部(セルラー通信)
 1320 受信アンテナ
 1321 RF受信部
 1322 CP除去器
 1323 PDSCH復調部
 133 送信処理部(D2D通信)
 1331 SA生成部
 1332 D2Dデータ生成部
 1333 DS生成部
 1334 RF送信部
 1335 送信アンテナ
 134 受信処理部(D2D通信)
 1340 受信アンテナ
 1341 RF受信部
 1342 D2D DS検出部
 1343 D2Dデータ復調部
 1344 DS応答検出部
 135 制御部
 1351 リソース設定/TAコマンド部
 1352 TA推定部
 1353 D2Dスケジューラ

Claims (10)

  1.  基地局と、
     リレーノードと、
     前記リレーノードを介さずに前記基地局からダウンリンクの信号を受信し、前記リレーノードを介して前記基地局へアップリンクの信号を送信する無線機器と、を備え、
     前記基地局は、
     前記基地局と前記リレーノードとの間の第1のタイミングアドバンスに関する情報を用いて、前記無線機器が前記アップリンクの信号を送信するタイミングを前記ダウンリンクの信号によって制御する、
    無線通信システム。
  2.  前記無線機器は、前記無線機器の識別子を含むディスカバリ信号を送信し、
     前記リレーノードは、前記ディスカバリ信号を受信すると、前記識別子と前記第1のタイミングアドバンスに関する情報とを、前記基地局へ送信する、請求項1に記載の無線通信システム。
  3.  前記無線機器は、前記基地局からページング信号を受信すると、前記ディスカバリ信号の送信を行なう、請求項2に記載の無線通信システム。
  4.  前記リレーノードは、
     送信したディスカバリ信号に対する応答信号を前記無線機器から受信することにより、前記無線機器と前記リレーノードとの間の第2のタイミングアドバンスに関する情報を推定し、
     前記識別子と、前記第1及び第2のタイミングアドバンスに関する情報と、を前記基地局へ送信し、
     前記基地局は、
     前記第1及び第2のタイミングアドバンスに関する情報に基づいて、前記無線機器が前記リレーノードへ信号を送信するタイミングを前記ダウンリンクの通信によって制御する、請求項1に記載の無線通信システム。
  5.  前記リレーノードは、前記基地局に対する前記送信を、前記基地局に対するランダムアクセスチャネルにて行なう、請求項1~4のいずれか1項に記載の無線通信システム。
  6.  前記リレーノードは、前記基地局に対する前記送信を、前記基地局に対するRRC(radio resource control)コネクション再確立要求にて行なう、請求項1~4のいずれか1項に記載の無線通信システム。
  7.  前記リレーノードは、前記基地局に対する前記送信を、前記基地局との間で確立済みのアップリンクの制御チャネル又はデータチャネルにて行なう、請求項1~4のいずれか1項に記載の無線通信システム。
  8.  リレーノードを介さずに基地局からダウンリンクの信号を受信し、前記リレーノードを介して前記基地局へアップリンクの信号を送信する通信部と、
     前記基地局と前記リレーノードとの間のタイミングアドバンスに関する情報を用いて前記基地局で決定されて、前記通信部において前記基地局から前記ダウンリンクの信号にて受信された、前記アップリンクの信号の送信タイミングを制御する情報によって、前記アップリンクの信号の送信タイミングを制御する制御部と、
    を備えた、無線機器。
  9.  無線機器と基地局との間のアップリンクの通信を中継するリレーノードであって、
     前記基地局からダウリンクの信号を受信する前記無線機器が送信したアップリンクの信号を前記基地局へ中継する通信部と、
     前記無線機器による前記アップリンクの信号の送信タイミングを前記基地局が前記ダウンリンクの信号によって制御するために用いる情報として、前記基地局と前記リレーノードとの間のタイミングアドバンスに関する情報を、前記基地局へ送信する送信部と、
    を備えたリレーノード。
  10.  無線機器へダウンリンクの信号を送信する基地局であって、
     前記無線機器が送信したアップリンクの信号を中継するリレーノードから、前記リレーノードと前記基地局との間のタイミングアドバンスに関する情報を受信する受信部と、
     前記タイミングアドバンスに関する情報を用いて、前記無線機器が前記アップリンクの信号を送信するタイミングを、前記無線機器への前記ダウンリンクの信号によって制御する制御部と、
    を備えた、基地局。
PCT/JP2016/060750 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局 WO2017168701A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16896918.6A EP3439335B1 (en) 2016-03-31 2016-03-31 Wireless communication system, wireless device, relay node, and base station
JP2018508295A JP6696566B2 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局
CN201680084156.XA CN108886673A (zh) 2016-03-31 2016-03-31 无线通信系统、无线设备、中继节点以及基站
PCT/JP2016/060750 WO2017168701A1 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局
US16/127,518 US20190029017A1 (en) 2016-03-31 2018-09-11 Wireless communication system, wireless equipment, relay node, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060750 WO2017168701A1 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/127,518 Continuation US20190029017A1 (en) 2016-03-31 2018-09-11 Wireless communication system, wireless equipment, relay node, and base station

Publications (1)

Publication Number Publication Date
WO2017168701A1 true WO2017168701A1 (ja) 2017-10-05

Family

ID=59963741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060750 WO2017168701A1 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局

Country Status (5)

Country Link
US (1) US20190029017A1 (ja)
EP (1) EP3439335B1 (ja)
JP (1) JP6696566B2 (ja)
CN (1) CN108886673A (ja)
WO (1) WO2017168701A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039666A (ja) * 2020-08-28 2022-03-10 株式会社東芝 無線通信装置及び方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399410B2 (en) * 2018-07-09 2022-07-26 Qualcomm Incorporated Techniques for controlling timing of downstream nodes in wireless communications
WO2020032763A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 무선통신시스템에서 앵커 노드가 송신 타이밍을 조정하는 방법 및 장치
CN110536474A (zh) * 2019-09-30 2019-12-03 中兴通讯股份有限公司 随机接入方法、装置、第一通信节点和第二通信节点
CN114557058A (zh) * 2019-10-09 2022-05-27 株式会社Ntt都科摩 无线通信节点
WO2023206546A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 传输定时调整方法、装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527763A (ja) * 2011-08-19 2014-10-16 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド 無線通信システムおよび方法
WO2015180890A2 (en) * 2014-05-27 2015-12-03 Sony Corporation Communications device, communications apparatus operating as a relay node, infrastructure equipment and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI980725A (fi) * 1998-03-31 1999-10-01 Nokia Networks Oy Menetelmä parantaa radioyhteyden laatua solukkoradioverkossa
CN101841778A (zh) * 2009-03-17 2010-09-22 松下电器产业株式会社 上行链路多点接收中的时间提前量的调整方法和装置
JP5793252B2 (ja) * 2011-12-20 2015-10-14 京セラ株式会社 小セル上りリンク干渉軽減のためのシステム及び方法
JP5918382B2 (ja) * 2012-09-27 2016-05-18 京セラ株式会社 移動通信システム、プロセッサ及び基地局

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527763A (ja) * 2011-08-19 2014-10-16 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド 無線通信システムおよび方法
WO2015180890A2 (en) * 2014-05-27 2015-12-03 Sony Corporation Communications device, communications apparatus operating as a relay node, infrastructure equipment and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A discussion and text proposal for reduced transmit power in MTC networks", 3GPP TSG-RAN WG1#68 R1-120800, 6 February 2012 (2012-02-06), XP050563143 *
See also references of EP3439335A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039666A (ja) * 2020-08-28 2022-03-10 株式会社東芝 無線通信装置及び方法
JP7404193B2 (ja) 2020-08-28 2023-12-25 株式会社東芝 無線通信装置及び方法

Also Published As

Publication number Publication date
CN108886673A (zh) 2018-11-23
JP6696566B2 (ja) 2020-05-20
EP3439335A4 (en) 2019-02-06
EP3439335B1 (en) 2019-11-13
JPWO2017168701A1 (ja) 2018-10-04
EP3439335A1 (en) 2019-02-06
US20190029017A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP7296938B2 (ja) ランダムアクセス手続きを実行する方法及びその装置
US11667253B2 (en) System and method of reducing interruptions for vehicle to vehicle communication
JP6696566B2 (ja) 無線通信システム、無線機器、リレーノード、及び、基地局
US9326121B2 (en) Device discovery using distributed random access for device to device communication
US20140254429A1 (en) Signaling for device-to-device wireless communication
US20170064736A1 (en) Proximity service channel allocation based on random access channel procedure
US9749834B2 (en) Communication control method, user terminal, processor, and storage medium
WO2016045341A1 (zh) 一种随机接入信令的发送方法及装置
JP6631697B2 (ja) 無線通信システム、無線機器、リレーノード、及び、基地局
US10652899B2 (en) Data transmission method and apparatus
WO2018123127A1 (ja) 無線通信のための装置、方法、及びプログラムを格納した非一時的なコンピュータ可読媒体
US9713159B2 (en) Communication control method and base station
US20150304969A1 (en) Communication control method, base station, user terminal, processor, and storage medium
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
US20220264653A1 (en) Method and apparatus for transmitting an uplink signal in a wireless communication system
WO2018058574A1 (zh) 随机接入装置、方法以及通信系统
CN110839228B (zh) 基于信令监听的NB-IoT的D2D通信方法、终端及系统
JP2019537326A (ja) ユーザ機器装置が基地局からのmacメッセージを要求するための方法
WO2017166023A1 (zh) 一种随机接入的方法及装置
JP2020505837A (ja) 無線通信ネットワークにおける制御プレーンレイテンシ低減
WO2022084395A1 (en) Technique for discovery in proximity services comprising different discovery models

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016896918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896918

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896918

Country of ref document: EP

Kind code of ref document: A1