WO2017167305A1 - 一种传输信号的方法和装置、计算机存储介质 - Google Patents

一种传输信号的方法和装置、计算机存储介质 Download PDF

Info

Publication number
WO2017167305A1
WO2017167305A1 PCT/CN2017/079174 CN2017079174W WO2017167305A1 WO 2017167305 A1 WO2017167305 A1 WO 2017167305A1 CN 2017079174 W CN2017079174 W CN 2017079174W WO 2017167305 A1 WO2017167305 A1 WO 2017167305A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
matrix
cri
cqi
pmi
Prior art date
Application number
PCT/CN2017/079174
Other languages
English (en)
French (fr)
Inventor
张雯
夏树强
戴博
梁春丽
石靖
韩祥辉
张文峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610875565.3A external-priority patent/CN107276715A/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17773334.2A priority Critical patent/EP3439211B1/en
Publication of WO2017167305A1 publication Critical patent/WO2017167305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method and apparatus for transmitting signals, and a computer storage medium.
  • 5G will support higher speed (Gbps), massive link (1M/Km2), ultra-low latency (1ms), higher reliability, and 100 times energy efficiency improvement. Support new changes in demand.
  • Gbps gigabits
  • M/Km2 massive link
  • ultra-low latency is a key indicator of 5G technology, which directly affects the development of time-limited services such as car networking, industrial automation, remote control, and smart grid.
  • a series of current standards for 5G delay reduction are gradually being advanced.
  • Transmission Time Interval is an important research direction for reducing the current delay. It aims to reduce the current TMS length of 1ms to 0.5ms or even 1-2 orthogonal frequency division multiplexing (OFDM, Orthogonal Frequency Division). Multiplexing) The length of the symbol is reduced by a minimum of the minimum scheduling time, and can be achieved without changing the frame structure. Reduce the single transmission delay by a factor of two.
  • the uplink control information may be transmitted on a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • an embodiment of the present invention provides a method and apparatus for transmitting a signal, and a computer storage medium.
  • the target content is processed and transmitted according to at least one of the following: a preset operation, a notification message of the base station; or
  • the target content is processed and transmitted according to at least one of the following: a preset operation, a notification message of the base station.
  • the UCI includes at least one of the following:
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement
  • RI Rank Indication
  • CRI Channel state information reference symbol resource indication
  • CRI channel state information reference symbol resource indication
  • the method further includes:
  • the processed information is carried on the PUSCH for transmission.
  • the performing multiplexing and interleaving processing includes:
  • the first content is at least one of the following contents: RI/CRI, CQI/PMI, and data information;
  • the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • generating a multiplexing sequence according to the first content includes:
  • the RI/CRI is a multiplexing sequence
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • RI/CRI When at least two of the RI/CRI, CQI/PMI, and data information are included in the first content that needs to be reported, at least two of the RI/CRI, the CQI/PMI, and the data information are cascaded to obtain a multiplexing sequence. .
  • the first content that needs to be reported includes at least two of RI/CRI, CQI/PMI, and data information
  • at least two of the RI/CRI, CQI/PMI, and data information are used. Cascading to obtain a multiplexing sequence, including at least one of the following:
  • the data information is cascaded in a later manner to obtain a multiplexing sequence
  • the performing multiplexing and interleaving processing includes:
  • the first content is at least one of the following contents: RI/CRI, CQI/PMI, and data information;
  • the HARQ-ACK is written into the interlace matrix from the first row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • generating a multiplexing sequence according to the first content includes:
  • the RI/CRI is a multiplexing sequence
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • RI/CRI When at least two of the RI/CRI, CQI/PMI, and data information are included in the first content that needs to be reported, at least two of the RI/CRI, the CQI/PMI, and the data information are cascaded to obtain a multiplexing sequence. .
  • the first content that needs to be reported includes at least two of RI/CRI, CQI/PMI, and data information
  • at least two of the RI/CRI, CQI/PMI, and data information are used. Cascading to obtain a multiplexing sequence, including at least one of the following:
  • the UCI When the UCI and the data information need to be reported, according to the data information, the UCI is cascaded in a later manner to obtain a multiplexing sequence;
  • the RI/CRI When it is necessary to report RI/CRI and CQI/PMI, according to the CQI/PMI, the RI/CRI In the latter way, cascading is performed to obtain a multiplexing sequence.
  • the performing multiplexing and interleaving processing includes:
  • the first content is at least one of the following: CQI/PMI, data information;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • generating a multiplexing sequence according to the first content includes:
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • the CQI/PMI and the data information are cascaded to obtain a multiplexing sequence.
  • the performing multiplexing and interleaving processing includes:
  • the data information is a multiplexing sequence
  • the RI/CRI is written into the interlace matrix from the last row of the interleaving matrix
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the HARQ-ACK is written into the interlace matrix from the specified position of the interlace matrix, including one of the following:
  • the RI/CRI is written upward from the last row of the interlace matrix to the interlace matrix; the HARQ-ACK is ended at the end of the RI/CRI Writing a line to the interleaving matrix, or starting to write the interleaving matrix at a non-RI/CRI position in the RI/CRI end line;
  • the HQRQ-ACK is written to the interleaving matrix in a specified manner from the last line of the interleaving matrix.
  • the HARQ-ACK is written into the interlace matrix from the specified position of the interlace matrix, including one of the following:
  • the HARQ-ACK When the HARQ-ACK needs to be reported, the HARQ-ACK is written upward from the last row of the interlace matrix to the interlace matrix.
  • the RI/CRI or HARQ-ACK is written in all or part of the column of the interlace matrix.
  • the RI/CRI when the RI/CRI needs to be reported, the RI/CRI is written into the first designated column according to a specified manner from the last row of the interlace matrix;
  • the HARQ-ACK When the HARQ-ACK needs to be reported, the HARQ-ACK is written to the second designated column in a specified manner from the last line of the interleaving matrix.
  • the first designated column and the second designated column include at least one of the following:
  • the first designated column is a demodulation reference signal (DMRS, De Modulation Reference Signal) the x column corresponding to the x symbols adjacent to one side of the symbol, and the second designated column is the y column corresponding to the y symbols adjacent to the other side of the symbol where the DMRS is located;
  • DMRS Demodulation Reference Signal
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a y corresponding to the y symbols adjacent to the other side of the symbol where the DMRS is located.
  • the first designated column is an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located
  • the second designated column is a column corresponding to the symbol where the DMRS is located and y corresponding to the y symbol adjacent to the other side of the symbol where the DMRS is located.
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a column corresponding to the symbol where the DMRS is located and the other side of the symbol where the DMRS is located y columns corresponding to y columns;
  • the first designated column is the first z1 column of the interlace matrix, and the second designated column is the last z2 column of the interlace matrix;
  • the first designated column is the last z1 column of the interlace matrix, and the second designated column is the first z2 column of the interlace matrix;
  • the first designated column is a column corresponding to a symbol closest to a symbol of the DMRS
  • the second designated column is a column corresponding to a symbol with a symbol closest to the symbol of the DMRS
  • the neighbors are physically adjacent or logically adjacent.
  • the first designated column and the second designated column include at least one of the following:
  • the first designated column is an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the second designated column is a y column corresponding to the y symbols adjacent to the first designated column;
  • the second designated column is an x column corresponding to x symbols adjacent to both sides of the symbol of the DMRS, and the first designated column is a y column corresponding to the adjacent y symbols of the second designated column;
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the second designated column is corresponding to the y symbols adjacent to the first designated column.
  • the second designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the first designated column is corresponding to the y symbols adjacent to the second designated column.
  • the neighbors are physically adjacent or logically adjacent.
  • the performing multiplexing and interleaving processing includes:
  • At least one of CQI/PMI and data information needs to be reported, at least one of the CQI/PMI and the data information is cascaded in a specified order to generate a multiplexing sequence; skipping the location corresponding to the RI/CRI, Writing the multiplexing sequence to an interlace matrix;
  • the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the performing multiplexing and interleaving processing includes:
  • the data information When the data information needs to be reported, the data information is used as a multiplexing sequence; the positions corresponding to the RI/RI, and/or the CQI/PMI are skipped, and the multiplexing sequence is written into the interlace matrix;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the RI/CRI when it is necessary to report RI/CRI and CQI/PMI, starting from the first column of the interlace matrix, the RI/CRI is first written, and then the CQI/PMI is written.
  • the performing multiplexing and interleaving processing includes:
  • the CQI/PMI When the CQI/PMI needs to be reported, the CQI/PMI is written to the interleaving matrix starting from the specified row, wherein the CQI/PMI is written to a partial column or all columns;
  • the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the first line of the specified behavior is either the end line of the written RI/CRI or the next line of the end line of the written RI/CRI.
  • the performing multiplexing and interleaving processing includes:
  • the CQI/PMI When the CQI/PMI needs to be reported, the CQI/PMI is written into the interlace matrix from the specified line, wherein the CQI/PMI is written in a partial column or all columns;
  • the HARQ-ACK is written into the interlace matrix from the first row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the last line of the specified behavior is either the written end line of the RI/CRI written or the previous line of the end line of the written RI/CRI.
  • the RI/CRI is the same as the column written by the HARQ-ACK.
  • the neighbors are physically adjacent or logically adjacent.
  • the method further includes:
  • the interlace matrix is determined by at least one of a transmission time of the target content, a location of the DMRS, and an SRS configuration.
  • the interleaving matrix when writing the interleaving matrix, the interleaving matrix is written in the order of the preceding row and the column, or the interleaving matrix is written in the order of the preceding column and the subsequent row.
  • all the uplink information needs to skip the position corresponding to the DMRS in the interlace matrix when writing the interlace matrix.
  • the method further includes:
  • the transmission mode when the agreed transmission time of the UCI or the SRS and the transmission time of the data information overlap may be determined according to at least one of a preset operation and a notification message of the base station.
  • the transmission mode is indicated by at least one of the following:
  • SIB System Information Block
  • the uplink grant corresponding to the PUSCH is the uplink grant corresponding to the PUSCH.
  • the method further includes:
  • the HARQ-ACK information of all or part of the transport block is transmitted on the transmission time of the target content, where M>1.
  • the HARQ-ACK information of the partial transport block is transmitted on the transmission time of the target content, wherein the transmission duration of the partial transport block is smaller than the transmission duration of other transport blocks.
  • the DMRS when the agreed transmission time of the SRS and the transmission time of the data information overlap, the DMRS is not transmitted and the data information is transmitted at the position corresponding to all or part of the DMRS in the transmission time of the target content.
  • the all or part of the UCI is transmitted according to the DMRS on the transmission time of the target content.
  • the method further includes:
  • the DMRS is modulated with modulation symbols of all or part of the UCI.
  • the code rate corresponding to the information meets the specified threshold requirement.
  • the code rate of the information on the designated symbol satisfies the specified threshold requirement.
  • the code rate of the data information on the symbols of the first n pieces of transmission data information is not greater than 0.931 or 0.93 or 1, wherein n is less than or equal to the total number of symbols transmitting the data information.
  • a processing unit configured to process and transmit the target content according to at least one of the following when at least one of the UCI and the data information needs to be transmitted on the PUSCH: a preset operation, a notification message of the base station; or
  • the processing and transmission unit is configured to process and transmit the target content according to at least one of the following when the agreed transmission time of the UCI or the SRS overlaps with the transmission time of the data information: a preset operation, a notification message of the base station.
  • the UCI includes at least one of the following: CQI/PMI, HARQ-ACK, RI, and CRI;
  • the processing and transmission unit includes:
  • the processing sub-unit is configured to perform multiplexing and interleaving processing on at least one of the UCI to be reported and the data information in a specified manner, or to perform multiplexing and interleaving processing on the UCI to be reported;
  • the transmission subunit is configured to carry the processed information on the PUSCH for transmission.
  • the processing sub-unit is further configured to: when the first content needs to be reported, generate a multiplexing sequence according to the first content; the first content is at least one of the following contents: RI/CRI CQI/PMI, data information; establishing an interlace matrix, writing the multiplexing sequence to the interlace matrix; when it is also necessary to report the HARQ-ACK, starting from the last row of the interlace matrix, the HARQ- The ACK is written into the interleaving matrix, wherein the HARQ-ACK is written to a partial column or all columns; the obtained interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the processing sub-unit is further configured to: when the first content needs to be reported, generate a multiplexing sequence according to the first content; the first content is at least one of the following contents: RI/CRI CQI/PMI, data information; establishing an interlace matrix, writing the multiplexing sequence to the interlace matrix; when it is also necessary to report the HARQ-ACK, starting from the first row of the interlace matrix, The HARQ-ACK is written into the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns; the obtained interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the processing subunit is further configured to: when the first content needs to be reported, generate a multiplexing sequence according to the first content; the first content is at least one of the following contents: CQI/PMI Data information; establishing an interlace matrix, when the RI/CRI needs to be reported, starting from the last row of the interlace matrix, writing the RI/CRI into the interlace matrix; skipping the location corresponding to the RI/CRI, Writing the multiplexed sequence to the interleaving matrix; when it is still necessary to report the HARQ-ACK, writing the HARQ-ACK to the interleaving matrix starting from a specified position of the interlacing matrix; The interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the processing subunit is further configured to: when the data information needs to be reported, the data information is a multiplexing sequence; and the interleaving matrix is established, when the CQI/PMI needs to be reported, from the interleaving matrix The first row starts downward, and the CQI/PMI is written into the interlace matrix, wherein the CQI/PMI is written into a partial column or all columns of the interleaving matrix;
  • the RI/CRI the RI/CRI is written into the interlace matrix from the last row of the interleaving matrix; skipping the position corresponding to at least one of the RI/CRI and the CQI/PMI,
  • the multiplexing sequence is written into the interleaving matrix in the order of the preceding row and the second column; when the HARQ-ACK is also to be reported, the HARQ-ACK is written into the interleaving matrix starting from a specified position of the interlacing matrix.
  • the obtained interleaving matrix is read out column by
  • the processing subunit is further configured to establish an interlace matrix.
  • the RI/CRI needs to be reported, the RI is written down from the first row of the interlace matrix, and the RI is written into the interlaced matrix.
  • a column or a partial column when at least one of CQI/PMI and data information needs to be reported, at least one of the CQI/PMI and the data information is cascaded in a specified order to generate a multiplexing sequence; skipping the RI/ a location corresponding to the CRI, the multiplexed sequence is written into the interlace matrix; when the HARQ-ACK is also to be reported, the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein The HARQ-ACK is written to a partial column or all columns; the obtained interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the processing sub-unit is further configured to establish an interlace matrix, and when at least one of the RI/CRI and the CQI/PMI needs to be reported, starting from the first column of the interlace matrix, At least one of RI/CRI and CQI/PMI is written in the specified order in the interleaving matrix; when the data information needs to be reported, the data information is used as a multiplexing sequence; skipping RI/CRI and CQI/PMI Write the multiplexed sequence to the interleave matrix at a position corresponding to at least one of the at least one position; when the HARQ-ACK is also to be reported, the HARQ-ACK is written into the interlace from the last row of the interleaving matrix a matrix, wherein the HARQ-ACK is written to a partial column or all columns; the obtained interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the processing sub-unit is further configured to establish an interlace matrix, and when the RI/CRI needs to be reported, the RI/CRI is written in the downward direction from the first row of the interlace matrix.
  • An interleaving matrix wherein the RI/CRI is written to a partial column or all columns; when it is still required to be reported In CQI/PMI, the CQI/PMI is written to the interleaving matrix starting from a specified line, wherein the CQI/PMI is written to a partial column or all columns; when it is still necessary to transmit data, skipping the RI a location corresponding to at least one of /CRI and CQI/PMI, the data is written to the interlace matrix; when the HARQ-ACK is also to be reported, starting from the last row of the interleaving matrix, the HARQ-ACK is written The interleaving matrix is input, wherein the HARQ-ACK is written to a partial column or all columns; the obtained interle
  • the processing subunit is further configured to establish an interlace matrix, and when the RI/CRI needs to be reported, the RI/CRI is written into the interlace matrix from the last row of the interlace matrix.
  • the RI/CRI is written to a partial column or all columns; when it is further required to report CQI/PMI, the CQI/PMI is written to the interleaving matrix starting from a specified row, wherein the CQI/ The PMI writes a partial column or all columns; when data is still to be transmitted, the position corresponding to at least one of the RI/CRI and the CQI/PMI is skipped, and the data is written into the interleaving matrix; when the HARQ-ACK needs to be reported again Writing the HARQ-ACK into the interlace matrix downward from a first row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns; the resulting interleaving matrix Read out column by column to complete multiplexing and
  • a computer storage medium provided by an embodiment of the present invention stores a computer program configured to perform the above method of transmitting a signal.
  • the target content when UCI or data information needs to be transmitted on the PUSCH, the target content is processed and transmitted according to at least one of the following: a preset operation, a notification message of the base station; when the UCI or SRS is agreed When the transmission time and the transmission time of the data information overlap, the target content is processed and transmitted according to at least one of the following: a preset operation, a notification message of the base station.
  • the UCI is transmitted on the PUSCH in the short TTI scenario by implementing the technical solution of the embodiment of the present invention.
  • FIG. 1 is a schematic flowchart diagram of a method for transmitting a signal according to an embodiment of the present invention
  • FIG. 2 is a multiplexing diagram 1 of UCI and data when a TTI is 7 symbols according to an embodiment of the present invention
  • FIG. 3 is a multiplexing diagram of UCI and data when a TTI is 4 symbols according to an embodiment of the present invention
  • FIG. 5 is a multiplexing diagram of UCI and data when a TTI is 2 symbols according to an embodiment of the present invention
  • FIG. 6 is a multiplexing diagram of UCI and data when a TTI is 1 symbol according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of cascading CQI/PMI and data according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram 1 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • FIG. 9 is a second schematic diagram of uplink control information and data multiplexing according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of writing on a column corresponding to a symbol on both sides or one side of a DMRS symbol according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of writing HARQ-ACK from the last row of the interleaving matrix without RI according to an embodiment of the present invention.
  • 12 is a schematic diagram 3 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram 4 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram 5 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram 6 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • 16 is a multiplexing diagram 2 of UCI and data when a TTI is 7 symbols according to an embodiment of the present invention
  • 17 is a schematic diagram 7 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram 8 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram 9 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • 20 is a schematic structural diagram of an apparatus for transmitting a signal according to an embodiment of the present invention.
  • 21 is a schematic diagram 10 of uplink control information and data multiplexing according to an embodiment of the present invention.
  • Figure 22 is a 5G network architecture.
  • Figure 22 is a 5G network architecture.
  • the functions of the NEs in the 5G network architecture are as follows:
  • the terminal accesses the 5G network through the wireless air interface and obtains the service, and the terminal exchanges information through the air interface and the base station.
  • the base station is responsible for the air interface resource scheduling of the terminal accessing the network and the connection management of the air interface.
  • CUDB Stores at least user dynamic data, such as mobile line management context, session context, user status, and so on.
  • Control Plane including mobility management function (MM) and session management function (SM), etc., mainly responsible for authentication, authorization, and subscription checking of users to ensure that users are legitimate users; user mobility Management, including location registration and temporary identity assignment; maintenance of IDLE and CONNECT status and state transition; handover in CONNECT state; maintenance of protocol data unit (PDU) session, including session management of creation, modification and deletion Function; triggers paging and other functions in the IDLE state.
  • CM mobility management function
  • SM session management function
  • User Plane The core network user plane function entity, which is responsible for assigning user IP addresses and having QoS control and accounting functions.
  • the method for transmitting a signal according to an embodiment of the present invention is based on, but not limited to, the above network scenario.
  • FIG. 1 is a schematic flowchart of a method for transmitting a signal according to an embodiment of the present invention. As shown in FIG. 1 , the method for transmitting a signal includes the following steps:
  • Step 101 When at least one of the UCI and the data information needs to be transmitted on the PUSCH, the target content is processed and transmitted according to at least one of the following: a preset operation, a notification message of the base station.
  • Step 102 When there is overlap between the agreed transmission time of the UCI or the SRS and the transmission time of the data information, the target content is processed and transmitted according to at least one of the following: a preset operation, a notification message of the base station.
  • CQI/PMI includes: CQI and PMI, CQI or PMI. That is, CQI and PMI can appear alone or simultaneously.
  • RI/CRI means RI or CRI, that is, RI and CRI appear alone.
  • the UCI includes at least one of the following:
  • At least one of the UCI to be reported and the data information is multiplexed and interleaved in a specified manner, or the UCI to be reported is multiplexed and interleaved;
  • the processed information is carried on the PUSCH for transmission.
  • the performing multiplexing and interleaving processing includes:
  • the first content is at least one of the following contents: RI/CRI, CQI/PMI, and data information;
  • the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • generating a multiplexing sequence according to the first content includes:
  • the RI/CRI is a multiplexing sequence
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • RI/CRI When at least two of the RI/CRI, CQI/PMI, and data information are included in the first content that needs to be reported, at least two of the RI/CRI, the CQI/PMI, and the data information are cascaded to obtain a multiplexing sequence. .
  • the first content that needs to be reported includes at least two of RI/CRI, CQI/PMI, and data information
  • at least two of the RI/CRI, CQI/PMI, and data information are used. Cascading to obtain a multiplexing sequence, including at least one of the following:
  • the data information is cascaded in a later manner to obtain a multiplexing sequence
  • the CQI/PMI is cascaded in the following manner according to the RI/CRI, and a multiplexing sequence is obtained.
  • the performing multiplexing and interleaving processing includes:
  • the first content is at least one of the following contents: RI/CRI, CQI/PMI, and data information;
  • the HARQ-ACK is written into the interlace matrix from the first row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the generating a multiplexing sequence according to the first content includes:
  • the RI/CRI is a multiplexing sequence
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • RI/CRI When at least two of the RI/CRI, CQI/PMI, and data information are included in the first content that needs to be reported, at least two of the RI/CRI, the CQI/PMI, and the data information are cascaded to obtain a multiplexing sequence. .
  • the first content that needs to be reported includes at least two of RI/CRI, CQI/PMI, and data information
  • at least two of the RI/CRI, CQI/PMI, and data information are cascaded to obtain a complex Use the sequence, including at least one of the following:
  • the UCI When the UCI and the data information need to be reported, according to the data information, the UCI is cascaded in a later manner to obtain a multiplexing sequence;
  • the RI/CRI is cascaded in the following manner according to the CQI/PMI, and a multiplexing sequence is obtained.
  • the performing multiplexing and interleaving processing includes:
  • the first content is at least one of the following: CQI/PMI, data information;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • generating a multiplexing sequence according to the first content includes:
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • the CQI/PMI will be used when the first content to be reported contains CQI/PMI and data information.
  • the data information is cascaded to obtain a multiplexing sequence.
  • the performing multiplexing and interleaving processing includes:
  • the data information is a multiplexing sequence
  • the RI/CRI is written into the interlace matrix from the last row of the interleaving matrix
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the HARQ-ACK is written into the interlace matrix from the specified position of the interlace matrix, including one of the following:
  • the RI/CRI is written upward from the last row of the interlace matrix to the interlace matrix; the HARQ-ACK is ended at the end of the RI/CRI Writing a line to the interleaving matrix, or starting to write the interleaving matrix at a non-RI/CRI position in the RI/CRI end line;
  • the HQRQ-ACK is written to the interleaving matrix in a specified manner from the last line of the interleaving matrix.
  • the HARQ-ACK is written into the interlace matrix from the specified position of the interlace matrix, including one of the following:
  • the HARQ-ACK When the HARQ-ACK needs to be reported, the HARQ-ACK is written upward from the last row of the interlace matrix to the interlace matrix.
  • the RI/CRI or HARQ-ACK is written in all or part of the column of the interlace matrix.
  • the RI/CRI when the RI/CRI needs to be reported, the RI/CRI is written into the first designated column according to a specified manner from the last row of the interlace matrix;
  • the HARQ-ACK When the HARQ-ACK needs to be reported, the HARQ-ACK is written to the second designated column in a specified manner from the last line of the interleaving matrix.
  • the first designated column and the second designated column include at least one of the following:
  • the first designated column is an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a y column corresponding to y symbols adjacent to the other side of the symbol where the DMRS is located;
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a y corresponding to the y symbols adjacent to the other side of the symbol where the DMRS is located.
  • the first designated column is an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located
  • the second designated column is a column corresponding to the symbol where the DMRS is located and y corresponding to the y symbol adjacent to the other side of the symbol where the DMRS is located.
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a column corresponding to the symbol where the DMRS is located and the other side of the symbol where the DMRS is located y columns corresponding to y columns;
  • the first designated column is the first z1 column of the interlace matrix, and the second designated column is the last z2 column of the interlace matrix;
  • the first designated column is the last z1 column of the interlace matrix, and the second designated column is the first z2 column of the interlace matrix;
  • the first designated column is a column corresponding to a symbol closest to a symbol of the DMRS
  • the second designated column is a column corresponding to a symbol with a symbol closest to the symbol of the DMRS
  • the neighbors are physically adjacent or logically adjacent.
  • the first designated column and the second designated column include at least one of the following:
  • the first designated column is an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the second designated column is a y column corresponding to the y symbols adjacent to the first designated column;
  • the second designated column is an x column corresponding to x symbols adjacent to both sides of the symbol of the DMRS, and the first designated column is a y column corresponding to the adjacent y symbols of the second designated column;
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the second designated column is corresponding to the y symbols adjacent to the first designated column.
  • the second designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the first designated column is corresponding to the y symbols adjacent to the second designated column.
  • the neighbors are physically adjacent or logically adjacent.
  • the performing multiplexing and interleaving processing includes:
  • At least one of CQI/PMI and data information needs to be reported, at least one of the CQI/PMI and the data information is cascaded in a specified order to generate a multiplexing sequence; skipping the location corresponding to the RI/CRI, Writing the multiplexing sequence to an interlace matrix;
  • the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the performing multiplexing and interleaving processing includes:
  • the data information When the data information needs to be reported, the data information is used as a multiplexing sequence; the positions corresponding to the RI/RI, and/or the CQI/PMI are skipped, and the multiplexing sequence is written into the interlace matrix;
  • the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the RI/CRI when it is necessary to report RI/CRI and CQI/PMI, starting from the first column of the interlace matrix, the RI/CRI is first written, and then the CQI/PMI is written.
  • the performing multiplexing and interleaving processing includes:
  • the CQI/PMI When the CQI/PMI needs to be reported, the CQI/PMI is written to the interleaving matrix starting from the specified row, wherein the CQI/PMI is written to a partial column or all columns;
  • the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the first line of the specified behavior is either the end line of the written RI/CRI or the next line of the end line of the written RI/CRI.
  • the performing multiplexing and interleaving processing includes:
  • the CQI/PMI When the CQI/PMI needs to be reported, the CQI/PMI is written into the interlace matrix from the specified line, wherein the CQI/PMI is written in a partial column or all columns;
  • the HARQ-ACK is written into the interlace matrix from the first row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the last line of the specified behavior is either the written end line of the RI/CRI written or the previous line of the end line of the written RI/CRI.
  • the RI/CRI is the same as the column written by the HARQ-ACK.
  • the neighbors are physically adjacent or logically adjacent.
  • the method further includes: when the data information needs to be transmitted on the PUSCH, establishing an interlace matrix, and writing the data information to the interlace matrix column by column.
  • the interlace matrix is determined by at least one of a transmission time of the target content, a location of the DMRS, and an SRS configuration.
  • the interleaving matrix when writing the interleaving matrix, the interleaving matrix is written in the order of the preceding row and the column, or the interleaving matrix is written in the order of the preceding column and the subsequent row.
  • all the uplink information needs to skip the position corresponding to the DMRS in the interlace matrix when writing the interlace matrix.
  • the method further includes: determining, when the agreed transmission time of the UCI or the SRS and the transmission time of the data information overlap, the transmission mode according to at least one of a preset operation and a notification message of the base station.
  • the transmission mode is indicated by at least one of the following:
  • the uplink grant corresponding to the PUSCH is the uplink grant corresponding to the PUSCH.
  • the method further includes: abandoning transmission of all or part of the UCI or delaying transmission of all or part of the UCI.
  • the HARQ-ACK information of all or part of the transport block is transmitted on the transmission time of the target content, where M>1.
  • the HARQ-ACK information of the partial transport block is transmitted on the transmission time of the target content, where the transmission duration of the partial transport block is smaller than that of other transport blocks.
  • the length of the transmission is transmitted on the transmission time of the target content, where the transmission duration of the partial transport block is smaller than that of other transport blocks.
  • the DMRS when the agreed transmission time of the SRS and the transmission time of the data information overlap, the DMRS is not transmitted and the data information is transmitted at the position corresponding to all or part of the DMRS in the transmission time of the target content.
  • the all or part of the UCI is transmitted according to the DMRS on the transmission time of the target content.
  • the method further includes:
  • the DMRS is modulated with modulation symbols of all or part of the UCI.
  • the code rate corresponding to the information meets the specified threshold requirement.
  • the code rate of the information on the designated symbol satisfies the specified threshold requirement.
  • the code rate of the data information on the symbols of the first n pieces of transmission data information is not greater than 0.931 or 0.93 or 1, wherein n is less than or equal to the total number of symbols transmitting the data information.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • the uplink control information includes at least one of: CQI and/or PMI (represented by CQI/PMI in the present invention), HARQ-ACK, RI, and CRI, where HARQ-ACK is downlink data.
  • Feedback information such as 1 bit ACK/NACK.
  • the RI may be one of the following: only RI, joint reporting of RI and i1, joint reporting of CRI and RI, joint reporting of CRI, RI and i1, joint reporting of CRI, RI and PTI, and joint reporting of RI and PTI .
  • i1 is Wideband first PMI i1. The actual should not be limited to this information.
  • the present invention is described by taking a UE supporting short TTI as an example, and the method is not limited to the short TTI scenario.
  • This embodiment considers a transmission method of the UCI on the PUSCH, and a transmission method in a scenario where the agreed transmission time of the UCI and the transmission time of the uplink data overlap. For example, according to the period configured by the eNB, the UE needs to transmit the CQI on the slot #n. /PMI, and the eNB also schedules the UE to transmit uplink data on slot #n.
  • This embodiment and the following embodiments give the processing and transmission method in the above case.
  • FIG. 2 to 6 are multiplex diagrams of UCI and data when the TTI is 7, 4, 3, 2, and 1 symbol, respectively.
  • the RI, the CQI/PMI, and the data are cascaded to obtain a multiplexing sequence, and then the multiplexing sequence and the HARQ-ACK are performed for channel interleaving.
  • the HARQ-ACK is punctured and transmitted on the multiplexed sequence, and the puncturing is performed in the order of the first column and the subsequent row.
  • RI and CQI/PMI are in the front and data is in the back.
  • RI and CQI/PMI are cascaded, RI can be preceded, CQI/PMI can be followed, CQI/PMI can be used first, and RI is later.
  • the RI is first, the CQI/PMI is after, and the data is at the end. In this way, it can be guaranteed that the data of the RI is not destroyed by the HARQ-ACK.
  • the number of modulation symbols corresponding to the bits of the HARQ-ACK, RI or CRI is the formula (1):
  • O is the number of bits corresponding to HARQ-ACK, RI or CRI
  • N SRS is configured for SRS and is 1 or 0.
  • the number of columns of the interleave matrix is 6.
  • C is the number of code blocks
  • K r is the number of bits of the code block r. Is the offset value of the high-level configuration.
  • the number of modulation symbols occupied by other information can also be calculated according to the prior art.
  • the calculation mode may be redefined for the number of modulation symbols occupied by the control information, which is not limited by the present invention.
  • the coding mode is not limited in the embodiment of the present invention.
  • an interlaced matrix of R mux ⁇ C mux is created.
  • the number of columns of the interleaving matrix among them The number of symbols that can be transmitted is determined by at least one of the length of the TTI (ie, the number of symbols transmitted), the location of the DMRS, and the SRS configuration. Each column of the interleaving matrix corresponds to one transmission symbol, respectively. Here, if the DMRS fills the entire symbol, the symbol for transmitting the DMRS is not included.
  • the symbol for transmitting the SRS may not be included.
  • the columns of the interleaving matrix correspond to the symbols 0, 1, 2, 4, 5, and 6.
  • the symbols also correspond to an interleaving matrix. Column, some of the elements in the column are occupied by the DMRS.
  • the multiplexed column vector sequences g 0 , g 1 , g 2 , g 3 , . . . , g H′-1 are sequentially written into the interleaving matrix until the interlacing matrix In the lower right corner.
  • each g i is written in a (Q m ⁇ N L ) row in one column, and writing is started from row #0 to (Q m ⁇ N L -1) in column #0.
  • the multiplexing sequence may also be written into the interlace matrix in a column-by-column manner. That is to write the first column and then write the second column.
  • the position corresponding to the DMRS should be skipped when writing.
  • the HARQ-ACK vector sequence is written from the last line of the interleaving matrix upward, that is, from the last (Q m ⁇ N L ) line.
  • the position corresponding to the DMRS should be skipped when writing.
  • the HARQ-ACK information is written, other information is written in the corresponding location, and the filled information is overwritten and replaced with HARQ-ACK information.
  • bit stream is read column by column: h 0 , h 1 , h 2 , ..., h H-1 .
  • CRI and RI are handled in the same way if there is separate CRI information.
  • processing of CRI is similar only by RI.
  • HARQ-ACK can write all columns in the written row. Assume that the TTI length is 4 symbols, which are symbols #0, 1, 2, and 3 in chronological order. The DMRS fills the entire symbol on symbol #1, assuming that these symbols are not the last symbol on the SRS subframe. Then, the number of columns of the interleaving matrix is 3, corresponding to the symbols #0, 2, 3, respectively, and the HARQ-ACK is written to all the columns, that is, transmitted on the symbols #0, 2, 3, or only the partial columns are written. For example, it is only transmitted on both sides of the DMRS or on one side of the symbol. For example, it is only transmitted on symbols #0 and 2, or only on symbol #0. Alternatively, write the first n columns, or the last n columns, where n is preset or notified by the eNB.
  • the HARQ-ACK when the HARQ-ACK is written in one row, it is written in a preset order, for example, in the order of the column numbers.
  • the TTI length is 4 symbols, which are symbols #0, 1, 2, and 3 in chronological order.
  • the DMRS fills the entire symbol on symbol #1, assuming that these symbols are not the last symbol on the SRS subframe.
  • the number of columns of the interleaving matrix is 3, corresponding to the symbols #0, 2, and 3, respectively.
  • the sequence in which HARQ-ACK is written in one line is symbol #0, 2, 3; or, in order from the adjacent symbols of the DMRS symbol, gradually to the order of the two sides, such as the first symbol #2, then Symbol #1, then symbol #3; or, in the order determined by the pseudo-random code defined by the finger, such as #0, then symbol #3, then symbol #2.
  • the CQI/PMI and the data are cascaded, as shown in FIG. 7.
  • control information when there are two transport blocks, the control information may be transmitted on two transport blocks, or may be transmitted on only one transport block, or part of the control information may be transmitted on two transport blocks, and the other part Control information is transmitted on one transport block.
  • control information can be transmitted on multiple layers or only on a partial layer. The description of this paragraph is also used in other embodiments.
  • the read bit streams h 0 , h 1 , h 2 , . . . , h H-1 are scrambled, modulated, layer mapped, precoded, resource mapped, and generated SC-FDMA symbols are transmitted. Go out.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • the information contained in the uplink control information is as described in Embodiment 1.
  • the multiplexing control information and the multiplexing mode of the data are as shown in FIGS. 8 and 9.
  • the CQI/PMI and the data concatenation or multiplexing generate a multiplexing sequence and write the interleaving matrix in a form similar to that of Embodiment 1, and then perform channel interleaving with HARQ-ACK and/or RI.
  • CQI/PMI is the multiplexing sequence; if there is only data, the data is the multiplexing sequence.
  • the HARQ-ACK information starts to be punctured in the upper row of the row where the RI in the interleaving matrix is located.
  • the HARQ-ACK information is in the unwritten position in the row where the RI in the interleaving matrix is located. Start drilling and then write.
  • the HARQ-ACK information may be written in a specified row in the interlace matrix, the designated row being preset or notified by the eNB. For example, writing in the center line of the interleaving matrix, the actual should The use is not limited to this example.
  • the RI and/or HARQ-ACK information may be written in all columns in the interleaving matrix, or may be written in a partial column in the interleaving matrix, such as on either side or side of the DMRS symbol. Write on the column corresponding to the symbol, as shown in Figure 10. Alternatively, it may be written in the first column, which is not limited in this embodiment.
  • HARQ-ACK or RI when HARQ-ACK or RI is written in one row, it is written in a preset order, for example, in the order of column numbers.
  • TTI length 4 symbols, which are symbols #0, 1, 2, and 3 in chronological order.
  • the DMRS fills the entire symbol on symbol #1, assuming that these symbols are not the last symbol on the SRS subframe.
  • the number of columns of the interleaving matrix is 3, corresponding to the symbols #0, 2, and 3, respectively.
  • the order in which HARQ-ACK or RI is written in one line is symbol #0, 2, 3; or, in order from the adjacent symbols of the DMRS symbol, gradually to the order of both sides, such as first symbol #2, then symbol #1, Then symbol #3; or, in the order determined by the pseudo-random code defined by the finger, such as #0, then symbol #3, then symbol #2.
  • the HARQ-ACK is written from the last row of the interleaving matrix, and the multiplexing manner is as shown in FIG.
  • the channel interleaving is performed below.
  • the following examples illustrate that the actual application is not limited to the following manner.
  • the first step is to create an R mux ⁇ C mux interleaving matrix, where the number of columns in the matrix
  • the columns of the interleaving matrix correspond to transmission symbols.
  • the RI vector sequence is written row by row from the last line of the interleaving matrix, that is, from the last (Q m ⁇ N L ) line.
  • Write the (Q m ⁇ N L ) line if there is still data, write the adjacent (Q m ⁇ N L ) line, and so on.
  • the position corresponding to the DMRS should be skipped when writing.
  • the sequence of sequence vectors g 0 , g 1 , g 2 , g will be sequentially multiplexed. 3 ,..., g H'-1 is written row by row into the interleaving matrix until the lower right corner of the interleaving matrix.
  • the elements that have been written in the interleave matrix are skipped, that is, the elements corresponding to the RI.
  • the position corresponding to the DMRS should also be skipped when writing.
  • the HARQ-ACK vector sequence is written from the upper line of the end line corresponding to the RI, that is, from the upper (Q m ⁇ N L ) line of the end line corresponding to the RI.
  • Write the (Q m ⁇ N L ) line if there is still data, write the adjacent (Q m ⁇ N L ) line, and so on.
  • the position corresponding to the DMRS should be skipped when writing.
  • bit stream is read out by column:
  • the HARQ-ACK or RI may be written only on all columns in a row, or may be written only on a partial column, such as a column corresponding to a symbol on either side of the DMRS, or on the first column.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • the information contained in the uplink control information is as described in Embodiment 1.
  • the multiplexing control information and the multiplexing manner of the data are as shown in FIG. CQI/PMI and data cascading or multiplexing, then Channel interleaving with HARQ-ACK and/or RI.
  • CQI/PMI is the multiplexing sequence; if there is only data, the data is the multiplexing sequence.
  • the channel interleaving is performed below.
  • the following examples illustrate that the actual application is not limited to the following manner.
  • an interlaced matrix of R mux ⁇ C mux is established, in which the number of columns of the interleaving matrix
  • the columns of the interleaving matrix correspond to transmission symbols.
  • the RI vector sequence is written line by line, and the RI information is written into the DMRS two.
  • the column corresponding to the side symbol.
  • Write the (Q m ⁇ N L ) line if there is still data, write the adjacent lower (Q m ⁇ N L ) line, and so on.
  • the position corresponding to the DMRS should be skipped when writing.
  • the sequence of sequence vectors g 0 , g 1 , g 2 , g will be sequentially multiplexed. 3 ,..., g H'-1 is written row by row into the interleaving matrix until the lower right corner of the interleaving matrix.
  • the elements that have been written in the interleave matrix are skipped, that is, the elements corresponding to the RI.
  • the position corresponding to the DMRS should also be skipped when writing.
  • the HARQ-ACK vector sequence is written from the last line of the interleaving matrix upward, that is, from the last (Q m ⁇ N L ) line.
  • the position corresponding to the DMRS should be skipped when writing.
  • bit stream is read out by column:
  • the HARQ-ACK or RI may be written only on all columns in a row, or may be written only on a partial column, such as a column corresponding to a symbol on either side of the DMRS, or on the first column.
  • the columns written by the HARQ-ACK and the RI may be the same or different.
  • the method in this embodiment and the method in the first embodiment have the same multiplexing mode.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • the information contained in the uplink control information is as described in Embodiment 1.
  • the multiplexing control information and the multiplexing manner of the data are as shown in FIGS. 13 and 14.
  • the CQI/PMI is concatenated or multiplexed with data, and then channel interleaved with HARQ-ACK and/or RI.
  • HARQ-ACK and RI are on both sides of the DMRS symbol, respectively.
  • HARQ-ACK/RI respectively corresponds to all symbols on the DMRS side, or a partial symbol on the corresponding side.
  • CQI/PMI is the multiplexing sequence; if there is only data, the data is the multiplexing sequence.
  • HARQ-ACK and RI are transmitted on all symbols on one side, respectively, and HARQ-ACK and RI are transmitted on one symbol on one side, respectively.
  • the channel interleaving is performed below.
  • the following examples illustrate that the actual application is not limited to the following manner.
  • the first step is to create an R mux ⁇ C mux interleaving matrix, where the number of columns in the matrix
  • the columns of the interleaving matrix correspond to transmission symbols.
  • the RI vector sequence is written line by line from the last end of the interleaving matrix, that is, from the first (Q m ⁇ N L ) line, and the RI information is written to all of the DMRS side.
  • the sequence of sequence vectors g 0 , g 1 , g 2 , g will be sequentially multiplexed. 3 ,..., g H'-1 is written row by row into the interleaving matrix until the lower right corner of the interleaving matrix.
  • the elements that have been written in the interleave matrix are skipped, that is, the elements corresponding to the RI.
  • the fourth step if there is HARQ-ACK information to be transmitted, starting from the last line of the interleaving matrix, that is, from the last (Q m ⁇ N L ) line, the columns corresponding to all symbols on the other side of the DMRS are written row by row. Write the (Q m ⁇ N L ) line, if there is still data, write the adjacent (Q m ⁇ N L ) line, and so on.
  • bit stream is read out by column:
  • the column corresponding to the DMRS may be written to the RI, or may be written to the HARQ-ACK, and the position corresponding to the DMRS should be skipped during writing.
  • the HARQ-ACK or RI may be written only on all columns in a row, or may be written only on a partial column, such as an adjacent x column on the DMRS side, where x is a positive integer, or A column corresponding to the DMRS and an adjacent y column on the DMRS side, where y is a non-negative integer.
  • HARQ-ACK is in the first n columns and RI is in the last n columns, where n is a positive integer.
  • the location of both is not limited to the above examples.
  • the number of columns corresponding to the HARQ-ACK and the RI may be different or the same.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • the information contained in the uplink control information is as described in Embodiment 1.
  • the multiplexing control information and the multiplexing manner of the data are as shown in FIG. 15. It can be seen that RI and CQI/PMI are transmitted on the first symbol.
  • the data is a multiplexed sequence.
  • an interlaced matrix of R mux ⁇ C mux is established, in which the number of columns of the interleaving matrix among them.
  • the columns of the interleaving matrix correspond to transmission symbols.
  • the RI vector sequence is written downward from the first column of the interleaving matrix. Write the first column, then write a column, and so on. Alternatively, for the case where the DMRS and the transmission information are multiplexed in one symbol, the position corresponding to the DMRS should be skipped when writing.
  • the third step if there is CQI/PMI information to be sent, immediately after the RI information ends, write the RI vector sequence, write the first column, then write a column, and so on.
  • the position corresponding to the DMRS should be skipped when writing.
  • the data sequence g 0 , g 1 , g 2 , g 3 , . . . , g H′-1 is sequentially written into the interleaving matrix from the upper left corner of the interleaving matrix. Until the lower right corner of the interlacing matrix. Skip the elements that have been written in the interleave matrix, that is, the elements corresponding to RI and CQI/PMI.
  • the position corresponding to the DMRS should be skipped when writing.
  • the HARQ-ACK vector sequence is written from the last line of the interleaving matrix upward, that is, from the last (Q m ⁇ N L ) line.
  • Write the (Q m ⁇ N L ) line if there is still data, write the adjacent (Q m ⁇ N L ) line, and so on.
  • the position corresponding to the DMRS should be skipped when writing.
  • the bit stream is read out in columns.
  • the second and third steps described above are also interchangeable. If only one of the RI and the CQI/PMI needs to be reported, the information to be reported is written from the upper left corner.
  • the HARQ-ACK sequence may be written to all columns, or may be written to a partial column, such as a column corresponding to a symbol on either side or one side of a DMRS symbol, or a first column.
  • the method in this embodiment is advantageous for the eNB to obtain CQI/PMI and RI information earlier, and the eNB may schedule the downlink of the UE earlier.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • HARQ-ACK and RI are respectively mapped on designated symbols.
  • the DMRSs of the three TTIs are all transmitted on the first symbol.
  • the CQI/PMI and the data are cascaded into the interleave matrix, and the HARQ is sent on the first symbol of the TTI.
  • the RI is sent on the second symbol of the TTI.
  • the specific process is: establish an interleaving matrix, RI first writes to the interleaving matrix, CQI/PMI The multiplexed sequence obtained by cascading with the data is written into the interleaving matrix in the order of the first column or the first row or the first column, skipping the position of the RI, and then the HARQ-ACK is punctured and transmitted from the last line.
  • the symbol corresponding to the HARQ-ACK is a symbol that is closer to the DMRS, and the symbol corresponding to the RI is an adjacent symbol of the symbol where the HARQ-ACK is located.
  • the multiplexed sequence when the multiplexed sequence is written to the interleaving matrix, it may be written row by row or column by column. Other write operations are similar, either row by row or column by column.
  • the writing order in one line is preset, for example, there are 4 columns, respectively, columns 0, 1, 2, 3, which can be in the order of 0, 1, 2, 3, or according to 0. , 3, 2, 1 and so on.
  • the order of writing in one column is preset, similar to the above.
  • FIG. 16 is a manner of transmitting up and down with the method of FIG.
  • the HARQ-ACK vector sequence is written from the last line of the interleaving matrix upward, that is, from the last (Q m ⁇ N L ) line.
  • Write the (Q m ⁇ N L ) line if there is still data, write the adjacent (Q m ⁇ N L ) line, and so on.
  • some of the UCI information mentioned may occupy a partial column or all columns in the interleaving matrix, and the partial columns are listed as one of the following:
  • a symbol to the left of the DMRS symbol One symbol to the right of the DMRS symbol; or one symbol to the left of the DMRS symbol and two symbols to the right of the DMRS symbol;
  • the neighbors are physically adjacent or logically adjacent.
  • the DMRS may be all DMRSs in the TTI, or may be part of the DMRS.
  • HARQ-ARQ may be transmitted on symbols #1, 2, 4, 5, or transmitted on symbols #1, 2, or transmitted on #2, 4, or on symbol #2. transmission.
  • the neighbors may be physically adjacent or logically adjacent.
  • one TTI includes three symbols, and the first two symbols are not physically adjacent, and the DMRS Transmitted on symbol #0, there is an interval of two symbols between the DMRS and the information, that is, the information is transmitted on symbols #3, 4, and the symbol adjacent to the DMRS is symbol #3.
  • the positions of the RIs are as shown in Embodiments 1 to 6, and the RI may perform the puncturing transmission on the multiplexing sequence.
  • the transmission mode of the UCI on the PUSCH may be indicated in an uplink grant corresponding to the PUSCH, for example, 1 bit is used for rate matching or punctured transmission. For another example, a few bits are used to indicate which way to transmit, and the transmission mode is one of the first, second, third, fourth, and fifth embodiments.
  • the transmission mode may also be notified by using RRC signaling or SIB, or the transmission mode may also be preset.
  • some UCI content is carried through DMRS or data to save mapping resources and increase the reliability of data transmission.
  • the DMRS occupies part of the subcarriers on one symbol, and the HARQ-ACK information is indicated by the difference in RE positions occupied by the DMRS. For example, when the DMRS occupies an odd subcarrier, it indicates an ACK, and when the DMRS occupies an even subcarrier, it indicates a NACK or no HARQ-ACK information needs to be transmitted.
  • the DMRS occupies different symbols to indicate HARQ ACK/NACK information. For example, when the TTI is two symbols, the DMRS indicates an ACK when sent on the first symbol, and indicates a NACK when the DMRS is sent on the second symbol. Or no HARQ-ACK information needs to be sent.
  • the DMRS of the UE is configured with multiple DMRS sequences, and the DMRS sequence is used to indicate HARQ-ACK information. For example, when DMRS uses sequence 1, it indicates ACK, when DMRS uses sequence 2, it indicates NACK or no HARQ-ACK information needs to be sent. .
  • the DMRS is modulated with HARQ-ACK modulation symbols.
  • HARQ-ACK is an example of HARQ-ACK, and is also applicable to other UCI information, such as RI.
  • the UCI may be indicated by using different modulation modes. For example, if the existing QPSK is used to represent the ACK, if the QPSK rotated by 90 degrees is used to indicate NACK or no HARQ-ACK information needs to be sent.
  • a solution is given when there is an overlap between the agreed transmission time of the UCI and the transmission time of the uplink data.
  • the method for transmitting UCI on the PUSCH is given in the above embodiment.
  • another solution is given, that is, the UCI delays transmission or abandons transmission, that is, a certain TTI after the TTI. Transfer on, for example, on the next TTI, or behind The transmission on the TTI without PUSCH.
  • the transmission can be postponed, transmitted on a subsequent TTI, or the transmission is abandoned, and transmitted again in the next reporting period.
  • the HARQ-ACK can be transmitted on the PUSCH in a manner similar to the above embodiment, so that more resources are used for data transmission.
  • the CQI/PMI delays or abandons the current transmission
  • the RI and HARQ-ACK can be transmitted on the PUSCH in a manner similar to the above embodiment.
  • the manner of processing is indicated in the uplink grant corresponding to the PUSCH, such as using 1 bit to indicate to abandon the transmission, or transmitting on the PUSCH.
  • the 1 bit is used to indicate all UCI, or can also be used to indicate part of UCI.
  • a 1 bit indication is used for each UCI. Or, notify in RRC signaling or SIB.
  • the processing manner may be determined according to the UCI information that needs to be simultaneously transmitted. For example, when CQI/PMI/RI and HARQ-ACK need to be reported simultaneously, the CQI/PMI is discarded. If only CQI/PMI/RI is used, then CQI/PMI/RI is transmitted on the PUSCH.
  • the HARQ-ACK information of the transport blocks of the plurality of different TTI lengths corresponds to the same TTI of the PUSCH, for example, on the TTI #n
  • the HARQ-ACK information and the TTI length of the transport block with the TTI length of 2 symbols need to be transmitted.
  • the PUSCH needs to be transmitted on the TTI #n.
  • the multiple HARQ-ACKs may be separately encoded on the PUSCH, or jointly encoded and transmitted on the PUSCH. .
  • only part of the HARQ-ACK information may be transmitted on the PUSCH, and the remaining HARQ-ACK information aborts transmission or delays transmission.
  • only HARQ-ACK information of one or more transport blocks having the smallest TTI length may be transmitted on the PUSCH.
  • the transmission method is as described in other embodiments.
  • the present embodiment provides a processing method.
  • the solution given in this embodiment is that, at all or part of the location corresponding to the DMRS, the DMRS is not transmitted, and data is transmitted at the location.
  • the transmission time of the data information is 2 symbols
  • the first symbol is used to transmit the DMRS
  • the second symbol is used to transmit the data.
  • the SRS needs to be transmitted in the second symbol of the transmission time, only the DMRS and the SRS are transmitted at the TTI.
  • the DMRS may not be transmitted, the data is transmitted on the symbol originally transmitted by the DMRS, and the SRS is used as the reference signal for demodulation of the data.
  • the SRS is used as the reference signal for demodulation of the data.
  • a similar manner can be used to reduce the pilot overhead by using the SRS as a reference signal.
  • the SRS as a reference signal.
  • only the DMRS on one symbol can be transmitted.
  • the UE abandons the transmission of the SRS, or the UE abandons the transmission of the PUSCH.
  • the code rate of the transmitted content meets a specified threshold requirement.
  • the bit rate of the uplink data is not greater than 0.931 or 0.93 or 1.
  • the code rate of the uplink data on the designated symbol satisfies the specified threshold requirement.
  • the specified symbol here can be a certain symbol or a few symbols.
  • the code rate of the uplink data on the symbol of the first uplink data transmission is not greater than 0.931 or 0.93 or 1
  • the code rate on the symbol of each transmitted uplink data is not greater than 0.931 or 0.93 or 1, or, every two
  • the code rate of the symbol is not greater than 0.931 or 0.93 or 1.
  • the actual application is not limited to the above examples.
  • the code rate on a symbol for transmitting uplink data here can be calculated by the following formula: (TBS+24)/(Qm ⁇ S), TBS is the transport block size of the data, and Qm is the modulation order, S Is a transmission resource on a symbol that transmits upstream data.
  • the code rate on the two symbols is (TBS + 24) / (Qm ⁇ S1), where S1 is the number of REs on the two symbols.
  • the code rate of the uplink data on the symbols of the first n uplink data meets the specified threshold requirement, where n is less than or equal to the number of symbols corresponding to the PUSCH transmission.
  • the code rate on the first n symbols can be calculated by: (TBS + 24) / (Qm ⁇ S1), where S1 is the number of REs on the first n symbols.
  • the PUSCH has a total of 4 transmission symbols, the first symbol is DMRS, and the last three symbols are symbols for transmitting uplink data, so that the code rate of the uplink data on the second and third symbols can be no more than 0.931 or 0.93 or 1. .
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • the data information when the data information needs to be reported, the data information is a multiplexing sequence, otherwise there is no multiplexing sequence;
  • the RI/CRI When the RI/CRI needs to be reported, the RI/CRI is written into the interleaving matrix from the last row of the interleaving matrix, and can be written in the manner of the second embodiment.
  • the HARQ-ACK may be written upward from the last line or written in the manner of the second embodiment.
  • the column in which the HARQ-ACK is written is the x column corresponding to the x symbols adjacent to both sides of the symbol where the DMRS is located, and the column in which the RI/CRI is written is adjacent to the column in which the HARQ-ACK is written.
  • the column in which the RI/CRI is written is the x column corresponding to the x symbols adjacent to both sides of the symbol of the DMRS, and the column in which the HARQ-ACK is written is the adjacent y columns of the column in which the RI/CRI is written.
  • the column in which the HARQ-ACK is written is a column corresponding to a symbol in which the DMRS is located and an x column corresponding to x symbols adjacent to both sides of the symbol in which the DMRS is located, and the column in which the RI/CRI is written is the write HARQ-ACK.
  • the column in which the RI/CRI is written is a column corresponding to a symbol in which the DMRS is located and an x column corresponding to x symbols adjacent to both sides of the symbol in which the DMRS is located, and the column in which the HARQ-ACK is written is the write RI/CRI.
  • FIG. 19 is an illustration of an interleaving matrix.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • This embodiment is similar to the first embodiment except that the order of information in the multiplex sequence is different, and the HARQ-ACK write position is different.
  • the first content is at least one of the following contents: RI/CRI, CQI/PMI, and data information;
  • the HARQ-ACK is written into the interlace matrix from the first row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns;
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the RI/CRI is a multiplexing sequence
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • RI/CRI When at least two of the RI/CRI, CQI/PMI, and data information are included in the first content that needs to be reported, at least two of the RI/CRI, the CQI/PMI, and the data information are cascaded to obtain a multiplexing sequence. .
  • At least two of the RI/CRI, CQI/PMI, and data information are included in the first content that needs to be reported, at least two of the RI/CRI, the CQI/PMI, and the data information are cascaded to obtain a multiplexing sequence. , including at least one of the following:
  • the UCI When the UCI and the data information need to be reported, according to the data information, the UCI is cascaded in a later manner to obtain a multiplexing sequence;
  • the RI/CRI is cascaded in the following manner according to the CQI/PMI, and a multiplexing sequence is obtained.
  • all the writes may be the first row or the first column, and the definition of the partial column is similar to the previous embodiment.
  • HARQ-ACK is above the interleaving matrix, and CQ/PMI and RI are below the toe matrix, as shown in FIG.
  • the method for transmitting a signal in this embodiment is specifically: a method for transmitting uplink control information on a PUSCH.
  • the CQI/PMI When the CQI/PMI needs to be reported, the CQI/PMI is written to the interleaving matrix starting from the specified row, wherein the CQI/PMI is written to a partial column or all columns;
  • the HARQ-ACK is written to the interleaving matrix starting from the last line of the interleaving matrix.
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the first line of the specified behavior is either the end line of the written RI/CRI or the next line of the end line of the written RI/CRI.
  • Mode 2 is similar to Mode 1, indicating that the location of writing is slightly different, as described below.
  • the CQI/PMI When the CQI/PMI needs to be reported, the CQI/PMI is written into the interlace matrix from the specified line, wherein the CQI/PMI is written in a partial column or all columns;
  • the HARQ-ACK is written to the interleaving matrix starting from the first row of the interlace matrix.
  • the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the last line of the specified behavior is either the end line of the written RI/CRI or the previous line of the end line of the written RI/CRI.
  • all the writes may be the first row or the first column, and the definition of the partial column is similar to the previous embodiment.
  • RI/CRI and HARQ-ACK can be written to the same column, or can be written to different columns, or can be partially written to the same column.
  • FIG. 20 is a schematic structural diagram of a device for transmitting a signal according to an embodiment of the present invention. As shown in FIG. 20, the device includes:
  • the processing and transmitting unit 202 is configured to process and transmit the target content according to at least one of the following when at least one of the UCI and the data information needs to be transmitted on the PUSCH: a preset operation, a notification message of the base station; or
  • the processing and transmission unit 202 is configured to process and transmit the target content according to at least one of the following when the agreed transmission time of the UCI or the SRS overlaps with the transmission time of the data information: a preset operation, a notification message of the base station.
  • the UCI includes at least one of the following:
  • the processing and transmission unit 202 includes:
  • the processing sub-unit 2021 is configured to multiplex and interleave at least one of the UCI to be reported and the data information in a specified manner, or perform multiplexing and interleaving processing on the UCI to be reported;
  • the transmission subunit 2022 is configured to carry the processed information on the PUSCH for transmission.
  • the processing sub-unit 2021 is further configured to: when the first content needs to be reported, generate a multiplexing sequence according to the first content; the first content is at least one of the following contents: RI/ CRI, CQI/PMI, data information; establishing an interlace matrix, writing the multiplexing sequence to the interlace matrix; when it is also necessary to report HARQ-ACK, starting from the last row of the interlace matrix, the HARQ - ACK is written to the interleaving matrix, wherein the HARQ-ACK is written to a partial column or all columns; the obtained interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • generating a multiplexing sequence according to the first content includes:
  • the RI/CRI is a multiplexing sequence
  • the CQI/PMI is a multiplexing sequence
  • the data information is a multiplexing sequence
  • RI/CRI When at least two of the RI/CRI, CQI/PMI, and data information are included in the first content that needs to be reported, at least two of the RI/CRI, the CQI/PMI, and the data information are cascaded to obtain a multiplexing sequence. .
  • the first content that needs to be reported includes at least two of RI/CRI, CQI/PMI, and data information
  • at least two of the RI/CRI, CQI/PMI, and data information are cascaded.
  • the data information is cascaded in a later manner to obtain a multiplexing sequence
  • the CQI/PMI is cascaded in the following manner according to the RI/CRI, and a multiplexing sequence is obtained.
  • the processing sub-unit 2021 is further configured to: when the first content needs to be reported, generate a multiplexing sequence according to the first content; the first content is at least one of the following contents: CQI/ PMI, data information; establishing an interlace matrix, when the RI/CRI needs to be reported, writing the RI/CRI into the interlace matrix from the last row of the interlace matrix; skipping the location corresponding to the RI/CRI Writing the multiplexed sequence to the interleaving matrix; when it is still necessary to report the HARQ-ACK, writing the HARQ-ACK to the interleaving matrix starting from a specified position of the interlacing matrix; The interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the processing sub-unit 2021 is further configured to: when the data information needs to be reported, the data information is a multiplexing sequence; and the interleaving matrix is established, and when the CQI/PMI needs to be reported, the interleaving matrix is used.
  • the first row begins downward, and the CQI/PMI is written into the interlace matrix, wherein the CQI/PMI is written into a partial column or all columns of the interleaving matrix; when an RI/CRI needs to be reported, The last row of the interleaving matrix starts upward, and the RI/CRI is written into the interlace matrix; the position corresponding to at least one of the RI/CRI and the CQI/PMI is skipped, and the multiplexing sequence is followed.
  • the interleaving matrix is written in the order of the preceding row; when the HARQ-ACK is also required to be reported, the HARQ-ACK is written into the interleaving matrix starting from the specified position of the interlacing matrix; The interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the HARQ-ACK is written into the interlace matrix starting from a specified position of the interlace matrix, including one of the following:
  • the RI/CRI is written upward from the last row of the interlace matrix to the interlace matrix; the HARQ-ACK is ended at the end of the RI/CRI Writing a line to the interleaving matrix, or starting to write the interleaving matrix at a non-RI/CRI position in the RI/CRI end line;
  • the RI/CRI or HARQ-ACK is written on all or part of the columns of the interleaving matrix.
  • the RI/CRI is written into the first designated column in a specified manner from the last line of the interleaving matrix
  • the HARQ-ACK When the HARQ-ACK needs to be reported, the HARQ-ACK is written to the second designated column in a specified manner from the last line of the interleaving matrix.
  • first designated column and the second specified column include at least one of the following:
  • the first designated column is an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a y column corresponding to y symbols adjacent to the other side of the symbol where the DMRS is located;
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a y corresponding to the y symbols adjacent to the other side of the symbol where the DMRS is located.
  • the first designated column is an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located
  • the second designated column is a column corresponding to the symbol where the DMRS is located and y corresponding to the y symbol adjacent to the other side of the symbol where the DMRS is located.
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to one side of the symbol where the DMRS is located, and the second designated column is a column corresponding to the symbol where the DMRS is located and the other side of the symbol where the DMRS is located y columns corresponding to y columns;
  • the first designated column is the first z1 column of the interlace matrix, and the second designated column is the last z2 column of the interlace matrix;
  • the first designated column is the last z1 column of the interlace matrix, and the second designated column is the first z2 column of the interlace matrix;
  • the first designated column is a column corresponding to a symbol closest to a symbol of the DMRS
  • the second designated column is a column corresponding to a symbol with a symbol closest to the symbol of the DMRS
  • the neighbors are physically adjacent or logically adjacent.
  • the first designated column and the second designated column include at least one of the following:
  • the first designated column is an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the second designated column is a y column corresponding to the y symbols adjacent to the first designated column;
  • the second designated column is an x column corresponding to x symbols adjacent to both sides of the symbol of the DMRS, and the first designated column is a y column corresponding to the adjacent y symbols of the second designated column;
  • the first designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the second designated column is corresponding to the y symbols adjacent to the first designated column.
  • the second designated column is a column corresponding to a symbol where the DMRS is located, and an x column corresponding to x symbols adjacent to both sides of the symbol where the DMRS is located, and the first designated column is corresponding to the y symbols adjacent to the second designated column.
  • the neighbors are physically adjacent or logically adjacent.
  • the processing sub-unit 2021 is further configured to establish an interlace matrix.
  • the RI/CRI When the RI/CRI needs to be reported, the RI is written into the interlaced matrix from the first row of the interlace matrix. All columns or partial columns; when at least one of CQI/PMI and data information needs to be reported, at least one of the CQI/PMI and the data information is cascaded in a specified order to generate a multiplexing sequence; skipping the RI a location corresponding to the /CRI, the multiplexed sequence is written to the interlace matrix; when the HARQ-ACK is also to be reported, the HARQ-ACK is written into the interlaced matrix from the last row of the interleaving matrix, The HARQ-ACK is written to a partial column or all columns; the obtained interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • the processing sub-unit 2021 is further configured to report the first content when needed. And generating a multiplexing sequence according to the first content; the first content is at least one of the following: RI/CRI, CQI/PMI, data information; establishing an interlace matrix, writing the multiplexing sequence Interleaving matrix; when it is still necessary to report the HARQ-ACK, writing the HARQ-ACK to the interlace matrix from the first row of the interlace matrix, wherein the HARQ-ACK is written to the partial column Or all columns; the obtained interleaving matrix is read out column by column, and multiplexing and interleaving processing are completed.
  • the processing sub-unit 2021 is further configured to establish an interlace matrix.
  • an interlace matrix When at least one of the RI/CRI and the CQI/PMI needs to be reported, starting from the first column of the interlace matrix, column by column Writing at least one of the RI/CRI and CQI/PMI in the specified order; when the data information needs to be reported, using the data information as a multiplexing sequence; skipping RI/CRI and CQI/PMI Write the multiplexed sequence to the interleave matrix at a position corresponding to at least one of the multiplexed sequences; and when the HARQ-ACK is still to be reported, write the HARQ-ACK from the last row of the interlaced matrix upwards
  • An interleaving matrix wherein the HARQ-ACK is written to a partial column or all columns; and the obtained interleaving matrix is read out column by column to complete multiplexing and interleaving processing.
  • RI/CRI and CQI/PMI when it is necessary to report RI/CRI and CQI/PMI, starting from the first column of the interleaving matrix, the RI/CRI is written first, and then the CQI/PMI is written.
  • the processing sub-unit 2021 is further configured to establish an interlace matrix.
  • the RI/CRI When the RI/CRI needs to be reported, the RI/CRI is written down from the first row of the interlace matrix.
  • the interleaving matrix wherein the RI/CRI is written to a partial column or all columns; when the CQI/PMI needs to be reported, the CQI/PMI is written into the interleaving matrix from the specified row downward, wherein The CQI/PMI is written to a partial column or all columns; when data needs to be transmitted, the position corresponding to at least one of RI/CRI and CQI/PMI is skipped, and the data is written into the interleaving matrix;
  • the HARQ-ACK When the HARQ-ACK is reported, the HARQ-ACK is written into the interlace matrix from the last row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns; the interleaving to be obtained
  • the first line of the specified behavior is either the written end line of the RI/CRI written or the next line of the end line of the written RI/CRI.
  • the processing sub-unit 2021 is further configured to establish an interlace matrix, and when the RI/CRI needs to be reported, the RI/CRI is written into the interlace from the last row of the interlace matrix. a matrix, wherein the RI/CRI is written to a partial column or all columns; when a CQI/PMI is also required to be reported, the CQI/PMI is written to the interleaving matrix starting from a specified row, wherein the CQI /PMI writes a partial column or all columns; when it is still necessary to transmit data, skip the position corresponding to at least one of RI/CRI and CQI/PMI, and write the data into the interleaving matrix; when it is necessary to report HARQ- In the case of ACK, the HARQ-ACK is written into the interlace matrix starting from the first row of the interlace matrix, wherein the HARQ-ACK is written to a partial column or all columns; the resulting interlace is obtained
  • the matrix is
  • the last line of the specified behavior is either the written end line of the RI/CRI written or the previous line of the end line of the written RI/CRI.
  • the neighbors are physically adjacent or logically adjacent.
  • an interlace matrix is established, and the data signal is The interleaving matrix is written in an interest column.
  • the interlace matrix is determined by at least one of a transmission time of the target content, a location of the DMRS, and an SRS configuration.
  • the interleaving matrix when writing the interleaving matrix, the interleaving matrix is written in the order of the preceding row and the subsequent column, or the interleaving matrix is written in the order of the preceding column and the subsequent row.
  • the transmission mode when the agreed transmission time of the UCI or the SRS and the transmission time of the data information overlap are determined according to at least one of a preset operation and a notification message of the base station.
  • the transmission mode is indicated by at least one of the following: RRC signaling, SIB, and uplink grant corresponding to the PUSCH.
  • the HARQ-ACK information of all or part of the transport block is transmitted on the transmission time of the target content, where M>1.
  • the HARQ-ACK information of the partial transport block is transmitted on the transmission time of the target content, wherein the transmission duration of the partial transport block is smaller than the transmission duration of other transport blocks.
  • the DMRS when the agreed transmission time of the SRS and the transmission time of the data information overlap, the DMRS is not transmitted and the data information is transmitted at the position corresponding to all or part of the DMRS in the transmission time of the target content.
  • the all or part of the UCI is transmitted according to the DMRS on the transmission time of the target content.
  • the DMRS is modulated with modulation symbols of all or part of the UCI.
  • the code rate corresponding to the information meets the specified threshold requirement.
  • the code rate of the information on the designated symbol satisfies the specified threshold requirement.
  • the data rate of the data information on the symbols of the first n pieces of transmission data information is not greater than 0.931 or 0.93 or 1, wherein n is less than or equal to the total number of symbols transmitting the data information.
  • each unit and its subunits in the apparatus for transmitting signals may be implemented by a central processing unit (CPU) or a microprocessor (Micro) located in the apparatus for transmitting signals.
  • CPU central processing unit
  • Micro microprocessor
  • Processor Unit MPU
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the apparatus for transmitting signals described above in the embodiment of the present invention may also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a stand-alone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • an embodiment of the present invention further provides a computer storage medium in which a computer program is stored, the computer program being configured to perform a method of transmitting a signal according to an embodiment of the present invention.
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the target content when UCI or data information needs to be transmitted on the PUSCH, the target content is processed and transmitted according to at least one of the following: preset operation, base station The notification message; when the agreed transmission time of the UCI or the SRS overlaps with the transmission time of the data information, the target content is processed and transmitted according to at least one of the following: a preset operation, a notification message of the base station.
  • the UCI is transmitted on the PUSCH in the short TTI scenario by implementing the technical solution of the embodiment of the present invention.

Abstract

本发明公开了一种传输信号的方法和装置、计算机存储介质,包括:当需要将UCI和数据信息中的至少之一在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息;当UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。

Description

一种传输信号的方法和装置、计算机存储介质
相关申请的交叉引用
本申请基于以下中国专利申请提出:申请号为201610203336.7且申请日为2016年4月1日的中国专利申请、申请号为201610654499.7且申请日为2016年8月10日的中国专利申请、申请号为201610875565.3且申请日为2016年10月1日的中国专利申请,并要求以上中国专利申请的优先权,以上中国专利申请的全部内容或部分内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术,尤其涉及一种传输信号的方法和装置、计算机存储介质。
背景技术
移动互联网和物联网的快速发展引发了数据流量的爆发式增长,以及多样化、差异化业务的广泛兴起。5G作为新一代的移动通信技术,相对4G将支持更高速率(Gbps)、巨量链接(1M/Km2)、超低时延(1ms)、更高的可靠性、百倍的能量效率提升等以支撑新的需求变化。其中,超低时延作为5G技术的关键指标,直接影响着如车联网、工业自动化、远程控制、智能电网等时延受限业务的发展。当前一系列关于5G时延降低的标准研究正在逐步推进。
传输时间间隔(TTI,Transmission Time Interval)降低作为当前时延降低的重要研究方向,旨在将现在1ms长度的TTI降低为0.5ms甚至1~2个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号的长度,成倍的降低了最小调度时间,进而在不改变帧结构情况下也能成 倍的降低单次传输时延。
在长期演进(LTE,Long Term Evolution)中,上行控制信息可以在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)上传输,当TTI变短后,现有协议中定义的传输上行控制信息的位置和方式不再适用,需要给短TTI(short TTI)传输重新定义新的传输方式,针对此目前还没有有效的解决方案。
发明内容
为解决上述技术问题,本发明实施例提供了一种传输信号的方法和装置、计算机存储介质。
本发明实施例提供的传输信号的方法,包括:
当需要将上行控制信息(UCI,Uplink Control Information)和/或数据信息在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息;或者,
当UCI或者探测参考信号(SRS,Sounding Reference Signal)的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。
本发明实施例中,所述UCI包括以下至少之一:
信道质量信息(CQI,Channel Quality Indicator)/预编码矩阵指示(PMI,Precoding Matrix Indicator)、混合自动重传请求确认信息(HARQ-ACK,Hybrid Automatic Repeat Request-Acknowledgement)、秩指示(RI,Rank Indication)和信道状态信息参考符号资源指示(CRI,CSI-RS Resource Indicator)。
本发明实施例中,所述方法还包括:
将待上报的UCI和所述数据信息中的至少之一按照指定方式进行复用和交织处理,或者将待上报的UCI进行复用和交织处理;
将处理后的信息承载在PUSCH上进行传输。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;
建立交织矩阵,将所述复用序列写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,根据所述第一内容生成复用序列,包括:
当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
本发明实施例中,所述当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
当需要上报UCI和数据信息时,按照所述UCI在前,所述数据信息在后的方式进行级联,得到复用序列;
当需要上报RI/CRI和CQI/PMI时,按照所述RI/CRI在前,所述CQI/PMI 在后的方式进行级联,得到复用序列。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;
建立交织矩阵,将所述复用序列写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,根据所述第一内容生成复用序列,包括:
当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
本发明实施例中,所述当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
当需要上报UCI和数据信息时,按照所述数据信息在前,所述UCI在后的方式进行级联,得到复用序列;
当需要上报RI/CRI和CQI/PMI时,按照所述CQI/PMI在前,所述RI/CRI 在后的方式进行级联,得到复用序列。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:CQI/PMI、数据信息;
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;
跳过所述RI/CRI对应的位置,将所述复用序列写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,根据所述第一内容生成复用序列,包括:
当需要上报的第一内容包含CQI/PMI,不包含数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI时,所述数据信息为复用序列;
当需要上报的第一内容包含CQI/PMI和数据信息时,将所述CQI/PMI和数据信息进行级联得到复用序列。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报数据信息时,所述数据信息为复用序列;
建立交织矩阵,当还需要上报CQI/PMI时,从所述交织矩阵的第一行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入所述交织矩阵的部分列或者全部列;
当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;
跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序 列按照先行后列的顺序写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵,包括以下之一:
当需要上报RI/CRI和HARQ-ACK时,将所述RI/CRI从所述交织矩阵的最后一行开始向上写入所述交织矩阵;将所述HARQ-ACK在所述RI/CRI结束的上一行开始写入所述交织矩阵,或者在所述RI/CRI结束行中的非RI/CRI的位置开始写入所述交织矩阵;
当需要上报HQRQ-ACK而不上报RI/CRI时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述HQRQ-ACK写入所述交织矩阵。
本发明实施例中,所述从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵,包括以下之一:
当需要上报HARQ-ACK时,将所述HARQ-ACK从所述交织矩阵的最后一行开始向上写入所述交织矩阵。
本发明实施例中,所述RI/CRI或者HARQ-ACK在所述交织矩阵的全部或者部分列上写入。
本发明实施例中,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述RI/CRI写入第一指定列;
当需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述HARQ-ACK写入第二指定列。
本发明实施例中,所述第一指定列、所述第二指定列包括以下至少之一:
所述第一指定列为解调参考信号(DMRS,De Modulation Reference  Signal)所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为所述交织矩阵的前z1列,所述第二指定列为所述交织矩阵的后z2列;
所述第一指定列为所述交织矩阵的后z1列,所述第二指定列为所述交织矩阵的前z2列;
所述第一指定列为距离DMRS所在符号最近的符号对应的列,所述第二指定列距离DMRS所在符号次近的符号对应的列;
其中x、y、z1、z2为正整数;
所述相邻为物理相邻,或者为逻辑相邻。
本发明实施例中,所述第一指定列、所述第二指定列包括以下至少之一:
所述第一指定列为DMRS所在符号两侧相邻的x个符号对应的x列,所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
所述第二指定列为DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
所述第二指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
其中x、y为正整数;
所述相邻为物理相邻,或者为逻辑相邻。
本发明实施例中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将RI写入所述交织矩阵的全部列或者部分列;
当需要上报CQI/PMI和数据信息中的至少之一时,将所述CQI/PMI和数据信息中的至少之一按照指定顺序级联生成复用序列;跳过所述RI/CRI对应的位置,将所述复用序列写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI和CQI/PMI中的至少之一时,从所述交织矩阵的第一列开始,逐列将所述RI/CRI和CQI/PMI中的至少之一按照指定顺序写入所述交织矩阵;
当需要上报数据信息时,将所述数据信息作为复用序列;跳过RI/RI、和/或CQI/PMI对应的位置,将所述复用序列写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上, 将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,当需要上报RI/CRI和CQI/PMI时,从所述交织矩阵的第一列开始,先写入所述RI/CRI,再写入所述CQI/PMI。
本发明实施例中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
当还需要上报CQI/PMI时,从指定行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述指定行为第一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的下一行。
本发明实施例中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
当还需要上报CQI/PMI时,从指定行开始向上,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述指定行为最后一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的上一行。
本发明实施例中,所述RI/CRI与所述HARQ-ACK写入的列相同。
本发明实施例中,所述部分列为以下之一:
DMRS所在符号两侧相邻的A个符号对应的列,其中A为正整数;
DMRS所在符号对应的列以及所述DMRS所在符号两侧相邻的B个符号对应的列,其中B为非负整数;
DMRS所在符号一侧相邻的C个符号对应的列,其中C为正整数;
DMRS所在符号对应的列以及所述DMRS所在符号一侧相邻的D个符号对应的列,其中D为非负整数;
前E列,其中E为小于等于N的正整数;
后F列,其中F为小于等于N的正整数;
预设的列;
其中,所述相邻为物理相邻,或者为逻辑相邻。
本发明实施例中,所述方法还包括:
当需要将数据信息在PUSCH上传输时,建立交织矩阵,将所述数据信息逐列写入所述交织矩阵。
本发明实施例中,所述交织矩阵由所述目标内容的传输时间、DMRS的位置以及SRS配置中的至少之一确定。
本发明实施例中,写入交织矩阵时,按照先行后列的顺序写入交织矩阵,或者按照先列后行的顺序写入交织矩阵。
本发明实施例中,当DMRS和上行信息在一个符号中复用时,所有上行信息在写入交织矩阵时,均需跳过交织矩阵中DMRS对应的位置。
本发明实施例中,所述方法还包括:
UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时的传输方式根据预设操作和基站的通知消息中的至少之一确定。
本发明实施例中,所述传输方式通过以下至少之一指示:
无线资源控制(RRC,Radio Resource Control)信令;
系统信息块(SIB,System Information Block);
所述PUSCH对应的上行授权。
本发明实施例中,所述方法还包括:
放弃传输全部或者部分所述UCI或者推迟传输全部或者部分所述UCI。
本发明实施例中,当所述UCI包含M个传输块的HARQ-ACK信息时,在所述目标内容的传输时间上传输全部或者部分传输块的HARQ-ACK信息,其中,M>1。
本发明实施例中,在所述目标内容的传输时间上传输部分传输块的HARQ-ACK信息,其中,所述部分传输块的传输时长均小于其他传输块的传输时长。
本发明实施例中,当SRS的约定传输时间和数据信息的传输时间有重叠时,在所述目标内容的传输时间上,在全部或者部分DMRS对应的位置上不传输DMRS而传输数据信息。
本发明实施例中,当UCI的约定传输时间和数据信息的传输时间有重叠时,根据所述目标内容的传输时间上的DMRS来传输所述全部或者部分UCI。
本发明实施例中,所述方法还包括:
根据以下至少之一来传输所述全部或者部分UCI:
DMRS占用的频域位置;
DMRS占用的符号;
DMRS对应的序列;
用全部或者部分UCI的调制符号调制DMRS。
本发明实施例中,所述信息对应的码率满足指定的门限要求。
本发明实施例中,所述信息在指定符号上的码率满足指定的门限要求。
本发明实施例中,所述数据信息在前n个传输数据信息的符号上的码率不大于0.931或0.93或1,其中n小于或者等于传输所述数据信息的符号的总数。
本发明实施例提供的传输信号的装置,包括:
处理和传输单元,配置为当需要将UCI和数据信息中的至少之一在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息;或者,
所述处理和传输单元,配置为当UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。
本发明实施例中,所述UCI包括以下至少之一:CQI/PMI、HARQ-ACK、RI和CRI;
所述处理和传输单元包括:
处理子单元,配置为将待上报的UCI和所述数据信息中的至少之一按照指定方式进行复用和交织处理,或者将待上报的UCI进行复用和交织处理;
传输子单元,配置为将处理后的信息承载在PUSCH上进行传输。
本发明实施例中,所述处理子单元,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;建立交织矩阵,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;建立交织矩阵,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:CQI/PMI、数据信息;建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵最后一行开始向上,将所述RI/CRI写入所述交织矩阵;跳过所述RI/CRI对应的位置,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元,还用于当需要上报数据信息时,所述数据信息为复用序列;建立交织矩阵,当还需要上报CQI/PMI时,从所述交织矩阵的第一行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入所述交织矩阵的部分列或者全部列;当需要上报 RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列按照先行后列的顺序写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将RI写入所述交织矩阵的全部列或者部分列;当需要上报CQI/PMI和数据信息中的至少之一时,将所述CQI/PMI和数据信息中的至少之一按照指定顺序级联生成复用序列;跳过所述RI/CRI对应的位置,将所述复用序列写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI和CQI/PMI中的至少之一时,从所述交织矩阵的第一列开始,逐列将所述RI/CRI和CQI/PMI中的至少之一按照指定顺序写入所述交织矩阵;当需要上报数据信息时,将所述数据信息作为复用序列;跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;当还需要上报 CQI/PMI时,从指定行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;当还需要上报CQI/PMI时,从指定行开始向上,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例提供的计算机存储介质存储有计算机程序,该计算机程序配置为执行上述传输信号的方法。
本发明实施例的技术方案中,当需要将UCI或者数据信息在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息;当UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。通过对本发明实施例技术方案的实施,在short TTI场景下实现了UCI在PUSCH上的传输。
附图说明
图1为本发明实施例的传输信号的方法的流程示意图;
图2为本发明实施例的TTI为7个符号时的UCI和数据的复用图一;
图3为本发明实施例的TTI为4个符号时的UCI和数据的复用图;
图4为本发明实施例的TTI为3个符号时的UCI和数据的复用图;
图5为本发明实施例的TTI为2个符号时的UCI和数据的复用图;
图6为本发明实施例的TTI为1个符号时的UCI和数据的复用图;
图7为本发明实施例的CQI/PMI和数据进行级联的示意图;
图8为本发明实施例的上行控制信息和数据复用的示意图一;
图9为本发明实施例的上行控制信息和数据复用的示意图二;
图10为本发明实施例的在DMRS符号的两侧或者一侧的符号对应的列上进行写入的示意图;
图11为本发明实施例的没有RI情况下HARQ-ACK从交织矩阵的最后一行开始写入的示意图;
图12为本发明实施例的上行控制信息和数据复用的示意图三;
图13为本发明实施例的上行控制信息和数据复用的示意图四;
图14为本发明实施例的上行控制信息和数据复用的示意图五;
图15为本发明实施例的上行控制信息和数据复用的示意图六;
图16为本发明实施例的TTI为7个符号时的UCI和数据的复用图二;
图17为本发明实施例的上行控制信息和数据复用的示意图七;
图18为本发明实施例的上行控制信息和数据复用的示意图八;
图19为本发明实施例的上行控制信息和数据复用的示意图九;
图20为本发明实施例的传输信号的装置的结构组成示意图;
图21为本发明实施例的上行控制信息和数据复用的示意图十;
图22为一种5G网络架构。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合 附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图22是一种5G网络架构,5G网络架构中各网元的功能如下:
终端,主要通过无线空口接入5G网络并获得服务,终端通过空口和基站交互信息。
基站,负责终端接入网络的空口资源调度和以及空口的连接管理。
公共用户数据库(CUDB,Centralized User Database):至少存储了用户动态数据,如移动行管理上下文、会话上下文、用户状态等。
控制面功能(CP,Control Plane):包括移动性管理功能(MM)和会话管理功能(SM)等,主要负责对用户的鉴权、授权以及签约检查,以保证用户是合法用户;用户移动性管理,包括位置注册和临时标识分配;维护IDLE和CONNECT状态以及状态迁移;在CONNECT状态下的切换;协议数据单元(PDU,Protocol Data Unit)会话的维护,包括创建、修改和删除等会话管理的功能;用户IDLE状态下触发寻呼等功能。
用户面功能(UP,User Plane):核心网用户面功能实体,负责分配用户IP地址,具有QoS控制计费等功能。
本发明实施例的传输信号的方法基于但不局限于以上网络场景。
图1为本发明实施例的传输信号的方法的流程示意图,如图1所示,所述传输信号的方法包括以下步骤:
步骤101:当需要将UCI和数据信息中的至少之一在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。
步骤102:当UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。
上述步骤101和步骤102是或者的关系。
本发明实施例中,CQI/PMI的意思包括:CQI和PMI、CQI或PMI。即CQI与PMI可以单独出现一个,也可以同时出现。RI/CRI的意思为RI或CRI,即RI与CRI单独出现一个。
本发明实施例中,所述UCI包括以下至少之一:
CQI/PMI、HARQ-ACK、RI和CRI。
在本发明第一实施方式中,将待上报的UCI和所述数据信息中的至少之一按照指定方式进行复用和交织处理,或者将待上报的UCI进行复用和交织处理;
将处理后的信息承载在PUSCH上进行传输。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;
建立交织矩阵,将所述复用序列写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,根据所述第一内容生成复用序列,包括:
当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
本发明实施例中,所述当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
当需要上报UCI和数据信息时,按照所述UCI在前,所述数据信息在后的方式进行级联,得到复用序列;
当需要上报RI/CRI和CQI/PMI时,按照所述RI/CRI在前,所述CQI/PMI在后的方式进行级联,得到复用序列。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;
建立交织矩阵,将所述复用序列写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
其中,根据所述第一内容生成复用序列,包括:
当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
所述当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
当需要上报UCI和数据信息时,按照所述数据信息在前,所述UCI在后的方式进行级联,得到复用序列;
当需要上报RI/CRI和CQI/PMI时,按照所述CQI/PMI在前,所述RI/CRI在后的方式进行级联,得到复用序列。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:CQI/PMI、数据信息;
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;
跳过所述RI/CRI对应的位置,将所述复用序列写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,根据所述第一内容生成复用序列,包括:
当需要上报的第一内容包含CQI/PMI,不包含数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI时,所述数据信息为复用序列;
当需要上报的第一内容包含CQI/PMI和数据信息时,将所述CQI/PMI 和数据信息进行级联得到复用序列。
本发明实施例中,所述进行复用和交织处理,包括:
当需要上报数据信息时,所述数据信息为复用序列;
建立交织矩阵,当还需要上报CQI/PMI时,从所述交织矩阵的第一行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入所述交织矩阵的部分列或者全部列;
当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;
跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列按照先行后列的顺序写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵,包括以下之一:
当需要上报RI/CRI和HARQ-ACK时,将所述RI/CRI从所述交织矩阵的最后一行开始向上写入所述交织矩阵;将所述HARQ-ACK在所述RI/CRI结束的上一行开始写入所述交织矩阵,或者在所述RI/CRI结束行中的非RI/CRI的位置开始写入所述交织矩阵;
当需要上报HQRQ-ACK而不上报RI/CRI时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述HQRQ-ACK写入所述交织矩阵。
本发明实施例中,所述从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵,包括以下之一:
当需要上报HARQ-ACK时,将所述HARQ-ACK从所述交织矩阵的最后一行开始向上写入所述交织矩阵。
本发明实施例中,所述RI/CRI或者HARQ-ACK在所述交织矩阵的全部或者部分列上写入。
本发明实施例中,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述RI/CRI写入第一指定列;
当需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述HARQ-ACK写入第二指定列。
本发明实施例中,所述第一指定列、所述第二指定列包括以下至少之一:
所述第一指定列为DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为所述交织矩阵的前z1列,所述第二指定列为所述交织矩阵的后z2列;
所述第一指定列为所述交织矩阵的后z1列,所述第二指定列为所述交织矩阵的前z2列;
所述第一指定列为距离DMRS所在符号最近的符号对应的列,所述第二指定列距离DMRS所在符号次近的符号对应的列;
其中x、y、z1、z2为正整数;
所述相邻为物理相邻,或者为逻辑相邻。
本发明实施例中,所述第一指定列、所述第二指定列包括以下至少之一:
所述第一指定列为DMRS所在符号两侧相邻的x个符号对应的x列,所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
所述第二指定列为DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
所述第二指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
其中x、y为正整数;
所述相邻为物理相邻,或者为逻辑相邻。
在本发明第三实施方式中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将RI写入所述交织矩阵的全部列或者部分列;
当需要上报CQI/PMI和数据信息中的至少之一时,将所述CQI/PMI和数据信息中的至少之一按照指定顺序级联生成复用序列;跳过所述RI/CRI对应的位置,将所述复用序列写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
在本发明第四实施方式中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI和CQI/PMI中的至少之一时,从所述交织矩阵的第一列开始,逐列将所述RI/CRI和CQI/PMI中的至少之一按照指定顺序写入所述交织矩阵;
当需要上报数据信息时,将所述数据信息作为复用序列;跳过RI/RI、和/或CQI/PMI对应的位置,将所述复用序列写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,当需要上报RI/CRI和CQI/PMI时,从所述交织矩阵的第一列开始,先写入所述RI/CRI,再写入所述CQI/PMI。
本发明实施例中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
当还需要上报CQI/PMI时,从指定行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述指定行为第一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的下一行。
本发明实施例中,所述进行复用和交织处理,包括:
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
当还需要上报CQI/PMI时,从指定行开始向上,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述指定行为最后一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的上一行。
本发明实施例中,所述RI/CRI与所述HARQ-ACK写入的列相同。
本发明实施例中,所述部分列为以下之一:
DMRS所在符号两侧相邻的A个符号对应的A列,其中A为正整数;
DMRS所在符号对应的列以及所述DMRS所在符号两侧相邻的B个符号对应的B列,其中B为非负整数;
DMRS所在符号一侧相邻的C个符号对应的C列,其中C为正整数;
DMRS所在符号对应的列以及所述DMRS所在符号一侧相邻的D个符号对应的D列,其中D为非负整数;
前E列,其中E为小于等于N的正整数;
后F列,其中F为小于等于N的正整数;
预设的列;
其中,所述相邻为物理相邻,或者为逻辑相邻。
本发明实施例中,所述方法还包括:当需要将数据信息在PUSCH上传输时,建立交织矩阵,将所述数据信息逐列写入所述交织矩阵。
本发明实施例中,所述交织矩阵由所述目标内容的传输时间、DMRS的位置以及SRS配置中的至少之一确定。
本发明实施例中,写入交织矩阵时,按照先行后列的顺序写入交织矩阵,或者按照先列后行的顺序写入交织矩阵。
本发明实施例中,当DMRS和上行信息在一个符号中复用时,所有上行信息在写入交织矩阵时,均需跳过交织矩阵中DMRS对应的位置。
本发明实施例中,所述方法还包括:UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时的传输方式根据预设操作和基站的通知消息中的至少之一确定。
所述传输方式通过以下至少之一指示:
RRC信令;
SIB;
所述PUSCH对应的上行授权。
本发明实施例中,所述方法还包括:放弃传输全部或者部分所述UCI或者推迟传输全部或者部分所述UCI。
本发明实施例中,当所述UCI包含M个传输块的HARQ-ACK信息时,在所述目标内容的传输时间上传输全部或者部分传输块的HARQ-ACK信息,其中,M>1。
本发明实施例中,在所述目标内容的传输时间上传输部分传输块的HARQ-ACK信息,其中,所述部分传输块的传输时长均小于其他传输块的 传输时长。
本发明实施例中,当SRS的约定传输时间和数据信息的传输时间有重叠时,在所述目标内容的传输时间上,在全部或者部分DMRS对应的位置上不传输DMRS而传输数据信息。
本发明实施例中,当UCI的约定传输时间和数据信息的传输时间有重叠时,根据所述目标内容的传输时间上的DMRS来传输所述全部或者部分UCI。
本发明实施例中,所述方法还包括:
根据以下至少之一来传输所述全部或者部分UCI:
DMRS占用的频域位置;
DMRS占用的符号;
DMRS对应的序列;
用全部或者部分UCI的调制符号调制DMRS。
本发明实施例中,所述信息对应的码率满足指定的门限要求。
本发明实施例中,所述信息在指定符号上的码率满足指定的门限要求。
本发明实施例中,所述数据信息在前n个传输数据信息的符号上的码率不大于0.931或0.93或1,其中n小于或者等于传输所述数据信息的符号的总数。
下面结合具体实施场景对本发明实施例的传输信号的方法做详细描述。
实施例一
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
所述上行控制信息包括以下至少之一:CQI和/或PMI(本发明中用CQI/PMI表示)、HARQ-ACK、RI和CRI,其中HARQ-ACK为下行数据的 反馈信息,比如为1bit的ACK/NACK。所述RI可以是以下之一:只有RI,RI和i1的联合上报,CRI和RI的联合上报,CRI、RI和i1的联合上报,CRI、RI和PTI的联合上报,RI和PTI的联合上报。其中i1为Wideband first PMI i1。实际应中不限于这些信息。
本发明以支持short TTI的UE为例来说明,所述方法不限应用于short TTI场景。本实施例考虑UCI在PUSCH上的传输方法,以及UCI的约定传输时间和上行数据的传输时间有重叠的场景下的传输方法,比如根据eNB配置的周期,UE需要在时隙#n上传输CQI/PMI,并且eNB也调度UE在时隙#n上传输上行数据。本实施例以及之后的实施例给出上述情况下的处理和传输方法。
图2~6分别是TTI为7、4、3、2、1个符号时的UCI和数据的复用图。如图2~6所示,RI、CQI/PMI和数据进行级联得到复用序列,然后,复用序列和HARQ-ACK再进行信道交织。HARQ-ACK在复用序列上打孔传输,按照先列后行的顺序进行打孔映射。如果没有数据,只有RI和CQI/PMI,则RI和CQI/PMI级联得到复用序列;如果只有RI,则RI即为复用序列;如果只有CQI/PMI,则CQI/PMI即为复用序列;如果只有数据,则数据为复用序列。
可选地,RI、CQI/PMI和数据进行级联时,RI和CQI/PMI在前,数据在后。RI和CQI/PMI级联时,可以RI在前,CQI/PMI在后,也可以CQI/PMI在前,RI在后。优选地,RI在前,CQI/PMI在后,数据在最后。这样,可以保证RI的数据不被HARQ-ACK打掉。
下面进行具体描述。下面假设只有一个传输块。实际应用中不限于下述的方式和步骤。
1、计算控制信息占用的RE个数或者对应的调制符号数。
首先需要计算控制信息占用的RE个数或者对应的调制符号数,比如按 照现有技术进行计算,对于PUSCH只有一个传输块的情况,HARQ-ACK、RI或者CRI的bit对应的调制符号数为公式(1):
Figure PCTCN2017079174-appb-000001
其中O是HARQ-ACK、RI或者CRI对应的bit数,
Figure PCTCN2017079174-appb-000002
是当前子帧PUSCH传输的调度带宽,表示为子载波的个数,
Figure PCTCN2017079174-appb-000003
是PUSCH初传对应的传输数据的SC-FDMA符号数。NSRS为SRS配置,为1或者0。如图2所示,交织矩阵的列数为6.C是码块数,Kr是码块r的比特数。
Figure PCTCN2017079174-appb-000004
是高层配置的偏移值。
其他信息的占用的调制符号数也可以按照现有技术进行计算。或者,对控制信息占用的调制符号数也可以重新定义计算方式,本发明不做限定。
2、对控制信息进行编码。
编码方式可本发明实施例不做限定。
3、RI、CQI/PMI和数据进行级联/复用。
RI的编码比特
Figure PCTCN2017079174-appb-000005
CQI/PMI的编码比特
Figure PCTCN2017079174-appb-000006
和数据的编码比特f0,f1,f2,f3,...,fG-1级联,得到复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1,其中,NL为传输块对应的层数,H=(G+NL·QCQI+NL·QRI),H′=H/(NL·Qm),其中g i,i=0,...,H′-1是长度为(Qm·NL)的列向量,Qm为调制阶数。
4、信道交织。
下面举例说明,实际应用中不限于下述方式。
第一步,建立一个Rmux×Cmux的交织矩阵。交织矩阵的行数Rmux=(H′total·Qm·NL)/Cmux,定义R′mux=Rmux/(Qm·NL)。其中交织矩阵的列数
Figure PCTCN2017079174-appb-000007
其中
Figure PCTCN2017079174-appb-000008
为可以传输数据的符号数,由TTI的长度(即传输的符号数)、DMRS的位置以及SRS配置中的至少之一确定。所述交织矩阵的每个列分别对应一个传输符号,这里,如果DMRS占满整个符号,则不包括传输DMRS的符号。可选地,也可以不包括传输SRS的符号。比如图2中,交织矩阵的列依次对应符号0、1、2、4、5、6.如果DMRS和传输信息在一个符号中复用,比如图6,则所述符号也对应一个交织矩阵中的列,所述列中,部分元素被DMRS占用。
第二步,从交织矩阵左上角开始,依次将复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1写入到交织矩阵中,直到交织矩阵的右下角。写入时,每个g i写入一列中的(Qm·NL)行,从列#0中的行#0到(Qm·NL-1)开始写入。写入时按照逐行写入的方式,在本发明中,当(Qm·NL)=1时,逐行写入是指写完一行接着写下一行;当(Qm·NL)=1时,逐行写入是指写完(Qm·NL)行,接着写下一个(Qm·NL)行。
下面举例给出写入过程:
Figure PCTCN2017079174-appb-000009
其中,
Figure PCTCN2017079174-appb-000010
可选地,也可以按照逐列写入的方式将所述复用序列写入交织矩阵, 即写完第一列再写第二列。
可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
第三步,如果有HARQ-ACK信息需要发送,从交织矩阵的最后一行开始向上,即从最后的(Qm·NL)行,写入HARQ-ACK向量序列。写入完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。
可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。优选地,HARQ-ACK信息写入时相应位置已写入其他信息,覆盖已填入的信息,替换成HARQ-ACK信息。
5、按照上述方式写入完交织矩阵后,逐列读出bit流:h0,h1,h2,...,hH-1
可选地,如果有单独的CRI信息,CRI和RI的处理方式相同。在其他实施例中,仅以RI来说明,CRI的处理类似。
可选地,HARQ-ACK在写入的行中,可以写入所有的列。假设TTI长度为4个符号,按照时间顺序分别为符号#0、1、2和3,DMRS在符号#1上,占满整个符号,假设这几个符号都不是SRS子帧上的最后一个符号,那么交织矩阵的列数为3,分别对应符号#0、2、3,HARQ-ACK写入所有的列,即在符号#0、2、3上传输.或者,仅写入部分的列,比如只在DMRS两侧或者一侧符号上传输。比如仅在符号#0和2上传输,或者仅在符号#0上传输。或者,写入前n列,或者后n列,n是预设的或者是eNB通知的。
可选地,HARQ-ACK在一行中写入时,按照预设的顺序写入,比如,按照列的编号顺序。假设TTI长度为4个符号,按照时间顺序分别为符号#0、1、2和3,DMRS在符号#1上,占满整个符号,假设这几个符号都不是SRS子帧上的最后一个符号,那么交织矩阵的列数为3,分别对应符号#0、2、3。HARQ-ACK在一行中写入的顺序为符号#0、2、3;或者,按照从DMRS符号相邻的符号开始,逐渐向两边的顺序,比如先符号#2、然后 符号#1,然后符号#3;或者,按照指定义的伪随机码确定的顺序,比如#0,然后符号#3,然后符号#2。
可选地,当只有CQI/PMI信息需要上报,不需要上报RI信息时,则CQI/PMI和数据进行级联,如图7所示。
可选地,当有2个传输块时,控制信息可以在2个传输块上都传输,也可以只在1个传输块上传输,也可以部分控制信息在2个传输块上传输,另一部分控制信息在1个传输块上传输。当一个传输块上在多个层上传输时,控制信息可以在多个层上传输,也可以只在部分层上传输。该段的描述也用于其它实施例。
可选地,所述读出的bit流h0,h1,h2,...,hH-1经过加扰、调制、层映射、预编码、资源映射和产生SC-FDMA符号,发送出去。
实施例二
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
上行控制信息包含的信息如实施例一所述。在本实施例中,上行控制信息和数据的复用方式如图8和图9所示。CQI/PMI和数据级联或者复用生成复用序列,写入交织矩阵,交织矩阵的形式与实施例一类似,然后和HARQ-ACK和/或RI进行信道交织。当没有数据时,CQI/PMI即为复用序列;如果只有数据,则数据为复用序列。
图8中,HARQ-ACK信息在交织矩阵中的RI所在的行的上一行开始打孔写入,图9中,HARQ-ACK信息在交织矩阵中的RI所在的行中的未写入的位置开始接着打孔写入。
可选地,HARQ-ACK信息可以在交织矩阵中的指定行写入,所述指定行是预设的,或者是eNB通知的。比如在交织矩阵的中心行写入,实际应 用中不限于该举例。
可选地,RI和/或HARQ-ACK信息可以在交织矩阵中的所有列中写入,或者,也可以在交织矩阵中的部分列中写入,比如在DMRS符号的两侧或者一侧的符号对应的列上进行写入,如图10所示。或者,也可以在第一列中写入,本实施例不做限定。
可选地,HARQ-ACK或者RI在一行中写入时,按照预设的顺序写入,比如,按照列的编号顺序。假设TTI长度为4个符号,按照时间顺序分别为符号#0、1、2和3,DMRS在符号#1上,占满整个符号,假设这几个符号都不是SRS子帧上的最后一个符号,那么交织矩阵的列数为3,分别对应符号#0、2、3。HARQ-ACK或者RI在一行中写入的顺序为符号#0、2、3;或者,按照从DMRS符号相邻的符号开始,逐渐向两边的顺序,比如先符号#2、然后符号#1,然后符号#3;或者,按照指定义的伪随机码确定的顺序,比如#0,然后符号#3,然后符号#2。
可选地,如果没有RI,则HARQ-ACK从交织矩阵的最后一行开始写入,复用方式如图11所示。
下面举例给出处理的过程。
首先,CQI/PMI的编码比特
Figure PCTCN2017079174-appb-000011
和数据的编码比特f0,f1,f2,f3,...,fG-1级联,得到复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1,其中H=(G+NL·QCQI),H′=H/(NL·Qm),其中g i,i=0,...,H′-1是长度为(Qm·NL)的列向量。
下面进行信道交织。下面举例说明,实际应用中不限于下述方式。
第一步,建立一个Rmux×Cmux的交织矩阵,其中矩阵的列数
Figure PCTCN2017079174-appb-000012
交织矩阵的行数Rmux=(H′total·Qm·NL)/Cmux,定义R′mux=Rmux/(Qm·NL)。所述交织矩阵的列对应传输符号。
第二步,如果有RI信息需要发送,从交织矩阵的最后一行开始向上, 即从最后的(Qm·NL)行,逐行写入RI向量序列。写完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
第三步,从交织矩阵左上角开始,即从列#0中的行#0到(Qm·NL-1)开始,依次将复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1逐行写入到交织矩阵中,直到交织矩阵的右下角。跳过交织矩阵中已经写入过的元素,即RI对应的元素。
可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时还应跳过DMRS对应的位置。
第四步,如果有HARQ-ACK信息需要发送,从RI对应的结束行的上面一行开始,即从RI对应的结束行的上面(Qm·NL)行,写入HARQ-ACK向量序列。写入完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
按照上述方式写入完交织矩阵后,按列读出bit流:
Figure PCTCN2017079174-appb-000013
可选地,HARQ-ACK或者RI可以只在一行中的所有列上写入,也可以只在部分列上写入,比如DMRS两侧的符号对应的列上,或者在第一列上。
其他与实施例一类似。
实施例三
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
上行控制信息包含的信息如实施例一所述。在本实施例中,上行控制信息和数据的复用方式如图12所示。CQI/PMI和数据级联或者复用,然后 和HARQ-ACK和/或RI进行信道交织。当没有数据时,CQI/PMI即为复用序列;如果只有数据,则数据为复用序列。
下面给出处理的过程。
首先,CQI/PMI的编码比特
Figure PCTCN2017079174-appb-000014
和数据的编码比特f0,f1,f2,f3,...,fG-1级联,得到复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1,其中H=(G+NL·QCQI),H′=H/(NL·Qm),其中g i,i=0,...,H′-1是长度为(Qm·NL)的列向量。
下面进行信道交织。下面举例说明,实际应用中不限于下述方式。
第一步,建立一个Rmux×Cmux的交织矩阵,其中交织矩阵的列数
Figure PCTCN2017079174-appb-000015
交织矩阵的行数Rmux=(H′total·Qm·NL)/Cmux,定义R′mux=Rmux/(Qm·NL)。所述交织矩阵的列对应传输符号。
第二步,如果有RI信息需要发送,从交织矩阵的第一行开始向下,即从最开始的(Qm·NL)行,逐行写入RI向量序列,RI信息写入DMRS两侧的符号对应的列。写完(Qm·NL)行,如果还有数据,则写入相邻的下面的(Qm·NL)行,依次类推。可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
第三步,从交织矩阵左上角开始,即从列#0中的行#0到(Qm·NL-1)开始,依次将复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1逐行写入到交织矩阵中,直到交织矩阵的右下角。跳过交织矩阵中已经写入过的元素,即RI对应的元素。
可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时还应跳过DMRS对应的位置。
第四步,如果有HARQ-ACK信息需要发送,从交织矩阵的最后一行开始向上,即从最后的(Qm·NL)行,写入HARQ-ACK向量序列。写入完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。可选地, 对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
按照上述方式写入完交织矩阵后,按列读出bit流:
Figure PCTCN2017079174-appb-000016
可选地,HARQ-ACK或者RI可以只在一行中的所有列上写入,也可以只在部分列上写入,比如DMRS两侧的符号对应的列上,或者在第一列上。可选地,HARQ-ACK和RI写入的列可以相同,也可以不同。
其他与实施例一类似。
对于图4、5、6中的TTI长度和DMRS位置,本实施例中的方法和实施例一中的方法,复用方式是相同的。
实施例四
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
上行控制信息包含的信息如实施例一所述。在本实施例中,上行控制信息和数据的复用方式如图13和图14所示。CQI/PMI和数据级联或者复用,然后和HARQ-ACK和/或RI进行信道交织。HARQ-ACK和RI分别在DMRS符号的两侧。HARQ-ACK/RI分别对应DMRS一侧的所有符号,或者对应一侧的部分符号。当没有数据时,CQI/PMI即为复用序列;如果只有数据,则数据为复用序列。图13中HARQ-ACK和RI分别在一侧的所有符号上传输,图14中HARQ-ACK和RI分别在一侧的一个符号上传输。
下面举例给出处理的过程。
首先,CQI/PMI的编码比特
Figure PCTCN2017079174-appb-000017
和数据的编码比特f0,f1,f2,f3,...,fG-1级联,得到复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1,其中H=(G+NL·QCQI),H′=H/(NL·Qm),其中g i,i=0,...,H′-1是长度为(Qm·NL)的列向量。
下面进行信道交织。下面举例说明,实际应用中不限于下述方式。
第一步,建立一个Rmux×Cmux的交织矩阵,其中矩阵的列数
Figure PCTCN2017079174-appb-000018
交织矩阵的行数Rmux=(H′total·Qm·NL)/Cmux,定义R′mux=Rmux/(Qm·NL)。所述交织矩阵的列对应传输符号。
第二步,如果有RI信息需要发送,从交织矩阵的最后开始向上,即从最开始的(Qm·NL)行,逐行写入RI向量序列,RI信息写入DMRS一侧的所有符号对应的列。写完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。
第三步,从交织矩阵左上角开始,即从列#0中的行#0到(Qm·NL-1)开始,依次将复用列向量序列g 0,g 1,g 2,g 3,...,g H′-1逐行写入到交织矩阵中,直到交织矩阵的右下角。跳过交织矩阵中已经写入过的元素,即RI对应的元素。
第四步,如果有HARQ-ACK信息需要发送,从交织矩阵的最后一行开始向上,即从最后的(Qm·NL)行,逐行写入DMRS另一侧的所有符号对应的列。写入完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。
按照上述方式写入完交织矩阵后,按列读出bit流:
可选地,对于DMRS和传输信息在一个符号中复用的情况,DMRS对应的列可以写入RI,也可以写入HARQ-ACK,写入时应跳过DMRS对应的位置。
可选地,HARQ-ACK或者RI可以只在一行中的所有列上写入,也可以只在部分列上写入,比如为DMRS一侧相邻的x列,其中x为正整数,或者为DMRS对应的列以及所述DMRS一侧相邻的y列,其中y为非负整数。后者用于DMRS和传输信息在一个符号中复用的情况。或者,HARQ-ACK在前n列,RI在后n列,其中n为正整数。或者两者的位置也 可以反过来,实际应用中不限于上述举例。
可选地,,HARQ-ACK和RI对应的列数可以不同,也可以相同。
其他与实施例一类似。
实施例五
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
上行控制信息包含的信息如实施例一所述。在本实施例中,上行控制信息和数据的复用方式如图15所示。可以看出,RI和CQI/PMI在第一个符号上传输。
下面举例给出信道交织的过程。下面举例说明,实际应用中不限于下述方式。如果有数据,则数据为复用序列。第一步,建立一个Rmux×Cmux的交织矩阵,其中交织矩阵的列数
Figure PCTCN2017079174-appb-000020
其中
Figure PCTCN2017079174-appb-000021
交织矩阵的行数Rmux=(H′total·Qm·NL)/Cmux,定义R′mux=Rmux/(Qm·NL)。所述交织矩阵的列对应传输符号。
第二步,如果有RI信息需要发送,从交织矩阵的第一列开始向下,写入RI向量序列。写完第一列,接着写下一列,依次类推。可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
第三步,如果有CQI/PMI信息需要发送,紧接着RI信息结束的位置,写入RI向量序列,写完第一列,接着写下一列,依次类推。可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
第四步,如果有数据需要传输,则从交织矩阵左上角开始,依次将数据序列g 0,g 1,g 2,g 3,...,g H′-1写入到交织矩阵中,直到交织矩阵的右下角。跳过 交织矩阵中已经写入过的元素,即RI和CQI/PMI对应的元素。
可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
第五步,如果有HARQ-ACK信息需要发送,从交织矩阵的最后一行开始向上,即从最后的(Qm·NL)行,写入HARQ-ACK向量序列。写入完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。可选地,对于DMRS和传输信息在一个符号中复用的情况,写入时应跳过DMRS对应的位置。
按照上述方式写入完交织矩阵后,按列读出bit流。
上述的第二步和第三步也可以互换。如果只有RI和CQI/PMI中的一个需要上报,则所述需要上报的信息都从左上角开始写入。
可选地,HARQ-ACK序列可以写入到所有列,也可以写入到部分列,比如DMRS符号两侧或者一侧的符号对应的列,或者第一列。
本实施例中的方法,有利于eNB更早地得到CQI/PMI和RI信息,eNB可以更早地调度UE的下行。
其他与实施例一类似。
实施例六
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
参照图18,HARQ-ACK、RI分别在指定符号上映射。如图18所示,3个TTI的DMRS都在第一个符号上发送,在TTI#1上,CQI/PMI和数据级联写入交织矩阵,HARQ在该TTI的第一个符号上发送,RI在该TTI的第二个符号上发送。具体过程是:建立交织矩阵,RI先写入交织矩阵,CQI/PMI 和数据级联所得的复用序列按照先列后行或者先行后列的顺序写入交织矩阵,跳过RI的位置,然后HARQ-ACK从最后一行向上打孔传输。
在本实施例的方法中,HARQ-ACK对应的符号为离DMRS较近的符号,RI对应的符号为HARQ-ACK所在符号的相邻的符号。
实施例七
在本发明的所有实施例中,将复用序列写入交织矩阵时,可以逐行写入,也可以逐列写入。其他的写入操作也类似,可以逐行写入,也可以逐列写入。当逐行写入时,在一行中的写入顺序是预设的,比如有4列,分别为列0、1、2、3,可以按照0、1、2、3的顺序,或者按照0、3、2、1等。当逐列写入时,在一列中的写入顺序是预设的,类似上述。
在上述的实施例中,在写入交织矩阵中,复用或者交织的位置也可以反过来,以实施例一的图2为例,图16为与图2方式上下发过来的方式。
在上述的实施例三中,如果有HARQ-ACK信息需要发送,从交织矩阵的最后一行开始向上,即从最后的(Qm·NL)行,写入HARQ-ACK向量序列。写入完(Qm·NL)行,如果还有数据,则写入相邻的上面的(Qm·NL)行,依次类推。这里,HARQ-ACK写入时,也可以按照先列后行的顺序,可以按照预设的顺序写完一列再写下一列。或者,可以写完一列中预设的位置,则开始写下一列,比如,可以从交织矩阵的最后一行的DMRS左侧符号对应的列开始,写完该列中的最后N个元素,则开始写下一列,依次类推,其中N为预设的值。对于其他UCI信息也类似。
在上述的实施例中,提到的某些UCI信息可以占用交织矩阵中的部分列或者所有列,所述部分列为以下之一:
DMRS所在符号两侧相邻的A个符号对应的列,其中A为正整数,两侧对应的符号数可以相同,也可以不同。比如DMRS符号左侧一个符号, DMRS符号右侧一个符号;或者,DMRS符号左侧一个符号,DMRS符号右侧两个符号;
DMRS所在符号对应的列以及所述DMRS所在符号两侧相邻的B个符号对应的列,其中B为非负整数;
DMRS所在符号一侧相邻的C个符号对应的列,其中C为正整数;
DMRS所在符号对应的列以及所述DMRS所在符号一侧相邻的D个符号对应的列,其中D为非负整数;
前E列,其中E为小于等于N的正整数;
后F列,其中F为小于等于N的正整数;
预设的列。
其中,所述相邻为物理相邻,或者为逻辑相邻。
其中,所述DMRS可以为TTI中的所有的DMRS,也可以为部分DMRS。
比如,如图2所示,HARQ-ARQ可以在符号#1、2、4、5上传输,或者在符号#1、2上传输,或者在#2、4上传输,或者在符号#2上传输。
可选地,所述相邻可以是物理上的相邻,也可以是逻辑上的相邻,比如图17所示,一个TTI包含3个符号,前两个符号间不是物理相邻的,DMRS在符号#0上发送,DMRS和信息之间有两个符号的间隔,即信息在符号#3、4上发送,那么和DMRS相邻的符号即为符号#3。
可选地,对于上述实施例1~6,RI的位置如实施例1~6所示,RI可以对复用序列进行打孔传输。
可选地,可以在PUSCH对应的上行授权中指示UCI在PUSCH上的传输方式,比如用1bit指示为速率匹配,还是打孔传输。又例如,用几bit指示采用哪种方式传输,传输方式为实施例一、二、三、四、五中的一个。实际应用中不限于上述举例。可选地,所述传输方式也可以通过RRC信令或者SIB通知,或者,所述传输方式也可以是预设的。
实施例八
在本实施例中,给出一些通过DMRS或者数据携带一些UCI内容,来节省映射资源,增加数据传输的可靠性。
可选地,DMRS占用一个符号上的部分子载波,利用DMRS占用的RE位置的不同来指示HARQ-ACK信息。比如当DMRS占用奇数子载波时表示ACK,当DMRS占用偶数子载波表示NACK或者没有HARQ-ACK信息需要发送。
可选地,DMRS占用不同的符号,来指示HARQ ACK/NACK信息,比如TTI为两个符号时,DMRS在第一个符号上发送时表示ACK,当DMRS在第二个符号上发送时表示NACK或者没有HARQ-ACK信息需要发送。
可选地,给UE的DMRS配置多个DMRS序列,利用DMRS序列来指示HARQ-ACK信息。比如当DMRS使用序列1时表示ACK,当DMRS使用序列2时表示NACK或者没有HARQ-ACK信息需要发送。。
可选地,用HARQ-ACK调制符号去调制DMRS。
可选地,采用上述几种方式的结合,表示更多的bit数。
上述是以HARQ-ACK举例来说明,也适用于其他UCI信息,如RI等。
可选地,当数据采用QPSK调制时,可以用不同的调制方式来指示UCI,比如如果采用现有的QPSK表示ACK,如果采用旋转了90度的QPSK表示NACK或者没有HARQ-ACK信息需要发送。
实施例九
在本实施例中,给出一种当UCI的约定传输时间和上行数据的传输时间有重叠时的解决方法。
上面的实施例中给出了UCI在PUSCH上发送的方法,在本实施例中,给出另一种解决方案,即所述UCI推迟传输或者放弃传输,即在所述TTI之后的某个TTI上传输,比如在紧接着的下一个TTI上传输,或者在后面 的没有PUSCH的TTI上传输。
比如,对于CQI/PMI或者RI/CRI,可以推迟传输,在之后的一个TTI上传输,或者放弃本次传输,在下一个上报周期再传输。HARQ-ACK可以在PUSCH上传输,传输方式类似上述的实施例,这样,用于数据传输的资源更多。
又例如,CQI/PMI推迟或者放弃本次传输,RI和HARQ-ACK可以在PUSCH上传输,传输方式类似上述的实施例。
实际应用中不限于上述举例。
可选地,在PUSCH对应的上行授权中指示处理的方式,比如用1bit指示放弃传输,或者在PUSCH上传输。所述1bit用于指示所有的UCI,或者也可以用于指示部分UCI。或者,对每种UCI分别采用1bit指示。或者,在RRC信令或者SIB中通知。
可选地,可以根据需要同时传输的UCI信息来确定处理方式,比如当CQI/PMI/RI和HARQ-ACK需要同时上报时,就放弃CQI/PMI,如果只有CQI/PMI/RI,那就将CQI/PMI/RI在PUSCH上传输。
实施例十
如果多个不同TTI长度的传输块的HARQ-ACK信息的传输和PUSCH对应相同的TTI,比如,在TTI#n上,需要传输TTI长度为2个符号的传输块的HARQ-ACK信息和TTI长度为1ms的传输块的HARQ-ACK信息,在所述TTI#n上,还需要传输PUSCH,可选,可以将所述多个HARQ-ACK分别编码在PUSCH上传输,或者联合编码在PUSCH上传输。
可选地,可以在PUSCH上只传输部分HARQ-ACK信息,剩余HARQ-ACK信息放弃传输或者推迟传输。优选地,可以在PUSCH上只传输TTI长度最小的一个或者多个传输块的HARQ-ACK信息。传输方式如其他实施例所述。
实施例十一
当SRS的约定传输时间和数据信息的传输时间有重叠时,本实施例给出一种处理方法。
本实施例给出的解决方法是:在所有或者部分DMRS对应的位置上,不传输DMRS,在所述位置上发送数据。
如果数据信息的传输时间长度为2个符号,第一个符号用于传输DMRS,第二个符号用于传输数据。当需要在该传输时间上的第二个符号传输SRS的时候,在该TTI,就只有DMRS和SRS在传输。
为了避免这种没有意义的传输,在UE需要发送SRS的子帧,可以不发送DMRS,在原本发送DMRS的符号上发送数据,利用SRS作为参考信号,用于数据的解调。可选地,对于eNB调度会有一些限制,用户数据应在SRS的带宽范围之内。
对于传输时间长度为3或者4个符号,也可以采用类似的方式,利用SRS作为参考信号,降低导频开销。或者,当有两个符号用作DMRS时,可以只传输一个符号上的DMRS。
可选地,当eNB调度的PUSCH的频域资源和UE的SRS的传输带宽没有重叠或者只有部分重叠时,UE放弃发送SRS,或者,UE放弃发送PUSCH。
实施例十二
在上述实施例中,给出了UCI和上行数据在PUSCH上的传输方法以及上行数据在PUSCH上的传输方法。
本实施例中给出上述传输的码率要求。
可选地,所述传输内容的码率满足指定的门限要求。比如,上行数据的码率不大于0.931或0.93或1。
可选地,上行数据在指定符号上的码率满足指定的门限要求。这里指定符号可以是某个符号,也可以是某几个符号。比如上行数据在第一个传输上行数据的符号上的码率不大于0.931或0.93或1,或者在每个传输上行数据的符号上的码率不大于0.931或0.93或1,或者,每两个符号的码率不大于0.931或0.93或1。实际应用中不限于上述举例。比如,这里一个传输上行数据的符号上的码率为将传输资源可以通过下式计算:(TBS+24)/(Qm×S),TBS是数据的传输块大小,Qm是调制阶数,S是一个传输上行数据的符号上的传输资源。两个符号上的码率为(TBS+24)/(Qm×S1),其中S1为两个符号上的RE个数。
可选地,上行数据在前n个传输上行数据的符号上的码率满足指定的门限要求,n小于等于PUSCH传输对应的符号数。比如,前n个符号上的码率可以用下式计算:(TBS+24)/(Qm×S1),其中S1为前n个符号上的RE个数。比如PUSCH一共4个传输符号,第一个符号为DMRS,后面三个符号为传输上行数据的符号,那么可以使上行数据在第二和第三个符号上的码率不大于0.931或0.93或1。
实施例十三
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
本实施例中,当需要上报数据信息时,所述数据信息为复用序列,否则没有复用序列;
建立交织矩阵,当还需要上报CQI/PMI时,从所述交织矩阵的第一行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列,比如从第一行开始逐行列入全部列。
当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,可以按照实施例二的方式写入。
跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列按照先行后列的顺序写入所述交织矩阵,即写完一列再写下一列,如果没有复用序列则不写入该复用矩阵;
当还需要上报HARQ-ACK时,HARQ-ACK可以从最后一行开始向上写入,或者按照实施例二的方式写入。
或者,所述写入HARQ-ACK的列为DMRS所在符号两侧相邻的x个符号对应的x列,所述写入RI/CRI的列为所述写入HARQ-ACK的列相邻的y个符号对应的y列;
所述写入RI/CRI的列为DMRS所在符号两侧相邻的x个符号对应的x列,所述写入HARQ-ACK的列为所述写入RI/CRI的列相邻的y个符号对应的y列;
所述写入HARQ-ACK的列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述写入RI/CRI的列为所述写入HARQ-ACK的列相邻的y个符号对应的y列;
所述写入RI/CRI的列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述写入HARQ-ACK的列为所述写入RI/CRI的列相邻的y个符号对应的y列;
其中x、y为正整数;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。参照图19,图19为交织矩阵的示例图。
实施例十三:
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
本实施例与实施例一类似,区别是复用序列中信息的顺序不同,并且HARQ-ACK写入的位置不同。
当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;
建立交织矩阵,将所述复用序列写入所述交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
当需要上报UCI和数据信息时,按照所述数据信息在前,所述UCI在后的方式进行级联,得到复用序列;
当需要上报RI/CRI和CQI/PMI时,按照所述CQI/PMI在前,所述RI/CRI在后的方式进行级联,得到复用序列。
在上述两种方法中,所有的写入都可以是先行后列或者先列后行,所述部分列的定义与前面的实施例类似。
经过上述的处理,HARQ-ACK在交织矩阵的上面,CQ/PMI和RI在脚趾矩阵的下面,如图21所示。
实施例十四
本实施例的传输信号的方法具体为:上行控制信息在PUSCH上传输的方法。
方式一:
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
当还需要上报CQI/PMI时,从指定行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵。
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
所述指定行为第一行或者为写入的RI/CRI的结束行,或者为写入的RI/CRI的结束行的下一行。
方式二
方式二与方式一类似,指示写入的位置略有不同,描述如下。
建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
当还需要上报CQI/PMI时,从指定行开始向上,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵。
将得到的所述交织矩阵逐列读出,完成复用和交织处理。
所述指定行为最后一行或者为写入的RI/CRI的结束行,或者为写入的RI/CRI的结束行的上一行。
在上述两种方法中,所有的写入都可以是先行后列或者先列后行,所述部分列的定义与前面的实施例类似。
RI/CRI和HARQ-ACK可以写入相同的列,也可以写入不同的列,或者可以有部分写入列相同。
图20为本发明实施例的传输信号的装置的结构组成示意图,如图20所示,所述装置包括:
处理和传输单元202,配置为当需要将UCI和数据信息中的至少之一在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息;或者,
所述处理和传输单元202,配置为当UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。
本发明实施例中,所述UCI包括以下至少之一:
CQI/PMI、HARQ-ACK、RI和CRI。
所述处理和传输单元202包括:
处理子单元2021,配置为将待上报的UCI和所述数据信息中的至少之一按照指定方式进行复用和交织处理,或者将待上报的UCI进行复用和交织处理;
传输子单元2022,配置为将处理后的信息承载在PUSCH上进行传输。
本发明实施例中,所述处理子单元2021,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;建立交织矩阵,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
这里,根据所述第一内容生成复用序列,包括:
当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
这里,所述当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
当需要上报UCI和数据信息时,按照所述UCI在前,所述数据信息在后的方式进行级联,得到复用序列;
当需要上报RI/CRI和CQI/PMI时,按照所述RI/CRI在前,所述CQI/PMI在后的方式进行级联,得到复用序列。
本发明实施例中,所述处理子单元2021,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:CQI/PMI、数据信息;建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵最后一行开始向上,将所述RI/CRI写入所述交织矩阵;跳过所述RI/CRI对应的位置,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元2021,还用于当需要上报数据信息时,所述数据信息为复用序列;建立交织矩阵,当还需要上报CQI/PMI时,从所述交织矩阵的第一行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入所述交织矩阵的部分列或者全部列;当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列按照先行后列的顺序写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
这里,所述从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵,包括以下之一:
当需要上报RI/CRI和HARQ-ACK时,将所述RI/CRI从所述交织矩阵的最后一行开始向上写入所述交织矩阵;将所述HARQ-ACK在所述RI/CRI结束的上一行开始写入所述交织矩阵,或者在所述RI/CRI结束行中的非RI/CRI的位置开始写入所述交织矩阵;
当需要上报HQRQ-ACK而不上报RI/CRI时,从所述交织矩阵的最后 一行开始向上,按照指定方式将所述HQRQ-ACK写入所述交织矩阵。
这里,所述RI/CRI或者HARQ-ACK在所述交织矩阵的全部或者部分列上写入。
这里,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述RI/CRI写入第一指定列;
当需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述HARQ-ACK写入第二指定列。
这里,所述第一指定列、所述第二指定列包括以下至少之一:
所述第一指定列为DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
所述第一指定列为所述交织矩阵的前z1列,所述第二指定列为所述交织矩阵的后z2列;
所述第一指定列为所述交织矩阵的后z1列,所述第二指定列为所述交织矩阵的前z2列;
所述第一指定列为距离DMRS所在符号最近的符号对应的列,所述第二指定列距离DMRS所在符号次近的符号对应的列;
其中x、y、z1、z2为正整数;
所述相邻为物理相邻,或者为逻辑相邻。
本发明实施例中,所述第一指定列、所述第二指定列包括以下至少之一:
所述第一指定列为DMRS所在符号两侧相邻的x个符号对应的x列,所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
所述第二指定列为DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
所述第二指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
其中x、y为正整数;
所述相邻为物理相邻,或者为逻辑相邻。
本发明实施例中,所述处理子单元2021,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将RI写入所述交织矩阵的全部列或者部分列;当需要上报CQI/PMI和数据信息中的至少之一时,将所述CQI/PMI和数据信息中的至少之一按照指定顺序级联生成复用序列;跳过所述RI/CRI对应的位置,将所述复用序列写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元2021,还用于当需要上报第一内容 时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;建立交织矩阵,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
本发明实施例中,所述处理子单元2021,还用于建立交织矩阵,当需要上报RI/CRI和CQI/PMI中的至少之一时,从所述交织矩阵的第一列开始,逐列将所述RI/CRI和CQI/PMI中的至少之一按照指定顺序写入所述交织矩阵;当需要上报数据信息时,将所述数据信息作为复用序列;跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
这里,当需要上报RI/CRI和CQI/PMI时,从所述交织矩阵的第一列开始,先写入所述RI/CRI,再写入所述CQI/PMI。
本发明实施例中,所述处理子单元2021,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;当还需要上报CQI/PMI时,从指定行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
其中,所述指定行为第一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的下一行。
本发明实施例中,所述处理子单元2021,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;当还需要上报CQI/PMI时,从指定行开始向上,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
其中,所述指定行为最后一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的上一行。
上述方案中,所述部分列为以下之一:
DMRS所在符号两侧相邻的A个符号对应的列,其中A为正整数;
DMRS所在符号对应的列以及所述DMRS所在符号两侧相邻的B个符号对应的列,其中B为非负整数;
DMRS所在符号一侧相邻的C个符号对应的列,其中C为正整数;
DMRS所在符号对应的列以及所述DMRS所在符号一侧相邻的D个符号对应的列,其中D为非负整数;
前E列,其中E为小于等于N的正整数;
后F列,其中F为小于等于N的正整数;
预设的列;
其中,所述相邻为物理相邻,或者为逻辑相邻。
当需要将数据信息在PUSCH上传输时,建立交织矩阵,将所述数据信 息逐列写入所述交织矩阵。
上述方案中,所述交织矩阵由所述目标内容的传输时间、DMRS的位置以及SRS配置中的至少之一确定。
上述方案中,写入交织矩阵时,按照先行后列的顺序写入交织矩阵,或者按照先列后行的顺序写入交织矩阵。
上述方案中,当DMRS和上行信息在一个符号中复用时,所有上行信息在写入交织矩阵时,均需跳过交织矩阵中DMRS对应的位置。
上述方案中,UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时的传输方式根据预设操作和基站的通知消息中的至少之一确定。所述传输方式通过以下至少之一指示:RRC信令、SIB、所述PUSCH对应的上行授权。
上述方案中,放弃传输全部或者部分所述UCI或者推迟传输全部或者部分所述UCI。
上述方案中,当所述UCI包含M个传输块的HARQ-ACK信息时,在所述目标内容的传输时间上传输全部或者部分传输块的HARQ-ACK信息,其中,M>1。
上述方案中,在所述目标内容的传输时间上传输部分传输块的HARQ-ACK信息,其中,所述部分传输块的传输时长均小于其他传输块的传输时长。
上述方案中,当SRS的约定传输时间和数据信息的传输时间有重叠时,在所述目标内容的传输时间上,在全部或者部分DMRS对应的位置上不传输DMRS而传输数据信息。
上述方案中,当UCI的约定传输时间和数据信息的传输时间有重叠时,根据所述目标内容的传输时间上的DMRS来传输所述全部或者部分UCI。
上述方案中,根据以下至少之一来传输所述全部或者部分UCI:
DMRS占用的频域资源;
DMRS占用的符号;
DMRS对应的序列;
用全部或者部分UCI的调制符号调制DMRS。
上述方案中,所述信息对应的码率满足指定的门限要求。
上述方案中,所述信息在指定符号上的码率满足指定的门限要求。
上述方案中,所述数据信息在前n个传输数据信息的符号上的码率不大于0.931或0.93或1,其中n小于或者等于传输所述数据信息的符号的总数。
本领域技术人员应当理解,图20所示的传输信号的装置中的各单元的实现功能可参照前述各个实施例的相关描述而理解。
在实际应用中,所述传输信号的装置中的各个单元及其子单元所实现的功能,均可由位于传输信号的装置中的中央处理器(Central Processing Unit,CPU)、或微处理器(Micro Processor Unit,MPU)、或数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本发明实施例上述传输信号的装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序配置为执行本发明实施例的传输信号的方法。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
工业实用性
本发明实施例的技术方案,当需要将UCI或者数据信息在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站 的通知消息;当UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。通过对本发明实施例技术方案的实施,在short TTI场景下实现了UCI在PUSCH上的传输。

Claims (53)

  1. 一种传输信号的方法,所述方法包括:
    当需要将上行控制信息UCI和数据信息中的至少之一在物理上行共享信道PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息;或者,
    当UCI或者探测参考信号SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。
  2. 根据权利要求1所述的传输信号的方法,其中,所述UCI包括以下至少之一:
    信道质量信息CQI/预编码矩阵指示PMI、混合自动重传请求确认信息HARQ-ACK、秩指示RI和信道状态信息参考符号资源指示CRI。
  3. 根据权利要求1所述的传输信号的方法,其中,所述方法还包括:
    将待上报的UCI和所述数据信息中的至少之一按照指定方式进行复用和交织处理,或者将待上报的UCI进行复用和交织处理;
    将处理后的信息承载在PUSCH上进行传输。
  4. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;
    建立交织矩阵,将所述复用序列写入所述交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  5. 根据权利要求4所述的传输信号的方法,其中,根据所述第一内容生成复用序列,包括:
    当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
    当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
    当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
    当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
  6. 根据权利要求5所述的传输信号的方法,其中,所述当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
    当需要上报UCI和数据信息时,按照所述UCI在前,所述数据信息在后的方式进行级联,得到复用序列;
    当需要上报RI/CRI和CQI/PMI时,按照所述RI/CRI在前,所述CQI/PMI在后的方式进行级联,得到复用序列。
  7. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;
    建立交织矩阵,将所述复用序列写入所述交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下, 将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  8. 根据权利要求4所述的传输信号的方法,其中,根据所述第一内容生成复用序列,包括:
    当需要上报的第一内容包含RI/CRI,不包含CQI/PMI和数据信息时,所述RI/CRI为复用序列;
    当需要上报的第一内容包含CQI/PMI,不包含RI/CRI和数据信息时,所述CQI/PMI为复用序列;
    当需要上报的第一内容包含数据信息,不包含CQI/PMI和RI/CRI时,所述数据信息为复用序列;
    当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列。
  9. 根据权利要求5所述的传输信号的方法,其中,所述当需要上报的第一内容包含RI/CRI、CQI/PMI和数据信息中的至少两个时,将所述RI/CRI、CQI/PMI和数据信息中的至少两个进行级联得到复用序列,包括以下至少之一:
    当需要上报UCI和数据信息时,按照所述数据信息在前,所述UCI在后的方式进行级联,得到复用序列;
    当需要上报RI/CRI和CQI/PMI时,按照所述CQI/PMI在前,所述RI/CRI在后的方式进行级联,得到复用序列。
  10. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    当需要上报第一内容时,根据所述第一内容生成复用序列;所述第 一内容为以下内容的至少之一:CQI/PMI、数据信息;
    建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;
    跳过所述RI/CRI对应的位置,将所述复用序列写入所述交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  11. 根据权利要求10所述的传输信号的方法,其中,根据所述第一内容生成复用序列,包括:
    当需要上报的第一内容包含CQI/PMI,不包含数据信息时,所述CQI/PMI为复用序列;
    当需要上报的第一内容包含数据信息,不包含CQI/PMI时,所述数据信息为复用序列;
    当需要上报的第一内容包含CQI/PMI和数据信息时,将所述CQI/PMI和数据信息进行级联得到复用序列。
  12. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    当需要上报数据信息时,所述数据信息为复用序列;
    建立交织矩阵,当还需要上报CQI/PMI时,从所述交织矩阵的第一行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入所述交织矩阵的部分列或者全部列;
    当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;
    跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列按照先行后列的顺序写入所述交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  13. 根据权利要求10或12所述的传输信号的方法,其中,所述从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵,包括以下之一:
    当需要上报RI/CRI和HARQ-ACK时,将所述RI/CRI从所述交织矩阵的最后一行开始向上写入所述交织矩阵;将所述HARQ-ACK在所述RI/CRI结束的上一行开始写入所述交织矩阵,或者在所述RI/CRI结束行中的非RI/CRI的位置开始写入所述交织矩阵;
    当需要上报HQRQ-ACK而不上报RI/CRI时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述HQRQ-ACK写入所述交织矩阵。
  14. 根据权利要求12所述的传输信号的方法,其中,所述从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵,包括以下之一:
    当需要上报HARQ-ACK时,将所述HARQ-ACK从所述交织矩阵的最后一行开始向上写入所述交织矩阵。
  15. 根据权利要求10、12或13所述的传输信号的方法,其中,
    所述RI/CRI或者HARQ-ACK在所述交织矩阵的全部或者部分列上写入。
  16. 根据权利要求10或12所述的传输信号的方法,其中,
    当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述RI/CRI写入第一指定列;
    当需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,按照指定方式将所述HARQ-ACK写入第二指定列。
  17. 根据权利要求16所述的传输信号的方法,其中,所述第一指定列、所述第二指定列包括以下至少之一:
    所述第一指定列为解调参考信号DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
    所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号另一侧相邻的y个符号对应的y列;
    所述第一指定列为DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
    所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号一侧相邻的x个符号对应的x列,第二指定列为DMRS所在符号对应的列以及DMRS所在符号另一侧相邻的y个符号对应的y列;
    所述第一指定列为所述交织矩阵的前z1列,所述第二指定列为所述交织矩阵的后z2列;
    所述第一指定列为所述交织矩阵的后z1列,所述第二指定列为所述交织矩阵的前z2列;
    所述第一指定列为距离DMRS所在符号最近的符号对应的列,所述第二指定列距离DMRS所在符号次近的符号对应的列;
    其中x、y、z1、z2为正整数;
    所述相邻为物理相邻,或者为逻辑相邻。
  18. 根据权利要求16所述的方法,其中,所述第一指定列、所述第二指定列包括以下至少之一:
    所述第一指定列为DMRS所在符号两侧相邻的x个符号对应的x列, 所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
    所述第二指定列为DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
    所述第一指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第二指定列为所述第一指定列相邻的y个符号对应的y列;
    所述第二指定列为DMRS所在符号对应的列以及DMRS所在符号两侧相邻的x个符号对应的x列,所述第一指定列为所述第二指定列相邻的y个符号对应的y列;
    其中x、y为正整数;
    所述相邻为物理相邻,或者为逻辑相邻。
  19. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将RI写入所述交织矩阵的全部列或者部分列;
    当需要上报CQI/PMI和数据信息中的至少之一时,将所述CQI/PMI和数据信息中的至少之一按照指定顺序级联生成复用序列;跳过所述RI/CRI对应的位置,将所述复用序列写入交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  20. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    建立交织矩阵,当需要上报RI/CRI和CQI/PMI中的至少之一时,从 所述交织矩阵的第一列开始,逐列将所述RI/CRI和CQI/PMI中的至少之一按照指定顺序写入所述交织矩阵;
    当需要上报数据信息时,将所述数据信息作为复用序列;跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列写入交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  21. 根据权利要求20所述的传输信号的方法,其中,
    当需要上报RI/CRI和CQI/PMI时,从所述交织矩阵的第一列开始,先写入所述RI/CRI,再写入所述CQI/PMI。
  22. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
    当还需要上报CQI/PMI时,从指定行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
    当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  23. 根据权利要求22所述的传输信号的方法,其中,所述指定行为第一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的下一行。
  24. 根据权利要求3所述的传输信号的方法,其中,所述进行复用和交织处理,包括:
    建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;
    当还需要上报CQI/PMI时,从指定行开始向上,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;
    当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;
    当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;
    将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  25. 根据权利要求24所述的传输信号的方法,其中,所述指定行为最后一行,或者为写入的所述RI/CRI的结束行,或者为写入的所述RI/CRI的结束行的上一行。
  26. 根据权利要求22或24所述的传输信号的方法,其中,包括:
    所述RI/CRI与所述HARQ-ACK写入的列相同。
  27. 根据权利要求4、7、15、19、20、22或24所述的传输信号的方法,其中,所述部分列为以下之一:
    DMRS所在符号两侧相邻的A个符号对应的列,其中A为正整数;
    DMRS所在符号对应的列以及所述DMRS所在符号两侧相邻的B个 符号对应的列,其中B为非负整数;
    DMRS所在符号一侧相邻的C个符号对应的列,其中C为正整数;
    DMRS所在符号对应的列以及所述DMRS所在符号一侧相邻的D个符号对应的列,其中D为非负整数;
    前E列,其中E为小于等于N的正整数;
    后F列,其中F为小于等于N的正整数;
    预设的列;
    其中,所述相邻为物理相邻,或者为逻辑相邻。
  28. 根据权利要求1所述的传输信号的方法,其中,所述方法还包括:
    当需要将数据信息在PUSCH上传输时,建立交织矩阵,将所述数据信息逐列写入所述交织矩阵。
  29. 根据权利要求4、7、10、12、19、20、22或28所述的传输信号的方法,其中,
    所述交织矩阵由所述目标内容的传输时间、DMRS的位置以及SRS配置中的至少之一确定。
  30. 根据权利要求4、7、10、12、19、20、22或24所述的传输信号的方法,其中,写入交织矩阵时,按照先行后列的顺序写入交织矩阵,或者按照先列后行的顺序写入交织矩阵。
  31. 根据权利要求4、7、10、12、19、20、22、24或28所述的传输信号的方法,其中,当DMRS和上行信息在一个符号中复用时,所有上行信息在写入交织矩阵时,均需跳过交织矩阵中DMRS对应的位置。
  32. 根据权利要求3所述的传输信号的方法,其中,所述方法还包括:
    UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时的传 输方式根据预设操作和基站的通知消息中的至少之一确定。
  33. 根据权利要求22所述的方法,其中,所述传输方式通过以下至少之一指示:
    无线资源控制RRC信令;
    系统信息块SIB;
    所述PUSCH对应的上行授权。
  34. 根据权利要求1所述的传输信号的方法,其中,所述方法还包括:
    放弃传输全部或者部分所述UCI或者推迟传输全部或者部分所述UCI。
  35. 根据权利要求1或2所述的传输信号的方法,其中,当所述UCI包含M个传输块的HARQ-ACK信息时,在所述目标内容的传输时间上传输全部或者部分传输块的HARQ-ACK信息,其中,M>1。
  36. 根据权利要求35所述的传输信号的方法,其中,在所述目标内容的传输时间上传输部分传输块的HARQ-ACK信息,其中,所述部分传输块的传输时长均小于其他传输块的传输时长。
  37. 根据权利要求1所述的传输信号的方法,其中,
    当SRS的约定传输时间和数据信息的传输时间有重叠时,在所述目标内容的传输时间上,在全部或者部分DMRS对应的位置上不传输DMRS而传输数据信息。
  38. 根据权利要求1所述的传输信号的方法,其中,
    当UCI的约定传输时间和数据信息的传输时间有重叠时,根据所述目标内容的传输时间上的DMRS来传输所述全部或者部分UCI。
  39. 根据权利要求38所述的传输信号的方法,其中,所述方法还包括:
    根据以下至少之一来传输所述全部或者部分UCI:
    DMRS占用的频域位置;
    DMRS占用的符号;
    DMRS对应的序列;
    用全部或者部分UCI的调制符号调制DMRS。
  40. 根据权利要求1所述的方法,其中,
    所述信息对应的码率满足指定的门限要求。
  41. 根据权利要求40所述的方法,其中,
    所述信息在指定符号上的码率满足指定的门限要求。
  42. 根据权利要求40或41所述的方法,其中,
    所述数据信息在前n个传输数据信息的符号上的码率不大于0.931或0.93或1,其中n小于或者等于传输所述数据信息的符号的总数。
  43. 一种传输信号的装置,所述装置包括:
    处理和传输单元,配置为当需要将UCI和数据信息中的至少之一在PUSCH上传输时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息;或者,
    所述处理和传输单元,配置为当UCI或者SRS的约定传输时间和数据信息的传输时间有重叠时,根据以下至少之一对目标内容进行处理和传输:预设操作、基站的通知消息。
  44. 根据权利要求43所述的传输信号的装置,其中,所述UCI包括以下至少之一:CQI/PMI、HARQ-ACK、RI和CRI;
    所述处理和传输单元包括:
    处理子单元,配置为将待上报的UCI和所述数据信息中的至少之一按照指定方式进行复用和交织处理,或者将待上报的UCI进行复用和交织处理;
    传输子单元,配置为将处理后的信息承载在PUSCH上进行传输。
  45. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;建立交织矩阵,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  46. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:RI/CRI、CQI/PMI、数据信息;建立交织矩阵,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  47. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于当需要上报第一内容时,根据所述第一内容生成复用序列;所述第一内容为以下内容的至少之一:CQI/PMI、数据信息;建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵最后一行开始向上,将所述RI/CRI写入所述交织矩阵;跳过所述RI/CRI对应的位置,将所述复用序列写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  48. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于当需要上报数据信息时,所述数据信息为复用序列;建立交 织矩阵,当还需要上报CQI/PMI时,从所述交织矩阵的第一行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入所述交织矩阵的部分列或者全部列;当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵;跳过所述RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列按照先行后列的顺序写入所述交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的指定位置开始向上,将所述HARQ-ACK写入所述交织矩阵;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  49. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将RI写入所述交织矩阵的全部列或者部分列;当需要上报CQI/PMI和数据信息中的至少之一时,将所述CQI/PMI和数据信息中的至少之一按照指定顺序级联生成复用序列;跳过所述RI/CRI对应的位置,将所述复用序列写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  50. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI和CQI/PMI中的至少之一时,从所述交织矩阵的第一列开始,逐列将所述RI/CRI和CQI/PMI中的至少之一按照指定顺序写入所述交织矩阵;当需要上报数据信息时,将所述数据信息作为复用序列;跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述复用序列写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交 织矩阵逐列读出,完成复用和交织处理。
  51. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的第一行开始向下,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;当还需要上报CQI/PMI时,从指定行开始向下,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的最后一行开始向上,所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  52. 根据权利要求44所述的传输信号的装置,其中,所述处理子单元,还用于建立交织矩阵,当需要上报RI/CRI时,从所述交织矩阵的最后一行开始向上,将所述RI/CRI写入所述交织矩阵,其中,所述RI/CRI写入部分列或者全部列;当还需要上报CQI/PMI时,从指定行开始向上,将所述CQI/PMI写入所述交织矩阵,其中,所述CQI/PMI写入部分列或者全部列;当还需要发送数据时,跳过RI/CRI和CQI/PMI中的至少之一对应的位置,将所述数据写入交织矩阵;当还需要上报HARQ-ACK时,从所述交织矩阵的第一行开始向下,将所述HARQ-ACK写入所述交织矩阵,其中,所述HARQ-ACK写入部分列或者全部列;将得到的所述交织矩阵逐列读出,完成复用和交织处理。
  53. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-42任一项所述的传输信号的方法。
PCT/CN2017/079174 2016-04-01 2017-03-31 一种传输信号的方法和装置、计算机存储介质 WO2017167305A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17773334.2A EP3439211B1 (en) 2016-04-01 2017-03-31 Method, device, and computer storage media for transmitting signals

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610203336 2016-04-01
CN201610203336.7 2016-04-01
CN201610654499.7 2016-08-10
CN201610654499 2016-08-10
CN201610875565.3 2016-10-01
CN201610875565.3A CN107276715A (zh) 2016-04-01 2016-10-01 一种传输信号的方法和装置

Publications (1)

Publication Number Publication Date
WO2017167305A1 true WO2017167305A1 (zh) 2017-10-05

Family

ID=59963554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079174 WO2017167305A1 (zh) 2016-04-01 2017-03-31 一种传输信号的方法和装置、计算机存储介质

Country Status (1)

Country Link
WO (1) WO2017167305A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244599A1 (zh) * 2019-06-04 2020-12-10 华为技术有限公司 一种反馈指示方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286970A (zh) * 2008-05-16 2008-10-15 中兴通讯股份有限公司 在物理上行共享信道中秩指示信令的发送方法
CN101902313A (zh) * 2010-06-22 2010-12-01 中兴通讯股份有限公司 基于pusch传输的上行控制信息的编码方法及系统
US20110310855A1 (en) * 2010-06-18 2011-12-22 Sharp Laboratories Of America, Inc. Uplink control information (uci) multiplexing on the physical uplink shared channel (pusch)
CN102377537A (zh) * 2010-08-10 2012-03-14 电信科学技术研究院 一种上行控制信息uci传输和接收方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286970A (zh) * 2008-05-16 2008-10-15 中兴通讯股份有限公司 在物理上行共享信道中秩指示信令的发送方法
US20110310855A1 (en) * 2010-06-18 2011-12-22 Sharp Laboratories Of America, Inc. Uplink control information (uci) multiplexing on the physical uplink shared channel (pusch)
CN101902313A (zh) * 2010-06-22 2010-12-01 中兴通讯股份有限公司 基于pusch传输的上行控制信息的编码方法及系统
CN102377537A (zh) * 2010-08-10 2012-03-14 电信科学技术研究院 一种上行控制信息uci传输和接收方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Uplink DMRS for PUSCH in Short TTI", 3GPP TSG RAN WG1 MEETING #84, RL-160987, 6 February 2016 (2016-02-06), XP051064474 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244599A1 (zh) * 2019-06-04 2020-12-10 华为技术有限公司 一种反馈指示方法及通信装置

Similar Documents

Publication Publication Date Title
JP6722301B2 (ja) ワイヤレスデバイスに対するアップリンク送信の設定
US10897774B2 (en) Information processing method and apparatus
EP3439211B1 (en) Method, device, and computer storage media for transmitting signals
JP2019521549A (ja) アダプティブ送信時間間隔長
WO2016161910A1 (zh) 一种信息传输的方法及装置
WO2018171474A1 (zh) 数据传输的方法、设备和系统
CN107846707B (zh) 一种免授予的ue、基站中的方法和装置
EP3425981A1 (en) Resource allocation method and network device
RU2758080C2 (ru) Способ связи, сетевое устройство и терминал
CN114598998B (zh) 一种用于无线通信的节点中的方法和装置
JP2022516738A (ja) 通信デバイス、インフラストラクチャ機器および方法
WO2010124437A1 (zh) 物理上行控制信息的接收方法、基站和中继设备
JP2023099023A (ja) 基地局、通信方法及び集積回路
WO2017167305A1 (zh) 一种传输信号的方法和装置、计算机存储介质
US10470207B2 (en) Control information sending method, data block transmission method, and related apparatus
CN114666021B (zh) 一种用于无线通信的节点中的方法和装置
CN111492607A (zh) 一种用于无线通信的通信节点中的方法和装置
US11510248B2 (en) Method and apparatus in user equipement and base station supporting enhanced random access procedure
WO2014186952A1 (zh) 混合自动重传请求指示信息传输方法和装置
WO2016179805A1 (zh) 一种数据传输的方法及装置
CN116132007A (zh) 一种被用于无线通信的节点中的方法和装置
WO2017193396A1 (zh) 信息处理方法、终端及基站
WO2022017126A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN110474712B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2017162194A1 (zh) 一种传输信息的方法及装置、存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773334

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773334

Country of ref document: EP

Effective date: 20181102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773334

Country of ref document: EP

Kind code of ref document: A1