WO2017167197A1 - Polymer compounds comprising poly (meth) acrylimide foam particles - Google Patents

Polymer compounds comprising poly (meth) acrylimide foam particles Download PDF

Info

Publication number
WO2017167197A1
WO2017167197A1 PCT/CN2017/078572 CN2017078572W WO2017167197A1 WO 2017167197 A1 WO2017167197 A1 WO 2017167197A1 CN 2017078572 W CN2017078572 W CN 2017078572W WO 2017167197 A1 WO2017167197 A1 WO 2017167197A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer compound
foam particles
compound according
thermoplastic resin
polymer
Prior art date
Application number
PCT/CN2017/078572
Other languages
French (fr)
Inventor
Ricardo Luiz Willemann
Qianwen KONG
Jianmin Yang
Zhisheng Wang
Chunfeng LU
Jingbin LI
Denis HOLLEYN
Florian Becker
Original Assignee
Evonik Specialty Chemicals (Shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Specialty Chemicals (Shanghai) Co., Ltd. filed Critical Evonik Specialty Chemicals (Shanghai) Co., Ltd.
Priority to KR1020187031204A priority Critical patent/KR102340431B1/en
Priority to CN201780021924.1A priority patent/CN108884256A/en
Priority to JP2019502132A priority patent/JP6985363B2/en
Publication of WO2017167197A1 publication Critical patent/WO2017167197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/33Agglomerating foam fragments, e.g. waste foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles

Definitions

  • the invention relates to a polymer compound comprising poly (meth) acrylimide (P (M) I) foam particles, in particular polymethacrylimide (PMI) foam particles.
  • Poly (meth) acrylimide foams e.g. polymethacrylimide foams, such as those marketed under the trademark by Evonik Resource Efficiency GMBH, are widely used in composite material for light weight design in the aerospace, automotive, sport and medical device industries, etc. due to their light weight and high mechanical performance.
  • WO2013/056947 describes a mould shaping process of P (M) I foams which partially solves the above problems, wherein (prefoamed) P (M) I polymer particles are foamed in a mould with the aid of adhesives, which can be a polyamide or a poly (meth) acrylate.
  • the dose of the adhesives can be up to 20%of the P (M) I polymer particles, i.e. up to 16.7%based on the total weight of the P (M) I polymer particles and the adhesive.
  • This process still results in long cycle time.
  • the present invention provides a polymer compound, comprising:
  • thermoplastic resin which is melt processible at temperatures of less than 400°C
  • thermoplastic resin constitutes 20-99%
  • the P (M) I foam particles constitute 1-80%
  • the polymer compound of the present invention achieves better compressive and/or bend strength than the individual components, besides the light weight.
  • the present invention further provides a method for producing the polymer compound of the present invention, which includes a step of physically mixing the poly (meth) acrylimide foam particles and the melt of the thermoplastic resin.
  • the present invention further provides the use of the polymer compound of the present invention in light weight constructions.
  • thermoplastic resin there is no limitation to the thermoplastic resin as long as it is melt processible at temperatures of less than 400°C. Melt processible is used in its conventional sense, that the polymer can be processed at the indicated temperatures without substantial degradation of the polymer.
  • thermoplastic resin examples include polyamides, polyolefins, polyesters and copolymers containing any of the above segments as well as the blend thereof.
  • the polyamide is selected from aliphatic polyamides, more preferably PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and the blend thereof.
  • the P (M) I foam particles used in the present invention can be obtained by the granulation of the P (M) I foams which are not in particulate form.
  • the P (M) I foams are also termed rigid foams, and feature particular robustness.
  • the P (M) I foams are normally produced in a two-stage process: a) production of a cast polymer, and b) foaming of said cast polymer. In accordance with the prior art, these are then cut or sawn to give the desired shape.
  • Production of the P (M) I foams begins with production of monomer mixtures which comprise (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of from 2: 3 to 3: 2 as main constituents.
  • monomer mixtures which comprise (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of from 2: 3 to 3: 2 as main constituents.
  • Other comonomers can also be used, examples being esters of acrylic or methacrylic acid, styrene, maleic acid and itaconic acid and anhydrides thereof, and vinylpyrrolidone.
  • the proportion of the comonomers here should not be more than 30%by weight.
  • Small quantities of crosslinking monomers can also be used, an example being allyl acrylate. However, the quantities should preferably be at most from 0.05%by weight to 2.0%by weight.
  • the copolymerization mixture moreover comprises blowing agents which at temperatures of about 150 to 250°C either decompose or vaporize and thus form a gas phase.
  • the polymerization takes place below this temperature, and the cast polymer therefore comprises a latent blowing agent.
  • the polymerization advantageously takes place in a block mould between two glass plates.
  • the cast polymer is then foamed at an appropriate temperature in a second step.
  • P (M) I foams are known in principle to a person skilled in the art and can be reviewed in EP 1 444 293, EP 1 678 244 or WO 2011/138060 for example.
  • the P (M) I foam particles used in the present invention can also be obtained by the foaming of the P (M) I polymer particles.
  • the P (M) I polymer particles can be obtained by grinding the cast polymer, for example, in a cutting mill. The grindings are then foamed at an appropriate temperature to produce the P (M) I foam particles.
  • the P (M) I foam particles used in the present invention is obtained by the foaming of the P (M) I polymer particles, where the closed foam cells are not destroyed, compared with the P (M) I foam particles obtained by the granulation of the P (M) I foams.
  • the P (M) I foam particles have a grain size which ranges 0.1-30 mm, more preferably 0.5-10 mm.
  • the P (M) I foam particles have a bulk density of 25-220 kg/m 3 , more preferably 50-150 kg/m 3 .
  • the P (M) I foam particles are polymethacrylimide (PMI) foam particles.
  • PMI polymers and/or foams commercially available from Evonik Resource Efficiency GMBH, may be mentioned in particular.
  • thermoplastic resin and the P (M) I foam particles in the polymer compound of the present invention.
  • thermoplastic resin can constitute 20-95%, preferably 20-80%, more preferably 30-70%, and the P (M) I foam particles can constitute 5-80%, preferably 20-80%, more preferably 30-70%, based on the total weight of the polymer compound. But it is also possible that the thermoplastic resin constitutes 1-99%, and the P (M) I foam particles can constitute 1-99%, based on the total weight of the polymer compound.
  • thermoplastic resin is melt processible at temperatures of less than 250°C, and/or the P (M) I foam particles maintain the particulate form at temperatures of less than 250°C.
  • the polymer compound of the present invention may include additives, such as calcium carbonate, glass beads, zinc oxide, and fiber reinforcements such as ceramic fibers, aramid fibers, potassium titanate fibers, glass fibers and carbon fibers, depending on the effect or performance desired.
  • additives such as calcium carbonate, glass beads, zinc oxide, and fiber reinforcements such as ceramic fibers, aramid fibers, potassium titanate fibers, glass fibers and carbon fibers, depending on the effect or performance desired.
  • the polymer compound of the present invention are generally suitable in principle for any type of lightweight constructions, and can in particular be used in mass production by way of example for bodywork construction or for interior cladding in the automobile industry, interior parts in rail vehicle construction or shipbuilding, in the aerospace industry, in mechanical engineering, in the production of sports equipment, in furniture construction or in the design of wind turbines.
  • the PMI foam particles used in the examples were prepared from PMI polymer particles marketed with trademark Triple F by Evonik Resource Efficiency GMBH.
  • the PMI polymer particles were produced from a fully polymerized copolymer sheet (which had not been prefoamed) with the aid of a granulator.
  • the grain size range of the particles used in the examples, after sieving to keep the fines, was below 1.0 mm.
  • the bulk density of the PMI polymer particles was about 600-700 kg/m 3 .
  • the PMI polymer particles were foamed in an oven at a temperature of 200-240°Cfor 30-60 mins.
  • the obtained PMI foam particles had a bulk density of 100-150 kg/m 3 and a grain size of 0.5-5 mm.
  • the PMI foam particles were mixed with the melts of a PA12 ( L1600, by Evonik Resource Efficiency GMBH) and a PA12 elastomer ( E30, polyether block PA12, by Evonik Resource Efficiency GMBH) respectively to prepare two 50 : 50 (weight) compounds, which were shaped into plates having a thickness of 5 mm.
  • a PA12 L1600, by Evonik Resource Efficiency GMBH
  • a PA12 elastomer E30, polyether block PA12, by Evonik Resource Efficiency GMBH
  • the plates were tested for compressive strength (ISO 844) and bending strength (ISO 178) as well as density. The result is indicated in the table below.
  • PMI rigid foam commercially available from Evonik Resource Efficiency GMBH, was selected as reference material, because of its relatively high compression and bending strength, among the marketed series of PMI foams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A polymer compound comprises a thermoplastic resin and poly (meth) acrylimide (P (M) I) foam particles. The polymer compound achieves better mechanical performance than the individual components, and can be widely used in lightweight construction.

Description

POLYMER COMPOUNDS COMPRISING POLY (METH) ACRYLIMIDE FOAM PARTICLES Field of the invention
The invention relates to a polymer compound comprising poly (meth) acrylimide (P (M) I) foam particles, in particular polymethacrylimide (PMI) foam particles.
Background
Poly (meth) acrylimide foams e.g. polymethacrylimide foams, such as those marketed under the trademark 
Figure PCTCN2017078572-appb-000001
by Evonik Resource Efficiency GMBH, are widely used in composite material for light weight design in the aerospace, automotive, sport and medical device industries, etc. due to their light weight and high mechanical performance.
In the past, the P (M) I foams were supplied in the shape of blocks, which however did not quite fit the processing of parts with complex 3D geometries, and could result in long cycle time, low precision, and material waste.
WO2013/056947 describes a mould shaping process of P (M) I foams which partially solves the above problems, wherein (prefoamed) P (M) I polymer particles are foamed in a mould with the aid of adhesives, which can be a polyamide or a poly (meth) acrylate. The dose of the adhesives can be up to 20%of the P (M) I polymer particles, i.e. up to 16.7%based on the total weight of the P (M) I polymer particles and the adhesive. However this process still results in long cycle time.
To solve the above mentioned problems, the present inventors explored the possibility for the P (M) I foam particles to form polymer compounds with thermoplastic resins and accomplished the present invention.
Summary of the present invention
The present invention provides a polymer compound, comprising:
(1) a thermoplastic resin, which is melt processible at temperatures of less than 400℃, and
(2) poly (meth) acrylimide foam particles, which maintain the particulate form at temperatures of less than 400℃,
wherein
the thermoplastic resin constitutes 20-99%, and
the P (M) I foam particles constitute 1-80%,
based on the total weight of the polymer compound.
It is surprisingly found that the polymer compound of the present invention achieves better compressive and/or bend strength than the individual components, besides the light weight.
The present invention further provides a method for producing the polymer compound of the present invention, which includes a step of physically mixing the poly (meth) acrylimide foam particles and the melt of the thermoplastic resin.
The present invention further provides the use of the polymer compound of the present invention in light weight constructions.
Detailed description of the present invention
There is no limitation to the thermoplastic resin as long as it is melt processible at temperatures of less than 400℃. Melt processible is used in its conventional sense, that the polymer can be processed at the indicated temperatures without substantial degradation of the polymer.
Examples of the thermoplastic resin include polyamides, polyolefins, polyesters and copolymers containing any of the above segments as well as the blend thereof.
Preferably, the polyamide is selected from aliphatic polyamides, more preferably PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and the blend thereof.
The P (M) I foam particles used in the present invention can be obtained by the granulation of the P (M) I foams which are not in particulate form.
The P (M) I foams are also termed rigid foams, and feature particular robustness. The  P (M) I foams are normally produced in a two-stage process: a) production of a cast polymer, and b) foaming of said cast polymer. In accordance with the prior art, these are then cut or sawn to give the desired shape.
Production of the P (M) I foams begins with production of monomer mixtures which comprise (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of from 2: 3 to 3: 2 as main constituents. Other comonomers can also be used, examples being esters of acrylic or methacrylic acid, styrene, maleic acid and itaconic acid and anhydrides thereof, and vinylpyrrolidone. However, the proportion of the comonomers here should not be more than 30%by weight. Small quantities of crosslinking monomers can also be used, an example being allyl acrylate. However, the quantities should preferably be at most from 0.05%by weight to 2.0%by weight.
The copolymerization mixture moreover comprises blowing agents which at temperatures of about 150 to 250℃ either decompose or vaporize and thus form a gas phase. The polymerization takes place below this temperature, and the cast polymer therefore comprises a latent blowing agent. The polymerization advantageously takes place in a block mould between two glass plates.
The cast polymer is then foamed at an appropriate temperature in a second step. The production of such P (M) I foams is known in principle to a person skilled in the art and can be reviewed in EP 1 444 293, EP 1 678 244 or WO 2011/138060 for example.
The P (M) I foam particles used in the present invention can also be obtained by the foaming of the P (M) I polymer particles.
The P (M) I polymer particles can be obtained by grinding the cast polymer, for example, in a cutting mill. The grindings are then foamed at an appropriate temperature to produce the P (M) I foam particles.
Preferably, the P (M) I foam particles used in the present invention is obtained by the foaming of the P (M) I polymer particles, where the closed foam cells are not destroyed, compared with the P (M) I foam particles obtained by the granulation of the P (M) I foams.
Preferably, the P (M) I foam particles have a grain size which ranges 0.1-30 mm, more preferably 0.5-10 mm.
Preferably, the P (M) I foam particles have a bulk density of 25-220 kg/m3, more preferably 50-150 kg/m3.
In one preferred embodiment of the present invention, the P (M) I foam particles are polymethacrylimide (PMI) foam particles.
Figure PCTCN2017078572-appb-000002
PMI polymers and/or foams, commercially available from Evonik Resource Efficiency GMBH, may be mentioned in particular.
There is no limitation to the proportion of the thermoplastic resin and the P (M) I foam particles in the polymer compound of the present invention.
The thermoplastic resin can constitute 20-95%, preferably 20-80%, more preferably 30-70%, and the P (M) I foam particles can constitute 5-80%, preferably 20-80%, more preferably 30-70%, based on the total weight of the polymer compound. But it is also possible that the thermoplastic resin constitutes 1-99%, and the P (M) I foam particles can constitute 1-99%, based on the total weight of the polymer compound.
In one preferred embodiment of the present invention, the thermoplastic resin is melt processible at temperatures of less than 250℃, and/or the P (M) I foam particles maintain the particulate form at temperatures of less than 250℃.
The polymer compound of the present invention may include additives, such as calcium carbonate, glass beads, zinc oxide, and fiber reinforcements such as ceramic fibers, aramid fibers, potassium titanate fibers, glass fibers and carbon fibers, depending on the effect or performance desired.
The polymer compound of the present invention are generally suitable in principle for any type of lightweight constructions, and can in particular be used in mass production by way of example for bodywork construction or for interior cladding in the automobile industry, interior parts in rail vehicle construction or shipbuilding, in the  aerospace industry, in mechanical engineering, in the production of sports equipment, in furniture construction or in the design of wind turbines.
Examples
The PMI foam particles used in the examples were prepared from PMI polymer particles marketed with trademark
Figure PCTCN2017078572-appb-000003
Triple F by Evonik Resource Efficiency GMBH. The PMI polymer particles were produced from a fully polymerized copolymer sheet (which had not been prefoamed) with the aid of a granulator. The grain size range of the particles used in the examples, after sieving to keep the fines, was below 1.0 mm. The bulk density of the PMI polymer particles was about 600-700 kg/m3.
The PMI polymer particles were foamed in an oven at a temperature of 200-240℃for 30-60 mins. The obtained PMI foam particles had a bulk density of 100-150 kg/m3 and a grain size of 0.5-5 mm.
The PMI foam particles were mixed with the melts of a PA12 (
Figure PCTCN2017078572-appb-000004
L1600, by Evonik Resource Efficiency GMBH) and a PA12 elastomer (
Figure PCTCN2017078572-appb-000005
E30, polyether block PA12, by Evonik Resource Efficiency GMBH) respectively to prepare two 50 : 50 (weight) compounds, which were shaped into plates having a thickness of 5 mm.
The plates were tested for compressive strength (ISO 844) and bending strength (ISO 178) as well as density. The result is indicated in the table below.
Figure PCTCN2017078572-appb-000006
Figure PCTCN2017078572-appb-000007
200 WF PMI rigid foam, commercially available from Evonik Resource Efficiency GMBH, was selected as reference material, because of its relatively high compression and bending strength,  among the marketed
Figure PCTCN2017078572-appb-000008
series of PMI foams.
It can be seen that more than 25%weight reduction is achieved for both Vestamid L1600 and Vestamid E30. And the polymer compounds of the examples achieve higher compressive and/or bending strength than the individual raw material.

Claims (11)

  1. A polymer compound, comprising:
    (1) a thermoplastic resin, which is melt processible at temperatures of less than 400℃, and
    (2) poly (meth) acrylimide (P (M) I) foam particles, which maintain the particulate form at temperatures of less than 400℃,
    wherein
    the thermoplastic resin constitutes 20-99%, and
    the P (M) I foam particles constitute 1-80%,
    based on the total weight of the polymer compound.
  2. The polymer compound according to claim 1, wherein the thermoplastic resin is selected from polyamides, polyolefins, polyesters and copolymers containing any of the above segments as well as the blend thereof.
  3. The polymer compound according to claim 2, wherein the polyamide is selected from aliphatic polyamides, more preferably from the group consisting of PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and the blend thereof.
  4. The polymer compound according to any one of the preceding claims, wherein the P (M) I foam particles have a grain size which ranges 0.1-30 mm, preferably 0.5-10 mm.
  5. The polymer compound according to any one of the preceding claims, wherein the P (M) I foam particles have a bulk density of 25-220 kg/m3, preferably 50-150 kg/m3.
  6. The polymer compound according to any one of the preceding claims, wherein the P (M) I foam particles are obtained by:
    (1) the granulation of P (M) I foams which are not in particulate form, or
    (2) the foaming of P (M) I polymer particles.
  7. The polymer compound according to any one of the preceding claims, wherein the  P (M) I foam particles are polymethacrylimide (PMI) foam particles.
  8. The polymer compound according to any one of the preceding claims, wherein the thermoplastic resin constitutes 20-95%, preferably 20-80%, more preferably 30-70%, and
    the P (M) I foam particles constitute 5-80%, preferably 20-80%, more preferably 30-70%,
    based on the total weight of the polymer compound.
  9. The polymer compound according to any one of the preceding claims, wherein the thermoplastic resin is melt processible at temperatures of less than about 250℃, and/or
    the P (M) I foam particles maintain the particulate form at temperatures of less than 250℃.
  10. A method for producing the polymer compound according to any one of the preceding claims, including a step of physically mixing the P (M) I foam particles and the melt of the thermoplastic resin.
  11. Use of the polymer compound according to any one of the preceding claims 1-9 in light weight constructions.
PCT/CN2017/078572 2016-03-30 2017-03-29 Polymer compounds comprising poly (meth) acrylimide foam particles WO2017167197A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187031204A KR102340431B1 (en) 2016-03-30 2017-03-29 Polymer Compounds Comprising Poly(meth)acrylimide Foam Particles
CN201780021924.1A CN108884256A (en) 2016-03-30 2017-03-29 Polymer blend comprising poly- (methyl) acrylimide foam particle
JP2019502132A JP6985363B2 (en) 2016-03-30 2017-03-29 Polymer compound containing poly (meth) acrylicimide foam particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2016/077893 2016-03-30
CN2016077893 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017167197A1 true WO2017167197A1 (en) 2017-10-05

Family

ID=59963515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078572 WO2017167197A1 (en) 2016-03-30 2017-03-29 Polymer compounds comprising poly (meth) acrylimide foam particles

Country Status (5)

Country Link
JP (1) JP6985363B2 (en)
KR (1) KR102340431B1 (en)
CN (1) CN108884256A (en)
TW (1) TWI778957B (en)
WO (1) WO2017167197A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640287A1 (en) * 2018-10-16 2020-04-22 Röhm GmbH Polyether blockamide poly(meth)acrylate foams
WO2023139194A1 (en) 2022-01-24 2023-07-27 Röhm Gmbh Polymer foams based on blends of poly(vinylidene fluoride) and poly(meth)acrylimide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561361A (en) * 2001-08-29 2005-01-05 罗姆两合公司 Method of producing polymethacrylimide foams
US20140309361A1 (en) * 2011-10-21 2014-10-16 Evonik Roehm Gmbh Process for preparing expanded copolymers based on poly(meth)acrylimide comprising an adhesion promoter
CN104487231A (en) * 2012-05-21 2015-04-01 赢创工业集团股份有限公司 Pul-core method with PMI foam core
TW201532826A (en) * 2013-11-15 2015-09-01 Evonik Industries Ag Honeycomb structures comprising poly(meth)acrylimide foam

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2188611A5 (en) * 1972-06-05 1974-01-18 Pratt Et Lamber Inc Polymer coating materials contg microspheres - which expand to foam poly-mer when heated, for insulation
DE202006020503U1 (en) * 2006-10-19 2008-10-09 Basf Se Light wood materials
JP5671216B2 (en) * 2009-05-18 2015-02-18 日鉄住金防蝕株式会社 Insulated polyolefin coated steel pipe
WO2011122229A1 (en) * 2010-03-31 2011-10-06 積水化学工業株式会社 Thermally expandable microcapsule, method for producing thermally expandable microcapsule, foamable masterbatch and foam molded article
CN101857656B (en) * 2010-05-24 2011-08-31 四川大学 Expandable particles for producing polymethacrylimide foamed material and application thereof
JP5814551B2 (en) * 2011-01-19 2015-11-17 積水化学工業株式会社 Foam molding
DE102013225132A1 (en) * 2013-12-06 2015-06-11 Evonik Industries Ag Prefoaming of poly (meth) acrylimide particles for subsequent mold foaming in closed tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561361A (en) * 2001-08-29 2005-01-05 罗姆两合公司 Method of producing polymethacrylimide foams
US20140309361A1 (en) * 2011-10-21 2014-10-16 Evonik Roehm Gmbh Process for preparing expanded copolymers based on poly(meth)acrylimide comprising an adhesion promoter
CN104487231A (en) * 2012-05-21 2015-04-01 赢创工业集团股份有限公司 Pul-core method with PMI foam core
TW201532826A (en) * 2013-11-15 2015-09-01 Evonik Industries Ag Honeycomb structures comprising poly(meth)acrylimide foam

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640287A1 (en) * 2018-10-16 2020-04-22 Röhm GmbH Polyether blockamide poly(meth)acrylate foams
WO2020079081A1 (en) 2018-10-16 2020-04-23 Röhm Gmbh Polyether block amide-poly(meth)acrylate foams
WO2020078856A1 (en) 2018-10-16 2020-04-23 Evonik Operations Gmbh Polyether block amide-poly(meth)acrylate foams
CN112867755A (en) * 2018-10-16 2021-05-28 罗姆化学有限责任公司 Polyether block amide-poly (meth) acrylic foams
CN113330059A (en) * 2018-10-16 2021-08-31 赢创运营有限公司 Polyether block amide-poly (meth) acrylic foams
CN113330059B (en) * 2018-10-16 2022-11-08 赢创运营有限公司 Polyether block amide-poly (meth) acrylic foams
CN112867755B (en) * 2018-10-16 2024-01-02 赢创运营有限公司 Polyether block amide-poly (meth) acrylic foams
JP7431818B2 (en) 2018-10-16 2024-02-15 エボニック オペレーションズ ゲーエムベーハー Polyether block amide poly(meth)acrylate foam
WO2023139194A1 (en) 2022-01-24 2023-07-27 Röhm Gmbh Polymer foams based on blends of poly(vinylidene fluoride) and poly(meth)acrylimide

Also Published As

Publication number Publication date
KR20180124995A (en) 2018-11-21
JP6985363B2 (en) 2021-12-22
TWI778957B (en) 2022-10-01
TW201805349A (en) 2018-02-16
KR102340431B1 (en) 2021-12-16
JP2019510869A (en) 2019-04-18
CN108884256A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6038162B2 (en) Process for producing poly (meth) acrylimide-based expansion copolymer containing adhesion promoter
TWI263509B (en) Particulate water-absorbent resin composition and its production process
TWI525144B (en) Pmi foams with improved mechanical properties, in particular with increased tensile strain at break
JP2013538137A (en) In-mold foaming method using foamable medium and surface layer, and plastic molded body obtained by the method
WO2017167197A1 (en) Polymer compounds comprising poly (meth) acrylimide foam particles
CN107250185A (en) Multistage polymerization compositions, its preparation method, its purposes and the composition comprising it
CA2949294A1 (en) Foam moulding poly(meth)acrylimide particles in closed moulds for producing rigid foam cores
TW201532826A (en) Honeycomb structures comprising poly(meth)acrylimide foam
KR20170133421A (en) Production of a pmma foam using cross-linking agents, regulators and blowing agents
KR20180103678A (en) Production of fine-pored pmma foams using nucleating agents
WO2019052360A1 (en) Process for injection moulding polymer compounds comprising poly (meth) acrylimide foam particles
WO2019062731A1 (en) Process for extrusion moulding polymer compounds comprising poly (meth) acrylimide foam particles
CN105237947A (en) Abrasion-proof plastic bag and preparation method thereof
CN116249731A (en) Composition comprising a copolymer comprising polyamide blocks and polyether blocks
MX2020005744A (en) Foamable acrylic composition.
JP5586459B2 (en) Improved butt connection for core material
US20190366589A1 (en) Process for the production of a sulfone polymer agglomerate from the recovery of expanded sulfone polymer
CN108003426A (en) Polyethylene foamed composition and polyethylene foam product and preparation method thereof
Kornienko et al. The production of polyimide foam materials based on acrylonitrile and (meth) acrylic acid
KR102041365B1 (en) Method for manufacturing projectile
CN109467637B (en) Heat-resistant acrylate foam foamed in mold
CN110256716B (en) Polymethacrylimide foam material for helicopter and preparation method thereof
RU2575032C2 (en) Method of foaming in mould with application of foamable medium and covering layers and resulting plastic moulded product
CN109867950A (en) A kind of tenacity increased nylon and preparation method
CN107778609A (en) Wear-resistant plastic and preparation method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019502132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187031204

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773227

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773227

Country of ref document: EP

Kind code of ref document: A1