JP6985363B2 - Polymer compound containing poly (meth) acrylicimide foam particles - Google Patents

Polymer compound containing poly (meth) acrylicimide foam particles Download PDF

Info

Publication number
JP6985363B2
JP6985363B2 JP2019502132A JP2019502132A JP6985363B2 JP 6985363 B2 JP6985363 B2 JP 6985363B2 JP 2019502132 A JP2019502132 A JP 2019502132A JP 2019502132 A JP2019502132 A JP 2019502132A JP 6985363 B2 JP6985363 B2 JP 6985363B2
Authority
JP
Japan
Prior art keywords
polymer compound
foam particles
particles
compound according
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019502132A
Other languages
Japanese (ja)
Other versions
JP2019510869A (en
Inventor
ルイス ヴィレマン リカルド
コン チアンウェン
ヤン ジアンミン
ワン ジシェン
ルー チュンフェン
リー ジンビン
ホライン デニス
ベッカー フローリアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Specialty Chemicals Shanghai Co Ltd
Original Assignee
Evonik Specialty Chemicals Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Specialty Chemicals Shanghai Co Ltd filed Critical Evonik Specialty Chemicals Shanghai Co Ltd
Publication of JP2019510869A publication Critical patent/JP2019510869A/en
Application granted granted Critical
Publication of JP6985363B2 publication Critical patent/JP6985363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/33Agglomerating foam fragments, e.g. waste foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、ポリ(メタ)アクリルイミド(P(M)I)フォーム粒子、特にポリメタクリルイミド(PMI)フォーム粒子を含む、ポリマーコンパウンドに関する。 The present invention relates to polymer compounds comprising poly (meth) acrylicimide (P (M) I) foam particles, particularly polymethacrylicimide (PMI) foam particles.

背景技術
ポリ(メタ)アクリルイミドフォーム、例えばポリメタクリルイミドフォーム、例えばEvonik Resource Efficiency GMBHによって商品名Rohacell(登録商標)として市販されているものは、その軽量且つ高い機械的性能ゆえに、航空宇宙、自動車、スポーツおよび医療機器の産業等において、軽量の設計のために複合材中で広く使用されている。
Background Technology Poly (meth) acrylicimide foams, such as polymethacrylicimide foams, such as those marketed by Evonik Resources Efficiency GMBH under the trade name Rohacelll®, are aerospace, automotive due to their lightweight and high mechanical performance. Widely used in composites for lightweight design, etc. in the sports and medical equipment industries.

過去において、P(M)Iフォームはブロックの形状で供給されていたが、それは複雑な3Dの幾何学的形状を有する部品の加工にはあまり適合せず、長いサイクル時間、低い精度、および材料の廃棄をもたらすことがあった。 In the past, P (M) I foam was supplied in the form of blocks, but it is not well suited for machining parts with complex 3D geometry, long cycle times, low accuracy, and materials. May result in disposal.

国際公開第2013/056947号(WO2013/056947)は、部分的に上記の課題を解決するP(M)Iフォームのモールド成型方法を記載しており、そこでは、(予備発泡された)P(M)Iポリマー粒子がモールド内で、ポリアミドまたはポリ(メタ)アクリレートであり得る接着剤で補助されて発泡される。接着剤の用量はP(M)Iポリマー粒子の20%まで、例えば、P(M)Iポリマー粒子と接着剤との総質量に対して16.7%までであってよい。しかしながら、この方法は、未だに長いサイクル時間をもたらす。 International Publication No. 2013/056947 (WO2013 / 056947) describes a method of molding P (M) I foam that partially solves the above problems, in which (pre-foamed) P (pre-foamed) P ( M) I Polymer particles are foamed in the mold, assisted by an adhesive that can be polyamide or poly (meth) acrylate. The dose of the adhesive may be up to 20% of the P (M) I polymer particles, for example up to 16.7% of the total mass of the P (M) I polymer particles and the adhesive. However, this method still results in long cycle times.

上述の課題を解決するために、本発明者らは、P(M)Iフォーム粒子が、熱可塑性樹脂と共にポリマーコンパウンドを形成する可能性を探索し、本発明を成し遂げた。 In order to solve the above-mentioned problems, the present inventors have explored the possibility that P (M) I foam particles form a polymer compound together with a thermoplastic resin, and accomplished the present invention.

発明の概要
本発明は、
(1) 400℃未満の温度で溶融加工可能な熱可塑性樹脂と、
(2) 400℃未満の温度で粒子状の形態を保持するポリ(メタ)アクリルイミドフォーム粒子
とを含むポリマーコンパウンドであって、前記ポリマーコンパウンドの総質量に対して、
前記熱可塑性樹脂が20〜99%を構成し、且つ
前記P(M)Iフォーム粒子が1〜80%を構成する、
前記ポリマーコンパウンドを提供する。
Outline of the invention The present invention
(1) A thermoplastic resin that can be melt-processed at a temperature of less than 400 ° C.
(2) A polymer compound containing poly (meth) acrylicimide foam particles that retain a particulate morphology at a temperature of less than 400 ° C., with respect to the total mass of the polymer compound.
The thermoplastic resin comprises 20-99% and the P (M) I foam particles make up 1-80%.
The polymer compound is provided.

意外なことに、本発明のポリマーコンパウンドは、軽量であること以外に、個々の成分よりも良好な圧縮強さおよび/または曲げ強さを達成することが判明した。 Surprisingly, the polymeric compounds of the invention have been found to achieve better compressive and / or flexural strength than the individual components, in addition to being lightweight.

本発明はさらに、本発明のポリマーコンパウンドの製造方法であって、ポリ(メタ)アクリルイミドフォーム粒子と熱可塑性樹脂の溶融物とを物理的に混合する段階を含む前記方法を提供する。 The present invention further provides a method for producing a polymer compound of the present invention, which comprises the steps of physically mixing poly (meth) acrylicimide foam particles with a melt of a thermoplastic resin.

本発明はさらに、軽量の構造物における本発明のポリマーコンパウンドの使用を提供する。 The invention further provides the use of the polymeric compounds of the invention in lightweight structures.

発明の詳細な説明
前記熱可塑性樹脂は、400℃未満の温度で溶融加工可能である限り、限定されない。溶融加工可能とは、そのポリマーを、示された温度で実質的にポリマーの劣化なく加工できるという、通常の意味で用いられる。
Detailed Description of the Invention The thermoplastic resin is not limited as long as it can be melt-processed at a temperature of less than 400 ° C. Melt processable is used in the usual sense that the polymer can be processed at the indicated temperature with substantially no deterioration of the polymer.

前記熱可塑性樹脂の例は、ポリアミド、ポリオレフィン、ポリエステルおよび任意の上記のセグメントを含有するコポリマー、並びにそれらのブレンドを含む。 Examples of the thermoplastic resin include polyamides, polyolefins, polyesters and copolymers containing any of the above segments, as well as blends thereof.

好ましくは、前記ポリアミドは、脂肪族ポリアミド、より好ましくはPA6、PA11、PA12、PA46、PA66、PA10、PA610、PA612、PA1010、PA1012およびそれらのブレンドから選択される。 Preferably, the polyamide is selected from aliphatic polyamides, more preferably PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and blends thereof.

本発明において使用されるP(M)Iフォーム粒子は、粒子状の形態ではないP(M)Iフォームを造粒することによって得ることができる。 The P (M) I foam particles used in the present invention can be obtained by granulating P (M) I foam which is not in the form of particles.

P(M)Iフォームは硬質フォームとも称され、特別な頑健性を特徴とする。前記P(M)Iフォームは通常、a) キャストポリマーの製造、およびb) 前記キャストポリマーの発泡という2段階の工程で製造される。先行技術によれば、それらは次に切断または鋸で切られて、所望の形状がもたらされる。 P (M) I foam, also referred to as rigid foam, is characterized by special robustness. The P (M) I foam is usually produced in a two-step process of a) the production of the cast polymer and b) the foaming of the cast polymer. According to the prior art, they are then cut or sawed to give the desired shape.

P(M)Iフォームの製造は、(メタ)アクリル酸と(メタ)アクリロニトリルとを、好ましくは2:3〜3:2のモル比で、主成分として含むモノマー混合物の製造で開始する。他のコモノマーを使用することもでき、例はアクリル酸またはメタクリル酸、スチレン、マレイン酸およびイタコン酸のエステル、およびそれらの無水物、およびビニルピロリドンである。しかしながら、ここでコモノマーの割合は30質量%を上回るべきではない。少量の架橋モノマーを使用することもでき、一例はアリルアクリレートである。しかしながら、その量は好ましくは最大で0.05質量%〜2.0質量%であるべきである。 The production of P (M) I foam is initiated by the production of a monomer mixture containing (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of 2: 3 to 3: 2, as the main components. Other comonomeres can also be used, examples are acrylic acid or methacrylic acid, styrene, maleic acid and itaconic acid esters, and their anhydrides, and vinylpyrrolidone. However, the proportion of comonomer here should not exceed 30% by weight. A small amount of crosslinked monomer can also be used, one example being allyl acrylate. However, the amount should preferably be at most 0.05% to 2.0% by weight.

共重合混合物はさらに、約150〜250℃の温度で分解または蒸発して気相を形成する膨張剤を含む。重合はこの温度未満で生じるので、前記キャストポリマーは潜在的な膨張剤を含む。重合は有利には2つのガラスプレートの間のブロックモールド内で生じる。 The copolymerized mixture further comprises a leavening agent that decomposes or evaporates at a temperature of about 150-250 ° C. to form a vapor phase. Since the polymerization occurs below this temperature, the cast polymer contains a potential leavening agent. Polymerization advantageously occurs in the block mold between the two glass plates.

前記キャストポリマーを次に、第二の段階において適切な温度で発泡させる。そのようなP(M)Iフォームの製造は、原理的に当業者に公知であり、例えば欧州特許出願公開第1444293号明細書(EP1444293)、欧州特許出願公開第1678244号明細書(EP1678244)または国際公開第2011/138060(WO2011/138060)号内で調べることができる。 The cast polymer is then foamed at an appropriate temperature in the second step. The manufacture of such P (M) I foams is, in principle, known to those of skill in the art, eg, European Patent Application Publication No. 1444293 (EP1444293), European Patent Application Publication No. 1678244 (EP1678244) or It can be found in International Publication No. 2011/138060 (WO2011 / 138060).

本発明において使用されるP(M)Iフォーム粒子は、P(M)Iポリマー粒子の発泡によって得ることもできる。 The P (M) I foam particles used in the present invention can also be obtained by foaming P (M) I polymer particles.

前記P(M)Iポリマー粒子を、例えばカッティングミル中でキャストポリマーを粉砕することによって得ることができる。その粉砕物を次に適切な温度で発泡させて、P(M)Iフォーム粒子を製造する。 The P (M) I polymer particles can be obtained, for example, by grinding the cast polymer in a cutting mill. The pulverized material is then foamed at an appropriate temperature to produce P (M) I foam particles.

好ましくは、本発明内で使用されるP(M)Iフォーム粒子はP(M)Iポリマー粒子の発泡によって得られ、その際、P(M)Iフォームの造粒によって得られたP(M)Iフォーム粒子と比較して、フォームの独立気泡は破壊されていない。 Preferably, the P (M) I foam particles used in the present invention are obtained by foaming P (M) I polymer particles, in which case P (M) obtained by granulation of P (M) I foam. ) Compared to the I-foam particles, the closed cells of the foam are not destroyed.

好ましくは、前記P(M)Iフォーム粒子は0.1〜30mm、より好ましくは0.5〜10mmの範囲の粒径を有する。 Preferably, the P (M) I foam particles have a particle size in the range of 0.1 to 30 mm, more preferably 0.5 to 10 mm.

好ましくは、前記P(M)Iフォーム粒子は25〜220kg/m3、より好ましくは50〜150kg/m3のかさ密度を有する。 Preferably, the P (M) I foam particles have a bulk density of 25-220 kg / m 3 , more preferably 50-150 kg / m 3.

本発明の1つの好ましい実施態様において、前記P(M)Iフォーム粒子はポリメタクリルイミド(PMI)フォーム粒子である。 In one preferred embodiment of the invention, the P (M) I foam particles are polymethacrylicimide (PMI) foam particles.

Evonik Resource Efficiency GMBHから市販されているRohacell(登録商標)PMIポリマーおよび/またはフォームを特に言及できる。 Specific reference can be made to Rohacelll® PMI polymers and / or foams commercially available from Evonik Resources Efficiency GMBH.

本発明のポリマーコンパウンド中での熱可塑性樹脂とP(M)Iフォーム粒子との比は限定されない。 The ratio of the thermoplastic resin to the P (M) I foam particles in the polymer compound of the present invention is not limited.

ポリマーコンパウンドの総質量に対して、前記熱可塑性樹脂は20〜95%、好ましくは20〜80%、より好ましくは30〜70%を構成でき、且つ前記P(M)Iフォーム粒子は5〜80%、好ましくは20〜80%、より好ましくは30〜70%を構成できる。しかし、ポリマーコンパウンドの総質量に対して、前記熱可塑性樹脂が1〜99%を構成し、且つ前記P(M)Iフォーム粒子が1〜99%を構成することもできる。 The thermoplastic resin can make up 20-95%, preferably 20-80%, more preferably 30-70%, and the P (M) I foam particles 5-80% of the total mass of the polymer compound. %, Preferably 20-80%, more preferably 30-70%. However, the thermoplastic resin may make up 1-99% and the P (M) I foam particles may make up 1-99% of the total mass of the polymer compound.

本発明の1つの好ましい実施態様において、前記熱可塑性樹脂は250℃未満の温度で溶融加工可能であり、且つ/または前記P(M)Iフォーム粒子は250℃未満の温度で粒子状の形態を保持する。 In one preferred embodiment of the invention, the thermoplastic resin can be melted at a temperature below 250 ° C. and / or the P (M) I foam particles have a particulate form at a temperature below 250 ° C. Hold.

本発明のポリマーコンパウンドは、所望の効果または性能に依存して、添加剤、例えば炭酸カルシウム、カラスビーズ、酸化亜鉛、および繊維強化材、例えばセラミック繊維、アラミド繊維、チタン酸カリウム繊維、ガラス繊維およびカーボン繊維を含むことができる。 The polymer compounds of the present invention depend on the desired effect or performance with additives such as calcium carbonate, crow beads, zinc oxide, and fiber reinforcements such as ceramic fibers, aramid fibers, potassium titanate fibers, glass fibers and It can contain carbon fibers.

本発明のポリマーコンパウンドは一般に、原理的に任意の種類の軽量の構造物のために適しており、且つ、特に、例えば自動車産業における車体の製造または内装のクラッディング、鉄道車両の製造または造船における内装部品のための量産において、航空宇宙産業において、医療技術において、スポーツ用品の生産において、家具の製造において、または風力タービンの設計において使用できる。 The polymer compounds of the present invention are generally suitable for any kind of lightweight structure in principle, and are particularly suitable for vehicle body manufacturing or interior cladding, railroad vehicle manufacturing or shipbuilding, for example in the automotive industry. It can be used in mass production for interior parts, in the aerospace industry, in medical technology, in the production of sporting goods, in the manufacture of furniture, or in the design of wind turbines.

実施例内で使用されたPMIフォーム粒子は、商品名ROHACELL(登録商標)Triple FとしてEvonik Resource Efficiency GMBHから市販されているPMIポリマー粒子から製造された。前記PMIポリマー粒子は、完全に重合されたコポリマーシート(予備発泡されていない)から、造粒機で補助して製造された。実施例内で使用された粒子の粒径の範囲は、篩別して微細分を保持した後に、1.0mm未満であった。PMIポリマー粒子のかさ密度は約600〜700kg/m3であった。 The PMI foam particles used in the Examples were made from PMI polymer particles commercially available from Evonik Resource Efficiency GMBH under the trade name ROHACELL® Triple F. The PMI polymer particles were produced from a fully polymerized copolymer sheet (not pre-foamed) with the assistance of a granulator. The particle size range of the particles used in the examples was less than 1.0 mm after sieving to retain the fines. The bulk density of the PMI polymer particles was about 600-700 kg / m 3 .

前記PMIポリマー粒子を、温度200〜240℃で30〜60分間、オーブン内で発泡させた。得られたPMIフォーム粒子は、かさ密度100〜150kg/m3および粒径0.5〜5mmを有していた。 The PMI polymer particles were foamed in an oven at a temperature of 200-240 ° C. for 30-60 minutes. The obtained PMI foam particles had a bulk density of 100 to 150 kg / m 3 and a particle size of 0.5 to 5 mm.

前記PMIフォーム粒子を、PA12(Evonik Resource Efficiency GMBHのVestamid(登録商標)L1600)およびPA12エラストマー(Evonik Resource Efficiency GMBHのVestamid(登録商標)E30、ポリエーテルブロックPA12)の溶融物とそれぞれ混合して、2つの50:50(質量)のコンパウンドを製造し、それらを厚さ5mmのプレートに成型した。 The PMI foam particles are mixed with PA12 (Evonik Resource Efficiency GMBH Vestamide® L1600) and PA12 elastomer (Evonik Resource Efficiency GMBH Vestamide® E30, respectively, and a melted product of a polyether block PA12). Two 50:50 (mass) compounds were made and molded into 5 mm thick plates.

前記プレートを、圧縮強さ(ISO844)および曲げ強さ(ISO178)並びに密度について試験した。結果を以下の表に示す。

Figure 0006985363
The plates were tested for compressive strength (ISO844) and bending strength (ISO178) as well as density. The results are shown in the table below.
Figure 0006985363

*Rohacell(登録商標) 200 WF PMI硬質フォーム(Evonik Resource Efficiency GMBHから市販)は、市販のRohacellシリーズのPMIフォームの中では圧縮強さおよび曲げ強さが比較的高いので、参照用材料として選択された。 * Rohacelll® 200 WF PMI Rigid Foam (commercially available from Evonik Resource Efficiency GMBH) has been selected as a reference material due to its relatively high compressive and flexural strength among the commercially available Rohacellel series PMI foams. rice field.

Vestamid L1600およびVestamid E30の両方について、25%を上回る質量の低減が達成されることが理解できる。また、実施例のポリマーコンパウンドは、個々の原料よりも高い圧縮強さおよび/または曲げ強さを達成する。 It can be seen that a mass reduction of more than 25% is achieved for both Vestamide L1600 and Vestamide E30. Also, the polymer compounds of the examples achieve higher compressive strength and / or bending strength than the individual raw materials.

Claims (9)

(1) 400℃未満の温度で溶融加工可能な熱可塑性樹脂と、
(2) 400℃未満の温度で粒子状の形態を保持するポリ(メタ)アクリルイミド(P(M)I)フォーム粒子
とを含むポリマーコンパウンドであって、
前記ポリマーコンパウンドの総質量に対して、
前記熱可塑性樹脂が3070%を構成し
前記P(M)Iフォーム粒子が3070%を構成し、且つ
前記P(M)Iフォーム粒子が、0.5〜5mmの範囲の粒径及び100〜150kg/m 3 のかさ密度を有する、
前記ポリマーコンパウンド。
(1) A thermoplastic resin that can be melt-processed at a temperature of less than 400 ° C.
(2) A polymer compound containing poly (meth) acrylicimide (P (M) I) foam particles that retain their particulate morphology at temperatures below 400 ° C.
With respect to the total mass of the polymer compound
The thermoplastic resin constitutes 30 to 70 %,
The P (M) I foam particles constitute 30 to 70% and
The P (M) I foam particles have a particle size in the range of 0.5-5 mm and a bulk density of 100-150 kg / m 3.
The polymer compound.
前記熱可塑性樹脂が、ポリアミド、ポリオレフィン、ポリエステルおよび任意の上記のセグメントを含有するコポリマー、並びにそれらのブレンドから選択される、請求項1に記載のポリマーコンパウンド。 The polymer compound according to claim 1, wherein the thermoplastic resin is selected from a copolymer containing a polyamide, a polyolefin, a polyester and any of the above segments, and a blend thereof. 前記ポリアミドが、脂肪族ポリアミドから選択される、請求項2に記載のポリマーコンパウンド。 The polymer compound according to claim 2, wherein the polyamide is selected from aliphatic polyamides. 前記脂肪族ポリアミドが、PA6、PA11、PA12、PA46、PA66、PA10、PA610、PA612、PA1010、PA1012およびそれらのブレンドからなる群から選択される、請求項3に記載のポリマーコンパウンド。The polymer compound according to claim 3, wherein the aliphatic polyamide is selected from the group consisting of PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and blends thereof. 前記P(M)Iフォーム粒子が、
(1) 粒子状の形態ではないP(M)Iフォームを造粒すること、または
(2) P(M)Iポリマー粒子を発泡させること
によって得られるものである、請求項1からまでのいずれか1項に記載のポリマーコンパウンド。
The P (M) I foam particles are
Claims 1 to 4 , which are obtained by (1) granulating P (M) I foam that is not in the form of particles, or (2) foaming P (M) I polymer particles. The polymer compound according to any one of the following items.
前記P(M)Iフォーム粒子が、ポリメタクリルイミド(PMI)フォーム粒子である、請求項1からまでのいずれか1項に記載のポリマーコンパウンド。 The polymer compound according to any one of claims 1 to 5 , wherein the P (M) I foam particles are polymethacrylicimide (PMI) foam particles. 前記熱可塑性樹脂は約250℃未満の温度で溶融加工可能であり、且つ/または
前記P(M)Iフォーム粒子は250℃未満の温度で粒子状の形態を保持する、
請求項1からまでのいずれか1項に記載のポリマーコンパウンド。
The thermoplastic resin can be melted at a temperature of less than about 250 ° C. and / or the P (M) I foam particles retain their particulate form at a temperature of less than 250 ° C.
The polymer compound according to any one of claims 1 to 6.
前記P(M)Iフォーム粒子と前記熱可塑性樹脂の溶融物とを、物理的に混合する段階を含む、請求項1からまでのいずれか1項に記載のポリマーコンパウンドの製造方法。 The method for producing a polymer compound according to any one of claims 1 to 7 , which comprises a step of physically mixing the P (M) I foam particles and the melt of the thermoplastic resin. 請求項1からまでのいずれか1項に記載のポリマーコンパウンドの軽量の構造物中での使用。 Use of the polymer compound according to any one of claims 1 to 7 in a lightweight structure.
JP2019502132A 2016-03-30 2017-03-29 Polymer compound containing poly (meth) acrylicimide foam particles Active JP6985363B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2016077893 2016-03-30
CNPCT/CN2016/077893 2016-03-30
PCT/CN2017/078572 WO2017167197A1 (en) 2016-03-30 2017-03-29 Polymer compounds comprising poly (meth) acrylimide foam particles

Publications (2)

Publication Number Publication Date
JP2019510869A JP2019510869A (en) 2019-04-18
JP6985363B2 true JP6985363B2 (en) 2021-12-22

Family

ID=59963515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502132A Active JP6985363B2 (en) 2016-03-30 2017-03-29 Polymer compound containing poly (meth) acrylicimide foam particles

Country Status (5)

Country Link
JP (1) JP6985363B2 (en)
KR (1) KR102340431B1 (en)
CN (1) CN108884256A (en)
TW (1) TWI778957B (en)
WO (1) WO2017167197A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640287A1 (en) * 2018-10-16 2020-04-22 Röhm GmbH Polyether blockamide poly(meth)acrylate foams
WO2023139194A1 (en) 2022-01-24 2023-07-27 Röhm Gmbh Polymer foams based on blends of poly(vinylidene fluoride) and poly(meth)acrylimide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2188611A5 (en) * 1972-06-05 1974-01-18 Pratt Et Lamber Inc Polymer coating materials contg microspheres - which expand to foam poly-mer when heated, for insulation
DE10141757A1 (en) * 2001-08-29 2003-03-27 Roehm Gmbh Improved process for the production of PMI foams
DE202006020503U1 (en) * 2006-10-19 2008-10-09 Basf Se Light wood materials
JP5671216B2 (en) * 2009-05-18 2015-02-18 日鉄住金防蝕株式会社 Insulated polyolefin coated steel pipe
US9776157B2 (en) * 2010-03-31 2017-10-03 Sekisui Chemical Co., Ltd. Thermally expandable microcapsule, method for producing thermally expandable microcapsule, foamable masterbatch, and foam molded article
CN101857656B (en) * 2010-05-24 2011-08-31 四川大学 Expandable particles for producing polymethacrylimide foamed material and application thereof
JP5814551B2 (en) * 2011-01-19 2015-11-17 積水化学工業株式会社 Foam molding
DE102011085026A1 (en) * 2011-10-21 2013-04-25 Evonik Röhm Gmbh Process for the production of grain boundary adhesion of expanded copolymers based on methacrylic and acrylic compounds and adhesion of various cover layers on the foam core
DE102012208428A1 (en) * 2012-05-21 2013-11-21 Evonik Industries Ag Pul core process with PMI foam core
DE102013223347A1 (en) * 2013-11-15 2015-05-21 Evonik Industries Ag Honeycomb filled with poly (meth) acrylimide foam
DE102013225132A1 (en) * 2013-12-06 2015-06-11 Evonik Industries Ag Prefoaming of poly (meth) acrylimide particles for subsequent mold foaming in closed tools

Also Published As

Publication number Publication date
KR20180124995A (en) 2018-11-21
JP2019510869A (en) 2019-04-18
CN108884256A (en) 2018-11-23
TW201805349A (en) 2018-02-16
TWI778957B (en) 2022-10-01
WO2017167197A1 (en) 2017-10-05
KR102340431B1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6038162B2 (en) Process for producing poly (meth) acrylimide-based expansion copolymer containing adhesion promoter
JP2018076510A (en) Composite material of thermoplastic (meth)acrylic resin obtained by in situ polymerization, and use of the same
TWI525144B (en) Pmi foams with improved mechanical properties, in particular with increased tensile strain at break
JP6985363B2 (en) Polymer compound containing poly (meth) acrylicimide foam particles
US20150166824A1 (en) Additive Process for Production of Dimensionally Stable Three Dimensional Objects
JP2013538137A (en) In-mold foaming method using foamable medium and surface layer, and plastic molded body obtained by the method
CA2949294A1 (en) Foam moulding poly(meth)acrylimide particles in closed moulds for producing rigid foam cores
JP6161563B2 (en) Fiber reinforced composite
RU2014138919A (en) METHOD FOR PRODUCING CARBON FIBER PRODUCTS AND PRODUCT OBTAINED BY THE APPROVED METHOD
TW201532826A (en) Honeycomb structures comprising poly(meth)acrylimide foam
CN102358799A (en) Unsaturated polyester molding compound and preparation method thereof
CA2953201A1 (en) Pressure-dependent foam moulding of poly(meth)acrylimide particles in closed moulds for producing rigid foam cores
KR20190022664A (en) Compositions comprising fiber materials, multistage polymers and (meth) acrylic polymers, processes for their preparation, and uses thereof
CN105882081A (en) Composite abrasion-proof damping material and preparing method thereof
CN102304268A (en) Modified acrylonitrile-butadiene-styrene copolymer and preparation process thereof
WO2019052360A1 (en) Process for injection moulding polymer compounds comprising poly (meth) acrylimide foam particles
JP6395896B2 (en) Foamed particles for in-mold foam molding, in-mold foam molded body and fiber reinforced composite
CN106928540A (en) High-rigidity heat-resistant polypropylene/polyphenylene sulfide PP/PPS alloy and preparation method thereof
WO2019062731A1 (en) Process for extrusion moulding polymer compounds comprising poly (meth) acrylimide foam particles
CN111587265B (en) Liquid composition for use in applications of SMC molded thermoplastic composites
JP6200861B2 (en) Resin foam for forming composite and method for producing fiber-reinforced composite
CN106459433A (en) Impregnation process for a functional fibrous substrate, a liquid monomer syrup for the impregnation process, its method of polymerization and structured article obtained thereof
CN105017704A (en) Plastic toughening modification method
Wimalaratne et al. Preparation of wood-plastic composite using teak saw dust and high density polyethylene
CN102532656A (en) Processing modifier used for modifying high pressure polyethylene waste moulding material into special pipe material and application method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211125

R150 Certificate of patent or registration of utility model

Ref document number: 6985363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150