WO2017167184A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2017167184A1
WO2017167184A1 PCT/CN2017/078446 CN2017078446W WO2017167184A1 WO 2017167184 A1 WO2017167184 A1 WO 2017167184A1 CN 2017078446 W CN2017078446 W CN 2017078446W WO 2017167184 A1 WO2017167184 A1 WO 2017167184A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
data
enb
pmi
transmitted
Prior art date
Application number
PCT/CN2017/078446
Other languages
English (en)
French (fr)
Inventor
张瑞齐
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017167184A1 publication Critical patent/WO2017167184A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a data transmission method and apparatus.
  • MIMO Multiple Input Multiple Output
  • the eNB sends a Channel State Information Reference Signal (CSI-RS) to the UE, and the UE sends a Channel State Information Reference Signal (CSI-RS) to the UE according to the CSI-
  • the RS acquires a first precoding matrix and a second precoding matrix of a current data channel, where the first precoding matrix is composed of a plurality of column vectors, and the second precoding matrix is composed of a column vector and a two-stage antenna selected from a plurality of column vectors a phase difference between the components, sending a first Precoding Matrix Index (PMI) and a second PMI to the eNB, the first PMI includes a first precoding matrix, and the second PMI includes a second precoding matrix;
  • the first precoding matrix and the second precoding matrix are used to calculate a precoding matrix, and the data to be transmitted is weighted by the precoding matrix and sent to the UE.
  • the data channel changes rapidly.
  • the phase difference in the second precoding matrix changes.
  • the eNB calculates the precoding matrix according to the second precoding matrix and passes the precoding.
  • the matrix is to be weighted for the data to be transmitted, the phase difference has changed, so that the calculated precoding matrix does not match the current data channel, which leads to a decrease in precoding performance.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the base station eNB receives the rank indication RI of the data channel and the first precoding matrix indication PMI sent by the user terminal UE, and determines a precoding matrix group of the UE to be transmitted data according to the RI and the first PMI,
  • the precoding matrix group includes a plurality of precoding matrices
  • the data to be transmitted is weighted by the selected precoding matrix and then transmitted to the UE.
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • the determining, by the RI and the first PMI, a precoding matrix group of the UE to be transmitted data including:
  • a second PMI Receiving, by the UE, a second PMI, where the second PMI includes an indication of column vector selection, determining, according to the RI and the first PMI, a first precoding matrix, and determining according to the indication of the column vector selection Determining a second precoding matrix group according to each phase difference in the column vector and the phase difference set, and determining, according to the first precoding matrix and the second precoding matrix group, the pre-transmission data of the UE A coding matrix set for storing a phase difference between two sets of polarized antennas.
  • the eNB uses each phase difference in the phase difference set in turn to construct a precoding matrix group, and when transmitting data to be transmitted to the UE, the precoding matrix in the precoding matrix group is used in turn, thereby Improved precoding performance.
  • the UE may also report the phase difference in the second PMI, so that the eNB constructs a precoding matrix group according to the phase difference, and when using the data to be transmitted to the UE, the preamble in the precoding matrix group is used in turn. Encoding matrix, which improves precoding performance.
  • the first precoding matrix is
  • W 1 is a matrix of N t ⁇ 2M
  • N t is the number of antenna ports included in the eNB
  • X is composed of the plurality of column vectors
  • M is the number of column vectors included in X.
  • the selecting a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain includes:
  • the precoding matrix in the precoding matrix group is used in turn according to the transmission order of the data to be transmitted in the frequency domain and the time domain, thereby improving the precoding performance.
  • V i is a column vector of N t ⁇ 1
  • N t is the number of antenna ports included in the eNB
  • R is a rank of a data channel included in the RI
  • v i is determined according to the first PMI A column vector in the diagonal block matrix X in the first precoding matrix.
  • the RI includes a rank of the data channel; the method further includes:
  • the eNB may further determine the number of ports of the DMRS according to the rank of the data channel, and transmit the data to be transmitted to the UE through the DMRS port.
  • the method further includes:
  • each column vector in the weighting matrix of the DMRS may be represented as: or v i is a column vector selected for the selection of the column vector selection in the second PMI in the selected precoding matrix.
  • the eNB may further determine a weighting matrix of the DMRS according to the selected precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, where the v i is the selection.
  • the base station is selected in a different precoding matrix for the data to be transmitted. Not the same, said A phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the method further includes:
  • the first configuration information is used to indicate that the UE only feeds back the RI and the first PMI when feeding back channel state information to the eNB.
  • the second configuration information is used to indicate that the UE feeds back an indication of column vector selection in the RI, the first PMI, and the second PMI when feeding back channel state information to the eNB.
  • the eNB may configure a feedback manner of the PMI to the UE in advance.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the method further includes:
  • Each of the plurality of data blocks is weighted by the selected precoding matrix and transmitted to the UE.
  • the UE may also report the CQI of the data channel to the eNB, so that the eNB may perform block coding and transmission according to the CQI to be transmitted, thereby improving transmission efficiency.
  • an embodiment of the present application provides a data transmission method, where the method includes
  • the base station eNB receives the rank indication RI of the data channel sent by the user terminal UE, determines a precoding matrix group of the UE to be transmitted according to the RI, and transmits the precoding matrix group to the UE, so that Decoding, by the UE, the data to be transmitted according to the precoding matrix group, where the precoding matrix group includes multiple precoding matrices;
  • the data to be transmitted is weighted by the selected precoding matrix and then transmitted to the UE.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • the transmitting the precoding matrix group to the UE includes:
  • the precoding matrix group is sent to the UE by using RRC signaling, which improves transmission efficiency.
  • the method further includes:
  • third configuration information Sending, to the UE, third configuration information, where the third configuration information is used to indicate that the UE only feeds back the RI when feeding back channel state information to the eNB.
  • the eNB may configure a feedback manner of the PMI to the UE in advance.
  • the third configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the method further includes:
  • Each of the plurality of data blocks is weighted by the selected precoding matrix and transmitted to the UE.
  • the UE may also report the CQI of the data channel to the eNB, so that the eNB may perform block coding and transmission according to the CQI to be transmitted, thereby improving transmission efficiency.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the user terminal UE determines the rank of the data channel and the first precoding matrix according to the CSI-RS according to the channel state information reference symbol CSI-RS delivered by the base station eNB;
  • the eNB Transmitting, to the eNB, a rank indication RI and a first precoding matrix indication PMI, the RI including a rank of the data channel, the first PMI including the first precoding matrix, so that the eNB according to the And the first precoding matrix determines a precoding matrix group and selects a precoding matrix from the precoding matrix group, and performs weighting processing on the to-be-transmitted data of the UE by using the selected precoding matrix, and transmits the data to the Said UE;
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines according to the RI and the first PMI.
  • the precoding matrix group selects precoding from the precoding matrix group according to the transmission order of the data to be transmitted in the frequency domain and the time domain, and at least two resource elements RE locations exist in one resource block RB in which the data to be transmitted is transmitted. Different precoding matrices in the precoding matrix group are selected when transmitting the data to be transmitted, so that the precoding matrix in the precoding matrix group is used in turn, and the precoding performance is improved.
  • the determining the selected precoding matrix according to the transmission sequence of the transmission data in the frequency domain and the time domain comprises:
  • the UE may also select a precoding matrix from the precoding matrix group according to the precoding matrix group that is determined by the precoding matrix group or the receiving eNB, and according to the transmission sequence of the transmission data in the frequency domain and the time domain.
  • the same precoding matrix selected by the UE and the eNB is guaranteed.
  • the method further includes:
  • first configuration information is used to indicate that the UE only feeds back the RI and the first PMI when feeding back channel state information to the eNB;
  • Determining, according to the CSI-RS, a rank of a data channel and a first precoding matrix including:
  • the eNB may configure a feedback mode of the PMI to the UE in advance, so that the UE performs feedback according to the feedback manner configured by the eNB.
  • the method further includes:
  • Determining an indication of column vector selection transmitting a second PMI to the eNB, the second PMI including an indication of the column vector selection, such that the eNB according to the RI, the first PMI, and the column vector
  • the selected indication determines the precoding matrix set.
  • the UE may also report the phase difference in the second PMI, so that the eNB constructs a precoding matrix group according to the phase difference, and when using the data to be transmitted to the UE, the preamble in the precoding matrix group is used in turn. Encoding matrix, which improves precoding performance.
  • the method further includes:
  • the determining the indication of the column vector selection in the second PMI includes:
  • the eNB may configure a feedback mode of the PMI to the UE in advance, so that the UE performs feedback according to the feedback manner configured by the eNB.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the method further includes:
  • the CQI of the data channel is calculated when the precoding matrix is selected from the precoding matrix group in a predetermined selection order according to the frequency domain and the time domain sequence of the transmission data;
  • the UE may also report the CQI of the data channel to the eNB, so that the eNB may perform block coding and transmission according to the CQI to be transmitted, thereby improving transmission efficiency.
  • V i is a column vector of N t ⁇ 1
  • N t is the number of antenna ports included in the eNB
  • R is a rank of a data channel included in the RI
  • v i is determined according to the first PMI1 A column vector in the diagonal block matrix X in the first precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, where the v i is the selection.
  • the base station is selected in a different precoding matrix for the data to be transmitted. Not the same, said A phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the number of CQIs is independent of the rank of the data channel.
  • the method further includes:
  • the eNB may further determine the number of ports of the DMRS according to the rank of the data channel, and transmit the data to be transmitted to the UE through the DMRS port.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the user terminal UE receives the channel state information reference symbol CSI-RS sent by the base station eNB, and determines the rank of the data channel according to the CSI-RS;
  • a rank indication RI to a base station eNB, the RI including a rank of the data channel, such that the eNB determines a precoding matrix group according to the rank and selects a precoding matrix from a precoding matrix group, and selects by using the precoding matrix
  • the precoding matrix performs weighting processing on the data to be transmitted of the UE and transmits the data to the UE;
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and transmits the precoding.
  • a resource block RB of the data to be transmitted at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn. Improved precoding performance.
  • the method further includes:
  • Determining the rank of the data channel according to the CSI-RS includes:
  • the eNB may configure a feedback mode of the PMI to the UE in advance, so that the UE performs feedback according to the feedback manner configured by the eNB.
  • the third configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB.
  • the method further includes:
  • the CQI of the data channel is calculated when the precoding matrix is selected from the precoding matrix group in a predetermined selection order according to the frequency domain and the time domain sequence of the transmission data;
  • the UE may also report the CQI of the data channel to the eNB, so that the eNB may perform block coding and transmission according to the CQI to be transmitted, thereby improving transmission efficiency.
  • an embodiment of the present application provides a data transmission apparatus, where the apparatus includes:
  • a first receiving module configured to receive a rank indication RI of the data channel and a first precoding matrix indication PMI sent by the user terminal UE;
  • a first determining module configured to determine, according to the RI and the first PMI, a precoding matrix group of data to be transmitted of the UE, where the precoding matrix group includes multiple precoding matrices;
  • a first selection module configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the to-be-transmitted data in a frequency domain and a time domain, in a resource block RB that transmits the to-be-transmitted data, Selecting a different precoding matrix in the precoding matrix group when transmitting the data to be transmitted at least two resource elements RE locations;
  • a first transmission module configured to perform weighting processing on the data to be transmitted by using the selected precoding matrix, and then transmit the data to the UE.
  • the first determining module includes:
  • a first determining unit configured to determine, according to the RI and the first PMI, a first precoding matrix
  • a second determining unit configured to determine, according to each phase difference in the first precoding matrix and the phase difference set, a second precoding matrix set, where the phase difference set is used to store between two sets of polarized antennas Phase difference
  • a third determining unit configured to determine, according to the first precoding matrix and the second precoding matrix group, a precoding matrix group of the UE to be transmitted data
  • the first determining module includes:
  • a first receiving unit configured to receive a second PMI transmitted by the UE, where the second PMI includes an indication of column vector selection
  • a fourth determining unit configured to determine, according to the RI and the first PMI, a first precoding matrix
  • a fifth determining unit configured to determine, according to the column vector determined by the indication of the column vector selection and each phase difference in the phase difference set, a second precoding matrix set, where the phase difference set is used to store two sets of polarizations The phase difference between the antennas;
  • a sixth determining unit configured to determine, according to the first precoding matrix and the second precoding matrix group, a precoding matrix group of the UE to be transmitted data.
  • the first precoding matrix is
  • W 1 is a matrix of N t ⁇ 2M
  • N t is the number of antenna ports included in the eNB
  • X is composed of the plurality of column vectors
  • M is the number of column vectors included in X.
  • the first selection module includes:
  • a first selecting unit configured to select a precoding matrix from the precoding matrix group according to a pre-defined selection order according to a transmission sequence of the to-be-transmitted data in a frequency domain and a time domain.
  • V i is a column vector of N t ⁇ 1
  • N t is the number of antenna ports included in the eNB
  • R is a rank of a data channel included in the RI
  • v i is determined according to the first PMI A column vector in the diagonal block matrix X in the first precoding matrix.
  • the RI includes a rank of the data channel
  • the device also includes:
  • a second determining module configured to determine, according to the rank of the data channel, a number of ports of the demodulation reference symbol DMRS of the data channel, where the number of ports of the DMRS is greater than or equal to an even number of ranks of the data channel.
  • the device further includes:
  • a third determining module configured to determine, according to the selected precoding matrix, a weighting matrix of the DMRS of the data channel, where each column vector in the weighting matrix of the DMRS may be represented as: or v i is an indication of column vector selection in the second PMI in the selected precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, where the v i is the selection.
  • the base station is selected in a different precoding matrix for the data to be transmitted. Not the same, said A phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the device further includes:
  • a first sending module configured to send the first configuration information or the second configuration information to the UE, where the first configuration information is used to indicate that the UE only feeds back the RI and when feeding back channel state information to the eNB
  • the first PMI, the second configuration information is used to indicate that the UE feeds back an indication of column vector selection in the RI, the first PMI, and the second PMI when feeding back channel state information to the eNB.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the device also includes:
  • the first receiving module is further configured to receive a CQI of a data channel that is sent by the UE according to the first configuration information or the second configuration information;
  • the first transmission module includes:
  • a first dividing unit configured to divide the data to be transmitted into multiple data blocks according to the CQI
  • a first transmission unit configured to perform weighting processing on each of the plurality of data blocks by using the selected precoding matrix, and then transmit the data block to the UE.
  • an embodiment of the present application provides a data transmission apparatus, where the apparatus includes
  • a second receiving module configured to receive a rank indication RI of a data channel sent by the user terminal UE;
  • a fourth determining module configured to determine, according to the RI, a precoding matrix group of the UE to be transmitted data
  • a second transmission module configured to transmit the precoding matrix group to the UE, to enable the UE to decode the to-be-transmitted data according to the precoding matrix group, where the precoding matrix group includes multiple pre-coding Coding matrix
  • a second selection module configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the to-be-transmitted data in a frequency domain and a time domain, in a resource block RB that transmits the to-be-transmitted data, Selecting a different precoding matrix in the precoding matrix group when transmitting the data to be transmitted at least two resource elements RE locations;
  • a third transmission module configured to perform weighting processing on the data to be transmitted by using the selected precoding matrix, and then transmit the data to the UE.
  • the second transmission module is configured to send the precoding matrix group to the UE by using radio resource control RRC signaling.
  • the device further includes:
  • a second sending module configured to send the third configuration information to the UE, where the third configuration information is used to indicate that the UE only feeds back the RI when feeding back channel state information to the eNB.
  • the third configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the device also includes:
  • a third receiving module configured to receive a CQI of the data channel that is sent by the UE according to the third configuration information
  • the third transmission module includes:
  • a second dividing unit configured to divide the data to be transmitted into multiple data blocks according to the CQI
  • a second transmission unit configured to perform weighting processing on each of the plurality of data blocks by using the selected precoding matrix, and then transmit the data to the UE.
  • the embodiment of the present application provides a data transmission device, where the device includes:
  • a fourth receiving module configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • a fifth determining module configured to determine a rank of the data channel and a first precoding matrix according to the CSI-RS
  • a third sending module configured to send a rank indication RI and a first precoding matrix indication PMI to the eNB, where the RI includes a rank of the data channel, where the first PMI includes the first precoding matrix, And causing the eNB to determine a precoding matrix group according to the rank and the first precoding matrix, and select a precoding matrix from the precoding matrix group, and use the selected precoding matrix to transmit data to the UE by using the selected precoding matrix. Performing a weighting process and transmitting to the UE;
  • a fourth receiving module configured to receive the weighted processed transmission data that is sent by the eNB
  • a sixth determining module configured to determine the selected precoding matrix according to a transmission sequence of the transmission data in a frequency domain and a time domain;
  • a first demodulation module configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the sixth determining module includes:
  • An eighth determining unit configured to determine a precoding matrix group according to the RI and the first PMI
  • a second selecting unit configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the transmission data in a frequency domain and a time domain;
  • the sixth determining module includes:
  • a second receiving unit configured to receive a precoding matrix group sent by the eNB
  • a third selecting unit configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the transmission data in a frequency domain and a time domain.
  • the device further includes:
  • a fifth receiving module configured to receive first configuration information that is sent by the eNB, where the first configuration information is used to indicate that the UE only feeds back the RI and the first when feeding back channel state information to the eNB PMI;
  • the fifth determining module is configured to determine a rank of the data channel and a first precoding matrix according to the first configuration information and the CSI-RS.
  • the device further includes:
  • a seventh determining module configured to determine an indication of column vector selection
  • a fourth sending module configured to send, to the eNB, a second PMI, where the second PMI includes an indication of the column vector selection, so that the eNB is configured according to the RI, the first PMI, and the column vector
  • the selected indication determines the precoding matrix set.
  • the device further includes:
  • a sixth receiving module configured to receive second configuration information that is sent by the eNB, where the second configuration information is used to indicate that the UE feeds back the RI and the first PMI when feeding back channel state information to the eNB And an indication of column vector selection in the second PMI;
  • the seventh determining module is configured to determine, according to the second configuration information, an indication of column vector selection in the second PMI.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the device also includes:
  • a first calculating module configured to calculate a CQI of the data channel when a precoding matrix is selected from the precoding matrix group in a predefined selection order according to a frequency domain and a time domain sequence of the transmission data;
  • a fifth sending module configured to send the CQI to the eNB according to the first configuration information or the second configuration information.
  • V i is a column vector of N t ⁇ 1
  • N t is the number of antenna ports included in the eNB
  • R is a rank of a data channel included in the RI
  • v i is determined according to the first PMI A column vector in the diagonal block matrix X in the first precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, where the v i is the selection.
  • the base station is selected in a different precoding matrix for the data to be transmitted. Not the same, said A phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the number of CQIs is independent of the rank of the data channel.
  • the device further includes:
  • an eighth determining module configured to determine, according to the rank of the data channel, a number of ports of the demodulation reference symbol DMRS of the data channel, where the number of ports of the DMRS is greater than or equal to an even number of ranks of the data channel.
  • an embodiment of the present application provides a data transmission apparatus, where the apparatus includes:
  • a seventh receiving module configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • a ninth determining module configured to determine a rank of the data channel according to the CSI-RS
  • a sixth sending module configured to send a rank indication RI to the base station eNB, where the RI includes a rank of the data channel, so that the eNB determines a precoding matrix group according to the rank and selects a precoding from a precoding matrix group. a matrix, and performing weighting processing on the data to be transmitted of the UE by using the selected precoding matrix, and transmitting the data to the UE;
  • a seventh receiving module configured to receive a precoding matrix group sent by the eNB and weighted processed transmission data
  • a tenth determining module configured to select the precoding matrix from the precoding matrix group according to a transmission sequence of the transmission data in a frequency domain and a time domain;
  • a second demodulation module configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the device further includes:
  • An eighth receiving module configured to receive third configuration information that is sent by the eNB, where the third configuration information is used to indicate that the UE only feeds back the RI when feeding back channel state information to the eNB;
  • the ninth determining module is configured to determine a rank of the data channel according to the third configuration information and the CSI-RS.
  • the third configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB.
  • the device also includes:
  • a second calculating module configured to calculate a CQI of the data channel when a precoding matrix is selected from the precoding matrix group in a predefined selection order according to a frequency domain and a time domain sequence of the transmission data;
  • a seventh sending module configured to send the CQI to the eNB according to the third configuration information.
  • a ninth aspect, the embodiment of the present application provides a data transmission apparatus, where the apparatus includes: a first receiver, a first processor, and a first transmitter;
  • the first receiver is configured to receive a rank indication RI and a first precoding matrix indication PMI of a data channel sent by the user terminal UE;
  • the first processor is configured to determine, according to the RI and the first PMI, a precoding matrix group of data to be transmitted of the UE, where the precoding matrix group includes multiple precoding matrices;
  • the first processor is configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the to-be-transmitted data in a frequency domain and a time domain, and transmit a resource block RB of the to-be-transmitted data. Selecting a different precoding matrix in the precoding matrix group when transmitting the data to be transmitted at least two resource elements RE locations;
  • the first transmitter is configured to perform weighting processing on the data to be transmitted by using the selected precoding matrix Transmitted to the UE.
  • the first processor is configured to determine a first precoding matrix according to the RI and the first PMI; according to each of the first precoding matrix and the phase difference set a phase difference, determining a second precoding matrix group; determining, according to the first precoding matrix and the second precoding matrix group, a precoding matrix group of the UE to be transmitted data, where the phase difference set is used Storing the phase difference between the two sets of polarized antennas; or
  • the first processor is configured to receive a second PMI that is transmitted by the UE, where the second PMI includes an indication of column vector selection; and determining, according to the RI and the first PMI, a first precoding matrix; Determining, according to the column vector determined by the indication of the column vector selection and each phase difference in the phase difference set, a second precoding matrix group; determining according to the first precoding matrix and the second precoding matrix group a precoding matrix group of the UE to be transmitted data, wherein the phase difference set is used to store a phase difference between two sets of polarized antennas.
  • the first precoding matrix is
  • W 1 is a matrix of N t ⁇ 2M
  • N t is the number of antenna ports included in the eNB
  • X is composed of the plurality of column vectors
  • M is the number of column vectors included in X.
  • the first processor is configured to select precoding from the precoding matrix group according to a pre-defined selection order according to a transmission sequence of the to-be-transmitted data in a frequency domain and a time domain. matrix.
  • V i is a column vector of N t ⁇ 1, Is a plural of the modulus and a value belonging to 1,-1,j,-j, N t is the number of antenna ports included in the eNB, R is a rank of a data channel included in the RI, and v i is determined according to the first PMI A column vector in the diagonal block matrix X in the first precoding matrix.
  • the RI includes a rank of the data channel;
  • the first processor is configured to determine, according to the rank of the data channel, a port number of a demodulation reference symbol DMRS of the data channel, where a number of ports of the DMRS is greater than or equal to an even number of ranks of the data channel .
  • the first processor is configured to determine, according to the selected precoding matrix, a weighting matrix of the DMRS of the data channel, where each column vector in the weighting matrix of the DMRS may Expressed as: or v i is an indication of column vector selection in the second PMI in the selected precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, where the v i is the selection.
  • the base station is selected in a different precoding matrix for the data to be transmitted. Not the same, said A phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the first transmitter is configured to send the first configuration information or the second configuration to the UE.
  • the first configuration information is used to indicate that the UE only feeds back the RI and the first PMI when feeding back channel state information to the eNB, where the second configuration information is used to indicate that the UE is An indication of column vector selection in the RI, the first PMI, and the second PMI is fed back when channel state information is fed back to the eNB.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the first receiver is configured to receive a CQI of a data channel that is sent by the UE according to the first configuration information or the second configuration information;
  • the first processor is configured to divide the data to be transmitted into a plurality of data blocks according to the CQI; and perform, by using the selected precoding matrix, each of the plurality of data blocks respectively The weighting process is transmitted to the UE.
  • the embodiment of the present application provides a data transmission apparatus, where the apparatus includes: a second receiver, a second processor, and a second transmitter;
  • the second receiver is configured to receive a rank indication RI of a data channel sent by the user terminal UE;
  • the second processor is configured to determine, according to the RI, a precoding matrix group of the UE to be transmitted data, and transmit the precoding matrix group to the UE, so that the UE according to the precoding
  • the matrix group decodes the data to be transmitted, and the precoding matrix group includes a plurality of precoding matrices;
  • the second processor is further configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the to-be-transmitted data in a frequency domain and a time domain, and transmit a resource block of the to-be-transmitted data.
  • the different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted;
  • the second transmitter is configured to perform weighting processing on the data to be transmitted by using the selected precoding matrix, and then transmit the data to the UE.
  • the second transmitter is further configured to send the precoding matrix group to the UE by using radio resource control RRC signaling.
  • the second transmitter is further configured to send third configuration information to the UE, where the third configuration information is used to indicate that the UE feeds back channel state information to the eNB. Only the RI is fed back.
  • the third configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the second receiver is further configured to receive a CQI of a data channel that is sent by the UE according to the third configuration information;
  • the second transmitter is further configured to divide the data to be transmitted into a plurality of data blocks according to the CQI; and each of the plurality of data blocks by using the selected precoding matrix respectively
  • the weighting process is performed and transmitted to the UE.
  • the embodiment of the present application provides a data transmission apparatus, where the apparatus includes: a third receiver, a third processor, and a third transmitter;
  • the third receiver is configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • the third processor is configured to determine a rank of the data channel and a first precoding matrix according to the CSI-RS;
  • the third transmitter is configured to send a rank indication RI and a first precoding matrix indication PMI to the eNB, where the RI includes a rank of the data channel, and the first PMI includes the first precoding matrix So that the eNB is based on And the first precoding matrix determines the precoding matrix group and selects a precoding matrix from the precoding matrix group, and performs weighting processing on the to-be-transmitted data of the UE by using the selected precoding matrix.
  • the UE
  • the third receiver is further configured to receive the weighted processed transmission data that is sent by the eNB;
  • the third processor is further configured to determine the selected precoding matrix according to a transmission sequence of the transmission data in a frequency domain and a time domain;
  • the third processor is further configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the third processor is further configured to determine a precoding matrix group according to the RI and the first PMI; according to the transmission sequence of the transmission data in the frequency domain and the time domain, Selecting a precoding matrix in the precoding matrix group; or
  • the third processor is further configured to receive a precoding matrix group sent by the eNB, and select a precoding matrix from the precoding matrix group according to a transmission sequence of the transmission data in a frequency domain and a time domain.
  • the third processor is further configured to determine an indication of column vector selection
  • the third transmitter is further configured to send a second PMI to the eNB, where the second PMI includes an indication of the column vector selection, so that the eNB is configured according to the RI, the first PMI, and the The indication of the vector selection is described to determine the precoding matrix set.
  • the third receiver is further configured to receive second configuration information that is sent by the eNB, where the second configuration information is used to indicate that the UE feeds back channel state information to the eNB. And feeding back an indication of the column vector selection in the RI, the first PMI, and the second PMI;
  • the third processor is further configured to determine, according to the second configuration information, an indication of column vector selection in the second PMI.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB;
  • the third processor is further configured to calculate the data channel when a precoding matrix is selected from the precoding matrix group in a predefined selection order according to an order of a frequency domain and a time domain of the transmission data.
  • the third transmitter is further configured to send the CQI to the eNB according to the first configuration information or the second configuration information.
  • V i is a column vector of N t ⁇ 1
  • N t is the number of antenna ports included in the eNB
  • R is a rank of a data channel included in the RI
  • v i is determined according to the first PMI A column vector in the diagonal block matrix X in the first precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, where the v i is the selection.
  • the base station is selected in a different precoding matrix for the data to be transmitted. Not the same, said A phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the number of CQIs is independent of the rank of the data channel.
  • the third processor is further configured to determine, according to the rank of the data channel, a number of ports of the demodulation reference symbol DMRS of the data channel, where the number of ports of the DMRS is greater than or An even number equal to the rank of the data channel.
  • the embodiment of the present application provides a data transmission apparatus, where the apparatus includes: a fourth receiver, a fourth processor, and a fourth transmitter;
  • the fourth receiver is configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • the fourth processor is configured to determine a rank of the data channel according to the CSI-RS;
  • the fourth transmitter is configured to send a rank indication RI to the base station eNB, where the RI includes a rank of the data channel, so that the eNB determines a precoding matrix group according to the rank and selects from a precoding matrix group. a precoding matrix, and performing weighting processing on the data to be transmitted of the UE by using the selected precoding matrix, and transmitting the data to the UE;
  • the fourth receiver is further configured to receive a precoding matrix group sent by the eNB and weighted processed transmission data;
  • the fourth processor is further configured to select the precoding matrix from the precoding matrix group according to a transmission sequence of the transmission data in a frequency domain and a time domain;
  • the fourth processor is further configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the fourth receiver further receives third configuration information sent by the eNB, where the third configuration information is used to indicate that the UE only feeds back when feeding back channel state information to the eNB.
  • the RI The RI;
  • the fourth processor is further configured to determine a rank of the data channel according to the third configuration information and the CSI-RS.
  • the third configuration information is further used to indicate that the UE feeds back a channel quality index CQI when feeding back channel state information to the eNB.
  • the fourth processor is further configured to calculate the data channel when a precoding matrix is selected from the precoding matrix group in a predefined selection order according to an order of a frequency domain and a time domain of the transmission data.
  • the fourth transmitter is further configured to send the CQI to the eNB according to the third configuration information.
  • the technical solution provided by the present application has the beneficial effects that, in the embodiment of the present application, the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, according to the data to be transmitted in the frequency domain and The transmission sequence of the time domain, selecting precoding from the precoding matrix group, and transmitting one resource block RB of the data to be transmitted, at least two resource elements RE are located at different locations, and the different precoding matrix groups are selected when transmitting the data to be transmitted.
  • the precoding matrix thereby implementing the precoding matrix in the precoding matrix group in turn, improves the precoding performance.
  • FIG. 1 is a schematic structural diagram of an apparatus for data transmission according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another apparatus for data transmission provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another apparatus for data transmission according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another apparatus for data transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another apparatus for data transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another apparatus for data transmission according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another apparatus for data transmission according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another apparatus for data transmission according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 12 is a flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 13-1 is a flowchart of a data transmission method according to an embodiment of the present application.
  • 13-2 is a schematic diagram of a first precoding matrix provided by an embodiment of the present application.
  • 13-3 is a schematic diagram of an antenna port provided by an embodiment of the present application.
  • FIG. 13-4 is a schematic diagram of a first precoding matrix and a second precoding matrix according to an embodiment of the present disclosure
  • FIG. 14 is a flowchart of a data transmission method according to an embodiment of the present application.
  • the CSI-RS is first transmitted to the UE, and the CSI-RS is used to acquire channel state information of the data channel; the UE receives the CSI-RS sent by the eNB, and Measuring, according to the CSI-RS, a first precoding matrix and a second precoding matrix, where the first precoding matrix is a block diagonal matrix composed of a plurality of column vectors; and the second precoding matrix includes columns from the first precoding matrix
  • the indication of the vector selection and the phase difference between the two sets of polarized antennas, the first PMI and the second PMI are transmitted to the eNB, the first PMI includes a first precoding matrix, the second PMI includes a second precoding matrix, and the eNB receives the UE Transmitting the first PMI and the second PMI, determining a precoding matrix according to the first precoding matrix included in the first PMI and the second precoding matrix included in the second PMI, and using
  • the eNB calculates the precoding matrix according to the second precoding matrix and passes the pre-
  • the coding matrix performs weighting on the data to be transmitted, the phase difference has changed, so that the calculated precoding matrix does not match the current data channel, which leads to a decrease in precoding performance.
  • the first precoding matrix reflects the indexes of the plurality of column vectors, and the column vectors have the characteristics of non-frequency selection and long period, the first precoding matrix is still effective even in a scene of high speed motion.
  • the indication of the column vector selection is to select one or two column vectors from the plurality of column vectors at a high speed.
  • the column vector selected by the second precoding matrix is still valid, that is, the indication of the column vector selection in the second precoding matrix is valid, but the phase difference included in the second precoding matrix is The rapidly changing, that is, the phase difference is invalid.
  • the rank of the data channel Since the rank of the data channel is slowly changing, the rank of the data channel is still considered valid in the high speed motion scenario.
  • the speed of change of the CQI of the data channel is related to the motion speed of the UE and the adopted transmission mode. If the data channel is weighted by a slowly changing precoding matrix, and the time domain and the frequency domain are rotated in turn using a fast changing precoding matrix, then the CQI is also It will be slow, that is, the CQI of the data channel is still valid.
  • the PMI includes fast change information and slow change information, and the UE measures and feeds back the slow change information according to the CSI-RS; the eNB can make the downlink data transmission according to the slow change information reported by the UE and the use of the fast change information in turn. It can obtain partial beamforming gain and is insensitive to the moving speed of the UE.
  • the UE may report the rank of the first precoding matrix and the data channel to the eNB, and the eNB uses the first precoding in the RB or RB group according to the rank of the first precoding matrix and the data channel.
  • Columns in the matrix The vector, and each phase difference in the phase difference set is used in turn to form a precoding matrix group, and the precoding matrix is selected from the precoding matrix group according to the transmission order of the data to be transmitted in the frequency domain and the time domain.
  • the UE may also report the first precoding matrix, the indication of the column vector selection in the second precoding matrix, and the rank of the data channel to the eNB.
  • the eNB uses only the indication of the column vector selection in the RB or RB group according to the first precoding matrix, the indication of the column vector selection in the second precoding matrix, and the rank of the data channel, and uses each phase in the phase difference set in turn. Poor, thereby forming a precoding matrix group, and selecting a precoding matrix from the precoding matrix group according to the transmission order of the data to be transmitted in the frequency domain and the time domain.
  • the UE may also report only the rank of the data channel.
  • the eNB constructs a precoding matrix group according to the rank of the data channel, and selects a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain.
  • FIG. 1 is a structural block diagram of a device for data transmission according to an embodiment of the present application.
  • the device for data transmission may have a large difference due to different configurations or performances, and may include one or more first receivers 101.
  • a first receiver 101 configured to receive a rank indication RI of a data channel and a first precoding matrix indication PMI sent by the user terminal UE;
  • the first processor 102 is configured to determine, according to the RI and the first PMI, a precoding matrix group of the UE to be transmitted data, where the precoding matrix group includes multiple precoding matrices;
  • the first processor 102 is configured to select a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and at least two resources exist in one resource block RB that transmits the data to be transmitted. Selecting different precoding matrices in the precoding matrix group when transmitting the data to be transmitted at the element RE location;
  • the first transmitter 103 is configured to perform weighting processing on the data to be transmitted through the selected precoding matrix and transmit the data to the UE.
  • the means for transmitting data may include other components in addition to the first receiver 101, the first processor 102, and the first transmitter 103 described above.
  • a first memory 104, one or more first storage media 107 storing the first application 105 or the first data 106 (eg, one or one in a Shanghai amount storage device) may also be included.
  • the first memory 104 and the first storage medium 107 may be short-term storage or persistent storage.
  • the program stored on the first storage medium 107 may include one or more modules (not shown), each of which may include a series of instruction operations in the device for data transfer.
  • the first processor 102 can be arranged to communicate with the first storage medium 107 to perform a series of instruction operations in the first storage medium 107 on the device for data transfer.
  • the means for data transmission may also include one or more first power sources 108, one or more first wired or wireless network interfaces 109, one or more first input and output interfaces 110, one or more first keyboards 111, and / or, one or more first operating systems 112, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, and the like.
  • the first receiver 101, the first processor 102, and the first transmitter 103 included in the apparatus for data transmission in the present application may also have the following functions:
  • the first processor 102 is further configured to determine a first precoding matrix according to the RI and the first PMI, and determine a second precoding matrix group according to each phase difference in the first precoding matrix and the phase difference set; a precoding matrix and a second precoding matrix group, determining a precoding matrix group of the UE to be transmitted data, wherein the phase difference set is used to store a phase difference between the two sets of polarized antennas; or
  • the first processor 102 is further configured to receive a second PMI transmitted by the UE, where the second PMI includes an indication of column vector selection; determining, according to the RI and the first PMI, the first precoding matrix; determining according to the indication of the column vector selection Determining a second precoding matrix group for each phase difference in the column vector and the phase difference set; determining a precoding matrix group of the UE to be transmitted data according to the first precoding matrix and the second precoding matrix group, the phase difference set Used to store the phase difference between two sets of polarized antennas.
  • the first precoding matrix is
  • W 1 is a matrix of N t ⁇ 2M
  • N t is a number of antenna ports included in the eNB
  • X is composed of a plurality of column vectors
  • M is the number of column vectors included in X.
  • the first processor 102 is further configured to select a precoding matrix from the precoding matrix group according to a pre-defined selection order according to a transmission sequence of the data to be transmitted in the frequency domain and the time domain.
  • V i is a column vector of N t ⁇ 1, Is a plural of the modulus and The value belonging to 1,-1,j,-j, N t is the number of antenna ports included in the eNB, R is the rank of the data channel included in the RI, and v i is in the first precoding matrix determined according to the first PMI A column vector in the diagonal block matrix X.
  • the RI includes the rank of the data channel
  • the first processor 102 is further configured to determine, according to the rank of the data channel, a port number of the demodulation reference symbol DMRS of the data channel, where the number of ports of the DMRS is greater than or equal to an even number of the rank of the data channel.
  • the first processor 102 is further configured to determine a weighting matrix of the DMRS of the data channel according to the selected precoding matrix, and each column vector in the weighting matrix of the DMRS may be represented as: or v i is an indication of column vector selection in the second PMI in the selected precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, and v i is the second PMI column in the selected precoding matrix.
  • An indication of vector selection, i is an integer ⁇ 0 and ⁇ R-1;
  • the base station selects different precoding matrices for the data to be transmitted. Not the same, The phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the first transmitter 103 is further configured to send the first configuration information or the second configuration information to the UE, where the first configuration information is used to indicate that the UE only feeds back the RI and the first when feeding back the channel state information to the eNB.
  • the second configuration information is used to indicate that the UE feeds back an indication of column vector selection in the RI, the first PMI, and the second PMI when feeding back channel state information to the eNB.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB;
  • the first receiver 101 is further configured to receive a CQI of a data channel that is sent by the UE according to the first configuration information or the second configuration information;
  • the first processor 102 is further configured to divide the data to be transmitted into a plurality of data blocks according to the CQI; and perform weighting processing on each of the plurality of data blocks by using the selected precoding matrix, and then transmit the data to the UE.
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • FIG. 2 is a structural block diagram of a device for data transmission according to an embodiment of the present application.
  • the device for data transmission may have a large difference due to different configurations or performances, and may include one or more second receivers 201.
  • a second receiver 201 configured to receive a rank indication RI of a data channel sent by the user terminal UE;
  • the second processor 202 is configured to determine, according to the RI, a precoding matrix group of the UE to be transmitted data, and transmit the precoding matrix group to the UE, so that the UE decodes the data to be transmitted according to the precoding matrix group, where the precoding matrix group includes Multiple precoding matrices;
  • the second processor 202 is further configured to select a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and at least two in a resource block RB that transmits the data to be transmitted. Selecting different precoding matrices in the precoding matrix group when transmitting the data to be transmitted at the resource element RE location;
  • the second transmitter 203 is configured to perform weighting processing on the data to be transmitted through the selected precoding matrix and transmit the data to the UE.
  • the means for transmitting data may include other components in addition to the second receiver 201, the second processor 202, and the second transmitter 203 described above.
  • a second memory 204, one or more second storage media 207 storing the second application 205 or the second data 206 (eg, one or one of the Shanghai quantity storage devices) may also be included.
  • the second memory 104 and the second storage medium 207 may be short-term storage or persistent storage.
  • the program stored on the second storage medium 207 may include one or more modules (not shown), each of which may include a series of instruction operations in the device for data transfer.
  • the second processor 202202 can be configured to communicate with the second storage medium 207 to perform a series of instruction operations in the second storage medium 207 on the device for data transfer.
  • the data transfer device may also include one or more second power sources 208, one or more second wired or wireless network interfaces 209, one or more second input output interfaces 210, one or more second keyboards 211, and / or, one or more second operating systems 212, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, and the like.
  • the second receiver 201, the second processor 202, and the second transmitter 203 included in the apparatus for data transmission in the present application may also have the following functions:
  • the second transmitter 203 is further configured to send a precoding matrix group to the UE by using radio resource control RRC signaling.
  • the second transmitter 203 is further configured to send third configuration information to the UE, where the third configuration information is used to indicate that the UE only feeds back the RI when feeding back the channel state information to the eNB.
  • the third configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB;
  • the second receiver 201 is further configured to receive a CQI of the data channel that is sent by the UE according to the third configuration information;
  • the second transmitter 203 is further configured to divide the data to be transmitted into multiple data blocks according to the CQI;
  • the precoding matrix performs weighting processing on each of the plurality of data blocks and transmits to the UE.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • FIG. 3 is a structural block diagram of a device for data transmission according to an embodiment of the present application.
  • the device for data transmission may generate a large difference due to different configurations or performances, and may include one or more third receivers 301.
  • a third receiver 301 configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • a third processor 302 configured to determine a rank of the data channel and a first precoding matrix according to the CSI-RS;
  • a third transmitter 303 configured to send a rank indication RI and a first precoding matrix indication PMI to the eNB, where the RI includes a rank of the data channel, where the first PMI includes a first precoding matrix, so that the eNB according to the rank and the first pre
  • the coding matrix determines a precoding matrix group and selects a precoding matrix from the precoding matrix group, and performs weighting processing on the to-be-transmitted data of the UE by using the selected precoding matrix, and then transmits the data to the UE;
  • the third receiver 301 is further configured to receive the weighted processed transmission data that is sent by the eNB;
  • the third processor 302 is further configured to determine the selected precoding matrix according to the transmission sequence of the transmission data in the frequency domain and the time domain;
  • the third processor 302 is further configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the means for transmitting data may include other components in addition to the third receiver 301, the third processor 302, and the third transmitter 303 described above.
  • a third memory 304, one or more third storage media 307 storing third application 305 or third data 306 may also be included.
  • the third memory 304 and the third storage medium 307 may be short-term storage or persistent storage.
  • the program stored on the third storage medium 307 may include one or more modules (not shown), each of which may include a series of instruction operations in the device for data transmission.
  • the third processor 302302 can be configured to communicate with the third storage medium 307 to perform a series of instruction operations in the third storage medium 307 on the device for data transfer.
  • the means for data transmission may also include one or more third power sources 308, one or more third wired or wireless network interfaces 309, one or more third input and output interfaces 310, one or more third keyboards 311, and / or, one or more third operating systems 312, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, and the like.
  • the third receiver 301, the third processor 302302, and the third transmitter 303 included in the apparatus for data transmission in the present application may also have the following functions:
  • the third processor 302 is further configured to determine a precoding matrix group according to the RI and the first PMI, and select a precoding matrix from the precoding matrix group according to the transmission sequence of the transmission data in the frequency domain and the time domain; or
  • the third processor 302 is further configured to receive a precoding matrix group sent by the eNB, and select a precoding matrix from the precoding matrix group according to the transmission sequence of the transmission data in the frequency domain and the time domain.
  • the third receiver 301 is further configured to receive first configuration information that is sent by the eNB, where the first configuration information is used to indicate that the UE only feeds back the RI and the first PMI when feeding back the channel state information to the eNB;
  • the third processor 302 is further configured to determine a rank of the data channel and a first precoding matrix according to the first configuration information and the CSI-RS.
  • the third processor 302 is further configured to determine an indication of column vector selection in the second PMI;
  • the third transmitter 303 is further configured to send a second PMI to the eNB, where the second PMI includes an indication of column vector selection, so that the eNB determines the precoding matrix group according to the indication of the RI, the first PMI, and the column vector selection.
  • the third receiver 301 is further configured to receive second configuration information that is sent by the eNB, where the second configuration information is used to indicate that the UE feeds back the RI, the first PMI, and the second when feeding back the channel state information to the eNB.
  • the third processor 302 is further configured to determine, according to the second configuration information, an indication of column vector selection in the second PMI.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB;
  • the third processor 302 is further configured to calculate a CQI of the data channel when the precoding matrix is selected from the precoding matrix group according to a predetermined selection order according to a frequency domain and a time domain sequence of the transmission data;
  • the third transmitter 303 is further configured to send the CQI to the eNB according to the first configuration information or the second configuration information.
  • V i is a column vector of N t ⁇ 1, Is a plural of the modulus and The value belonging to 1,-1,j,-j, N t is the number of antenna ports included in the eNB, R is the rank of the data channel included in the RI, and v i is in the first precoding matrix determined according to the first PMI A column vector in the diagonal block matrix X.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, and v i is the second PMI column in the selected precoding matrix.
  • An indication of vector selection, i is an integer ⁇ 0 and ⁇ R-1;
  • the base station selects different precoding matrices for the data to be transmitted. Not the same, The phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the number of CQIs is independent of the rank of the data channel.
  • the third processor is further configured to determine, according to the rank of the data channel, the number of ports of the demodulation reference symbol DMRS of the data channel, where the number of ports of the DMRS is greater than or equal to the even number of the rank of the data channel.
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • FIG. 4 is a structural block diagram of a device for data transmission according to an embodiment of the present application.
  • the device for data transmission may generate a large difference due to different configurations or performances, and may include one or more fourth receivers 401.
  • a fourth receiver 401 configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • a fourth processor 402 configured to determine a rank of the data channel according to the CSI-RS
  • a fourth transmitter 403 configured to send a rank indication RI to the base station eNB, where the RI includes a rank of the data channel, so that the eNB determines the precoding matrix group according to the rank and selects a precoding matrix from the precoding matrix group, and selects the precoding matrix
  • the coding matrix performs weighting processing on the data to be transmitted of the UE and transmits the data to the UE;
  • the fourth receiver 401 is further configured to receive the precoding matrix group sent by the eNB and the weighted processed transmission data;
  • the fourth processor 402 is further configured to select a precoding matrix from the precoding matrix group according to the transmission sequence of the transmission data in the frequency domain and the time domain;
  • the fourth processor 402 is further configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the means for transmitting data may include other components in addition to the fourth receiver 401, the fourth processor 402, and the fourth transmitter 403 described above.
  • a fourth memory 404, one or more fourth storage media 407 storing a fourth application 405 or fourth data 406 (eg, one or one in a Shanghai amount storage device) may also be included.
  • the fourth memory 404 and the fourth storage medium 407 may be short-term storage or persistent storage.
  • the program stored on the fourth storage medium 407 may include one or more modules (not shown), each of which may include a series of instruction operations in the device for data transfer.
  • the fourth processor 402 can be configured to communicate with the fourth storage medium 407 to perform a series of instruction operations in the fourth storage medium 407 on the device for data transfer.
  • the data transfer device may also include one or more fourth power sources 408, one or more fourth wired or wireless network interfaces 409, one or more fourth input output interfaces 410, one or more fourth keyboards 411, and / or, one or more fourth operating systems 412, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, and the like.
  • the fourth receiver 401, the fourth processor 402, and the fourth transmitter 403 included in the apparatus for data transmission in the present application may also have the following functions:
  • the fourth receiver 401 further receives the third configuration information that is sent by the eNB, where the third configuration information is used to indicate that the UE only feeds back the RI when feeding back the channel state information to the eNB;
  • the fourth processor 402 is further configured to determine a rank of the data channel according to the third configuration information and the CSI-RS.
  • the third configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB.
  • the fourth processor 402 is further configured to calculate a CQI of the data channel when the precoding matrix is selected from the precoding matrix group according to a predetermined selection order in a frequency domain and a time domain sequence of the transmission data;
  • the fourth transmitter 403 is further configured to send the CQI to the eNB according to the third configuration information.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • FIG. 5 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application, where the apparatus includes:
  • the first receiving module 501 is configured to receive a rank indication RI of the data channel sent by the user terminal UE and a first precoding matrix indication PMI;
  • a first determining module 502 configured to determine, according to the RI and the first PMI, a precoding matrix group of the UE to be transmitted data, where
  • the precoding matrix group includes a plurality of precoding matrices
  • the first selecting module 503 is configured to select a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and at least two resources exist in one resource block RB that transmits the data to be transmitted. Selecting different precoding matrices in the precoding matrix group when transmitting the data to be transmitted at the element RE location;
  • the first transmission module 504 is configured to perform weighting processing on the data to be transmitted by using the selected precoding matrix, and then transmit the data to the UE.
  • the first determining module 502 includes:
  • a first determining unit configured to determine a first precoding matrix according to the RI and the first PMI
  • a second determining unit configured to determine, according to each phase difference in the first precoding matrix and the phase difference set, a second precoding matrix set, where the phase difference set is used to store a phase difference between the two sets of polarized antennas;
  • a third determining unit configured to determine, according to the first precoding matrix and the second precoding matrix group, a precoding matrix group of the UE to be transmitted data
  • the first determining module 502 includes:
  • a first receiving unit configured to receive a second PMI transmitted by the UE, where the second PMI includes an indication of column vector selection
  • a fourth determining unit configured to determine a first precoding matrix according to the RI and the first PMI
  • a fifth determining unit configured to determine a second precoding matrix group according to the column vector determined by the indication of the column vector selection and each phase difference in the phase difference set, where the phase difference set is used to store between the two sets of polarized antennas Phase difference
  • a sixth determining unit configured to determine, according to the first precoding matrix and the second precoding matrix group, a precoding matrix group of the UE to be transmitted data.
  • the first precoding matrix is
  • W 1 is a matrix of N t ⁇ 2M
  • N t is a number of antenna ports included in the eNB
  • X is composed of a plurality of column vectors
  • M is the number of column vectors included in X.
  • the first selection module 503 includes:
  • a first selecting unit configured to select a precoding matrix from the precoding matrix group according to a pre-defined selection order according to a transmission sequence of the data to be transmitted in the frequency domain and the time domain.
  • V i is a column vector of N t ⁇ 1, Is a plural of the modulus and The value belonging to 1,-1,j,-j, N t is the number of antenna ports included in the eNB, R is the rank of the data channel included in the RI, and v i is in the first precoding matrix determined according to the first PMI A column vector in the diagonal block matrix X.
  • the RI includes the rank of the data channel
  • the device also includes:
  • a second determining module configured to determine, according to the rank of the data channel, a port number of the demodulation reference symbol DMRS of the data channel, where the number of ports of the DMRS is greater than or equal to an even number of the rank of the data channel.
  • the device also includes:
  • a third determining module configured to determine, according to the selected precoding matrix, a weighting matrix of the DMRS of the data channel, where each column vector in the weighting matrix of the DMRS can be expressed as: or v i is an indication of column vector selection in the second PMI in the selected precoding matrix.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, and v i is the second PMI column in the selected precoding matrix.
  • An indication of vector selection, i is an integer ⁇ 0 and ⁇ R-1;
  • the base station selects different precoding matrices for the data to be transmitted. Not the same, The phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the device also includes:
  • a first sending module configured to send the first configuration information or the second configuration information to the UE, where the first configuration information is used to indicate that the UE only feeds back the RI and the first PMI when feeding back the channel state information to the eNB, where the second configuration information is used. Instructing the UE to feed back an indication of column vector selection in the RI, the first PMI, and the second PMI when feeding back channel state information to the eNB.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB;
  • the device also includes:
  • the first receiving module 501 is further configured to receive a CQI of the data channel that is sent by the UE according to the first configuration information or the second configuration information;
  • the first transmission module 504 includes:
  • a first dividing unit configured to divide the data to be transmitted into multiple data blocks according to the CQI
  • the first transmission unit is configured to perform weighting processing on each of the plurality of data blocks by using the selected precoding matrix, and then transmit the data to the UE.
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • FIG. 6 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present disclosure, where the apparatus includes:
  • a second receiving module 601 configured to receive a rank indication RI of a data channel sent by the user terminal UE;
  • a fourth determining module 602 configured to determine, according to the RI, a precoding matrix group of the UE to be transmitted data
  • the second transmission module 603 is configured to transmit the precoding matrix group to the UE, so that the UE decodes the data to be transmitted according to the precoding matrix group, where the precoding matrix group includes multiple precoding matrices;
  • the second selecting module 604 is configured to select a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and at least two resources exist in one resource block RB that transmits the data to be transmitted. Selecting different precoding matrices in the precoding matrix group when transmitting the data to be transmitted at the element RE location;
  • the third transmission module 605 is configured to perform weighting processing on the data to be transmitted by using the selected precoding matrix, and then transmit the data to the UE.
  • the second transmission module 603 is configured to pre-edit the RRC signaling by using radio resource control.
  • the code matrix group is given to the UE.
  • the device also includes:
  • a second sending module configured to send the third configuration information to the UE, where the third configuration information is used to indicate that the UE only feeds back the RI when feeding back the channel state information to the eNB.
  • the third configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB;
  • the device also includes:
  • a third receiving module configured to receive a CQI of a data channel that is sent by the UE according to the third configuration information
  • the third transmission module 605 includes:
  • a second dividing unit configured to divide the data to be transmitted into multiple data blocks according to the CQI
  • a second transmission unit configured to perform weighting processing on each of the plurality of data blocks by using the selected precoding matrix, and then transmit the data to the UE.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • FIG. 7 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application, where the apparatus includes:
  • the fourth receiving module 701 is configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • a fifth determining module 702 configured to determine a rank of the data channel and a first precoding matrix according to the CSI-RS;
  • the third sending module 703 is configured to send a rank indication RI and a first precoding matrix indication PMI to the eNB, where the RI includes a rank of the data channel, where the first PMI includes a first precoding matrix, so that the eNB according to the rank and the first precoding
  • the matrix determines a precoding matrix group and selects a precoding matrix from the precoding matrix group, and performs weighting processing on the data to be transmitted of the UE by using the selected precoding matrix, and then transmits the data to the UE;
  • the fourth receiving module 701 is configured to receive the weighted processed transmission data that is sent by the eNB.
  • the sixth determining module 704 is configured to determine the selected precoding matrix according to the transmission sequence of the transmission data in the frequency domain and the time domain;
  • the first demodulation module 705 is configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the sixth determining module 704 includes:
  • An eighth determining unit configured to determine a precoding matrix group according to the RI and the first PMI
  • a second selecting unit configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the transmission data in the frequency domain and the time domain;
  • the sixth determining module 704 includes:
  • a second receiving unit configured to receive a precoding matrix group sent by the eNB
  • a third selecting unit configured to select a precoding matrix from the precoding matrix group according to a transmission sequence of the transmission data in the frequency domain and the time domain.
  • the device also includes:
  • a fifth receiving module configured to receive first configuration information sent by the eNB, where the first configuration information is used to indicate that the UE is in the direction When the eNB feeds back the channel state information, only the RI and the first PMI are fed back;
  • the fifth determining module 702 is configured to determine a rank of the data channel and a first precoding matrix according to the first configuration information and the CSI-RS.
  • the device also includes:
  • a seventh determining module configured to determine an indication of column vector selection in the second PMI
  • a fourth sending module configured to send a second PMI to the eNB, where the second PMI includes an indication of column vector selection, so that the eNB determines the precoding matrix group according to the indication of the RI, the first PMI, and the column vector selection.
  • the device also includes:
  • a sixth receiving module configured to receive second configuration information that is sent by the eNB, where the second configuration information is used to indicate that the UE feeds back an indication of column vector selection in the RI, the first PMI, and the second PMI when feeding back channel state information to the eNB;
  • a seventh determining module configured to determine, according to the second configuration information, an indication of column vector selection in the second PMI.
  • the first configuration information or the second configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB;
  • the device also includes:
  • a first calculating module configured to calculate a CQI of the data channel when the precoding matrix is selected from the precoding matrix group according to a frequency sequence and a time domain sequence of the transmission data
  • the fifth sending module is configured to send the CQI to the eNB according to the first configuration information or the second configuration information.
  • V i is a column vector of N t ⁇ 1, Is a plural of the modulus and The value belonging to 1,-1,j,-j, N t is the number of antenna ports included in the eNB, R is the rank of the data channel included in the RI, and v i is in the first precoding matrix determined according to the first PMI A column vector in the diagonal block matrix X.
  • the base station selects the same v 0 ⁇ v R-1 in different precoding matrices selected for the data to be transmitted, and v i is the second PMI column in the selected precoding matrix.
  • An indication of vector selection, i is an integer ⁇ 0 and ⁇ R-1;
  • the base station selects different precoding matrices for the data to be transmitted. Not the same, The phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the number of CQIs is independent of the rank of the data channel.
  • the device also includes:
  • an eighth determining module configured to determine, according to the rank of the data channel, a number of ports of the demodulation reference symbol DMRS of the data channel, where the number of ports of the DMRS is greater than or equal to an even number of the rank of the data channel.
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present disclosure, where the apparatus includes:
  • the seventh receiving module 801 is configured to receive a channel state information reference symbol CSI-RS sent by the base station eNB;
  • a ninth determining module 802 configured to determine a rank of the data channel according to the CSI-RS
  • the sixth sending module 803 is configured to send a rank indication RI to the base station eNB, where the RI includes a rank of the data channel, so that the eNB determines the precoding matrix group according to the rank and selects a precoding matrix from the precoding matrix group, and selects the precoding matrix.
  • the coding matrix performs weighting processing on the data to be transmitted of the UE and transmits the data to the UE;
  • the seventh receiving module 801 is configured to receive the precoding matrix group sent by the eNB and the weighted processed transmission data.
  • the tenth determining module 804 is configured to select a precoding matrix from the precoding matrix group according to the transmission sequence of the transmission data in the frequency domain and the time domain;
  • the second demodulation module 805 is configured to demodulate the weighted processed transmission data by using the selected precoding matrix.
  • the device also includes:
  • the eighth receiving module is configured to receive the third configuration information that is sent by the eNB, where the third configuration information is used to indicate that the UE only feeds back the RI when feeding back the channel state information to the eNB;
  • the ninth determining module 802 is configured to determine a rank of the data channel according to the third configuration information and the CSI-RS.
  • the third configuration information is further used to indicate that the UE feeds back the channel quality index CQI when feeding back channel state information to the eNB;
  • the device also includes:
  • a second calculating module configured to calculate a CQI of the data channel when the precoding matrix is selected from the precoding matrix group according to a predetermined selection order according to a frequency domain and a time domain sequence of the transmission data;
  • the seventh sending module is configured to send the CQI to the eNB according to the third configuration information.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • An embodiment of the present application provides a data transmission method, where the method is applied to an eNB.
  • the method includes:
  • Step 901 The base station eNB receives the rank indication RI of the data channel and the first precoding matrix indication PMI sent by the user terminal UE, and determines a precoding matrix group of the UE to be transmitted according to the RI and the first PMI, where the precoding matrix group includes Multiple precoding matrices;
  • Step 902 Select a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and transmit at least two resource elements RE in a resource block RB that transmits the data to be transmitted. Pending transmission Selecting different precoding matrices in the precoding matrix group when data is used;
  • Step 903 Perform weighting processing on the transmitted data by using the selected precoding matrix, and then transmit the data to the UE.
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • An embodiment of the present application provides a data transmission method, where the method is applied to an eNB.
  • the method includes:
  • Step 1001 The base station eNB receives the rank indication RI of the data channel sent by the user terminal UE, determines a precoding matrix group of the UE to be transmitted according to the RI, and transmits the precoding matrix group to the UE, so that the UE according to the precoding matrix group Decoding data to be transmitted, the precoding matrix group includes a plurality of precoding matrices;
  • Step 1002 Select a precoding matrix from a precoding matrix group according to a transmission sequence of data to be transmitted in a frequency domain and a time domain, and transmit at least two resource elements RE locations in a resource block RB that transmits data to be transmitted. Selecting different precoding matrices in the precoding matrix group when data is to be transmitted;
  • Step 1003 Perform weighting processing on the transmitted data by using the selected precoding matrix, and then transmit the data to the UE.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • the embodiment of the present application provides a data transmission method, and the method is applied to a UE.
  • the method includes:
  • Step 1101 The user terminal UE determines the rank of the data channel and the first precoding matrix according to the CSI-RS according to the channel state information reference symbol CSI-RS delivered by the base station eNB.
  • Step 1102 Send a rank indication RI and a first precoding matrix indication PMI to the eNB, where the RI includes a rank of the data channel, where the first PMI includes a first precoding matrix, so that the eNB determines the precoding matrix according to the rank and the first precoding matrix. And selecting a precoding matrix from the precoding matrix group, and performing weighting processing on the data to be transmitted of the UE by using the selected precoding matrix, and transmitting the data to the UE;
  • Step 1103 Receive the weighted processed transmission data delivered by the eNB, determine the selected precoding matrix according to the transmission sequence of the transmission data in the frequency domain and the time domain, and demodulate the weighted processed transmission data by using the selected precoding matrix. .
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • the embodiment of the present application provides a data transmission method, and the method is applied to a UE.
  • the method includes:
  • Step 1201 The user terminal UE receives the channel state information reference symbol CSI-RS sent by the base station eNB, and determines the rank of the data channel according to the CSI-RS.
  • Step 1202 Send a rank indication RI to the base station eNB, where the RI includes a rank of the data channel, so that the eNB determines the precoding matrix group according to the rank and selects a precoding matrix from the precoding matrix group, and selects the precoding matrix to the UE by using the precoding matrix.
  • the data to be transmitted is weighted and transmitted to the UE;
  • Step 1203 Receive the precoding matrix group and the weighted processed transmission data sent by the eNB, select a precoding matrix from the precoding matrix group according to the transmission sequence of the transmission data in the frequency domain and the time domain, and pass the selected precoding matrix. Demodulation of the transmitted data after the weighting process.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • the embodiment of the present application provides a data transmission method, which is applied between an eNB and a UE.
  • the method includes:
  • Step 1301 The eNB sends a CSI-RS to the UE.
  • data diversity and array gain can be obtained by precoding the data, and the signal vector received by the UE after the precoding process can be expressed by the following formula (1):
  • Y represents the received signal vector
  • H represents the data channel matrix
  • W represents the precoding matrix
  • s represents the transmitted symbol vector
  • n represents the measurement noise.
  • Optimal precoding usually requires the eNB's transmitter to fully know the Channel State Information (CSI). Therefore, before the eNB transmits data to the UE, the eNB sends a CSI-RS to the UE, and the CSI-RS is used for UE measurement and Report the current CSI.
  • CSI Channel State Information
  • the CSI includes a Rank Indicator (RI) of the data channel, a first precoding matrix index (PMI1), a second precoding matrix index (PMI2), and a channel quality.
  • RI Rank Indicator
  • PMI1 first precoding matrix index
  • PMI2 second precoding matrix index
  • CQI Channel Quality Index
  • RI indicates the number of layers used by the antenna
  • PMI1 corresponds to the first precoding matrix W1
  • PMI2 corresponds to the second precoding matrix W2
  • W1 and W2 are used to construct the precoding matrix W
  • W is obtained by the product of W1 and W2, As shown in the following formula (2):
  • W1 is a first precoding matrix
  • W2 is a second precoding matrix
  • W1 is represented by a block diagonal matrix, and each subblock corresponds to a polarization direction, as shown in the following formula (3):
  • X (k) represents the selected kth vector group in the first precoding matrix.
  • X (k) and W 2 have different representations for the ranks of different data channels.
  • the vector set is defined as:
  • the vector set is divided into 16 vector groups, each of which has 4 column vectors, and two of the two adjacent vector groups overlap.
  • X (k) represents the kth vector group, and the representation of X (k) is as shown in the following formula (4):
  • W 2 is selected from the second level codebook, ie
  • W 2 is selected from the second level codebook, ie
  • the representation is a column vector selection indication, and the nth element is 1 and the remaining elements are 0.
  • the vector set is divided into 4 vector groups, 8 vector vectors in each vector group, and four column vectors in two adjacent vector groups are overlapped.
  • X (k) represents the kth vector group.
  • the representation of X (k) is as shown in the following formula (8):
  • the first precoding matrix is applicable to the entire system bandwidth and has a long period characteristic.
  • the second precoding matrix reflects the matrix of each subband, which acts to select a column vector for each subband and select a phase difference (co-phase) between the two sets of polarization directions.
  • 32 column vectors in the horizontal direction constitute a horizontal direction vector set
  • 8 column vectors in the vertical direction constitute a vector set in the vertical direction
  • b m,n represents the nth column vector in the horizontal direction
  • the mth column vector in the vertical direction is a vector set in the vertical direction.
  • Kronecker Product (KP) The figure assumes that a vector group is generated by KP mode from 4 horizontal direction column vectors and 2 vertical direction column vectors, that is, contains 8 column vectors.
  • Step 1302 The UE receives the CSI-RS sent by the eNB, and measures the rank of the data channel and the first precoding matrix, and sends the RI and the first PMI to the eNB.
  • the UE receives the CSI-RS sent by the eNB, and measures the rank of the data channel and the first precoding matrix.
  • the UE sends the RI and the first PMI to the eNB.
  • the RI includes a rank of a data channel
  • the first PMI includes a first precoding matrix
  • the first precoding matrix is
  • W 1 is a matrix of N t ⁇ 2M
  • N t is a number of antenna ports included in the eNB
  • X is composed of a plurality of column vectors Matrix.
  • the eNB Before the step, the eNB sends the configuration information to the UE, where the configuration information may be the first configuration information or the second configuration information, where the first configuration information is used to indicate that the UE only feeds back the RI and the first PMI when feeding back the channel state information to the eNB.
  • the second configuration information is used to indicate that the UE feeds back an indication of column vector selection in the RI, the first PMI, and the second PMI when feeding back channel state information to the eNB.
  • the first configuration information and the second configuration information are further used to indicate that the UE further feeds back the CQI of the data channel when feeding back the channel state information to the eNB.
  • the step may be:
  • the UE measures the rank and CQI of the data channel and the first precoding matrix according to the first configuration information, and sends the RI and the CQI and the first PMI to the eNB.
  • the step may be:
  • the UE measures the rank and CQI of the data channel, and the first precoding matrix and the second precoding moment according to the second configuration information.
  • An indication of column vector selection in the array transmitting a rank and CQI of the data channel and an indication of column vector selection in the first precoding matrix and the second precoding matrix to the eNB.
  • the eNB defines a set of column vectors v 0 , . . . , v m , and after receiving the CSI-RS, the UE selects one or more column vectors suitable for the UE from the set of column vectors, and assumes one or more column vectors.
  • Each phase difference in each column vector and phase difference set is used alternately between resource blocks (RBs) or RB groups to calculate the rank and CQI of the data channel.
  • each column vector and each phase difference are used alternately between RBs or RB groups, the data of each layer of the antenna has the same channel quality, that is, regardless of the value of RI, only Corresponding to one CQI, therefore, the number of CQIs is independent of the rank of the data channel.
  • Step 1303 The eNB receives the RI and the first PMI sent by the UE, and determines a precoding matrix group of the UE to be transmitted according to the RI and the first PMI.
  • the eNB determines a first precoding matrix according to the RI and the first PMI, and determines a second precoding matrix group according to each phase difference in the first precoding matrix and the phase difference set, according to the first precoding matrix and the second pre A coding matrix group that determines a precoding matrix group of the UE to be transmitted data.
  • the step may be:
  • the eNB receives an indication of column vector selection in the second PMI transmitted by the UE, determines a first precoding matrix according to the RI and the first PMI, and determines a second pre-determination according to the indication of the column vector selection and each phase difference in the phase difference set. And a coding matrix group, which determines a precoding matrix group of the UE to be transmitted according to the first precoding matrix and the second precoding matrix group.
  • V i is a column vector of N t ⁇ 1, Is a plural of the modulus and The value belonging to 1,-1,j,-j, N t is the number of antenna ports included in the eNB, R is the rank of the data channel included in the RI, and v i is in the first precoding matrix determined according to the first PMI1 A column vector in the diagonal block matrix X.
  • W1 indicated by the first PMI when the rank of the data channel is 1 or 2, W1 is as shown in the following formula (14):
  • the diagonal matrix X of W1 includes four column vectors, which are v0, v1, v2 and v3, respectively.
  • the two diagonal matrices represent the antenna ports of the two sets of polarization directions.
  • the UE selects W1, and then, when calculating CQI and RI, uses the column vector of the diagonal matrix X in W1 and the phase difference in the phase difference set, that is, the column vector in the diagonal matrix X of W1 takes turns in RB or
  • the precoding matrix on the kth subcarrier is:
  • the precoding matrix on the kth subcarrier is:
  • a i is represented as a weighting matrix of a Space Frequency Block Code (SFBC), and the weighting manner of the data of the 2 mth subcarrier is:
  • SFBC Space Frequency Block Code
  • the weighting manner of the data of the 2m+1th subcarrier is:
  • the precoding matrix on the kth subcarrier is:
  • the weighting manner of the data of the i-th subcarrier is:
  • k denotes an index of a subcarrier or RB
  • denotes a constant or a constant matrix
  • Each RB or RB group uses a set of vector pairs in turn.
  • Each RB or RB group uses a set of vector pairs in turn.
  • W1 has the following form
  • the vectors v 0 , v 1 , v 2 , and v 3 are vectors orthogonal to each other.
  • W alter is a column exchange for W2
  • W alter is a column exchange for W2
  • W alter is a column exchange for W2
  • W alter is a column exchange for W2
  • the eNB may also determine the number of ports of the DMRS of the data channel according to the rank of the data channel, the number of ports of the DMRS being greater than or equal to the even number of the rank of the data channel.
  • the eNB can store the correspondence between the rank and the number of ports. Correspondingly, the eNB can obtain the number of ports of the DMRS of the data channel from the correspondence between the rank and the number of ports according to the rank of the data channel.
  • the eNB may also not calculate the correspondence between the rank and the number of ports, and directly calculate the number of ports of the DMRS of the data channel according to the rank of the data channel according to the following formula 15.
  • P is always an even number.
  • Step 1304 The eNB selects a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain.
  • the eNB selects a precoding matrix from the precoding matrix group according to a pre-defined selection order according to the transmission order of the data to be transmitted in the frequency domain and the time domain.
  • the eNB uses the precoding matrix in the precoding matrix group in turn in the RB in which the data to be transmitted is transmitted. Therefore, in one resource block RB in which the data to be transmitted is transmitted, at least two resource elements RE are transmitted at the location. Different precoding matrices in the precoding matrix group are selected when data is to be transmitted.
  • the different precoding matrices selected by the base station for the data to be transmitted include the same v 0 ⁇ v R-1 , and v i is an indication of the column vector selection in the second PMI in the selected precoding matrix, where i is An integer ⁇ 0 and ⁇ R-1.
  • the base station selects different precoding matrices for the data to be transmitted. Not the same, The phase difference between the two sets of polarized antennas included in the second PMI in the selected precoding matrix.
  • the eNB may also determine a weighting matrix of the DMRS of the data channel according to the selected coding matrix, and each column vector in the weighting matrix of the DMRS may be expressed as: or v i is an indication of column vector selection in the second PMI in the selected precoding matrix.
  • antenna ports 1-4 belong to the +45 polarization direction
  • antenna ports 5-8 belong to the -45 polarization direction, as shown in Figure 13-3.
  • Antenna ports 0, 1, 2, 3 and a weighting matrix v 0 pointing in the direction of a beam form a DMRS port, and antenna ports 4, 5, 6, 7 and v 0 form another DMRS port.
  • the antenna ports 0, 1, 2, 3 and the weighting matrix v 1 pointing to a certain beam direction may constitute a third DMRS port, and the antenna ports 4, 5, 6, 7 and v 1 may constitute a fourth DMRS port.
  • v 0 v 1 is a weighting matrix of N a ⁇ 1
  • N a is the number of a port of the polarization direction of the antenna.
  • the first DMRS port transmits a signal of s 0 and its weighted form is Similarly, the second DMRS port is The third DMRS port is The fourth DMRS port is The fifth DMRS port is .... and so on.
  • I a weighting matrix of 2N a ⁇ 1.
  • the first precoding matrix W1 includes four column vectors, and the eNB selects a column vector from W1.
  • Step 1305 The eNB performs weighting processing on the data to be transmitted through the selected precoding matrix, and then transmits the data to the UE.
  • the eNB performs weighting processing on the transmitted data by using the selected precoding matrix.
  • the eNB transmits the processed data to the UE.
  • the eNB divides the data to be transmitted into a plurality of data blocks according to the CQI; each of the plurality of data blocks is weighted by the selected precoding matrix and then transmitted to the UE.
  • each weighted data block is carried in a subcarrier in the data channel, and the subcarrier is transmitted to the UE.
  • Step 1306 The UE receives the weighted processed transmission data sent by the eNB, determines the selected precoding matrix according to the transmission sequence of the transmission data in the frequency domain and the time domain, and demodulates the weighted processing by using the selected precoding matrix. transfer data.
  • the step of determining, by the UE, the selected precoding matrix according to the transmission sequence of the transmission data in the frequency domain and the time domain may be:
  • the UE determines the selected precoding matrix group according to the RI and the first PMI, and selects a precoding matrix from the precoding matrix group according to the transmission sequence of the transmission data in the frequency domain and the time domain; or
  • the UE receives the precoding matrix group sent by the eNB, and selects a precoding matrix from the precoding matrix group according to the transmission sequence of the transmission data in the frequency domain and the time domain.
  • each data layer is weighted by data. Assume that the weighting method of the i-th data stream is:
  • d i is the data transmitted by the i-th data layer
  • A represents a constant matrix
  • ⁇ l represents the phase difference between the two sets of polarization direction antennas.
  • the transmission data of each layer of the data channel can be recovered by the DMRS port.
  • the UE Before this step, the UE further needs the UE to determine the number of ports of the EMRS of the data channel according to the rank of the data channel, and the number of ports of the DMRS is greater than or equal to the even number of the rank of the data channel.
  • the corresponding relationship between the rank and the number of the ports may be stored in the UE.
  • the step may be: the UE obtains the number of ports of the DMRS of the data channel from the correspondence between the rank and the number of ports according to the rank of the data channel.
  • the UE may also not calculate the correspondence between the rank and the number of ports, and directly calculate the number of ports of the DMRS of the data channel according to the rank of the data channel according to the following formula 15.
  • P is the number of ports of the DMRS
  • R is the rank of the data channel. To round up the ratio of R/2.
  • P is always an even number.
  • the UE only reports the RI and the first PMI to the eNB, and the eNB determines the precoding matrix group according to the RI and the first PMI, and the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain. Selecting precoding, and transmitting a precoding matrix in the precoding matrix group when at least two resource elements RE are transmitted in the resource block RB to transmit data to be transmitted, thereby implementing the precoding matrix in turn.
  • the precoding matrix in the group improves the precoding performance.
  • the embodiment of the present application provides a method for transmitting data, which is applied between an eNB and a UE.
  • the method includes:
  • Step 1401 The eNB sends a CSI-RS to the UE.
  • Step 1402 The UE receives the CSI-RS sent by the eNB, acquires the rank of the data channel, and transmits the RI to the eNB.
  • the UE receives the CSI-RS sent by the eNB, and acquires the rank of the data channel.
  • the UE transmits an RI to the eNB.
  • the eNB Before the step, the eNB sends the third configuration information to the UE, where the third configuration information is used to indicate that the UE only feeds back the rank of the data channel when the channel state information is fed back to the eNB.
  • the UE according to the third configuration information, The rank of the data channel is obtained, and the RI is transmitted to the eNB, the RI including the rank of the data channel.
  • the third configuration information is further used to indicate that the UE also feeds back the CQI of the data channel when the channel state information is fed back to the eNB.
  • the UE may also acquire the CQI of the data channel according to the third configuration information, and transmit the data channel to the eNB. CQI.
  • Step 1403 The eNB receives the RI sent by the UE, and determines a precoding matrix group of the UE to be transmitted according to the RI, and transmits the precoding matrix group to the UE.
  • the eNB receives the RI sent by the UE, and determines a precoding matrix group of the UE to be transmitted according to the RI.
  • the eNB transmits the precoding matrix group to the UE.
  • the eNB may send the precoding matrix group to the UE by using the radio resource control RRC signaling.
  • the eNB stores the correspondence between the rank and the precoding matrix group, and correspondingly, the step of determining the precoding matrix group of the UE to be transmitted according to the RI may be:
  • the eNB obtains, by the eNB, the rank pair from the correspondence between the rank and the precoding matrix group according to the rank of the data channel included in the RI The group of precoding matrices that should be.
  • the precoding matrix on the kth RB or the kth subcarrier in the RB group is:
  • e i is a vector of N a ⁇ 1, the value of the i-th element is 1, and the remaining values are 0, where N a is the number of port pairs.
  • N a is the number of port pairs.
  • A is a constant matrix.
  • Different port pairs are used for cycling between different RB or RB groups.
  • the precoding matrix on the kth RB or the kth subcarrier in the RB group is:
  • e i is a vector of N a ⁇ 1
  • the value of the i-th element is 1, and the remaining values are 0, where N a is the number of port pairs.
  • W2 selects from the following four matrices.
  • Step 1404 The UE receives the precoding matrix group transmitted by the eNB, and stores the precoding matrix group.
  • Step 1405 The eNB selects a precoding matrix from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain.
  • At least two resource elements RE are located at different locations to select different precoding matrices in the precoding matrix group when transmitting data to be transmitted.
  • Step 1406 The eNB performs weighting processing on the data to be transmitted through the selected precoding matrix, and then transmits the data to the UE.
  • the eNB performs weighting processing on the transmitted data by using the selected precoding matrix.
  • the eNB transmits the processed data to the UE.
  • Step 1407 The UE receives the weighted processed transmission data transmitted by the eNB, and determines the selected precoding matrix according to the transmission sequence in the frequency domain and the time domain according to the transmission data, and demodulates the weighted processing by using the selected precoding matrix. transfer data.
  • the UE selects a precoding matrix from the precoding matrix group according to the transmission order of the transmission data in the frequency domain and the time domain.
  • the UE only reports the RI to the eNB, and the eNB determines the precoding matrix group according to the RI, and selects the precoding from the precoding matrix group according to the transmission sequence of the data to be transmitted in the frequency domain and the time domain, and the transmission is to be performed.
  • a resource block RB of the transmitted data at least two resource elements RE are located at different locations, and different precoding matrices in the precoding matrix group are selected when the data to be transmitted is transmitted, thereby implementing the precoding matrix in the precoding matrix group in turn, thereby improving Precoding performance.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种数据传输方法和装置,属于无线通信技术领域。方法包括:基站eNB接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI,并根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,所述预编码矩阵组包括多个预编码矩阵;根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。装置包括:第一接收模块,第一确定模块,第一选择模块和第一传输模块。本申请可以提高预编码性能。

Description

数据传输方法和装置
本申请要求于2016年04月01日提交中国专利局、申请号为201610205911.7、发明名称为“数据传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种数据传输方法和装置。
背景技术
在多入多出(Multiple Input Multiple Output,MIMO)无线通信系统中,通过对数据进行预编码处理能够得到数据分集和阵列增益,因此,在MIMO无线通信系统如何进行数据传输是业界关注的重点。
目前,当基站(Evaluated NodeB,eNB)向用户终端(Use Equipment,UE)传输数据时,eNB向UE下发信道状态信息参考符号(Channel State Information Reference Signal,CSI-RS),UE根据该CSI-RS获取当前数据信道的第一预编码矩阵和第二预编码矩阵,第一预编码矩阵由多个列向量组成,第二预编码矩阵由从多个列向量中选择的列向量和两级天线之间的相位差组成,向eNB发送第一预编码矩阵指示(Precoding Matrix Index,PMI)和第二PMI,第一PMI包括第一预编码矩阵,第二PMI包括第二预编码矩阵;eNB根据第一预编码矩阵和第二预编码矩阵,计算预编码矩阵,通过该预编码矩阵对待传输的数据进行加权处理后下发给UE。
现有技术存在如下问题:
在UE高速运动的场景中,数据信道快速变化,当数据信道变化时,第二预编码矩阵中的相位差就会发生变化,然而eNB根据第二预编码矩阵计算预编码矩阵且通过该预编码矩阵对待传输的数据进行加权处理时,该相位差已经发生了变化,从而导致计算得到的预编码矩阵与当前数据信道不匹配,进而导致预编码性能下降。
发明内容
为了解决现有技术的问题,本申请提供了一种数据传输方法和装置。所述技术方案如下:
第一方面,本申请实施例提供了一种数据传输方法,所述方法包括:
基站eNB接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI,并根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,所述预编码矩阵组包括多个预编码矩阵;
根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
在一个可能的设计中,所述根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,包括:
根据所述RI和所述第一PMI,确定第一预编码矩阵,根据所述第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组,根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差;或者,
接收所述UE传输的第二PMI,所述第二PMI中包括列向量选择的指示,根据所述RI和所述第一PMI,确定第一预编码矩阵,根据所述列向量选择的指示确定的列向量和相位差集合中的每个相位差,确定第二预编码矩阵组,根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差。
在本申请实施例中,eNB轮流使用相位差集合中的每个相位差,从而构建预编码矩阵组,在向UE传输待传输的数据时,轮流使用预编码矩阵组中的预编码矩阵,从而提高了预编码性能。
在本申请实施例中,UE还可以上报第二PMI中的相位差,从而eNB根据该相位差构建预编码矩阵组,在向UE传输待传输的数据时,轮流使用预编码矩阵组中的预编码矩阵,从而提高了预编码性能。
在另一个可能的设计中,所述第一预编码矩阵为
Figure PCTCN2017078446-appb-000001
其中,W1为Nt×2M的矩阵,Nt为所述eNB包括的天线端口个数,X为由所述多个列向量组成的
Figure PCTCN2017078446-appb-000002
的矩阵,M为X中包括的列向量个数。
在另一个可能的设计中,所述根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,包括:
根据所述待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵。
在向UE传输待传输的数据时,根据待传输数据在频域和时域的传输顺序,轮流使用预编码矩阵组中的预编码矩阵,从而提高了预编码性能。
在另一个可能的设计中,所述预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000003
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000004
是模为1的复数且
Figure PCTCN2017078446-appb-000005
属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI确定 的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在另一个可能的设计中,所述RI包括所述数据信道的秩;所述方法还包括:
根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
在本申请实施例中,eNB还可以根据数据信道的秩,确定DMRS的端口数目,通过DMRS端口向UE传输待传输的数据。
在另一个可能的设计中,所述方法还包括:
根据所述选择的预编码矩阵,确定所述数据信道的DMRS的加权矩阵,所述DMRS的加权矩阵中的每个列向量可以表示为:
Figure PCTCN2017078446-appb-000006
或者
Figure PCTCN2017078446-appb-000007
vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示选择的列向量。
在本申请实施例中,eNB还可以根据选择的预编码矩阵,确定DMRS的加权矩阵。
在另一个可能的设计中,在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,所述vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000008
不相同,所述
Figure PCTCN2017078446-appb-000009
为所述选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在另一个可能的设计中,所述方法还包括:
向所述UE发送第一配置信息或第二配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示。
在本申请实施例中,eNB可以事先向UE配置PMI的反馈方式。
在另一个可能的设计中,所述第一配置信息或所述第二配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述方法还包括:
接收所述UE根据所述第一配置信息或第二配置信息发送的数据信道的CQI;
所述通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE,包括:
根据所述CQI,将所述待传输数据划分为多个数据块;
分别通过所述选择的预编码矩阵对所述多个数据块中的每个数据块进行加权处理后传输给所述UE。
在本申请实施例中,UE还可以向eNB上报数据信道的CQI,从而eNB可以根据CQI对待传输数据进行分块编码并发送,提高了传输效率。
第二方面,本申请实施例提供了一种数据传输方法,所述方法包括
基站eNB接收用户终端UE发送的数据信道的秩指示RI,根据所述RI确定所述UE的待传输数据的预编码矩阵组,并将所述预编码矩阵组传输给所述UE,以使所述UE根据所述预编码矩阵组解码出所述待传输数据,所述预编码矩阵组包括多个预编码矩阵;
根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
在一个可能的设计中,所述将所述预编码矩阵组传输给所述UE,包括:
通过无线资源控制RRC信令下发所述预编码矩阵组给所述UE。
在本申请实施例中通过RRC信令下发预编码矩阵组给UE,提高了传输效率。
在另一个可能的设计中,所述方法还包括:
向所述UE发送第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI。
在本申请实施例中,eNB可以事先向UE配置PMI的反馈方式。
在另一个可能的设计中,所述第三配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述方法还包括:
接收所述UE根据所述第三配置信息发送的数据信道的CQI;
所述通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE,包括:
根据所述CQI,将所述待传输数据划分为多个数据块;
分别通过所述选择的预编码矩阵对所述多个数据块中的每个数据块进行加权处理后传输给所述UE。
在本申请实施例中,UE还可以向eNB上报数据信道的CQI,从而eNB可以根据CQI对待传输数据进行分块编码并发送,提高了传输效率。
第三方面,本申请实施例提供了一种数据传输方法,所述方法包括:
用户终端UE根据基站eNB下发的信道状态信息参考符号CSI-RS,根据所述CSI-RS确定数据信道的秩和第一预编码矩阵;
向所述eNB发送秩指示RI和第一预编码矩阵指示PMI,所述RI包括所述数据信道的秩,所述第一PMI包括所述第一预编码矩阵,以使所述eNB根据所述秩和所述第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
接收所述eNB下发的加权处理后的传输数据,根据所述传输数据在频域和时域的传输顺序,确定所述选择的预编码矩阵,并通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定 预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
在一个可能的设计中,所述根据所述传输数据在频域和时域的传输顺序,确定所述选择的预编码矩阵,包括:
根据所述RI和所述第一PMI,确定预编码矩阵组,根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵;或者,
接收所述eNB发送的预编码矩阵组,根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵。
在本申请实施例中,UE也可以根据确定预编码矩阵组或者接收eNB发送的预编码矩阵组,并根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,从而保证UE和eNB选择的相同的预编码矩阵。
在另一个可能的设计中,所述方法还包括:
接收所述eNB发送的第一配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI;
所述根据所述CSI-RS确定数据信道的秩和第一预编码矩阵,包括:
根据所述第一配置信息和所述CSI-RS,确定数据信道的秩和第一预编码矩阵。
在本申请实施例中,eNB可以事先向UE配置PMI的反馈方式,从而UE根据eNB配置的反馈方式进行反馈。
在另一个可能的设计中,所述方法还包括:
确定列向量选择的指示,向所述eNB发送第二PMI,所述第二PMI包括所述列向量选择的指示,以使所述eNB根据所述RI、所述第一PMI和所述列向量选择的指示,确定预编码矩阵组。
在本申请实施例中,UE还可以上报第二PMI中的相位差,从而eNB根据该相位差构建预编码矩阵组,在向UE传输待传输的数据时,轮流使用预编码矩阵组中的预编码矩阵,从而提高了预编码性能。
在另一个可能的设计中,所述方法还包括:
接收所述eNB发送的第二配置信息,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中的列向量选择的指示;
所述确定第二PMI中的列向量选择的指示,包括:
根据所述第二配置信息,确定第二PMI中的列向量选择的指示。
在本申请实施例中,eNB可以事先向UE配置PMI的反馈方式,从而UE根据eNB配置的反馈方式进行反馈。
在另一个可能的设计中,所述第一配置信息或所述第二配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述方法还包括:
假设根据所述传输数据的频域和时域的顺序,按预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵时,计算所述数据信道的CQI;
根据所述第一配置信息或所述第二配置信息,向所述eNB发送所述CQI。
在本申请实施例中,UE还可以向eNB上报数据信道的CQI,从而eNB可以根据CQI对待传输数据进行分块编码并发送,提高了传输效率。
在另一个可能的设计中,所述预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000010
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000011
是模为1的复数且
Figure PCTCN2017078446-appb-000012
属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI1确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在另一个可能的设计中,在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,所述vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000013
不相同,所述
Figure PCTCN2017078446-appb-000014
为所述选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在另一个可能的设计中,所述CQI的个数与所述数据信道的秩无关。
在另一个可能的设计中,所述方法还包括:
根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
在本申请实施例中,eNB还可以根据数据信道的秩,确定DMRS的端口数目,通过DMRS端口向UE传输待传输的数据。
第四方面,本申请实施例提供了一种数据传输方法,所述方法包括:
用户终端UE接收基站eNB下发的信道状态信息参考符号CSI-RS,根据所述CSI-RS确定数据信道的秩;
向基站eNB发送秩指示RI,所述RI包括所述数据信道的秩,以使所述eNB根据所述秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
接收所述eNB发送的预编码矩阵组和加权处理后的传输数据,根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择所述预编码矩阵,并通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
在一个可能的设计中,所述方法还包括:
接收所述eNB发送的第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI;
所述根据所述CSI-RS确定数据信道的秩,包括:
根据所述第三配置信息和所述CSI-RS,确定数据信道的秩。
在本申请实施例中,eNB可以事先向UE配置PMI的反馈方式,从而UE根据eNB配置的反馈方式进行反馈。
在另一个可能的设计中,所述第三配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI
所述方法还包括:
假设根据所述传输数据的频域和时域的顺序,按预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵时,计算所述数据信道的CQI;
根据所述第三配置信息,向所述eNB发送所述CQI。
在本申请实施例中,UE还可以向eNB上报数据信道的CQI,从而eNB可以根据CQI对待传输数据进行分块编码并发送,提高了传输效率。
第五方面,本申请实施例提供了一种数据传输装置,所述装置包括:
第一接收模块,用于接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI;
第一确定模块,用于根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,所述预编码矩阵组包括多个预编码矩阵;
第一选择模块,用于根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
第一传输模块,用于通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
在一个可能的设计中,所述第一确定模块,包括:
第一确定单元,用于根据所述RI和所述第一PMI,确定第一预编码矩阵;
第二确定单元,用于根据所述第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差;
第三确定单元,用于根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组;或者,
所述第一确定模块,包括:
第一接收单元,用于接收所述UE传输的第二PMI,所述第二PMI中包括列向量选择的指示;
第四确定单元,用于根据所述RI和所述第一PMI,确定第一预编码矩阵;
第五确定单元,用于根据所述列向量选择的指示确定的列向量和相位差集合中的每个相位差,确定第二预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差;
第六确定单元,用于根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组。
在另一个可能的设计中,所述第一预编码矩阵为
Figure PCTCN2017078446-appb-000015
其中,W1为Nt×2M的矩阵,Nt为所述eNB包括的天线端口个数,X为由所述多个列向量组成的
Figure PCTCN2017078446-appb-000016
的矩阵,M为X中包括的列向量个数。
在另一个可能的设计中,所述第一选择模块,包括:
第一选择单元,用于根据所述待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵。
在另一个可能的设计中,所述预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000017
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000018
是模为1的复数且
Figure PCTCN2017078446-appb-000019
属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在另一个可能的设计中,所述RI包括所述数据信道的秩;
所述装置还包括:
第二确定模块,用于根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
在另一个可能的设计中,所述装置还包括:
第三确定模块,用于根据所述选择的预编码矩阵,确定所述数据信道的DMRS的加权矩阵,所述DMRS的加权矩阵中的每个列向量可以表示为:
Figure PCTCN2017078446-appb-000020
或者
Figure PCTCN2017078446-appb-000021
vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示。
在另一个可能的设计中,在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,所述vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000022
不相同,所述
Figure PCTCN2017078446-appb-000023
为所述选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在另一个可能的设计中,所述装置还包括:
第一发送模块,用于向所述UE发送第一配置信息或第二配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示。
在另一个可能的设计中,所述第一配置信息或所述第二配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述装置还包括:
所述第一接收模块,还用于接收所述UE根据所述第一配置信息或第二配置信息发送的数据信道的CQI;
所述第一传输模块,包括:
第一划分单元,用于根据所述CQI,将所述待传输数据划分为多个数据块;
第一传输单元,用于分别通过所述选择的预编码矩阵对所述多个数据块中的每个数据块进行加权处理后传输给所述UE。
第六方面,本申请实施例提供了一种数据传输装置,所述装置包括
第二接收模块,用于接收用户终端UE发送的数据信道的秩指示RI;
第四确定模块,用于根据所述RI确定所述UE的待传输数据的预编码矩阵组;
第二传输模块,用于将所述预编码矩阵组传输给所述UE,以使所述UE根据所述预编码矩阵组解码出所述待传输数据,所述预编码矩阵组包括多个预编码矩阵;
第二选择模块,用于根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
第三传输模块,用于通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
在一个可能的设计中,所述第二传输模块,用于通过无线资源控制RRC信令下发所述预编码矩阵组给所述UE。
在另一个可能的设计中,所述装置还包括:
第二发送模块,用于向所述UE发送第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI。
在另一个可能的设计中,所述第三配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述装置还包括:
第三接收模块,用于接收所述UE根据所述第三配置信息发送的数据信道的CQI;
所述第三传输模块,包括:
第二划分单元,用于根据所述CQI,将所述待传输数据划分为多个数据块;
第二传输单元,用于分别通过所述选择的预编码矩阵对所述多个数据块中的每个数据块进行加权处理后传输给所述UE。
第七方面,本申请实施例提供了一种数据传输装置,所述装置包括:
第四接收模块,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
第五确定模块,用于根据所述CSI-RS确定数据信道的秩和第一预编码矩阵;
第三发送模块,用于向所述eNB发送秩指示RI和第一预编码矩阵指示PMI,所述RI包括所述数据信道的秩,所述第一PMI包括所述第一预编码矩阵,以使所述eNB根据所述秩和所述第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
第四接收模块,用于接收所述eNB下发的加权处理后的传输数据;
第六确定模块,用于根据所述传输数据在频域和时域的传输顺序,确定所述选择的预编码矩阵;
第一解调模块,用于通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
在一个可能的设计中,所述第六确定模块,包括:
第八确定单元,用于根据所述RI和所述第一PMI,确定预编码矩阵组;
第二选择单元,用于根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵;或者,
所述第六确定模块,包括:
第二接收单元,用于接收所述eNB发送的预编码矩阵组;
第三选择单元,用于根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵。
在另一个可能的设计中,所述装置还包括:
第五接收模块,用于接收所述eNB发送的第一配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI;
所述第五确定模块,用于根据所述第一配置信息和所述CSI-RS,确定数据信道的秩和第一预编码矩阵。
在另一个可能的设计中,所述装置还包括:
第七确定模块,用于确定列向量选择的指示;
第四发送模块,用于向所述eNB发送第二PMI,所述第二PMI包括所述列向量选择的指示,以使所述eNB根据所述RI、所述第一PMI和所述列向量选择的指示,确定预编码矩阵组。
在另一个可能的设计中,所述装置还包括:
第六接收模块,用于接收所述eNB发送的第二配置信息,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示;
所述第七确定模块,用于根据所述第二配置信息,确定第二PMI中的列向量选择的指示。
在另一个可能的设计中,所述第一配置信息或所述第二配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述装置还包括:
第一计算模块,用于假设根据所述传输数据的频域和时域的顺序,按预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵时,计算所述数据信道的CQI;
第五发送模块,用于根据所述第一配置信息或所述第二配置信息,向所述eNB发送所述CQI。
在另一个可能的设计中,所述预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000024
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000025
是模为1的复数且
Figure PCTCN2017078446-appb-000026
属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在另一个可能的设计中,在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,所述vi为所述选择的预编码矩阵中的第二PMI中列向量选择 的指示,i为≥0且≤R-1的整数;
在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000027
不相同,所述
Figure PCTCN2017078446-appb-000028
为所述选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在另一个可能的设计中,所述CQI的个数与所述数据信道的秩无关。
在另一个可能的设计中,所述装置还包括:
第八确定模块,用于根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
第八方面,本申请实施例提供了一种数据传输装置,所述装置包括:
第七接收模块,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
第九确定模块,用于根据所述CSI-RS确定数据信道的秩;
第六发送模块,用于向基站eNB发送秩指示RI,所述RI包括所述数据信道的秩,以使所述eNB根据所述秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
第七接收模块,用于接收所述eNB发送的预编码矩阵组和加权处理后的传输数据;
第十确定模块,用于根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择所述预编码矩阵;
第二解调模块,用于通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
在一个可能的设计中,所述装置还包括:
第八接收模块,用于接收所述eNB发送的第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI;
所述第九确定模块,用于根据所述第三配置信息和所述CSI-RS,确定数据信道的秩。
在另一个可能的设计中,所述第三配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI
所述装置还包括:
第二计算模块,用于假设根据所述传输数据的频域和时域的顺序,按预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵时,计算所述数据信道的CQI;
第七发送模块,用于根据所述第三配置信息,向所述eNB发送所述CQI。
第九方面,本申请实施例提供了一种数据传输装置,所述装置包括:第一接收器、第一处理器和第一发射器;
所述第一接收器,用于接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI;
所述第一处理器,用于根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,所述预编码矩阵组包括多个预编码矩阵;
所述第一处理器,用于根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
所述第一发射器,用于通过所述选择的预编码矩阵对所述待传输数据进行加权处理后 传输给所述UE。
在一个可能的设计中,所述第一处理器,用于根据所述RI和所述第一PMI,确定第一预编码矩阵;根据所述第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组;根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差;或者,
所述第一处理器,用于接收所述UE传输的第二PMI,所述第二PMI中包括列向量选择的指示;根据所述RI和所述第一PMI,确定第一预编码矩阵;根据所述列向量选择的指示确定的列向量和相位差集合中的每个相位差,确定第二预编码矩阵组;根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差。
在另一个可能的设计中,所述第一预编码矩阵为
Figure PCTCN2017078446-appb-000029
其中,W1为Nt×2M的矩阵,Nt为所述eNB包括的天线端口个数,X为由所述多个列向量组成的
Figure PCTCN2017078446-appb-000030
的矩阵,M为X中包括的列向量个数。
在另一个可能的设计中,所述第一处理器,用于根据所述待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵。
在另一个可能的设计中,所述预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000031
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000032
是模为1的复数且
Figure PCTCN2017078446-appb-000033
属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。在另一个可能的设计中,所述RI包括所述数据信道的秩;
所述第一处理器,用于根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
在另一个可能的设计中,所述第一处理器,用于根据所述选择的预编码矩阵,确定所述数据信道的DMRS的加权矩阵,所述DMRS的加权矩阵中的每个列向量可以表示为:
Figure PCTCN2017078446-appb-000034
或者
Figure PCTCN2017078446-appb-000035
vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示。
在另一个可能的设计中,在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,所述vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000036
不相同,所述
Figure PCTCN2017078446-appb-000037
为所述选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在另一个可能的设计中,所述第一发射器,用于向所述UE发送第一配置信息或第二配 置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示。
在另一个可能的设计中,所述第一配置信息或所述第二配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述第一接收器,用于接收所述UE根据所述第一配置信息或第二配置信息发送的数据信道的CQI;
所述第一处理器,用于根据所述CQI,将所述待传输数据划分为多个数据块;分别通过所述选择的预编码矩阵对所述多个数据块中的每个数据块进行加权处理后传输给所述UE。
第十方面,本申请实施例提供了一种数据传输装置,所述装置包括:第二接收器、第二处理器和第二发射器;
所述第二接收器,用于接收用户终端UE发送的数据信道的秩指示RI;
所述第二处理器,用于根据所述RI确定所述UE的待传输数据的预编码矩阵组;将所述预编码矩阵组传输给所述UE,以使所述UE根据所述预编码矩阵组解码出所述待传输数据,所述预编码矩阵组包括多个预编码矩阵;
所述第二处理器,还用于根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
所述第二发射器,用于通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
在一个可能的设计中,所述第二发射器,还用于通过无线资源控制RRC信令下发所述预编码矩阵组给所述UE。
在另一个可能的设计中,所述第二发射器,还用于向所述UE发送第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI。
在另一个可能的设计中,所述第三配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述第二接收器,还用于接收所述UE根据所述第三配置信息发送的数据信道的CQI;
所述第二发射器,还用于根据所述CQI,将所述待传输数据划分为多个数据块;分别通过所述选择的预编码矩阵对所述多个数据块中的每个数据块进行加权处理后传输给所述UE。
第十一方面,本申请实施例提供了一种数据传输装置,所述装置包括:第三接收器、第三处理器和第三发射器;
所述第三接收器,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
所述第三处理器,用于根据所述CSI-RS确定数据信道的秩和第一预编码矩阵;
所述第三发射器,用于向所述eNB发送秩指示RI和第一预编码矩阵指示PMI,所述RI包括所述数据信道的秩,所述第一PMI包括所述第一预编码矩阵,以使所述eNB根据所 述秩和所述第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
所述第三接收器,还用于接收所述eNB下发的加权处理后的传输数据;
所述第三处理器,还用于根据所述传输数据在频域和时域的传输顺序,确定所述选择的预编码矩阵;
所述第三处理器,还用于通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
在一个可能的设计中,所述第三处理器,还用于根据所述RI和所述第一PMI,确定预编码矩阵组;根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵;或者,
所述第三处理器,还用于接收所述eNB发送的预编码矩阵组,根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵。
在另一个可能的设计中,所述第三处理器,还用于确定列向量选择的指示;
所述第三发射器,还用于向所述eNB发送第二PMI,所述第二PMI包括所述列向量选择的指示,以使所述eNB根据所述RI、所述第一PMI和所述列向量选择的指示,确定预编码矩阵组。
在另一个可能的设计中,所述第三接收器,还用于接收所述eNB发送的第二配置信息,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示;
所述第三处理器,还用于根据所述第二配置信息,确定第二PMI中列向量选择的指示。
在另一个可能的设计中,所述第一配置信息或所述第二配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI;
所述第三处理器,还用于假设根据所述传输数据的频域和时域的顺序,按预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵时,计算所述数据信道的CQI;
所述第三发射器,还用于根据所述第一配置信息或所述第二配置信息,向所述eNB发送所述CQI。
在另一个可能的设计中,所述预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000038
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000039
是模为1的复数且
Figure PCTCN2017078446-appb-000040
属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在另一个可能的设计中,在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,所述vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在所述RB内,所述基站为所述待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000041
不相同,所述
Figure PCTCN2017078446-appb-000042
为所述选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在另一个可能的设计中,所述CQI的个数与所述数据信道的秩无关。
在另一个可能的设计中,所述第三处理器,还用于根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
第十二方面,本申请实施例提供了一种数据传输装置,所述装置包括:第四接收器,第四处理器和第四发射器;
所述第四接收器,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
所述第四处理器,用于根据所述CSI-RS确定数据信道的秩;
所述第四发射器,用于向基站eNB发送秩指示RI,所述RI包括所述数据信道的秩,以使所述eNB根据所述秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
所述第四接收器,还用于接收所述eNB发送的预编码矩阵组和加权处理后的传输数据;
所述第四处理器,还用于根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择所述预编码矩阵;
所述第四处理器,还用于通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
在一个可能的设计中,所述第四接收器,还接收所述eNB发送的第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI;
所述第四处理器,还用于根据所述第三配置信息和所述CSI-RS,确定数据信道的秩。
在另一个可能的设计中,所述第三配置信息还用于指示所述UE在向所述eNB反馈信道状态信息时反馈信道质量索引CQI
所述第四处理器,还用于假设根据所述传输数据的频域和时域的顺序,按预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵时,计算所述数据信道的CQI;
所述第四发射器,还用于根据所述第三配置信息,向所述eNB发送所述CQI。
本申请提供的技术方案的有益效果是:在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
附图说明
图1是本申请实施例提供的一种数据传输的装置结构示意图;
图2是本申请实施例提供的另一种数据传输的装置结构示意图;
图3是本申请实施例提供的另一种数据传输的装置结构示意图;
图4是本申请实施例提供的另一种数据传输的装置结构示意图;
图5是本申请实施例提供的另一种数据传输的装置结构示意图;
图6是本申请实施例提供的另一种数据传输的装置结构示意图;
图7是本申请实施例提供的另一种数据传输的装置结构示意图;
图8是本申请实施例提供的另一种数据传输的装置结构示意图;
图9是本申请实施例提供的一种数据传输方法流程图;
图10是本申请实施例提供的一种数据传输方法流程图;
图11是本申请实施例提供的一种数据传输方法流程图;
图12是本申请实施例提供的一种数据传输方法流程图;
图13-1是本申请实施例提供的一种数据传输方法流程图;
图13-2是本申请实施例提供的一种第一预编码矩阵的示意图;
图13-3是本申请实施例提供的一种天线端口的示意图;
图13-4是本申请实施例提供的一种第一预编码矩阵和第二预编码矩阵的示意图;
图14是本申请实施例提供的一种数据传输方法流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在下行传输模式9或10中,当eNB向UE传输数据时,先向UE传输CSI-RS,该CSI-RS用于获取数据信道的信道状态信息;UE接收eNB发送的该CSI-RS,并根据该CSI-RS测量第一预编码矩阵和第二预编码矩阵,第一预编码矩阵是由多个列向量组成的块对角矩阵;第二预编码矩阵包括从第一预编码矩阵中列向量选择的指示和两组极化天线之间的相位差,向eNB发送第一PMI和第二PMI,第一PMI包括第一预编码矩阵,第二PMI包括第二预编码矩阵;eNB接收UE发送的第一PMI和第二PMI,根据第一PMI包括的第一预编码矩阵和第二PMI包括的第二预编码矩阵,确定预编码矩阵,并通过该预编码矩阵对UE的待传输数据进行加权处理后传输给UE。
由于在UE高速运动的场景中,数据信道快速变化,当数据信道变化时,第二预编码矩阵中的相位差就会发生变化,然而eNB根据第二预编码矩阵计算预编码矩阵且通过该预编码矩阵对待传输的数据进行加权处理时,该相位差已经发生了变化,从而导致计算得到的预编码矩阵与当前数据信道不匹配,进而导致预编码性能下降。
由于第一预编码矩阵反映的是多个列向量的索引,且列向量具有非频选以及长周期的特性,因此即使在高速运动的场景下,第一预编码矩阵仍旧是有效的。
由于第二预编码矩阵包括列向量选择的指示和两组极化天线之间的相位差,对于列向量选择的指示,其作用是从多个列向量中选择一个或两个列向量,在高速运动的场景下,第二预编码矩阵选出的列向量仍然是有效的,也即第二预编码矩阵中的列向量选择的指示是有效的,但是第二预编码矩阵中包括的相位差是快速变化的,也即相位差是无效的。
由于数据信道的秩是慢变的,在高速运动场景下仍然认为数据信道的秩是有效的。数据信道的CQI的变化快慢与UE的运动速度以及采用的传输模式相关,则如果对数据信道加权慢变的预编码矩阵,并且时域和频域轮流使用快变的预编码矩阵,则CQI也会是慢变的,也即数据信道的CQI也仍然是有效的。
综上所示,PMI包括快变信息和慢变信息,UE根据该CSI-RS测量并反馈慢变信息;eNB根据UE上报的慢变信息,结合轮流使用快变信息,就可以使得下行数据传输既能获得部分波束赋行增益,又能对UE的移动速度不敏感。
因此,在本申请实施例中,UE可以上报第一预编码矩阵、数据信道的秩给eNB,eNB根据第一预编码矩阵和数据信道的秩,在RB或者RB组内轮流使用第一预编码矩阵中的列 向量,并轮流使用相位差集合中的每个相位差,从而构成预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从该预编码矩阵组中选择预编码矩阵。
在本申请实施例中,UE也可以上报第一预编码矩阵、第二预编码矩阵中列向量选择的指示、数据信道的秩给eNB。eNB根据第一预编码矩阵、第二预编码矩阵中列向量选择的指示和数据信道的秩,在RB或者RB组内仅仅使用该列向量选择的指示,轮流使用相位差集合中的每个相位差,从而构成预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从该预编码矩阵组中选择预编码矩阵。
在本申请实施例中,UE也可以仅仅上报数据信道的秩。eNB根据数据信道的秩,构造预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从该预编码矩阵组中选择预编码矩阵。
参见图1,图1是本申请实施例提供的一种数据传输的装置结构框图,数据传输的装置可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上第一接收器101、第一处理器102和第一发射器103。
第一接收器101,用于接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI;
第一处理器102,用于根据RI和第一PMI确定UE的待传输数据的预编码矩阵组,预编码矩阵组包括多个预编码矩阵;
第一处理器102,用于根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵;
第一发射器103,用于通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
在一个可能的设计中,数据传输的装置除了包括上述第一接收器101、第一处理器102和第一发射器103外,还可以包括其他部件。例如,还可以包括第一存储器104,一个或一个以上存储第一应用程序105或第一数据106的第一存储介质107(例如一个或一个以上海量存储设备)。其中,第一存储器104和第一存储介质107可以是短暂存储或持久存储。存储在第一存储介质107的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括数据传输的装置中的一系列指令操作。更进一步地,第一处理器102可以设置为与第一存储介质107通信,在数据传输的装置上执行第一存储介质107中的一系列指令操作。
数据传输的装置还可以包括一个或一个以上第一电源108,一个或一个以上第一有线或无线网络接口109,一个或一个以上第一输入输出接口110,一个或一个以上第一键盘111,和/或,一个或一个以上第一操作系统112,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本申请中数据传输的装置包括的第一接收器101、第一处理器102和第一发射器103还可以具有以下功能:
第一处理器102,还用于根据RI和第一PMI,确定第一预编码矩阵;根据第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组;根据第一预编码矩阵和第二预编码矩阵组,确定UE的待传输数据的预编码矩阵组,相位差集合用于存储两组极化天线之间的相位差;或者,
第一处理器102,还用于接收UE传输的第二PMI,第二PMI中包括列向量选择的指示;根据RI和第一PMI,确定第一预编码矩阵;根据列向量选择的指示确定的列向量和相位差集合中的每个相位差,确定第二预编码矩阵组;根据第一预编码矩阵和第二预编码矩阵组,确定UE的待传输数据的预编码矩阵组,相位差集合用于存储两组极化天线之间的相位差。
在一个可能的设计中,第一预编码矩阵为
Figure PCTCN2017078446-appb-000043
其中,W1为Nt×2M的矩阵,Nt为eNB包括的天线端口个数,X为由多个列向量组成的
Figure PCTCN2017078446-appb-000044
的矩阵,M为X中包括的列向量个数。
在一个可能的设计中,第一处理器102,还用于根据待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从预编码矩阵组中选择预编码矩阵。
在一个可能的设计中,预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000045
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000046
是模为1的复数且
Figure PCTCN2017078446-appb-000047
属于1,-1,j,-j中的值,Nt为eNB包括的天线端口个数,R为RI包括的数据信道的秩,vi为根据第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在一个可能的设计中,RI包括数据信道的秩;
第一处理器102,还用于根据数据信道的秩,确定数据信道的解调参考符号DMRS的端口数目,DMRS的端口数目为大于或者等于数据信道的秩的偶数。
在一个可能的设计中,第一处理器102,还用于根据选择的预编码矩阵,确定数据信道的DMRS的加权矩阵,DMRS的加权矩阵中的每个列向量可以表示为:
Figure PCTCN2017078446-appb-000048
或者
Figure PCTCN2017078446-appb-000049
vi为选择的预编码矩阵中的第二PMI中列向量选择的指示。
在一个可能的设计中,在RB内,基站为待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,vi为选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在RB内,基站为待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000050
不相同,
Figure PCTCN2017078446-appb-000051
为选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在一个可能的设计中,第一发射器103,还用于向UE发送第一配置信息或第二配置信息,第一配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI和第一PMI,第二配置信息用于指示UE在向eNB反馈信道状态信息时反馈RI、第一PMI和第二PMI中列向量选择的指示。
在一个可能的设计中,第一配置信息或第二配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI;
第一接收器101,还用于接收UE根据第一配置信息或第二配置信息发送的数据信道的CQI;
第一处理器102,还用于根据CQI,将待传输数据划分为多个数据块;分别通过选择的预编码矩阵对多个数据块中的每个数据块进行加权处理后传输给UE。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
参见图2,图2是本申请实施例提供的一种数据传输的装置结构框图,数据传输的装置可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上第二接收器201、第二处理器202和第二发射器203。
第二接收器201,用于接收用户终端UE发送的数据信道的秩指示RI;
第二处理器202,用于根据RI确定UE的待传输数据的预编码矩阵组;将预编码矩阵组传输给UE,以使UE根据预编码矩阵组解码出待传输数据,预编码矩阵组包括多个预编码矩阵;
第二处理器202,还用于根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵;
第二发射器203,用于通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
在一个可能的设计中,数据传输的装置除了包括上述第二接收器201、第二处理器202和第二发射器203外,还可以包括其他部件。例如,还可以包括第二存储器204,一个或一个以上存储第二应用程序205或第二数据206的第二存储介质207(例如一个或一个以上海量存储设备)。其中,第二存储器104和第二存储介质207可以是短暂存储或持久存储。存储在第二存储介质207的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括数据传输的装置中的一系列指令操作。更进一步地,第二处理器202202可以设置为与第二存储介质207通信,在数据传输的装置上执行第二存储介质207中的一系列指令操作。
数据传输的装置还可以包括一个或一个以上第二电源208,一个或一个以上第二有线或无线网络接口209,一个或一个以上第二输入输出接口210,一个或一个以上第二键盘211,和/或,一个或一个以上第二操作系统212,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本申请中数据传输的装置包括的第二接收器201、第二处理器202和第二发射器203还可以具有以下功能:
第二发射器203,还用于通过无线资源控制RRC信令下发预编码矩阵组给UE。
在一个可能的设计中,第二发射器203,还用于向UE发送第三配置信息,第三配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI。
在一个可能的设计中,第三配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI;
第二接收器201,还用于接收UE根据第三配置信息发送的数据信道的CQI;
第二发射器203,还用于根据CQI,将待传输数据划分为多个数据块;分别通过选择的 预编码矩阵对多个数据块中的每个数据块进行加权处理后传输给UE。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
参见图3,图3是本申请实施例提供的一种数据传输的装置结构框图,数据传输的装置可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上第三接收器301、第三处理器302和第三发射器303。
第三接收器301,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
第三处理器302,用于根据CSI-RS确定数据信道的秩和第一预编码矩阵;
第三发射器303,用于向eNB发送秩指示RI和第一预编码矩阵指示PMI,RI包括数据信道的秩,第一PMI包括第一预编码矩阵,以使eNB根据该秩和第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过选择的预编码矩阵对UE的待传输数据进行加权处理后传输给UE;
第三接收器301,还用于接收eNB下发的加权处理后的传输数据;
第三处理器302,还用于根据传输数据在频域和时域的传输顺序,确定选择的预编码矩阵;
第三处理器302,还用于通过选择的预编码矩阵解调加权处理后的传输数据。
在一个可能的设计中,数据传输的装置除了包括上述第三接收器301、第三处理器302和第三发射器303外,还可以包括其他部件。例如,还可以包括第三存储器304,一个或一个以上存储第三应用程序305或第三数据306的第三存储介质307(例如一个或一个以上海量存储设备)。其中,第三存储器304和第三存储介质307可以是短暂存储或持久存储。存储在第三存储介质307的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括数据传输的装置中的一系列指令操作。更进一步地,第三处理器302302可以设置为与第三存储介质307通信,在数据传输的装置上执行第三存储介质307中的一系列指令操作。
数据传输的装置还可以包括一个或一个以上第三电源308,一个或一个以上第三有线或无线网络接口309,一个或一个以上第三输入输出接口310,一个或一个以上第三键盘311,和/或,一个或一个以上第三操作系统312,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本申请中数据传输的装置包括的第三接收器301、第三处理器302302和第三发射器303还可以具有以下功能:
第三处理器302,还用于根据RI和第一PMI,确定预编码矩阵组;根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵;或者,
第三处理器302,还用于接收eNB发送的预编码矩阵组,根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵。
在一个可能的设计中,第三接收器301,还用于接收eNB发送的第一配置信息,第一配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI和第一PMI;
第三处理器302,还用于根据第一配置信息和CSI-RS,确定数据信道的秩和第一预编码矩阵。
在一个可能的设计中,第三处理器302,还用于确定第二PMI中列向量选择的指示;
第三发射器303,还用于向eNB发送第二PMI,第二PMI包括列向量选择的指示,以使eNB根据RI、第一PMI和列向量选择的指示,确定预编码矩阵组。
在一个可能的设计中,第三接收器301,还用于接收eNB发送的第二配置信息,第二配置信息用于指示UE在向eNB反馈信道状态信息时反馈RI、第一PMI和第二PMI中列向量选择的指示;
第三处理器302,还用于根据第二配置信息,确定第二PMI中列向量选择的指示。
在一个可能的设计中,第一配置信息或第二配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI;
第三处理器302,还用于假设根据传输数据的频域和时域的顺序,按预先定义的选择顺序从预编码矩阵组中选择预编码矩阵时,计算数据信道的CQI;
第三发射器303,还用于根据第一配置信息或第二配置信息,向eNB发送CQI。
在一个可能的设计中,预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000052
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000053
是模为1的复数且
Figure PCTCN2017078446-appb-000054
属于1,-1,j,-j中的值,Nt为eNB包括的天线端口个数,R为RI包括的数据信道的秩,vi为根据第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在一个可能的设计中,在RB内,基站为待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,vi为选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在RB内,基站为待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000055
不相同,
Figure PCTCN2017078446-appb-000056
为选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在一个可能的设计中,CQI的个数与数据信道的秩无关。
在一个可能的设计中,第三处理器,还用于根据数据信道的秩,确定数据信道的解调参考符号DMRS的端口数目,DMRS的端口数目为大于或者等于数据信道的秩的偶数。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
参见图4,图4是本申请实施例提供的一种数据传输的装置结构框图,数据传输的装置可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上第四接收器401、第四处理器402和第四发射器403。
第四接收器401,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
第四处理器402,用于根据CSI-RS确定数据信道的秩;
第四发射器403,用于向基站eNB发送秩指示RI,RI包括数据信道的秩,以使eNB根据秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过选择的预编码矩阵对UE的待传输数据进行加权处理后传输给UE;
第四接收器401,还用于接收eNB发送的预编码矩阵组和加权处理后的传输数据;
第四处理器402,还用于根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵;
第四处理器402,还用于通过选择的预编码矩阵解调加权处理后的传输数据。
在一个可能的设计中,数据传输的装置除了包括上述第四接收器401、第四处理器402和第四发射器403外,还可以包括其他部件。例如,还可以包括第四存储器404,一个或一个以上存储第四应用程序405或第四数据406的第四存储介质407(例如一个或一个以上海量存储设备)。其中,第四存储器404和第四存储介质407可以是短暂存储或持久存储。存储在第四存储介质407的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括数据传输的装置中的一系列指令操作。更进一步地,第四处理器402可以设置为与第四存储介质407通信,在数据传输的装置上执行第四存储介质407中的一系列指令操作。
数据传输的装置还可以包括一个或一个以上第四电源408,一个或一个以上第四有线或无线网络接口409,一个或一个以上第四输入输出接口410,一个或一个以上第四键盘411,和/或,一个或一个以上第四操作系统412,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本申请中数据传输的装置包括的第四接收器401、第四处理器402和第四发射器403还可以具有以下功能:
在一个可能的设计中,第四接收器401,还接收eNB发送的第三配置信息,第三配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI;
第四处理器402,还用于根据第三配置信息和CSI-RS,确定数据信道的秩。
在一个可能的设计中,第三配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI
第四处理器402,还用于假设根据传输数据的频域和时域的顺序,按预先定义的选择顺序从预编码矩阵组中选择预编码矩阵时,计算数据信道的CQI;
第四发射器403,还用于根据第三配置信息,向eNB发送CQI。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
参见图5,图5是本申请实施例提供的一种数据传输装置结构示意图,该装置包括:
第一接收模块501,用于接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI;
第一确定模块502,用于根据RI和第一PMI确定UE的待传输数据的预编码矩阵组, 预编码矩阵组包括多个预编码矩阵;
第一选择模块503,用于根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵;
第一传输模块504,用于通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
在一个可能的设计中,第一确定模块502,包括:
第一确定单元,用于根据RI和第一PMI,确定第一预编码矩阵;
第二确定单元,用于根据第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组,相位差集合用于存储两组极化天线之间的相位差;
第三确定单元,用于根据第一预编码矩阵和第二预编码矩阵组,确定UE的待传输数据的预编码矩阵组;或者,
第一确定模块502,包括:
第一接收单元,用于接收UE传输的第二PMI,第二PMI中包括列向量选择的指示;
第四确定单元,用于根据RI和第一PMI,确定第一预编码矩阵;
第五确定单元,用于根据列向量选择的指示确定的列向量和相位差集合中的每个相位差,确定第二预编码矩阵组,相位差集合用于存储两组极化天线之间的相位差;
第六确定单元,用于根据第一预编码矩阵和第二预编码矩阵组,确定UE的待传输数据的预编码矩阵组。
在一个可能的设计中,第一预编码矩阵为
Figure PCTCN2017078446-appb-000057
其中,W1为Nt×2M的矩阵,Nt为eNB包括的天线端口个数,X为由多个列向量组成的
Figure PCTCN2017078446-appb-000058
的矩阵,M为X中包括的列向量个数。
在一个可能的设计中,第一选择模块503,包括:
第一选择单元,用于根据待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从预编码矩阵组中选择预编码矩阵。
在一个可能的设计中,预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000059
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000060
是模为1的复数且
Figure PCTCN2017078446-appb-000061
属于1,-1,j,-j中的值,Nt为eNB包括的天线端口个数,R为RI包括的数据信道的秩,vi为根据第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在一个可能的设计中,RI包括数据信道的秩;
该装置还包括:
第二确定模块,用于根据数据信道的秩,确定数据信道的解调参考符号DMRS的端口数目,DMRS的端口数目为大于或者等于数据信道的秩的偶数。
在一个可能的设计中,装置还包括:
第三确定模块,用于根据选择的预编码矩阵,确定数据信道的DMRS的加权矩阵,DMRS的加权矩阵中的每个列向量可以表示为:
Figure PCTCN2017078446-appb-000062
或者
Figure PCTCN2017078446-appb-000063
vi为选择的预编码矩阵中的第二PMI中列向量选择的指示。
在一个可能的设计中,在RB内,基站为待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,vi为选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在RB内,基站为待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000064
不相同,
Figure PCTCN2017078446-appb-000065
为选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在一个可能的设计中,该装置还包括:
第一发送模块,用于向UE发送第一配置信息或第二配置信息,第一配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI和第一PMI,第二配置信息用于指示UE在向eNB反馈信道状态信息时反馈RI、第一PMI和第二PMI中列向量选择的指示。
在一个可能的设计中,第一配置信息或第二配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI;
该装置还包括:
第一接收模块501,还用于接收UE根据第一配置信息或第二配置信息发送的数据信道的CQI;
第一传输模块504,包括:
第一划分单元,用于根据CQI,将待传输数据划分为多个数据块;
第一传输单元,用于分别通过选择的预编码矩阵对多个数据块中的每个数据块进行加权处理后传输给UE。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
参见图6,图6是本申请实施例提供的一种数据传输装置结构示意图,该装置包括:
第二接收模块601,用于接收用户终端UE发送的数据信道的秩指示RI;
第四确定模块602,用于根据RI确定UE的待传输数据的预编码矩阵组;
第二传输模块603,用于将预编码矩阵组传输给UE,以使UE根据预编码矩阵组解码出待传输数据,预编码矩阵组包括多个预编码矩阵;
第二选择模块604,用于根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵;
第三传输模块605,用于通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
在一个可能的设计中,第二传输模块603,用于通过无线资源控制RRC信令下发预编 码矩阵组给UE。
在一个可能的设计中,装置还包括:
第二发送模块,用于向UE发送第三配置信息,第三配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI。
在一个可能的设计中,第三配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI;
该装置还包括:
第三接收模块,用于接收UE根据第三配置信息发送的数据信道的CQI;
第三传输模块605,包括:
第二划分单元,用于根据CQI,将待传输数据划分为多个数据块;
第二传输单元,用于分别通过选择的预编码矩阵对多个数据块中的每个数据块进行加权处理后传输给UE。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
参见图7,图7是本申请实施例提供的一种数据传输装置结构示意图,该装置包括:
第四接收模块701,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
第五确定模块702,用于根据CSI-RS确定数据信道的秩和第一预编码矩阵;
第三发送模块703,用于向eNB发送秩指示RI和第一预编码矩阵指示PMI,RI包括数据信道的秩,第一PMI包括第一预编码矩阵,以使eNB根据秩和第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过选择的预编码矩阵对UE的待传输数据进行加权处理后传输给UE;
第四接收模块701,用于接收eNB下发的加权处理后的传输数据;
第六确定模块704,用于根据传输数据在频域和时域的传输顺序,确定选择的预编码矩阵;
第一解调模块705,用于通过选择的预编码矩阵解调加权处理后的传输数据。
在一个可能的设计中,第六确定模块704,包括:
第八确定单元,用于根据RI和第一PMI,确定预编码矩阵组;
第二选择单元,用于根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵;或者,
第六确定模块704,包括:
第二接收单元,用于接收eNB发送的预编码矩阵组;
第三选择单元,用于根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵。
在一个可能的设计中,该装置还包括:
第五接收模块,用于接收eNB发送的第一配置信息,第一配置信息用于指示UE在向 eNB反馈信道状态信息时仅反馈RI和第一PMI;
第五确定模块702,用于根据第一配置信息和CSI-RS,确定数据信道的秩和第一预编码矩阵。
在一个可能的设计中,该装置还包括:
第七确定模块,用于确定第二PMI中列向量选择的指示;
第四发送模块,用于用于向eNB发送第二PMI,第二PMI包括列向量选择的指示,以使eNB根据RI、第一PMI和列向量选择的指示,确定预编码矩阵组。
在一个可能的设计中,该装置还包括:
第六接收模块,用于接收eNB发送的第二配置信息,第二配置信息用于指示UE在向eNB反馈信道状态信息时反馈RI、第一PMI和第二PMI中列向量选择的指示;
第七确定模块,用于根据第二配置信息,确定第二PMI中列向量选择的指示。
在一个可能的设计中,第一配置信息或第二配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI;
该装置还包括:
第一计算模块,用于假设根据传输数据的频域和时域的顺序,按预先定义的选择顺序从预编码矩阵组中选择预编码矩阵时,计算数据信道的CQI;
第五发送模块,用于根据第一配置信息或第二配置信息,向eNB发送CQI。
在一个可能的设计中,预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000066
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000067
是模为1的复数且
Figure PCTCN2017078446-appb-000068
属于1,-1,j,-j中的值,Nt为eNB包括的天线端口个数,R为RI包括的数据信道的秩,vi为根据第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
在一个可能的设计中,在RB内,基站为待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,vi为选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数;
在RB内,基站为待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000069
不相同,
Figure PCTCN2017078446-appb-000070
为选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在一个可能的设计中,CQI的个数与数据信道的秩无关。
在一个可能的设计中,该装置还包括:
第八确定模块,用于根据数据信道的秩,确定数据信道的解调参考符号DMRS的端口数目,DMRS的端口数目为大于或者等于数据信道的秩的偶数。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
参见图8,图8是本申请实施例提供的一种数据传输装置结构示意图,该装置包括:
第七接收模块801,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
第九确定模块802,用于根据CSI-RS确定数据信道的秩;
第六发送模块803,用于向基站eNB发送秩指示RI,RI包括数据信道的秩,以使eNB根据秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过选择的预编码矩阵对UE的待传输数据进行加权处理后传输给UE;
第七接收模块801,用于接收eNB发送的预编码矩阵组和加权处理后的传输数据;
第十确定模块804,用于根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵;
第二解调模块805,用于通过选择的预编码矩阵解调加权处理后的传输数据。
在一个可能的设计中,该装置还包括:
第八接收模块,用于接收eNB发送的第三配置信息,第三配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI;
第九确定模块802,用于根据第三配置信息和CSI-RS,确定数据信道的秩。
在一个可能的设计中,第三配置信息还用于指示UE在向eNB反馈信道状态信息时反馈信道质量索引CQI;
该装置还包括:
第二计算模块,用于假设根据传输数据的频域和时域的顺序,按预先定义的选择顺序从预编码矩阵组中选择预编码矩阵时,计算数据信道的CQI;
第七发送模块,用于根据第三配置信息,向eNB发送CQI。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
需要说明的是:上述实施例提供的数据传输的装置在数据传输的时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的基于数据传输的装置与数据传输方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本申请实施例提供了一种数据传输方法,该方法应用在eNB中,参见图9,其中,该方法包括:
步骤901:基站eNB接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI,并根据RI和第一PMI确定UE的待传输数据的预编码矩阵组,预编码矩阵组包括多个预编码矩阵;
步骤902:根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输 数据时选择预编码矩阵组中不同的预编码矩阵;
步骤903:通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
本申请实施例提供了一种数据传输方法,该方法应用在eNB中,参见图10,其中,该方法包括:
步骤1001:基站eNB接收用户终端UE发送的数据信道的秩指示RI,根据RI确定UE的待传输数据的预编码矩阵组,并将预编码矩阵组传输给UE,以使UE根据预编码矩阵组解码出待传输数据,预编码矩阵组包括多个预编码矩阵;
步骤1002:根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵;
步骤1003:通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
本申请实施例提供了一种数据传输方法,该方法应用在UE中,参见图11,其中,该方法包括:
步骤1101:用户终端UE根据基站eNB下发的信道状态信息参考符号CSI-RS,根据CSI-RS确定数据信道的秩和第一预编码矩阵;
步骤1102:向eNB发送秩指示RI和第一预编码矩阵指示PMI,RI包括数据信道的秩,第一PMI包括第一预编码矩阵,以使eNB根据秩和第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过选择的预编码矩阵对UE的待传输数据进行加权处理后传输给UE;
步骤1103:接收eNB下发的加权处理后的传输数据,根据传输数据在频域和时域的传输顺序,确定选择的预编码矩阵,并通过选择的预编码矩阵解调加权处理后的传输数据。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
本申请实施例提供了一种数据传输方法,该方法应用在UE中,参见图12,其中,该方法包括:
步骤1201:用户终端UE接收基站eNB下发的信道状态信息参考符号CSI-RS,根据CSI-RS确定数据信道的秩;
步骤1202:向基站eNB发送秩指示RI,RI包括数据信道的秩,以使eNB根据秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过选择的预编码矩阵对UE的待传输数据进行加权处理后传输给UE;
步骤1203:接收eNB发送的预编码矩阵组和加权处理后的传输数据,根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵,并通过选择的预编码矩阵解调加权处理后的传输数据。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
本申请实施例提供了一种数据传输方法,该方法应用在eNB和UE之间,参见图13-1,其中,该方法包括:
步骤1301:eNB向UE发送CSI-RS。
在MIMO无线通信系统中,通过对数据进行预编码处理能够得到数据分集和阵列增益,通过预编码处理后UE接收的信号矢量可以通过以下公式(1)表示:
Y=HWs+n   (1)
其中,Y表示接收的信号矢量;H表示数据信道矩阵;W表示预编码矩阵,s表示发射的符号矢量,n表示测量噪声。
最优的预编码通常需要eNB的发射机完全已知信道状态信息(Channel State Information,CSI),因此,eNB向UE传输数据之前,向UE发送CSI-RS,该CSI-RS用于UE测量并上报当前的CSI。
其中,CSI包括数据信道的秩指示(Rank Index,RI)、第一预编码矩阵指示(The First Precoding Matrix Index,PMI1)、第二预编码矩阵指示(The Second Precoding Matrix Index,PMI2)和信道质量索引(Channel Quality Index,CQI)中的前一个、前两个、前三个或者前四个。
RI指示天线使用的层数,PMI1与第一预编码矩阵W1对应,PMI2与第二预编码矩阵W2对应,W1和W2用于构造预编码矩阵W,且W是由W1和W2的乘积获得,如下公式(2)所示:
W=W1×W2   (2)
其中,W1是第一预编码矩阵,W2是第二预编码矩阵,W1的表征形式为块对角矩阵,每个子块对应一个极化方向,如下公式(3)所示:
Figure PCTCN2017078446-appb-000071
其中,X(k)代表第一预编码矩阵中选定的第k个向量组。对于不同的数据信道的秩,X(k)和W2有不同的表现形式。
当数据信道的秩RANK=1或RANK=2时,向量集合定义为:
Figure PCTCN2017078446-appb-000072
向量集合被分为16个向量组,每个向量组中有4个列向量,两个相邻的向量组中有两个列是重叠的。X(k)表示第k个向量组,且X(k)的表示形式如下公式(4)所示:
X(k)∈{[b2kmod32 b(2k+1)mod32 b(2k+2)mod32 b(2k+3)mod32]:k=0,1,...,15}    (4)
当RANK=1,W2从第二级码本中选择,即
Figure PCTCN2017078446-appb-000073
其中,
Figure PCTCN2017078446-appb-000074
当RANK=2,W2从第二级码本中选择,即
Figure PCTCN2017078446-appb-000075
其中,
Figure PCTCN2017078446-appb-000076
Figure PCTCN2017078446-appb-000077
表示是一个列向量选择指示,并且,第n个元素为1,其余元素为0。
当RANK=3或RANK=4:向量集合定义为
Figure PCTCN2017078446-appb-000078
该向量集合被分为4个向量组,每个向量组中有8个列向量,两个相邻的向量组中有四个列向量是重叠的。X(k)表示第k个向量组。且X(k)的表示形式如下公式(8)所示:
X(k)∈{[b4kmod16 b(4k+1)mod16 ... b(4k+7)mod16]:k=0,1,2,3}        (8)
当RANK=3,W2可选集合为:
Figure PCTCN2017078446-appb-000079
其中,
Figure PCTCN2017078446-appb-000080
当RANK=4,W2可选集合为
Figure PCTCN2017078446-appb-000081
其中,
Y∈{[e1 e5],[e2 e6],[e3 e7],[e4 e8]}        (12)
第一预编码矩阵适用于整个系统带宽,且具有长周期特性。第二预编码矩阵反映每个子带的矩阵,其作用为每个子带选取列向量以及选取两组极化方向之间的相位差(co-phase)。
随着二维(2D)天线技术的应用,2D形态的码本设计也随即成为研究的热点。在目前的LTE标准讨论中,KP(Kronecker Product)形式的码本得到众多参会公司的认可,即W1的块对角矩阵由水平方向的向量和垂直方向的向量通过KP来组成
Figure PCTCN2017078446-appb-000082
其中,
Figure PCTCN2017078446-appb-000083
表示为水平方向第k个向量组,
Figure PCTCN2017078446-appb-000084
表示为垂直方向的第l个向量组。
图13-2给出了2D向量集合中RANK=1和RANK2的情况下,第一个预编码矩阵的示意图。其中,水平方向32个列向量组成水平方向向量集合,垂直方向8个列向量组成垂直方向的向量集合,其中bm,n表示水平方向第n个列向量与垂直方向第m个列向量的克罗内克积(Kronecker Product,KP)。图中假设一个向量组由4个水平方向列向量和2个垂直方向列向量通过KP方式产生,即包含有8个列向量。
步骤1302:UE接收eNB发送的CSI-RS,并测量数据信道的秩和第一预编码矩阵,向eNB发送RI和第一PMI。
1302a:UE接收eNB发送的CSI-RS,测量数据信道的秩和第一预编码矩阵。
1302b:UE向eNB发送RI和第一PMI。
RI包括数据信道的秩,第一PMI包括第一预编码矩阵,第一预编码矩阵为
Figure PCTCN2017078446-appb-000085
其中,W1为Nt×2M的矩阵,Nt为eNB包括的天线端口个数,X为由多个列向量组成的
Figure PCTCN2017078446-appb-000086
的矩阵。
在本步骤之前,eNB向UE发送配置信息,该配置信息可以为第一配置信息或者第二配置信息,第一配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈RI和第一PMI;第二配置信息用于指示UE在向eNB反馈信道状态信息时反馈RI、第一PMI和第二PMI中列向量选择的指示。
第一配置信息和第二配置信息还用于指示UE在向eNB反馈信道状态信息时还反馈数据信道的CQI。
如果eNB向UE发送的是第一配置信息,则本步骤可以为:
UE根据第一配置信息,测量数据信道的秩和CQI以及第一预编码矩阵,向eNB发送RI和CQI以及第一PMI。
如果eNB向UE发送的是第二配置信息,则本步骤可以为:
UE根据第二配置信息,测量数据信道的秩和CQI以及第一预编码矩阵和第二预编码矩 阵中列向量选择的指示;向eNB发送数据信道的秩和CQI以及第一预编码矩阵和第二预编码矩阵中列向量选择的指示。
eNB定义一组列向量v0,…,vm,UE接收到该CSI-RS之后,从该组列向量中选择一个或多个适合该UE的列向量,并假设一个或多个列向量中的每个列向量和相位差集合中的每个相位差在资源块(RB)或RB组之间轮流使用,从而计算数据信道的秩和CQI。
需要说明的是,由于每个列向量和每个相位差在RB或者RB组之间轮流使用,因此,天线的各个层的数据具有相同的信道质量,也即无论RI的值为多少,都只对应一个CQI,因此,该CQI的个数与数据信道的秩无关。
步骤1303:eNB接收UE发送的RI和第一PMI,并根据RI和第一PMI确定UE的待传输数据的预编码矩阵组。
eNB根据RI和第一PMI,确定第一预编码矩阵,根据第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组,根据第一预编码矩阵和第二预编码矩阵组,确定UE的待传输数据的预编码矩阵组。
如果在步骤1302中UE还向eNB发送第二PMI中列向量选择的指示,则本步骤可以为:
eNB接收UE传输的第二PMI中列向量选择的指示,根据RI和第一PMI,确定第一预编码矩阵,根据列向量选择的指示和相位差集合中的每个相位差,确定第二预编码矩阵组,根据第一预编码矩阵和第二预编码矩阵组,确定UE的待传输数据的预编码矩阵组。
预编码矩阵组中包括多个预编码矩阵,且预编码矩阵组中包含的预编码矩阵W=[V0 ... VR-1]的每个列向量,有如下构成形式
Figure PCTCN2017078446-appb-000087
其中,Vi为Nt×1的列向量,
Figure PCTCN2017078446-appb-000088
是模为1的复数且
Figure PCTCN2017078446-appb-000089
属于1,-1,j,-j中的值,Nt为eNB包括的天线端口个数,R为RI包括的数据信道的秩,vi为根据第一PMI1确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
例如,第一PMI指示的W1,在数据信道的秩为1或者2时,W1如下公式(14)所示:
Figure PCTCN2017078446-appb-000090
W1的对角矩阵X中包括4个列向量,分别为v0,v1,v2和v3。两个对角矩阵表示两组极化方向的天线端口。UE选择出W1,然后在计算CQI和RI的时候,轮流使用W1中对角矩阵X的列向量以及相位差集合中的相位差,也即W1的对角矩阵X中的列向量轮流在RB或RB组间轮流使用,且对于RB或RB组内部,两组极化方向间循环使用相位差集合中的相位差,相位差集合可以为φl,l=0,1,2,3={1,j,-1,-j}。
当RANK=1,第k个子载波上的预编码矩阵为:
Figure PCTCN2017078446-appb-000091
其中,l=mod(k,4),en=[0,0,...,1,...,0]T为4×1的列矢量,第n个元素为1,其余的元素为0,l=mod(m,4);矩阵A为一个常量矩阵。
当RANK=1时,第k个子载波上的预编码矩阵为:
Figure PCTCN2017078446-appb-000092
其中,
Figure PCTCN2017078446-appb-000093
其中,k表示子载波或者子载波组的索引,Γ表示一个常数。或者Ai表示为空频块码(Space Frequency Block Code,SFBC)的加权矩阵,第2m个子载波的数据的加权方式为:
Figure PCTCN2017078446-appb-000094
第2m+1个子载波的数据的加权方式为:
Figure PCTCN2017078446-appb-000095
当RANK=2,第k个子载波上的预编码矩阵为:
Figure PCTCN2017078446-appb-000096
当RANK=2时,第i个子载波的数据的加权方式为:
k表示子载波或者RB的索引,Γ表示一个常数或者常数矩阵。
当RANK=3,一个列向量和一对正交的相位差只能组成2个层的预编码列向量,因此需要一个与之正交的向量来构成另一个层的预编码向量,因此W1变成了
Figure PCTCN2017078446-appb-000098
其中,(v0,v4),(v1,v5),(v2,v6),(v3,v7)构成了正交的向量对,W2有如下形式:
Figure PCTCN2017078446-appb-000099
每个RB或者RB组,轮流使用一组向量对。例如,第一个RB或者RB组,使用向量对(v0,v4),在一个RB或者RB组的每个子载波上,轮流使用W2矩阵中的
Figure PCTCN2017078446-appb-000100
Figure PCTCN2017078446-appb-000101
以及每个矩阵的列交换矩阵,即子载波间轮流使用的W2为:
Figure PCTCN2017078446-appb-000102
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000103
当RANK=3时,矩阵A的表示形式为:
Figure PCTCN2017078446-appb-000104
当RANK=4,其W1与RANK=3时的W1具有相同的形式,但是对于W2,从下列矩阵组中选择:
Figure PCTCN2017078446-appb-000105
每个RB或者RB组,轮流使用一组向量对。例如,第一个RB或者RB组,使用向量对(v0,v4),在一个RB或者RB组的每个子载波上,轮流使用W2矩阵中的
Figure PCTCN2017078446-appb-000106
以及每个矩阵的列交换矩阵,即子载波间轮流使用的W2为:
Figure PCTCN2017078446-appb-000107
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000108
当RANK=4时,矩阵A的表示形式为:
Figure PCTCN2017078446-appb-000109
当RANK=5,W1具有如下形式
Figure PCTCN2017078446-appb-000110
其中,向量v0,v1,v2,v3是相互彼此正交的向量。这时候W2为一个固定的矩阵。因此在这种传输模式下,只是将W2进行列置换就可以。即在RANK=5的情况下
Figure PCTCN2017078446-appb-000111
Walter是对W2进行列交换,则
Figure PCTCN2017078446-appb-000112
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000113
当RANK=5时,矩阵A的表示形式为:
Figure PCTCN2017078446-appb-000114
当RANK=6的情况下
Figure PCTCN2017078446-appb-000115
Walter是对W2进行列交换,则
Figure PCTCN2017078446-appb-000116
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000117
当RANK=6时,矩阵A的表示形式为:
Figure PCTCN2017078446-appb-000118
当RANK=7的情况下
Figure PCTCN2017078446-appb-000119
Walter是对W2进行列交换,则
Figure PCTCN2017078446-appb-000120
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000121
当RANK=7时,矩阵A的表示形式为:
Figure PCTCN2017078446-appb-000122
当RANK=8的情况下
Figure PCTCN2017078446-appb-000123
Walter是对W2进行列交换,则
Figure PCTCN2017078446-appb-000124
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000125
当RANK=8时,矩阵A的表示形式为:
Figure PCTCN2017078446-appb-000126
Figure PCTCN2017078446-appb-000127
Figure PCTCN2017078446-appb-000128
Figure PCTCN2017078446-appb-000129
Figure PCTCN2017078446-appb-000130
Figure PCTCN2017078446-appb-000131
Figure PCTCN2017078446-appb-000132
Figure PCTCN2017078446-appb-000133
在一个可能的设计中,eNB根据该数据信道的秩,还可以确定数据信道的DMRS的端口数目,该DMRS的端口数目为大于或者等于数据信道的秩的偶数。
eNB中可以存储秩和端口数目的对应关系,相应的,本步骤可以为:eNB根据数据信道的秩,从秩和端口数目的对应关系中获取数据信道的DMRS的端口数目。
eNB还可以不存储秩和端口数目的对应关系,直接根据数据信道的秩,按如下公式15计算数据信道的DMRS的端口数目。
其中,P为DMRS的端口数目,R为数据信道的秩,
Figure PCTCN2017078446-appb-000135
为将R/2的比值进行上取整。
例如,R=1或者2,则P为2;R=3或者4,则P为4;R=5或者6,则P为6;R=7或者8,则P为8;也即在本申请实施例中,P始终为偶数。
步骤1304:eNB根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵。
eNB根据待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从预编码矩阵组中选择预编码矩阵。
在本步骤中,eNB在传输待传输数据的RB内轮流使用预编码矩阵组中的预编码矩阵,因此,在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵。
在RB内,基站为待传输数据选择的不同的预编码矩阵中包含相同的v0~vR-1,vi为选择的预编码矩阵中的第二PMI中列向量选择的指示,i为≥0且≤R-1的整数。
在RB内,基站为待传输数据选择的不同的预编码矩阵中的
Figure PCTCN2017078446-appb-000136
不相同,
Figure PCTCN2017078446-appb-000137
为选择的预编码矩阵中的第二PMI包括的两组极化天线之间的相位差。
在一个可能的设计中,eNB根据该选择的编码矩阵,还可以确定数据信道的DMRS的加权矩阵,DMRS的加权矩阵中的每个列向量可以表示为:
Figure PCTCN2017078446-appb-000138
或者
Figure PCTCN2017078446-appb-000139
vi为选择的预编码矩阵中的第二PMI中列向量选择的指示。
假设发射端有8个天线端口,其中天线端口1-4属于+45极化方向,天线端口5-8属于-45极化方向,如图13-3所示。
天线端口0,1,2,3以及指向某波束方向的加权矩阵v0构成一个DMRS端口,天线 端口4,5,6,7以及v0构成另外一个DMRS端口。同理,天线端口0,1,2,3以及指向某波束方向的加权矩阵v1可以构成第三个DMRS端口,天线端口4,5,6,7以及v1可以构成第四个DMRS端口,其中,v0v1为Na×1的加权矩阵,Na为一个极化方向内天线端口的个数。
下面,我们采用公式的形式把DMRS端口的加权表示出来。
假设第一个DMRS端口发射信号为s0,其加权形式为
Figure PCTCN2017078446-appb-000140
同理,第二个DMRS端口为
Figure PCTCN2017078446-appb-000141
第三个DMRS端口为
Figure PCTCN2017078446-appb-000142
第四个DMRS端口为
Figure PCTCN2017078446-appb-000143
第五个DMRS端口为
Figure PCTCN2017078446-appb-000144
….以此类推。
其中,
Figure PCTCN2017078446-appb-000145
为2Na×1的加权矩阵。
例如,参见图13-4,第一预编码矩阵W1中包括4个列向量,eNB从W1中选择列向量。
步骤1305:eNB通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
1305a:eNB通过选择的预编码矩阵对待传输数据进行加权处理。
1305b:eNB向UE传输处理后的数据。
eNB根据CQI,将待传输数据划分为多个数据块;分别通过选择的预编码矩阵对多个数据块中的每个数据块进行加权处理后传输给UE。
eNB通过选择的预编码矩阵对每个数据块进行加权处理后,将加权处理后的每个数据块承载在数据信道中的子载波中,向UE传输子载波。
步骤1306:UE接收eNB下发的加权处理后的传输数据,根据传输数据在频域和时域的传输顺序,确定选择的预编码矩阵,并通过选择的预编码矩阵解调该加权处理后的传输数据。
其中,UE根据传输数据在频域和时域的传输顺序,确定选择的预编码矩阵的步骤可以为:
UE根据RI和第一PMI,确定选择的预编码矩阵组,根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵;或者,
UE接收eNB发送的预编码矩阵组,根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵。
对于数据信道,每个数据层都进行数据加权。假设第i个数据流的加权方式为:
Figure PCTCN2017078446-appb-000146
其中,di为第i个数据层发送的数据,A表示一个常量矩阵,φl表示两组极化方向天线间的相位差。由此我们可以看出数据层的加权矩阵可以由两个DMRS端口的加权矩阵通过线性组合的方式产生,比如第i个数据层的加权矩阵可以表示为:
Figure PCTCN2017078446-appb-000147
因此,如果A和φl都是已知的话,可以由DMRS端口来恢复出数据信道的每层的传输数据。
在本步骤之前,UE还需要UE根据该数据信道的秩,还可以确定数据信道的EMRS的端口数目,该DMRS的端口数目为大于或者等于数据信道的秩的偶数。
UE中可以存储秩和端口数目的对应关系,相应的,本步骤可以为:UE根据数据信道的秩,从秩和端口数目的对应关系中获取数据信道的DMRS的端口数目。
UE还可以不存储秩和端口数目的对应关系,直接根据数据信道的秩,按如下公式15计算数据信道的DMRS的端口数目。
Figure PCTCN2017078446-appb-000148
P为DMRS的端口数目,R为数据信道的秩,
Figure PCTCN2017078446-appb-000149
为将R/2的比值进行上取整。
例如,R=1或者2,则P为2;R=3或者4,则P为4;R=5或者6,则P为6;R=7或者8,则P为8;也即在本申请实施例中,P始终为偶数。
在本申请实施例中,UE仅上报RI和第一PMI给eNB,eNB根据RI和第一PMI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
本申请实施例提供了一种传输数据的方法,该方法应用在eNB和UE之间,参见图14,该方法包括:
步骤1401:eNB向UE发送CSI-RS。
步骤1402:UE接收eNB发送的CSI-RS,并获取数据信道的秩,向eNB传输RI。
1402a:UE接收eNB发送的CSI-RS,并获取数据信道的秩。
1402b:UE向eNB传输RI。
在本步骤之前,eNB向UE发送第三配置信息,第三配置信息用于指示UE在向eNB反馈信道状态信息时仅反馈数据信道的秩,则在本步骤中,UE根据第三配置信息,获取数据信道的秩,向eNB传输RI,该RI包括数据信道的秩。
第三配置信息还用于指示UE在向eNB反馈信道状态信息时还反馈数据信道的CQI,则在本步骤中,UE还可以根据第三配置信息,获取数据信道的CQI,向eNB传输数据信道的CQI。
步骤1403:eNB接收UE发送的RI,并根据该RI确定UE的待传输数据的预编码矩阵组,并将预编码矩阵组传输给UE。
1403a:eNB接收UE发送的RI,并根据该RI确定UE的待传输数据的预编码矩阵组。
1403b:eNB将预编码矩阵组传输给UE。
eNB可以通过无线资源控制RRC信令下发预编码矩阵组给UE。
eNB存储秩和预编码矩阵组的对应关系,相应的,根据该RI确定UE的待传输数据的预编码矩阵组的步骤可以为:
eNB根据该RI中包括的数据信道的秩,从秩和预编码矩阵组的对应关系中获取该秩对 应的预编码矩阵组。
当RANK=1的时候,第m个RB或者RB组内的第k个子载波上的预编码矩阵为:
Figure PCTCN2017078446-appb-000150
其中,ei是Na×1的矢量,第i个元素的值为1,其余的值为0,其中Na是端口对的个数。其中n=mod(k,4)+1,l=mod(m,2);A是一个常量矩阵。在不同的子载波上,轮流使用不同的φl,l=0,1,2,3={0,π/2,π,3π/2}。在不同的RB或者RB组之间,循环采用不同的端口对。
当RANK=2的时候,第m个RB或者RB组内的第k个子载波上的预编码矩阵为:
Figure PCTCN2017078446-appb-000151
其中,ei是Na×1的矢量,第i个元素的值为1,其余的值为0,其中Na是端口对的个数。其中n=mod(k,4)+1,l=mod(m,2)。
当RANK=3的时候,W2从如下4个矩阵中选择
Figure PCTCN2017078446-appb-000152
在每个RB或者RB组内的每个子载波上轮流使用
Figure PCTCN2017078446-appb-000153
Figure PCTCN2017078446-appb-000154
以及每个矩阵的列交换矩阵,即子载波间轮流使用的W2为:
Figure PCTCN2017078446-appb-000155
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000156
当RANK=4,W1与RANK=3的W1具有相同的形式,但是对于W2,从下列矩阵组中选择:
Figure PCTCN2017078446-appb-000157
在一个RB或者RB组的每个子载波上,轮流使用W2矩阵中的
Figure PCTCN2017078446-appb-000158
Figure PCTCN2017078446-appb-000159
以及每个矩阵的列交换矩阵,即子载波间轮流使用的W2为:
Figure PCTCN2017078446-appb-000160
因此,对于一个RB或者RB组中的某个子载波上,其预编码矩阵为:
Figure PCTCN2017078446-appb-000161
步骤1404:UE接收eNB传输的预编码矩阵组,并存储该预编码矩阵组。
步骤1405:eNB根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵。
在传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵。
步骤1406:eNB通过选择的预编码矩阵对待传输数据进行加权处理后传输给UE。
11406a:eNB通过选择的预编码矩阵对待传输数据进行加权处理。
11406b:eNB向UE传输处理后的数据。
步骤1407:UE接收eNB传输的加权处理后的传输数据,并根据根据传输数据在频域和时域的传输顺序,确定选择的预编码矩阵,并通过选择的预编码矩阵解调加权处理后的传输数据。
UE根据传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码矩阵。
在本申请实施例中,UE仅上报RI给eNB,eNB根据RI确定预编码矩阵组,根据待传输数据在频域和时域的传输顺序,从预编码矩阵组中选择预编码,并且传输待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输待传输数据时选择预编码矩阵组中不同的预编码矩阵,从而实现轮流使用预编码矩阵组中的预编码矩阵,提高了预编码性能。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储 介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。

Claims (38)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    基站eNB接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI,并根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,所述预编码矩阵组包括多个预编码矩阵;
    根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
    通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,包括:
    根据所述RI和所述第一PMI,确定第一预编码矩阵,根据所述第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组,根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差;或者,
    接收所述UE传输的第二PMI,所述第二PMI中包括列向量选择的指示,根据所述RI和所述第一PMI,确定第一预编码矩阵,根据所述列向量选择的指示确定的列向量和相位差集合中的每个相位差,确定第二预编码矩阵组,根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差。
  3. 根据权利要求1-2任一权利要求所述的方法,其特征在于,所述根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,包括:
    根据所述待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵。
  4. 根据权利要求1-3任一权利要求所述的方法,其特征在于,
    所述预编码矩阵组中包含的预编码矩阵W=[V0 … VR-1]的每个列向量,有如下构成形式
    Figure PCTCN2017078446-appb-100001
    其中,Vi为Nt×1的列向量,
    Figure PCTCN2017078446-appb-100002
    是模为1的复数且
    Figure PCTCN2017078446-appb-100003
    属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI1确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
  5. 根据权利要求1-4任一权利要求所述的方法,其特征在于,所述RI包括所述数据信道的秩;
    所述方法还包括:
    根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
  6. 根据权利要求1-5任一权利要求所述的方法,其特征在于,所述方法还包括:
    根据所述选择的预编码矩阵,确定所述数据信道的DMRS的加权矩阵,所述DMRS的加权矩阵中的每个列向量可以表示为:
    Figure PCTCN2017078446-appb-100004
    或者
    Figure PCTCN2017078446-appb-100005
    vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示选择的列向量。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述UE发送第一配置信息或第二配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示。
  8. 一种数据传输方法,其特征在于,所述方法包括
    基站eNB接收用户终端UE发送的数据信道的秩指示RI,根据所述RI确定所述UE的待传输数据的预编码矩阵组,并将所述预编码矩阵组传输给所述UE,以使所述UE根据所述预编码矩阵组解码出所述待传输数据,所述预编码矩阵组包括多个预编码矩阵;
    根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
    通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
  9. 根据权利要求8所述的方法,其特征在于,所述将所述预编码矩阵组传输给所述UE,包括:
    通过无线资源控制RRC信令下发所述预编码矩阵组给所述UE。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述UE发送第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI。
  11. 一种数据传输方法,其特征在于,所述方法包括:
    用户终端UE根据基站eNB下发的信道状态信息参考符号CSI-RS,根据所述CSI-RS确定数据信道的秩和第一预编码矩阵;
    向所述eNB发送秩指示RI和第一预编码矩阵指示PMI,所述RI包括所述数据信道的秩,所述第一PMI包括所述第一预编码矩阵,以使所述eNB根据所述秩和所述第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
    接收所述eNB下发的加权处理后的传输数据,根据所述传输数据在频域和时域的传输顺序,确定所述选择的预编码矩阵,并通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述传输数据在频域和时域的传输顺序,确定所述选择的预编码矩阵,包括:
    根据所述RI和所述第一PMI,确定预编码矩阵组,根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵;或者,
    接收所述eNB发送的预编码矩阵组,根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述eNB发送的第一配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI;
    所述根据所述CSI-RS确定数据信道的秩和第一预编码矩阵,包括:
    根据所述第一配置信息和所述CSI-RS,确定数据信道的秩和第一预编码矩阵。
  14. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    确定列向量选择的指示,向所述eNB发送第二PMI,所述第二PMI包括所述列向量选择的指示,以使所述eNB根据所述RI、所述第一PMI和所述列向量选择的指示,确定预编码矩阵组。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收所述eNB发送的第二配置信息,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中的列向量选择的指示;
    所述确定第二PMI中的列向量选择的指示,包括:
    根据所述第二配置信息,确定第二PMI中的列向量选择的指示。
  16. 根据权利要求11权利要求所述的方法,其特征在于,
    所述预编码矩阵组中包含的预编码矩阵W=[V0 … VR-1]的每个列向量,有如下构成形式
    Figure PCTCN2017078446-appb-100006
    其中,Vi为Nt×1的列向量,
    Figure PCTCN2017078446-appb-100007
    是模为1的复数且
    Figure PCTCN2017078446-appb-100008
    属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI1确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
  17. 根据权利要求11~16任一权利要求所述方法,其特征在于,所述方法还包括:
    根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
  18. 一种数据传输方法,其特征在于,所述方法包括:
    用户终端UE接收基站eNB下发的信道状态信息参考符号CSI-RS,根据所述CSI-RS确定数据信道的秩;
    向基站eNB发送秩指示RI,所述RI包括所述数据信道的秩,以使所述eNB根据所述秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
    接收所述eNB发送的预编码矩阵组和加权处理后的传输数据,根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择所述预编码矩阵,并通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    接收所述eNB发送的第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI;
    所述根据所述CSI-RS确定数据信道的秩,包括:
    根据所述第三配置信息和所述CSI-RS,确定数据信道的秩。
  20. 一种数据传输装置,其特征在于,所述装置包括:
    第一接收模块,用于接收用户终端UE发送的数据信道的秩指示RI和第一预编码矩阵指示PMI;
    第一确定模块,用于根据所述RI和所述第一PMI确定所述UE的待传输数据的预编码矩阵组,所述预编码矩阵组包括多个预编码矩阵;
    第一选择模块,用于根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
    第一传输模块,用于通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
  21. 根据权利要求20所述的装置,其特征在于,所述第一确定模块,包括:
    第一确定单元,用于根据所述RI和所述第一PMI,确定第一预编码矩阵;
    第二确定单元,用于根据所述第一预编码矩阵和相位差集合中的每个相位差,确定第二预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差;
    第三确定单元,用于根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组;或者,
    所述第一确定模块,包括:
    第一接收单元,用于接收所述UE传输的第二PMI,所述第二PMI中包括列向量选择的指示;
    第四确定单元,用于根据所述RI和所述第一PMI,确定第一预编码矩阵;
    第五确定单元,用于根据所述列向量选择的指示确定的列向量和相位差集合中的每个相 位差,确定第二预编码矩阵组,所述相位差集合用于存储两组极化天线之间的相位差;
    第六确定单元,用于根据所述第一预编码矩阵和所述第二预编码矩阵组,确定所述UE的待传输数据的预编码矩阵组。
  22. 根据权利要求20-21任一权利要求所述的装置,其特征在于,所述第一选择模块,包括:
    第一选择单元,用于根据所述待传输数据在频域和时域的传输顺序,按照预先定义的选择顺序从所述预编码矩阵组中选择预编码矩阵。
  23. 根据权利要求20-22任一权利要求所述的装置,其特征在于,
    所述预编码矩阵组中包含的预编码矩阵W=[V0 … VR-1]的每个列向量,有如下构成形式
    Figure PCTCN2017078446-appb-100009
    其中,Vi为Nt×1的列向量,
    Figure PCTCN2017078446-appb-100010
    是模为1的复数且
    Figure PCTCN2017078446-appb-100011
    属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
  24. 根据权利要求20-23任一权利要求所述的装置,其特征在于,所述RI包括所述数据信道的秩;
    所述装置还包括:
    第二确定模块,用于根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
  25. 根据权利要求20-24任一权利要求所述的装置,其特征在于,所述装置还包括:
    第三确定模块,用于根据所述选择的预编码矩阵,确定所述数据信道的DMRS的加权矩阵,所述DMRS的加权矩阵中的每个列向量可以表示为:
    Figure PCTCN2017078446-appb-100012
    或者
    Figure PCTCN2017078446-appb-100013
    vi为所述选择的预编码矩阵中的第二PMI中列向量选择的指示。
  26. 根据权利要求20所述的装置,其特征在于,所述装置还包括:
    第一发送模块,用于向所述UE发送第一配置信息或第二配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示。
  27. 一种数据传输装置,其特征在于,所述装置包括
    第二接收模块,用于接收用户终端UE发送的数据信道的秩指示RI;
    第四确定模块,用于根据所述RI确定所述UE的待传输数据的预编码矩阵组;
    第二传输模块,用于将所述预编码矩阵组传输给所述UE,以使所述UE根据所述预编码 矩阵组解码出所述待传输数据,所述预编码矩阵组包括多个预编码矩阵;
    第二选择模块,用于根据所述待传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵,在传输所述待传输数据的一个资源块RB内,至少存在两个资源元素RE位置上传输所述待传输数据时选择所述预编码矩阵组中不同的预编码矩阵;
    第三传输模块,用于通过所述选择的预编码矩阵对所述待传输数据进行加权处理后传输给所述UE。
  28. 根据权利要求27所述的装置,其特征在于,
    所述第二传输模块,用于通过无线资源控制RRC信令下发所述预编码矩阵组给所述UE。
  29. 根据权利要求27所述的装置,其特征在于,所述装置还包括:
    第二发送模块,用于向所述UE发送第三配置信息,所述第三配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI。
  30. 一种数据传输装置,其特征在于,所述装置包括:
    第四接收模块,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
    第五确定模块,用于根据所述CSI-RS确定数据信道的秩和第一预编码矩阵;
    第三发送模块,用于向所述eNB发送秩指示RI和第一预编码矩阵指示PMI,所述RI包括所述数据信道的秩,所述第一PMI包括所述第一预编码矩阵,以使所述eNB根据所述秩和所述第一预编码矩阵确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
    第四接收模块,用于接收所述eNB下发的加权处理后的传输数据;
    第六确定模块,用于根据所述传输数据在频域和时域的传输顺序,确定所述选择的预编码矩阵;
    第一解调模块,用于通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
  31. 根据权利要求30所述的装置,其特征在于,所述第六确定模块,包括:
    第八确定单元,用于根据所述RI和所述第一PMI,确定预编码矩阵组;
    第二选择单元,用于根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵;或者,
    所述第六确定模块,包括:
    第二接收单元,用于接收所述eNB发送的预编码矩阵组;
    第三选择单元,用于根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择预编码矩阵。
  32. 根据权利要求30所述的装置,其特征在于,所述装置还包括:
    第五接收模块,用于接收所述eNB发送的第一配置信息,所述第一配置信息用于指示所述UE在向所述eNB反馈信道状态信息时仅反馈所述RI和所述第一PMI;
    所述第五确定模块,用于根据所述第一配置信息和所述CSI-RS,确定数据信道的秩和第 一预编码矩阵。
  33. 根据权利要求30或31所述的装置,其特征在于,所述装置还包括:
    第七确定模块,用于确定列向量选择的指示;
    第四发送模块,用于向所述eNB发送第二PMI,所述第二PMI包括所述列向量选择的指示,以使所述eNB根据所述RI、所述第一PMI和所述列向量选择的指示,确定预编码矩阵组。
  34. 根据权利要求33所述的装置,其特征在于,所述装置还包括:
    第六接收模块,用于接收所述eNB发送的第二配置信息,所述第二配置信息用于指示所述UE在向所述eNB反馈信道状态信息时反馈所述RI、所述第一PMI和所述第二PMI中列向量选择的指示;
    所述第七确定模块,用于根据所述第二配置信息,确定第二PMI中的列向量选择的指示。
  35. 根据权利要求30权利要求所述的装置,其特征在于,
    所述预编码矩阵组中包含的预编码矩阵W=[V0 … VR-1]的每个列向量,有如下构成形式
    Figure PCTCN2017078446-appb-100014
    其中,Vi为Nt×1的列向量,
    Figure PCTCN2017078446-appb-100015
    是模为1的复数且
    Figure PCTCN2017078446-appb-100016
    属于1,-1,j,-j中的值,Nt为所述eNB包括的天线端口个数,R为所述RI包括的数据信道的秩,vi为根据所述第一PMI确定的第一预编码矩阵中的对角块矩阵X中的一个列向量。
  36. 根据权利要求30~35任一权利要求所述装置,其特征在于,所述装置还包括:
    第八确定模块,用于根据所述数据信道的秩,确定所述数据信道的解调参考符号DMRS的端口数目,所述DMRS的端口数目为大于或者等于所述数据信道的秩的偶数。
  37. 一种数据传输装置,其特征在于,所述装置包括:
    第七接收模块,用于接收基站eNB下发的信道状态信息参考符号CSI-RS;
    第九确定模块,用于根据所述CSI-RS确定数据信道的秩;
    第六发送模块,用于向基站eNB发送秩指示RI,所述RI包括所述数据信道的秩,以使所述eNB根据所述秩确定预编码矩阵组并从预编码矩阵组中选择预编码矩阵,并通过所述选择的预编码矩阵对所述UE的待传输数据进行加权处理后传输给所述UE;
    第七接收模块,用于接收所述eNB发送的预编码矩阵组和加权处理后的传输数据;
    第十确定模块,用于根据所述传输数据在频域和时域的传输顺序,从所述预编码矩阵组中选择所述预编码矩阵;
    第二解调模块,用于通过所述选择的预编码矩阵解调所述加权处理后的传输数据。
  38. 根据权利要求37所述的装置,其特征在于,所述装置还包括:
    第八接收模块,用于接收所述eNB发送的第三配置信息,所述第三配置信息用于指示所 述UE在向所述eNB反馈信道状态信息时仅反馈所述RI;
    所述第九确定模块,用于根据所述第三配置信息和所述CSI-RS,确定数据信道的秩。
PCT/CN2017/078446 2016-04-01 2017-03-28 数据传输方法和装置 WO2017167184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610205911.7A CN107294578B (zh) 2016-04-01 2016-04-01 数据传输方法和装置
CN201610205911.7 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017167184A1 true WO2017167184A1 (zh) 2017-10-05

Family

ID=59963507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078446 WO2017167184A1 (zh) 2016-04-01 2017-03-28 数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN107294578B (zh)
WO (1) WO2017167184A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164864A1 (en) * 2022-03-03 2023-09-07 Zte Corporation Method for uplink transmission

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787667B (zh) * 2017-11-12 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110380767B (zh) * 2018-04-13 2022-03-25 华为技术有限公司 一种预编码矩阵确定方法及装置
WO2020000273A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 一种数据传输方法及装置
CN110535582B (zh) * 2018-08-10 2022-07-05 中兴通讯股份有限公司 物理控制信道的传输方法、装置、发送端设备及存储介质
CN110838857B (zh) * 2018-08-17 2022-01-07 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN111092640B (zh) * 2018-10-24 2021-03-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111435848B (zh) 2019-01-11 2022-05-31 华为技术有限公司 指示和确定预编码向量的方法以及通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090238298A1 (en) * 2008-03-24 2009-09-24 Jae Wan Kim Method for transmitting and receiving precoded signal in MIMO communication system
CN102474385A (zh) * 2009-06-29 2012-05-23 高通股份有限公司 在无线通信系统中进行开环信道报告
CN102546110A (zh) * 2011-12-31 2012-07-04 电信科学技术研究院 一种传输信道状态信息的方法及装置
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN103782560A (zh) * 2011-03-30 2014-05-07 华为技术有限公司 多天线无线通信系统中的开环传输的方法和装置
CN104243106A (zh) * 2014-09-28 2014-12-24 重庆邮电大学 一种基于3d交叉极化信道大规模mimo系统的码本构造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090238298A1 (en) * 2008-03-24 2009-09-24 Jae Wan Kim Method for transmitting and receiving precoded signal in MIMO communication system
CN102474385A (zh) * 2009-06-29 2012-05-23 高通股份有限公司 在无线通信系统中进行开环信道报告
CN103782560A (zh) * 2011-03-30 2014-05-07 华为技术有限公司 多天线无线通信系统中的开环传输的方法和装置
CN102546110A (zh) * 2011-12-31 2012-07-04 电信科学技术研究院 一种传输信道状态信息的方法及装置
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN104243106A (zh) * 2014-09-28 2014-12-24 重庆邮电大学 一种基于3d交叉极化信道大规模mimo系统的码本构造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164864A1 (en) * 2022-03-03 2023-09-07 Zte Corporation Method for uplink transmission

Also Published As

Publication number Publication date
CN107294578B (zh) 2021-01-29
CN107294578A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
JP6862526B2 (ja) 減少されたフィードバックfd−mimoのための方法及び装置
WO2017167184A1 (zh) 数据传输方法和装置
KR102270375B1 (ko) 개선된 무선 통신 시스템에서의 선형 조합 pmi 코드북 기반 csi 보고
CN107636984B (zh) 用于操作mimo测量参考信号和反馈的方法和装置
CN104396153B (zh) 用于蜂窝无线通信系统的信道状态信息码字构造的方法和装置
CN106165314B (zh) 用于在无线通信系统中报告信道状态信息的方法和装置
RU2630378C2 (ru) Способ обратной связи по указателю матрицы предварительного кодирования, сторона приема и сторона передачи
KR101996680B1 (ko) 단말 장치, 송신 방법 및 기지국 장치
US11211980B2 (en) Communication method, network device, terminal device, and system
CN109302220B (zh) 用于数据传输的方法、装置和系统
JP5465339B2 (ja) マルチアンテナシステム中で情報を送受信するための方法および装置、ならびにそのマルチアンテナシステム
WO2017150895A2 (en) Partial port hybrid csi feedback for mimo wireless communication systems
CN104662811B (zh) 在多天线无线通信系统中发送有效反馈的方法及其设备
WO2012024059A1 (en) Method of codebook design and precoder feedback in wireless communication systems
JP6208370B2 (ja) チャンネル情報フィードバック方法、基地局及び端末
EP3384625A1 (en) Precoder codebook for csi reporting in advanced wireless communication systems
KR20180071387A (ko) 무선 통신 시스템에서 dm-rs 기반 개루프 하향링크 전송을 위한 피드백 정보 송신 방법 및 이를 위한 장치
WO2017049644A1 (zh) 一种资源选择的方法及装置和一种电子设备
WO2017167156A1 (zh) Dmrs的发送方法及装置
KR102381159B1 (ko) 다중 안테나 무선 통신 시스템에서 채널 측정을 위한 참조 신호 전송 방법 및 이를 위한 장치
WO2014162567A1 (ja) 移動局、基地局、及び通信制御方法
EP3363122A1 (en) Pmi reporting for a set of ports
WO2017167157A1 (zh) 信道信息的处理方法及装置
WO2022236586A1 (en) Methods and apparatus for configuring w1, w2, and wf for port selection codebook enhancement
CN117178495A (zh) 端口选择码本增强

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773214

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773214

Country of ref document: EP

Kind code of ref document: A1