WO2017167031A1 - 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法 - Google Patents

一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法 Download PDF

Info

Publication number
WO2017167031A1
WO2017167031A1 PCT/CN2017/077002 CN2017077002W WO2017167031A1 WO 2017167031 A1 WO2017167031 A1 WO 2017167031A1 CN 2017077002 W CN2017077002 W CN 2017077002W WO 2017167031 A1 WO2017167031 A1 WO 2017167031A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
layer
volume fraction
absorption coefficient
blood
Prior art date
Application number
PCT/CN2017/077002
Other languages
English (en)
French (fr)
Inventor
陈威
Original Assignee
陈威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈威 filed Critical 陈威
Priority to EP17773061.1A priority Critical patent/EP3438841A4/en
Priority to US16/088,378 priority patent/US20200297267A1/en
Publication of WO2017167031A1 publication Critical patent/WO2017167031A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/443Evaluating skin constituents, e.g. elastin, melanin, water
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Definitions

  • the invention relates to computational biology, to a method for establishing an analytical model of skin spectrum and a method for modeling biological parameters related to human skin light absorption, in particular to a biological parameter relating to human skin light absorption using mathematical models Methods.
  • the interaction between light and matter causes the electronic transition of the atomic and molecular energy levels inside the material, which causes the absorption, reflection, and scattering of light to change in wavelength and intensity information.
  • the spectrometer can be used to detect and process such changes. Compared with other analytical methods, spectral detection is non-destructive, highly sensitive, and highly accurate, and is widely used in the detection and identification of various materials.
  • Eucalyptus, brown melanin, carotene, bilirubin, hemoglobin, carbon monoxide hemoglobin, methemoglobin, hemoglobin, oil, etc. are widely present in the epidermal and dermal layers of the skin and have a variety of important biological functions: for example, Hair color, maintain cell metabolism, anti-oxidation, as a component of blood and connective tissue, can also be used as a characteristic parameter of pathological examination for testing methemoglobinemia, sulphhemoglobinemia, carbon monoxide poisoning.
  • the means of medical testing is to use different test methods for different biological test targets, and biochemical experiments are performed separately. If you want to get the values of all the above parameters, it is necessary to carry out several test experiments, which not only requires high inspection cost, but also takes time and effort, and manual test has experimental error, and the accuracy of test results is difficult to guarantee.
  • the object of the present invention is to provide a method for utilizing mathematical models of 19 biological parameters related to human skin light absorption, filling in a blank for quantitative analysis of biological parameters related to light absorption using a spectral model, and analyzing the skin spectrum that can be described
  • a set of mathematical models of characteristics related to light absorption is constructed, and all the test results can be obtained through only a few calculations, and the virtual skin spectrum has a very good fit to the actual skin spectrum, which improves the analysis. Accuracy.
  • a method for calculating 19 biological parameters related to light absorption of human skin using a mathematical model comprising the steps of:
  • Step 1 According to the characteristics of absorption, reflection, scattering and transmission when the visible light is irradiated to the skin, the skin is removed from the skin.
  • the upper and lower layers are abstracted into four layers: rough skin layer, skin epidermis layer, skin dermis layer and subcutaneous tissue layer;
  • Step 2 According to the characteristics of light absorption, reflection, scattering and transmission of the skin epidermis, the light reflection and light transmission equations in the skin epidermis are established, and the absorption coefficient in the skin epidermis is calculated;
  • Step 3 According to the characteristics of light absorption, reflection, scattering and transmission of the dermis layer of the skin, the light reflection and light transmission equations are established in the dermis layer of the skin, and the absorption coefficient in the dermis layer of the skin is calculated;
  • Step 4 Establishing the absorption coefficient and epidermal melanin volume fraction, epidermal melanin concentration, epidermal layer brown melanin concentration, epidermal water volume fraction, epidermal lipid volume fraction, and epidermal layer in the epidermal layer of the skin Equation of relationship between carotene concentrations;
  • Step 5 Establishing the absorption rate and the dermal layer water volume fraction, the blood volume fraction, the hemoglobin concentration, the oxidized hemoglobin volume fraction in the blood, the deoxygenated hemoglobin volume fraction in the blood, the carbon monoxide hemoglobin volume fraction in the blood, and the blood.
  • the method further includes the step 6, the skin epidermis layer and the dermis layer absorption coefficient which are virtualized by the biologically relevant parameters calculated in the fourth step and the fifth step, and the epidermis layer and the dermis layer which are resolved from the spectrum measured by the skin. The absorption coefficient is fitted.
  • step two the equation of light reflection and light transmission in the skin epidermis is
  • d epi is the thickness of the epidermal layer
  • L air ⁇ L epi represents light entering the epidermal layer by air
  • L derm ⁇ L epi represents light entering the epidermal layer from the dermis layer.
  • step three the light reflection equation in the dermis layer of the skin is
  • d derm is the thickness of the dermis layer
  • L epi ⁇ L derm represents the light entering the dermis layer from the upper epidermal layer.
  • step four the equation is
  • f me represents the melanin volume fraction of the epidermis layer
  • c eu represents the melanin concentration of the epidermis layer.
  • Indicates the melanin absorption coefficient, c ph represents the brown melanin concentration
  • Indicates the absorption coefficient of brown melanin Indicates the skin moisture volume fraction
  • f lipid skin layer represents the volume fraction of oil
  • Indicates the carotene absorption coefficient Indicates the baseline absorption coefficient of the skin.
  • step five the equation is
  • sulf represents the volume fraction of sulphur hemoglobin in the blood.
  • S sulf represents the volume fraction of sulphur hemoglobin in the blood.
  • Indicates the hemoglobin absorption coefficient Indicates the concentration of carotene in the dermis, Indicates the carotene absorption coefficient, c br represents the bilirubin concentration, Indicates the bilirubin absorption coefficient, and f plt represents the platelet volume fraction in the blood.
  • H represents the hemoglobin volume fraction in the blood
  • f ela represents the elastin volume fraction.
  • Expresses the elastin absorption coefficient Indicates the baseline absorption coefficient of the skin.
  • the present invention has the following beneficial effects:
  • the present invention constructs a skin spectral model and a mathematical model of skin parameters through conduction analysis of light in the skin, establishing a link between skin spectrum and skin biological parameters.
  • the virtual spectrum of a set of skin biological parameter simulations calculated by the mathematical model of the present invention is highly fitted to the actual spectral height, and the model is accurate and reliable.
  • the parameters related to the spectral absorption of the skin associated with the present invention are 19, the melanin volume fraction of the epidermis, the melanin concentration of the epidermis, the brown melanin concentration, the epidermal water volume fraction, the epidermal lipid volume fraction, and the epidermal carotenoid.
  • the method has three functions: 1. Establishing a mathematical relationship between the volume fraction of a certain absorbed component of the skin on other volume fractions, ensuring the physical constraint of the volume fraction of each absorbed component of the skin; 2. Excluding the correction of the search direction The impact of the quantitative analysis process is not subject to external interference; 3, to ensure the correctness of the results of quantitative analysis of biological parameters related to skin light absorption.
  • the method of the present invention accurately fits in the full range of visible light 400-700 nm, which can achieve the precision required for skin quantitative analysis.
  • the skin spectral information on which the present invention is based can be obtained by a non-invasive acquisition method.
  • the present invention constructs a four-layer structure (skin surface, epidermal layer, dermis layer, subcutaneous tissue) of the skin under the action of visible light (400-700 nm, which acts on the skin of humans up to 4 mm). Abstraction of the four forms of light (reflection, transmission, absorption, scattering) of the radiation conduction path analysis on the skin four-layer structure model. An optical analysis model between the skin spectrum and reflection, absorption, scattering, and transmission is formed. The model has two characteristics: 1. In the structural model of the skin, the thickness of the epidermis and dermis of the skin is used as a structural variable, highlighting the influence of these two variables on the spectrum; 2. The model covers light and skin. The four modes of action are complete optical models.
  • RTE Radiation Transfer Equation
  • Electromagnetic waves propagate in the medium and are in the direction x Emitted energy Said. a bunch of along The amount of change in emissivity after passing through a small length of medium (dS(x)) when the energy propagated in the direction passes through the position at x. Can be written as:
  • the radiation conduction equation is:
  • the skin is abstracted into a multi-layer structure, each layer having independent, multiple absorption and scattering media;
  • the skin is infinite in the direction perpendicular to the thickness extension, and may be infinite or infinite in a direction parallel to the thickness extension;
  • the skin is a plane-parallel structure, that is, the optical properties of the skin change only in parallel with the direction in which the thickness extends, and the optical properties of the skin at the same depth are completely identical;
  • the scattering medium in the skin is small-scale collagen fiber and large-scale collagen fiber bundle.
  • the scattering of small-scale collagen fiber can be approximated by spherical Rayleigh scattering, which causes the dermis layer to have both spherical Rayleigh and cylindrical Mie. scattering.
  • the invention utilizes a mathematical model to calculate a biological parameter related to light absorption of human skin, and it is necessary to first establish a model of skin spectrum, using spectral features and 13 biological parameters related to light absorption in skin epidermis and dermis. Establish a correlation to establish a mathematical model to achieve quantitative analysis of the above parameters.
  • the steps of the model of the skin spectrum include steps one to three:
  • Step 1 According to the characteristics of absorption, reflection, scattering and transmission when the visible light is irradiated to the skin, the skin is abstracted from the top to the bottom of the rough layer, the skin epidermis, the skin dermis layer and the subcutaneous tissue layer.
  • Surface layer no actual thickness, infinitely thin, located at the outermost layer, connected to the external environment, lower to the skin layer;
  • Epidermis the actual first layer of skin, with a limited thickness, connected to the rough surface layer, and connected to the dermis layer;
  • Dermis layer the actual second layer of the skin, with a limited thickness, connected to the epidermis layer, and connected to the subcutaneous tissue;
  • Subcutaneous tissue layer The subcutaneous tissue has an infinite thickness and does not describe any composition, its function is to absorb all light that enters the subcutaneous tissue from the dermal layer.
  • Step 2 According to the absorption, scattering, reflection and transmission characteristics of the skin epidermis, the light reflection and light transmission equations in the skin epidermis are established, and the absorption coefficient in the skin epidermis is calculated.
  • the skin layer is capable of absorbing and scattering light entering the layer.
  • the thickness of the layer affects the total amount of light absorbed and scattered during propagation, and the layer from which light enters the skin layer also affects the reflection and transmission of the layer. Therefore, the calculation of the reflection and transmittance of the layer requires simultaneous calculation of the upper illumination (light entering from the air, indicated by the + sign) and the lower illumination (light entering from the dermis layer, the - sign indicates):
  • Step 3 According to the absorption, scattering, reflection and transmission characteristics of the dermis layer of the skin, the light reflection and light transmission equations in the dermis layer of the skin are established, and the absorption coefficient in the dermis layer of the skin is calculated.
  • the dermis layer also absorbs and scatters the incoming light.
  • the thickness of the dermis affects the total amount of light absorbed and scattered. However, since it is assumed that the light entering the subcutaneous tissue is completely absorbed, it will not return to the dermis layer, so it is not necessary to consider Illumination (light entering from the subcutaneous tissue) and dermal transmission, the formula is as follows:
  • Step 4 Establishing the absorption coefficient and epidermal melanin volume fraction, epidermal melanin concentration, epidermal layer brown melanin concentration, epidermal water volume fraction, epidermal lipid volume fraction, and epidermal layer in the epidermal layer of the skin The equation for the relationship between carotene concentrations.
  • Formula (6) where Indicates the absorption coefficient of the epidermal layer, f me represents the melanin volume fraction of the epidermis layer, and c eu represents the melanin concentration of the epidermis layer.
  • Step 5 Establishing the absorption coefficient and the dermal layer water volume fraction, blood volume fraction, hemoglobin concentration, blood oxidized hemoglobin volume fraction, blood deoxyhemoglobin volume fraction, blood carbon monoxide hemoglobin volume fraction, blood in the dermis layer of the skin The equation for the relationship between hemoglobin volume fraction, hemoglobin volume fraction in blood, carotene concentration in dermis, bilirubin concentration in dermis, platelet volume fraction in blood, hemoglobin volume fraction in blood, and elastin volume fraction in dermis.
  • Formula (7) where Indicates the absorption coefficient of the dermis layer, Indicates the dermal layer water volume fraction, Indicates the water absorption coefficient, f blood represents the blood volume fraction, S oxy represents the oxygenated hemoglobin volume fraction (blood oxygen concentration) in the blood , and c blood represents the hemoglobin concentration.
  • S co represents the volume fraction of carbon monoxide hemoglobin in the blood. Represents the carbon monoxide hemoglobin absorption coefficient, and S met represents the methemoglobin volume fraction in the blood.
  • sulf represents the volume fraction of sulphur hemoglobin in the blood.
  • S sulf represents the volume fraction of sulphur hemoglobin in the blood.
  • Indicates the hemoglobin absorption coefficient Indicates the concentration of carotene in the dermis, Indicates the carotene absorption coefficient, c br represents the bilirubin concentration, Indicates the bilirubin absorption coefficient, and f plt represents the platelet volume fraction in the blood.
  • H represents the hemoglobin volume fraction in the blood
  • f ela represents the elastin volume fraction.
  • Expresses the elastin absorption coefficient Indicates the baseline absorption coefficient of the skin.
  • the step of verifying compares the biologically relevant parameters calculated in steps 4 and 5 with the actual biologically relevant parameters of the sample, and obtains a fitting degree to determine whether the method for calculating the biological parameters related to skin light absorption is accurate. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Dermatology (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)

Abstract

一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法,本方法通过建立两个层级的分析模型,即皮肤光谱分析模型和皮肤与光吸收相关的生物学参数数学模型,从而在皮肤光谱与皮肤表皮层、真皮层与光吸收有关的生物学参数之间建立起关联,实现由一组皮肤参数模拟出虚拟光谱,然后通过虚拟光谱与实际光谱利用信息处理技术进行优化迭代,能够找到一组最优解,达到指定的拟合度标准,实现人皮肤光吸收相关的生物学参数量化分析的目的。

Description

一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法 技术领域
本发明涉及计算生物学,涉及建立皮肤光谱的分析模型的方法以及人皮肤光吸收相关的生物学参数的建模方法,特别是涉及一种利用数学模型人皮肤光吸收相关的19个生物学参数的方法。
背景技术
光与物质相互作用会引起物质内部原子及分子能级的电子跃迁,使物质对光的吸收、反射、散射等在波长及强度信息上发生变化,光谱仪可用于检测并处理这类变化。与其他分析方法相比,光谱检测具有非破坏、高灵敏、高精准的特点,因而在各类材料的检测和鉴定方面得到广泛的应用。
生物学与光学的研究表明,人类皮肤是由多种生物学成分组成,其中的一些成分对光谱作用敏感,各成分具有特定的可见光光学性质,并且,这些皮肤成分含量已由生物学方法进行了测定。因此,形成一种籍于皮肤的可见光谱的数据处理方法实现皮肤的生物学成分量化分析是可行的。但在建模方面,要求可见光光学作用分析完整、皮肤参数尽量齐全,才能体现皮肤参数的光学性质细节,达到可见光全波段所需的量化分析精度要求。
目前,在皮肤参数量化分析领域主要存在以下手段,1)基于图像的皮肤分析。由于是平面的图像分析,其所能测得参数的与光谱的立体数据相比准确性有较大差距。所期望的其他的皮肤成分参数和皮肤结构参数无法获得。2)基于生物阻抗的皮肤水份检测。此种检测成分参数单一且精度不够。3)基于超声波的皮肤超声影像诊断系统。此种方式主要是对皮肤的结构组织进行定性观察,无法进行皮肤参数量化分析。4)基于X射线的三维断层成像的皮肤CT影像分析系统。此种方式主要是对皮肤的结构组织 进行定性观察,无法进行皮肤参数量化分析。5)皮肤光谱检测系统。属于研究项目。此种方式是利用光谱进行某波段的直观比较观察,没有形成信息处理模型。
优黑素、褐黑素、胡萝卜素、胆红素、血红蛋白、一氧化碳血红蛋白、高铁血红蛋白、硫化血红蛋白、油脂等广泛存在在皮肤的表皮层和真皮层,具有多种重要的生物学功能:例如决定毛发颜色,维持细胞代谢,抗氧化,作为血液、结缔组织的组成部分,同时也可以作为病理检验的特征参数,用于检验高铁血红蛋白血症、硫化血红蛋白血症、一氧化碳中毒症等。通常医学检验的手段是针对不同生物检验目标采用不同的化验方法,分别进行生化实验得到结果。如果希望得到上述所有参数的数值,就要进行数个检验实验,不仅需要检验成本高,而且费时费力,且人工检验存在实验误差,检验结果精确度也难以保证。
因此,为了实现上述皮肤生物学参数的精确量化目的,急需设计一种基于皮肤光谱进行的光吸收相关的生物学参数量化分析的方案,在皮肤表皮层和真皮层中光敏感的相关生物学参数和吸收光谱特征之间建立关联,从而达到对不同人、不同部位差异尽可能多的分析维度和精度,并形成大数据处理的基础,为人皮肤优黑素、褐黑素、胡萝卜素、胆红素等参数建立新的精准的定量分析方法。
发明内容
本发明的目的是提供一种利用数学模型人皮肤光吸收相关的19个生物学参数的方法,填补了利用光谱模型进行与光吸收相关的生物学参数量化分析的空白,分析出可以描述皮肤光谱特征的一组与光吸收相关的生物学参数构建数学模型,仅通过几次运算过程即可获得全部检测结果,并且其虚拟出的皮肤光谱与实际皮肤光谱的拟合度非常高,提高分析的精确性。
为实现上述发明目的,本发明提供的技术方案是:
一种利用数学模型计算人皮肤与光吸收相关的19个生物学参数的方法,所述方法包括以下步骤:
步骤一 根据可见光照射皮肤时吸收、反射、散射、透射的特征,将皮肤从 上之下抽象为皮肤粗糙表面层、皮肤表皮层、皮肤真皮层、皮下组织层四层;
步骤二 根据皮肤表皮层的光吸收、反射、散射、透射的特征,建立在皮肤表皮层中光反射和光透射方程,计算在皮肤表皮层的吸收系数;
步骤三 根据皮肤真皮层的光吸收、反射、散射、透射的特征,建立在皮肤真皮层中光反射和光透射方程,计算在皮肤真皮层的吸收系数;
步骤四 建立表示在皮肤表皮层中的所述吸收系数与表皮层黑色素体积分数、表皮层优黑素浓度、表皮层褐黑素浓度、表皮层水分体积分数、表皮层油脂体积分数、表皮层中胡萝卜素浓度之间关系的方程;
步骤五 建立表示在皮肤真皮层中的所述吸收率与真皮层水分体积分数、血液体积分数、血红蛋白浓度、血液中氧化血红蛋白体积分数、血液中脱氧血红蛋白体积分数、血液中一氧化碳血红蛋白体积分数、血液中高铁血红蛋白体积分数、血液中硫化血红蛋白体积分数、真皮层胡萝卜素浓度、真皮层胆红素浓度、血液中血小板体积分数、血液中血红蛋白体积分数、真皮层弹性蛋白体积分数之间关系的方程。
进一步地,所述方法还包括步骤六,将步骤四、步骤五中计算的生物学相关参数所虚拟的皮肤表皮层、真皮层吸收系数与从皮肤测量的光谱所解析出的表皮层、真皮层吸收系数拟合。
进一步地,在步骤二中,所述在皮肤表皮层中光反射和光透射的方程为
Figure PCTCN2017077002-appb-000001
Figure PCTCN2017077002-appb-000002
其中,
Figure PCTCN2017077002-appb-000003
为从空气进入表皮层的光反射率,
Figure PCTCN2017077002-appb-000004
为从空气进入表皮层的光透射率,
Figure PCTCN2017077002-appb-000005
为从真皮层进入表皮层的光反射率,
Figure PCTCN2017077002-appb-000006
为光从真皮层进入表皮层的光透射率,
Figure PCTCN2017077002-appb-000007
为表皮层吸收系数,
Figure PCTCN2017077002-appb-000008
为表皮层散射系数,depi为表皮层厚度,Lair→Lepi代表光由空气进入表皮层,Lderm→Lepi代表光由真皮层进入表皮层。
进一步地,在步骤三中,所述在皮肤真皮层中光反射方程为
Figure PCTCN2017077002-appb-000009
其中,
Figure PCTCN2017077002-appb-000010
为从表皮层进入真 皮层的光反射率,
Figure PCTCN2017077002-appb-000011
为真皮层吸收系数,
Figure PCTCN2017077002-appb-000012
为真皮层散射系数,dderm为真皮层厚度,Lepi→Lderm代表光由上方表皮层进入真皮层。
进一步地,在步骤四中,所述方程为
Figure PCTCN2017077002-appb-000013
其中
Figure PCTCN2017077002-appb-000014
表示表皮层吸收系数,fme表示表皮层黑色素体积分数,ceu表示表皮层优黑素浓度,
Figure PCTCN2017077002-appb-000015
表示优黑素吸收系数,cph表示褐黑素浓度,
Figure PCTCN2017077002-appb-000016
表示褐黑素吸收系数,
Figure PCTCN2017077002-appb-000017
表示表皮水分体积分数,
Figure PCTCN2017077002-appb-000018
表示水分吸收系数,flipid表示表皮层油脂体积分数,
Figure PCTCN2017077002-appb-000019
表示油脂吸收系数,
Figure PCTCN2017077002-appb-000020
表示表皮层胡萝卜素浓度,
Figure PCTCN2017077002-appb-000021
表示胡萝卜素吸收系数,
Figure PCTCN2017077002-appb-000022
表示皮肤基线吸收系数。
进一步地,在步骤五中,所述方程为
Figure PCTCN2017077002-appb-000023
其中,
Figure PCTCN2017077002-appb-000024
表示真皮层吸收系数,表示真皮层水分体积分数,
Figure PCTCN2017077002-appb-000026
表示水分吸收系数,fblood表示血液体积分数,Soxy表示血液中含氧血红蛋白体积分数即血氧浓度,cblood表示血红蛋白浓度,
Figure PCTCN2017077002-appb-000027
表示含氧血红蛋白吸收系数,Sdeoxy表示血液中脱氧血红蛋白体积分数,
Figure PCTCN2017077002-appb-000028
表示脱氧血红蛋白吸收系数,Sco表示血液中一氧化碳血红蛋白体积分数,
Figure PCTCN2017077002-appb-000029
表示一氧化碳血红蛋白吸收系数,Smet表示血液中高铁血红蛋白体积分数,
Figure PCTCN2017077002-appb-000030
表示高铁血红蛋白吸收系数,Ssulf表示血液中硫化血红蛋白体积分数,
Figure PCTCN2017077002-appb-000031
表示硫化血红蛋白吸收系数,
Figure PCTCN2017077002-appb-000032
表示真皮层胡萝卜素浓度,
Figure PCTCN2017077002-appb-000033
表示胡萝卜素吸收系数,cbr表示胆红素浓度,
Figure PCTCN2017077002-appb-000034
表示胆红素吸收系数,fplt表示血液中血小板体积分数,
Figure PCTCN2017077002-appb-000035
表示血小板吸收系数,H表示血液中血红蛋白体积分数,fela表示弹性蛋白体积分数,
Figure PCTCN2017077002-appb-000036
表示弹性蛋白吸收系数,
Figure PCTCN2017077002-appb-000037
表示皮肤基线吸收系数。
采用上述技术方案,本发明具有如下有益效果:
第一,本发明通过光在皮肤中的传导分析,构建了皮肤光谱模型和皮肤参数数学模型,建立了皮肤光谱与皮肤生物学参数之间的联系。利用本发明的数学模型计算出的一组皮肤生物学参数仿真的虚拟光谱与实际光谱高度拟合,模型准确可靠。
第二,本发明相关的皮肤的光谱吸收相关的参数19个,表皮层黑色素体积分数、表皮层优黑素浓度、褐黑素浓度、表皮水分体积分数、表皮层油脂体积分数、表皮层胡萝卜素浓度、真皮层水分体积分数、血液体积分数、血液中含氧血红蛋白体积分数即血氧浓度、血红蛋白浓度、血液中脱氧血红蛋白体积分数、血液中一氧化碳血红蛋白体积分数、血液中高铁血红蛋白体积分数、血液中硫化血红蛋白体积分数、真皮层胡萝卜素浓度、胆红素浓度、血液中血小板体积分数、血液中血红蛋白体积分数、弹性蛋白体积分数。能够仿真皮肤光谱的细节,模拟真实的皮肤情况,精确度高,从而实现了皮肤生物学参数量化分析计算的目的,并可作为皮肤大数据的处理的基础。
第三,本发明所建立的皮肤表皮层、真皮层吸收系数与皮肤光吸收相关的生物学参数之间的数学模型中,引入了如下形式的“余量体积分数”进行归一化处理,使得在优化分析过程中能够得到合理的最优解。
Figure PCTCN2017077002-appb-000038
该方法有3个作用:1、建立了皮肤某一吸收成分的体积分数对其他体积分数影响的数学关系,保证了皮肤各个吸收成分体积分数的物理约束;2、排除了搜索方向的矫正所造成的影响,保证了量化分析过程不会受到外部干扰;3、确保了皮肤光吸收相关的生物学参数量化分析结果的正确性。
第四,本发明的方法在可见光400-700nm的全波段内精确拟合,可以达到皮肤量化分析所需要的精度。
第五,本发明所基于的皮肤光谱信息可由无创的采集方式得到。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的结构图及具体实施例仅用以解释本发明,并不用于限定本发明。
基于辐射传导理论方程应用的需要,本发明构建了在可见光(400-700nm,作用于人的皮肤深度最大4mm)作用下皮肤的四层结构(皮肤表面、表皮层、真皮层、皮下组织)模型,抽象了光的四种作用形式(反射、透射、吸收、散射)在皮肤四层结构模型上的辐射传导路径分析。综合形成了皮肤光谱与反射、吸收、散射、透射之间的光学分析模型。该模型有两个特点:1、在皮肤的结构模型中,将皮肤的表皮层、真皮层厚度作为结构变量,突出了这两个变量对光谱的影响;2、该模型涵盖了光与皮肤的四种作用形式,是完整的光学模型。
在现有技术中,辐射传导方程(RTE,Radiative Transfer Equation),该理论叙述了电磁波在介质中传播时,电磁波会:在“吸收”(Absorption)中损失能量,在“激发”(Emission)中获得能量,在“散射”(Scattering)中重新分配能量。
电磁波在介质传播中,其在位置x沿方向
Figure PCTCN2017077002-appb-000039
传播的能量可由辐射率
Figure PCTCN2017077002-appb-000040
表示。一束沿
Figure PCTCN2017077002-appb-000041
方向传播的能量在经过位置在x时,在经过一小段介质(dS(x))后,辐射率的变化量
Figure PCTCN2017077002-appb-000042
可写为:
Figure PCTCN2017077002-appb-000043
辐射传导方程为:
Figure PCTCN2017077002-appb-000044
根据理论方程,建立皮肤中的光辐射传导方程,皮肤模型假设:
1)皮肤被抽象为多层结构,每一层拥有独立、多种吸收、散射介质;
2)皮肤在垂直于厚度延伸方向是无穷的,在平行于厚度延伸的方向可以有穷或无穷;
3)皮肤为平面平行结构,即皮肤的光学性质只在平行于厚度延伸方向改变,位于同一深度的皮肤的光学特性完全一致;
4)每层的散射、吸收介质都是均匀分布的,即皮肤任意一层中,任何位置的光学特性都完全相同,拥有相同的含量和吸收、散射系数;
5)皮肤中各种介质的吸收、散射均相互独立;
6)皮肤中散射介质为小尺度的胶原蛋白纤维及大尺度的胶原蛋白纤维束,其中小尺度胶原蛋白纤维的散射可以近似为球状瑞利散射,造成真皮层同时拥有球形瑞利和圆柱形米氏散射。
本发明利用数学模型计算人皮肤与光吸收相关的生物学参数的方法,需要先建立皮肤光谱的模型,利用光谱特征和在皮肤表皮层、真皮层中与光吸收有关的13个生物学参数之间建立关联从而建立数学模型,实现对上述参数的定量分析。
实施例1
皮肤光谱的模型的步骤包括步骤一至三:
步骤一 根据可见光照射皮肤时吸收、反射、散射、透射的特征,将皮肤从上之下抽象为皮肤粗面层、皮肤表皮层、皮肤真皮层、皮下组织层四层。
表面层:无实际厚度,无限薄,位于最外层,上与外界环境、下与表皮层相连;
表皮层:为皮肤实际的第一层,拥有有限厚度,上连粗糙表面层、下与真皮层连接;
真皮层:为皮肤实际的第二层,拥有有限厚度,上连表皮层、下与皮下组织连接;
皮下组织层:皮下组织拥有无穷厚度,并不描述任何组成,其作用为吸收所有进入从真皮层透射进入皮下组织的光。
步骤二 根据皮肤表皮层的吸收、散射、反射、透射特征,建立皮肤表皮层中光反射和光透射方程,计算在皮肤表皮层中的吸收系数。
表皮层能够对进入该层的光吸收和散射,该层厚度会对在传播中光被吸收、散射的总量造成影响,且光从何层进入表皮层也会对该层反射、透射造成影响,故该层的反射、透射率的计算需要同时计算上照明(光从空气进入,+号表示)和下照明(光从真皮层进入,-号表示)两种情况:
Figure PCTCN2017077002-appb-000045
公式(3),其中
Figure PCTCN2017077002-appb-000046
为表皮层吸收系数,
Figure PCTCN2017077002-appb-000047
为表皮层散射系数,depi为表皮层厚度,Lair→Lepi代表光从空气中进入表皮层。
Figure PCTCN2017077002-appb-000048
公式(4),其中
Figure PCTCN2017077002-appb-000049
为表皮层吸收系数,
Figure PCTCN2017077002-appb-000050
为表皮层散射系数,depi为表皮层厚度,Lderm→Lepi代表光从真皮层中进入表皮层。
步骤三 根据皮肤真皮层的吸收、散射、反射、透射特征,建立皮肤真皮层中光反射和光透射方程,计算在皮肤真皮层中的吸收系数。
真皮层也会对进入的光吸收和散射,真皮厚度对光被吸收、散射的总量造成影响,但由于假设了进入皮下组织的光完全被吸收,不会回到真皮层,故不用考虑下照明(光从皮下组织进入)以及真皮透射,公式如下:
Figure PCTCN2017077002-appb-000051
公式(5),其中
Figure PCTCN2017077002-appb-000052
为真皮层吸收系数,
Figure PCTCN2017077002-appb-000053
为真皮层散射系数,dderm为真皮层厚度,Lepi→Lderm代表光从表皮层中进入真皮层。
实施例2
由皮肤的假设可知,皮肤中各个吸收成分相互独立,因此吸收系数可以表示为每个成分吸收的线性组合。
步骤四 建立表示在皮肤表皮层中的所述吸收系数与表皮层黑色素体积分数、表皮层优黑素浓度、表皮层褐黑素浓度、表皮层水分体积分数、表皮层油脂体积分数、表皮层中胡萝卜素浓度之间关系的方程。
表皮层吸收系数与对应成分参数的数学关系可以如下:
Figure PCTCN2017077002-appb-000054
公式(6),其中
Figure PCTCN2017077002-appb-000055
表示表皮层吸收系数,fme表示表皮层黑色素体积分数,ceu表示表皮层优黑素浓度,
Figure PCTCN2017077002-appb-000056
表示优黑素吸收系数,cph表示褐黑素浓度,
Figure PCTCN2017077002-appb-000057
表示褐黑素吸收系数,
Figure PCTCN2017077002-appb-000058
表示表皮水分体积分数,
Figure PCTCN2017077002-appb-000059
表示水分吸收系数,flipid表示表皮层油脂体积分数,
Figure PCTCN2017077002-appb-000060
表示油脂吸收系数,
Figure PCTCN2017077002-appb-000061
表示表皮层胡萝卜素浓度,
Figure PCTCN2017077002-appb-000062
表示胡萝卜素吸收系数,
Figure PCTCN2017077002-appb-000063
表示皮肤基线吸收系数。
步骤五 建立表示在皮肤真皮层中的所述吸收系数与真皮层水分体积分数、血液体积分数、血红蛋白浓度、血液中氧化血红蛋白体积分数、血液中脱氧血红蛋白体积分数、血液中一氧化碳血红蛋白体积分数、血液中高铁血红蛋白体积分数、血液中硫化血红蛋白体积分数、真皮层胡萝卜素浓度、真皮层胆红素浓度、血液中血小板体积分数、血液中血红蛋白体积分数、真皮层弹性蛋白体积分数之间关系的方程。
Figure PCTCN2017077002-appb-000064
公式(7),其中
Figure PCTCN2017077002-appb-000065
表示真皮层吸收系数,
Figure PCTCN2017077002-appb-000066
表示真皮层水分体积分数,
Figure PCTCN2017077002-appb-000067
表示水分吸收系数,fblood表示血液体积分数,Soxy表示血 液中含氧血红蛋白体积分数(血氧浓度),cblood表示血红蛋白浓度,
Figure PCTCN2017077002-appb-000068
表示含氧血红蛋白吸收系数,Sdeoxy表示血液中脱氧血红蛋白体积分数,
Figure PCTCN2017077002-appb-000069
表示脱氧血红蛋白吸收系数,Sco表示血液中一氧化碳血红蛋白体积分数,
Figure PCTCN2017077002-appb-000070
表示一氧化碳血红蛋白吸收系数,Smet表示血液中高铁血红蛋白体积分数,
Figure PCTCN2017077002-appb-000071
表示高铁血红蛋白吸收系数,Ssulf表示血液中硫化血红蛋白体积分数,
Figure PCTCN2017077002-appb-000072
表示硫化血红蛋白吸收系数,
Figure PCTCN2017077002-appb-000073
表示真皮层胡萝卜素浓度,
Figure PCTCN2017077002-appb-000074
表示胡萝卜素吸收系数,cbr表示胆红素浓度,
Figure PCTCN2017077002-appb-000075
表示胆红素吸收系数,fplt表示血液中血小板体积分数,
Figure PCTCN2017077002-appb-000076
表示血小板吸收系数,H表示血液中血红蛋白体积分数,fela表示弹性蛋白体积分数,
Figure PCTCN2017077002-appb-000077
表示弹性蛋白吸收系数,
Figure PCTCN2017077002-appb-000078
表示皮肤基线吸收系数。
校验的步骤,将步骤四、步骤五中计算的生物学相关参数与样本实际的生物学相关参数比较,求拟合度,判断所述计算皮肤与光吸收相关的生物学参数的方法是否精确。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法,其特征在于:所述方法包括以下步骤:
    步骤一 根据可见光照射皮肤时吸收、反射、散射、透射的特征,将皮肤从上之下抽象为皮肤表面层、皮肤表皮层、皮肤真皮层、皮下组织层四层;
    步骤二 根据皮肤表皮层的光吸收、反射、散射、透射的特征,建立在皮肤表皮层中光反射和光透射方程,计算在皮肤表皮层的吸收系数;
    步骤三 根据皮肤真皮层的光吸收、反射、散射、透射的特征,建立在皮肤真皮层中光反射方程,计算在皮肤真皮层的吸收系数;
    步骤四 建立表示在皮肤表皮层中的所述吸收系数与表皮层黑色素体积分数、表皮层优黑素浓度、表皮层褐黑素浓度、表皮层水分体积分数、表皮层油脂体积分数、表皮层中胡萝卜素浓度之间关系的方程;
    步骤五 建立表示在皮肤真皮层中的所述吸收率与真皮层水分体积分数、血液体积分数、血红蛋白浓度、血液中氧化血红蛋白体积分数、血液中脱氧血红蛋白体积分数、血液中一氧化碳血红蛋白体积分数、血液中高铁血红蛋白体积分数、血液中硫化血红蛋白体积分数、真皮层胡萝卜素浓度、真皮层胆红素浓度、血液中血小板体积分数、血液中血红蛋白体积分数、真皮层弹性蛋白体积分数之间关系的方程。
  2. 根据权利要求1利用数学模型计算人皮肤与光吸收相关的生物学参数的方法,其特征在于:所述方法还包括步骤六,将步骤四、步骤五中计算的生物学相关参数所虚拟的皮肤表皮层、真皮层吸收系数与从皮肤测量的光谱所解析出的表皮层、真皮层吸收系数拟合。
  3. 根据权利要求1利用数学模型计算人皮肤与光吸收相关的19个生物学参数的方法,其特征在于:在步骤二中,所述在皮肤表皮层中光反射和光透射的方程为
    Figure PCTCN2017077002-appb-100001
    Figure PCTCN2017077002-appb-100002
    其中,
    Figure PCTCN2017077002-appb-100003
    为从空气进入表皮层的光反射率,
    Figure PCTCN2017077002-appb-100004
    为从空气进入表皮层的光透射率,
    Figure PCTCN2017077002-appb-100005
    为从真皮层进入表皮层的光反射率,
    Figure PCTCN2017077002-appb-100006
    为光从真皮层进入表皮层的光透射率,σα epi为表皮层吸收系数,
    Figure PCTCN2017077002-appb-100007
    为表皮层散射系数,depi为表皮层厚度,Lair→Lepi代表光由空气进入表皮层,Lderm→Lepi代表光由真皮层进入表皮层。
  4. 根据权利要求1利用数学模型计算人皮肤与光吸收相关的19个生物学参数的方法,其特征在于:在步骤三中,所述在皮肤真皮层中光反射方程为
    Figure PCTCN2017077002-appb-100008
    其中,
    Figure PCTCN2017077002-appb-100009
    为从表皮层进入真皮层的光反射率,
    Figure PCTCN2017077002-appb-100010
    为真皮层吸收系数,
    Figure PCTCN2017077002-appb-100011
    为真皮层散射系数,dderm为真皮层厚度,Lepi→Lderm代表光由上方表皮层进入真皮层。
  5. 根据权利要求1利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法,其特征在于:在步骤四中,所述方程为
    Figure PCTCN2017077002-appb-100012
    其中
    Figure PCTCN2017077002-appb-100013
    表示表皮层吸收系数,fme表示表皮层黑色素体积分数,ceu表示表皮层优黑素浓度,
    Figure PCTCN2017077002-appb-100014
    表示优黑素吸收系数,cph表示褐黑素浓度,
    Figure PCTCN2017077002-appb-100015
    表示褐黑素吸收系数,
    Figure PCTCN2017077002-appb-100016
    表示表皮水分体积分数,
    Figure PCTCN2017077002-appb-100017
    表示水分吸收系数,flipid表示表皮层油脂体积分数,
    Figure PCTCN2017077002-appb-100018
    表示油脂吸收系数,
    Figure PCTCN2017077002-appb-100019
    表示表皮层胡萝卜素浓度,
    Figure PCTCN2017077002-appb-100020
    表示胡萝卜素吸收系数,
    Figure PCTCN2017077002-appb-100021
    表示皮肤基线吸收系数。
  6. 根据权利要求1利用数学模型计算人皮肤与光吸收相关的19个生物学参数的方法,其特征在于:在步骤五中,所述方程为
    Figure PCTCN2017077002-appb-100022
    其中,
    Figure PCTCN2017077002-appb-100023
    表示真皮层吸收系数,
    Figure PCTCN2017077002-appb-100024
    表示真皮层水分体积分数,
    Figure PCTCN2017077002-appb-100025
    表示水分吸收系数,fblood表示血液体积分数,Soxy表示血液中含氧血红蛋白体积分数即血氧浓度,cblood表示血红蛋白浓度,
    Figure PCTCN2017077002-appb-100026
    表示含氧血红蛋白吸收系数,Sdeoxy表示血液中脱氧血红蛋白体积分数,
    Figure PCTCN2017077002-appb-100027
    表示脱氧血红蛋白吸收系数,Sco表示血液中一氧化碳血红蛋白体积分数,
    Figure PCTCN2017077002-appb-100028
    表示一氧化碳血红蛋白吸收系数,Smet表示血液中高铁血红蛋白体积分数,
    Figure PCTCN2017077002-appb-100029
    表示高铁血红蛋白吸收系数,Ssulf表示血液中硫化血红蛋白体积分数,
    Figure PCTCN2017077002-appb-100030
    表示硫化血红蛋白吸收系数,
    Figure PCTCN2017077002-appb-100031
    表示真皮层胡萝卜素浓度,
    Figure PCTCN2017077002-appb-100032
    表示胡萝卜素吸收系数,cbr表示胆红素浓度,
    Figure PCTCN2017077002-appb-100033
    表示胆红素吸收系数,fplt表示血液中血小板体积分数,
    Figure PCTCN2017077002-appb-100034
    表示血小板吸收系数,H表示血液中血红蛋白体积分数,fela表示弹性蛋白体积分数,
    Figure PCTCN2017077002-appb-100035
    表示弹性蛋白吸收系数,
    Figure PCTCN2017077002-appb-100036
    表示皮肤基线吸收系数。
PCT/CN2017/077002 2016-03-28 2017-03-16 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法 WO2017167031A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17773061.1A EP3438841A4 (en) 2016-03-28 2017-03-16 METHOD FOR CALCULATING USING A MATHEMATICAL MODEL 19 BIOLOGICAL PARAMETERS ASSOCIATED WITH THE ABSORPTION OF LIGHT BY HUMAN SKIN
US16/088,378 US20200297267A1 (en) 2016-03-28 2017-03-16 Method for calculating 19 biological parameters associated with light absorption of human skin by means of mathematical model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610182873.8 2016-03-28
CN201610182873.8A CN105868159B (zh) 2016-03-28 2016-03-28 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法

Publications (1)

Publication Number Publication Date
WO2017167031A1 true WO2017167031A1 (zh) 2017-10-05

Family

ID=56626156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077002 WO2017167031A1 (zh) 2016-03-28 2017-03-16 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法

Country Status (4)

Country Link
US (1) US20200297267A1 (zh)
EP (1) EP3438841A4 (zh)
CN (1) CN105868159B (zh)
WO (1) WO2017167031A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105868159B (zh) * 2016-03-28 2017-06-27 陈威 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法
CN106021178B (zh) * 2016-03-28 2018-11-06 陈威 一种利用数学模型计算人皮肤胶原蛋白相关3个参数的方法
CN107411709B (zh) * 2017-06-02 2020-08-25 皑高森德医疗技术(北京)有限责任公司 一种基于高光谱图像的皮肤生物学成分量化分析方法
US20240173562A1 (en) * 2022-11-30 2024-05-30 Lumenis Be Ltd. System and method for determining human skin attributes and treatments
CN116019425B (zh) * 2023-03-27 2023-05-23 皑高森德医疗器械(北京)有限责任公司 一种基于高光谱图像的数字皮肤模型及其应用
CN116012484A (zh) * 2023-03-27 2023-04-25 皑高森德医疗器械(北京)有限责任公司 一种基于黑色素体积含量的皮肤白斑盆地状呈现方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103970982A (zh) * 2013-01-31 2014-08-06 施乐公司 用于从扩散反射数据估计生物物理学模型的生物学参数向量的基于对照的反演
CN104395727A (zh) * 2012-06-18 2015-03-04 富士胶片株式会社 皮肤的评价方法及皮肤评价装置
CN105868159A (zh) * 2016-03-28 2016-08-17 陈威 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102058393B (zh) * 2010-10-30 2012-10-31 华中科技大学 基于反射光谱测量的皮肤生理参数与光学特性参数的测量方法
CN104688180B (zh) * 2013-12-09 2017-03-29 中国工程物理研究院流体物理研究所 一种基于光谱成像的美白效果判断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395727A (zh) * 2012-06-18 2015-03-04 富士胶片株式会社 皮肤的评价方法及皮肤评价装置
CN103970982A (zh) * 2013-01-31 2014-08-06 施乐公司 用于从扩散反射数据估计生物物理学模型的生物学参数向量的基于对照的反演
CN105868159A (zh) * 2016-03-28 2016-08-17 陈威 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法

Also Published As

Publication number Publication date
EP3438841A1 (en) 2019-02-06
EP3438841A4 (en) 2019-05-08
CN105868159A (zh) 2016-08-17
CN105868159B (zh) 2017-06-27
US20200297267A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2017167030A1 (zh) 一种人皮肤光谱的建模方法以及高拟合度的多个皮肤参数的数学建模方法
WO2017167031A1 (zh) 一种利用数学模型计算人皮肤光吸收相关的19个生物学参数的方法
Igarashi et al. The appearance of human skin: A survey
Lister et al. Optical properties of human skin
Fredriksson et al. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy
Chatterjee et al. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model
Chen et al. Hyperspectral modeling of skin appearance
Duadi et al. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study
Vaudelle et al. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media
Chatterjee et al. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion
WO2017193699A1 (zh) 一种利用数学模型计算人皮肤胶原蛋白相关3个参数的方法
CN103460025A (zh) 用于确定混浊介质中的吸收系数的方法
Sung et al. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra
Yakimov et al. Comparative analysis of the methods for quantitative determination of water content in skin from diffuse reflectance spectroscopy data
Yavari Optical spectroscopy for tissue diagnostics and treatment control
Zhang et al. Multidiameter single-fiber reflectance spectroscopy of heavily pigmented skin: modeling the inhomogeneous distribution of melanin
Herrmann et al. Monte-Carlo simulation of light tissue interaction in medical hyperspectral imaging applications
US20210000397A1 (en) Method and apparatus for non-invasive photometric blood constituent diagnosis
Yim et al. On the modeling of light interactions with human blood
Sato et al. Extraction of depth-dependent signals from time-resolved reflectance in layered turbid media
Lee et al. Performance estimation of optical skin probe in short wavelength infrared spectroscopy based on Monte-Carlo simulation
Wang et al. The optical properties of onion dry skin and flesh at the wavelength 632.8 nm
Baranoski et al. Multilayer modeling of skin color and translucency
Vincely et al. Lateral light losses in integrating sphere measurements: comparison of Monte-Carlo with inverse adding-doubling algorithm
RU2517155C1 (ru) Способ определения концентраций производных гемоглобина в биологических тканях

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773061

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773061

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773061

Country of ref document: EP

Kind code of ref document: A1