WO2017166191A1 - 一种信号处理方法以及网络设备 - Google Patents

一种信号处理方法以及网络设备 Download PDF

Info

Publication number
WO2017166191A1
WO2017166191A1 PCT/CN2016/078045 CN2016078045W WO2017166191A1 WO 2017166191 A1 WO2017166191 A1 WO 2017166191A1 CN 2016078045 W CN2016078045 W CN 2016078045W WO 2017166191 A1 WO2017166191 A1 WO 2017166191A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
frame structure
subframe
determining
signal sequence
Prior art date
Application number
PCT/CN2016/078045
Other languages
English (en)
French (fr)
Inventor
张兴炜
黎超
刘哲
时洁
孙迎花
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16895971.6A priority Critical patent/EP3425987A4/en
Priority to PCT/CN2016/078045 priority patent/WO2017166191A1/zh
Priority to CN201680083492.2A priority patent/CN108781456A/zh
Publication of WO2017166191A1 publication Critical patent/WO2017166191A1/zh
Priority to US16/142,473 priority patent/US20190029018A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal processing method and a network device.
  • a radio frame has a length of 10 milliseconds and includes 10 subframes of 1 millisecond length.
  • One subframe can be divided into two slots, and one slot can include 6 symbols or 7 symbols. That is, one subframe contains 12 symbols or 14 symbols.
  • the number of 10 subframes in a radio frame can be 0-9, or it can be represented by the slot number in the subframe.
  • the slot number can take the value 0-19.
  • the transmission time interval TTI of the data in the LTE is 1 millisecond, that is, the length of one subframe, and the corresponding signal sequence is generated as the signal sequence of the TTI by using the subframe number or the slot number where the TTI is located.
  • the Short TTI technology is introduced, that is, a TTI can occupy not only the length of 1 millisecond, but also the length of 0.5 milliseconds or even several symbols. As the length of the TTI becomes shorter, the delay is correspondingly reduced, and for packet transmission, the resource utilization is improved.
  • the prior art still uses the subframe number or slot number in which the TTI is located to generate the corresponding signal sequence as the signal sequence of the TTI, the same signal sequence will be generated and used to generate interference between adjacent or similar TTIs.
  • inter-symbol interference English: Inter Symbol Interference; English abbreviation: ISI
  • ISI Inter Symbol Interference
  • the delay spread problem of multipath overlap can be solved by the cyclic prefix (English: Cyclic Prefix; English abbreviation: CP). However, if the delay exceeds the CP, it may cause interference to adjacent symbols. At this time, it is no longer time-divided, and only orthogonal sequence code division can be used to avoid interference.
  • the situation is more serious.
  • the terminal In order to ensure that the uplink signals sent by the terminals at different distances from the base station are aligned, the terminal needs to transmit in advance, and the timing advances of different terminals are different.
  • the timing advance may also cause symbol boundaries to be blurred or even subframes. The boundary is blurred.
  • Embodiments of the present invention provide a signal processing method and a network device, which are used to number a transmission time interval TTI in a frame structure, and use the number thereof to generate a signal sequence.
  • the first aspect of the present application provides a signal processing method, where the method includes:
  • TTI Transmission time interval
  • the original TTI has a length of only 1 millisecond, and can now have multiple lengths.
  • the length of the TTI is less than 1 millisecond, it can be called a short TTI.
  • a short TTI of one length may be included, or a combination of a short TTI and a TTI of 1 ms may be included, and a combination of multiple short TTIs may also be included.
  • each TTI of one radio frame may be independently numbered, or only TTIs in one subframe may be independently numbered.
  • the TTIs in one time slot can be independently numbered, as long as the generated signal sequence does not cause interference or inter-symbol interference between the TTIs, which is not limited herein.
  • the number of the original slot is set to n s
  • the PUSCH, PUCCH, PCFICH/PHICH, PDCCH, PDSCH, and PMCH, channel can be generated by the cell number, temporary ID (RNTI), and TTI number used by the network device in LTE.
  • the above formula is used to obtain the initial value of the scrambling sequence or the reference signal sequence, and the present invention does not exclude the use of subsequent processing such as cyclic shift, orthogonal mask, etc. on the basis of the initial value.
  • the existing formula may be left unchanged, and the subframe number in the formula is simply replaced by the number n T of the TTI into the formula for generating a scrambling sequence or a reference signal sequence. You can also leave the existing formula unchanged, and replace the sub-frame number in the formula with LSB(n T ,4) or millisecond B(n T ,4) or (n T )mod16 into the formula to generate the scrambling sequence or Reference signal sequence, where n s is the number of the TTI and 4 is the number of bits occupied by the subframe number in the formula.
  • the signal sequence for generating the number using the TTI is not limited to the above solution, as long as the signal sequence for generating interference or inter-symbol interference between adjacent or similar TTIs can be avoided, which is not limited herein.
  • the signal sequence may be sent to the receiver network device.
  • the execution body of the transmission signal sequence and the network device of the receiver may be a base station or a terminal, as long as it is a network device that can send and receive signals, which is not limited herein.
  • TTI Time Division Multiple Access
  • the numbering generates a TTI signal sequence, which avoids the short TTI using the subframe number or slot number to generate the signal sequence, resulting in the generation and use of the same signal sequence, resulting in interference or intersymbol interference between adjacent or similar TTIs.
  • ISI Inter Symbol Interference
  • a first embodiment of the first aspect of the present application includes:
  • the serial number of the TTI is used as the number of the TTI.
  • the TTIs in the frame structure may be ordered one by one.
  • the sorting method can start from 0, sort from small to large in the order of natural numbers, or start from 1 and is not limited here. It should be noted that the ordering referred to herein is that according to a certain rule, each TTI has a corresponding serial number.
  • a second embodiment of the first aspect of the present application includes:
  • the symbols in the frame structure are pre-numbered, and each symbol has a certain symbol in the frame structure.
  • the number of the symbols is determined by determining the symbols occupied by the respective TTIs for selecting a number as the TTI. For example, a radio frame has 140 symbols, and its symbol number is 0-139. If the TTI occupies 4 symbols, the number of symbols can be 0-3.
  • a number is selected as the number of the TTI according to a preset rule.
  • the preset rule may be the largest one of the plurality of symbols, or the smallest one, or other rules, as long as the receiver network device and the sender network device comply with each other.
  • the rules can be used, which is not limited here.
  • the TTI is numbered using the number of the symbol, the number of the ready-made symbol is utilized, the process of the device is saved, and the relationship between the TTI and the symbol can be seen.
  • a third embodiment of the first aspect of the present application includes:
  • Sorting the parts of the frame structure the length of each part of the frame structure is the shortest TTI in the frame structure and is divided in chronological order, according to the preset rule, the serial number of one or more parts occupied by the TTI A serial number is used as the number of the TTI.
  • the different TTIs in the frame structure have different lengths.
  • the length of the shortest TTI may be taken in each TTI in a frame structure.
  • the length is a unit of counting, which is chronologically divided for the frame structure. If a radio frame has 140 symbols, and the shortest TTI is 2 symbols, the radio frame can be divided into parts of length 2 symbols regardless of the length of other TTIs, and there are 70 parts in total. Each of these sections contains two adjacent symbols, each of which is adjacent.
  • the TTI in the frame structure may occupy one or more parts, and may also occupy a part of some parts.
  • the shortest TTI is 2 symbols, and the TTI occupies the next symbol of the A part.
  • the previous symbol of the part B of the latter part immediately adjacent to the A part the number of the part before the order can be used as the number of the TTI according to the preset rule.
  • the later-ordered portion may be used as the number of the TTI, or other rules may be used as long as the protocol is common to the receiver network device and the sender network device, which is not limited herein. .
  • the number is sorted by the shortest TTI unit count, the number is compared by a single symbol, which reduces the number of numbers, saves space, and simplifies the numbering method.
  • a fourth implementation manner of the first aspect of the present application includes:
  • Determining the number of the TTI in the subframe determining the number of the TTI in the radio frame, the number of the TTI is formed by the number of the subframe in the radio frame, and the number of the TTI in the subframe.
  • the TTI in the frame structure may also be numbered by using a secondary numbering method, where the first level number is a subframe number, and the second level number The number of the TTI in the subframe. It is determined that the number of the TTI in the subframe can be used as the second level number.
  • the first level number is the subframe number of the TTI, and the number may be represented as a slot number.
  • the number of the TTI may be composed of a primary number and a secondary number.
  • the subframe in which the TTI is located can be seen from the number, and when the calculation is possible, the first level number or the second level number can be freely selected, or the first level can be selected at the same time.
  • the number and the second level number so that there is more freedom in the calculation, the data can be selected according to different needs.
  • the second aspect of the present application provides a network device, where the network device includes:
  • a determining module determining a number of a transmission time interval TTI in the frame structure, where the TTI includes a time length shorter than 1 millisecond; and a generating module, configured to generate a signal sequence of the TTI according to the number of the TTI determined by the determining module; And a sending module, configured to send information that the signal sequence carries the signal sequence.
  • the determining module is specifically configured to:
  • the serial number of the TTI is used as the number of the TTI.
  • the determining module is specifically configured to:
  • a number used to determine one or more symbols occupied by the TTI in the frame structure, and one of the numbers of the one or more symbols is used as the number of the TTI according to a preset rule.
  • the determining module is specifically configured to:
  • the length of each part of the frame structure is the shortest TTI in the frame structure and is divided in chronological order, according to a preset rule, the one or more parts occupied by the TTI A serial number in the serial number is used as the number of the TTI.
  • the determining module is specifically configured to:
  • Determining a number of the TTI in the subframe determining a number of the TTI in the radio frame, the number of the TTI is formed by the number of the subframe in the radio frame, and the number of the TTI in the subframe .
  • the third aspect of the present application provides a network device, including:
  • the memory is coupled to the processor; the processor is configured to determine a number of a transmission time interval TTI in a frame structure, wherein the TTI includes a length of time shorter than 1 millisecond; and generating the TTI according to the number of the TTI a sequence of signals; the memory is for storing a program, a number of the TTI determined by the processor, and a signal sequence of the TTI.
  • a fourth aspect of the present application provides a signal processing method, the method comprising:
  • TTI Transmission time intervals in the frame structure, wherein the TTI comprises a length of time shorter than 1 millisecond; receiving a sequence of signals on the TTI according to the number of the TTI.
  • a first implementation manner of the fourth aspect of the present application includes:
  • the serial number of the TTI is used as the number of the TTI.
  • a second implementation manner of the fourth aspect of the present application includes:
  • a third embodiment of the fourth aspect of the present application includes:
  • Sorting the parts of the frame structure the length of each part of the frame structure is the shortest TTI in the frame structure and is divided in chronological order, according to the preset rule, the serial number of one or more parts occupied by the TTI A serial number is used as the number of the TTI.
  • a fourth implementation manner of the fourth aspect of the present application includes:
  • Determining the number of the TTI in the subframe determining the number of the TTI in the radio frame, the number of the TTI is formed by the number of the subframe in the radio frame, and the number of the TTI in the subframe.
  • a fifth aspect of the present application provides a network device, where the method includes:
  • a determining module configured to determine a number of a transmission time interval TTI in the frame structure, where the TTI includes a length of time shorter than 1 millisecond; and a receiving module, configured to receive the TTI according to the number of the TTI determined by the determining module Signal sequence.
  • the determining module is specifically configured to:
  • the serial number of the TTI is used as the number of the TTI.
  • a second implementation manner of the fifth aspect of the present application includes:
  • a number used to determine one or more symbols occupied by the TTI in the frame structure, and one of the numbers of the one or more symbols is used as the number of the TTI according to a preset rule.
  • the determining module is specifically configured to:
  • the length of each part of the frame structure is the shortest TTI in the frame structure and is divided in chronological order, according to a preset rule, the one or more parts occupied by the TTI A serial number in the serial number is used as the number of the TTI.
  • the determining module is specifically configured to:
  • Determining a number of the TTI in the subframe determining a number of the TTI in the radio frame, the number of the TTI is formed by the number of the subframe in the radio frame, and the number of the TTI in the subframe .
  • a sixth aspect of the present application provides a network device, including:
  • the memory is coupled to the processor; the processor is configured to determine a number of a transmission time interval TTI in a frame structure, wherein the TTI includes a time length shorter than 1 millisecond, and the TTI is received according to the number of the TTI The sequence of signals on.
  • the memory is for storing a program, a number of the TTI determined by the processor, and a signal sequence of the TTI.
  • the short TTI is used to generate the signal sequence using the subframe number or the slot number, resulting in generation. And use the same signal sequence to generate interference between adjacent or similar TTIs or intersymbol interference (English: Inter Symbol Interference; English abbreviation: ISI).
  • ISI Inter Symbol Interference
  • FIG. 1 is a schematic diagram of an embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a network device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a network device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an embodiment of a network device according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an embodiment of a network device according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method for generating a signal sequence, which is used to number a transmission time interval TTI in a frame structure, and use the number thereof to generate a signal sequence.
  • the core idea of the embodiment of the present application is to determine the number of TTIs in the frame structure that is shorter than 1 millisecond or equal to 1 millisecond, and generate a TTI signal sequence according to the TTI number, thereby avoiding the subframe number in which the short TTI is used or
  • the slot number generates a sequence of signals that results in the generation and use of the same sequence of signals, producing interference between adjacent or similar TTIs or inter-symbol interference (English: Inter Symbol Interference; English abbreviation: ISI).
  • an embodiment of a method for generating a signal sequence in the embodiment of the present application includes:
  • the length of a TTI when the length of the TTI is less than 1 millisecond, since the length of the TTI in the frame structure is shortened, the delay is correspondingly reduced, and for the packet transmission, the resource utilization is correspondingly improved.
  • the length of a TTI may be 1 millisecond, or may be 0.5 milliseconds, or may be 0.6 milliseconds or 0.2 milliseconds, or even a length of several symbols, which is not limited herein. It should be noted that the original TTI has a length of only 1 millisecond, and can now have multiple lengths. When the length of the TTI is less than 1 millisecond, it can be called a short TTI. In a radio frame/subframe, a short TTI of one length may be included, or a combination of a short TTI and a 1 ms TTI may be included, and a combination of multiple short TTIs may also be included.
  • TTI is the granularity of resource scheduling
  • the radio frame/subframe/slot/symbol is the time scale of the radio resource.
  • the network device When the network device prepares to send data on the radio resource, it transmits in TTI, TTI and Wireless resources can have a corresponding relationship.
  • the frame structure may include a radio frame, and may also include a subframe.
  • the length of one radio frame is 10 milliseconds
  • one radio frame includes 10 subframes of 1 millisecond
  • one subframe includes 2 slots
  • 1 slot includes 6/7 symbols, that is, the radio frame can have 140/120
  • the symbol, the subframe may be 14/12 symbols.
  • the description is made by taking one symbol in one slot as an example, that is, 14 symbols per subframe, and one radio frame 140. Symbols, no longer repeat them.
  • the TTI does not span the subframe, that is, in a radio frame, the symbol corresponding to one TTI is only in one subframe, that is, the symbol included in one TTI, and there is no A.
  • the TTI includes a length of time shorter than 1 millisecond, and may include two or more types of time lengths, which may be shorter than 1 millisecond, or may be shorter than 1 millisecond. It also includes a length of time equal to 1 millisecond, which is not limited herein.
  • each TTI of a radio frame may be independently numbered, or the TTIs in one sub-frame may be independently numbered, or even the TTIs in one slot may be independently numbered, as long as the generated signal sequence is generated. It does not cause interference or inter-symbol interference between TTIs, and is not limited herein.
  • the previous N consecutive TTIs may be independently numbered, such as 1-N. Starting from the N+1th, the 1-N number may be re-numbered. As long as the two TTIs having the same number are far enough apart, there is no interference between the symbols of the generated signal sequence, which is not limited herein. In general, the further the two TTIs having the same number are, the less interference is caused.
  • all TTIs in one subframe or radio frame are independently numbered.
  • the TTI in a frame structure may have multiple scenarios.
  • the frame structure referred to herein may be a radio frame or a sub-frame, which is not limited herein.
  • a radio frame may include multiple lengths of TTI, and multiple lengths of TTI may be included in a subframe in the radio frame. That is, a sub-frame can contain multiple TTIs, such as 0.2 milliseconds, 0.3 milliseconds, 2 symbols, 0.5 milliseconds, and the TTIs in each subframe are also different, such as 0.1 milliseconds, 0.3 milliseconds, and 0.1 milliseconds in one subframe. , or a number of symbols, not limited here.
  • a radio frame may contain multiple lengths of TTI, but only one length of TTI is included in a subframe in the radio frame. That is, in the 10 subframes of a radio frame, the lengths of the TTIs in each subframe are the same. If the length of the TTI is equal to 2 symbols, and the subframe is 14 symbols, the TTI number of the subframe is It may be 0-6; if the length of the TTI is equal to 0.3 milliseconds, and the subframe is 12 symbols, the number of the subframe may be 0-3. As long as the lengths of the TTIs in the subframes are equal, they are not limited herein.
  • the length of the subframe can only be an integer multiple of one symbol, and the length of the TTI is also an integer multiple of one symbol, in this scenario, the length of one subframe should be an integer of the same length of TTI. Times, as in the above example. If the length of a subframe is not an integer multiple of the TTI, it is not applicable to the scenario. For example, in a subframe of 14 symbols, there are TTIs of 3 symbols. Since 14 is not an integer multiple of 3, the children of 14 symbols are used. A frame cannot be equally divided into a number of TTIs of length 3 symbols, so this case can be classified as scene 1.
  • a radio frame includes only one length of TTI, and the length of the TTI is a TTI shorter than 1 millisecond. That is, in a radio frame, it may only contain a medium length TTI, such as 2 symbols, in a 140 symbol radio frame, the number may be from 0-69; if the TTI is 3 symbols, then in a 120 In the wireless frame of the symbol, the number can be 0-39. It should be noted that, in general, TTI It does not span sub-frames, so there is an integer number of TTIs in one subframe.
  • the TTI does not contain both the symbols of the A-subframe and the symbols of the B-subframe, that is, if only one radio frame contains one A length of TTI, then in a subframe must also contain only one length of TTI, the length of this subframe must be an integer multiple of the length of this TTI. It should be noted that when the TTI is 1 millisecond, the method proposed by the present invention is still applicable, but the problem can be solved by the prior art, and details are not described herein again.
  • the TTI in the frame structure is not limited to the above three scenarios, and the present invention uses the above three scenarios as an example to describe the present invention.
  • the TTIs in the frame structure are numbered independently, so that the numbers between the different TTIs are different.
  • the specific manner is not limited.
  • the present invention provides four modes, specifically, step 201, steps 301-302, steps 401-402, and steps 501-502, respectively.
  • the executor that determines the number of the TTI of the frame structure may be a base station or a terminal, as long as it is a network device that can send and receive signals, which is not limited herein.
  • the signal sequence includes a scrambling sequence and a reference signal sequence, and the scrambling sequence is used to scramble the physical channel.
  • the physical channel of the LTE includes downlink physical channels: PDCCH, PDSCH, PCFICH, PHICH, PMCH, and PBCH.
  • uplink physical channels PUCCH, PUSCH, and PRACH, where the scrambling sequence of the PBCH is a fixed value (cell ID), and the PRACH (for the ZC sequence) does not need to be scrambled, and the scrambling sequence of other channels is a cell number, A pseudo-random sequence generated by a UE Temporary ID (RNTI), a slot number, or a subframe number.
  • RNTI UE Temporary ID
  • the reference signals of LTE include CRS, DMRS, PRS, CSI-RS, MBSFN RS, etc., and are also pseudo-random sequences generated using a cell number, a UE Temporary ID (RNTI), a slot number, or a subframe number.
  • RNTI UE Temporary ID
  • the scrambling sequence is a calculation of the pseudo-random code sequence to encrypt the signal.
  • the reference signal is a known signal that is provided by the transmitting end to the receiving end for channel estimation or channel sounding.
  • the number of the TTI in the frame structure has been determined in step 101, and the number of the original time slot is set to n s , and the following may be the cell number and temporary ID (RNTI) used by the network device in the LTE. ), the TTI number generates a scrambling sequence for different channels:
  • the above formula is used to obtain the initial value of the scrambling sequence or the reference signal sequence, and the present invention does not exclude the use of subsequent processing such as cyclic shift, orthogonal mask, etc. on the basis of the initial value.
  • this embodiment 8 summarizes a method of generating a signal sequence:
  • Option 1 Keep the existing formula unchanged, simply replace the sub-frame number in the formula with the TTI number n T into the formula to generate the scrambling sequence or reference signal sequence.
  • Option 2 Leave the existing formula unchanged, and replace the sub-frame number in the formula with LSB(n s , 4) or millisecond B(n s , 4) or (n s ) mod16 into the formula to generate the scrambling sequence. Or a reference signal sequence, where n s is the number of the TTI and 4 is the number of bits occupied by the subframe number in the formula.
  • Option 3 Extend the number of bits in the sub-frame number in the formula. For example, use a different polynomial and replace the sub-frame number in the formula with (n s ) mod(10*m) into the formula to generate the scrambling sequence or reference.
  • a signal sequence where n s is the number of the TTI, m is the number of TTIs in one subframe, and log2 (10*m) is the number of bits occupied by the subframe number in the formula.
  • Scenario 5 When using the secondary indexing scheme as described in steps 501-502, leaving the existing formula unchanged, replacing the subframe/slot number n s in the formula with the first level or second level of the TTI The number is substituted into a formula for generating a scrambling sequence or a reference signal sequence.
  • Scenario 6 When using the secondary indexing scheme as described in steps 501-502, leaving the existing formula unchanged, replacing the subframe/slot number n s in the formula with the number n T of the TTI, the first level The number or second level number is placed in the constant term and substituted into the formula to generate a scrambling sequence or a reference signal sequence.
  • Scenario 7 When using the secondary indexing scheme as described in steps 501-502, the existing formula is left unchanged, and the first few bits of the subframe number in the formula are replaced by the first two digits of the TTI. a) mod4, replacing the last few bits of the subframe number in the formula, such as the last 2 bits, with the second level of the TTI (b) mod4 into the formula for generating a scrambling sequence or a reference signal sequence.
  • Scenario 8 When using the secondary indexing scheme as described in steps 501-502, the existing formula is left unchanged, and the first few digits of the subframe number in the formula are replaced by the first three digits ( T T ). Mod8, the last few bits of the subframe number in the formula are replaced by the second level of the TTI (b) mod2 into the formula for generating a scrambling sequence or a reference signal sequence.
  • the signal sequence for generating the number using the TTI is not limited to the above eight schemes, as long as the signal sequence for generating interference between adjacent or similar TTIs or inter-symbol interference can be avoided, which is not limited herein.
  • the signal sequence may be sent to the receiver network device.
  • the execution body of the transmission signal sequence and the network device of the receiver may be a base station or a terminal, as long as it is a network device that can send and receive signals, which is not limited herein.
  • the sender network device may send a signal to the receiver network device by using the channel indicated by step 102.
  • the uplink channel has a PUCCH, a PUSCH, and a PRACH
  • the downlink channels include a PDCCH, a PDSCH, a PCFICH, a PHICH, a PMCH, and a PBCH.
  • It may also include a channel that is neither uplink nor downlink, but is a parallel channel, such as a channel used by the side-link channel PSCCH, PSSCH, PSDCH, PSBCH, and Bluetooth device between the UE and the UE, which is not limited herein.
  • a channel that is neither uplink nor downlink but is a parallel channel, such as a channel used by the side-link channel PSCCH, PSSCH, PSDCH, PSBCH, and Bluetooth device between the UE and the UE, which is not limited herein.
  • the signal sequence may be signal processed when the receiving network device receives the signal sequence.
  • the first method for numbering the TTI in the present invention another implementation of the method for generating a sequence signal according to an embodiment of the present invention is provided. Examples include:
  • the TTIs in the frame structure may be ordered one by one.
  • the sorting method can start from 0, sort from small to large in the order of natural numbers, or start from 1 and is not limited here. It should be noted that the ordering referred to herein is that according to a certain rule, each TTI has a corresponding serial number.
  • the certain rule includes a natural number, an even number, an odd number, or a prime number. It is not limited as long as it is the same as the receiver and the sender. After the number corresponding to the TTI is obtained, the number is assigned to the TTI as the number of the TTI. It should be noted that such a method for directly sorting TTIs can be applied to the three scenarios described in step 101.
  • the association between the recipient network device and the sender network device The number of the number specified in the discussion is limited. For example, only the number of 0-5 can be from front to back. The first 6 TTIs are numbered 0-5, the 7th to the 12th TTIs are still 0-5, and so on. . As long as the symbols corresponding to the TTIs having the same number are far enough apart, so as not to cause mutual interference, it is not limited herein.
  • Steps 202-203 in this embodiment are the same as steps 102-103 of the foregoing embodiment, and are not described herein again.
  • a second method for numbering TTIs in the present invention another embodiment of a method for generating a sequence signal according to an embodiment of the present invention includes:
  • the symbols in the frame structure are pre-numbered, and each symbol has a certain symbol in the frame structure.
  • the number of the symbols is determined by determining the symbols occupied by the respective TTIs for selecting a number as the TTI. For example, a radio frame has 140 symbols, and its symbol number is 0-139. If the TTI occupies 4 symbols, the number of symbols can be 0-3.
  • a number is selected as the number of the TTI according to a preset rule.
  • the preset rule may be the largest one of the plurality of symbols, or the smallest one, or other rules, as long as the receiver network device and the sender network device comply with each other.
  • the rules can be used, which is not limited here. If the number of symbols occupied by the first TTI is 0-3, and the number of symbols occupied by the second TTI is 4-9, according to a preset rule, if the preset rule is the smallest one, then The number of the first TTI is 0, and the number of the second TTI is 4. In contrast, if the preset rule is to take the largest one, the number of the first TTI may be 3, and the number of the second TTI may be 9.
  • Steps 302-303 in this embodiment are the same as steps 102-103 of the foregoing embodiment, and are not described herein again.
  • FIG. 4 is a third method for numbering TTIs in the present invention.
  • Another embodiment of a method of sequenced signals includes:
  • each part of the frame structure Sort each part of the frame structure, the length of each part of the frame structure is the shortest TTI in the frame structure, and is divided in chronological order, and one of the sequence numbers of one or more parts occupied by the TTI according to a preset rule.
  • the serial number is the number of the TTI.
  • the different TTIs in the frame structure have different lengths.
  • the length of the shortest TTI may be taken in each TTI in a frame structure, and the length is counted. Unit, chronologically divides the frame structure. If a radio frame has 140 symbols, and the shortest TTI is 2 symbols, the radio frame can be divided into parts of length 2 symbols regardless of the length of other TTIs, and there are 70 parts in total. Each of these sections contains two adjacent symbols, each of which is adjacent.
  • the radio frame may be divided into two symbols each having a length of 2 symbols regardless of the length of other TTIs. Part, there are 7 parts in total. Each of these sections contains two adjacent symbols, each of which is adjacent.
  • the frame structure is a radio frame, it is applicable to scenario 1 and scenario 2 described in step 101 above. If the frame structure is a subframe, only applicable. Scene 1 described in step 101 above.
  • each part may be sorted.
  • the sorting method is described in detail in step 101 and will not be described here.
  • the TTI in the frame structure may occupy one or more parts, and may also occupy a part of some parts.
  • the shortest TTI is 2 symbols, and the TTI occupies the next symbol of the A part.
  • the previous symbol of the part B of the latter part immediately adjacent to the A part the number of the part before the order can be used as the number of the TTI according to the preset rule.
  • the later-ordered portion may be used as the number of the TTI, or other rules may be used as long as the protocol is common to the receiver network device and the sender network device, which is not limited herein. .
  • Steps 402-403 in this embodiment are the same as steps 102-103 of the foregoing embodiment, and are not described herein again.
  • FIG. 5 is a fourth method for numbering TTIs according to the present invention.
  • Another embodiment of a method of sequenced signals includes:
  • the TTI in the frame structure may also be numbered by using a secondary numbering method, where the first level number is a subframe number, and the second level number The number of the TTI in the subframe.
  • the subframe in which the TTI is located may be determined first, and then the number of the TTI in the subframe is determined.
  • the specific numbering method refer to step 101, step 201, steps 301-302, and steps 401-402. method. It is determined that the number of the TTI in the subframe can be used as the second level number.
  • the first level number is the subframe number of the TTI, and the number may be represented as a slot number. If there are 10 subframes in a radio frame, the 10 subframes can be numbered 0-9. It should be noted that there is no temporal relationship between step 501 and step 502, that is, step 501 may be after step 502 or before step 502, which is not limited herein.
  • the number of the TTI may be composed of a primary number and a secondary number.
  • the number of each subframe in a radio frame is 0-9, and the number of one of the subframes is 5, and the number of one TTI in the subframe is 1 in the subframe, then one of the TTIs If the level is 5 and the secondary number is 1, the number of the TTI can be expressed as 1-5, or 5-1, as long as the rules are determined by the receiver network device and the sending network device according to the agreement. There is no limit.
  • Steps 503-504 in this embodiment are the same as steps 102-103 of the foregoing embodiment, and are not described herein again.
  • the signal processing method in the embodiment of the present invention is described above.
  • an embodiment of the present invention further provides a network device 600, including:
  • the first determining module 601 is configured to determine a number of a transmission time interval TTI in the frame structure, where the TTI includes a length of time shorter than 1 millisecond.
  • the first determining module 601 can be used to sort the TTIs in the frame structure, and use the sequence number of the TTI as the number of the TTI; and can be used to determine the number of one or more symbols occupied by the TTI in the frame structure, One of the number of one or more symbols is used as a TTI number according to a preset rule; it can be used to sort each part of the frame structure, and the length of each part of the frame structure is the shortest TTI in the frame structure and in chronological order Dividing, according to a preset rule, one of the sequence numbers of one or more parts occupied by the TTI is used as the number of the TTI; for determining the number of the TTI in the subframe, for determining the number of the TTI in the radio frame, TTI The number is composed of the number of the subframe in the radio frame, and the number of the TTI in the subframe.
  • the generating module 602 is configured to generate a signal sequence of the TTI according to the number of the TTI determined by the determining module.
  • the sending module 603 is configured to send a signal sequence or information carrying a signal sequence.
  • the network device includes a determining module and a generating module, those skilled in the art can understand that the functions of the two modules can be completed by a single module, such as a processing module.
  • the network device in the embodiment of the present application is described above from the perspective of a modular functional entity. The following describes the network device in the embodiment of the present application from the perspective of hardware processing. Referring to FIG. 7, the embodiment of the present application provides a network. A device for numbering a TTI in a frame structure and using the number to generate a signal sequence.
  • the network device 700 includes:
  • the transceiver 701, the memory 702, and the processor 703 are connected.
  • the transceiver 701 can include a transceiver between the processor 703 and a standard communication subsystem (English communication interface).
  • the transceiver 701 may further include a transceiver under the EIA-RS-232C standard, that is, a data terminal equipment (English: Data Terminal Equipment, abbreviation: DTE) and a data communication device (English: Data Circuit-terminating Equipment, abbreviation: DCE)
  • the transceiver of the serial binary data exchange interface technology standard may also include a transceiver under the RS-485 protocol, which is not limited herein.
  • the memory 702 stores the program, the number of the TTI determined by the processor, and the signal sequence of the TTI.
  • the memory 702 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 702 may also include a non-volatile memory (English: non-volatile memory) For example, flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); the memory 703 may also include the above types of memory The combination is not limited here.
  • the memory 702 can also be used to store program instructions, and the processor 703 can call the The program instructions stored in the storage 702 perform one or more of the steps of the embodiment shown in FIG. 2, or an optional embodiment thereof, such that the positioning server 700 implements the functions of the above method.
  • the processor 703 is configured to determine a number of a transmission time interval TTI in the frame structure, where the TTI includes a time length shorter than 1 millisecond; and generate a signal sequence of the TTI according to the number of the TTI.
  • the processor 703 may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 703 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • an embodiment of a method for generating a signal sequence in an embodiment of the present application includes:
  • TTI transmission time interval
  • Step 801 in this embodiment is the same as step 101 in the foregoing embodiment, and details are not described herein again.
  • the signal sequence is received on the radio resource corresponding to the TTI number. Since the signal sequence on the TTI is obtained according to the number of the TTI, it is common knowledge, and details are not described herein again.
  • an embodiment of a method for generating a signal sequence in an embodiment of the present application includes:
  • Step 901 in this embodiment is the same as step 201 in the foregoing embodiment, and details are not described herein again.
  • Step 902 in this embodiment is the same as step 802 in the foregoing embodiment, and details are not described herein again.
  • a second method for numbering TTIs in the present invention another embodiment of a method for generating a sequence signal according to an embodiment of the present invention includes:
  • Step 1001 in this embodiment is the same as step 301 in the foregoing embodiment, and details are not described herein again.
  • Step 1002 in this embodiment is the same as step 802 of the foregoing embodiment, and details are not described herein again.
  • a third method for numbering a TTI in the present invention another embodiment of a method for generating a sequence signal according to an embodiment of the present invention includes:
  • Sorting each part of the frame structure, the length of each part of the frame structure is the shortest TTI in the frame structure and is divided in chronological order, and one of the sequence numbers of one or more parts occupied by the TTI according to a preset rule.
  • the serial number is the number of the TTI.
  • Step 1001 in this embodiment is the same as step 401 in the foregoing embodiment, and details are not described herein again.
  • Step 1102 in this embodiment is the same as step 802 of the foregoing embodiment, and details are not described herein again.
  • a fourth method for numbering TTIs in the present invention another embodiment of a method for generating a sequence signal according to an embodiment of the present invention includes:
  • Step 1201 in this embodiment is the same as step 501 in the foregoing embodiment, and details are not described herein again.
  • Step 1202 in this embodiment is the same as step 502 of the foregoing embodiment, and details are not described herein again.
  • Step 1202 in this embodiment is the same as step 802 of the foregoing embodiment, and details are not described herein again.
  • an embodiment of the network device 1300 in this embodiment of the present application includes:
  • a determining module 1301, configured to determine a number of a transmission time interval TTI in a frame structure, where the TTI includes a length of time shorter than 1 millisecond;
  • the receiving module 1302 is configured to receive the signal sequence on the TTI according to the number of the TTI determined by the determining module 1301.
  • an embodiment of the network device 1400 in this embodiment of the present application includes:
  • the network device 1400 includes:
  • the transceiver 1401, the memory 1402, and the processor 1403 are connected.
  • the transceiver 1401 is configured to receive the TTI according to the number of the TTI determined by the second determining module 901. Signal sequence.
  • the transceiver 1401 can include a transceiver (communication interface) between the processor 1403 and a standard communication subsystem.
  • the transceiver 1401 may further include a transceiver under the EIA-RS-232C standard, that is, a data terminal equipment (English: Data Terminal Equipment, abbreviation: DTE) and a data communication device (English: Data Circuit-terminating Equipment, abbreviation: DCE)
  • the transceiver of the serial binary data exchange interface technology standard may also include a transceiver under the RS-485 protocol, which is not limited herein.
  • the memory 1402 stores the program, the number of the TTI determined by the processor, and the signal sequence of the TTI.
  • the memory 1402 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 1402 may also include a non-volatile memory (English: non-volatile memory) For example, flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); the memory 1403 may also include the above types of memory The combination is not limited here.
  • the memory 1402 can also be used to store program instructions, and the processor 1403 can call the program instructions stored in the memory 1402 to perform one or more steps in the embodiment shown in FIG. 2, or an optional implementation thereof.
  • the positioning server 1400 is enabled to implement the functions of the above method.
  • the processor 1403 is configured to determine a number of a transmission time interval TTI in the frame structure, where the TTI includes a length of time shorter than 1 millisecond.
  • the processor 1403 may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 1403 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例公开了一种信号处理方法以及网络设备,用于对帧结构中的传输时间间隔TTI进行编号,并使用其编号生成信号序列。本发明实施例方法包括:确定帧结构中的传输时间间隔TTI的编号,其中,所述TTI包括短于1毫秒的时间长度;根据所述TTI的编号生成所述TTI的信号序列。由于确定了帧结构中短于1毫秒或等于1毫秒的TTI的编号,并根据TTI的编号生成TTI的信号序列,避免了短TTI都使用所在子帧号或时隙号生成信号序列,导致生成并使用相同的信号序列,产生相邻或相近的TTI之间的干扰或符号间干扰(英语:Inter Symbol Interference;英语缩写:ISI)的问题。

Description

一种信号处理方法以及网络设备 技术领域
本发明涉及通信领域,尤其涉及一种信号处理方法以及网络设备。
背景技术
在当前LTE技术中,一个无线帧的长度为10毫秒,包含10个长度为1毫秒的子帧,一个子帧可以分为两个时隙,一个时隙可以包含6个符号或者7个符号,即一个子帧中包含12个符号或者14个符号。
一个无线帧中的10个子帧的编号可以取值为0-9,或者使用子帧中的时隙编号表示,时隙编号可以取值为0-19。在现有技术中,LTE中数据的传输时间间隔TTI是1毫秒,即一个子帧的长度,使用TTI所在的子帧号或时隙号生成相应的信号序列作为该TTI的信号序列。
在LTE的Rel-14版本中,为了支持小包业务和低时延业务,引入Short TTI技术,即一个TTI不仅可以占1毫秒的长度,也可以只占0.5毫秒甚至若干个符号的长度。由于TTI的长度变短了,时延相应降低了,对于小包传输而言,资源利用率提高了。
如果仍然沿用现有技术使用TTI所在的子帧号或时隙号生成相应的信号序列作为该TTI的信号序列,将导致生成并使用相同的信号序列,产生相邻或相近的TTI之间的干扰或符号间干扰(英语:Inter Symbol Interference;英语缩写:ISI)的问题。由于无线信号在传播过程中会经历多径,不同的路径到达接收方的时间不一样,多径重叠的时延扩展问题可以由循环前缀(英语:Cyclic Prefix;英文缩写:CP)解决。但如果时延超出CP,则可能对相邻的符号产生干扰,此时不再时分,只能通过正交序列码分来避免干扰。对于上行,情况更严重,为了保证与基站不同距离的终端发送的上行信号到达基站的时间要对齐,终端需要提前发送,不同终端的定时提前量不同,定时提前也会导致符号边界模糊甚至子帧边界模糊。
发明内容
本发明实施例提供了一种信号处理方法以及网络设备,用于对帧结构中的传输时间间隔TTI进行编号,并使用其编号生成信号序列。
有鉴于此,本申请第一方面提供了一种信号处理方法,该方法包括:
确定帧结构中的传输时间间隔TTI的编号,其中,该TTI包括短于1毫秒的时间长度;根据该TTI的编号生成该TTI的信号序列;发送该信号序列或者携带该信号序列的信息。
在本发明实施例中,原来的TTI只有1毫秒一种长度,现在可以有多种长度,当TTI的长度低于1毫秒,可以被称为短TTI。在一个无线帧/子帧中,可以只包含一种长度的短TTI,也可以包含短TTI与1ms的TTI的组合,还可以包含多种短TTI的组合。
本发明实施例中,为了避免产生相邻或相近的TTI之间的干扰或符号间干扰,可以对一个无线帧每个TTI进行独立编号,也可以仅对一个子帧中的TTI进行独立编号,甚至可以只对一个时隙中的TTI进行独立编号,只要生成的信号序列不会造成TTI之间的干扰或符号间干扰即可,此处不作限定。
在原来的时隙的编号设为ns,以下可以通过网络设备在LTE中使用的小区编号、临时ID(RNTI)、TTI的编号生成PUSCH、PUCCH、PCFICH/PHICH、PDCCH、PDSCH和PMCH、信道的加扰序列,以及生成不同参考信号序列CRS序列、MBSFN RS序列、DL DMRS序列、PRS序列以及CSI-RS序列。
以上公式用于获得加扰序列或参考信号序列的初值,本发明不排除在初值基础上使用循环移位、正交掩码等后续处理。
在一些可行的实施例中,可以保留现有公式不变,将公式中的子帧编号简单替换成TTI的编号nT代入公式,用于生成加扰序列或参考信号序列。也可以保留现有公式不变,将公式中的子帧编号替换成LSB(nT,4)或毫秒B(nT,4)或(nT)mod16代入公式,用于生成加扰序列或参考信号序列,其中ns为TTI的编号,4为公式中子帧编号所占的位数。
需要说明的是,对于使用TTI的编号生成信号序列并不限于以上方案,只要可以避免产生相邻或相近的TTI之间的干扰或符号间干扰的信号序列即可,此处不作限定。
在一些可行的实施例中,可选的,当确定了该信号序列之后,则可以向接收方网络设备发送。在本发明实施例中,发送信号序列的执行主体以及接受方网络设备可以为基站,也可以为终端,只要是可以收发信号的网络设备,此处不作限定。
由于确定了帧结构中短于1毫秒或等于1毫秒的TTI的编号,并根据TTI 的编号生成TTI的信号序列,避免了短TTI都使用所在子帧号或时隙号生成信号序列,导致生成并使用相同的信号序列,产生相邻或相近的TTI之间的干扰或符号间干扰(英语:Inter Symbol Interference;英语缩写:ISI)的问题。
结合本申请的第一方面,本申请的第一方面的第一种实施方式,包括:
为该帧结构中的TTI排序,以该TTI的序号作为该TTI的编号。
在一些可行的实施例中,可以直接通过对帧结构中的TTI逐个进行排序。排序的方法可以从0开始,按照自然数的顺序从前往后序列号从小到大排序,也可以从1开始,此处不作限定。需要说明的是,此处所指的排序为按照某种规则,每个TTI都会有对应的序号。
由于直接对TTI排序而进行编号,不会造成空位的编号,更好地利用了资源,不会造成资源的浪费。
结合本申请的第一方面,本申请的第一方面的第二种实施方式,包括:
确定该TTI所占的一个或多个符号在该帧结构中的编号,按照预置规则将该一个或多个符号的编号中的一个作为该TTI的编号。
在帧结构中的符号已经预先编号了,每个符号在帧结构中都有一个确定的符号。在本发明实施例中,首先通过确定各个TTI所占的符号,确定这些符号的编号,用于选择一个作为该TTI的编号。如一个无线帧有140个符号,其符号的编号为0-139,若该TTI占有4个符号,所占的符号的编号可以为0-3。
在本发明实施例中,确定了TTI所占的编号后,按照预置的规则选择一个编号作为TTI的编号。在一些可行的实施例中,预置的规则可以为多个符号的编号中最大的一个,也可以为最小的一个,也可以为其他规则,只要是接收方网络设备和发送方网络设备共同遵守的规则即可,此处不作限定。
由于利用了符号的编号在对TTI进行编号,利用了现成的符号的编号,节省设备的工序,而且可以看出TTI与符号之间的关系。
结合本申请的第一方面,本申请的第一方面的第三种实施方式,包括:
为该帧结构的各个部分排序,该帧结构的各个部分的长度均为该帧结构中的最短TTI且按时间顺序划分,按照预置规则将该TTI所占的一个或多个部分的序号中的一个序号作为该TTI的编号。
在一些可行的实施例中,帧结构中的不同的TTI有不同的长度,在本发明实施例中,可以在一个帧结构中的各个TTI中取最短的一个TTI的长度,以此 长度为计数单位,为该帧结构进行按时间顺序划分。如若一个无线帧有140个符号,其中最短的TTI为2个符号,则不管其他的TTI的长度如何,可以将该无线帧划分为长度均为2个符号的各个部分,一共有70个部分。其中每一个部分包含相邻的两个符号,每一部分都是相邻的。
在一些可行的实施例中,帧结构中的TTI会占有一个或者多个部分,也有可能占有某些部分的一部分,如最短TTI是2个符号,该TTI所占的A部分的后一个符号,以及与A部分紧邻的后一个部分B部分的前一个符号,则可以根据预置的规则从排序较前的部分的序号作为该TTI的编号。在另一些可行的实施例中,也可以使用排序较后的部分作为该TTI的编号,也可以是其他规则,只要是接收方网络设备和发送方网络设备共同的协议即可,此处不作限定。
由于使用对最短TTI为单位计数排序而进行编号,相比较按照单个符号来编号,减少了编号的数量,节约了空间,简化了编号方法。
结合本申请的第一方面,本申请的第一方面的第四种实施方式,包括:
确定该TTI在子帧中的编号;确定该TTI在无线帧中的编号,该TTI的编号由该子帧在该无线帧中的编号,和该TTI在子帧中的编号构成。
在一些可行的实施例中,当帧结构特指无线帧的时候,还可以使用二级编号的方法对该帧结构中的TTI进行编号,其中第一级编号为子帧号,第二级编号为TTI在子帧中的编号。确定了TTI在子帧中的编号可以作为第二级编号。
在本发明实施例中,第一级编号为该TTI所在子帧号,该编号可以表示为时隙号。当确定了TTI的一级编号和二级编号之后,则该TTI的编号可以由一级编号和二级编号构成。
由于使用子帧和子帧中的TTI的编号,可以从编号中看出TTI所在的子帧,而且可以计算的时候,可以自由地选择第一级编号或者第二级编号,或者同时选择第一级编号和第二级编号,从而在计算的时候有更大的自由度,可以随着不同的需求进行选择的数据。
本申请第二方面提供了一种网络设备,该网络设备包括:
确定模块,确定帧结构中的传输时间间隔TTI的编号,其中,该TTI包括短于1毫秒的时间长度;生成模块,用于根据该确定模块确定的该TTI的编号生成该TTI的信号序列;发送模块,用于发送该信号序列携带该信号序列的信息。
结合本申请的第二方面,确定模块具体用于:
用于为该帧结构中的TTI排序,以该TTI的序号作为该TTI的编号。
结合本申请的第二方面,确定模块具体用于:
用于确定该TTI所占的一个或多个符号在该帧结构中的编号,按照预置规则将该一个或多个符号的编号中的一个作为该TTI的编号。
结合本申请的第二方面,确定模块具体用于:
用于为该帧结构的各个部分排序,该帧结构的各个部分的长度均为该帧结构中的最短TTI且按时间顺序划分,按照预置规则将该TTI所占的一个或多个部分的序号中的一个序号作为该TTI的编号。
结合本申请的第二方面,确定模块具体用于:
用于确定该TTI在子帧中的编号;用于确定该TTI在无线帧中的编号,该TTI的编号由该子帧在该无线帧中的编号,和该TTI在子帧中的编号构成。
本申请第三方面提供了一种网络设备,包括:
存储器和处理器;该存储器和该处理器连接;该处理器用于确定帧结构中的传输时间间隔TTI的编号,其中,该TTI包括短于1毫秒的时间长度;根据该TTI的编号生成该TTI的信号序列;该存储器用于存储程序、该处理器确定的该TTI的编号以及该TTI的信号序列。
本申请第四方面提供了一种信号处理方法,该方法包括:
确定帧结构中的传输时间间隔TTI的编号,其中,该TTI包括短于1毫秒的时间长度;根据该TTI的编号接收该TTI上的信号序列。
结合本申请的第四方面,本申请的第四方面的第一种实施方式,包括:
为该帧结构中的TTI排序,以该TTI的序号作为该TTI的编号。
结合本申请的第四方面,本申请的第四方面的第二种实施方式,包括:
确定该TTI所占的一个或多个符号在该帧结构中的编号,按照预置规则将该一个或多个符号的编号中的一个作为该TTI的编号。
结合本申请的第四方面,本申请的第四方面的第三种实施方式,包括:
为该帧结构的各个部分排序,该帧结构的各个部分的长度均为该帧结构中的最短TTI且按时间顺序划分,按照预置规则将该TTI所占的一个或多个部分的序号中的一个序号作为该TTI的编号。
结合本申请的第四方面,本申请的第四方面的第四种实施方式,包括:
确定该TTI在子帧中的编号;确定该TTI在无线帧中的编号,该TTI的编号由该子帧在该无线帧中的编号,和该TTI在子帧中的编号构成。
本申请第五方面提供了一种网络设备,该方法包括:
确定模块,用于确定帧结构中的传输时间间隔TTI的编号,其中,该TTI包括短于1毫秒的时间长度;接收模块,用于根据该确定模块确定的该TTI的编号接收该TTI上的信号序列。
结合本申请的第五方面,确定模块具体用于:
用于为该帧结构中的TTI排序,以该TTI的序号作为该TTI的编号。
结合本申请的第五方面,本申请的第五方面的第二种实施方式,包括:
用于确定该TTI所占的一个或多个符号在该帧结构中的编号,按照预置规则将该一个或多个符号的编号中的一个作为该TTI的编号。
结合本申请的第五方面,确定模块具体用于:
用于为该帧结构的各个部分排序,该帧结构的各个部分的长度均为该帧结构中的最短TTI且按时间顺序划分,按照预置规则将该TTI所占的一个或多个部分的序号中的一个序号作为该TTI的编号。
结合本申请的第五方面,确定模块具体用于:
用于确定该TTI在子帧中的编号;用于确定该TTI在无线帧中的编号,该TTI的编号由该子帧在该无线帧中的编号,和该TTI在子帧中的编号构成。
本申请第六方面提供了一种网络设备,包括:
存储器和处理器;该存储器和该处理器连接;该处理器用于确定帧结构中的传输时间间隔TTI的编号,其中,该TTI包括短于1毫秒的时间长度,根据该TTI的编号接收该TTI上的信号序列。
该存储器用于存储程序、该处理器确定的该TTI的编号以及该TTI的信号序列。
从以上技术方案可以看出,本发明实施例具有以下优点:
由于确定了帧结构中短于1毫秒或等于1毫秒的TTI的编号,并根据TTI的编号生成TTI的信号序列,避免了短TTI都使用所在子帧号或时隙号生成信号序列,导致生成并使用相同的信号序列,产生相邻或相近的TTI之间的干扰或符号间干扰(英语:Inter Symbol Interference;英语缩写:ISI)的问题。
附图说明
图1为本发明实施例中信号处理方法一个实施例示意图;
图2为本发明实施例中信号处理方法另一个实施例示意图;
图3为本发明实施例中信号处理方法另一个实施例示意图;
图4为本发明实施例中信号处理方法另一个实施例示意图;
图5为本发明实施例中信号处理方法另一个实施例示意图;
图6为本发明实施例中网络设备一个实施例示意图;
图7为本发明实施例中网络设备一个实施例示意图;
图8为本发明实施例中信号处理方法一个实施例示意图;
图9为本发明实施例中信号处理方法另一个实施例示意图;
图10为本发明实施例中信号处理方法另一个实施例示意图;
图11为本发明实施例中信号处理方法另一个实施例示意图;
图12为本发明实施例中信号处理方法另一个实施例示意图;
图13为本发明实施例中网络设备一个实施例示意图;
图14为本发明实施例中网络设备一个实施例示意图。
具体实施方式
本发明实施例提供了一种生成信号序列的方法,用于对帧结构中的传输时间间隔TTI进行编号,并使用其编号生成信号序列。
为了使本技术领域的人员更好地理解本发明实施例方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例的核心思想是,通过确定了帧结构中短于1毫秒或等于1毫秒的TTI的编号,并根据TTI的编号生成TTI的信号序列,避免了短TTI都使用所在子帧号或时隙号生成信号序列,导致生成并使用相同的信号序列,产生相邻或相近的TTI之间的干扰或符号间干扰(英语:Inter Symbol Interference;英语缩写:ISI)的问题。
为便于理解,下面对本申请实施例中的具体流程进行描述,请参阅图1,本申请实施例中生成信号序列的方法一个实施例包括:
101、确定帧结构中的传输时间间隔TTI的编号,其中,TTI包括短于1毫秒的时间长度。
在本发明实施例中,当TTI的长度低于1毫秒时,由于帧结构中的TTI的长度变短了,时延相应降低了,对于小包传输而言,资源利用率相应提高了。在本发明实施例中,一个TTI的长度可以为1毫秒,也可以为0.5毫秒,也可以为0.6毫秒或者0.2毫秒,或者甚至若干个符号的长度,此处不作限定。需要说明的是,原来的TTI只有1毫秒一种长度,现在可以有多种长度,当TTI的长度低于1毫秒,可以被称为短TTI。在一个无线帧/子帧中,可以只包含一种长度的短TTI,也可以包含短TTI与1msTTI的组合,还可以包含多种短TTI的组合。
需要说明是的,TTI是资源调度的颗粒度,无线帧/子帧/时隙/符号是无线资源的时间刻度,当网络设备准备在无线资源上发送数据时,以TTI为单位发送,TTI和无线资源可以存在对应关系。另外,帧结构可以包括无线帧,也可以包括子帧。一个无线帧的长度是10毫秒,一个无线帧包括10个1毫秒的子帧,一个子帧包括2个时隙,1个时隙包括6/7个符号,即无线帧可以有140/120个符号,子帧可以是14/12个符号,本发明实施例中,如果没有注明,则以1个时隙包含7个符号为例进行说明,即一个子帧14个符号,一个无线帧140个符号,不再赘述。另外,一般来说,TTI是不会跨子帧的,即在一个无线帧中,与一个TTI对应的符号只会在在一个子帧中,即一个TTI包含的符号中,不会既有A子帧的符号,又有B子帧的符号。
需要说明的是,该TTI包括短于1毫秒的时间长度中,可以包括两种或两种以上的时间长度,该时间长度都可以短于1毫秒,也可以有短于1毫秒的时间长度的同时还包括等于1毫秒的时间长度,此处不作限定。
需要说明的是,本发明实施例为了避免产生相邻或相近的TTI之间的干扰 或符号间干扰,可以对一个无线帧每个TTI进行独立编号,也可以仅对一个子帧中的TTI进行独立编号,甚至可以只对一个时隙中的TTI进行独立编号,只要生成的信号序列不会造成TTI之间的干扰或符号间干扰即可,此处不作限定。在一些可行的实施例中,可以对前面N个连续TTI进行独立的编号,如1-N,从第N+1个开始,可以又重新1-N编号。只要两个具有相同编号的TTI距离足够远,不会对生成的信号序列的符号间的干扰,此处不作限定。一般的,当两个具有相同编号的TTI距离越远,那么越不会造成干扰,优选的,对一个子帧或者无线帧中的所有TTI均进行独立编号。
在一些可行的实施例中,一个帧结构中的TTI可以有多种场景,需要说明的是,此处所指的帧结构可以为无线帧,也可以为子帧,此处不作限定。以下对帧结构中的TTI的不同场景进行说明:
场景1、一个无线帧中可以包含多种长度的TTI,且在该无线帧中的子帧内可以包含多种长度的TTI。即一个子帧中可以包含多种TTI,如0.2毫秒,0.3毫秒,2个符号,0.5毫秒,而各个子帧中的TTI也不尽相同,如一个子帧中0.1毫秒,0.3毫秒,0.1毫秒,或者若干个符号,此处不作限定。
场景2、一个无线帧中可以包含多种长度的TTI,但在该无线帧中的子帧内只包含一种长度的TTI。即在一个无线帧中的10个子帧中,每个子帧中的TTI的长度都相同,若该TTI的长度等于2个符号,且该子帧为14个符号,则该子帧的TTI的编号可以为0-6;若该TTI的长度等于0.3毫秒,且该子帧为12个符号,则该子帧的编号可以为0-3。只要子帧中的TTI的长度均等即可此处不作限定。需要说明的是,由于子帧的长度只能为一个符号的整数倍,而TTI的长度也是一个符号的整数倍,因此,该场景下,一个子帧的长度应该为该等长的TTI的整数倍,如上述例子。若一个子帧的长度不是该TTI的整数倍,则不适用于本场景,如14个符号的子帧中,有TTI为3个符号,由于14不是3的整数倍,因此14个符号的子帧无法平均分成若干个长度为3个符号的TTI,因此该情况可以归为场景1。
场景3、一个无线帧中只包含一种长度的TTI,该TTI的长度为短于1毫秒的TTI。即在一个无线帧中,可以只包含一中长度的TTI,比如2个符号,则在一个140个符号的无线帧中,编号可以从0-69;若TTI为3个符号,则在一个120个符号的无线帧中,编号可以为0-39。需要说明的是,由于在一般情况下,TTI 不会跨越子帧,因此在一个子帧中,会有整数个TTI,TTI不会既包含A子帧的符号,又包含B子帧的符号,也就是说,若一个无线帧中只包含一种长度的TTI,那么在一个子帧中必然也只包含一种长度的TTI,这个子帧的长度必然是这个TTI的长度的整数倍。需要说明的是,当该TTI为1毫秒时,仍然适用于本发明提出的方法,但是由于现有技术已经可以解决该问题,此处不再赘述。
需要说明的是,帧结构中的TTI并不限于以上三种场景,而本发明实施例使用以上三种场景为例对本发明进行说明。
在本发明实施例中,只要对帧结构中的TTI进行独立的编号,使得不同的TTI之间的编号不相同,具体方式不作限定。本发明提供了4种方式,具体在步骤201、步骤301-302、步骤401-402以及步骤501-502分别进行说明。
在本发明实施例中,确定帧结构的TTI的编号的执行主体可以为基站,也可以为终端,只要是可以收发信号的网络设备,此处不作限定。
102、根据TTI的编号生成TTI的信号序列。
在本发明实施例中,信号序列包括加扰序列和参考信号序列,加扰序列用于对物理信道进行加扰,LTE的物理信道包括下行物理信道:PDCCH、PDSCH、PCFICH、PHICH、PMCH以及PBCH和上行物理信道:PUCCH,PUSCH以及PRACH,其中除了PBCH的加扰序列为固定值(小区ID),PRACH(为ZC序列)不需要加扰之外,其他信道的加扰序列为使用小区编号、UE临时ID(RNTI)、时隙号或子帧号来生成的伪随机序列。
LTE的参考信号包括CRS、DMRS、PRS、CSI-RS、MBSFN RS等,也是使用小区编号、UE临时ID(RNTI)、时隙号或子帧号来生成的伪随机序列。
在一些可行的实施例中,加扰序列是对伪随机码序列进行计算,对信号进行加密。而参考信号是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。
在本发明实施例中,步骤101中已经确定了帧结构中的TTI的编号,在原来的时隙的编号设为ns,以下可以通过网络设备在LTE中使用的小区编号、临时ID(RNTI)、TTI的编号生成不同信道的加扰序列:
PUSCH信道的加扰序列的初值:
Figure PCTCN2016078045-appb-000001
PUCCH信道的加扰序列c(q)(i)的初值:
Figure PCTCN2016078045-appb-000002
PCFICH/PHICH信道的加扰序列c(i)的初值:
Figure PCTCN2016078045-appb-000003
PDCCH信道的加扰序列c(i)的初值:
Figure PCTCN2016078045-appb-000004
PDSCH和PMCH信道的加扰序列c(q)(i)的初值:
Figure PCTCN2016078045-appb-000005
以及生成不同参考信号序列:
CRS序列生成所使用的伪随机序列c(i)的初值:
Figure PCTCN2016078045-appb-000006
MBSFN RS序列生成所使用的伪随机序列c(i)的初值:
Figure PCTCN2016078045-appb-000007
DL DMRS序列生成所使用的伪随机序列c(i)的初值:
Figure PCTCN2016078045-appb-000008
PRS序列生成所使用的伪随机序列c(i)的初值:
Figure PCTCN2016078045-appb-000009
CSI-RS序列生成所使用的伪随机序列c(i)的初值:
Figure PCTCN2016078045-appb-000010
以上公式用于获得加扰序列或参考信号序列的初值,本发明不排除在初值基础上使用循环移位、正交掩码等后续处理。
需要说明的是,在本发明实施例中,依然是按照以上的帧结构中的TTI 的编号进行计算,保留了同样的现有公式或扩展公式中子帧编号所在的位数,本发明实施中只是使用新的编号方式进行编号得到的编号ns带入公式中,获得新的伪随机序列或者加扰序列。除了将ns直接带入公式中外,还可以有其他不同的方式,在一些可行的实施例中,对此总结了以下生成信号序列的方法的8个方案:
方案1:保留现有公式不变,将公式中的子帧编号简单替换成TTI的编号nT代入公式,用于生成加扰序列或参考信号序列。
方案2:保留现有公式不变,将公式中的子帧编号替换成LSB(ns,4)或毫秒B(ns,4)或(ns)mod16代入公式,用于生成加扰序列或参考信号序列,其中ns为TTI的编号,4为公式中子帧编号所占的位数。
方案3:扩展公式中子帧编号所在的位数,例如使用不同的多项式,将公式中的子帧编号替换成(ns)mod(10*m)代入公式,用于生成加扰序列或参考信号序列,其中ns为TTI的编号,m为一个子帧中的TTI个数,log2(10*m)为公式中子帧编号所占的位数。
方案4:当使用如步骤501-502所述的二级索引方案时,保留现有公式不变,使用二级索引计算出TTI的编号ns=a*m+b,将公式中的子帧编号ns替换成ns代入公式,用于生成加扰序列或参考信号序列,m为一个子帧中的TTI个数。
方案5:当使用如步骤501-502所述的二级索引方案时,保留现有公式不变,将公式中的子帧/时隙编号ns替换成TTI的第一级编号或第二级编号代入公式,用于生成加扰序列或参考信号序列。
方案6:当使用如步骤501-502所述的二级索引方案时,保留现有公式不变,将公式中的子帧/时隙编号ns替换成TTI的编号nT,将第一级编号或第二级编号放在常数项代入公式,用于生成加扰序列或参考信号序列。
方案7:当使用如步骤501-502所述的二级索引方案时,保留现有公式不变,将公式中的子帧编号的前几位如前2位替换成TTI的第一级编号(a)mod4,将公式中的子帧编号的后几位如后2位替换成TTI的第二级编号(b)mod4代入公式,用于生成加扰序列或参考信号序列。
方案8:当使用如步骤501-502所述的二级索引方案时,保留现有公式不变,将公式中的子帧编号的前几位如前3位替换成TTI的编号(nT)mod8, 将公式中的子帧编号的后几位如后1位替换成TTI的第二级编号(b)mod2代入公式,用于生成加扰序列或参考信号序列。
需要说明的是,对于使用TTI的编号生成信号序列并不限于以上8种方案,只要可以避免产生相邻或相近的TTI之间的干扰或符号间干扰的信号序列即可,此处不作限定。
103、发送信号序列或者携带信号序列的信息。
在一些可行的实施例中,可选的,当确定了该信号序列之后,则可以向接收方网络设备发送。在本发明实施例中,发送信号序列的执行主体以及接受方网络设备可以为基站,也可以为终端,只要是可以收发信号的网络设备,此处不作限定。在本发明实施例中,发送方网络设备可以通过步骤102所指的信道向接收方网络设备进行发送信号。其中,上行信道有PUCCH,PUSCH以及PRACH,下行信道有:PDCCH,PDSCH,PCFICH,PHICH,PMCH以及PBCH。还可以包括既非上行也非下行,而是平行的信道,如UE与UE之间的边链路信道PSCCH,PSSCH,PSDCH,PSBCH、蓝牙设备所使用的信道,此处不作限定。
在另一些可行的实施例中,当接收方网络设备接收到该信号序列,可以对该信号序列进行信号处理。
以下根据对帧结构中的TTI的编号方法的不同,分别进行描述,请参阅图2,为本发明中对TTI进行编号的第一种方法,本发明实施例生成序列信号的方法的另一实施例包括:
201、为帧结构中的TTI排序,以TTI的序号作为TTI的编号。
在一些可行的实施例中,可以直接通过对帧结构中的TTI逐个进行排序。排序的方法可以从0开始,按照自然数的顺序从前往后序列号从小到大排序,也可以从1开始,此处不作限定。需要说明的是,此处所指的排序为按照某种规则,每个TTI都会有对应的序号。该某种规则包括自然数序号、偶数序号、奇数序号或者素数序号,只要是接收方和发送方一致的方式即可,此处不作限定。得到TTI对应的编号后,将该编号赋予该TTI,以作为该TTI的编号。需要说明的是,此种对TTI进行直接排序的方法可以适用于步骤101所述的3种场景。
在一些可行的实施例中,若在接收方网络设备和发送方网络设备之间的协 议规定的编号数量有限,比如只有0-5的编号,则可以从前到后,前6个TTI的编号为0-5,第7个到第12个TTI的编号还是为0-5,如此类推。只要具有相同编号的TTI对应的符号相距足够远,远到不至于产生互相干扰,此处不作限定。
202、根据TTI的编号生成TTI的信号序列。
203、发送信号序列或者携带信号序列的信息。
本实施例中步骤202-203与上述实施例的步骤102-103相同,此处不再赘述。
请参阅图3,为本发明中对TTI进行编号的第二种方法,本发明实施例生成序列信号的方法的另一实施例包括:
301、确定TTI所占的一个或多个符号在帧结构中的编号,按照预置规则将一个或多个符号的编号中的一个作为TTI的编号。
在帧结构中的符号已经预先编号了,每个符号在帧结构中都有一个确定的符号。在本发明实施例中,首先通过确定各个TTI所占的符号,确定这些符号的编号,用于选择一个作为该TTI的编号。如一个无线帧有140个符号,其符号的编号为0-139,若该TTI占有4个符号,所占的符号的编号可以为0-3。
在本发明实施例中,确定了TTI所占的编号后,按照预置的规则选择一个编号作为TTI的编号。在一些可行的实施例中,预置的规则可以为多个符号的编号中最大的一个,也可以为最小的一个,也可以为其他规则,只要是接收方网络设备和发送方网络设备共同遵守的规则即可,此处不作限定。若该第一TTI所占的符号的编号为0-3,第二TTI所占的符号的编号为4-9,则按照预置的规则,若预置的规则为取其中最小的一个,则第一TTI的编号为0,第二TTI的编号为4。相对的,若预置的规则为取其中最大的一个,那么第一TTI的编号可以为3,第二TTI的编号可以为9。
需要说明的是,该编号方法也适用于101所述的3种场景。
302、根据TTI的编号生成TTI的信号序列。
303、发送信号序列或者携带信号序列的信息。
本实施例中步骤302-303与上述实施例的步骤102-103相同,此处不再赘述。
请参阅图4,为本发明中对TTI进行编号的第三种方法,本发明实施例生 成序列信号的方法的另一实施例包括:
401、为帧结构的各个部分排序,帧结构的各个部分的长度均为帧结构中的最短TTI且按时间顺序划分,按照预置规则将TTI所占的一个或多个部分的序号中的一个序号作为TTI的编号。
在一些可行的实施例中,帧结构中的不同的TTI有不同的长度,在本发明实施例中,可以在一个帧结构中的各个TTI中取最短的一个TTI的长度,以此长度为计数单位,为该帧结构进行按时间顺序划分。如若一个无线帧有140个符号,其中最短的TTI为2个符号,则不管其他的TTI的长度如何,可以将该无线帧划分为长度均为2个符号的各个部分,一共有70个部分。其中每一个部分包含相邻的两个符号,每一部分都是相邻的。
在一些可行的实施例中,若该帧结构是一个子帧,其中最短的TTI是2个符号,则不管其他的TTI的长度如何,可以将该无线帧划分为长度均为2个符号的各个部分,一共有7个部分。其中每一个部分包含相邻的两个符号,每一部分都是相邻的。
需要说明的是,在一些可行的实施例中,若该帧结构是一个无线帧,则适用于以上步骤101所述的场景1和场景2,若该帧结构是一个子帧,则仅可以适用于以上步骤101所述的场景1。
在本发明实施例中,对帧结构划分了各个部分之后,可以对各个部分进行排序。排序方法如步骤101有详细的描述,此处不作赘述。
在一些可行的实施例中,帧结构中的TTI会占有一个或者多个部分,也有可能占有某些部分的一部分,如最短TTI是2个符号,该TTI所占的A部分的后一个符号,以及与A部分紧邻的后一个部分B部分的前一个符号,则可以根据预置的规则从排序较前的部分的序号作为该TTI的编号。在另一些可行的实施例中,也可以使用排序较后的部分作为该TTI的编号,也可以是其他规则,只要是接收方网络设备和发送方网络设备共同的协议即可,此处不作限定。
402、根据TTI的编号生成TTI的信号序列。
403、发送信号序列或者携带信号序列的信息。
本实施例中步骤402-403与上述实施例的步骤102-103相同,此处不再赘述。
请参阅图5,为本发明中对TTI进行编号的第四种方法,本发明实施例生 成序列信号的方法的另一实施例包括:
501、确定TTI在子帧中的编号。
在一些可行的实施例中,当帧结构特指无线帧的时候,还可以使用二级编号的方法对该帧结构中的TTI进行编号,其中第一级编号为子帧号,第二级编号为TTI在子帧中的编号。在本发明实施例中,可以先确定TTI所在的子帧,然后确定该TTI在该子帧的编号,具体编号方法请参考步骤101、步骤201、步骤301-302以及步骤401-402中的各个方法。确定了TTI在子帧中的编号可以作为第二级编号。
502、确定TTI在无线帧中的编号,TTI的编号由子帧在无线帧中的编号,和TTI在子帧中的编号构成。
在本发明实施例中,第一级编号为该TTI所在子帧号,该编号可以表示为时隙号。如一个无线帧中有10个子帧,则该10个子帧可以编号为0-9。需要说明的是,步骤501和步骤502没有时序上的关系,即步骤501可以在步骤502之后,也可以在步骤502之前,此处不作限定。当确定了TTI的一级编号和二级编号之后,则该TTI的编号可以由一级编号和二级编号构成。例如,若一个无线帧中的各个子帧的编号为0-9,而其中一个子帧的编号为5,该子帧中的一个TTI在该子帧中的编号为1,则该TTI的一级编号为5,二级编号为1,则该TTI的编号可以表示为1-5,或者5-1,只要按照协议约定的接收方网络设备和发送网络设备均确定的规则表示即可,此处不作限定。
503、根据TTI的编号生成TTI的信号序列。
504、发送信号序列或者携带信号序列的信息。
本实施例中步骤503-504与上述实施例的步骤102-103相同,此处不再赘述。
上面对本发明实施例中信号处理方法进行描述,下面对本发明实施例中网络设备进行描述:
请参考图6,本发明实施例还提供一种网络设备600,包括:
第一确定模块601,用于确定帧结构中的传输时间间隔TTI的编号,其中,TTI包括短于1毫秒的时间长度。
该第一确定模块601可以用于为帧结构中的TTI排序,以TTI的序号作为TTI的编号;可以用于确定TTI所占的一个或多个符号在帧结构中的编号,按 照预置规则将一个或多个符号的编号中的一个作为TTI的编号;可以用于为帧结构的各个部分排序,帧结构的各个部分的长度均为帧结构中的最短TTI且按时间顺序划分,按照预置规则将TTI所占的一个或多个部分的序号中的一个序号作为TTI的编号;用于确定TTI在子帧中的编号,用于确定TTI在无线帧中的编号,TTI的编号由子帧在无线帧中的编号,和TTI在子帧中的编号构成。
生成模块602,用于根据确定模块确定的TTI的编号生成TTI的信号序列。
发送模块603,用于发送信号序列或者携带信号序列的信息。
需要说明的是,虽然该网络设备包括确定模块和生成模块,本领域技术人员可以理解,可以通过单一的模块,如处理模块,来完成上述两模块的功能。
上面从模块化功能实体的角度对本申请实施例中的网络设备进行描述,下面从硬件处理的角度对本申请实施例中的网络设备进行描述,请参阅图7,本申请实施例提供了一种网络设备,用于对帧结构中的TTI进行编号,并使用该编号生成信号序列。
该网络设备700包括:
收发器701、存储器702以及处理器703。
收发器701、存储器702以及处理器703连接。
收发器701可以包括处理器703和标准通信子系统之间的收发器(英文communication interface)。
收发器701还可以进一步包括EIA-RS-232C标准下的收发器,即数据终端设备(英文:Data Terminal Equipment,缩写:DTE)和数据通讯设备(英文:Data Circuit-terminating Equipment,缩写:DCE)之间串行二进制数据交换接口技术标准的收发器,也可以包括RS-485协议下的收发器,此处不作限定。
存储器702,存储程序、处理器确定的TTI的编号以及TTI的信号序列。
存储器702可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器702也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器703还可以包括上述种类的存储器的组合,此处不作限定。
可选地,存储器702还可以用于存储程序指令,处理器703可以调用该存 储器702中存储的程序指令,执行图2所示实施例中的一个或多个步骤,或其中可选的实施方式,使得该定位服务器700实现上述方法的功能。
处理器703,用于确定帧结构中的传输时间间隔TTI的编号,其中,TTI包括短于1毫秒的时间长度;根据TTI的编号生成TTI的信号序列。
处理器703可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
处理器703还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
请参阅图8,本申请实施例中生成信号序列的方法一个实施例包括:
801、确定帧结构中的传输时间间隔TTI的编号,其中,TTI包括短于1毫秒的时间长度。
本实施例中步骤801与上述实施例的步骤101相同,此处不再赘述。
802、根据TTI的编号接收TTI上的信号序列。
在本发明实施例中,为TTI编号之后,在TTI编号对应的无线资源上接收信号序列。由于根据TTI的编号获取TTI上的信号序列为公知常识,在此不再赘述。
请参考图9,本申请实施例中生成信号序列的方法一个实施例包括:
901、为帧结构中的TTI排序,以TTI的序号作为TTI的编号。
本实施例中步骤901与上述实施例的步骤201相同,此处不再赘述。
902、根据TTI的编号接收TTI上的信号序列。
本实施例中步骤902与上述实施例的步骤802相同,此处不再赘述。
请参阅图10,为本发明中对TTI进行编号的第二种方法,本发明实施例生成序列信号的方法的另一实施例包括:
1001、确定TTI所占的一个或多个符号在帧结构中的编号,按照预置规则将一个或多个符号的编号中的一个作为TTI的编号。
本实施例中步骤1001与上述实施例的步骤301相同,此处不再赘述。
1002、根据TTI的编号接收TTI的信号序列。
本实施例中步骤1002与上述实施例的步骤802相同,此处不再赘述。
请参阅图11,为本发明中对TTI进行编号的第三种方法,本发明实施例生成序列信号的方法的另一实施例包括:
1101、为帧结构的各个部分排序,帧结构的各个部分的长度均为帧结构中的最短TTI且按时间顺序划分,按照预置规则将TTI所占的一个或多个部分的序号中的一个序号作为TTI的编号。
本实施例中步骤1001与上述实施例的步骤401相同,此处不再赘述。
1102、根据TTI的编号接收TTI的信号序列。
本实施例中步骤1102与上述实施例的步骤802相同,此处不再赘述。
请参阅图12,为本发明中对TTI进行编号的第四种方法,本发明实施例生成序列信号的方法的另一实施例包括:
1201、确定TTI在子帧中的编号。
本实施例中步骤1201与上述实施例的步骤501相同,此处不再赘述。
1202、确定TTI在无线帧中的编号,TTI的编号由子帧在无线帧中的编号,和TTI在子帧中的编号构成。
本实施例中步骤1202与上述实施例的步骤502相同,此处不再赘述。
1203、根据TTI的编号接收TTI的信号序列。
本实施例中步骤1202与上述实施例的步骤802相同,此处不再赘述。
请参阅图13,本申请实施例中网络设备1300一个实施例包括:
确定模块1301,用于确定帧结构中的传输时间间隔TTI的编号,其中,TTI包括短于1毫秒的时间长度;
接收模块1302,用于根据确定模块1301确定的TTI的编号接收TTI上的信号序列。
请参阅图14,本申请实施例中网络设备1400一个实施例包括:
该网络设备1400包括:
收发器1401、存储器1402以及处理器1403。
收发器1401、存储器1402以及处理器1403连接。
收发器1401用于根据第二确定模块901确定的TTI的编号接收TTI上的 信号序列。
收发器1401可以包括处理器1403和标准通信子系统之间的收发器(英文communication interface)。
收发器1401还可以进一步包括EIA-RS-232C标准下的收发器,即数据终端设备(英文:Data Terminal Equipment,缩写:DTE)和数据通讯设备(英文:Data Circuit-terminating Equipment,缩写:DCE)之间串行二进制数据交换接口技术标准的收发器,也可以包括RS-485协议下的收发器,此处不作限定。
存储器1402,存储程序、处理器确定的TTI的编号以及TTI的信号序列。
存储器1402可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器1402也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器1403还可以包括上述种类的存储器的组合,此处不作限定。
可选地,存储器1402还可以用于存储程序指令,处理器1403可以调用该存储器1402中存储的程序指令,执行图2所示实施例中的一个或多个步骤,或其中可选的实施方式,使得该定位服务器1400实现上述方法的功能。
处理器1403,用于确定帧结构中的传输时间间隔TTI的编号,其中,TTI包括短于1毫秒的时间长度。
处理器1403可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
处理器1403还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (32)

  1. 一种信号处理方法,其特征在于,包括:
    确定帧结构中的传输时间间隔TTI的编号,其中,所述TTI包括短于1毫秒的时间长度;
    根据所述TTI的编号生成所述TTI的信号序列。
  2. 根据权利要求1的方法,其中所述TTI包括短于1毫秒的时间长度中,包括两种或两种以上的时间长度,该时间长度都短于1毫秒。
  3. 根据权利要求1或2的方法,其中,所述TTI包括短于1毫秒的时间长度的同时还包括等于1毫秒的时间长度。
  4. 根据权利要求1-3所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    为所述帧结构中的TTI排序,以所述TTI的序号作为所述TTI的编号。
  5. 根据权利要求1-3所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    确定所述TTI所占的一个或多个符号在所述帧结构中的编号,按照预置规则将所述一个或多个符号的编号中的一个作为所述TTI的编号。
  6. 根据权利要求1-3所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    为所述帧结构的各个部分排序,所述帧结构的各个部分的长度均为所述帧结构中的最短TTI且按时间顺序划分,按照预置规则将所述TTI所占的一个或多个部分的序号中的一个序号作为所述TTI的编号。
  7. 根据权利要求1-6中任一项所述方法,其特征在于,所述帧结构包括无线帧和子帧。
  8. 根据权利要求7所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    确定所述TTI在子帧中的编号;
    确定所述TTI在无线帧中的编号,所述TTI的编号由所述子帧在所述无线帧中的编号,和所述TTI在子帧中的编号构成。
  9. 根据权利要求1所述方法,其特征在于,所述信号序列包括加扰序列和参考信号序列。
  10. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    发送所述信号序列或者携带所述信号序列的信息。
  11. 一种用于信号处理的网络设备,其特征在于,包括:
    确定模块,用于确定帧结构中的TTI的编号,其中,所述TTI包括短于1毫秒的时间长度;
    生成模块,用于根据所述确定模块确定的所述TTI的编号生成所述TTI的信号序列。
  12. 根据权利要求11所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于为所述帧结构中的TTI排序,以所述TTI的序号作为所述TTI的编号。
  13. 根据权利要求11或12所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于确定所述TTI所占的一个或多个符号在所述帧结构中的编号,按照预置规则将所述一个或多个符号的编号中的一个作为所述TTI的编号。
  14. 根据权利要求11中任一项所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于为所述帧结构的各个部分排序,所述帧结构的各个部分的长度均为所述帧结构中的最短TTI且按时间顺序划分,按照预置规则将所述TTI所占的一个或多个部分的序号中的一个序号作为所述TTI的编号。
  15. 根据权利要求11中任一项所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于确定所述TTI在子帧中的编号;
    用于确定所述TTI在无线帧中的编号,所述TTI的编号由所述子帧在所述无线帧中的编号,和所述TTI在子帧中的编号构成。
  16. 根据权利要求11-15所述网络设备,其特征在于,还包括:
    发送模块,用于发送所述信号序列携带所述信号序列的信息。
  17. 一种网络设备,其特征在于,包括:
    存储器和处理器;
    所述存储器和所述处理器连接;
    所述处理器用于确定帧结构中的传输时间间隔TTI的编号,其中,所述TTI包括短于1毫秒的时间长度;根据所述TTI的编号生成所述TTI的信号序列。
    所述存储器用于存储程序、所述处理器确定的所述TTI的编号以及所述TTI的信号序列。
  18. 一种信号处理方法,其特征在于,包括:
    确定帧结构中的传输时间间隔TTI的编号,其中,所述TTI包括短于1毫秒的时间长度;
    根据所述TTI的编号接收所述TTI上的信号序列。
  19. 根据权利要求18的方法,其中所述TTI包括短于1毫秒的时间长度中,包括两种或两种以上的时间长度,该时间长度都短于1毫秒。
  20. 根据权利要求18或19的方法,其中,所述TTI包括短于1毫秒的时间长度的同时还包括等于1毫秒的时间长度。
  21. 根据权利要求18-20中任一项所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    为所述帧结构中的TTI排序,以所述TTI的序号作为所述TTI的编号。
  22. 根据权利要求18-20中任一项所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    确定所述TTI所占的一个或多个符号在所述帧结构中的编号,按照预置规则将所述一个或多个符号的编号中的一个作为所述TTI的编号。
  23. 根据权利要求18-20中任一项所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    为所述帧结构的各个部分排序,所述帧结构的各个部分的长度均为所述帧结构中的最短TTI且按时间顺序划分,按照预置规则将所述TTI所占的一个或多个部分的序号中的一个序号作为所述TTI的编号。
  24. 根据权利要求18-23中任一项所述方法,其特征在于,所述帧结构包括无线帧和子帧。
  25. 根据权利要求24所述方法,其特征在于,所述确定帧结构中的TTI的编号包括:
    确定所述TTI在子帧中的编号;
    确定所述TTI在无线帧中的编号,所述TTI的编号由所述子帧在所述无线帧中的编号,和所述TTI在子帧中的编号构成。
  26. 根据权利要求18所述方法,其特征在于,所述信号序列包括加扰序列和参考信号序列。
  27. 一种网络设备,其特征在于,包括:
    确定模块,用于确定帧结构中的传输时间间隔TTI的编号,所述TTI短于1毫秒和/或等于1毫秒;
    接收模块,用于根据所述确定模块确定的所述TTI的编号接收所述TTI上的信号序列。
  28. 根据权利要求27所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于为所述帧结构中的TTI排序,以所述TTI的序号作为所述TTI的编号。
  29. 根据权利要求27所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于确定所述TTI所占的一个或多个符号在所述帧结构中的编号,按照预置规则将所述一个或多个符号的编号中的一个作为所述TTI的编号。
  30. 根据权利要求27所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于为所述帧结构的各个部分排序,所述帧结构的各个部分的长度均为所述帧结构中的最短TTI且按时间顺序划分,按照预置规则将所述TTI所占的一个或多个部分的序号中的一个序号作为所述TTI的编号。
  31. 根据权利要求27所述网络设备,其特征在于,所述确定模块,用于确定帧结构中的传输时间间隔TTI的编号,包括:
    用于确定所述TTI在子帧中的编号;
    用于确定所述TTI在无线帧中的编号,所述TTI的编号由所述子帧在所述无线帧中的编号,和所述TTI在子帧中的编号构成。
  32. 一种网络设备,其特征在于,包括:
    存储器和处理器;
    所述存储器和所述处理器连接;
    所述处理器用于确定帧结构中的传输时间间隔TTI的编号,所述TTI短于1毫秒和/或等于1毫秒,根据所述TTI的编号接收所述TTI上的信号序列;
    所述存储器用于存储程序、所述处理器确定的所述TTI的编号以及所述TTI的信号序列。
PCT/CN2016/078045 2016-03-31 2016-03-31 一种信号处理方法以及网络设备 WO2017166191A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16895971.6A EP3425987A4 (en) 2016-03-31 2016-03-31 SIGNAL PROCESSING METHOD AND NETWORK DEVICE
PCT/CN2016/078045 WO2017166191A1 (zh) 2016-03-31 2016-03-31 一种信号处理方法以及网络设备
CN201680083492.2A CN108781456A (zh) 2016-03-31 2016-03-31 一种信号处理方法以及网络设备
US16/142,473 US20190029018A1 (en) 2016-03-31 2018-09-26 Signal processing method and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078045 WO2017166191A1 (zh) 2016-03-31 2016-03-31 一种信号处理方法以及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/142,473 Continuation US20190029018A1 (en) 2016-03-31 2018-09-26 Signal processing method and network device

Publications (1)

Publication Number Publication Date
WO2017166191A1 true WO2017166191A1 (zh) 2017-10-05

Family

ID=59963334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078045 WO2017166191A1 (zh) 2016-03-31 2016-03-31 一种信号处理方法以及网络设备

Country Status (4)

Country Link
US (1) US20190029018A1 (zh)
EP (1) EP3425987A4 (zh)
CN (1) CN108781456A (zh)
WO (1) WO2017166191A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312421B (zh) * 2019-07-29 2022-04-15 大唐移动通信设备有限公司 一种时分系统中小区配置方法及装置
US20220303949A1 (en) * 2021-03-19 2022-09-22 Qualcomm Incorporated Slot and subslot-based sidelink communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045848A (zh) * 2009-10-21 2011-05-04 鼎桥通信技术有限公司 一种半静态增强专用信道物理上行信道的发送方法
CN104272690A (zh) * 2012-03-08 2015-01-07 三星电子株式会社 用于协同多点接收的上行链路控制信息的传输
WO2015179146A1 (en) * 2014-05-19 2015-11-26 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943608B1 (ko) * 2006-04-21 2010-02-24 삼성전자주식회사 무선통신 시스템에서 주파수 호핑 방법 및 장치
GB2507528A (en) * 2012-11-02 2014-05-07 Sony Corp Telecommunications apparatus and methods
US9985761B2 (en) * 2014-02-26 2018-05-29 Lg Electronics Inc. Method and device for transceiving device-to-device terminal signal in wireless communication system
US10271328B2 (en) * 2015-03-12 2019-04-23 Lg Electronics Inc. Method for arranging frame structure of flexible short TTI according to change in control region, and device using same
US10973078B2 (en) * 2015-09-25 2021-04-06 Apple Inc. Supporting semi-persistent scheduling for varied transmission time intervals
CN107046713B (zh) * 2016-02-05 2022-12-02 中兴通讯股份有限公司 下行控制信道的确定方法及装置、终端、基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045848A (zh) * 2009-10-21 2011-05-04 鼎桥通信技术有限公司 一种半静态增强专用信道物理上行信道的发送方法
CN104272690A (zh) * 2012-03-08 2015-01-07 三星电子株式会社 用于协同多点接收的上行链路控制信息的传输
WO2015179146A1 (en) * 2014-05-19 2015-11-26 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425987A4 *

Also Published As

Publication number Publication date
CN108781456A (zh) 2018-11-09
EP3425987A4 (en) 2019-03-20
EP3425987A1 (en) 2019-01-09
US20190029018A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6803890B2 (ja) 制御チャネルを受信および送信する方法、ユーザ機器ならびに基地局
EP3624371B1 (en) Method and device for generating scrambling code sequence
EP3139683B1 (en) Method and device by which device-to-device user equipment transmits data in wireless communication system
JP6525104B2 (ja) 複数種類の伝送時間間隔をサポートするランダムアクセス方法、装置及び通信システム
TWI694698B (zh) 傳輸數據的方法和通信設備
EP3402240B1 (en) Method for detecting downlink control information, and method and device for transmitting downlink control information
TW201828742A (zh) 傳輸下行控制訊息的方法、終端設備和網路設備
JP2019517200A (ja) ダウンリンク制御情報送信方法および装置
JP6643457B2 (ja) 物理ダウンリンク制御チャネル送信方法および装置
CN110178434A (zh) 传输探测参考信号的方法、终端设备和网络设备
JP6438475B2 (ja) Epdcchの共通サーチスペース
TW201826770A (zh) 傳輸數據的方法、終端設備和網絡設備
JP6316444B2 (ja) デバイス間通信方法およびユーザ機器
TW201844038A (zh) 傳輸信號的方法、網絡設備和終端設備
CN104185197A (zh) 用于传输下行控制信息dci的方法及其装置
US20200187197A1 (en) Signal sending method and apparatus, and signal receiving method and apparatus
EP3493636B1 (en) Data transmission method, terminal device and network device
WO2017166191A1 (zh) 一种信号处理方法以及网络设备
EP3337258B1 (en) Data transmission method, terminal device, and base station
JP7481437B2 (ja) 復調参照信号の構成情報取得方法、構成方法、および装置
EP3182776B1 (en) Data transmission method and user equipment
CN111464279B (zh) 传输数据的方法、终端设备和网络设备
TW201924444A (zh) 傳輸資料的方法、終端設備和網路設備
CN106465347B (zh) 数据传输的方法和用户设备
US10425961B2 (en) Non-orthogonal transmission method and apparatus in communication system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016895971

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016895971

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895971

Country of ref document: EP

Kind code of ref document: A1