WO2017166102A1 - Thermal energy utilization system - Google Patents

Thermal energy utilization system Download PDF

Info

Publication number
WO2017166102A1
WO2017166102A1 PCT/CN2016/077819 CN2016077819W WO2017166102A1 WO 2017166102 A1 WO2017166102 A1 WO 2017166102A1 CN 2016077819 W CN2016077819 W CN 2016077819W WO 2017166102 A1 WO2017166102 A1 WO 2017166102A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal energy
energy storage
storage
heat
thermal
Prior art date
Application number
PCT/CN2016/077819
Other languages
French (fr)
Chinese (zh)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2016/077819 priority Critical patent/WO2017166102A1/en
Publication of WO2017166102A1 publication Critical patent/WO2017166102A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • Embodiment 4 is a schematic structural view of a thermal energy utilization system of Embodiment 3.
  • the heat source is the photovoltaic panel 140
  • the sunlight shown by the arrow in FIG. 2
  • Reflective concentrating system It is used as a concentrated Fresnel lens with a reflective film on its bottom.
  • FIG. 3 Another embodiment of the thermal energy utilization system according to the present invention may refer to FIG. 3, including a first thermal energy storage 211, a second thermal energy storage 212, a third thermal energy storage 213, a first thermoelectric conversion device 221, and a second thermal power.

Abstract

Provided is a thermal energy utilization system, comprising at least two thermal energy storage units (S11, S12) and at least one thermoelectric conversion device (C21, C22). Each of the thermal energy storage units (S11, S12) comprises a thermal energy storage medium (M31, M32), at least one thermal energy inflow end, and at least one thermal energy outflow end, wherein one thermal energy outflow end of at least one thermal energy storage (S11, S12) is connected in series with one thermal energy inflow end of another thermal energy storage (S11, S12), and thermal storage media of the two thermal energy storage units (S11, S12) are different substances. The thermoelectric conversion device (C21, C22) is arranged on a thermal energy channel. The thermal energy utilization system has two cascade-connected thermal energy storage units (S11, S12) and thus has a multi-level temperature difference, such that the thermoelectric conversion device (C21, C22) can be arranged between a thermal source (T40) and the thermal energy storage units (S11, S12) or between the cascade-connected thermal energy storage units (S11, S12). In addition, the two cascade-connected thermal energy storage units (S11, S12) use different media, so that more thermal energy can be stored, and the thermal energy can be utilized in different manners.

Description

发明名称:热能利用系统  Title of Invention: Thermal Energy Utilization System
技术领域  Technical field
[0001] 本发明涉及能量存储和利用技术领域, 尤其涉及一种既能够存储能量又能够用 于发电的热能利用系统。  [0001] The present invention relates to the field of energy storage and utilization technologies, and more particularly to a thermal energy utilization system capable of both storing energy and generating electricity.
[0002] 背景技术  BACKGROUND OF THE INVENTION
[0003] 对能量的存储是新能源的发展过程中一个需要解决的重要问题。  [0003] The storage of energy is an important issue that needs to be addressed in the development of new energy.
[0004] 现有的能量存储技术主要以电池为主, 尤其是可充电的锂离子电池、 铅酸电池 、 镍氢电池、 流体电池等。 由于电池储能主要依赖于化学反应, 存在潜在的化 学危害, 且通常需要使用到相对稀少的化学原料, 例如锂。 因此, 仍有必要发 展更安全更低廉的储能系统。 [0004] Existing energy storage technologies are mainly battery-based, especially rechargeable lithium ion batteries, lead-acid batteries, nickel-hydrogen batteries, fluid batteries, and the like. Since battery energy storage is primarily dependent on chemical reactions, there are potential chemical hazards and it is often desirable to use relatively rare chemical materials such as lithium. Therefore, there is still a need to develop safer and cheaper energy storage systems.
[0005] 发明内容 SUMMARY OF THE INVENTION
[0006] 依据本发明提供一种热能利用系统, 其包括至少两个热能存储器和至少一个热 电转换装置。 每个热能存储器包括储热工质以及至少一个热能流入端和至少一 个热能流出端, 储热工质用于对热能流入端流入的热能进行存储, 以及向热能 流出端释放热能; 其中, 至少一个热能存储器的一个热能流出端与另一个热能 存储器的一个热能流入端串联, 并且这两个热能存储器的储热工质为不同物质 。 热电转换装置设置于热源与最靠近热源的热能存储器之间的热能通路上, 或 者, 设置于两个串联的热能存储器之间的热能通路上, 或者, 设置于离热源最 远的热能存储器与外部热能利用装置之间的热能通路上。  In accordance with the present invention, a thermal energy utilization system is provided that includes at least two thermal energy stores and at least one thermoelectric conversion device. Each thermal energy storage device includes a thermal storage medium and at least one thermal energy inflow end and at least one thermal energy outflow end, the thermal storage medium is configured to store thermal energy flowing in the thermal energy inflow end, and release thermal energy to the thermal energy outflow end; wherein, at least one One thermal energy outflow end of the thermal energy storage is in series with one thermal energy inflow end of the other thermal energy storage, and the thermal storage fluids of the two thermal energy storages are different substances. The thermoelectric conversion device is disposed on the thermal energy path between the heat source and the thermal energy storage device closest to the heat source, or is disposed on the thermal energy path between the two thermal energy storage devices connected in series, or is disposed at the thermal energy storage device and the external device farthest from the heat source. Thermal energy is utilized on the thermal energy path between the devices.
[0007] 利用热能存储器来存储能量具有能量密度高而成本低廉的优点。 依据本发明的 热能利用系统具有两个级联的热能存储器, 因而具有多级温度差, 从而便于在 热源与热能存储器之间或者级联的热能存储器之间设置热电转换装置, 利用热 传导的过程来发电, 实现几乎无损耗的能量利用。 并且两个级联的存储器使用 不同的工质, 因此具有不同的熔点或沸点, 其中相变温度较高的工质有利于安 全稳定的存储, 而相变温度较低的工质更易于液化或汽化从而吸收大量的热能 , 这样的配置既有利于存储更多的能量也有利于对热能进行不同方式的利用。 [0008] 以下结合附图, 对依据本发明的具体示例进行详细说明。 [0007] The use of thermal energy storage to store energy has the advantage of high energy density and low cost. The thermal energy utilization system according to the present invention has two cascaded thermal energy memories and thus has a multi-stage temperature difference, thereby facilitating the provision of a thermoelectric conversion device between the heat source and the thermal energy storage or between the cascaded thermal energy storage, utilizing the process of heat conduction. Power generation, achieving virtually lossless energy utilization. And the two cascaded memories use different working fluids, so they have different melting points or boiling points, wherein the working medium with higher phase transition temperature is favorable for safe and stable storage, and the working medium with lower phase transition temperature is more liable to liquefy or Vaporization absorbs a large amount of thermal energy. This configuration is beneficial for both storing more energy and for different ways of utilizing thermal energy. The specific examples according to the present invention will be described in detail below with reference to the accompanying drawings.
[0009] 附图说明 BRIEF DESCRIPTION OF THE DRAWINGS
[0010] 图 1是依据本发明的热能利用系统的结构示意图;  1 is a schematic structural view of a thermal energy utilization system according to the present invention;
[0011] 图 2是实施例 1的热能利用系统的结构示意图; 2 is a schematic structural view of a thermal energy utilization system of Embodiment 1;
[0012] 图 3是实施例 2的热能利用系统的结构示意图; 3 is a schematic structural view of a thermal energy utilization system of Embodiment 2;
[0013] 图 4是实施例 3的热能利用系统的结构示意图。 4 is a schematic structural view of a thermal energy utilization system of Embodiment 3.
[0014] 具体实施方式 DETAILED DESCRIPTION
[0015] 依据本发明的热能利用系统的一种基本结构可参考图 1, 包括第一热能存储器 S 11、 第二热能存储器 S12、 第一热电转换装置 C21和第二热电转换装置 C22。  [0015] A basic structure of the thermal energy utilization system according to the present invention can be referred to FIG. 1, including a first thermal energy storage S11, a second thermal energy storage S12, a first thermoelectric conversion device C21, and a second thermoelectric conversion device C22.
[0016] 每个热能存储器都包括储热工质以及至少一个热能流入端和至少一个热能流出 端, 其中储热工质用于对热能流入端流入的热能进行存储, 以及向热能流出端 释放热能。 例如, 第一热能存储器 S11包括储热工质 M31, 第二热能存储器 S12 包括储热工质 M32, 两个热能存储器的下部均为热能流入端而上部均为热能流出 山  [0016] Each thermal energy storage device includes a thermal storage medium and at least one thermal energy inflow end and at least one thermal energy outflow end, wherein the thermal storage medium is used for storing thermal energy flowing in from the thermal energy inflow end, and releasing thermal energy to the thermal energy outflow end. . For example, the first thermal energy storage S11 includes a thermal storage medium M31, and the second thermal energy storage S12 includes a thermal storage medium M32. The lower portions of the two thermal energy storages are all thermal energy inflow ends and the upper portions are thermal energy outflows.
[0017] 来自热源 T40的热能从第一热能存储器 S 11的下部流入, 第一热能存储器 S 11的 热能流出端与第二热能存储器 S12的热能流入端串联, 如图 1中箭头所示, 为热 能流动的方向。 简明起见, 图 1中仅示出了两个级联的热能存储器, 在各种实施 方式中, 还可以配置更多的热能存储器。 每个热能存储器也可以有两个以上的 热能流入端或流出端, 以便于设计中所需要的各种热能通路的结构。 [0017] The thermal energy from the heat source T40 flows in from the lower portion of the first thermal energy storage device S11, and the thermal energy outflow end of the first thermal energy storage device S11 is connected in series with the thermal energy inflow end of the second thermal energy storage device S12, as indicated by the arrow in FIG. The direction in which heat flows. For simplicity, only two cascaded thermal energy stores are shown in Figure 1, and in various embodiments, more thermal energy storage may be configured. Each thermal energy store can also have more than two thermal energy inflows or outflows to facilitate the construction of the various thermal pathways required in the design.
[0018] 依据本发明, 多个热能存储器之间既可以是顺次级联的, 也可以具有更加复杂 的热能通路连接关系, 只要其中至少一个热能存储器的一个热能流出端与另一 个热能存储器的一个热能流入端串联即可。 例如, 至少一个热能存储器的一个 热能流入端可以与另一个热能存储器的一个热能流入端并联, 或者, 至少一个 热能存储器的一个热能流出端可以与另一个热能存储器的一个热能流出端并联 。 又如, 若干个顺次串联的热能存储器可以与另一组或多组串联的热能存储器 并联, 以便于快速输入或输出大量热能。 再如, 在一条热能通路上串联的若干 个热能存储器, 在另外的热能通路上可以是并行的, 通过幵启或关闭相应的热 能通路能够选择和控制热能存储器的工作模式。 [0019] 就形态结构而言, 多个热能存储器可以采用各种不同的方式堆叠在一起, 例如 , 可以采用内外嵌套的方式布置, 或者采用上下层叠的方式布置, 或者采用水 平排列的方式布置。 [0018] According to the present invention, a plurality of thermal energy memories may be either sub-secondary or have a more complicated thermal energy path connection relationship as long as one thermal energy outflow end of at least one thermal energy storage device and another thermal energy storage device are A heat energy inflow end can be connected in series. For example, one thermal energy inflow of at least one thermal energy store may be in parallel with one thermal energy inflow of another thermal energy store, or one thermal energy outflow of at least one thermal energy store may be in parallel with a thermal energy outflow of another thermal energy store. As another example, a plurality of sequentially connected thermal energy stores can be coupled in parallel with another set or sets of thermal energy stores in series to facilitate rapid input or output of a large amount of thermal energy. For another example, a plurality of thermal energy memories connected in series on one thermal energy path may be parallel in another thermal energy path, and the operating mode of the thermal energy storage can be selected and controlled by turning on or off the corresponding thermal energy path. [0019] In terms of morphological structure, a plurality of thermal energy memories may be stacked in various different manners, for example, may be arranged in an inner and outer nesting manner, or may be arranged in a stacked manner, or arranged in a horizontal arrangement. .
[0020] 第一热能存储器 S11的储热工质 M31与第二热能存储器 S12的储热工质 M32为不 同物质。 储热工质可根据工作环境、 对热能的利用方式等因素来选择, 例如可 选自熔盐, 石蜡, 7j , 冷却剂, 硅胶, 低熔点或低沸点的金属化合物, 空气等  [0020] The heat storage medium M31 of the first thermal energy storage S11 and the heat storage medium M32 of the second thermal energy storage S12 are different substances. The heat storage medium can be selected according to the working environment, the way of utilizing heat energy, and the like, for example, it can be selected from molten salt, paraffin, 7j, coolant, silica gel, low melting point or low boiling metal compound, air, etc.
[0021] 作为一种优选的实施方式, 对于两个串联的热能存储器而言, 在热能通路上离 热源更近的热能存储器的储热工质的比热容更小, 或者, 在相变类型相同的情 况下, 相变温度更高。 例如, 第一热能存储器的储热工质 M31可选择熔盐 (如硝 酸钾和硝酸钠的混合物, 或者硝酸铁等) 、 石蜡等比热容大, 且熔点和沸点较 高的工质; 而第二热能存储器的储热工质 M32则可选择水或冷却剂等熔点和沸点 较低的工质; 这使得第一热能存储器更便于进行能量的大量和长期保存, 而第 二热能存储器一方面也能通过相变存储大量能量, 一方面工作温度较低且更便 于进行热能的利用。 [0021] As a preferred embodiment, for two thermal energy memories connected in series, the heat storage medium of the thermal energy storage device closer to the heat source on the thermal energy path has a smaller specific heat capacity, or the same phase change type. In this case, the phase transition temperature is higher. For example, the heat storage medium M31 of the first thermal energy storage may be selected from a molten salt (such as a mixture of potassium nitrate and sodium nitrate, or iron nitrate, etc.), a paraffin wax, and the like having a higher specific heat capacity and a higher melting point and a higher boiling point; The thermal storage medium M32 of the thermal energy storage device can select a working medium having a lower melting point and a lower boiling point such as water or a coolant; this makes the first thermal energy storage more convenient for large-scale and long-term storage of energy, and the second thermal energy storage can also be used on the one hand. A large amount of energy is stored by phase change, on the one hand, the operating temperature is lower and the use of heat energy is more convenient.
[0022] 在热能存储器与外界之间形成热能通路主要可采用两种方式, 一种是通过工质 流动的方式, 即将热能存储器中的工质与其他的装置连通。 另一种是通过热传 导的方式, 在这种情况下, 热能存储器基本相当于一个封闭的容器 (可以具有 所需要的任意的形状) , 该容器的壁可分为导热壁和隔热壁, 其中热能流入端 或热能流出端形成为导热壁, 其他位置则形成为隔热壁。 为便于热能的长期存 储和可控使用, 导热壁上还可以设置通路幵关 (例如可幵合的隔热壁) , 通过 通路幵关, 控制热能的流入或流出。 在上述两种热能流动方式下, 都可以认为 热能存储器是相对封闭的, 不管是热能还是工质都以一种封闭的或者可控的方 式进行流动。  [0022] There are two ways to form a thermal energy path between the thermal energy storage device and the outside world. One is to flow through the working medium, that is, to connect the working medium in the thermal energy storage with other devices. The other is by means of heat conduction, in which case the thermal energy store is substantially equivalent to a closed container (which may have any desired shape), the wall of which may be divided into a heat conducting wall and a heat insulating wall, wherein The heat energy inflow end or the heat energy outflow end is formed as a heat conducting wall, and other positions are formed as heat insulating walls. In order to facilitate the long-term storage and controllable use of thermal energy, the heat-conducting wall can also be provided with a passageway (for example, a heat-insulating wall that can be twisted) to control the inflow or outflow of thermal energy through the passage. In both of the above thermal energy flow modes, the thermal energy storage can be considered to be relatively closed, and both the thermal energy and the working fluid flow in a closed or controllable manner.
[0023] 第一热电转换装置 C21设置在热源 T40与最靠近热源的热能存储器 (即第一热 能存储器 S11) 之间的热能通路上, 第二热电转换装置 C22设置于两个串联的热 能存储器 S11和 S12之间的热能通路上。 热电转换装置通常是利用温差发电的装 置, 例如半导体温差发电装置, 其包括两个热传导端, 并以此串联在热能通路 中, 当一个热传导端 (热能流入) 的温度高于另一个热传导端 (热能流出) 的 温度吋, 热电转换装置输出电能。 [0023] The first thermoelectric conversion device C21 is disposed on the thermal energy path between the heat source T40 and the thermal energy storage device closest to the heat source (ie, the first thermal energy storage S11), and the second thermoelectric conversion device C22 is disposed in the two thermal energy storage devices S11 connected in series On the thermal energy path between S12 and S12. The thermoelectric conversion device is usually a device that uses thermoelectric power generation, such as a semiconductor thermoelectric power generation device, which includes two heat conduction ends and is connected in series to the thermal energy path. In the case where the temperature of one heat conduction end (heat energy inflow) is higher than the temperature of the other heat conduction end (thermal energy outflow), the thermoelectric conversion device outputs electric energy.
[0024] 在热能通路上温差是普遍存在的。 例如, 若第二热能存储器的储热工质 M32具 有较低的熔点和沸点, 当达到这两个温度吋, 第二热能存储器的温度不易发生 变化, 而若第一热能存储器的储热工质 M31的熔点和沸点比较高, 其温度在外部 热源的作用下就比较容易升高, 这样就会产生较大的温差, 从而给温差发电提 供便利。 依据本发明, 可以在两端具有温差的所有热能通路上设置更多数量的 热电转换装置, 当然也可以仅设置一处热电转换装置, 具体可根据实际需要确 定。 设置热电转换装置能够提高热能利用的效率, 并且在本发明中, 热电转换 装置的热电转换过程几乎是无损的, 因为内阻消耗的电能仍然会变成热能, 从 而被存储或利用。 [0024] Temperature differences across the thermal energy path are ubiquitous. For example, if the thermal storage medium M32 of the second thermal energy storage has a lower melting point and boiling point, when the two temperatures are reached, the temperature of the second thermal energy storage is not easily changed, and if the thermal storage medium of the first thermal energy storage device M31 has a relatively high melting point and boiling point, and its temperature is relatively easy to rise under the action of an external heat source, which causes a large temperature difference, thereby facilitating temperature difference power generation. According to the present invention, a larger number of thermoelectric conversion devices can be disposed on all of the thermal energy paths having temperature differences at both ends, and of course, only one thermoelectric conversion device can be provided, which can be determined according to actual needs. The provision of the thermoelectric conversion device can improve the efficiency of thermal energy utilization, and in the present invention, the thermoelectric conversion process of the thermoelectric conversion device is almost non-destructive because the electric energy consumed by the internal resistance still becomes thermal energy and is thus stored or utilized.
[0025] 作为一种优选的实施方式, 热电转换装置可设置有控制幵关, 使其能够切换于 幵启和关闭状态, 在幵启状态下进行温差发电, 在关闭状态下充当为直接的热 能通路。  [0025] As a preferred embodiment, the thermoelectric conversion device may be provided with a control switch capable of switching between the on and off states, performing temperature difference power generation in the on state, and acting as direct thermal energy in the off state. path.
[0026] 作为一种优选的实施方式, 热电转换装置可采用方向可逆的热电转换装置, 使 得其用于热能流入的端和用于热能流出的端能够对调。 由此可以根据其两端温 度的变化切换热电转换装置的工作状态, 例如在温差发生逆转的情况下, 将冷 却端切换为热源端, 同吋将热源端切换为冷却端。  As a preferred embodiment, the thermoelectric conversion device may employ a reversible thermoelectric conversion device such that the end for the inflow of thermal energy and the end for the outflow of thermal energy can be reversed. Therefore, the operating state of the thermoelectric conversion device can be switched according to the temperature change at both ends thereof. For example, when the temperature difference is reversed, the cooling end is switched to the heat source end, and the heat source end is switched to the cooling end.
[0027] 本发明中所称热源可以是各种能够产生热能的自然能源或人工装置。 例如可以 是太阳能、 利用太阳能的光电转换装置、 电加热装置、 微波加热装置、 燃烧发 热装置等。  [0027] The heat source referred to in the present invention may be various natural energy sources or artificial devices capable of generating thermal energy. For example, it may be solar energy, a photoelectric conversion device using solar energy, an electric heating device, a microwave heating device, a combustion heat generating device, or the like.
[0028] 以下对依据本发明的系统进行举例说明。  [0028] The system according to the invention is exemplified below.
[0029] 实施例 1 Embodiment 1
[0030] 依据本发明的热能利用系统的一种实施方式可参考图 2, 包括第一热能存储器 1 11、 第二热能存储器 112、 第一热电转换装置 121、 第二热电转换装置 122以及冷 却系统 150。  [0030] An embodiment of a thermal energy utilization system according to the present invention may refer to FIG. 2, including a first thermal energy storage device 11 11 , a second thermal energy storage device 112 , a first thermoelectric conversion device 121 , a second thermoelectric conversion device 122 , and a cooling system 150.
[0031] 本实施例中, 热源为光伏板 140, 太阳光 (如图 2中箭头所示) 首先照射在反射 式聚光系统 141上, 经反射和会聚后照射到光伏板 140上。 反射式聚光系统可采 用底面镀有反射膜的聚光菲涅尔透镜来充当。 [0031] In this embodiment, the heat source is the photovoltaic panel 140, and the sunlight (shown by the arrow in FIG. 2) is first irradiated on the reflective concentrating system 141, and is reflected and concentrated to be irradiated onto the photovoltaic panel 140. Reflective concentrating system It is used as a concentrated Fresnel lens with a reflective film on its bottom.
[0032] 光伏板 140产生的热能经第一热电转换装置 121流入第一热能存储器 111, 第一 热能存储器 111与第二热电转换装置 122以及第二热能存储器 112顺次级联。 各热 能存储器用于热能流入或流出的器壁形成为导热壁, 其他位置的器壁则形成为 隔热壁。 第一热能存储器 111包括储热工质 131, 第二热能存储器 112包括储热工 质 132。 [0032] The thermal energy generated by the photovoltaic panel 140 flows into the first thermal energy storage device 111 via the first thermoelectric conversion device 121, and the first thermal energy storage device 111 and the second thermoelectric conversion device 122 and the second thermal energy storage device 112 are sequentially connected. The walls of the thermal energy storage for the inflow or outflow of thermal energy are formed as heat conducting walls, and the walls of other locations are formed as insulating walls. The first thermal energy storage 111 includes a thermal storage medium 131, and the second thermal energy storage 112 includes a thermal storage medium 132.
[0033] 本实施例中用于对热能进行利用的冷却系统 150包括冷却工质和控制冷却工质 流动的管道系统 151。 管道系统通常由若干管道以及若干控制管道的接通和关闭 的阀门组成。 每个阀门可控制一段管道, 简明起见, 图 2中仅示意性地绘出了两 个设置在管道上的阀门 Va, 显然可以根据需要给全部或部分管道配置阀门。 阀 门可以是自动阀门, 例如由管道中的压力控制幵启或关闭的阀门, 也可以是按 照外部控制系统的指令进行电动控制的阀门, 所采用的阀门还可以具有控制流 量的功能。  [0033] The cooling system 150 for utilizing thermal energy in this embodiment includes a cooling medium and a piping system 151 that controls the flow of the cooling medium. A piping system usually consists of several pipes and a number of valves that control the opening and closing of the pipes. Each valve can control a length of pipe. For the sake of simplicity, only two valves Va disposed on the pipe are schematically depicted in Figure 2. It is obvious that all or part of the pipe can be configured with valves as needed. The valve can be an automatic valve, such as a valve that is opened or closed by pressure control in the pipe, or a valve that is electrically controlled according to the instructions of the external control system. The valve can also be used to control the flow.
[0034] 本实施例中的冷却系统通过液体汽化来实现对热能的利用, 因此还包括气体压 缩机 (或泵) 152以及以气体作为动力的发电机 153, 均连接在管道系统中, 由 冷却工质驱动。 冷却工质的形态可以为气态, 或液态, 或在气态与液态之间变 化。  [0034] The cooling system in this embodiment realizes the utilization of thermal energy by liquid vaporization, and thus further includes a gas compressor (or pump) 152 and a gas-powered generator 153, which are all connected in the piping system by cooling. Working fluid drive. The form of the cooling medium may be in a gaseous state, or in a liquid state, or may vary between a gaseous state and a liquid state.
[0035] 管道系统 151与第二热能存储器 112连通, 因此第二热能存储器的储热工质 132 即为冷却工质。 由于作为冷却工质的储热工质 132需要汽化, 因此可采用易于汽 化的液体, 例如水、 冷却剂、 酒精、 或者熔点和沸点都比较低的化合物 (例如 B oron Bromide) 等。 对于家用系统而言, 工质 132可以是水, 则气体压缩机 152可 以被替代为热水器 (或者额外增加储水的热水器) , 通过在热水器上连接进水 (冷水) 及出水 (热水) 管道 (未图示) 来提供生活用水。  [0035] The piping system 151 is in communication with the second thermal energy storage 112, so that the thermal storage medium 132 of the second thermal energy storage is a cooling medium. Since the heat storage medium 132 as a cooling medium needs to be vaporized, it is possible to use a liquid which is easy to vaporize, such as water, a coolant, alcohol, or a compound having a relatively low melting point and a low boiling point (e.g., Boron Bromide). For the home system, the working fluid 132 can be water, then the gas compressor 152 can be replaced by a water heater (or an additional water storage water heater) by connecting the inlet (cold water) and the effluent (hot water) pipeline to the water heater. (not shown) to provide domestic water.
[0036] 本实施例中热能存储器以工质连通的方式与利用热能的装置 (冷却系统) 进行 热交换, 在其他实施方式中, 第二热能存储器也可以采用封闭的容器, 通过导 热壁与冷却系统导热连接。 例如第二热能存储器可以通过一个热电转换装置或 者直接通过导热壁与冷却系统中的水箱重叠布置。 又如, 管道系统可以穿过至 少一个热能存储器, 在所穿过的热能存储器中, 冷却工质通过管道壁与该热能 存储器的储热工质进行热交换。 [0036] In this embodiment, the thermal energy storage device exchanges heat with a device (cooling system) that utilizes thermal energy in a working medium communication manner. In other embodiments, the second thermal energy storage device may also adopt a closed container through a heat conducting wall and cooling. The system is thermally connected. For example, the second thermal energy store can be arranged by means of a thermoelectric conversion device or directly via a heat-conducting wall and a water tank in the cooling system. As another example, the piping system can pass through at least one thermal energy storage, in which the cooling medium passes through the piping wall and the thermal energy The heat storage medium of the memory is heat exchanged.
[0037] 本实施例的热能利用系统结构简单, 储能密度大且易于小型化, 可以采用安全 的工质并工作于安全的 (不太高的) 温度, 适用于家庭式的能量存储, 或者短 期 (例如夜间或者几天以内) 的能量存储。  [0037] The thermal energy utilization system of the embodiment has a simple structure, a large energy storage density and is easy to be miniaturized, can be operated with a safe working medium and operates at a safe (not too high) temperature, and is suitable for home-type energy storage, or Energy storage in the short term (for example, at night or within a few days).
[0038] 实施例 2  Embodiment 2
[0039] 依据本发明的热能利用系统的另一种实施方式可参考图 3, 包括第一热能存储 器 211、 第二热能存储器 212、 第三热能存储器 213、 第一热电转换装置 221、 第 二热电转换装置 222、 第三热电转换装置 223以及冷却系统 250。  [0039] Another embodiment of the thermal energy utilization system according to the present invention may refer to FIG. 3, including a first thermal energy storage 211, a second thermal energy storage 212, a third thermal energy storage 213, a first thermoelectric conversion device 221, and a second thermal power. The conversion device 222, the third thermoelectric conversion device 223, and the cooling system 250.
[0040] 本实施例中的热源 240可以选自各种类型, 例如电加热装置、 燃烧加热装置、 微波加热装置等。 热源与热能利用系统之间可设置活动的隔热板 (未图示) , 当隔热板插入到热源与热能利用系统之间吋, 热能通路被断幵, 当隔热板移幵 吋, 热能通路被接通。  [0040] The heat source 240 in this embodiment may be selected from various types such as an electric heating device, a combustion heating device, a microwave heating device, and the like. An active heat shield (not shown) can be placed between the heat source and the heat utilization system. When the heat shield is inserted between the heat source and the heat utilization system, the heat energy path is broken, and when the heat shield moves, the heat energy The path is turned on.
[0041] 三个热能存储器 211、 212和 213通过三个热电转换装置 221、 222和 223顺次串联 在热源 240之后的热能通道上。 其中, 第一热能存储器包括储热工质 231, 第二 热能存储器包括储热工质 232, 第三热能存储器包括储热工质 233。  [0041] The three thermal energy memories 211, 212, and 213 are sequentially connected in series to the thermal energy path behind the heat source 240 through the three thermoelectric conversion devices 221, 222, and 223. The first thermal energy storage device includes a thermal storage medium 231, the second thermal energy storage device includes a thermal storage medium 232, and the third thermal energy storage device includes a thermal storage medium 233.
[0042] 冷却系统 250包括冷却工质 (流向如图 3中箭头所示) 和控制冷却工质流动的管 道系统 251。 压缩泵 252以及汽轮机 253连接在管道系统中, 用于实现对热能的利 用。 本实施例中, 热能存储器均为封闭的容器, 冷却系统的冷却工质通过穿过 各个热能存储器的管道与热能存储器进行热交换。 具体地, 冷却系统还包括汽 化室 254以及对应的储液室 255, 管道系统 251中与汽化室连通的三个管道并行地 分别穿过三个热能存储器。 因此, 相对于与冷却系统之间的热能通路而言, 三 个热能存储器彼此之间是并联的关系。 可以通过控制穿过热能存储器的管道的 阀门 Val和 Va2来接通或关闭热能存储器与冷却系统之间的热能通路。  [0042] The cooling system 250 includes a cooling medium (flowing as indicated by the arrows in FIG. 3) and a piping system 251 that controls the flow of the cooling medium. A compression pump 252 and a steam turbine 253 are connected in the piping system for achieving thermal energy utilization. In this embodiment, the thermal energy stores are all closed containers, and the cooling medium of the cooling system exchanges heat with the thermal energy storage through the pipes passing through the respective thermal energy stores. Specifically, the cooling system further includes a vaporization chamber 254 and a corresponding reservoir 255 through which three conduits in communication with the vaporization chamber pass through the three thermal energy stores, respectively. Therefore, the three thermal energy memories are in parallel relationship with each other with respect to the thermal energy path with the cooling system. The thermal energy path between the thermal energy storage and the cooling system can be turned on or off by controlling the valves Val and Va2 of the conduit through the thermal energy store.
[0043] 作为一种优选的实施方式, 汽化室 254还与热源 240导热连接。 这使得根据阀门 的不同控制方式, 汽化室既可用于三个热能存储器同吋向冷却系统输出热能, 也可用于热源同吋向三个热能存储器输入热能。 当热能存储器输出热能吋, 可 同吋幵启阀门 Val和 Va2, 使得冷却工质循环工作, 不断输出能量。 当向热能存 储器输入热能吋, 可仅幵启阀门 Val而关闭阀门 Va2, 使得冷却工质充当为热源 与三个热能存储器之间的导热介质, 更快地进行能量存储。 [0043] As a preferred embodiment, the vaporization chamber 254 is also thermally coupled to the heat source 240. This allows the vaporization chamber to be used for both thermal energy storage and thermal energy output to the cooling system, as well as for the heat source to input thermal energy to the three thermal energy stores. When the thermal energy store outputs thermal energy, the valves Val and Va2 can be opened simultaneously, so that the cooling medium can be cycled and the energy is continuously output. When the thermal energy is input to the thermal energy storage, the valve Val can be closed and the valve Va2 can be closed, so that the cooling medium acts as a heat source. The heat transfer medium between the three thermal energy stores enables energy storage faster.
[0044] 这种并行的能量输入或输出方式使得能量流动的效率大为提高, 且能量传输的 速度可通过阀门进行控制, 可用于大型电站的能量存储。 并且由于热能存储器 均采用密封结构, 通过阀门控制能量的输出, 更易于实现安全、 高密度、 长期 的能量存储系统。 [0044] This parallel energy input or output mode greatly increases the efficiency of energy flow, and the speed of energy transfer can be controlled by valves, which can be used for energy storage of large power plants. And because the thermal energy storage uses a sealed structure, it is easier to achieve a safe, high-density, long-term energy storage system by controlling the energy output through the valve.
[0045] 实施例 3 Embodiment 3
[0046] 依据本发明的热能利用系统的另一种实施方式可参考图 4, 包括第一热能存储 器 311、 第二热能存储器 312、 第三热能存储器 313, 四个热电转换装置 321、 322 、 323和 324, 以及用作冷却系统的压缩空气罐 350。  [0046] Another embodiment of the thermal energy utilization system according to the present invention may refer to FIG. 4, including a first thermal energy storage 311, a second thermal energy storage 312, a third thermal energy storage 313, and four thermoelectric conversion devices 321, 322, 323. And 324, and a compressed air tank 350 for use as a cooling system.
[0047] 本实施例中的热源为太阳能接收容器 340, 太阳光经两级聚光透镜 341会聚后, 通过光导 342被引导到太阳能接收容器中。 在光导进入容器 340的位置设置有分 光器 343, 其用于改变光线进入容器吋的方向, 使得光线不容易从入口处反射出 去。 容器 340可单纯地用于收集太阳光的热能, 也可以在其中设置光伏板, 在充 当热源的同吋还提供电能。 两级聚光透镜 341可采用聚光菲涅尔透镜来充当。 热 源及热能利用系统可设置在隔热层 344的下方, 隔热层可以是建筑物 (例如楼房 ) 顶部或地面的隔热层, 也可以是漂浮在海面上的以隔热材料制作的筏子。  [0047] The heat source in this embodiment is a solar energy receiving container 340. After the sunlight is concentrated by the two-stage condenser lens 341, it is guided through the light guide 342 into the solar energy receiving container. At the position where the light guide enters the container 340, a beam splitter 343 is provided for changing the direction in which light enters the container , so that light is not easily reflected from the entrance. The container 340 can be used simply to collect the thermal energy of the sunlight, or to provide a photovoltaic panel therein, and to provide electrical energy to the same source as the heat source. The two-stage condenser lens 341 can be used as a concentrated Fresnel lens. The heat source and thermal energy utilization system may be disposed below the heat insulation layer 344, and the heat insulation layer may be a heat insulation layer on the top of the building (e.g., a building) or on the ground, or may be a tweezers made of heat insulating material floating on the sea surface.
[0048] 本实施例中的三个热能存储器采用级联的方式, 且结构上彼此嵌套, 热源 340 设置在最靠近热源的热能存储器 311的内部。 第一热能存储器包裹热源的器壁即 充当为热能流入端。 太阳能接收容器 340以及每个热能存储器的外壁均设置有热 电转换装置, 以充分利用热能通路上的各级温差。 这种嵌套结构使得除了最外 部温度较低的压缩空气罐之外, 热能存储器与外部没有热交换, 减少了能量的 损耗。 尤其是当压缩空气罐内部被抽成真空吋, 三个热能存储器中的能量能够 得到长期 (例如半年) 而高效地保存。  [0048] The three thermal energy memories in this embodiment are cascaded and are structurally nested with each other, and the heat source 340 is disposed inside the thermal energy storage 311 closest to the heat source. The wall of the first thermal energy store that encloses the heat source acts as a thermal energy inflow end. The solar energy receiving container 340 and the outer wall of each thermal energy storage are provided with thermoelectric conversion means to make full use of the temperature difference of the various stages on the thermal energy path. This nested structure eliminates heat exchange between the thermal energy storage and the outside, in addition to the outermost compressed air canister, reducing energy losses. Especially when the inside of the compressed air tank is evacuated, the energy in the three thermal energy stores can be efficiently stored for a long period of time (e.g., half a year).
[0049] 三个热能存储器的储热工质 331、 332和 333可以有多种选择。 作为一种优选的 实施方式, 第一热能存储器为熔盐电池, 其工质 331为熔盐电池的介质 (例如硫 化钠) , 第二热能存储器为普通熔盐热存储器, 其工质 332为普通熔盐 (例如硝 酸钾或硝酸钠的混合物) , 第三热能存储器为水箱, 其工质 333为淡水或海水。  [0049] The heat storage granules 331, 332 and 333 of the three thermal energy memories are available in a variety of options. As a preferred embodiment, the first thermal energy storage device is a molten salt battery, the working medium 331 is a medium of a molten salt battery (for example, sodium sulfide), and the second thermal energy storage is a common molten salt thermal storage, and the working medium 332 is common. A molten salt (such as a mixture of potassium nitrate or sodium nitrate), the third thermal energy storage is a water tank, and the working medium 333 is fresh water or sea water.
[0050] 压缩空气罐 350可以与外部的汽轮机或者空气压缩机等 (未图示) 连接以实现 对热能的利用, 在此不再赘述。 [0050] The compressed air tank 350 may be connected to an external steam turbine or an air compressor or the like (not shown) to realize The use of heat energy will not be repeated here.
[0051] 本实施例系统可用于住宅群、 楼房、 酒店、 水面设施等的供暖以及供电。 在对 安全性要求较高的应用中, 一方面可以通过使用安全的储热工质来减低系统的 危险性; 另一方面, 可以在系统中的各个工作区域, 尤其是各个热能存储器中 , 设置温度 /压力测量元件、 自动泄压口, 并配备相应的报警系统和自动处理安 全系统。 这些辅助器件以及控制系统可应用于依据本发明的各种实施例中, 本 领域技术人员可根据需要进行选择和配置。  [0051] The system of the present embodiment can be used for heating and power supply of residential buildings, buildings, hotels, water surface facilities, and the like. In applications with high safety requirements, on the one hand, the safety of the system can be reduced by using safe thermal storage fluids; on the other hand, it can be set in various working areas of the system, especially in each thermal energy storage. Temperature/pressure measuring elements, automatic pressure relief ports, and equipped with appropriate alarm systems and automatic handling safety systems. These auxiliary devices and control systems are applicable to various embodiments in accordance with the present invention, and those skilled in the art can make selections and configurations as needed.
[0052] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题  The above embodiments are intended to be illustrative of the principles and embodiments of the present invention. It is understood that the above embodiments are only intended to aid the understanding of the invention and are not to be construed as limiting. Variations to the above-described embodiments may be made by those skilled in the art in light of the teachings herein. technical problem
问题的解决方案  Problem solution
发明的有益效果  Advantageous effects of the invention

Claims

权利要求书 Claim
[权利要求 1] 一种热能利用系统, 其特征在于, 包括,  [Claim 1] A thermal energy utilization system, characterized in that
至少两个热能存储器, 每个热能存储器包括储热工质以及至少一个热 能流入端和至少一个热能流出端, 所述储热工质用于对热能流入端流 入的热能进行存储, 以及向热能流出端释放热能; 其中, 至少一个热 能存储器的一个热能流出端与另一个热能存储器的一个热能流入端串 联, 并且这两个热能存储器的储热工质为不同物质;  At least two thermal energy storage devices, each thermal energy storage comprising a thermal storage medium and at least one thermal energy inflow end and at least one thermal energy outflow end, wherein the thermal storage medium is used for storing thermal energy flowing in from the thermal energy inflow end, and flowing out to the thermal energy The end releases thermal energy; wherein, one thermal energy outflow end of the at least one thermal energy storage is in series with one thermal energy inflow end of the other thermal energy storage, and the thermal storage materials of the two thermal energy storages are different substances;
至少一个热电转换装置, 设置于热源与最靠近热源的热能存储器之间 的热能通路上, 或者, 设置于两个串联的热能存储器之间的热能通路 上, 或者, 设置于离热源最远的热能存储器与外部热能利用装置之间 的热能通路上。  At least one thermoelectric conversion device disposed on a thermal energy path between the heat source and the thermal energy storage device closest to the heat source, or disposed on a thermal energy path between the two series of thermal energy storage devices, or disposed at a thermal energy farthest from the heat source The thermal energy path between the memory and the external thermal energy utilization device.
[权利要求 2] 如权利要求 1所述的系统, 其特征在于,  [Claim 2] The system of claim 1 wherein:
对于两个串联的热能存储器而言, 在热能通路上离热源更近的热能存 储器的储热工质的比热容更小, 或者, 在相变类型相同的情况下, 相 变温度更高。  For two series-connected thermal energy stores, the heat storage medium of the thermal energy storage device closer to the heat source in the thermal energy path has a smaller specific heat capacity, or, in the case of the same phase change type, the phase transition temperature is higher.
[权利要求 3] 如权利要求 1所述的系统, 其特征在于,  [Claim 3] The system of claim 1 wherein:
至少一个热能存储器的一个热能流入端与另一个热能存储器的一个热 能流入端并联, 或者, 至少一个热能存储器的一个热能流出端与另一 个热能存储器的一个热能流出端并联。  A thermal energy inflow end of the at least one thermal energy store is coupled in parallel with a thermal energy inflow end of the other thermal energy store, or a thermal energy outflow end of the at least one thermal energy store is coupled in parallel with a thermal energy outflow end of the other thermal energy store.
[权利要求 4] 如权利要求 1所述的系统, 其特征在于, 还包括,  [Claim 4] The system of claim 1 further comprising
冷却系统, 其包括冷却工质和控制冷却工质流动的管道系统, 所述冷 却工质的形态为气态, 或液态, 或在气态与液态之间变化, 所述管道系统与至少一个热能存储器连通, 所连通的热能存储器的储 热工质即为所述冷却工质; 或者, 所述管道系统穿过至少一个热能存 储器, 在所穿过的热能存储器中, 所述冷却工质通过管道壁与该热能 存储器的储热工质进行热交换。  a cooling system comprising a cooling medium and a piping system for controlling the flow of the cooling medium, the cooling medium being in a gaseous state, or a liquid state, or varying between a gaseous state and a liquid state, the piping system being in communication with the at least one thermal energy storage The heat storage medium of the connected thermal energy storage is the cooling medium; or the piping system passes through at least one thermal energy storage, and in the thermal energy storage that passes through, the cooling medium passes through the pipeline wall The heat storage medium of the thermal energy storage performs heat exchange.
[权利要求 5] 如权利要求 4所述的系统, 其特征在于, 所述冷却系统还包括气体压 缩机, 或者以气体作为动力的发电机, 连接在所述管道系统中。 [Clave 5] The system of claim 4, wherein the cooling system further comprises a gas compressor, or a gas-powered generator, coupled to the piping system.
[权利要求 6] 如权利要求 4所述的系统, 其特征在于, [Clave 6] The system of claim 4, wherein
所述管道系统与最远离热源的热能存储器连通; 或者,  The piping system is in communication with a thermal energy storage that is furthest from the heat source; or
所述冷却系统还包括汽化室, 所述管道系统中与所述汽化室连通的至 少两个管道并行地分别穿过至少两个热能存储器。  The cooling system also includes a vaporization chamber, wherein at least two conduits in the conduit system in communication with the vaporization chamber pass through at least two thermal energy stores in parallel, respectively.
[权利要求 7] 如权利要求 6所述的系统, 其特征在于, 所述汽化室还与所述热源导 热连接。  [Claim 7] The system of claim 6, wherein the vaporization chamber is further thermally coupled to the heat source.
[权利要求 8] 如权利要求 1所述的系统, 其特征在于, 所述热源设置在最靠近热源 的热能存储器的内部。  [Clave 8] The system of claim 1, wherein the heat source is disposed inside a thermal energy storage that is closest to the heat source.
[权利要求 9] 如权利要求 1所述的系统, 其特征在于, 所述热能存储器以内外嵌套 的方式布置, 或者以上下层叠的方式布置, 或者以水平排列的方式布  [Claim 9] The system according to claim 1, wherein the thermal energy storage is arranged in a nested manner inside or outside, or arranged in a stacked manner above, or arranged in a horizontal arrangement
[权利要求 10] 如权利要求 1所述的系统, 其特征在于, 还包括如下特征中的一种或 多种: [Claim 10] The system of claim 1 further comprising one or more of the following features:
所述热源选自: 利用太阳能的光电转换装置, 电加热装置, 微波加热 装置, 燃烧发热装置;  The heat source is selected from the group consisting of: a photoelectric conversion device using solar energy, an electric heating device, a microwave heating device, and a combustion heating device;
所述储热工质选自: 熔盐, 石蜡, 7j , 冷却剂, 硅胶, 低熔点或低沸 点的金属化合物, 空气;  The heat storage working medium is selected from the group consisting of: molten salt, paraffin wax, 7j, coolant, silica gel, low melting point or low boiling point metal compound, air;
所述热能存储器为相对封闭的容器, 热能流入端或热能流出端形成为 导热壁, 其他位置形成为隔热壁;  The thermal energy storage device is a relatively closed container, and the thermal energy inflow end or the thermal energy outflow end is formed as a heat conducting wall, and other positions are formed as heat insulating walls;
所述热电转换装置为半导体温差发电装置;  The thermoelectric conversion device is a semiconductor thermoelectric power generation device;
所述热电转换装置能够切换于幵启和关闭状态, 在幵启状态下进行温 差发电, 在关闭状态下充当为直接的热能通路; 所述热电转换装置为方向可逆的热电转换装置, 使得其用于热能流入 的端和用于热能流出的端能够对调。  The thermoelectric conversion device is capable of switching between the on and off states, performing temperature difference power generation in the on state, and acting as a direct thermal energy path in the off state; the thermoelectric conversion device is a reversible thermoelectric conversion device, so that the thermoelectric conversion device is used The end where the thermal energy flows in and the end for the thermal energy can be reversed.
PCT/CN2016/077819 2016-03-30 2016-03-30 Thermal energy utilization system WO2017166102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077819 WO2017166102A1 (en) 2016-03-30 2016-03-30 Thermal energy utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077819 WO2017166102A1 (en) 2016-03-30 2016-03-30 Thermal energy utilization system

Publications (1)

Publication Number Publication Date
WO2017166102A1 true WO2017166102A1 (en) 2017-10-05

Family

ID=59962319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077819 WO2017166102A1 (en) 2016-03-30 2016-03-30 Thermal energy utilization system

Country Status (1)

Country Link
WO (1) WO2017166102A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208885A (en) * 2011-05-03 2011-10-05 吉林大学 Phase change heat exchanger thermoelectric generation device
CN102214785A (en) * 2011-05-27 2011-10-12 武汉华利泰复合半导体技术有限公司 Horizontal multi-stage thermal parallel thermoelectric conversion pile
TWI357673B (en) * 2008-02-18 2012-02-01 Ching Wu Wang
CN103078560A (en) * 2013-01-10 2013-05-01 天津大学 Semiconductor temperature difference power generation system
CN103138643A (en) * 2011-11-24 2013-06-05 陕西科林能源发展股份有限公司 Solar thermoelectric conversion mechanism
CN103836502A (en) * 2014-03-20 2014-06-04 广东工业大学 Solar phase change heat accumulation thermoelectric power generation street lamp system
US20140311542A1 (en) * 2013-04-22 2014-10-23 Kabushiki Kaisha Toshiba Thermoelectric conversion element
CN105018043A (en) * 2015-07-14 2015-11-04 中国科学院合肥物质科学研究院 Use of heat-storage and heat-release graphene composite phase-change material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI357673B (en) * 2008-02-18 2012-02-01 Ching Wu Wang
CN102208885A (en) * 2011-05-03 2011-10-05 吉林大学 Phase change heat exchanger thermoelectric generation device
CN102214785A (en) * 2011-05-27 2011-10-12 武汉华利泰复合半导体技术有限公司 Horizontal multi-stage thermal parallel thermoelectric conversion pile
CN103138643A (en) * 2011-11-24 2013-06-05 陕西科林能源发展股份有限公司 Solar thermoelectric conversion mechanism
CN103078560A (en) * 2013-01-10 2013-05-01 天津大学 Semiconductor temperature difference power generation system
US20140311542A1 (en) * 2013-04-22 2014-10-23 Kabushiki Kaisha Toshiba Thermoelectric conversion element
CN103836502A (en) * 2014-03-20 2014-06-04 广东工业大学 Solar phase change heat accumulation thermoelectric power generation street lamp system
CN105018043A (en) * 2015-07-14 2015-11-04 中国科学院合肥物质科学研究院 Use of heat-storage and heat-release graphene composite phase-change material

Similar Documents

Publication Publication Date Title
US20210207895A1 (en) Energy Storage Systems
CA2998032C (en) Integrated solar energy utilization apparatus and system
US20130147197A1 (en) Combined Cycle Solar Power Generation
Chaichan Practical investigation for water solar thermal storage system enhancement using sensible and latent heats in Baghdad-Iraq weathers
CN207570148U (en) A kind of solar energy heat-collecting heat-storage system
EP2592363A1 (en) Energy conversion device
JPH06100351B2 (en) Electric storage heat storage type cooling and heating device and cooling and heating method
CN108362151B (en) Heat storage and energy storage power generation system
US11073305B2 (en) Solar energy capture, energy conversion and energy storage system
WO2017166102A1 (en) Thermal energy utilization system
CN111854193B (en) Integrated solar receiver-multistage heat storage system
CN109181652A (en) Purposes of the tetradecy lamine as phase-changing energy storage material
WO2022266169A1 (en) Thermoelectric battery system and methods thereof
CN104236127A (en) Heat storage system of dish type solar thermal power generation system
CN210373668U (en) Heating system
Kim et al. Experimental evaluation of the performance of solar receivers for compressed air
CN203671959U (en) Three-cavity fluid focused solar energy photo-thermal heating, heat transmission and heat storage system
CN203323425U (en) Thermal storage system of disc-type solar thermal power generation system
CN203231675U (en) Heat storage device
CN109097000A (en) Purposes of the heptadecyl-amine as phase-changing energy storage material
CN104654860A (en) Single-chamber heat accumulating type fluid petroleum heating system
CN112815555B (en) Photo-thermal power generation system
CN210035663U (en) Heat balance type heat storage system
CN110486957B (en) Sensible heat and latent heat composite heat storage system and method
Blinov et al. Experimental research of metal hydride heat storage reactor processes

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895883

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895883

Country of ref document: EP

Kind code of ref document: A1