WO2017166052A1 - 非连续发射的定时方法及相关设备 - Google Patents

非连续发射的定时方法及相关设备 Download PDF

Info

Publication number
WO2017166052A1
WO2017166052A1 PCT/CN2016/077672 CN2016077672W WO2017166052A1 WO 2017166052 A1 WO2017166052 A1 WO 2017166052A1 CN 2016077672 W CN2016077672 W CN 2016077672W WO 2017166052 A1 WO2017166052 A1 WO 2017166052A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpcch
time point
duration
time
transmission
Prior art date
Application number
PCT/CN2016/077672
Other languages
English (en)
French (fr)
Inventor
张鹏
庞伶俐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680083359.7A priority Critical patent/CN108886384A/zh
Priority to PCT/CN2016/077672 priority patent/WO2017166052A1/zh
Publication of WO2017166052A1 publication Critical patent/WO2017166052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a timing method and related device for discontinuous transmission.
  • the cell forward access channel is a connection state configured by the user equipment (UE), which is also called an access state. In the connection state, there is a comparison between the network and the UE. Small transmission requirements for transmitting smaller packets.
  • the network In the CELL_FACH state, the network has only a total of 32 Common E-DCH resources.
  • the Common E-DCH is a resource required for the UE to transmit uplink signals in the CELL_FACH state. The UE cannot be occupied for a long time.
  • the UE has a timer, and during the timer period, there is no uplink E-DCH or HS-DPCCH transmission, and the timer continues to count. After the timer reaches the threshold, the UE will actively release the Common E-DCH resource, so that other UEs can obtain the Common E-DCH resource.
  • the DTX technology under CELL_FACH is being discussed in the standard, so that when the UE is in the CELL_FACH state, the DPCCH can be intermittently transmitted, thereby reducing the uplink interference caused by the DPCCH and saving the power overhead of the UE.
  • the UE's DTX configuration in the CELL_FACH state is different from the DTX configuration of the UE in the CELL_DCH state because the UE occupies the Common E-DCH resource for a short period of time.
  • the transmission process of the UE in the CELL_FACH state is as shown in FIG. 1. The timer starts when the UE turns off the transmitter, and the duration of the UE to turn off the transmitter is timed. If the timer is longer than the threshold, the UE releases the Common E- DCH resources. In the transmission process shown in Figure 1, the lengths of the DPCCH Preamble and DPCCH Postamble are fixed and relatively short.
  • the UE If the UE turns off the transmitter for too long and does not release in the CELL_FACH state.
  • the Common E-DCH resource is used, uplink synchronization cannot be performed in time to control the UE's transmit power. If the UE turns off the uplink transmitter for a long time, it starts to transmit the uplink signal because the time interval between the previous transmission and the current transmission is long, resulting in a large offset of the channel condition, the timing deviation between the UE and the base station. Because the base station cannot know the offset, the base station cannot accurately perform uplink synchronization on the UE's transmit signal.
  • the embodiment of the invention provides a timing method and related device for discontinuous transmission, which is used to solve the uplink synchronization problem of discontinuous transmission of the UE.
  • an embodiment of the present invention provides a timing method for discontinuous transmission, which is used for discontinuous transmission of DTX by a terminal UE, and the method includes:
  • the UE transmits a DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the terminal determines the attribute of the DPCCH preamble corresponding to the uplink signal that needs to be transmitted according to the timing duration and the preset threshold, and transmits the DPCCH preamble according to the determined attribute of the DPCCH preamble, so that after the UE turns off the transmitter for a long time.
  • the preamble of the preferred DPCCH can be transmitted, so that the base station can perform uplink synchronization, and the uplink synchronization problem of the discontinuous transmission of the UE is solved.
  • the determining, by the UE, the attributes of the DPCCH preamble of the dedicated physical layer control channel corresponding to the uplink signal that needs to be transmitted, according to the duration of the distance start and the preset threshold including:
  • the UE divides the duration of the timing start point to the second preset threshold into at least two duration intervals according to the at least one first preset threshold;
  • the attributes of the DPCCH preamble include a length of a DPCCH preamble sequence and/or a manner of forming a DPCCH preamble sequence corresponding to each duration interval;
  • the length of the DPCCH preamble sequence corresponding to the first duration interval is smaller than the length of the DPCCH preamble sequence corresponding to the second duration interval, wherein each value in the first duration interval is smaller than each of the second duration intervals Values;
  • composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the second preset threshold is a duration of releasing the shared enhanced dedicated channel resource from the timing start point to the UE.
  • At least one of the first preset threshold, the second preset threshold, and the attribute of the DPCCH preamble corresponding to each of the duration intervals are configured by the network side to the UE.
  • the timing start point is a preset value or is determined by any one of the following trigger events:
  • the time point at which the downlink synchronization succeeds the time point at which the PV is started or successfully completed, the predefined time point after the PV successfully ends, the time point at which the DPCCH stops transmitting after the PV is successfully terminated, and the time at which the E-DCH starts or ends the transmission.
  • Point confirm the time point at which data needs to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, the time point at which the HS-DPCCH starts or ends the transmission, and the HS- The point in time at which the DPCCH-related DPCCH starts transmitting or ending the transmission;
  • the first preset threshold is a preset value or is determined by any one of the following trigger events:
  • the time point at which the E-DCH starts transmitting or ending the transmission the time point at which the data is required to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, and the HS-DPCCH starts transmitting.
  • the time point at which the transmission ends the time point at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission
  • the time point at which the CELL_DCH state is converted The time point when the CELL_IDLE state is converted, the time point when the CELL_FACH state is exited, the time point when the high-speed shared control channel HS-SCCH command or the radio resource control RRC signaling is received.
  • the method further includes:
  • the UE transmits the uplink signal at a preset time position corresponding to an attribute of the DPCCH preamble.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the timing boundary is periodically occurring.
  • an embodiment of the present invention provides a method for receiving timing of discontinuous transmission data, including:
  • the base station determines the duration of the current time from the start of the timekeeping
  • the base station receives the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the base station determines the attribute of the DPCCH preamble corresponding to the uplink signal transmitted by the terminal according to the time duration and the preset threshold, and receives the DPCCH preamble according to the determined attribute of the DPCCH preamble, so that uplink synchronization can be performed, and the UE is solved.
  • Uplink synchronization problem with discontinuous transmission is the reason for which the DPCCH preamble is not a value that is a received from the terminal according to the time duration and the preset threshold.
  • the determining, by the base station, the attributes of the dedicated physical layer control channel DPCCH preamble transmitted by the terminal UE according to the duration of the distance counting start point and the preset threshold including:
  • the base station divides the duration of the timing start point to the second preset threshold into at least two duration intervals according to the at least one first preset threshold;
  • the attributes of the DPCCH preamble include a length of a DPCCH preamble sequence and/or a manner of forming a DPCCH preamble sequence corresponding to each duration interval;
  • the length of the DPCCH preamble sequence corresponding to the first duration interval is smaller than the length of the DPCCH preamble sequence corresponding to the second duration interval, wherein each value in the first duration interval is smaller than each of the second duration intervals Values;
  • composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the second preset threshold is a duration of releasing the shared enhanced dedicated channel resource from the timing start point to the UE.
  • At least one of the first preset threshold, the second preset threshold, and the attribute of the DPCCH preamble corresponding to each of the duration intervals are configured by the network side to the base station.
  • the timing start point is a preset value or is determined by any one of the following trigger events:
  • the time point at which the downlink synchronization succeeds the time point at which the PV is started or successfully completed, the predefined time point after the PV successfully ends, the time point at which the DPCCH stops transmitting after the PV is successfully terminated, and the time at which the E-DCH starts or ends the transmission.
  • Point confirm the time point at which data needs to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, the time point at which the HS-DPCCH starts or ends the transmission, and the HS- The point in time at which the DPCCH-related DPCCH starts transmitting or ending the transmission;
  • the first preset threshold is a preset value or is determined by any one of the following trigger events:
  • the time point at which the E-DCH starts transmitting or ending the transmission the time point at which the data is required to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, and the HS-DPCCH starts transmitting.
  • the time point at which the transmission ends the time point at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission, the time point at which the CELL_DCH state is converted, the time point at which the CELL_IDLE state is converted, the time point at which the CELL_FACH state is exited, and the high-speed sharing is received.
  • the method further includes:
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the timing boundary is periodically occurring.
  • the embodiment of the present invention further provides a timing method for discontinuous transmission, including:
  • the terminal UE determines a preset time position corresponding to the uplink signal that needs to be transmitted;
  • the UE transmits the uplink signal at the preset time position.
  • the transmitter of the UE starts transmitting the uplink signal at a preset time position agreed with the base station, which improves the performance of the base station uplink synchronization.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the embodiment of the present invention further provides a method for receiving timing of discontinuous transmission data, including:
  • the base station receives the uplink signal at the preset time position.
  • the receiver of the base station receives the uplink signal at a preset time position agreed with the base station, thereby improving the performance of the base station uplink synchronization.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the embodiment of the present invention further provides a terminal, including:
  • a determining module configured to determine a time period from which the time at which the uplink signal needs to be transmitted is received
  • a processing module configured to determine, according to the duration of the start of the distance timing and the preset threshold, an attribute of a dedicated physical layer control channel DPCCH preamble corresponding to the uplink signal that needs to be transmitted;
  • a transmitting module configured to transmit a DPCCH preamble according to the determined attribute of the DPCCH preamble code.
  • the processing module is specifically configured to:
  • the attributes of the DPCCH preamble include a length of a DPCCH preamble sequence and/or a manner of forming a DPCCH preamble sequence corresponding to each duration interval;
  • the length of the DPCCH preamble sequence corresponding to the first duration interval is smaller than the length of the DPCCH preamble sequence corresponding to the second duration interval, wherein each value in the first duration interval is smaller than each of the second duration intervals Values;
  • composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the second preset threshold is a duration of releasing the shared enhanced dedicated channel resource from the timing start point to the UE.
  • At least one of the first preset threshold, the second preset threshold, and the attribute of the DPCCH preamble corresponding to each of the duration intervals are configured by the network side to the UE.
  • the timing start point is a preset value or is determined by any one of the following trigger events:
  • the time point at which the downlink synchronization succeeds the time point at which the PV is started or successfully completed, the predefined time point after the PV successfully ends, the time point at which the DPCCH stops transmitting after the PV is successfully terminated, and the time at which the E-DCH starts or ends the transmission.
  • Point confirm the time point at which data needs to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, the time point at which the HS-DPCCH starts or ends the transmission, and the HS- The point in time at which the DPCCH-related DPCCH starts transmitting or ending the transmission;
  • the first preset threshold is a preset value or is determined by any one of the following trigger events:
  • the time point at which the E-DCH starts transmitting or ending the transmission the time point at which the data is required to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, and the HS-DPCCH starts transmitting.
  • the time point at which the transmission ends the time point at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission, the time point at which the CELL_DCH state is converted, the time point at which the CELL_IDLE state is converted, the time point at which the CELL_FACH state is exited, and the high-speed sharing is received.
  • the transmitting module is further configured to:
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the timing boundary is periodically occurring.
  • an embodiment of the present invention provides a base station, including:
  • a determining module configured to determine a duration of the current time from the start of the timing
  • a processing module configured to determine, according to the duration of the distance starting point and the preset threshold, a length of a dedicated physical layer control channel DPCCH preamble transmitted by the terminal UE;
  • a receiving module configured to receive the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the processing module is specifically configured to:
  • the attributes of the DPCCH preamble include a length of a DPCCH preamble sequence and/or a manner of forming a DPCCH preamble sequence corresponding to each duration interval;
  • the length of the DPCCH preamble sequence corresponding to the first duration interval is smaller than the second duration interval a length of the DPCCH preamble sequence, wherein each value in the first duration interval is less than each value in the second duration interval;
  • composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the second preset threshold is a duration of releasing the shared enhanced dedicated channel resource from the timing start point to the UE.
  • At least one of the first preset threshold, the second preset threshold, and the attribute of the DPCCH preamble corresponding to each of the duration intervals are configured by the network side to the base station.
  • the timing start point is a preset value or is determined by any one of the following trigger events:
  • the time point at which the downlink synchronization succeeds the time point at which the PV is started or successfully completed, the predefined time point after the PV successfully ends, the time point at which the DPCCH stops transmitting after the PV is successfully terminated, and the time at which the E-DCH starts or ends the transmission.
  • Point confirm the time point at which data needs to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, the time point at which the HS-DPCCH starts or ends the transmission, and the HS- The point in time at which the DPCCH-related DPCCH starts transmitting or ending the transmission;
  • the first preset threshold is a preset value or is determined by any one of the following trigger events:
  • the time point at which the E-DCH starts transmitting or ending the transmission the time point at which the data is required to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, and the HS-DPCCH starts transmitting.
  • the time point at which the transmission ends the time point at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission, the time point at which the CELL_DCH state is converted, the time point at which the CELL_IDLE state is converted, the time point at which the CELL_FACH state is exited, and the high-speed sharing is received.
  • the receiving module is further configured to: receive the uplink signal at a preset time position corresponding to an attribute of the DPCCH preamble.
  • the preset time position is to add a preset based on a timing boundary.
  • the time offset is obtained, and the timing boundary includes any one of a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary.
  • the timing boundary is periodically occurring.
  • the embodiment of the present invention further provides a terminal, including:
  • a processing module configured to determine a preset time position corresponding to an uplink signal that needs to be transmitted
  • a transmitting module configured to transmit the uplink signal at the preset time position.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the embodiment of the present invention further provides a base station, including:
  • a processing module configured to determine a preset time position corresponding to the uplink signal sent by the terminal
  • a receiving module configured to receive the uplink signal at the preset time position.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the ninth aspect, the embodiment of the present invention further provides a terminal, including:
  • a processor configured to determine a duration of a time interval from which the uplink signal needs to be transmitted, and determine a DPCCH preamble of the dedicated physical layer control channel corresponding to the uplink signal that needs to be transmitted according to the duration of the distance start time and the preset threshold Attributes;
  • a transmitter configured to transmit a DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the processor is specifically configured to:
  • the attributes of the DPCCH preamble include a DPCCH preamble sequence The length and/or the composition of the DPCCH preamble sequence corresponding to each duration interval;
  • the length of the DPCCH preamble sequence corresponding to the first duration interval is smaller than the length of the DPCCH preamble sequence corresponding to the second duration interval, wherein each value in the first duration interval is smaller than each of the second duration intervals Values;
  • composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the second preset threshold is a duration of releasing the shared enhanced dedicated channel resource from the timing start point to the UE.
  • At least one of the first preset threshold, the second preset threshold, and the attribute of the DPCCH preamble corresponding to each of the duration intervals are configured by the network side to the UE.
  • the timing start point is a preset value or is determined by any one of the following trigger events:
  • the time point at which the downlink synchronization succeeds the time point at which the PV is started or successfully completed, the predefined time point after the PV successfully ends, the time point at which the DPCCH stops transmitting after the PV is successfully terminated, and the time at which the E-DCH starts or ends the transmission.
  • Point confirm the time point at which data needs to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, the time point at which the HS-DPCCH starts or ends the transmission, and the HS- The point in time at which the DPCCH-related DPCCH starts transmitting or ending the transmission;
  • the first preset threshold is a preset value or is determined by any one of the following trigger events:
  • the time point at which the E-DCH starts transmitting or ending the transmission the time point at which the data is required to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, and the HS-DPCCH starts transmitting.
  • the time point at which the transmission ends the time point at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission, the time point at which the CELL_DCH state is converted, the time point at which the CELL_IDLE state is converted, the time point at which the CELL_FACH state is exited, and the high-speed sharing is received.
  • the transmitter is further configured to:
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the timing boundary is periodically occurring.
  • the embodiment of the present invention further provides a base station, including:
  • a processor configured to determine a duration of the current time from the start of the timing, and determine, according to the duration of the start of the distance and the preset threshold, the length of the DPCCH preamble of the dedicated physical layer control channel transmitted by the terminal UE;
  • a receiver configured to receive the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the processor is specifically configured to:
  • the attributes of the DPCCH preamble include a length of a DPCCH preamble sequence and/or a manner of forming a DPCCH preamble sequence corresponding to each duration interval;
  • the length of the DPCCH preamble sequence corresponding to the first duration interval is smaller than the length of the DPCCH preamble sequence corresponding to the second duration interval, wherein each value in the first duration interval is smaller than each of the second duration intervals Values;
  • composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the second preset threshold is a duration of releasing the shared enhanced dedicated channel resource from the timing start point to the UE.
  • At least one of the first preset threshold, the second preset threshold, and the attribute of the DPCCH preamble corresponding to each of the duration intervals are configured by the network side to the base station.
  • the timing start point is a preset value or is determined by any one of the following trigger events:
  • the time point at which the downlink synchronization succeeds the time point at which the PV is started or successfully completed, the predefined time point after the PV successfully ends, the time point at which the DPCCH stops transmitting after the PV is successfully terminated, and the time at which the E-DCH starts or ends the transmission.
  • Point confirm the time point at which data needs to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, the time point at which the HS-DPCCH starts or ends the transmission, and the HS- The point in time at which the DPCCH-related DPCCH starts transmitting or ending the transmission;
  • the first preset threshold is a preset value or is determined by any one of the following trigger events:
  • the time point at which the E-DCH starts transmitting or ending the transmission the time point at which the data is required to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, and the HS-DPCCH starts transmitting.
  • the time point at which the transmission ends the time point at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission, the time point at which the CELL_DCH state is converted, the time point at which the CELL_IDLE state is converted, the time point at which the CELL_FACH state is exited, and the high-speed sharing is received.
  • the receiver is further configured to: receive the uplink signal at a preset time position corresponding to an attribute of the DPCCH preamble.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the timing boundary is periodically occurring.
  • the embodiment of the present invention further provides a terminal, including:
  • a processor configured to determine a preset time position corresponding to an uplink signal that needs to be transmitted
  • a transmitter configured to transmit the uplink signal at the preset time position.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • the embodiment of the present invention further provides a base station, including:
  • a processor configured to determine a preset time position corresponding to the uplink signal sent by the terminal
  • a receiver configured to receive the uplink signal at the preset time position.
  • the preset time position is obtained by adding a preset time offset based on a timing boundary, where the timing boundary includes a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Any of them.
  • FIG. 1 is a schematic diagram of a DTX process of a UE in a current CELL_FACH state
  • FIG. 2 is a schematic structural diagram of a system applied according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a timing method for discontinuous transmission in an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of another timing method for discontinuous transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a DTX process of a UE in a CELL_FACH state according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a start position of uplink transmission in a DTX process of a UE in a CELL_FACH state according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the application scenario implemented by the present invention is DTX of the UE, and the applied system is as shown in FIG. 2, including the UE 201 and the base station 202.
  • the UE performs DTX in the CELL_FACH state.
  • the base station receives the uplink signal of the DTX of the UE in the CELL_FACH state.
  • the system may also include a Radio Network Controller (RNC) 203, which is configured to configure related parameters for uplink signal transmission and reception for the UE and the base station.
  • RNC Radio Network Controller
  • the embodiments of the present invention can be applied to DTX technologies in WCDMA, LTE, and TDSCDMA. Especially suitable for DTX of UE in CELL_FACH state.
  • the DPCCH preamble is a symbol sequence transmitted in advance of an uplink signal (such as E-DCH, HS-DPCCH, etc.), the symbol sequence is generally used for uplink synchronization and channel estimation, and the DPCCH preamble may be the DPCCH itself.
  • the RNC configures the connection state of the UE to be the CELL_FACH state, and the correspondence between the timing interval and the attributes of the DPCCH preamble for configuring the terminal and the base station.
  • the UE determines a timing interval corresponding to the timing duration, and transmits a DPCCH preamble according to the attribute of the DPCCH preamble corresponding to the timing interval.
  • the base station determines a time interval corresponding to the time duration, and receives the DPCCH preamble by using the attribute of the DPCCH preamble corresponding to the time interval.
  • the attributes of the DPCCH preamble include the length of the DPCCH preamble sequence and/or the composition of the DPCCH preamble sequence.
  • the correspondence between the timing interval and the attributes of the DPCCH preamble may be pre-agreed by the base station and the terminal.
  • the correspondence between the timing interval and the attributes of the DPCCH preamble may be configured by the RNC to the UE and the base station.
  • the uplink synchronization problem between the UE and the base station, especially the UE in the CELL_FACH state proposes a timing method for discontinuous transmission as shown in FIG. 3, which needs to be explained.
  • the method is not limited to the UE in the CELL_FACH state, and may also be applied to the UE in the CELL_DCH state, as follows.
  • Step 301 The UE determines the duration of the time at which the uplink signal needs to be transmitted from the start of the timing.
  • the UE starts a timer at the timing start point, and acquires the time duration of the timer at the time of transmitting the uplink signal, that is, the time duration from the time when the uplink signal is transmitted.
  • the starting point of the timing is a preset value, which may be agreed by the base station and the UE through a protocol, or configured by the network side (such as an RNC) for the UE and the base station.
  • the timing start point is determined by any one of the following trigger events: a time point at which the downlink synchronization succeeds, a time point at which the post-verification (PV) starts or ends successfully, and a predefined time point after the PV successfully ends.
  • Step 302 The UE determines the attribute of the DPCCH preamble corresponding to the uplink signal that needs to be transmitted according to the duration of the start time and the preset threshold.
  • the UE divides the duration from the timing start point to the second preset threshold into at least two duration intervals according to the at least one first preset threshold, where each duration interval corresponds to an attribute of one DPCCH preamble. Specifically, the attributes of the DPCCH preamble corresponding to different duration intervals are different.
  • the second preset threshold is a duration that the UE releases the occupied Common E-DCH resource from the timing start point to the UE.
  • the UE determines the duration interval of the duration from the start of the timing, and obtains the attribute of the DPCCH preamble corresponding to the determined duration interval, and determines the attribute of the obtained DPCCH preamble as the DPCCH preamble corresponding to the uplink signal to be transmitted. Attributes.
  • the length of the DPCCH preamble corresponding to the first duration interval is smaller than the second duration interval.
  • the composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the first preset threshold divides the duration from the start of the timing to the release of the Common E-DCH resource occupied by the UE into two duration intervals, that is, the first The length of the DPCCH preamble corresponding to the first duration interval is smaller than the length of the DPCCH preamble corresponding to the second duration interval, wherein each value in the first duration interval is smaller than the second duration interval Each value.
  • the first preset threshold is a preset value, which may be agreed by the base station and the UE through a protocol, or configured by the network side (such as an RNC) for the UE and the base station.
  • the first preset threshold is determined by any one of the following trigger events:
  • the time point at which the E-DCH starts transmitting or ending the transmission the time point at which the data is required to be transmitted, the time point at which the end of the data transmission is confirmed, the time point at which the DPCCH associated with the E-DCH starts or ends the transmission, and the HS-DPCCH starts transmitting.
  • the time point at which the transmission ends the time point at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission, the time point at which the CELL_DCH state is converted, the time point at which the CELL_IDLE state is converted, the time point at which the CELL_FACH state is exited, and the high-speed sharing is received.
  • HS-SCCH High Speed-Shared Control Channel
  • RRC Radio Resource Control
  • multiple timers can be set to start at the same timing start point, and the thresholds for termination of each timer are different.
  • the threshold for termination of a timer is a preset threshold, and multiple timers are used to determine multiple durations. Interval.
  • the threshold value of the termination of the timer is a preset second threshold value, and at least one first preset threshold is set for the entire life of the timer.
  • the period is divided into multiple time intervals.
  • the attributes of the DPCCH preamble corresponding to each of the at least one first preset threshold, the second preset threshold, and each duration interval are configured by the network side to the UE.
  • the network side configures the UE with at least one first preset threshold and second through RRC signaling.
  • the radio network controller notifies the UE of the length of the DPCCH preamble corresponding to each of the first preset threshold, the second preset threshold, and each duration interval by using RRC signaling.
  • the network side configures, by using the HS-SCCH command, the length of the DPCCH preamble corresponding to each of the first preset threshold, the second preset threshold, and each duration interval.
  • the network side may configure, for the UE, at least one first preset threshold, a second preset threshold, and an attribute of a DPCCH preamble corresponding to each time interval of the UE after the UE acquires the Common E-DCH resource.
  • the network side may also notify the UE of the at least one first preset threshold, the second preset threshold, and the duration of each DPCCH preamble corresponding to each time interval in the broadcast mode, and the UE receiving the broadcast in the same cell Use the same configuration.
  • Step 303 The UE transmits a DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the UE starts transmitting the DPCCH preamble in X time slots before transmitting the uplink signal, where X is a positive integer greater than one.
  • X is equal to the length of the DPCCH preamble.
  • X may be configured by the RNC to the UE and the base station.
  • the UE sends a DPCCH preamble first. After the DPCCH preamble is sent, the data and DPCCH are sent immediately, and the data and DPCCH are transmitted simultaneously.
  • the slot format of the DPCCH preamble can be the same as the slot format of the DPCCH.
  • the UE transmits an uplink signal at a preset time position corresponding to the attribute of the DPCCH preamble.
  • the preset time position is obtained by adding a preset time offset based on the timing boundary.
  • the timing boundary includes any one of a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary.
  • the timing boundary may be periodically generated, for example, a timing boundary occurs every Y TTIs, and Y is a parameter configured by the base station to the UE and the base station.
  • the UE can restart the timer before the first preset threshold is reached.
  • the time at which the timer is restarted may be a preset value, and the preset value is the UE and the base station. It is configured by the protocol or configured for the UE and the base station for the network side (such as the RNC).
  • the time point at which the timer is restarted may also be any one of the following: a time point at which the E-DCH starts transmitting or ending the transmission, a time point at which it is confirmed that data needs to be transmitted, a time point at which the end of the data transmission is confirmed, The point in time at which the DPCCH associated with the E-DCH starts transmitting or ending the transmission, the point in time at which the HS-DPCCH starts transmitting or ending the transmission, and the point in time at which the DPCCH associated with the HS-DPCCH starts transmitting or ending the transmission.
  • Step 304 The base station determines the duration of the current time from the start of the timing.
  • Step 305 The base station determines, according to the duration of the start time of the time counting and the preset threshold, the attribute of the DPCCH preamble transmitted by the terminal UE.
  • the base station divides, according to the at least one first preset threshold, the duration of the timing start point to the second preset threshold into at least two duration intervals; and the base station determines, by the base station, the duration to which the timing start point belongs.
  • the duration interval is obtained, and the attribute of the determined DPCCH preamble corresponding to the duration interval is obtained.
  • the length of the DPCCH preamble corresponding to the first duration interval is smaller than the length of the DPCCH preamble corresponding to the second duration interval, wherein each value in the first duration interval is smaller than each of the second duration intervals. Values.
  • the composition manner of the DPCCH preamble sequence corresponding to the first duration interval is different from the composition manner of the DPCCH preamble sequence corresponding to the second duration interval.
  • the second preset threshold is a duration from the timing start point to the release of the shared enhanced dedicated channel resource occupied by the UE.
  • At least one first preset threshold, a second preset threshold, and an attribute of a DPCCH preamble corresponding to each of the duration intervals are configured by the network side to the base station.
  • the RNC configures, for the base station, a first preset threshold, a second preset threshold, and an attribute of a DPCCH preamble corresponding to each of the duration intervals.
  • the specific values of the first preset threshold are as described above.
  • the attributes of the DPCCH preamble corresponding to the first preset threshold, the second preset threshold, and each duration interval need to be consistent with the understanding of the base station and the terminal.
  • Step 306 The base station receives the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the base station receives the uplink signal at a preset time position corresponding to an attribute of the DPCCH preamble.
  • the uplink signal includes any one of a DPCCH preamble and an uplink data or All.
  • the preset time position is obtained by adding a preset time offset based on the timing boundary, where the timing boundary includes any one of a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. It should be noted that the preset time position needs to be consistent with the understanding of the base station. Among them, the timing boundary can be periodically.
  • the terminal determines the attribute of the DPCCH preamble corresponding to the uplink signal that needs to be transmitted according to the timing duration and the preset threshold, and transmits the DPCCH preamble according to the determined attribute of the DPCCH preamble, so that after the UE turns off the transmitter for a long time.
  • the preamble of the preferred DPCCH can be transmitted, so that the base station can perform uplink synchronization. If the UE starts the uplink signal transmission only after the transmitter is turned off for a short time, the previous DPCCH preamble can still be used, thereby solving the uplink synchronization problem of the discontinuous transmission of the UE.
  • the terminal determines the length of the DPCCH preamble corresponding to the uplink signal that needs to be transmitted according to the chrono duration and the preset threshold, and transmits the DPCCH preamble according to the determined length of the DPCCH preamble, so that the UE starts the uplink after the UE is turned off for a long time.
  • the preamble of the longer DPCCH can be transmitted, so that the base station can have enough DPCCH preamble for uplink synchronization. If the UE only starts the uplink signal transmission after turning off the transmitter for a short time, the shorter DPCCH preamble can still be used, thereby solving the uplink synchronization problem of the discontinuous transmission of the UE.
  • the RNC configures the correspondence between the uplink signal and the preset time position for the UE and the base station, and the UE transmits the uplink signal according to the configured preset time position, and the base station receives the uplink signal according to the configured preset time position.
  • the uplink synchronization problem between the UE and the base station, especially the UE in the CELL_FACH state proposes a timing method for discontinuous transmission as shown in FIG. 4, which needs to be explained.
  • the method is not limited to the UE in the CELL_FACH state, and may also be applied to the UE in the CELL_DCH state, as follows:
  • Step 401 The UE determines a preset time position corresponding to the uplink signal that needs to be transmitted.
  • the preset time position is to increase a preset time offset based on a timing boundary
  • the timing boundary includes any one of a downlink radio frame boundary, an uplink radio frame boundary, and an uplink E-DCH data TTI boundary. Among them, the timing boundary can appear periodically.
  • Step 402 The UE transmits the uplink signal at the preset time position.
  • different uplink signals correspond to different preset time positions.
  • the UE needs to transmit a DPCCH, and the DPCCH includes a DPCCH preamble, it needs to start transmission at a preset time position corresponding to the DPCCH; if the UE needs to transmit an E-DCH data channel, it needs to correspond to the E-DCH data channel.
  • the transmission starts at a preset time position, and the E-DCH data channel can be E-DPDCH or E-DPCCH.
  • the preset time position corresponding to the DPCCH is earlier than the preset time position corresponding to the E-DCH data channel by X time slots, and the DPCCH preamble of the X time slots can be sent before the E-DCH data channel is sent.
  • the base station acquires uplink synchronization.
  • the process of the base station periodically receiving the uplink signal sent by the terminal is as follows:
  • Step 403 The base station determines a preset time position corresponding to the uplink signal sent by the terminal.
  • the preset time position corresponding to the uplink signal configured on the base station side is consistent with the preset time position corresponding to the uplink signal configured on the terminal side.
  • Step 404 The base station receives the uplink signal at the preset time position.
  • the uplink signal includes any one or all of the DPCCH preamble and the uplink data.
  • the preset time position corresponding to the uplink signal may be configured by the network side to the UE and the base station, and may be mutually agreed by the UE and the base station.
  • the transmitter of the UE starts transmitting the uplink signal at a preset time position agreed with the base station, which improves the performance of the base station uplink synchronization.
  • the timing process of the DTX of the UE in the CELL_FACH state is exemplified by three specific embodiments.
  • the UE in the CELL_FACH state is configured with DTX, and after each uplink signal transmission is completed, the UE turns off the transmitter and starts a timer.
  • the timer has two thresholds, namely, a threshold and a threshold. Second, the value of the threshold one is less than the value of the threshold two.
  • the DPCCH preamble of length x1 is used, and the DPCCH Postamble of length x2 is used. If the UE has E-DCH and/or HS-DPCCH to transmit between Threshold 1 and Threshold 2, a DPCCH preamble of length y1 is used, and a DPCCH Postamble of length y2 is used.
  • the length units of x1, x2, y1, and y2 include, but are not limited to, a time slot, a Transmit Time Interval (TTI), a frame, a millisecond, and the like.
  • TTI Transmit Time Interval
  • the RNC notifies the UE of any one or more of the following parameters through RRC signaling: a value of the threshold one, a value of the threshold two, and x1, x2, y1, and y2.
  • the base station configures the UE with any one or more of the following parameters by using an HS-SCCH command: a value of the threshold one, a value of the threshold two, and x1, x2, y1, and y2.
  • the network side may configure the above parameters for the UE after the UE acquires the Common E-DCH resource, or the network side broadcasts the above parameters by means of broadcast, and the UE receiving the broadcast in the cell adopts the above parameters of the broadcast.
  • the value of the threshold 2 is the duration of the time when the timer releases the occupied Common E-DCH resource from the timing start point to the UE.
  • a threshold is added on the basis of the existing timer in FIG. 3, that is, the threshold is one, and the timing period of the timer is divided into two time intervals by the threshold one, and each time interval corresponds to
  • the length of the DPCCH preamble is different, and the DPCCH Postamble corresponding to each time interval can be the same, so that a longer DPCCH preamble can be transmitted when the uplink transmission is started after the UE is turned off for a long time, so that the network side has enough
  • the DPCCH preamble performs uplink synchronization, and if the UE initiates uplink transmission only after the transmitter is turned off for a short time, a shorter DPCCH preamble can still be used.
  • a new timer is introduced. Assume that the UE in the CELL_FACH state is configured with DTX. When the newly introduced timer does not exceed the threshold, If the UE has E-DCH and/or HS-DPCCH to transmit, a DPCCH preamble of length x1 is used, and a DPCCH Postamble of length x2 is used. When the newly introduced timer exceeds the threshold, if the UE has E-DCH and/or HS-DPCCH to transmit, a DPCCH preamble of length y1 is used, and a DPCCH Postamble of length y2 is used.
  • the length units of x1, x2, y1, and y2 include, but are not limited to, a time slot, a Transmit Time Interval (TTI), a frame, a millisecond, and the like.
  • TTI Transmit Time Interval
  • the time point at which the newly defined timer starts counting, the time point at which the newly defined timer timing is restarted, and the time point at which the newly defined timer ends including but not limited to the ones listed in Table 1.
  • a new timer is introduced on the basis of the timer shown in FIG. 1, and the new timer sets a corresponding threshold, and multiple durations are obtained according to the threshold corresponding to the new timer. Intervals, different duration intervals correspond to DPCCH preambles of different lengths, so that when the UE initiates uplink transmission after the transmitter is turned off for a long time, a longer DPCCH preamble is transmitted, so that the network side has sufficient DPCCH preamble for uplink synchronization. And if the UE initiates the uplink transmission only after the transmitter is turned off for a short time, a shorter DPCCH preamble can still be used.
  • a method for the UE to agree with the base station to start the uplink signal transmission is introduced.
  • the UE needs to transmit a data channel or a control channel, it can only start transmitting at a preset time position.
  • the preset time position may be notified by the network to the UE, or may be pre-agreed by the network side and the UE.
  • the base station can know the starting position of the transmission of the DPCCH in advance, and improves the accuracy of the uplink synchronization.
  • the solid line is the frame boundary
  • the dotted line is a predefined starting position for the uplink signal transmission, that is, the preset time position, and the starting position shown in FIG. 6 is defined with respect to the frame boundary, and is implemented.
  • the start position may also be defined with respect to a TTI boundary, a boundary of a downlink radio frame, or the like. For example, if the UE transmits a control channel, the UE starts transmitting from the starting position shown by the broken line in FIG. 6, and cannot transmit the control channel from a position other than the broken line.
  • different starting positions may also be defined for different channels. For example, if the UE transmits a data channel, the starting position is a frame boundary indicated by a solid line.
  • the UE if the UE needs to transmit a DPCCH including a DPCCH preamble, it must start transmitting from the start position corresponding to the DPCCH. If the UE needs to transmit an E-DCH data channel, including an Enhanced Dedicated Physical Data Channel (E-DPDCH) and an E-DPCCH, the transmission must start from the corresponding start position of the E-DCH data channel.
  • E-DPDCH Enhanced Dedicated Physical Data Channel
  • E-DPCCH Enhanced Dedicated Physical Data Channel
  • the definition of the starting position may be obtained by adding a time offset to the existing timing boundary.
  • the existing timing boundary includes but is not limited to: a downlink radio frame boundary, an uplink radio frame boundary, a TTI boundary of uplink E-DCH data, and the like.
  • the time offset can be in units of time slots, TTIs, frames, milliseconds, and the like. Among them, the timing boundary can be periodically.
  • different starting positions may be defined for each uplink channel.
  • the starting position of the DPCCH may be earlier than the starting position of the E-DCH by x timeslots.
  • the UE sends the DPCCH preamble of x timeslots before transmitting the E-DCH, which is beneficial for the base station to obtain uplink synchronization.
  • different DPCCH preambles can be assigned different starting positions for DPCCH preambles. specifically.
  • the starting position of the DPCCH is the starting position one; when the UE is according to the first specific embodiment or the second specific implementation
  • the starting position of the DPCCH is the starting position two.
  • the network side may notify the definition of the starting location of the UE, the correspondence between the starting location and the channel, and the correspondence between the starting location and the length of the DPCCH preamble by using an RRC message.
  • the definition of the starting position may specifically be a timing boundary with respect to the timing boundary and an offset amount relative to the timing boundary.
  • the network side may notify the definition of the starting location of the UE, the correspondence between the starting location and the channel, and the correspondence between the starting location and the length of the DPCCH preamble by physical layer signaling, such as an HS-SCCH command.
  • the network side and the UE mutually agree on the definition of the starting position, the correspondence between the starting position and the channel, and the correspondence between the starting position and the length of the DPCCH preamble in a predefined manner.
  • an embodiment of the present invention provides a UE, and the specific implementation of the UE For details, refer to the description of the first embodiment, and the repeated description is not repeated.
  • the UE mainly includes:
  • a determining module 701 configured to determine a duration of a time when the uplink signal needs to be transmitted from the starting point of the timing
  • the processing module 702 is configured to determine, according to the duration of the start of the distance timing and the preset threshold, an attribute of a dedicated physical layer control channel DPCCH preamble corresponding to the uplink signal that needs to be transmitted;
  • the transmitting module 703 is configured to transmit the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the determining module refers to the detailed description of the step 301.
  • the processing module refers to the specific description of the step 302.
  • the transmitting module refers to the detailed description of the step 303, which is not repeated here.
  • the embodiment of the present invention further provides a base station.
  • a base station for the specific implementation of the base station, reference may be made to the description of the first embodiment, and the repeated description is not repeated.
  • the base station mainly includes:
  • a determining module 801 configured to determine a duration of the current time from the start of the timing
  • the processing module 802 is configured to determine, according to the duration of the distance timing starting point and the preset threshold, an attribute of a dedicated physical layer control channel DPCCH preamble transmitted by the terminal UE;
  • the receiving module 803 is configured to receive the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • step 304 refers to the description of step 304 in the specific implementation of the determining module.
  • step 305 refers to the description of step 305.
  • step 306 refers to the description of step 306, which is not repeated here.
  • the terminal mainly includes:
  • the processing module 901 is configured to determine a preset time position corresponding to the uplink signal that needs to be transmitted;
  • the transmitting module 902 is configured to transmit the uplink signal at the preset time position.
  • step 401 For details, refer to the description of step 401 and the specificity of the transmitting module. For the implementation, refer to the description of step 402, which is not repeated here.
  • the base station mainly includes:
  • the processing module 1001 is configured to determine a preset time position corresponding to the uplink signal sent by the terminal;
  • the receiving module 1002 is configured to receive the uplink signal at the preset time position.
  • step 403 For details, refer to the description of step 403 for the specific implementation of the processing module.
  • step 404 For the specific implementation of the receiving module, refer to the description of step 404, which is not repeated here.
  • a UE is further provided in the embodiment of the present invention.
  • the UE mainly includes processing.
  • the transceiver 1103 is instructed to transmit a DPCCH preamble according to the determined attributes of the DPCCH preamble.
  • the processor 1101 is configured to implement the functions of the determining module 701 and the processing module 702, and instruct the transceiver to complete the function of the transmitting module 703.
  • the processor refer to the descriptions of the determining module 701, the processing module 702, and the transmitting module 703, and the descriptions of steps 301 to 303, which are not repeated here.
  • the embodiment of the present invention further provides a base station.
  • the base station mainly includes a processor 1201.
  • the instructing transceiver 1203 receives the DPCCH preamble according to the determined attributes of the DPCCH preamble.
  • the processor 1201 is configured to implement the functions of the determining module 801 and the processing module 802, and instruct the transceiver to complete the function of the receiving module 803.
  • the processor refer to the descriptions of the determining module 801, the processing module 802, and the receiving module 803, and the descriptions of steps 304 to 306, which are not repeated here.
  • the terminal mainly includes processing.
  • the processor is used to implement the function of the processing module 901, and the function of the transceiver is implemented by the transceiver.
  • the processing module 901 and the transmitting module 902 refer to the description of step 401 and step 402. Repeat again.
  • the base station mainly includes processing.
  • the processor is configured to implement the function of the processing module 1001, and instruct the transceiver to implement the connection.
  • the function of the receiving module 1002 is described in the description of the processing module 1001 and the receiving module 1002, and the descriptions of the steps 403 and 404 are not repeated here.
  • the terminal mainly includes:
  • the processor 1501 is configured to determine a duration of the time when the uplink signal needs to be transmitted from the start of the timeout, and determine a dedicated physical layer control channel DPCCH preamble corresponding to the uplink signal that needs to be transmitted according to the duration of the distance start time and the preset threshold. Attribute
  • the transmitter 1502 is configured to transmit the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the processor 1501 is configured to implement the functions of the determining module 701 and the processing module 702, and instructs the transmitter 1502 to complete the function of the transmitting module 703.
  • the processor refer to the descriptions of the determining module 701, the processing module 702, and the transmitting module 703, and the descriptions of steps 301 to 303, which are not repeated here.
  • the embodiment of the present invention further provides a base station.
  • the base station mainly includes:
  • the processor 1601 is configured to determine a duration of the current time from the start of the timing, and determine, according to the duration of the distance start and the preset threshold, the length of the dedicated physical layer control channel DPCCH preamble transmitted by the terminal UE;
  • the receiver 1602 is configured to receive the DPCCH preamble according to the determined attribute of the DPCCH preamble.
  • the processor 1601 is configured to implement the functions of the determining module 801 and the processing module 802, and instructs the receiver 1602 to complete the function of the receiving module 803.
  • the processor refer to the descriptions of the determining module 801, the processing module 802, and the receiving module 803, and the descriptions of steps 304 to 306, which are not repeated here.
  • the terminal has For the implementation of the second embodiment, refer to the description of the second embodiment, and the repeated description is not repeated.
  • the terminal mainly includes:
  • the processor 1701 is configured to determine a preset time position corresponding to an uplink signal that needs to be transmitted;
  • the transmitter 1702 is configured to transmit the uplink signal at the preset time position.
  • the processor 1701 is configured to implement the function of the processing module 901
  • the transmitter 1702 is configured to implement the function of the transmitting module.
  • the processor 1701 is configured to implement the function of the processing module 901
  • the transmitter 1702 is configured to implement the function of the transmitting module.
  • the base station mainly includes:
  • the processor 1801 is configured to determine a preset time position corresponding to the uplink signal sent by the terminal;
  • the receiver 1802 is configured to receive the uplink signal at the preset time position.
  • the processor 1801 is configured to implement the function of the processing module 1001
  • the receiver 1802 is configured to implement the function of the receiving module 1002.
  • the processor 1801 is configured to implement the function of the processing module 1001
  • the receiver 1802 is configured to implement the function of the receiving module 1002.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种非连续发射的定时方法及相关设备,用以解决UE的非连续发射的上行同步问题。方法为:UE确定需要发射上行信号的时刻距离计时起点的时长;所述UE根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;所述UE按照确定的所述DPCCH前导码的属性发射DPCCH前导码。

Description

非连续发射的定时方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种非连续发射的定时方法及相关设备。
背景技术
小区前向接入信道(CELL_FACH,Cell Forward Access Channel)是网络为终端(User Equipment,UE)配置的一种连接状态,也称为接入态,该连接状态下,网络与UE之间有较小的传输需求,用于传输较小的数据包。CELL_FACH状态下,网络一共只有32个共用的(Common)E-DCH资源,Common E-DCH是UE在CELL_FACH状态下发射上行信号时需要的一种资源,UE不能长时间占用。通常,UE有一个定时器,定时器计时期间,没有上行E-DCH或HS-DPCCH发射,则定时器继续计时。定时器到达门限值后,UE会主动释放Common E-DCH资源,以便其它UE能够获得Common E-DCH资源。
目前,标准上正在讨论CELL_FACH下的DTX技术,以便UE处于CELL_FACH状态下时,能够间断发射DPCCH,达到减少DPCCH带来的上行干扰,节约UE的功率开销的目的。
因为UE占用Common E-DCH资源的时间较短,所以CELL_FACH状态下UE的DTX配置与CELL_DCH状态下UE的DTX配置不同。CELL_FACH状态下UE的传输过程如图1所示,定时器开始于UE关闭发射机的时刻,对UE关闭发射机的时长进行计时,如果定时器的计时时长大于门限值,UE释放Common E-DCH资源。图1所示的传输过程中,DPCCH Preamble、DPCCH Postamble的长度都是固定的,而且比较短。
如果CELL_FACH状态下UE关闭发射机的时长过长,且没有释放 Common E-DCH资源时,无法及时做到上行同步,控制UE的发射功率。如果UE关闭上行发射机较长时间之后,开始发射上行信号,因为之前一次发射与本次发射之间的时间间隔较长,导致信道条件、UE和基站之间的定时偏差产生较大的偏移,由于基站无法获知该偏移,导致基站无法准确地对UE的发射信号进行上行同步。
发明内容
本发明实施例提供一种非连续发射的定时方法及相关设备,用以解决UE的非连续发射的上行同步问题。
本发明实施例提供的具体技术方案如下:
第一方面,本发明实施例提供一种非连续发射的定时方法,用于终端UE的非连续发射DTX,方法包括:
所述UE确定需要发射上行信号的时刻距离计时起点的时长;
所述UE根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
所述UE按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
该实施例中,终端根据计时时长以及预设门限,确定需要发射的上行信号对应的DPCCH前导码的属性,按照确定的DPCCH前导码的属性发射DPCCH前导码,使得在UE长时间关闭发射机后启动上行信号传输时,能够发射较优的DPCCH的前导码,使得基站能够进行上行同步,解决了UE的非连续发射的上行同步问题。
可能的实施方式中,所述UE根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性,包括:
所述UE根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
所述UE确定所述距离所述计时起点的时长所属的所述时长区间,获取确 定的所述时长区间对应的DPCCH前导码的属性,将获取的所述DPCCH前导码的属性确定为所述需要发射的上行信号对应的所述DPCCH前导码的属性。
可能的实施方式中,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
可能的实施方式中,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
可能的实施方式中,至少一个所述第一预设门限、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述UE。
可能的实施方式中,所述计时起点为预设值或者由以下任意一种触发事件确定:
下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
所述第一预设门限为预设值或者由以下任意一种触发事件确定:
E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、 转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
可能的实施方式中,所述方法还包括:
所述UE在所述DPCCH前导码的属性对应的预设时间位置处发射所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
可能的实施方式中,所述定时边界为周期性出现。
第二方面,本发明实施例提供了一种非连续发射数据的接收定时方法,包括:
基站确定当前时刻距离计时起点的时长;
所述基站根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的属性;
所述基站按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
该实施例中,基站根据计时时长以及预设门限,确定终端发射的上行信号对应的DPCCH前导码的属性,按照确定的DPCCH前导码的属性接收DPCCH前导码,使得能够进行上行同步,解决了UE的非连续发射的上行同步问题。
可能的实施方式中,所述基站根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的属性,包括:
所述基站根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
所述基站确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性。
可能的实施方式中,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
可能的实施方式中,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
可能的实施方式中,至少一个所述第一预设门限值、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述基站。
可能的实施方式中,所述计时起点为预设值或者由以下任意一种触发事件确定:
下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
所述第一预设门限为预设值或者由以下任意一种触发事件确定:
E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
可能的实施方式中,所述方法还包括:
所述基站在所述DPCCH前导码的属性对应的预设时间位置处接收所述 上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
可能的实施方式中,所述定时边界为周期性出现。
第三方面,本发明实施例还提供了一种非连续发射的定时方法,包括:
终端UE确定需要发射的上行信号对应的预设时间位置;
所述UE在所述预设时间位置处发射所述上行信号。
该实施例中,UE的发射机在与基站约定的预设时间位置处开始发射上行信号,提高了基站上行同步的性能。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
第四方面,本发明实施例还提供了一种非连续发射数据的接收定时方法,包括:
基站确定终端发射上行信号对应的预设时间位置;
所述基站在所述预设时间位置处接收所述上行信号。
该实施例中,基站的接收机在与基站约定的预设时间位置处接收上行信号,提高了基站上行同步的性能。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
第五方面,本发明实施例还提供了一种终端,包括:
确定模块,用于确定需要发射上行信号的时刻距离计时起点的时长;
处理模块,用于根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
发射模块,用于按照确定的所述DPCCH前导码的属性发射DPCCH前导 码。
可能的实施方式中,所述处理模块具体用于:
根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性,将获取的所述DPCCH前导码的属性确定为所述需要发射的上行信号对应的所述DPCCH前导码的属性。
可能的实施方式中,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
可能的实施方式中,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
可能的实施方式中,至少一个所述第一预设门限值、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述UE。
可能的实施方式中,所述计时起点为预设值或者由以下任意一种触发事件确定:
下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
所述第一预设门限为预设值或者由以下任意一种触发事件确定:
E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
可能的实施方式中,所述发射模块还用于:
在所述DPCCH前导码的属性对应的预设时间位置处发射所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
可能的实施方式中,所述定时边界为周期性出现。
第六方面,本发明实施例提供了一种基站,包括:
确定模块,用于确定当前时刻距离计时起点的时长;
处理模块,用于根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的长度;
接收模块,用于按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
可能的实施方式中,所述处理模块具体用于:
根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性。
可能的实施方式中,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应 的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
可能的实施方式中,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
可能的实施方式中,至少一个所述第一预设门限、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述基站。
可能的实施方式中,所述计时起点为预设值或者由以下任意一种触发事件确定:
下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
所述第一预设门限为预设值或者由以下任意一种触发事件确定:
E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
可能的实施方式中,所述接收模块还用于:在所述DPCCH前导码的属性对应的预设时间位置处接收所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设 的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
可能的实施方式中,所述定时边界为周期性出现。
第七方面,本发明实施例还提供了一种终端,包括:
处理模块,用于确定需要发射的上行信号对应的预设时间位置;
发射模块,用于在所述预设时间位置处发射所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
第八方面,本发明实施例还提供了一种基站,包括:
处理模块,用于确定终端发射上行信号对应的预设时间位置;
接收模块,用于在所述预设时间位置处接收所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
第九方面,本发明实施例还提供了一种终端,包括:
处理器,用于确定需要发射上行信号的时刻距离计时起点的时长,根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
发送器,用于按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
可能的实施方式中,所述处理器具体用于:
根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性,将获取的所述DPCCH前导码的属性确定为所述需要发射的上行信号对应的所述DPCCH前导码的属性。
可能的实施方式中,所述DPCCH前导码的属性包括DPCCH前导码序列 的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
可能的实施方式中,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
可能的实施方式中,至少一个所述第一预设门限值、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述UE。
可能的实施方式中,所述计时起点为预设值或者由以下任意一种触发事件确定:
下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
所述第一预设门限为预设值或者由以下任意一种触发事件确定:
E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
可能的实施方式中,所述发送器还用于:
在所述DPCCH前导码的属性对应的预设时间位置处发射所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
可能的实施方式中,所述定时边界为周期性出现。
第十方面,本发明实施例还提供了一种基站,包括:
处理器,用于确定当前时刻距离计时起点的时长,根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的长度;
接收器,用于按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
可能的实施方式中,所述处理器具体用于:
根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性。
可能的实施方式中,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
可能的实施方式中,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
可能的实施方式中,至少一个所述第一预设门限、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述基站。
可能的实施方式中,所述计时起点为预设值或者由以下任意一种触发事件确定:
下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
所述第一预设门限为预设值或者由以下任意一种触发事件确定:
E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
可能的实施方式中,所述接收器还用于:在所述DPCCH前导码的属性对应的预设时间位置处接收所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
可能的实施方式中,所述定时边界为周期性出现。
第十一方面,本发明实施例还提供了一种终端,包括:
处理器,用于确定需要发射的上行信号对应的预设时间位置;
发送器,用于在所述预设时间位置处发射所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
第十二方面,本发明实施例还提供了一种基站,包括:
处理器,用于确定终端发射上行信号对应的预设时间位置;
接收器,用于在所述预设时间位置处接收所述上行信号。
可能的实施方式中,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
附图说明
图1为现有的CELL_FACH状态下UE的DTX过程示意图;
图2为本发明实施例所应用的系统架构示意图;
图3为本发明实施例中非连续发射的定时方法流程示意图;
图4为本发明实施例中另一非连续发射的定时方法流程示意图;
图5为本发明实施例中CELL_FACH状态下UE的DTX过程示意图;
图6为本发明实施例中CELL_FACH状态下UE的DTX过程中上行发送的起始位置的示意图;
图7为本发明实施例中UE的结构示意图;
图8为本发明实施例中基站的结构示意图;
图9为本发明实施例中另一UE的结构示意图;
图10为本发明实施例中另一基站的结构示意图;
图11为本发明实施例中另一UE的结构示意图;
图12为本发明实施例中另一基站的结构示意图;
图13为本发明实施例中另一UE的结构示意图;
图14为本发明实施例中另一基站的结构示意图;
图15为本发明实施例中另一UE的结构示意图;
图16为本发明实施例中另一基站的结构示意图;
图17为本发明实施例中另一UE的结构示意图;
图18为本发明实施例中另一基站的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施的应用场景为UE的DTX,所应用的系统如图2所示,包括UE201和基站202。具体地,UE在CELL_FACH状态下进行DTX。基站接收处于CELL_FACH状态下的UE的DTX的上行信号。该系统中还可能包括无线网络控制器(Radio Network Controller,RNC)203,RNC用于为UE和基站配置上行信号发射和接收的相关参数。
本发明实施例可以应用于WCDMA、LTE、TDSCDMA中的DTX技术。尤其适用于CELL_FACH状态下UE的DTX。
本发明实施例中DPCCH前导码为提前于上行信号(如E-DCH、HS-DPCCH等)发射的符号序列,该符号序列一般用于上行同步和信道估计,DPCCH前导码可以是DPCCH本身。
第一实施例
RNC配置UE的连接状态为CELL_FACH状态,以及用于为终端和基站配置计时区间与DPCCH前导码的属性之间的对应关系。UE确定计时时长对应的计时区间,按照该计时区间对应的DPCCH前导码的属性发送DPCCH前导码。基站确定计时时长对应的计时区间,采用该计时区间对应的DPCCH前导码的属性接收DPCCH前导码。其中,DPCCH前导码的属性包括DPCCH前导码序列的长度和/或DPCCH前导码序列的组成方式。
应用中,计时区间与DPCCH前导码的属性之间的对应关系可以是基站和终端预先约定的。可选地,计时区间与DPCCH前导码的属性之间的对应关系可以由RNC配置给UE和基站。
本发明实施例中,针对UE的DTX过程中,UE与基站之间的上行同步问题,尤其是处于CELL_FACH状态下的UE,提出了如图3所示的非连续发射的定时方法,需要说明的是,该方法并不仅限于处于CELL_FACH状态下的UE,也可以适用于处于CELL_DCH状态下的UE,具体如下。
步骤301:UE确定需要发射上行信号的时刻距离计时起点的时长。
具体地,UE在计时起点启动定时器,获取定时器在发射上行信号的时刻的计时时长,即为发射上行信号的时刻距离计时起点的时长。
一个具体实施中,计时起点为预设值,该预设值可以是由基站和UE通过协议约定,或者由网络侧(如RNC)为UE和基站配置的。
另一个具体实施中,计时起点由以下任意一种触发事件确定:下行同步成功的时间点、后校验(Post Verification,PV)开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点。
步骤302:UE根据距离计时起点的时长以及预设门限,确定需要发射的上行信号对应的DPCCH前导码的属性。
实施中,UE根据至少一个第一预设门限,将从计时起点到第二预设门限的时长划分为至少两个时长区间,其中,每个时长区间各自对应一个DPCCH前导码的属性。具体地,不同的时长区间对应的DPCCH前导码的属性不相同。
具体地,第二预设门限为UE从计时起点到UE释放占用的Common E-DCH资源的时长。
实施中,UE确定距离计时起点的时长所属的时长区间,获取确定的该时长区间对应的DPCCH前导码的属性,将获取的DPCCH前导码的属性确定为需要发射的上行信号对应的DPCCH前导码的属性。
具体地,第一时长区间对应的DPCCH前导码的长度,小于第二时长区间 对应的DPCCH前导码的长度,其中,第一时长区间内的每个值小于第二时长区间内的每个值。和/或,第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
在一个具体实施中,在仅有一个第一预设门限的情况下,该第一预设门限将计时起点到UE释放占用的Common E-DCH资源的时长划分为两个时长区间,即第一时长区间和第二时长区间,第一时长区间对应的DPCCH前导码的长度小于第二时长区间对应的DPCCH前导码的长度,其中,第一时长区间内的每个值小于第二时长区间内的每个值。
一个具体实施中,第一预设门限为预设值,该预设值可以是由基站和UE通过协议约定的,或者是由网络侧(如RNC)为UE和基站配置的。
另一个具体实施中,第一预设门限由以下任意一种触发事件确定:
E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道(High Speed-Shared Control Channel,HS-SCCH)命令或者无线资源控制(Radio Resource Control,RRC)信令的时间点。
实际应用中,可以设置在同一个计时起点启动多个定时器,每个定时器终止的门限不相同,一个定时器的终止的门限为一个预设门限,由该多个定时器确定多个时长区间。
实际应用中,也可以设置在计时起点仅启动一个定时器,该定时器的终止的门限值为预设的第二门限值,设置至少一个第一预设门限,对定时器的整个生命周期划分为多个时长区间。
实施中,至少一个第一预设门限、第二预设门限、每个时长区间各自对应的DPCCH前导码的属性,由网络侧配置给UE。
具体地,网络侧通过RRC信令为UE配置至少一个第一预设门限、第二 预设门限、每个时长区间各自对应的DPCCH前导码的属性。例如,无线网络控制器(RNC)通过RRC信令通知UE至少一个第一预设门限、第二预设门限、每个时长区间各自对应的DPCCH前导码的长度。或者,网络侧通过HS-SCCH命令为UE配置至少一个第一预设门限、第二预设门限、每个时长区间各自对应的DPCCH前导码的长度。
具体地,网络侧可以在UE获取Common E-DCH资源后为该UE配置至少一个第一预设门限、第二预设门限、每个时长区间各自对应的DPCCH前导码的属性。或者,网络侧也可以通过广播的方式通知UE至少一个第一预设门限、第二预设门限、每个时长区间各自对应的DPCCH前导码的属性,同一个小区下收到该广播的UE均采用同样的配置。
步骤303:UE按照确定的DPCCH前导码的属性发射DPCCH前导码。
具体地,UE在发射上行信号之前的X个时隙开始发射DPCCH前导码,其中,X为大于1的正整数。可选地,X等于DPCCH前导码的长度。应用中,X可以有由RNC配置给UE和基站。
具体的,UE先发DPCCH前导码。发完DPCCH前导码后,立即发数据和DPCCH,数据和DPCCH是同时发射的。DPCCH前导码的时隙格式可以与DPCCH的时隙格式相同。
可选地,UE在DPCCH前导码的属性对应的预设时间位置处发射上行信号。具体地,预设时间位置为在定时边界的基础上增加预设的时间偏置得到。其中,定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。其中,定时边界可以是周期性出现,例如每间隔Y个TTI出现一次定时边界,Y是基站配置给UE和基站的参数。
实施中,UE在计时起点启动定时器后,在达到第一预设门限之前,可以重新启动该定时器,重新启动该定时器的时间点可以是预设值,该预设值为UE和基站通过协议约定的,或者为网络侧(如RNC)配置给UE和基站的。重新启动该定时器的时间点也可以是以下任意一种:E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、 与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点。
步骤304:基站确定当前时刻距离计时起点的时长。
其中,计时起点的具体取值参见以上描述。
步骤305:基站根据距离计时起点的时长以及预设门限,确定终端UE发射的DPCCH前导码的属性。
具体地,基站根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;所述基站确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性。
其中,第一时长区间对应的DPCCH前导码的长度,小于第二时长区间对应的DPCCH前导码的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值。和/或,第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
其中,第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
实施中,至少一个第一预设门限、第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述基站。例如,RNC为基站配置第一预设门限、第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性。其中,第一预设门限的具体取值参见以上描述。
需要说明的是,第一预设门限、第二预设门限、每个时长区间各自对应的DPCCH前导码的属性,需要基站与终端理解一致。
步骤306:基站按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
可选地,基站在所述DPCCH前导码的属性对应的预设时间位置处接收所述上行信号。其中,上行信号包括DPCCH前导码和上行数据中的任意一个或 全部。
其中,预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。需要说明的是,预设时间位置需要终端与基站理解一致。其中,定时边界可以是周期性出现。
该实施例中,终端根据计时时长以及预设门限,确定需要发射的上行信号对应的DPCCH前导码的属性,按照确定的DPCCH前导码的属性发射DPCCH前导码,使得在UE长时间关闭发射机后启动上行信号传输时,能够发射较优的DPCCH的前导码,使得基站能够进行上行同步。如果UE仅仅是短时间关闭发射机后启动上行信号传输,仍然可以采用之前的DPCCH前导码,从而解决了UE的非连续发射的上行同步问题。
尤其是,终端根据计时时长以及预设门限,确定需要发射的上行信号对应的DPCCH前导码的长度,按照确定的DPCCH前导码的长度发射DPCCH前导码,使得在UE长时间关闭发射机后启动上行信号传输时,能够发射较长的DPCCH的前导码,使得基站能够有足够的DPCCH前导码进行上行同步。如果UE仅仅是短时间关闭发射机后启动上行信号传输,仍然可以采用较短的DPCCH前导码,从而解决了UE的非连续发射的上行同步问题。
第二实施例
RNC为UE和基站配置上行信号与预设时间位置之间的对应关系,UE按照配置的预设时间位置发射上行信号,基站按照配置的预设时间位置接收上行信号。
本发明实施例中,针对UE的DTX过程中,UE与基站之间的上行同步问题,尤其是处于CELL_FACH状态下的UE,提出了如图4所示的非连续发射的定时方法,需要说明的是,该方法并不仅限于处于CELL_FACH状态下的UE,也可以适用于处于CELL_DCH状态下的UE,具体如下:
步骤401:UE确定需要发射的上行信号对应的预设时间位置。
优选地,所述预设时间位置为在定时边界的基础上增加预设的时间偏置 得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。其中,定时边界可以为周期性出现的。
步骤402:UE在所述预设时间位置处发射所述上行信号。
具体地,不同的上行信号对应不同的预设时间位置。
例如,如果UE需要发射DPCCH,该DPCCH包括DPCCH前导码,则需要在该DPCCH对应的预设时间位置处开始发射;如果UE需要发射E-DCH数据信道,则需要在该E-DCH数据信道对应的预设时间位置处开始发射,E-DCH数据信道可以是E-DPDCH或者E-DPCCH。
优选地,DPCCH对应的预设时间位置,比E-DCH数据信道对应的预设时间位置提前X个时隙,可以实现在发送E-DCH数据信道之前发送X个时隙的DPCCH前导码,帮助基站获取上行同步。
相应地,基站定时接收终端发送的上行信号的过程如下:
步骤403:基站确定终端发射上行信号对应的预设时间位置。
其中,基站侧配置的上行信号对应的预设时间位置,与终端侧配置的上行信号对应的预设时间位置一致。
步骤404:基站在所述预设时间位置处接收所述上行信号。
其中,上行信号包括DPCCH前导码和上行数据中的任意一个或全部。
其中,上行信号对应的预设时间位置可以由网络侧配置给UE和基站,可以是由UE与基站相互约定。
该实施例中,UE的发射机在与基站约定的预设时间位置处开始发射上行信号,提高了基站上行同步的性能。
以下通过三个具体实施例对处于CELL_FACH状态下的UE的DTX的定时过程进行举例说明。
第一具体实施例
如图5所示,假设处于CELL_FACH状态下的UE配置了DTX,且该UE在每次上行信号发射完毕之后,关闭发射机并启动定时器,该定时器有两个门限,即门限一和门限二,其中门限一的值小于门限二的值。
如果在定时器开始计时的时刻与门限一之间,UE有E-DCH和/或HS-DPCCH要发射,则使用长度为x1的DPCCH前导码,以及使用长度为x2的DPCCH Postamble。如果在门限一和门限二之间,UE有E-DCH和/或HS-DPCCH要发射,则使用长度为y1的DPCCH前导码,以及使用长度为y2的DPCCH Postamble。
其中,x1、x2、y1、y2的长度单位包括但不限于时隙、传输时间间隔(Transmit Time Interval,TTI)、帧、毫秒等。
通常配置x1<y1,x2=y2。
具体地,RNC通过RRC信令通知UE以下参数中的任意一个或多个:门限一的值、门限二的值、x1、x2、y1、y2。或者,基站通过HS-SCCH命令对UE配置以下参数中的任意一个或多个:门限一的值、门限二的值、x1、x2、y1、y2。
具体地,网络侧可以在UE获取Common E-DCH资源后为UE配置以上参数,或者,网络侧通过广播的方式广播以上参数,小区下收到该广播的UE均采用广播的以上参数。
其中,门限二的值为定时器从计时起点到UE释放占用的Common E-DCH资源的时长。
该第一具体实施例,通过在图3中已有的定时器的基础上,增加一个门限,即门限一,通过门限一将定时器的计时周期划分为两个时长区间,每个时长区间对应的DPCCH前导码的长度不相同,每个时长区间对应的DPCCH Postamble可以相同,从而可以实现在UE长时间关闭发射机后启动上行传输时,发射较长的DPCCH前导码,使得网络侧有足够的DPCCH前导码进行上行同步,并且如果UE仅是短时间关闭发射机后启动上行传输,依然可以采用较短的DPCCH前导码。
第二具体实施例
在图1所示的定时器的基础上,引入一个新的定时器。假设处于CELL_FACH状态下的UE配置了DTX,在新引入的定时器未超过门限时, 如果UE有E-DCH和/或HS-DPCCH要发射,则使用长度为x1的DPCCH前导码,以及使用长度为x2的DPCCH Postamble。在新引入的定时器超过门限值时,如果UE有E-DCH和/或HS-DPCCH要发射,则使用长度为y1的DPCCH前导码,以及使用长度为y2的DPCCH Postamble。
其中,x1、x2、y1、y2的长度单位包括但不限于时隙、传输时间间隔(Transmit Time Interval,TTI)、帧、毫秒等。
通常配置x1<y1,x2=y2。
该第二具体实施例中,新定义的定时器的开始计时的时间点、新定义的定时器定时重新启动的时间点以及新定义的定时器结束的时间点,包括但不限于表1所列的时间点,其中表1中“√”表示允许,“×”表示不允许。
表1
Figure PCTCN2016077672-appb-000001
Figure PCTCN2016077672-appb-000002
该第二具体实施例中,在图1所示的定时器的基础上,引入新的定时器,并该新的定时器设置对应的门限,根据新的定时器对应的门限,得到多个时长区间,不同的时长区间对应不同长度的DPCCH前导码,从而可以实现在UE长时间关闭发射机后启动上行传输时,发射较长的DPCCH前导码,使得网络侧有足够的DPCCH前导码进行上行同步,并且如果UE仅是短时间关闭发射机后启动上行传输,依然可以采用较短的DPCCH前导码。
第三具体实施例
在第一具体实施例和第二具体实施例的基础上,引入UE与基站约定上行信号发射的起始位置的方法。当UE需要发射数据信道或者控制信道时,只能在预设的时间位置处开始发射。预设的时间位置可以是网络通知给UE的,也可以是网络侧与UE预先约定的。基站能够预先获知DPCCH的发射的起始位置,提高了上行同步的准确性。
如图6所示,实线为帧边界,虚线为预定义的作为上行信号发射的起始位置,即预设的时间位置,图6所示的起始位置是相对于帧边界定义的,实施中,起始位置还可以相对于TTI边界、下行无线帧的边界等定义。例如,UE发射控制信道,则UE从图6虚线所示的起始位置处开始发射,不能从虚线之外的位置发射控制信道。
该具体实施例中还可以针对不同的信道,定义不同的起始位置,例如,UE如果发射数据信道,则起始位置为实线所示的帧边界。
具体地,如果UE需要发射DPCCH,其中包括DPCCH前导码,必须从与DPCCH对应的起始位置处开始发射。如果UE需要发射E-DCH数据信道,其中包括增强专用物理数据信道(Enhanced Dedicated Physical Data Channel,E-DPDCH)和E-DPCCH,则必须从E-DCH数据信道对应的起始位置处开始发射。
该具体实施例中,起始位置的定义可以是在现有的定时边界的基础上增加时间偏置得到。其中,现有的定时边界包括但不限于:下行无线帧边界、上行无线帧边界、上行E-DCH数据的TTI边界等。时间偏置可以是以时隙、TTI、帧、毫秒等为单位。其中,定时边界可以是周期性出现。
该具体实施例中,可以针对每个上行信道分别定义不同的起始位置,例如,DPCCH的起始位置可以比E-DCH的起始位置提前x个时隙。这样,UE在发送E-DCH之前,会多发送x个时隙的DPCCH前导码,有利于基站获得上行同步。
结合第一具体实施例和第二具体实施例,可以针对不同长度的DPCCH前导码,指定不同的DPCCH的起始位置。具体地。当UE根据第一具体实施例或第二具体实施例确定需要使用第一长度的DPCCH前导码时,DPCCH的起始位置为起始位置一;当UE根据第一具体实施例或第二具体实施例确定需要使用第二长度的DPCCH前导码时,DPCCH的起始位置为起始位置二。
具体地,网络侧可以通过RRC信通知UE起始位置的定义、起始位置与信道之间的对应关系、起始位置与DPCCH前导码的长度之间的对应关系。其中,起始位置的定义具体可以为相对于的定时边界以及相对该定时边界的偏置量。或者,网络侧可以通过物理层信令,例如HS-SCCH命令通知UE始位置的定义、起始位置与信道之间的对应关系、起始位置与DPCCH前导码的长度之间的对应关系。或者,网络侧与UE通过预先定义的方式相互约定起始位置的定义、起始位置与信道之间的对应关系、起始位置与DPCCH前导码的长度之间的对应关系。
基于同一发明构思,本发明实施例中提供了一种UE,该UE的具体实 施可参见第一实施例的描述,重复之处不再赘述,如图7所示,该UE主要包括:
确定模块701,用于确定需要发射上行信号的时刻距离计时起点的时长;
处理模块702,用于根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
发射模块703,用于按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
具体地,确定模块的具体实施可参见步骤301的具体描述,处理模块的具体实施可参见步骤302的具体描述,发射模块的具体实施可参见步骤303的具体描述,此处不再重复。
基于同一发明构思,本发明实施例还提供了一种基站,该基站的具体实施可参见第一实施例的描述,重复之处不再赘述,如图8所示,该基站主要包括:
确定模块801,用于确定当前时刻距离计时起点的时长;
处理模块802,用于根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的属性;
接收模块803,用于按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
具体地,确定模块的具体实施可参见步骤304的描述,处理模块的具体实施可参见步骤305的描述,接收模块的具体实施可参见步骤306的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了另一种终端,该终端的具体实施可参见第二实施例的描述,重复之处不再赘述,如图9所示,该终端主要包括:
处理模块901,用于确定需要发射的上行信号对应的预设时间位置;
发射模块902,用于在所述预设时间位置处发射所述上行信号。
具体地,处理模块的具体实施可参见步骤401的描述,发射模块的具体 实施可参见步骤402的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了另一种基站,该基站的具体实施可参见第二实施例的描述,重复之处不再赘述,如图10所示,该基站主要包括:
处理模块1001,用于确定终端发射上行信号对应的预设时间位置;
接收模块1002,用于在所述预设时间位置处接收所述上行信号。
具体地,处理模块的具体实施可参见步骤403的描述,接收模块的具体实施可参见步骤404的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了一种UE,该UE的的具体实施可参见第一实施例的描述,重复之处不再赘述,如图11所示,该UE主要包括处理器1101、存储器1102和收发机1103,其中,收发机1103在处理器1101的控制下接收和发送信号,存储器1102中保存有预设的程序,处理器1101读取存储器1102中保存的程序,按照该程序执行以下过程:
确定需要发射上行信号的时刻距离计时起点的时长;
根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
指示收发机1103按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
具体地,处理器1101用于实现确定模块701、处理模块702的功能,并在指示收发机完成发射模块703的功能。处理器的具体实施可参见确定模块701、处理模块702以及发射模块703的描述,以及参见步骤301~步骤303的描述,此处不再重复。
基于同一发明构思,本发明实施例还提供了一种基站,该基站的具体实施可参见第一实施例的描述,重复之处不再赘述,如图12所示,该基站主要包括处理器1201、存储器1202和收发机1203,其中,收发机1203在处理器1201的控制下接收和发送信号,存储器1202中保存有预设的程序,处理器1201读取存储器1202中保存的程序,按照该程序执行以下过程:
确定当前时刻距离计时起点的时长;
根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的属性;
指示收发机1203按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
具体地,处理器1201用于实现确定模块801、处理模块802的功能,并在指示收发机完成接收模块803的功能。处理器的具体实施可参见确定模块801、处理模块802以及接收模块803的描述,以及参见步骤304~步骤306的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了另一种终端,该终端的具体实施可参见第二实施例的描述,重复之处不再赘述,如图13所示,该终端主要包括处理器1301、存储器1302和收发机1303,其中,收发机1303在处理器1301的控制下接收和发送信号,存储器1302中保存有预设的程序,处理器1301读取存储器1302中保存的程序,按照该程序执行以下过程:
确定需要发射的上行信号对应的预设时间位置;
指示收发机在所述预设时间位置处发射所述上行信号。
具体地,处理器用于实现处理模块901的功能,以及指示收发机实现发射模块的功能,具体实施可参见处理模块901和发射模块902的描述,以及参见步骤401和步骤402的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了另一种基站,该基站的具体实施可参见第二实施例的描述,重复之处不再赘述,如图14所示,该基站主要包括处理器1401、存储器1402和收发机1403,其中,收发机1403在处理器1401的控制下接收和发送信号,存储器1402中保存有预设的程序,处理器1401读取存储器1402中保存的程序,按照该程序执行以下过程:
确定终端发射上行信号对应的预设时间位置;
指示收发机在所述预设时间位置处接收所述上行信号。
具体地,处理器用于实现处理模块1001的功能,以及指示收发机实现接 收模块1002的功能,具体实施可参见处理模块1001和接收模块1002的描述,以及参见步骤403和步骤404的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了一种终端,该终端的具体实施可参见第一实施例的描述,重复之处不再赘述,如图15所示,该终端主要包括:
处理器1501,用于确定需要发射上行信号的时刻距离计时起点的时长,根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
发送器1502,用于按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
具体地,处理器1501用于实现确定模块701、处理模块702的功能,并在指示发送器1502完成发射模块703的功能。处理器的具体实施可参见确定模块701、处理模块702以及发射模块703的描述,以及参见步骤301~步骤303的描述,此处不再重复。
基于同一发明构思,本发明实施例还提供了一种基站,该基站的具体实施可参见第一实施例的描述,重复之处不再赘述,如图16所示,该基站主要包括:
处理器1601,用于确定当前时刻距离计时起点的时长,根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的长度;
接收器1602,用于按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
具体地,处理器1601用于实现确定模块801、处理模块802的功能,并在指示接收器1602完成接收模块803的功能。处理器的具体实施可参见确定模块801、处理模块802以及接收模块803的描述,以及参见步骤304~步骤306的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了另一种终端,该终端的具 体实施可参见第二实施例的描述,重复之处不再赘述,如图17所示,该终端主要包括:
处理器1701,用于确定需要发射的上行信号对应的预设时间位置;
发送器1702,用于在所述预设时间位置处发射所述上行信号。
具体地,处理器1701用于实现处理模块901的功能,以及指示发送器1702实现发射模块的功能,具体实施可参见处理模块901和发射模块902的描述,以及参见步骤401和步骤402的描述,此处不再重复。
基于同一发明构思,本发明实施例中还提供了另一种基站,该基站的具体实施可参见第二实施例的描述,重复之处不再赘述,如图18所示,该基站主要包括:
处理器1801,用于确定终端发射上行信号对应的预设时间位置;
接收器1802,用于在所述预设时间位置处接收所述上行信号。
具体地,处理器1801用于实现处理模块1001的功能,以及指示接收器1802实现接收模块1002的功能,具体实施可参见处理模块1001和接收模块1002的描述,以及参见步骤403和步骤404的描述,此处不再重复。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (66)

  1. 一种非连续发射的定时方法,其特征在于,用于终端UE的非连续发射DTX,方法包括:
    所述UE确定需要发射上行信号的时刻距离计时起点的时长;
    所述UE根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
    所述UE按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
  2. 如权利要求1所述的方法,其特征在于,所述UE根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性,包括:
    所述UE根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
    所述UE确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性,将获取的所述DPCCH前导码的属性确定为所述需要发射的上行信号对应的所述DPCCH前导码的属性。
  3. 如权利要求2所述的方法,其特征在于,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
    第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
    所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
  4. 如权利要求2或3所述的方法,其特征在于,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
  5. 如权利要求3所述的方法,其特征在于,至少一个所述第一预设门限、 所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述UE。
  6. 如权利要求2-5所述的方法,其特征在于,所述计时起点为预设值或者由以下任意一种触发事件确定:
    下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
    所述第一预设门限为预设值或者由以下任意一种触发事件确定:
    E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述UE在所述DPCCH前导码的属性对应的预设时间位置处发射所述上行信号。
  8. 如权利要求7所述的方法,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  9. 如权利要求8所述的方法,其特征在于,所述定时边界为周期性出现。
  10. 一种非连续发射数据的接收定时方法,其特征在于,包括:
    基站确定当前时刻距离计时起点的时长;
    所述基站根据所述距离计时起点的时长以及预设门限,确定终端UE发射 的专用物理层控制信道DPCCH前导码的属性;
    所述基站按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
  11. 如权利要求10所述的方法,其特征在于,所述基站根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的属性,包括:
    所述基站根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
    所述基站确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性。
  12. 如权利要求11所述的方法,其特征在于,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
    第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
    所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
  13. 如权利要求11或12所述的方法,其特征在于,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
  14. 如权利要求13所述的方法,其特征在于,至少一个所述第一预设门限值、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述基站。
  15. 如权利要求11-14所述的方法,其特征在于,所述计时起点为预设值或者由以下任意一种触发事件确定:
    下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发 射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
    所述第一预设门限为预设值或者由以下任意一种触发事件确定:
    E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
  16. 如权利要求10-15任一项所述的方法,其特征在于,所述方法还包括:
    所述基站在所述DPCCH前导码的属性对应的预设时间位置处接收所述上行信号。
  17. 如权利要求16所述的方法,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  18. 如权利要求17所述的方法,其特征在于,所述定时边界为周期性出现。
  19. 一种非连续发射的定时方法,其特征在于,包括:
    终端UE确定需要发射的上行信号对应的预设时间位置;
    所述UE在所述预设时间位置处发射所述上行信号。
  20. 如权利要求19所述的方法,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  21. 一种非连续发射数据的接收定时方法,其特征在于,包括:
    基站确定终端发射上行信号对应的预设时间位置;
    所述基站在所述预设时间位置处接收所述上行信号。
  22. 如权利要求21所述的方法,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  23. 一种终端,其特征在于,包括:
    确定模块,用于确定需要发射上行信号的时刻距离计时起点的时长;
    处理模块,用于根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
    发射模块,用于按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
  24. 如权利要求23所述的终端,其特征在于,所述处理模块具体用于:
    根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
    确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性,将获取的所述DPCCH前导码的属性确定为所述需要发射的上行信号对应的所述DPCCH前导码的属性。
  25. 如权利要求24所述的终端,其特征在于,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
    第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
    所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
  26. 如权利要求24或25所述的终端,其特征在于,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
  27. 如权利要求25所述的终端,其特征在于,至少一个所述第一预设门限值、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属 性,由网络侧配置给所述UE。
  28. 如权利要求24-27任一项所述的终端,其特征在于,所述计时起点为预设值或者由以下任意一种触发事件确定:
    下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
    所述第一预设门限为预设值或者由以下任意一种触发事件确定:
    E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
  29. 如权利要求23-28任一项所述的终端,其特征在于,所述发射模块还用于:
    在所述DPCCH前导码的属性对应的预设时间位置处发射所述上行信号。
  30. 如权利要求29所述的终端,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  31. 如权利要求30所述的终端,其特征在于,所述定时边界为周期性出现。
  32. 一种基站,其特征在于,包括:
    确定模块,用于确定当前时刻距离计时起点的时长;
    处理模块,用于根据所述距离计时起点的时长以及预设门限,确定终端 UE发射的专用物理层控制信道DPCCH前导码的长度;
    接收模块,用于按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
  33. 如权利要求32所述的基站,其特征在于,所述处理模块具体用于:
    根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
    确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性。
  34. 如权利要求33所述的基站,其特征在于,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
    第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
    所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
  35. 如权利要求33或34所述的基站,其特征在于,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
  36. 如权利要求35所述的基站,其特征在于,至少一个所述第一预设门限、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述基站。
  37. 如权利要求33-36任一项所述的基站,其特征在于,所述计时起点为预设值或者由以下任意一种触发事件确定:
    下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、 HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
    所述第一预设门限为预设值或者由以下任意一种触发事件确定:
    E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
  38. 如权利要求32-37任一项所述的基站,其特征在于,所述接收模块还用于:在所述DPCCH前导码的属性对应的预设时间位置处接收所述上行信号。
  39. 如权利要求38所述的基站,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  40. 如权利要求39所述的基站,其特征在于,所述定时边界为周期性出现。
  41. 一种终端,其特征在于,包括:
    处理模块,用于确定需要发射的上行信号对应的预设时间位置;
    发射模块,用于在所述预设时间位置处发射所述上行信号。
  42. 如权利要求41所述的终端,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  43. 一种基站,其特征在于,包括:
    处理模块,用于确定终端发射上行信号对应的预设时间位置;
    接收模块,用于在所述预设时间位置处接收所述上行信号。
  44. 如权利要求43所述的基站,其特征在于,所述预设时间位置为在定 时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  45. 一种终端,其特征在于,包括:
    处理器,用于确定需要发射上行信号的时刻距离计时起点的时长,根据所述距离计时起点的时长以及预设门限,确定所述需要发射的上行信号对应的专用物理层控制信道DPCCH前导码的属性;
    发送器,用于按照确定的所述DPCCH前导码的属性发射DPCCH前导码。
  46. 如权利要求45所述的终端,其特征在于,所述处理器具体用于:
    根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
    确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性,将获取的所述DPCCH前导码的属性确定为所述需要发射的上行信号对应的所述DPCCH前导码的属性。
  47. 如权利要求46所述的终端,其特征在于,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
    第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
    所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
  48. 如权利要求46或47所述的终端,其特征在于,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
  49. 如权利要求47所述的终端,其特征在于,至少一个所述第一预设门限值、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述UE。
  50. 如权利要求46-49任一项所述的终端,其特征在于,所述计时起点为 预设值或者由以下任意一种触发事件确定:
    下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
    所述第一预设门限为预设值或者由以下任意一种触发事件确定:
    E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
  51. 如权利要求45-50任一项所述的终端,其特征在于,所述发送器还用于:
    在所述DPCCH前导码的属性对应的预设时间位置处发射所述上行信号。
  52. 如权利要求51所述的终端,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  53. 如权利要求52所述的终端,其特征在于,所述定时边界为周期性出现。
  54. 一种基站,其特征在于,包括:
    处理器,用于确定当前时刻距离计时起点的时长,根据所述距离计时起点的时长以及预设门限,确定终端UE发射的专用物理层控制信道DPCCH前导码的长度;
    接收器,用于按照确定的所述DPCCH前导码的属性接收DPCCH前导码。
  55. 如权利要求54所述的基站,其特征在于,所述处理器具体用于:
    根据至少一个第一预设门限,将所述计时起点至第二预设门限的时长划分为至少两个时长区间;
    确定所述距离所述计时起点的时长所属的所述时长区间,获取确定的所述时长区间对应的DPCCH前导码的属性。
  56. 如权利要求55所述的基站,其特征在于,所述DPCCH前导码的属性包括DPCCH前导码序列的长度和/或各个时长区间对应的DPCCH前导码序列的组成方式;
    第一时长区间对应的DPCCH前导码序列的长度,小于第二时长区间对应的DPCCH前导码序列的长度,其中,所述第一时长区间内的每个值小于所述第二时长区间内的每个值;和/或
    所述第一时长区间对应的DPCCH前导码序列的组成方式,与第二时长区间对应的DPCCH前导码序列的组成方式不相同。
  57. 如权利要求54或55所述的基站,其特征在于,所述第二预设门限为从所述计时起点到所述UE释放占用的共用的增强专用信道资源的时长。
  58. 如权利要求57所述的基站,其特征在于,至少一个所述第一预设门限、所述第二预设门限、每个所述时长区间各自对应的DPCCH前导码的属性,由网络侧配置给所述基站。
  59. 如权利要求55-58任一项所述的基站,其特征在于,所述计时起点为预设值或者由以下任意一种触发事件确定:
    下行同步成功的时间点、后校验PV开始或者成功结束的时间点、PV成功结束后的预定义时间点、PV成功结束后DPCCH停止发射的时间点、E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点;
    所述第一预设门限为预设值或者由以下任意一种触发事件确定:
    E-DCH开始发射或结束发射的时间点、确认有数据需要发射的时间点、确认数据发射结束的时间点、与E-DCH相关的DPCCH开始发射或结束发射的时间点、HS-DPCCH开始发射或结束发射的时间点、与HS-DPCCH相关的DPCCH开始发射或结束发射的时间点、转换为CELL_DCH状态的时间点、转换为CELL_IDLE状态的时间点、退出CELL_FACH状态的时间点、收到高速共享控制信道HS-SCCH命令或者无线资源控制RRC信令的时间点。
  60. 如权利要求54-59任一项所述的基站,其特征在于,所述接收器还用于:在所述DPCCH前导码的属性对应的预设时间位置处接收所述上行信号。
  61. 如权利要求60所述的基站,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  62. 如权利要求61所述的基站,其特征在于,所述定时边界为周期性出现。
  63. 一种终端,其特征在于,包括:
    处理器,用于确定需要发射的上行信号对应的预设时间位置;
    发送器,用于在所述预设时间位置处发射所述上行信号。
  64. 如权利要求63所述的终端,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
  65. 一种基站,其特征在于,包括:
    处理器,用于确定终端发射上行信号对应的预设时间位置;
    接收器,用于在所述预设时间位置处接收所述上行信号。
  66. 如权利要求65所述的基站,其特征在于,所述预设时间位置为在定时边界的基础上增加预设的时间偏置得到,所述定时边界包括下行无线帧边界、上行无线帧边界、上行E-DCH数据TTI边界中的任意一种。
PCT/CN2016/077672 2016-03-29 2016-03-29 非连续发射的定时方法及相关设备 WO2017166052A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680083359.7A CN108886384A (zh) 2016-03-29 2016-03-29 非连续发射的定时方法及相关设备
PCT/CN2016/077672 WO2017166052A1 (zh) 2016-03-29 2016-03-29 非连续发射的定时方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077672 WO2017166052A1 (zh) 2016-03-29 2016-03-29 非连续发射的定时方法及相关设备

Publications (1)

Publication Number Publication Date
WO2017166052A1 true WO2017166052A1 (zh) 2017-10-05

Family

ID=59963275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077672 WO2017166052A1 (zh) 2016-03-29 2016-03-29 非连续发射的定时方法及相关设备

Country Status (2)

Country Link
CN (1) CN108886384A (zh)
WO (1) WO2017166052A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023225A2 (en) * 2006-08-21 2008-02-28 Nokia Corporation Gap and preamble parameters for control channel transmission
CN101227227A (zh) * 2007-01-16 2008-07-23 中兴通讯股份有限公司 一种控制多模终端信号发射的装置和系统及方法
CN101385250A (zh) * 2006-02-13 2009-03-11 诺基亚公司 用于连续连接性传输的自适应前导码长度
GB2500896A (en) * 2012-04-03 2013-10-09 Renesas Mobile Corp Synchronising a semi-persistent scheduling (SPS) function and a discontinuous reception and transmission (DRX/DTX) function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3629017B2 (ja) * 2002-08-20 2005-03-16 松下電器産業株式会社 アウターループ送信電力制御方法および無線通信装置
KR20100049147A (ko) * 2008-11-03 2010-05-12 삼성전자주식회사 무선 통신 시스템에서 복합 자동재전송 요청 프로세스 수행방법 및 이를 위한 시스템
CN102448162B (zh) * 2010-10-11 2014-07-16 中兴通讯股份有限公司 一种lte系统中上行发射定时控制方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385250A (zh) * 2006-02-13 2009-03-11 诺基亚公司 用于连续连接性传输的自适应前导码长度
WO2008023225A2 (en) * 2006-08-21 2008-02-28 Nokia Corporation Gap and preamble parameters for control channel transmission
CN101227227A (zh) * 2007-01-16 2008-07-23 中兴通讯股份有限公司 一种控制多模终端信号发射的装置和系统及方法
GB2500896A (en) * 2012-04-03 2013-10-09 Renesas Mobile Corp Synchronising a semi-persistent scheduling (SPS) function and a discontinuous reception and transmission (DRX/DTX) function

Also Published As

Publication number Publication date
CN108886384A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6960443B2 (ja) 無線通信システムにおけるランダムアクセス手順のmsg3送信を改善するための方法及び装置
CN109219116B (zh) 一种终端设备的休眠方法及装置
US11457494B2 (en) Communication method, communications device, and network device
US11792876B2 (en) Pre-configured dedicated resource for idle mode transmissions
JP6594553B2 (ja) 接続モードdrxオペレーションを制御するための方法
EP3536069B1 (en) Methods and apparatuses for managing paging in a wireless communication network
US11968737B2 (en) Active time handling with 2-step granting
US20180103504A1 (en) Drx implementation method, drx configuration method, and related device
CN110351023B (zh) 一种控制定时器的方法和装置
WO2018028340A1 (zh) 低功耗模式下的ue的跟踪处理方法和设备
WO2016186555A1 (en) Activation of drx parameters
WO2013104296A1 (zh) 数据的传输方法及装置
WO2014190933A1 (zh) 激活状态处理方法及装置
WO2012167629A1 (zh) Drx模式下终端保持上行同步的处理方法及装置
WO2021128341A1 (zh) 非连续接收控制方法、设备及存储介质
US9402249B2 (en) Methods and apparatus for operating timer(s) for stand-alone HS-DPCCH
US10588082B2 (en) Wireless communication system, wireless communication network, wireless terminal, and wireless communication method
WO2017166052A1 (zh) 非连续发射的定时方法及相关设备
CN116614782A (zh) 通信方法和通信装置
WO2024138577A1 (zh) 无线通信方法、装置、设备及存储介质
WO2022247578A1 (zh) 一种数据传输方法及通信装置
EP4387340A1 (en) Method and apparatus for information monitoring
CN117014109A (zh) 一种通信方法及装置
WO2014161158A1 (zh) 信道配置方法、设备及系统
CN115150911A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895833

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895833

Country of ref document: EP

Kind code of ref document: A1