WO2017164690A1 - Organic solar cell and manufacturing method therefor - Google Patents

Organic solar cell and manufacturing method therefor Download PDF

Info

Publication number
WO2017164690A1
WO2017164690A1 PCT/KR2017/003195 KR2017003195W WO2017164690A1 WO 2017164690 A1 WO2017164690 A1 WO 2017164690A1 KR 2017003195 W KR2017003195 W KR 2017003195W WO 2017164690 A1 WO2017164690 A1 WO 2017164690A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
organic solar
transport layer
lower electrode
Prior art date
Application number
PCT/KR2017/003195
Other languages
French (fr)
Korean (ko)
Inventor
갈진하
문정열
박홍관
최윤영
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority claimed from KR1020170037458A external-priority patent/KR20170113233A/en
Publication of WO2017164690A1 publication Critical patent/WO2017164690A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic solar cell having excellent photoelectric conversion efficiency and process reliability and a method of manufacturing the same.
  • the organic solar cell is a conjugated polymer such as polyparaphenylenevinylene (PPV) having double bonds alternately, a photosensitive low molecule such as CuPc, perylene, pentacene, or (6,6) -phenyl- It is a solar cell of the structure which utilizes organic substance, such as organic-semiconductor material, such as C61-butyric acid methyl ester (PCBM).
  • PSV polyparaphenylenevinylene
  • PCBM C61-butyric acid methyl ester
  • Organic solar cells basically have a thin film structure, and are generally disposed between the anode and the cathode, which are positioned to face each other, and are interposed between the anode and the cathode, and electrons such as hole acceptors such as conjugated polymers and fullerenes.
  • the electron acceptor is composed of a photoactive layer including an organic material having a junction structure, and further includes an organic film of a hole transport layer and an electron transport layer in upper and lower portions of the photoactive layer, if necessary.
  • the organic solar cell When light is incident on the organic solar cell from an external light source, the light passes through the anode to the photoactive layer, and photons forming the incident light collide with electrons in the valence band present in the electron acceptor of the photoactive layer.
  • the electrons in the valence band receive energy corresponding to the wavelength of the photons from the collided photons and leap to the conduction band, and holes remain in the valence band.
  • the holes left in the electron acceptor move to the anode, the electrons in the conduction band move to the cathode, and the organic solar cell has electromotive force by the electrons and holes moved to each electrode to operate as a power source.
  • Such organic solar cells can be mass-produced with easy processability and low price, and can be manufactured by a roll-to-roll method to produce a large-area electronic device having flexibility. .
  • Due to low photoelectric conversion efficiency there are difficulties in practical use. Accordingly, various methods for improving the photoelectric conversion efficiency of organic solar cells have been studied.
  • Dead Space a relatively large dead space (Dead Space) is generated relative to the total area, which causes a disadvantage that the active area is reduced. This is a phenomenon that is issued because there is a limit to increase the precision in the printing process, in particular, it is difficult to increase the precision in the laminated coating.
  • GFF geometric fill factor
  • this technique has a disadvantage in that it is difficult to apply in the roll-to-roll printing process at least three times as a fine pattern process by laser scribing.
  • the present invention has been made to solve the above problems of the prior art,
  • a lower electrode and an upper electrode having a predetermined pattern are formed on the substrate, and a photoactive layer, an electron transport layer, and a hole transport layer are successively formed between two opposing electrodes to maximize the photoactive area at the same substrate size.
  • a photoactive layer, an electron transport layer, and a hole transport layer are successively formed between two opposing electrodes to maximize the photoactive area at the same substrate size.
  • an object of the present invention is to provide an organic solar cell having excellent photoelectric conversion efficiency and process reliability and a method of manufacturing the same.
  • the present invention is a substrate; A plurality of lower electrodes formed in a predetermined pattern on the substrate; A first layer including the lower electrode and having an electron transport layer and a hole transport layer alternately formed over the entire surface of the substrate; A photoactive layer formed over the entire first layer; A second layer in which an electron transport layer and a hole transport layer are alternately formed so that a layer different from the first layer is disposed over the entire surface of the photoactive layer; And it provides an organic solar cell comprising a plurality of upper electrodes formed by forming a predetermined pattern on the second layer.
  • the organic solar cell of the present invention can exhibit enhanced photoelectric conversion efficiency by increasing the geometric filling rate to 95% or more by securing the maximum photoactive region on the same size substrate.
  • the first layer, the second layer, and the photoactive layer including the electron transport layer and the hole transport layer are sequentially formed between the lower electrode and the upper electrode disposed opposite to each other, the series connection between the cells in the organic solar cell is easy. Resistance between edges between cells can be minimized, thereby improving process reliability and efficiency.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a conventional organic solar cell.
  • FIG. 2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
  • FIG 3 is a step-by-step view showing a method of manufacturing an organic solar cell according to an embodiment of the present invention.
  • gap refers to a cavity, a spaced area, a spaced distance, a spaced space, a pattern pitch.
  • each cell that absorbs light and converts it into electrical energy is arranged in a predetermined pattern to form a single unit. It's called a module.
  • one module may be separated by itself, and each of these modules may constitute one organic solar cell. At this time, since the power generated by one module is weak, most of the modules are connected to form an organic solar cell.
  • the conventional organic solar cell 100 includes a substrate 1, a lower electrode 2, an electron transport layer 3, a photoactive layer 4, a hole transport layer 5, and an upper electrode 6.
  • the conventional organic solar cell 100 includes a substrate 1, a lower electrode 2, an electron transport layer 3, a photoactive layer 4, a hole transport layer 5, and an upper electrode 6.
  • a battery cell sequentially stacked, and forms a connection portion A having a predetermined spaced area for connecting the upper electrode 6 and the lower electrode 2 in series between adjacent battery cells.
  • the formed connection portion A is an unusable region, which reduces the ratio of the active area that functions as a photoelectric conversion function in the substrate, thereby reducing the photoelectric conversion efficiency of the organic solar cell.
  • the lower electrode and the upper electrode having a predetermined pattern are formed on the substrate, and the photoactive layer, the electron transport layer, and the hole transport layer are continuously formed therebetween, thereby forming a connection part of the conventional organic solar cell (7 in FIG. Minimize) and facilitate the electrical connection between cells to improve the photoelectric conversion efficiency and process reliability of the organic solar cell.
  • FIG. 2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
  • an organic solar cell 200 includes a substrate 10; A plurality of lower electrodes 20 formed in a predetermined pattern on the substrate 10; A first layer 30 including the lower electrode 20 and having an electron transport layer and a hole transport layer alternately formed over the entire surface of the substrate 10; A photoactive layer 40 formed over the entire first layer 30; A second layer 50 in which an electron transport layer and a hole transport layer are alternately formed so that a layer different from the first layer is disposed over the entire surface of the photoactive layer 40; And a plurality of upper electrodes 60 formed by forming a predetermined pattern on the second layer 50.
  • the patterns of the lower electrode and the upper electrode are spaced apart at intervals of 10 to 100 ⁇ m, and they have a structure electrically connected to each other.
  • one lower electrode 20 includes a first lower electrode 20A and a second lower electrode 20B having opposite polarities.
  • one upper electrode 60 also includes a first upper electrode 60A and a second upper electrode 60B having opposite polarities.
  • the lower electrode 20 and the upper electrode 60 are arranged in a predetermined pattern on the substrate in the x-axis and y-axis directions.
  • the patterns of the lower electrode 20 and the upper electrode 60 are spaced apart at intervals of 10 to 100 ⁇ m, preferably 50 to 100 ⁇ m. If the spacing between the patterns is less than 10 ⁇ m, a problem arises in cell division such as contact with neighboring electrodes in the process. In contrast, if the thickness exceeds 100 ⁇ m, the geometric filling rate is lowered.
  • the electron transport layer and the hole transport layer formed on the first layer 30 and the second layer 50 may be continuously formed to be connected to each other.
  • the photoactive layer 40 may be integrally formed.
  • the organic solar cell 200 does not have a dead space except for the gaps between the patterns of the lower electrode 20 and the upper electrode 60. Not only can the area be greatly increased, but the degree of integration on the substrate can be increased, thereby improving the photoelectric conversion efficiency of the organic solar cell.
  • the first layer 30, the second layer 50, and the photoactive layer 40 are continuously formed between the lower electrode 20 and the upper electrode 60 disposed opposite to each other, a series connection between the cells is achieved. It is easy to reduce the resistance between edges between cells, thereby improving process reliability and efficiency.
  • the substrate 10 may be used without particular limitation as long as it has transparency.
  • the substrate 10 is a transparent inorganic substrate such as quartz or glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), polypropylene (PP) , Polyimide (PI), polyethylene sulfonate (PES), polyoxymethylene (POM), polyether ether ketone (PEEK), polyether sulfone (PES) and polyetherimide (PEI) Of transparent plastic substrates can be used. Among them, it is preferable to use a transparent plastic substrate which is flexible and has high chemical stability, mechanical strength and transparency.
  • the substrate 10 may have a transmittance of at least 70% or more, preferably 80% or more at a visible light wavelength of about 400 to 750 nm.
  • the shape of the substrate 10 may be a polygon such as a circle or a triangle, a square.
  • the thickness of the substrate 10 is not particularly limited and may be appropriately determined depending on the intended use, but may be 1 to 500 ⁇ m.
  • the lower electrode 20 has a high transparency because light passing through the substrate 10 reaches the photoactive layer 40 and has a high work function of about 4.5 eV or higher and a low resistance. Preference is given to using.
  • the lower electrode 20 includes a first lower electrode 20A and a second lower electrode 20B having opposite polarities, and is formed of a series of module structures formed of the same material and formed on the lower electrode. Therefore, they have different polarities (negative electrode and positive electrode). That is, the polarity of the first lower electrode 20A and the second lower electrode 20B varies according to the layer stacked on the lower electrode, and may be a normal structure or an inverted structure.
  • the first lower electrode 20A is an anode
  • the first upper electrode 60A which will be described later, is a cathode, on the first lower electrode 20A, and the first lower electrode 20A.
  • the second lower electrode 20B is a cathode
  • the second upper electrode 60B which will be described later, is an anode
  • the second lower electrode 20B and the second lower electrode 20B are disposed on the anode.
  • the lower electrode 20 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium zinc oxide (IGZO), and indium tin zinc oxide.
  • the lower electrode 20 may have a thickness of about 10 nm to about 3000 nm.
  • the first layer 30 includes the above-described lower electrode 20, and the electron transport layer 30B and the hole transport layer 30A are alternately formed over the entire surface of the substrate 10.
  • the electron transport layer 30B allows electrons generated in the photoactive layer 40 to be described later to be easily transferred to an adjacent electrode.
  • the electron transport layer 30B can be used a known material without limitation, for example, aluminum tris (8-hydroxyquinoline), Alq 3 , lithium fluoride (LiF), lithium It may be formed using a material such as a complex (8-hydroxy-quinolinato lithium, Liq), a nonconjugated polymer, a nonconjugated polymer electrolyte, a conjugated polymer electrolyte, or an n-type metal oxide.
  • the n-type metal oxide may be, for example, TiO x , ZnO or Cs 2 CO 3 .
  • a self-assembled thin film of a metal layer may be used as the electron transporting layer.
  • the hole transport layer 30A helps to move the holes generated in the photoactive layer to the adjacent second electrode.
  • the hole transport layer may be a known material without limitation, and, for example, poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrenesulfonate) (PSS), polyaniline, phthalocyanine, pentacene, poly Diphenyl acetylene, poly (t-butyl) diphenylacetylene, poly (trifluoromethyl) diphenylacetylene, copper phthalocyanine (Cu-PC) poly (bistrifluoromethyl) acetylene, polybis (T-butyldiphenyl ) Acetylene, poly (trimethylsilyl) diphenylacetylene, poly (carbazole) diphenylacetylene, polydiacetylene, polyphenylacetylene, polypyridineacetylene, polymethoxyphenylacetylene, polymethylphenylacetylene, poly (t-butyl) phenyl And one or more hole transport materials selected from ace
  • the photoactive layer 40 is formed over the entirety of the first layer 30 described above, and has a bulk heterojunction structure in which a hole acceptor and an electron acceptor are mixed.
  • the hole acceptor includes an organic semiconductor such as an electrically conductive polymer or an organic low molecular semiconductor material.
  • the electrically conductive polymer is any one selected from the group consisting of polythiophene, polyphenylene vinylene, polyfluorene, polypyrrole, copolymers thereof, and combinations thereof.
  • the organic low molecular weight semiconductor material may be pentacene, anthracene, tetratracene, perylene, oligothiophene, derivatives thereof, and combinations thereof. It may be any one selected from.
  • the hole receptor is poly-3-hexylthiophene (P3HT), poly-3-octylthiophene (poly-3-octylthiophene, P3OT), polyparaphenylenevinylene [poly- p-phenylene vinylene, PPV], poly (dioctylfluorene) [poly (9,9′-dioctylfluorene)], poly (2-methoxy-5- (2-ethyl-hexyloxy) -1,4- Phenylenevinylene) [poly (2-methoxy-5- (2-ethyl-hexyloxy) -1,4-phenylene vinylene, MEH-PPV], poly (2-methyl-5- (3 ', 7'-dimethyl Octyloxy))-1,4-phenylenevinylene [poly (2-methyl-5- (3 ', 7'-dimethyloctyloxy))-1,4-phenyleneviny
  • the electron acceptor may be any one nanoparticle selected from the group consisting of fullerene (C60) or fullerene derivatives, CdS, CdSe, CdTe, ZnSe, and combinations thereof.
  • the electron acceptor is (6,6) -phenyl-C61-butyric acid methyl ester [(6,6) -phenyl-C61-butyric acid methyl ester; PCBM], (6,6) -phenyl-C71-butyric acid methyl ester [(6,6) -phenyl-C71-butyric acid methyl ester; C70-PCBM], (6,6) -thienyl-C61-butyric acid methyl ester [(6,6) -thienyl-C61-butyric acid methyl ester; ThCBM], carbon nanotubes, and combinations thereof.
  • the photoactive layer 40 preferably includes a mixture of P3HT as a hole acceptor and PCBM as an electron acceptor, wherein the mixing weight ratio of P3HT and PCBM may be 1: 0.1 to 1: 2.
  • the photoactive layer 40 may have a thickness of 10 to 1000 nm, preferably 100 to 500 nm. When the thickness of the photoactive layer 40 is less than the above range, it is not possible to sufficiently absorb sunlight, the light current is lowered, the efficiency is expected to decrease, on the contrary, if the above range is exceeded the excited electrons and holes cannot move to the electrode efficiency Degradation problems can occur.
  • the electron transport layer 50A and the hole transport layer 50B are alternately arranged such that a layer different from the first layer 30 is disposed over the entire surface of the photoactive layer 40 described above.
  • the electron transport layer 50A and the hole transport layer 50B are the same as described above in the first layer 30.
  • the upper electrode 60 may be used without particular limitation as long as it is used in an organic solar cell, but it is preferable to use a material having a low work function and having high plasma resistance.
  • the upper electrode 60 includes a first upper electrode 60A and a second upper electrode 60B having opposite polarities. Therefore, when the first upper electrode 60A is a cathode, the second upper electrode 60B is an anode.
  • the upper electrode 60 includes silver (Ag), copper (Cu), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), nickel (Ni), zirconium (Zr). Metal particles such as iron (Fe) and manganese (Mn); Or a precursor containing the metal element, for example, silver nitrate (AgNO 3 ), Cu (HAFC) 2 (Cu (hexafluoroacetylacetonate) 2 ), Cu (HAFC) (1,5-Cyclooctanediene), Cu (HAFC) (1, 5-Dimethylcyclooctanediene), Cu (HAFC) (4-Methyl-1-pentene), Cu (HAFC) (Vinylcyclohexane), Cu (HAFC) (DMB), Cu (TMHD) 2 (Cu (tetramethylheptanedionate) 2 ), DMAH ( dimethylaluminum hydride, TMEDA (tetramethylethylenediamine), DME
  • the thickness of the upper electrode 60 may be 10 to 5000 nm.
  • the present invention provides a method of manufacturing the organic solar cell.
  • the organic solar cell of the present invention can be manufactured by a roll-to-roll method.
  • the substrate wound on the roll is released and supplied to the working die; Slot die (Slot-Die, 80), slot die for photoactive layer formation to alternately print the lower electrode forming rotary screen (Rotary Screen, 90), the electron transport layer and the hole transport layer in the direction of the substrate alternately (80), the slot die 80 partitioned so as to alternately print the electron transport layer and the hole transport layer, and the rotary electrode 90 for forming the upper electrode sequentially arranged to sequentially form the layers Can be performed.
  • Slot die Slot-Die, 80
  • an organic solar cell according to an embodiment of the present invention
  • the lower electrode 20 and the upper electrode 60 are continuously formed so as to be electrically connected, and the patterns of each of the lower electrode 20 and the upper electrode 60 are spaced apart at intervals of 10 to 100 ⁇ m. It can be prepared using the manufacturing method of. In this case, the gap between the lower electrodes 70 and the gap between the upper electrodes 71 are formed in a zigzag without being formed at the same position.
  • the lower electrode, the electron transport layer, the hole transport layer, the photoactive layer and the upper electrode can be formed using various methods known in the art. For example, deposition, sputtering, coating / printing process, and the like, and the coating / printing process, slot die coating method, bar coating method, Meyer bar coating method, spin coating method, comma coating method, curtain coating method, micro It can be formed through one or more methods selected from gravure coating, inkjet coating, spray coating or doctor blade coating.
  • the lower electrode 20 may be formed in a shape including a gap 70 by using deposition, sputtering, and the like, and the upper electrode 60 may be a rotary screen. 3, 90), micro gravure, and slot die may be used to form the gap 71.
  • the electron transport layer and the hole transport layer formed on the first layer and the second layer may be formed using a slot-die partitioned so as to print the alternating electron transport layer and the hole transport layer at a time, and microgravure It can also form using.
  • the photoactive layer 40 may be formed using a slot die or micro gravure.
  • the organic solar cell of the present invention can be easily manufactured by the conventional roll-to-roll method. That is, the flexible substrate wound on the roll is unwound and supplied to the work die, and according to the traveling direction of the flexible substrate, equipment necessary for forming each layer described above is sequentially arranged to stack each layer. Can be.
  • connecting portion 70 gap between lower electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

An organic solar cell according to the present invention increases a geometric charging rate by 95% or more by maximally ensuring a photoactive area on a substrate so as to greatly improve photoelectric conversion efficiency of the organic solar cell, facilitates an electrical connection between cells, and can be efficiently manufactured through a conventional roll-to-roll method, thereby improving process reliability of the organic solar cell.

Description

유기태양전지 및 이의 제조방법Organic solar cell and manufacturing method thereof
본 출원은 2016년 3월 25일자 한국 특허 출원 제10-2016-0036326호 및 2017년 3월 24일자 한국 특허 출원 제10-2017-0037458호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0036326 dated March 25, 2016 and Korean Patent Application No. 10-2017-0037458 dated March 24, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 우수한 광전변환효율 및 공정 신뢰성을 갖는 유기태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to an organic solar cell having excellent photoelectric conversion efficiency and process reliability and a method of manufacturing the same.
유기태양전지는 이중 결합이 교대로 되어 있는 폴리파라페닐렌비닐렌(PPV) 등의 공액 고분자(conjugated polymer), CuPc, 페릴렌, 펜타센 등의 감광성 저분자, 또는 (6,6)-페닐-C61-부티릭에시드 메틸에스테르(PCBM) 등의 유기 반도체 재료와 같은 유기물질을 활용하는 구조의 태양 전지이다.The organic solar cell is a conjugated polymer such as polyparaphenylenevinylene (PPV) having double bonds alternately, a photosensitive low molecule such as CuPc, perylene, pentacene, or (6,6) -phenyl- It is a solar cell of the structure which utilizes organic substance, such as organic-semiconductor material, such as C61-butyric acid methyl ester (PCBM).
유기태양전지는 기본적으로 박막형 구조를 가지고 있으며, 일반적으로 서로 대향하여 위치하는 양극과 음극, 그리고 상기 양극과 음극 사이에 개재되어 위치하며, 공액 고분자와 같은 정공수용체(hole acceptor)와 플러렌 등의 전자수용체(electron acceptor)가 접합구조로 이루어진 유기물질을 포함하는 광활성층으로 이루어져 있으며, 필요에 따라 상기 광활성층의 상부 및 하부에 정공수송층 및 전자수송층의 유기막을 더 포함한다.Organic solar cells basically have a thin film structure, and are generally disposed between the anode and the cathode, which are positioned to face each other, and are interposed between the anode and the cathode, and electrons such as hole acceptors such as conjugated polymers and fullerenes. The electron acceptor is composed of a photoactive layer including an organic material having a junction structure, and further includes an organic film of a hole transport layer and an electron transport layer in upper and lower portions of the photoactive layer, if necessary.
유기태양전지에 외부 광원으로부터 빛이 입사되면, 빛은 양극을 통과하여 광활성층으로까지 입사하고, 입사된 빛을 이루는 광자가 광활성층의 전자수용체에 존재하는 가전자대의 전자와 충돌하게 된다. 가전자대의 전자는 충돌한 광자로부터 광자의 파장에 해당하는 에너지를 받아 전도대로 도약하게 되고, 가전자대에는 정공이 남게 된다. 전자수용체에 남겨진 정공은 양극으로 이동하게 되고, 전도대의 전자는 음극으로 이동하게 되며, 각 전극으로 이동된 전자와 정공에 의해 유기 태양 전지는 기전력을 갖게 되어 전원으로 동작하게 된다.When light is incident on the organic solar cell from an external light source, the light passes through the anode to the photoactive layer, and photons forming the incident light collide with electrons in the valence band present in the electron acceptor of the photoactive layer. The electrons in the valence band receive energy corresponding to the wavelength of the photons from the collided photons and leap to the conduction band, and holes remain in the valence band. The holes left in the electron acceptor move to the anode, the electrons in the conduction band move to the cathode, and the organic solar cell has electromotive force by the electrons and holes moved to each electrode to operate as a power source.
이 같은 유기태양전지는 손쉬운 가공성 및 저렴한 가격으로 대량생산이 가능하며, 롤투롤(roll-to-roll) 방식에 의한 박막 제작이 가능하므로 유연성을 가지는 대면적 전자소자의 제작이 가능하다는 장점이 있다. 그러나, 상기와 같은 기술적, 경제적 유리함에도 불구하고 낮은 광전변환효율로 인해 실용화에 어려움을 겪고 있다. 이에 따라 유기태양전지의 광전변환효율 향상을 위한 다양한 방법들이 연구되고 있다.Such organic solar cells can be mass-produced with easy processability and low price, and can be manufactured by a roll-to-roll method to produce a large-area electronic device having flexibility. . However, despite the technical and economic advantages as described above, due to low photoelectric conversion efficiency, there are difficulties in practical use. Accordingly, various methods for improving the photoelectric conversion efficiency of organic solar cells have been studied.
유기태양전지의 광전변환효율 향상을 위한 방법 중의 하나로 모듈의 전체 면적 대비 유효 면적의 비율(Aperture Area Ratio)을 늘리는 것은 큰 이슈로 부각되고 있다. 보통 전류경로(Current Path)의 최소화를 위해 줄무늬(Stripe) 형태의 하나의 셀이 이웃하는 셀에 직렬로 연결하는 방식이 일반적이며, 이의 경우 소자의 단락 방지 및 연결부 형성을 위해 일정한 영역에 여유를 두고 코팅 및 프린팅을 통해 소자를 형성한다.As one of the methods for improving the photoelectric conversion efficiency of the organic solar cell, increasing the Aperture Area Ratio to the total area of the module is becoming a big issue. In order to minimize the current path, it is common to connect one cell in the form of stripe in series with a neighboring cell in order to minimize the current path, and in this case, a certain area is provided to prevent a short circuit of the device and to form a connection part. The device is formed through coating and printing.
그러나 이 과정에서, 전체 면적 대비 비교적 큰 사공간(Dead Space)가 발생되며, 이로 인해 활성 면적이 줄어드는 단점이 발생한다. 이는 인쇄 공정 시 정밀도를 높이는 것에 한계가 있기 때문에 발행하는 현상이며, 특히 적층 코팅에서 정밀도를 높이기 힘든 실정이다.However, in this process, a relatively large dead space (Dead Space) is generated relative to the total area, which causes a disadvantage that the active area is reduced. This is a phenomenon that is issued because there is a limit to increase the precision in the printing process, in particular, it is difficult to increase the precision in the laminated coating.
상기와 같은 문제를 해결하기 위해서 다양한 공정이 개발되고 있으며, 기하학적 충전율(Geometric Fill Factor, GFF)을 95% 이상 확보하는 것이 가능하다는 결과 등이 보고된 바 있다(Energy Environ. Sci., 2016, 9, 89-94).In order to solve the above problems, various processes have been developed, and the results of obtaining 95% or more of geometric fill factor (GFF) have been reported (Energy Environ. Sci., 2016, 9). , 89-94).
그러나 이러한 기술은 레이저 스크라이빙(Laser Scribing)에 의한 미세 패턴 공정으로 최소 3번의 공정이 추가되며, 롤투롤 인쇄 공정 내에서 적용이 힘든 단점이 있다.However, this technique has a disadvantage in that it is difficult to apply in the roll-to-roll printing process at least three times as a fine pattern process by laser scribing.
[선행기술문헌][Preceding technical literature]
[비특허문헌][Non-Patent Documents]
L. Lucera et al., Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials, Energy Environ. Sci., 2016, 9, 89-94L. Lucera et al., Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials, Energy Environ. Sci., 2016, 9, 89-94
본 발명은 종래기술의 상기와 같은 문제를 해결하기 위하여 안출된 것으로서,The present invention has been made to solve the above problems of the prior art,
기판 상에 소정의 패턴을 갖는 하부전극 및 상부전극을 형성하며, 서로 대향하는 두 전극 사이에 광활성층, 전자수송층, 정공수송층을 연속적으로 형성함으로써 동일한 기판의 크기에서 광활성 영역을 최대한으로 확보할 수 있으며, 셀 간의 직렬 연결이 용이하여 유기태양전지의 광전변환효율 및 공정 신뢰성이 개선됨을 확인하였다.A lower electrode and an upper electrode having a predetermined pattern are formed on the substrate, and a photoactive layer, an electron transport layer, and a hole transport layer are successively formed between two opposing electrodes to maximize the photoactive area at the same substrate size. In addition, it is confirmed that the photoelectric conversion efficiency and the process reliability of the organic solar cell are improved due to the easy serial connection between cells.
따라서, 본 발명의 목적은 우수한 광전변환효율 및 공정신뢰성을 가지는 유기태양전지 및 이의 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide an organic solar cell having excellent photoelectric conversion efficiency and process reliability and a method of manufacturing the same.
상기 목적을 달성하기 위해, 본 발명은 기판; 상기 기판 상에 소정의 패턴을 이루며 형성된 복수 개의 하부전극; 상기 하부전극을 포함하며, 상기 기판 전면에 걸쳐 전자수송층 및 정공수송층이 교대로 형성된 제1층; 상기 제1층 전면에 걸쳐 형성된 광활성층; 상기 광활성층 전면에 걸쳐 상기 제1층과 다른 층이 배치되도록 전자수송층 및 정공수송층이 교대로 형성된 제2층; 및 상기 제2층 상에 소정의 패턴을 이루면 형성된 복수 개의 상부전극을 포함하는 유기태양전지를 제공한다.In order to achieve the above object, the present invention is a substrate; A plurality of lower electrodes formed in a predetermined pattern on the substrate; A first layer including the lower electrode and having an electron transport layer and a hole transport layer alternately formed over the entire surface of the substrate; A photoactive layer formed over the entire first layer; A second layer in which an electron transport layer and a hole transport layer are alternately formed so that a layer different from the first layer is disposed over the entire surface of the photoactive layer; And it provides an organic solar cell comprising a plurality of upper electrodes formed by forming a predetermined pattern on the second layer.
본 발명의 유기태양전지는 같은 크기의 기판 상에서 광활성 영역을 최대한으로 확보하여 기하학적 충전율을 95% 이상으로 높임으로써 향샹된 광전변환효율을 나타낼 수 있다.The organic solar cell of the present invention can exhibit enhanced photoelectric conversion efficiency by increasing the geometric filling rate to 95% or more by securing the maximum photoactive region on the same size substrate.
또한, 본 발명의 서로 대향 배치된 하부전극과 상부전극 사이에 전자수송층 및 정공수송층을 포함하는 제1층과 제2층 및 광활성층이 연속적으로 형성됨으로써 유기태양전지 내 셀 간의 직렬 연결이 용이하여 셀 간의 연부에 걸리는 저항을 최소화할 수 있으며, 이에 따라 공정 신뢰성 및 효율을 개선하는 효과를 가진다.In addition, since the first layer, the second layer, and the photoactive layer including the electron transport layer and the hole transport layer are sequentially formed between the lower electrode and the upper electrode disposed opposite to each other, the series connection between the cells in the organic solar cell is easy. Resistance between edges between cells can be minimized, thereby improving process reliability and efficiency.
도 1은 종래 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing the structure of a conventional organic solar cell.
도 2는 본 발명의 일 구현예에 따른 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
도 3은 본 발명의 일 구현예에 따른 유기태양전지의 제조방법을 단계별로 나타낸 도면이다.3 is a step-by-step view showing a method of manufacturing an organic solar cell according to an embodiment of the present invention.
이하, 첨부된 도면을 참고하여 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 본 발명을 설명하기에 앞서 관련된 공지기능 및 구성에 대한 구체적 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 설명은 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Prior to describing the present invention, if it is determined that a detailed description of related known functions and configurations may unnecessarily obscure the subject matter of the present invention, the description thereof will be omitted.
아래 설명과 도면은 당업자가 설명되는 장치와 방법을 용이하게 실시할 수 있도록 특정 실시예를 예시한다. 다른 실시예는 구조적, 논리적으로 다른 변형을 포함할 수 있다. 개별 구성 요소와 기능은 명확히 요구되지 않는 한, 일반적으로 선택될 수 있으며, 과정의 순서는 변할 수 있다. 몇몇 실시예의 부분과 특징은 다른 실시예에 포함되거나 다른 실시예로 대체될 수 있다.The following description and drawings illustrate specific embodiments to enable those skilled in the art to easily implement the described apparatus and methods. Other embodiments may incorporate other structural and logical variations. Individual components and functions may be generally selected unless explicitly required, and the order of the processes may vary. Portions and features of some embodiments may be included in, or replaced by, other embodiments.
본 명세서에서 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본 명세서에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the present specification, when a part "contains" a certain component, this means that the component may further include other components, except for the case where there is no description to the contrary.
본 명세서에서 사용되는 용어 “간극”은 공극(cavity), 이격 영역, 이격 거리, 이격 간격, 패턴 피치을 의미한다.As used herein, the term "gap" refers to a cavity, a spaced area, a spaced distance, a spaced space, a pattern pitch.
일반적으로, 유기태양전지는 빛을 흡수하여 전기 에너지로 변환시키는 각각의 셀(cell)이 소정의 패턴으로 여러 개가 배열되어 하나의 단위를 이루게 되며, 이와 같이 여러 개의 셀이 모여서 이루어진 하나의 단위를 모듈(module)이라고 부른다.In general, in the organic solar cell, each cell that absorbs light and converts it into electrical energy is arranged in a predetermined pattern to form a single unit. It's called a module.
따라서 유기태양전지에서 하나의 모듈은 그 자체로 분리될 수 있으며, 이러한 모듈은 각각 하나의 유기태양전지를 구성할 수 있다. 이때 하나의 모듈에서 발생하는 전력은 미약하므로 대부분 다수의 모듈을 연결하여 유기태양전지를 구성하게 된다.Therefore, in an organic solar cell, one module may be separated by itself, and each of these modules may constitute one organic solar cell. At this time, since the power generated by one module is weak, most of the modules are connected to form an organic solar cell.
도 1은 종래 유기태양전지의 구조를 개략적으로 나타낸 단면도이다. 도 1에서 확인되는 바와 같이, 종래의 유기태양전지(100)는 기판(1), 하부전극(2), 전자수송층(3), 광활성층(4), 정공수송층(5) 및 상부전극(6)이 순차적으로 적층된 전지셀을 포함하고, 인접하는 전지셀들 간의 상부전극(6)과 하부전극(2)을 직렬로 연결하기 위한 일정한 이격 영역을 갖는 연결부(A)을 형성한다. 이때 형성된 연결부(A)는 사용불가능한 영역으로 기판 내에서 광전변환 기능을 하는 활성 면적의 비율이 감소하게 되어 유기태양전지의 광전변환효율을 감소시킨다.1 is a cross-sectional view schematically showing the structure of a conventional organic solar cell. As shown in FIG. 1, the conventional organic solar cell 100 includes a substrate 1, a lower electrode 2, an electron transport layer 3, a photoactive layer 4, a hole transport layer 5, and an upper electrode 6. ) Includes a battery cell sequentially stacked, and forms a connection portion A having a predetermined spaced area for connecting the upper electrode 6 and the lower electrode 2 in series between adjacent battery cells. In this case, the formed connection portion A is an unusable region, which reduces the ratio of the active area that functions as a photoelectric conversion function in the substrate, thereby reducing the photoelectric conversion efficiency of the organic solar cell.
이에 본 발명에서는 기판 상에 소정의 패턴을 갖는 하부전극 및 상부전극을 형성하며, 이들 사이에 광활성층, 전자수송층, 정공수송층을 연속적으로 형성함으로써 종래 유기태양전지에서 형성되는 연결부(도 1의 7)를 최소화하고 셀 간의 전기적 연결을 용이하게 하여 유기태양전지의 광전변환효율 및 공정 신뢰성을 향상시킨다.Accordingly, in the present invention, the lower electrode and the upper electrode having a predetermined pattern are formed on the substrate, and the photoactive layer, the electron transport layer, and the hole transport layer are continuously formed therebetween, thereby forming a connection part of the conventional organic solar cell (7 in FIG. Minimize) and facilitate the electrical connection between cells to improve the photoelectric conversion efficiency and process reliability of the organic solar cell.
도 2는 본 발명의 일 구현예에 따른 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 구현예에 따른 유기태양전지(200)는 기판(10); 상기 기판(10) 상에 소정의 패턴을 이루며 형성된 복수 개의 하부전극(20); 상기 하부전극(20)을 포함하며, 상기 기판(10) 전면에 걸쳐 전자수송층 및 정공수송층이 교대로 형성된 제1층(30); 상기 제1층(30) 전면에 걸쳐 형성된 광활성층(40); 상기 광활성층(40) 전면에 걸쳐 상기 제1층과 다른 층이 배치되도록 전자수송층 및 정공수송층이 교대로 형성된 제2층(50); 및 상기 제2층(50) 상에 소정의 패턴을 이루면 형성된 복수 개의 상부전극(60)을 포함한다. 이때 상기 하부전극과 상부전극 각각의 패턴은 10 내지 100 ㎛ 간격으로 이격 배치되고, 이들은 서로 전기적으로 연결된 구조를 갖는다.2, an organic solar cell 200 according to an embodiment of the present invention includes a substrate 10; A plurality of lower electrodes 20 formed in a predetermined pattern on the substrate 10; A first layer 30 including the lower electrode 20 and having an electron transport layer and a hole transport layer alternately formed over the entire surface of the substrate 10; A photoactive layer 40 formed over the entire first layer 30; A second layer 50 in which an electron transport layer and a hole transport layer are alternately formed so that a layer different from the first layer is disposed over the entire surface of the photoactive layer 40; And a plurality of upper electrodes 60 formed by forming a predetermined pattern on the second layer 50. In this case, the patterns of the lower electrode and the upper electrode are spaced apart at intervals of 10 to 100 μm, and they have a structure electrically connected to each other.
이때 하나의 하부전극(20)은 서로 반대 극성을 가지는 제1하부전극(20A) 및 제2하부전극(20B)를 포함한다. 이와 동일하게 하나의 상부전극(60)도 서로 반대 극성을 가지는 제1상부전극(60A) 및 제2상부전극(60B)를 포함한다. 상기 하부전극(20) 및 상부전극(60)은 기판 상에서 x축 및 y축 방향으로 소정의 패턴을 이루며 배치된다.In this case, one lower electrode 20 includes a first lower electrode 20A and a second lower electrode 20B having opposite polarities. Similarly, one upper electrode 60 also includes a first upper electrode 60A and a second upper electrode 60B having opposite polarities. The lower electrode 20 and the upper electrode 60 are arranged in a predetermined pattern on the substrate in the x-axis and y-axis directions.
본 발명에 있어서, 상기 하부전극(20) 및 상부전극(60)의 패턴은 10 내지 100 ㎛, 바람직하게는 50 내지 100 ㎛ 간격으로 이격 배치된다. 상기 패턴 간 간격이 10 ㎛ 미만인 경우 공정 상에서 이웃하는 전극과의 접촉하는 등의 셀 구분에 문제가 발생하며, 이와 반대로 100 ㎛를 초과하는 경우 기하학적 충전율이 낮아지는 문제가 발생한다.In the present invention, the patterns of the lower electrode 20 and the upper electrode 60 are spaced apart at intervals of 10 to 100 μm, preferably 50 to 100 μm. If the spacing between the patterns is less than 10 μm, a problem arises in cell division such as contact with neighboring electrodes in the process. In contrast, if the thickness exceeds 100 μm, the geometric filling rate is lowered.
또한, 상기 제1층(30) 및 제2층(50)에 형성된 전자수송층 및 정공수송층은 서로 연결되도록 연속적으로 형성될 수 있다. 또한, 상기 광활성층(40)도 일체로 형성될 수 있다.In addition, the electron transport layer and the hole transport layer formed on the first layer 30 and the second layer 50 may be continuously formed to be connected to each other. In addition, the photoactive layer 40 may be integrally formed.
따라서, 본 발명의 일 구현예에 따른 유기태양전지(200)는 전술한 하부전극(20) 및 상부전극(60) 각각의 패턴 간 간격 이외에는 사공간이 형성되지 않아 종래 유기태양전지와 비교하여 활성 면적을 크게 증가시킬 수 있을 뿐만 아니라 기판 상에 집적도를 높일 수 있어 유기태양전지의 광전변환효율을 개선시킬 수 있다. 이에 더해서, 서로 대향 배치된 상기 하부전극(20)과 상부전극(60) 사이에 제1층(30), 제2층(50) 및 광활성층(40)이 연속적으로 형성됨으로써 셀 간의 직렬 연결이 용이하여 셀 간의 연부에 걸리는 저항을 감소시키며, 이에 따라 공정 신뢰성 및 효율을 개선시킨다.Therefore, the organic solar cell 200 according to the exemplary embodiment of the present invention does not have a dead space except for the gaps between the patterns of the lower electrode 20 and the upper electrode 60. Not only can the area be greatly increased, but the degree of integration on the substrate can be increased, thereby improving the photoelectric conversion efficiency of the organic solar cell. In addition, since the first layer 30, the second layer 50, and the photoactive layer 40 are continuously formed between the lower electrode 20 and the upper electrode 60 disposed opposite to each other, a series connection between the cells is achieved. It is easy to reduce the resistance between edges between cells, thereby improving process reliability and efficiency.
이하에서, 본 발명의 일 구현예에 따른 유기태양전지(200)를 구성하는 성분들에 대하여 설명한다. 하기에 설명된 성분들은 예시적으로 기술된 것이며, 본 발명의 유기태양전지에는 이 분야에 공지된 성분들이 제한 없이 사용될 수 있다.Hereinafter, the components constituting the organic solar cell 200 according to the embodiment of the present invention will be described. The components described below are described by way of example, and components known in the art may be used in the organic solar cell of the present invention without limitation.
상기 기판(10)은 투명성을 갖는 것이라면 특별한 제한 없이 사용할 수 있다. The substrate 10 may be used without particular limitation as long as it has transparency.
예를 들어, 상기 기판(10)은 석영 또는 유리와 같은 투명 무기 기판이나, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리카보네이트(PC), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리이미드(PI), 폴리에틸렌설포네이트(PES), 폴리옥시메틸렌(POM), 폴리에테르에테르케톤(PEEK), 폴리에테르설폰(PES) 및 폴리에테르이미드(PEI)로 이루어진 군에서 선택되는 어느 하나의 투명 플라스틱 기판을 사용할 수 있다. 이중에서도 플렉서블(flexible)하면서도 높은 화학적 안정성, 기계적 강도 및 투명도를 가지는 투명 플라스틱 기판을 사용하는 것이 바람직하다. For example, the substrate 10 is a transparent inorganic substrate such as quartz or glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), polypropylene (PP) , Polyimide (PI), polyethylene sulfonate (PES), polyoxymethylene (POM), polyether ether ketone (PEEK), polyether sulfone (PES) and polyetherimide (PEI) Of transparent plastic substrates can be used. Among them, it is preferable to use a transparent plastic substrate which is flexible and has high chemical stability, mechanical strength and transparency.
또한 상기 기판(10)은 약 400 내지 750 ㎚의 가시광 파장에서 적어도 70% 이상, 바람직하게는 80% 이상의 투과율을 갖는 것이 좋다.In addition, the substrate 10 may have a transmittance of at least 70% or more, preferably 80% or more at a visible light wavelength of about 400 to 750 nm.
상기 기판(10)의 형태는 원형 또는 삼각형, 사각형 등의 다각형이 사용될 수 있다.The shape of the substrate 10 may be a polygon such as a circle or a triangle, a square.
상기 기판(10)의 두께는 특별히 한정되지 않으며 사용 용도에 따라 적절히 결정될 수 있는데 일례로 1 내지 500 ㎛일 수 있다.The thickness of the substrate 10 is not particularly limited and may be appropriately determined depending on the intended use, but may be 1 to 500 μm.
상기 하부전극(20)은 상기 기판(10)을 통과한 빛이 광활성층(40)에 도달할 수 있도록 하는 경로가 되므로 높은 투명도를 가지며, 약 4.5eV 이상의 높은 일함수와 낮은 저항을 갖는 전도성 물질을 사용하는 것이 바람직하다.The lower electrode 20 has a high transparency because light passing through the substrate 10 reaches the photoactive layer 40 and has a high work function of about 4.5 eV or higher and a low resistance. Preference is given to using.
앞서 설명한 바와 같이 상기 하부전극(20)은 서로 반대 극성을 가지는 제1하부전극(20A) 및 제2하부전극(20B)를 포함하고, 동일 물질로 이루어지며 하부전극 위에 형성되는 일련의 모듈 구조에 따라 서로 다른 극성(negative electrode, positive electrode)을 가진다. 즉 하부 전극 위에 적층되는 층에 따라 상기 제1하부전극(20A) 및 제2하부전극(20B)의 극성이 달라지며, 노말(normal) 구조 또는 인버티드(inverted) 구조일 수 있다.As described above, the lower electrode 20 includes a first lower electrode 20A and a second lower electrode 20B having opposite polarities, and is formed of a series of module structures formed of the same material and formed on the lower electrode. Therefore, they have different polarities (negative electrode and positive electrode). That is, the polarity of the first lower electrode 20A and the second lower electrode 20B varies according to the layer stacked on the lower electrode, and may be a normal structure or an inverted structure.
이때 노말 구조인 경우, 상기 제1하부전극(20A)은 양극이며, 후술하는 제1상부전극(60A)은 음극이고, 상기 제1하부전극(20A), 상기 제1하부전극(20A) 상에 형성되는 정공수송층(30A), 상기 정공수송층(30A) 상에 형성되는 광활성층(40), 상기 광활성층(40) 상에 형성되는 전자수송층(50A); 및 상기 전자수송층(50A) 상에 형성되는 제1상부전극(60A)를 포함한다.In this case, in the normal structure, the first lower electrode 20A is an anode, and the first upper electrode 60A, which will be described later, is a cathode, on the first lower electrode 20A, and the first lower electrode 20A. A hole transport layer (30A) to be formed, a photoactive layer (40) formed on the hole transport layer (30A), an electron transport layer (50A) formed on the photoactive layer (40); And a first upper electrode 60A formed on the electron transport layer 50A.
이때 인버티드 구조인 경우, 상기 제2하부전극(20B)은 음극이며, 후술하는 제2상부전극(60B)는 양극이고, 상기 제2하부전극(20B), 상기 제2하부전극(20B) 상에 형성되는 전자수송층(30B), 상기 전자수송층(30B) 상에 형성되는 광활성층(40), 상기 광활성층(40) 상에 형성되는 정공수송층(50B); 및 상기 정공수송층(50B) 상에 형성되는 제2상부전극(60B)를 포함한다.In this case, in the inverted structure, the second lower electrode 20B is a cathode, and the second upper electrode 60B, which will be described later, is an anode, and the second lower electrode 20B and the second lower electrode 20B are disposed on the anode. An electron transport layer 30B formed on the photoactive layer 40 formed on the electron transport layer 30B, and a hole transport layer 50B formed on the photoactive layer 40; And a second upper electrode 60B formed on the hole transport layer 50B.
상기 하부전극(20)은 산화인듐주석(Indium Tin Oxide; ITO), 산화인듐아연(Indium Zinc Oxide; IZO), 산화인듐갈륨아연(Indium Gallium Zinc Oxide; IGZO), 산화인듐주석아연(Indium Tin Zinc Oxide; ITZO), 갈륨도핑 산화아연(Ga-doped Zinc Oxide; GZO), 알루미늄도핑 산화아연(Al-doped Zinc Oxide; AZO), 불소도핑 산화주석(F-doped Tin Oxide; FTO), 산화아연주석(Zinc Tin Oxide; ZTO), 산화인듐갈륨(Indium Gallium Oxide; IGO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 및 이들의 조합으로 이루어진 군에서 선택되는 금속산화물 투명 전극; 전도성 고분자, 그래핀(graphene) 박막, 그래핀 산화물(graphene oxide) 박막, 탄소나노튜브 박막과 같은 유기 투명전극; 또는 금속이 결합된 탄소나노튜브 박막과 같은 유-무기 결합 투명전극 등을 사용할 수 있다.The lower electrode 20 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium zinc oxide (IGZO), and indium tin zinc oxide. Oxide; ITZO), Ga-doped Zinc Oxide (GZO), Al-doped Zinc Oxide (AZO), F-doped Tin Oxide (FTO), Zinc Oxide (Zinc Tin Oxide; ZTO), Indium Gallium Oxide (IGO), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3, and a metal selected from the group consisting of Oxide transparent electrode; Organic transparent electrodes such as conductive polymers, graphene thin films, graphene oxide thin films, and carbon nanotube thin films; Alternatively, an organic-inorganic bonded transparent electrode such as a carbon nanotube thin film bonded to a metal may be used.
상기 하부전극(20)의 두께는 10 내지 3000 ㎚일 수 있다.The lower electrode 20 may have a thickness of about 10 nm to about 3000 nm.
상기 제1층(30)은 전술한 하부전극(20)을 포함하며 상기 기판(10) 전면에 걸쳐 전자수송층(30B) 및 정공수송층(30A)이 교대로 형성된다.The first layer 30 includes the above-described lower electrode 20, and the electron transport layer 30B and the hole transport layer 30A are alternately formed over the entire surface of the substrate 10.
상기 전자수송층(30B)은 후술하는 광활성층(40)에서 생성된 전자가 인접한 전극으로 용이하게 전달되도록 한다.The electron transport layer 30B allows electrons generated in the photoactive layer 40 to be described later to be easily transferred to an adjacent electrode.
상기 전자수송층(30B)은 공지된 재료를 제한없이 사용할 수 있으며, 일례로서, 알루미늄 트리스(8-하이드록시퀴놀린)(aluminium tris(8-hydroxyquinoline), Alq3), 리튬플로라이드(LiF), 리튬착체(8-hydroxy-quinolinato lithium, Liq), 비공액 고분자, 비공액 고분자 전해질, 공액 고분자 전해질, 또는 n-형 금속 산화물 등과 같은 재료를 사용하여 형성할 수 있다. 상기 n-형 금속 산화물은 일례로, TiOx, ZnO 또는 Cs2CO3 일 수 있다. 또한, 상기 전자 수송층으로 금속층의 자기조립 박막을 사용할 수 있다.The electron transport layer 30B can be used a known material without limitation, for example, aluminum tris (8-hydroxyquinoline), Alq 3 , lithium fluoride (LiF), lithium It may be formed using a material such as a complex (8-hydroxy-quinolinato lithium, Liq), a nonconjugated polymer, a nonconjugated polymer electrolyte, a conjugated polymer electrolyte, or an n-type metal oxide. The n-type metal oxide may be, for example, TiO x , ZnO or Cs 2 CO 3 . In addition, a self-assembled thin film of a metal layer may be used as the electron transporting layer.
상기 정공수송층(30A)은 광활성층에서 생성된 정공을 인접한 제2전극으로 이동시키는 것을 돕는 역할을 한다.The hole transport layer 30A helps to move the holes generated in the photoactive layer to the adjacent second electrode.
상기 정공수송층은 공지된 재료를 제한없이 사용할 수 있으며, 일례로서, 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리(스티렌설포네이트)(PSS), 폴리아닐린, 프탈로시아닌, 펜타센, 폴리디페닐 아세틸렌, 폴리(t-부틸)디페닐아세틸렌, 폴리(트리플루오로메틸)디페닐아세틸렌, 구리 프탈로시아닌(Cu-PC) 폴리(비스트리플루오로메틸)아세틸렌, 폴리비스(T-부틸디페닐)아세틸렌, 폴리(트리메틸실릴) 디페닐아세틸렌, 폴리(카르바졸)디페닐아세틸렌, 폴리디아세틸렌, 폴리페닐아세틸렌, 폴리피리딘아세틸렌, 폴리메톡시페닐아세틸렌, 폴리메틸페닐아세틸렌, 폴리(t-부틸)페닐아세틸렌, 폴리니트로페닐아세틸렌, 폴리(트리플루오로메틸)페닐아세틸렌, 폴리(트리메틸실릴)페닐아세틸렌 및 이들의 유도체로부터 선택되는 1종 이상의 정공전달물질을 포함할 수 있다.The hole transport layer may be a known material without limitation, and, for example, poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrenesulfonate) (PSS), polyaniline, phthalocyanine, pentacene, poly Diphenyl acetylene, poly (t-butyl) diphenylacetylene, poly (trifluoromethyl) diphenylacetylene, copper phthalocyanine (Cu-PC) poly (bistrifluoromethyl) acetylene, polybis (T-butyldiphenyl ) Acetylene, poly (trimethylsilyl) diphenylacetylene, poly (carbazole) diphenylacetylene, polydiacetylene, polyphenylacetylene, polypyridineacetylene, polymethoxyphenylacetylene, polymethylphenylacetylene, poly (t-butyl) phenyl And one or more hole transport materials selected from acetylene, polynitrophenylacetylene, poly (trifluoromethyl) phenylacetylene, poly (trimethylsilyl) phenylacetylene and derivatives thereof.
상기 광활성층(40)은 전술한 제1층(30) 전면에 걸쳐 형성되며, 정공수용체와 전자수용체가 혼합된 벌크 이종 접합 구조를 가진다. The photoactive layer 40 is formed over the entirety of the first layer 30 described above, and has a bulk heterojunction structure in which a hole acceptor and an electron acceptor are mixed.
상기 정공수용체는 전기 전도성 고분자 또는 유기 저분자 반도체 물질 등과 같은 유기 반도체를 포함한다. 상기 전기 전도성 고분자는 폴리티오펜(polythiophene), 폴리페닐렌비닐렌(polyphenylene vinylene), 폴리플루오렌(polyfluorene), 폴리피롤(polypyrrole), 이들의 공중합체 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있으며, 상기 유기 저분자 반도체 물질은 펜타센(pentacene), 안트라센(anthracene), 테트라센(tetracene), 퍼릴렌(perylene), 올리고티오펜(oligothiophene), 이들의 유도체 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The hole acceptor includes an organic semiconductor such as an electrically conductive polymer or an organic low molecular semiconductor material. The electrically conductive polymer is any one selected from the group consisting of polythiophene, polyphenylene vinylene, polyfluorene, polypyrrole, copolymers thereof, and combinations thereof. The organic low molecular weight semiconductor material may be pentacene, anthracene, tetratracene, perylene, oligothiophene, derivatives thereof, and combinations thereof. It may be any one selected from.
바람직하게는 상기 정공수용체는 폴리-3-헥실티오펜[poly-3-hexylthiophene, P3HT], 폴리-3-옥틸티오펜[poly-3-octylthiophene, P3OT], 폴리파라페닐렌비닐렌[poly-p-phenylene vinylene, PPV], 폴리(디옥틸플루오렌)[poly(9,9′-dioctylfluorene)], 폴리(2-메톡시-5-(2-에틸-헥실옥시)-1,4-페닐렌비닐렌)[poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene, MEH-PPV], 폴리(2-메틸-5-(3′,7′-디메틸옥틸옥시))-1,4-페닐렌비닐렌[poly(2-methyl-5-(3′,7′-dimethyloctyloxy))-1,4-phenylene vinylene, MDMOPPV] 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.Preferably, the hole receptor is poly-3-hexylthiophene (P3HT), poly-3-octylthiophene (poly-3-octylthiophene, P3OT), polyparaphenylenevinylene [poly- p-phenylene vinylene, PPV], poly (dioctylfluorene) [poly (9,9′-dioctylfluorene)], poly (2-methoxy-5- (2-ethyl-hexyloxy) -1,4- Phenylenevinylene) [poly (2-methoxy-5- (2-ethyl-hexyloxy) -1,4-phenylene vinylene, MEH-PPV], poly (2-methyl-5- (3 ', 7'-dimethyl Octyloxy))-1,4-phenylenevinylene [poly (2-methyl-5- (3 ', 7'-dimethyloctyloxy))-1,4-phenylene vinylene, MDMOPPV] and combinations thereof It may be any one selected.
상기 전자수용체는 풀러렌(fullerene, C60) 또는 풀러렌 유도체, CdS, CdSe, CdTe, ZnSe 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 나노 입자일 수 있다. 또한 상기 전자수용체는 (6,6)-페닐-C61-부티릭에시드 메틸에스테르[(6,6)-phenyl-C61-butyric acid methyl ester; PCBM], (6,6)-페닐-C71-부티릭에시드 메틸에스테르[(6,6)-phenyl-C71-butyric acid methyl ester; C70-PCBM], (6,6)-티에닐-C61-부티릭에시드 메틸에스테르[(6,6)-thienyl-C61-butyric acid methyl ester; ThCBM], 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The electron acceptor may be any one nanoparticle selected from the group consisting of fullerene (C60) or fullerene derivatives, CdS, CdSe, CdTe, ZnSe, and combinations thereof. In addition, the electron acceptor is (6,6) -phenyl-C61-butyric acid methyl ester [(6,6) -phenyl-C61-butyric acid methyl ester; PCBM], (6,6) -phenyl-C71-butyric acid methyl ester [(6,6) -phenyl-C71-butyric acid methyl ester; C70-PCBM], (6,6) -thienyl-C61-butyric acid methyl ester [(6,6) -thienyl-C61-butyric acid methyl ester; ThCBM], carbon nanotubes, and combinations thereof.
상기 광활성층(40)은 정공수용체로서 P3HT와 전자수용체로서 PCBM의 혼합물을 포함하는 것이 바람직하고, 이때 상기 P3HT와 PCBM의 혼합 중량 비율을 1:0.1 내지 1:2일 수 있다.The photoactive layer 40 preferably includes a mixture of P3HT as a hole acceptor and PCBM as an electron acceptor, wherein the mixing weight ratio of P3HT and PCBM may be 1: 0.1 to 1: 2.
상기 광활성층(40)의 두께는 10 내지 1000 ㎚, 바람직하게는 100 내지 500 ㎚일 수 있다. 상기 광활성층(40)의 두께가 상기 범위 미만인 경우 태양빛을 충분히 흡수할 수가 없어, 광전류가 낮아져 효율 저하가 예상되며, 반대로 상기 범위를 초과하는 경우 여기된 전자와 정공이 전극으로 이동할 수 없어 효율 저하 문제가 발생할 수 있다.The photoactive layer 40 may have a thickness of 10 to 1000 nm, preferably 100 to 500 nm. When the thickness of the photoactive layer 40 is less than the above range, it is not possible to sufficiently absorb sunlight, the light current is lowered, the efficiency is expected to decrease, on the contrary, if the above range is exceeded the excited electrons and holes cannot move to the electrode efficiency Degradation problems can occur.
상기 제2층(50)은 전술한 광활성층(40) 전면에 걸쳐 상기 제1층(30)과는 다른 층이 배치되도록 전자수송층(50A) 및 정공수송층(50B)이 교대로 배열된다.In the second layer 50, the electron transport layer 50A and the hole transport layer 50B are alternately arranged such that a layer different from the first layer 30 is disposed over the entire surface of the photoactive layer 40 described above.
상기 전자수송층(50A) 및 정공수송층(50B)은 상기 제1층(30)에서 전술한 바와 같다.The electron transport layer 50A and the hole transport layer 50B are the same as described above in the first layer 30.
상기 상부전극(60)은 통상 유기 태양 전지에서 사용되는 것이라면 특별한 제한없이 사용가능하나, 낮은 일함수를 가지며, 플라즈마 저항성이 높은 물질을 사용하는 것이 바람직하다. The upper electrode 60 may be used without particular limitation as long as it is used in an organic solar cell, but it is preferable to use a material having a low work function and having high plasma resistance.
앞서 설명한 바와 같이 상기 상부전극(60)은 서로 반대 극성을 가지는 제1상부전극(60A) 및 제2상부전극(60B)를 포함한다. 따라서, 제1상부전극(60A)이 음극인 경우, 상기 제2상부전극(60B)는 양극이다.As described above, the upper electrode 60 includes a first upper electrode 60A and a second upper electrode 60B having opposite polarities. Therefore, when the first upper electrode 60A is a cathode, the second upper electrode 60B is an anode.
예를 들어, 상기 상부전극(60)은 은(Ag), 구리(Cu), 금(Au), 백금(Pt), 티타늄(Ti), 알루미늄(Al), 니켈(Ni), 지르코늄(Zr), 철(Fe), 망간(Mn) 등의 금속 입자; 또는 상기 금속원소를 포함하는 전구체, 예를 들면 질산은(AgNO3), Cu(HAFC)2 (Cu(hexafluoroacetylacetonate)2), Cu(HAFC)(1,5-Cyclooctanediene), Cu(HAFC)(1,5-Dimethylcyclooctanediene), Cu(HAFC)(4-Methyl-1-pentene), Cu(HAFC)(Vinylcyclohexane), Cu(HAFC)(DMB), Cu(TMHD)2(Cu (tetramethylheptanedionate)2), DMAH(dimethylaluminum hydride), TMEDA(tetramethylethylenediamine), DMEAA(dimethylethylamine alane, NMe2Et·AlH3), TMA(trimethylaluminum), TEA(triethylaluminum), TBA(triisobutylaluminum), TDMAT(tetra(dimethylamino)titanium), TDEAT(tetra(dimethylamino)titanium) 등 일 수 있으나, 이에 제한되는 것은 아니다. For example, the upper electrode 60 includes silver (Ag), copper (Cu), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), nickel (Ni), zirconium (Zr). Metal particles such as iron (Fe) and manganese (Mn); Or a precursor containing the metal element, for example, silver nitrate (AgNO 3 ), Cu (HAFC) 2 (Cu (hexafluoroacetylacetonate) 2 ), Cu (HAFC) (1,5-Cyclooctanediene), Cu (HAFC) (1, 5-Dimethylcyclooctanediene), Cu (HAFC) (4-Methyl-1-pentene), Cu (HAFC) (Vinylcyclohexane), Cu (HAFC) (DMB), Cu (TMHD) 2 (Cu (tetramethylheptanedionate) 2 ), DMAH ( dimethylaluminum hydride, TMEDA (tetramethylethylenediamine), DMEAA (dimethylethylamine alane, NMe 2 EtAlH 3 ), TMA (trimethylaluminum), TEA (triethylaluminum), TBA (triisobutylaluminum), TDMAT (tetra (dimethylamino) titanium), TDEAT (tetra (tetra dimethylamino) titanium) and the like, but is not limited thereto.
상기 상부전극(60)의 두께는 10 내지 5000 ㎚일 수 있다.The thickness of the upper electrode 60 may be 10 to 5000 nm.
또한, 본 발명은 상기 유기태양전지의 제조방법을 제공한다.In addition, the present invention provides a method of manufacturing the organic solar cell.
본 발명의 유기태양전지는 롤투롤 방식에 의해 제조될 수 있다.The organic solar cell of the present invention can be manufactured by a roll-to-roll method.
도 3에 도시된 바와 같이, 롤에 권취되어 있는 기판을 풀어서 작업다이에 공급하고; 상기 기판의 진행방향에 하부전극 형성용 로터리 스크린(Rotary Screen, 90), 전자수송층 및 정공수송층을 번갈아 가며 한번에 인쇄할 수 있도록 구획된 슬롯다이(Slot-Die, 80), 광활성층 형성용 슬롯다이(80), 전자수송층 및 정공수송층을 번갈아 가며 한번에 인쇄할 수 있도록 구획된 슬롯다이(80), 및 상부전극 형성용 로터리 스크린(90)을 순차로 배치하여 상기 층들을 순차적으로 형성되는 과정을 포함하여 수행될 수 있다.As shown in Fig. 3, the substrate wound on the roll is released and supplied to the working die; Slot die (Slot-Die, 80), slot die for photoactive layer formation to alternately print the lower electrode forming rotary screen (Rotary Screen, 90), the electron transport layer and the hole transport layer in the direction of the substrate alternately (80), the slot die 80 partitioned so as to alternately print the electron transport layer and the hole transport layer, and the rotary electrode 90 for forming the upper electrode sequentially arranged to sequentially form the layers Can be performed.
구체적으로, 본 발명의 일 구현예에 따른 유기태양전지는Specifically, an organic solar cell according to an embodiment of the present invention
기판(10) 상에 소정의 패턴이 형성된 하부전극(20)을 적층하는 단계;Stacking a lower electrode 20 having a predetermined pattern formed on the substrate 10;
상기 하부전극(20)을 포함하며, 상기 기판(10) 전면에 걸쳐 전자수송층 및 정공수송층이 교대로 형성된 제1층(30)을 적층하는 단계;Stacking a first layer (30) including the lower electrode (20) and having an electron transport layer and a hole transport layer alternately formed on an entire surface of the substrate (10);
상기 제1층(30) 전면에 걸쳐 광활성층(40)을 적층하는 단계;Stacking a photoactive layer (40) over the entire first layer (30);
상기 광활성층(40) 전면에 걸쳐 상기 제1층(30)과 다른 층이 배치되도록 전자수송층 및 정공수송층이 교대로 형성된 제2층(50)을 적층하는 단계; 및Stacking a second layer (50) in which an electron transport layer and a hole transport layer are alternately disposed so that a layer different from the first layer (30) is disposed over the entire surface of the photoactive layer (40); And
상기 제2층(50) 상에 소정의 패턴을 갖는 상부전극(60)을 적층하는 단계를 포함하며,Stacking an upper electrode 60 having a predetermined pattern on the second layer 50,
상기 하부전극(20) 및 상부전극(60)은 전기적으로 연결되도록 연속적으로 형성하되, 상기 하부전극(20)과 상부전극(60) 각각의 패턴은 10 내지 100 ㎛ 간격으로 이격 배치되는 유기태양전지의 제조방법을 이용하여 제조될 수 있다. 이때, 상기 하부전극 간 간극(70)과 상부전극 간 간극(71)은 동일한 위치에 형성하지 않고 지그재그로 형성된다.The lower electrode 20 and the upper electrode 60 are continuously formed so as to be electrically connected, and the patterns of each of the lower electrode 20 and the upper electrode 60 are spaced apart at intervals of 10 to 100 μm. It can be prepared using the manufacturing method of. In this case, the gap between the lower electrodes 70 and the gap between the upper electrodes 71 are formed in a zigzag without being formed at the same position.
본 발명의 유기태양전지의 제조방법에서, 하부전극, 전자수송층, 정공수송층, 광활성층 및 상부전극은, 이 분야에서 공지되어 있는 다양한 방법을 사용하여 형성할 수 있다. 예컨대, 증착, 스퍼터링, 코팅/인쇄 공정 등을 들 수 있으며, 상기 코팅/인쇄 공정으로는 슬롯 다이 코팅법, 바 코팅법, 메이어바 코팅법, 스핀 코팅법, 콤마 코팅법, 커튼 코팅법, 마이크로 그라비아 코팅법, 잉크젯 코팅법, 스프레이 코팅법 또는 닥터 블레이드 코팅법 등으로부터 선택되는 1종 이상의 방법을 통하여 형성할 수 있다.In the method of manufacturing the organic solar cell of the present invention, the lower electrode, the electron transport layer, the hole transport layer, the photoactive layer and the upper electrode can be formed using various methods known in the art. For example, deposition, sputtering, coating / printing process, and the like, and the coating / printing process, slot die coating method, bar coating method, Meyer bar coating method, spin coating method, comma coating method, curtain coating method, micro It can be formed through one or more methods selected from gravure coating, inkjet coating, spray coating or doctor blade coating.
구체적으로, 본 발명의 유기태양전지의 제조방법에서 하부전극(20)은 증착, 스퍼터링 등을 사용하여 간극(70)을 포함하는 형태로 형성할 수 있으며, 상부전극(60)은 로터리 스크린(Rotary Screen, 도 3, 90), 마이크로 그라비아, 슬롯다이를 사용하여 간극(71)을 포함하는 형태로 형성할 수 있다.Specifically, in the method of manufacturing the organic solar cell of the present invention, the lower electrode 20 may be formed in a shape including a gap 70 by using deposition, sputtering, and the like, and the upper electrode 60 may be a rotary screen. 3, 90), micro gravure, and slot die may be used to form the gap 71.
상기 제1층 및 제2층에 형성되는 전자수송층 및 정공수송층은 전자수송층 및 정공수송층을 번갈아 가며 한번에 인쇄할 수 있도록 구획된 슬롯다이(Slot-Die)를 사용하여 형성할 수 있으며, 마이크로 그라비아를 사용하여 형성할 수도 있다.The electron transport layer and the hole transport layer formed on the first layer and the second layer may be formed using a slot-die partitioned so as to print the alternating electron transport layer and the hole transport layer at a time, and microgravure It can also form using.
상기 광활성층(40)은 슬롯다이 또는 마이크로 그라비아를 사용하여 형성할 수 있다.The photoactive layer 40 may be formed using a slot die or micro gravure.
따라서, 본 발명의 유기태양전지는 기존의 롤투롤 방식에 의해 용이하게 제조할 수 있다. 즉, 롤에 권취되어 있는 플렉서블한 기판을 풀어서 작업다이에 공급하고, 상기 플렉서블한 기판의 진행방향에 따라 상기에서 기술된 각 층의 형성에 필요한 장비들을 순차적으로 배치하여, 각각의 층을 적층할 수 있다.Therefore, the organic solar cell of the present invention can be easily manufactured by the conventional roll-to-roll method. That is, the flexible substrate wound on the roll is unwound and supplied to the work die, and according to the traveling direction of the flexible substrate, equipment necessary for forming each layer described above is sequentially arranged to stack each layer. Can be.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련되어 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서, 첨부된 특허청구범위는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as long as they fall within the spirit of the invention.
[부호의 설명][Description of the code]
1, 10: 기판 2, 20: 하부전극1, 10 substrate 2, 20 lower electrode
3, 30B, 50A: 전자수송층 4, 40: 광활성층3, 30B, 50A: electron transport layer 4, 40: photoactive layer
5, 30A, 50B: 정공수송층 6, 60: 상부전극5, 30A, 50B: hole transport layer 6, 60: upper electrode
7: 연결부 70: 하부전극 간 간극 7: connecting portion 70: gap between lower electrodes
71: 상부전극 간 간극 80: 슬롯다이 71: gap between upper electrodes 80: slot die
90: 로터리 스크린 100, 200: 유기태양전지90: rotary screen 100, 200: organic solar cell

Claims (7)

  1. 기판;Board;
    상기 기판 상에 소정의 패턴을 이루며 형성된 복수 개의 하부전극;A plurality of lower electrodes formed in a predetermined pattern on the substrate;
    상기 하부전극을 포함하며, 상기 기판 전면에 걸쳐 전자수송층 및 정공수송층이 교대로 형성된 제1층;A first layer including the lower electrode and having an electron transport layer and a hole transport layer alternately formed over the entire surface of the substrate;
    상기 제1층 전면에 걸쳐 형성된 광활성층;A photoactive layer formed over the entire first layer;
    상기 광활성층 전면에 걸쳐 상기 제1층과 다른 층이 배치되도록 전자수송층 및 정공수송층이 교대로 형성된 제2층; 및A second layer in which an electron transport layer and a hole transport layer are alternately formed so that a layer different from the first layer is disposed over the entire surface of the photoactive layer; And
    상기 제2층 상에 소정의 패턴을 이루며 형성된 복수 개의 상부전극을 포함하는 유기태양전지.An organic solar cell comprising a plurality of upper electrodes formed in a predetermined pattern on the second layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 하부전극과 상부전극 각각의 패턴은 10 내지 100 ㎛ 간격으로 이격 배치되는 유기태양전지.The patterns of the lower electrode and the upper electrode are spaced apart at intervals of 10 to 100 μm.
  3. 제1항에 있어서,The method of claim 1,
    상기 하부전극 간 간극과 상부전극 간 간극은 지그재그로 형성되는 유기태양전지.The gap between the lower electrode and the gap between the upper electrode is formed in a zigzag.
  4. 제1항에 있어서,The method of claim 1,
    상기 하부전극은 제1하부전극 및 제2하부전극을 포함하며,The lower electrode includes a first lower electrode and a second lower electrode,
    상기 제1하부전극은 양극이고, 제2하부전극은 음극인 유기태양전지.The first lower electrode is an anode, the second lower electrode is an organic solar cell.
  5. 제1항에 있어서,The method of claim 1,
    상기 상부전극은 제1상부전극 및 제2상부전극을 포함하며,The upper electrode includes a first upper electrode and a second upper electrode,
    상기 제1상부전극은 음극이고, 제2상부전극은 양극인 유기태양전지.The first upper electrode is a cathode, the second upper electrode is an anode.
  6. 제1항에 있어서,The method of claim 1,
    상기 광활성층은 일체로 형성되는 유기태양전지.The photoactive layer is an organic solar cell formed integrally.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1층 및 제2층에 형성된 전자수송층 및 정공수송층은 서로 연결되도록 연속적으로 형성되는 유기태양전지.The organic solar cell of claim 1, wherein the electron transport layer and the hole transport layer formed on the first layer and the second layer are continuously connected to each other.
PCT/KR2017/003195 2016-03-25 2017-03-24 Organic solar cell and manufacturing method therefor WO2017164690A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160036326 2016-03-25
KR10-2016-0036326 2016-03-25
KR10-2017-0037458 2017-03-24
KR1020170037458A KR20170113233A (en) 2016-03-25 2017-03-24 Organic solar cell and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017164690A1 true WO2017164690A1 (en) 2017-09-28

Family

ID=59899600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003195 WO2017164690A1 (en) 2016-03-25 2017-03-24 Organic solar cell and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017164690A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516364A (en) * 2002-01-25 2005-06-02 コナルカ テクノロジーズ インコーポレイテッド Solar cell interconnection
KR20100107600A (en) * 2009-03-26 2010-10-06 삼성전자주식회사 Solar cell and manufacturing method thereof
KR20130011598A (en) * 2011-07-22 2013-01-30 광주과학기술원 Solar cell module and method of manufacturing the same
JP2014067921A (en) * 2012-09-26 2014-04-17 Toshiba Corp Solar cell module
KR101440607B1 (en) * 2013-04-15 2014-09-19 광주과학기술원 Solar cell module and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516364A (en) * 2002-01-25 2005-06-02 コナルカ テクノロジーズ インコーポレイテッド Solar cell interconnection
KR20100107600A (en) * 2009-03-26 2010-10-06 삼성전자주식회사 Solar cell and manufacturing method thereof
KR20130011598A (en) * 2011-07-22 2013-01-30 광주과학기술원 Solar cell module and method of manufacturing the same
JP2014067921A (en) * 2012-09-26 2014-04-17 Toshiba Corp Solar cell module
KR101440607B1 (en) * 2013-04-15 2014-09-19 광주과학기술원 Solar cell module and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Krebs et al. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies
KR100973018B1 (en) Photovoltaic component and production method therefor
US20070193621A1 (en) Photovoltaic cells
US20100018581A1 (en) Large area solar cell
KR101440607B1 (en) Solar cell module and method of manufacturing the same
WO2011118890A1 (en) Tandem solar cell and method of manufacturing the same
KR20100072723A (en) Organic solar cell enhancing energy conversion efficiency and method for preparing the same
US20130333739A1 (en) Photovoltaic modules
WO2010107261A2 (en) Solar cell and a production method therefor
US9269916B2 (en) Organic thin-film solar cell module and sub-module
JP2013089685A (en) Organic photoelectric conversion element and solar cell using the same
US20220209151A1 (en) Transparent electrode, process for producing transparent electrode, and photoelectric conversion device comprising transparent electrode
JP2010182720A (en) Organic photoelectric converting element
WO2018016886A1 (en) Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
JP5304448B2 (en) Organic photoelectric conversion element
KR20160082422A (en) Encapsulated organic photovoltaics module and Method for preparing the same
KR20180035057A (en) Organic photovoltaics and method for manufacturing the same
JP5298961B2 (en) Manufacturing method of organic photoelectric conversion element
JP5932928B2 (en) Photoelectric conversion device
KR20140118023A (en) Organic solar cell and method for manufacturing the same
WO2017164690A1 (en) Organic solar cell and manufacturing method therefor
JP5310230B2 (en) Organic photoelectric conversion element
WO2012165670A1 (en) Method for fabricating solar cell including nanostructure
KR102220780B1 (en) Flexible device, and method for manufacturing the same
JP6034429B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770660

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770660

Country of ref document: EP

Kind code of ref document: A1