WO2017164561A1 - Method for fabricating nickel sulfide electrode for lithium secondary battery - Google Patents

Method for fabricating nickel sulfide electrode for lithium secondary battery Download PDF

Info

Publication number
WO2017164561A1
WO2017164561A1 PCT/KR2017/002807 KR2017002807W WO2017164561A1 WO 2017164561 A1 WO2017164561 A1 WO 2017164561A1 KR 2017002807 W KR2017002807 W KR 2017002807W WO 2017164561 A1 WO2017164561 A1 WO 2017164561A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
current collector
nickel
nickel sulfide
Prior art date
Application number
PCT/KR2017/002807
Other languages
French (fr)
Korean (ko)
Inventor
이동규
전환진
안치원
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2017164561A1 publication Critical patent/WO2017164561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a nickel sulfide electrode for a lithium secondary battery, and more particularly, electroless plating nickel on a three-dimensional current collector and then sulfiding to synthesize a nickel sulfide compound to provide high discharge capacity and energy density. It relates to a method for producing a nickel sulfide electrode for a lithium secondary battery.
  • the lithium secondary battery is largely composed of a positive electrode, an electrolyte, a negative electrode, and a separator.
  • lithium cations (Li +) move from the cathode to the anode, and electrons generated as lithium (Li) is ionized also move from the cathode to the anode, and when charging, the opposite moves.
  • the driving force of the lithium cation (Li +) movement is generated by chemical stability according to the potential difference between the two electrodes.
  • the capacity of the battery (AH) is determined by the amount of lithium cations (Li +) that move from cathode to anode and from cathode to cathode.
  • lithium / nickel sulfide battery using nickel sulfide has high theoretical capacity (NiS: 590mAh / g, Ni 3 S 2 : 462mAh / g, NiS 2 : 870mAh / g) and has better charge and discharge efficiency than other metal sulfides. It has the advantage of having cycle characteristics. It also shows high energy density (1102 Wh / kg-NiS).
  • Korean Patent No. 10-0406979 name of the invention: a method of manufacturing an electrode for a lithium secondary battery using a nickel / sulfur compound, hereinafter referred to as the prior art 1
  • 10 to 70% by weight of nickel is used as the active material.
  • a sulfur compound, a carbon powder as the electric conductor, an ion conductor and a binder are weighed and stirred in a solvent to prepare a slurry, and the slurry is dried to obtain a cathode electrode.
  • a method of manufacturing an electrode for a lithium secondary battery is disclosed.
  • Nickel sulfide electrode manufactured according to the prior art 1 has a first problem that the distance of electrons to the electrode surface or the distance that the lithium ions diffuse into the electrode is relatively long as well as the thickness of the electrode becomes thick, and the polymer binder is electrically
  • the second problem is that the conductivity is very low and the resistance of the electrode is increased
  • the third problem is that the reaction area is narrow and the amount of the active material is small because it is applied to the two-dimensional current collector.
  • the present invention comprises the steps of (i) manufacturing a three-dimensional current collector; (ii) electroless plating nickel on the three-dimensional current collector; (iii) sulfiding the nickel plated three-dimensional current collector; It provides a nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
  • the electroless plating in the step (ii) may be carried out for a time of 8 minutes to 16 minutes under the condition that the temperature is 75 °C ⁇ 95 °C and pH is 8 ⁇ 10.
  • the sulfidation treatment in the step (iii) may be performed for a time of 15 minutes to 40 minutes under the condition that the temperature is 70 °C ⁇ 90 °C.
  • oxidative stabilizing the current collector precursor fibers (i-3) oxidative stabilizing the current collector precursor fibers; (i-4) carbonizing the oxidatively stabilized current collector precursor fibers to produce a three-dimensional current collector; It may include.
  • the electrospinning is performed by discharging the mixed solution at a rate of 1 ml / h to 3 ml / h under an applied voltage of 15 kV to 25 kV and a distance from the syringe to the collector of 15 cm to 20 cm. Can be.
  • the current collector may be one of polyacrylonitrile (PAN), Rayon or Pitch.
  • the oxidative stabilization in the step (i-3) may be carried out at an elevated temperature of 5 °C / min in the oxygen atmosphere and finally maintained for 2 to 4 hours at a temperature of 220 °C ⁇ 280 °C.
  • the carbonization in the step (i-4) can be carried out at an elevated temperature of 5 °C / min in the argon atmosphere and finally maintained for 2 to 4 hours at a temperature of 900 °C ⁇ 1100 °C.
  • the three-dimensional current collector may be a carbon felt or carbon mat containing a carbon fiber having a diameter of 100nm ⁇ 500nm.
  • the three-dimensional current collector may have a density of 0.6 g / cm 3 to 1.8 g / cm 3 .
  • the present invention provides a nickel sulfide electrode for a lithium secondary battery manufactured by the method according to the present invention.
  • the nickel sulfide electrode for the lithium secondary battery may be flexible.
  • the thickness of the nickel sulfide electrode for the lithium secondary battery may be 1 ⁇ m ⁇ 25 ⁇ m.
  • the present invention is an anode; cathode; Electrolyte; Separator; It includes, and the positive electrode provides a lithium secondary battery, characterized in that the nickel sulfide electrode for lithium secondary battery according to the present invention.
  • the method for manufacturing a nickel sulfide electrode for a lithium secondary battery according to the present invention has a first effect of reducing the thickness of the electrode compared to the prior art, thereby reducing the path of electrons and ions, and does not require a separate additional material such as a conductive material or a binder.
  • the second effect of reducing the resistance of the electrode the third effect of using a three-dimensional current collector having a light weight and high electrical conductivity to increase the reaction area and have a flexible property and can be produced in various shapes and electroless plating Spherical nickel particles prepared by the method and a nickel sulfide compound having a petal shape by the sulfidation method have a large surface area and have a fourth effect of obtaining high discharge capacity and energy density.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a nickel sulfide electrode for a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a three-dimensional current collector manufactured according to an embodiment of the present invention.
  • Figure 3 is a three-dimensional carbon felt current collector photograph prepared according to an embodiment of the present invention.
  • Figure 4 is a view showing the SEM image of the plating time of the three-dimensional carbon felt collector electroless plating nickel according to an embodiment of the present invention.
  • FIG. 5 is a view showing a SEM image of the plating time of the nickel sulfide electrode for lithium secondary batteries prepared by sulfidation according to an embodiment of the present invention.
  • FIG. 6 is a discharge graph of each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the discharge cycle for each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention.
  • FIG. 8 is a view showing a SEM image of the plating temperature of the three-dimensional carbon felt current collector subjected to the electroless plating of nickel according to an embodiment of the present invention.
  • FIG. 9 is a view showing SEM images of plating temperatures of nickel sulfide electrodes for lithium secondary batteries manufactured by sulfidation according to an embodiment of the present invention.
  • FIG. 10 is a discharge graph of each plating temperature of a lithium secondary battery manufactured according to an embodiment of the present invention.
  • FIG. 11 is a graph showing the discharge cycle for each plating temperature of the lithium secondary battery manufactured according to an embodiment of the present invention.
  • the present invention comprises the steps of (i) preparing a three-dimensional current collector; (ii) electroless plating nickel on the three-dimensional current collector; (iii) sulfiding the nickel plated three-dimensional current collector; It provides a nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a nickel sulfide electrode for a lithium secondary battery according to an embodiment of the present invention.
  • the present invention (i) step of manufacturing a three-dimensional current collector (S100); (ii) electroless plating nickel on the three-dimensional current collector (S200); (iii) sulfiding the nickel plated three-dimensional current collector (S300); It provides a nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
  • a three-dimensional current collector is manufactured.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a three-dimensional current collector manufactured according to an embodiment of the present invention.
  • the first step (i-1) preparing a mixed solution containing the current collector precursor (S110); (i-2) preparing a current collector precursor fiber by electrospinning the mixed solution (S120); (i-3) oxidative stabilizing the current collector precursor fibers (S130); (i-4) carbonizing the oxidative stabilized current collector precursor fibers to produce a three-dimensional current collector (S140); It may include.
  • Figure 3 is a three-dimensional carbon felt current collector photograph prepared according to an embodiment of the present invention.
  • the white felt on the left side was performed to prepare the current collector precursor fiber by electrospinning, and the center of the left felt was oxidatively stabilized (S130), and the right side was carbonized ( S140).
  • the current collector is a material for manufacturing a carbon fiber constituting a three-dimensional current collector, and may be one of a conductive polymer, polyacrlonitrile (PAN), Rayon, or Pitch. However, not limited to this, it is preferable to use a PAN.
  • PAN polyacrlonitrile
  • the solvent is not limited as long as the current collector precursor is dissolved, but dimethylformamide (N, N-Dimethylformamide, DMF), dimethylacetamide (DMAC), tetrahydro Preference is given to using at least one organic solvent selected from the group consisting of furan (THF), dioxane or dimethyl sulfoxide (DMSO).
  • Electrospinning is a method for producing nanoscale fibers using an electric field, which is simpler than the conventionally known methods and has the advantage of easy control of the shape and size of the nanofibers.
  • the electrospinning may be performed by discharging the mixed solution at a rate of 1 ml / h to 3 ml / h under an applied voltage of 15 kV to 25 kV and a distance from a syringe to a collector of 15 cm to 20 cm.
  • the applied voltage is less than 15kV, there may be a problem that the diameter of the fiber is thickened and lumps are generated. If it is more than 25kV may have a problem that the mixed solution is collected in the collector in the form of agglomerates and agglomerates, not fibrous form.
  • the discharge rate is preferably in the range of 1 ml / h to 3 ml / h.
  • Oxidation stabilization improves interplanar stability and is a critical factor in chemical reaction rate. Oxidation stabilization is a process for easily controlling the next carbonization reaction.
  • Oxidation stabilization may be carried out while maintaining the current collector precursor fibers at an elevated temperature of 5 ° C./min in an oxygen atmosphere and finally at a temperature of 220 ° C. to 280 ° C. for 2 to 4 hours. If the temperature is less than 220 °C, it may be difficult to remove some impurities remaining in the spun the current collector precursor fiber, if the temperature exceeds 280 °C carbon components and oxides in the current collector precursor fiber can be dehydrated.
  • the three-dimensional current collector is manufactured by carbonizing the oxidatively stabilized current collector precursor fibers.
  • the carbonization process is to produce a fiber made of carbon, so that the physical properties of the fiber, such as strength and elastic modulus, can be changed in a considerable range in the carbonization process, so that the carbonization conditions can be set differently according to the use.
  • the carbonization may be performed at an elevated temperature of 5 ° C./min in an argon atmosphere and finally maintained at a temperature of 900 ° C. to 1100 ° C. for 2 to 4 hours.
  • the carbonization temperature is less than 900 °C there is a possibility that the carbonization is not made completely, if the temperature exceeds 1100 °C there is a problem that the energy consumption increases.
  • the three-dimensional current collector manufactured through the above step may be a carbon felt or carbon mat including carbon fibers having a diameter of 100 nm to 500 nm.
  • the diameter is less than 100 nm, carbon fibers are brittle and the spacing between the fibers increases, so that durability and conductivity of the 3D current collector may be lowered.
  • the diameter is more than 500nm, the oxidation stability of the carbon fiber is not properly performed, heat fusion may occur at the next carbonization step, and the specific surface area may be reduced, thereby reducing energy density or discharge capacity during electrode production.
  • the three-dimensional current collector may have a density of 0.6 g / cm 3 to 1.8 g / cm 3 .
  • the density is less than 0.6 g / cm 3 , the pore size is large and the strength of the carbon fiber is low, so durability of the three-dimensional current collector may be a problem, and electrical conductivity may be lowered even when manufacturing the electrode, and the density is 1.8 g / cm. If it is more than 3 , the strength is improved, but the pore size becomes smaller, resulting in a poor migration path between the electrolyte and the ions.
  • the three-dimensional current collector is light in weight and excellent in electrical conductivity, and thus does not require a separate material such as a conductive material or a binder in the manufacture of a nickel sulfide electrode according to the manufacturing method according to the present invention, thereby obtaining high discharge capacity and energy density. There is.
  • nickel is electroless plated on the three-dimensional current collector.
  • the prior art applied a compound of Ni and S by adding a conductive material and a polymer binder on a two-dimensional current collector such as a copper plate.
  • the nickel sulfide thus prepared not only thickens the electrode but also moves electrons to the electrode surface. The distance or distance at which lithium ions diffuse into the electrode is relatively long.
  • the polymer binder has a very low electrical conductivity, which increases the resistance of the electrode.
  • the present invention is electroless plated Ni to the entire three-dimensional current collector. Electroless plating is a plating method using a chemical reaction rather than an electrical reaction. In other words, it is electroless plating and plated on metals and nonmetals. The reason why nickel (Ni) is used in the electroless plating method is that the cation is easily formed as a transition metal, has good hardness and flexibility, and has superior properties to other transition metals.
  • a plating solution is prepared for electroless plating.
  • a main component of the plating solution includes a nickel salt, a reducing agent, and a complexing agent, and nickel ions of the nickel salt form spherical nickel particles in the three-dimensional current collector by the reducing agent in the plating solution. .
  • Nickel chloride hexahydrate (NiCl 2 ⁇ 6H 2 O) is preferable as the nickel salt that is a source of nickel ions that can be used in the present invention, and sodium hypophosphite monohydrate (NaH) as the reducing agent.
  • 2 PO 2 ⁇ H 2 O the sodium citrate (sodium citrate dihydrate, Na 3 C 6 H 5 O 7 ⁇ 2H 2 O) may be used as the complexing agent.
  • ammonium chloride ammonium chloride, NH 4 Cl
  • NH 4 Cl ammonium chloride
  • the electroless plating may be performed for a time of 8 minutes to 16 minutes under the condition that the temperature is 75 °C ⁇ 95 °C and pH is 8 ⁇ 10.
  • Plating time is also an important parameter for the production of nickel sulfide electrodes with high discharge capacity and energy density. If the plating time is less than 8 minutes, a sufficient amount of nickel is not plated on the 3D current collector, so that the discharge capacity is lowered. If the plating time is more than 16 minutes, the thickness of the plated nickel becomes thick and the spherical nickel particles aggregate together. The specific surface area decreases, making the area in contact with the electrolyte too small, resulting in poor electrochemical properties.
  • Nickel particles prepared by the electroless plating method have a spherical shape on the carbon fiber and have a large surface area and excellent crystallinity.
  • the nickel-plated three-dimensional current collector is sulfided.
  • ammonium polysulfide (NH 4 ) 2 S x ) may be used as a solvent, and sulfur powder may be used as a source of sulfur ions.
  • ammonium polysulfide and sulfur powder are mixed, and when the sulfiding temperature is set, the nickel-plated 3D current collector is immersed in a solution and sulfided.
  • the sulfidation treatment in this step may be carried out for a time of 15 minutes to 40 minutes at a temperature of 70 °C ⁇ 90 °C. If the temperature is less than 70 °C sulfur powder may not be completely dissolved in the solution, if it exceeds 90 °C manufacturing time and energy may be consumed a lot.
  • the sulfidation time is less than 15 minutes, sufficient nickel sulfide is not formed, thereby reducing the discharge capacity and the charging and discharging efficiency, and when the time is more than 40 minutes, the nickel sulfide layer is thickened and the specific surface area decreases to form electrons. The movement of ions may not be easy.
  • a nickel sulfide compound having a petal shape on all surfaces of the nickel plated layer is manufactured to increase the surface area and reduce the electron or ion migration path.
  • the present invention provides a nickel sulfide electrode for a lithium secondary battery manufactured by the method according to the present invention.
  • the nickel sulfide electrode for the lithium secondary battery may be flexible. Therefore, the electrode can be manufactured in various shapes, and can be utilized for various applications using lithium secondary batteries.
  • the thickness of the nickel sulfide electrode for the lithium secondary battery may be 1 ⁇ m ⁇ 25 ⁇ m. If the thickness is less than 1 ⁇ m, the amount of the electrode active material is too small, so that the discharge capacity is low and may not exhibit the characteristics of the secondary battery. The discharge efficiency can be lowered.
  • the present invention is an anode; cathode; Electrolyte; Separator; It includes, and the positive electrode provides a lithium secondary battery, characterized in that the nickel sulfide electrode for lithium secondary battery according to the present invention.
  • the nickel sulfide electrode for a lithium secondary battery manufactured according to the present invention does not need an additional material such as a conductive material or a polymer binder, which is a problem of the prior art, thereby reducing the thickness and reducing the migration path of electrons and ions, and thus high discharge capacity and energy density. Can be obtained.
  • PAN polyacrylonitrile
  • dimethylformamide N, N-Dimethylformamide, DMF
  • the process variable voltage is 19kV
  • discharge speed is 2.5ml / h
  • the distance from the syringe to the collector is 18cm
  • the collector's rotation speed is 200RPM.
  • the environmental variable is temperature at room temperature and humidity at 45%.
  • the polyacrylonitrile fiber felt prepared by the electrospinning is put into a quartz tube heat treatment furnace to undergo oxidation stabilization and carbonization.
  • Oxidation stabilization is maintained at a temperature of 250 ° C. for 3 hours.
  • the temperature increase rate is 5 °C / min and the gas atmosphere is oxygen.
  • the carbonization process is maintained for 3 hours at a temperature of 1000 °C.
  • the temperature increase condition is 5 °C / min and the gas atmosphere is 99.999% argon.
  • a three-dimensional carbon felt current collector is manufactured through the carbonization process.
  • NiCl 2 ⁇ 6H 2 O 96%
  • sodium hypophosphite monohydrate NaH 2 PO 2 ⁇ H 2 O, 95) %
  • sodium citrate sodium citrate dihydrate, Na 3 C 6 H 5 O 7 ⁇ 2H 2 O, 99%
  • ammonium chloride ammonium chloride, NH 4 Cl, 50 g of 98.5%) was added.
  • the temperature was fixed at 90 ° C. and the pH at 9.
  • Ni was plated by dipping the prepared 3D carbon felt current collector in the solution. At this time, the plating time is 10 minutes. After the plating was washed with distilled water and dried at 70 °C oven for 24 hours.
  • the prepared nickel sulfide was directly used as an electrode as an anode without any additional material.
  • Lithium foil was used as a negative electrode.
  • Celgard 2400 Celgard Co.
  • the purpose of use is to avoid direct contact between cathode and anode.
  • As the electrolyte a liquid electrolyte prepared by dissolving 0.5 M LiTFSI salt after mixing the organic solvent DME and DOL in a volume ratio of 1: 1.
  • the cell used was Swazilaxel, and the lamination order was laminated with a lithium foil punched to 1 cm 2 , followed by a separator and a nickel sulfide electrode. The electrolyte was put in 5 ⁇ l between each material to prepare a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating time was 15 minutes.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating time was 5 minutes.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating time was 20 minutes.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating temperature was 75 ° C.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating temperature was set to 50 ° C.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating temperature was 110 ° C.
  • Nickel electroless plated 3D carbon felt current collectors prepared in Examples 1, 2, Comparative Example 1 and Comparative Example 2 and nickel sulfide electrodes for sulfided lithium secondary batteries were observed by scanning electron microscope (SEM). .
  • Figure 4 is a view showing the SEM image of the plating time of the three-dimensional carbon felt collector electroless plating nickel according to an embodiment of the present invention.
  • the first three-dimensional carbon felt current collector shows the appearance of a bundle of carbon fibers.
  • Comparative Example 1 treated with nickel plating for 5 minutes, only a small amount of nickel particles were seen, and in Example 1 treated with 10 minutes Silver is plated with spherical particles along the carbon fiber, it can be seen that the entire surface area is the largest.
  • Example 2 after 15 minutes of treatment, the spherical size of the nickel particles was increased so that the particles were in contact with each other, and the surface area was slightly reduced.
  • Comparative Example 2 the particles were bonded to each other to form a thick nickel layer, thereby confirming that the surface area was considerably reduced. Can be.
  • Examples 1 to 2 show nickel sulfide compounds having petal shapes on all surfaces of nickel plated, whereas Comparative Example 1 shows only carbon fiber bundles, and Comparative Example 2 is petal shaped. The appearance of the plate rather than the appearance can be seen that the surface area is reduced.
  • the lithium secondary batteries prepared in Examples 1, 2, Comparative Example 1 and Comparative Example 2 were subjected to 20 discharge experiments in a voltage range of 0.8V to 3.2V at a current density of 100mA / g.
  • FIG. 6 is a discharge graph of each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention.
  • Examples 1 and 2 exhibited significantly higher flat voltages of 1.8 V and 1.4 V and a discharge capacity of 560 mAh / g close to the theoretical capacity, compared to Comparative Examples 1 and 2. have.
  • Example 7 is a graph showing the discharge cycle for each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention. Referring to FIG. 7, Example 1 and Example 2 showed stable cycle characteristics starting from a high discharge capacity within 20 discharges. On the other hand, Comparative Example 1 and Comparative Example 2 can confirm the cycle characteristics that the discharge capacity itself is not as good as the other examples.
  • Nickel electroless plated 3D carbon felt current collectors prepared in Examples 1, 3, Comparative Example 3 and Comparative Example 4 and nickel sulfide electrodes for sulfided lithium secondary batteries were observed by scanning electron microscopy (SEM). .
  • Example 8 is a view showing a SEM image of the plating temperature of the three-dimensional carbon felt current collector subjected to the electroless plating of nickel according to an embodiment of the present invention.
  • Comparative Example 3 subjected to nickel plating at a plating temperature of 50 ° C.
  • Comparative Example 4 subjected to nickel plating at 110 ° C.
  • Example 3 subjected to nickel plating at 75 ° C. it can be confirmed that a small amount of nickel particles are plated.
  • Example 1 plated at 90 °C nickel is plated with spherical particles along the carbon fiber can be seen that the total surface area is the widest.
  • Example 9 is a view showing a SEM image of the plating time of the nickel sulfide electrode for a lithium secondary battery prepared by sulfidation according to an embodiment of the present invention.
  • Example 1 shows a nickel sulfide compound having a petal shape on all surfaces where nickel is plated, and in Example 3, a nickel sulfide compound having a petal shape may be confirmed, whereas Comparative Examples 3 and 4 may be used. It can be seen that only the shape of the carbon fiber bundle appears.
  • the lithium secondary batteries prepared in Examples 1, 3, Comparative Example 3 and Comparative Example 4 were subjected to ten discharge experiments in a voltage range of 0.8V to 3.2V at a current density of 100mA / g.
  • FIG. 10 is a discharge graph of each plating temperature of a lithium secondary battery manufactured according to an embodiment of the present invention. Referring to FIG. 10, it can be seen that Examples 1 and 3 exhibit flat voltages of 1.8 V and 1.4 V which are significantly higher than those of the related art, and a discharge capacity close to theoretical capacity (560 mAh / g). In contrast, Comparative Example 3 and Comparative Example 4 did not perform the discharge experiment itself.
  • Example 11 is a graph showing the discharge cycle for each plating temperature of the lithium secondary battery manufactured according to an embodiment of the present invention. Referring to FIG. 11, it was confirmed that Example 1 and Example 3 can maintain the discharge capacity and efficiency, starting from a high discharge capacity and showing stable cycle characteristics within 10 discharges.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a method for fabricating a nickel sulfide electrode for lithium secondary batteries, comprising the steps of: (i) preparing a three-dimensional current collector; (ii) electroless plating the three-dimensional current collector with nickel; and (iii) sulfurizing the nickel-plated three-dimensional current collector. The lithium secondary battery fabricated using the electrode according to the present invention can retain a high discharge capacity and a high energy density.

Description

리튬이차전지용 황화니켈 전극의 제조방법Manufacturing method of nickel sulfide electrode for lithium secondary battery
본 발명은 리튬이차전지용 황화니켈 전극의 제조방법에 관한 것으로, 더욱 상세하게는 3차원 집전체 상에 니켈을 무전해도금한 다음 황화처리하여 황화니켈 화합물을 합성하여 높은 방전용량과 에너지밀도를 제공하는 리튬이차전지용 황화니켈 전극의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a nickel sulfide electrode for a lithium secondary battery, and more particularly, electroless plating nickel on a three-dimensional current collector and then sulfiding to synthesize a nickel sulfide compound to provide high discharge capacity and energy density. It relates to a method for producing a nickel sulfide electrode for a lithium secondary battery.
최근 노트북, 스마트폰 등의 휴대 전자 기기 대량 보급에 따라, 이들 기기에 전원을 공급하는 2차 전지의 사용이 증대되고 있다. 이러한 2차 전지는 고속으로 충전이 가능하고 장시간 사용에 적합하게 대용량을 구비하도록 발전하고 있다. 그리고, 고속 충전, 장시간 사용에도 폭발이나 발화와 같은 위험이 방지되는 안정성도 동시에 요구되고 있다. BACKGROUND OF THE INVENTION In recent years, with the proliferation of portable electronic devices such as laptops and smart phones, the use of secondary batteries for supplying power to these devices is increasing. Such secondary batteries are being developed to be capable of charging at high speed and to have a large capacity for long time use. In addition, stability is required at the same time to prevent risks such as explosion and ignition even at high charge and long time use.
리튬 이차전지는 크게 양극, 전해질, 음극 및 분리막으로 구성된다. 방전 시에는 리튬양이온(Li+)이 음극에서 양극으로 이동하고 리튬(Li)이 이온화되면서 발생된 전자도 음극에서 양극으로 이동하며, 충전 시에는 이와 반대로 이동한다. 이러한 리튬양이온(Li+) 이동의 구동력은 두 전극의 전위차에 따른 화학적 안정성에 의해 발생된다. 음극에서 양극으로 또 양극에서 음극으로 이동하는 리튬양이온(Li+)의 양에 의해 전지의 용량(capacity, Ah)이 결정된다. The lithium secondary battery is largely composed of a positive electrode, an electrolyte, a negative electrode, and a separator. During discharge, lithium cations (Li +) move from the cathode to the anode, and electrons generated as lithium (Li) is ionized also move from the cathode to the anode, and when charging, the opposite moves. The driving force of the lithium cation (Li +) movement is generated by chemical stability according to the potential difference between the two electrodes. The capacity of the battery (AH) is determined by the amount of lithium cations (Li +) that move from cathode to anode and from cathode to cathode.
현재 상용화된 리튬이온전지용 양극 활물질은 LiCoO2이다. 하지만 이론에너지밀도가 낮으므로 전지의 에너지밀도를 높이는 것은 한계가 있다. 또한 여러 가지 요인으로 인한 폭발성의 위험이 있어서 이를 대체하기 위하여 여러 양극 활물질 등이 연구 중이다. 이러한 요구에 따라 높은 이론 용량과 높은 이론에너지밀도 그리고 저가인 금속 황화물 (MSx, M = Ti, Mo, Cu, Ni, Fe)이 대체 재료로 각광받고 있다. 그 중 황화니켈을 이용하는 리튬/황화니켈전지는 높은 이론용량 (NiS: 590mAh/g, Ni3S2: 462mAh/g, NiS2: 870mAh/g)을 가지며 타 금속황화물에 비해 우수한 충, 방전효율과 사이클 특성을 가지는 장점이 있다. 또한 높은 에너지 밀도 (1102Wh/kg-NiS)를 나타낸다. Currently, a commercially available cathode active material for lithium ion batteries is LiCoO 2 . However, since the theoretical energy density is low, there is a limit to increasing the energy density of the battery. In addition, there are risks of explosiveness due to various factors, and various cathode active materials are being studied to replace them. Due to these demands, high theoretical capacities, high theoretical energy densities, and inexpensive metal sulfides (MS x , M = Ti, Mo, Cu, Ni, Fe) are spotlighted as alternative materials. Among them, lithium / nickel sulfide battery using nickel sulfide has high theoretical capacity (NiS: 590mAh / g, Ni 3 S 2 : 462mAh / g, NiS 2 : 870mAh / g) and has better charge and discharge efficiency than other metal sulfides. It has the advantage of having cycle characteristics. It also shows high energy density (1102 Wh / kg-NiS).
종래의 황화니켈을 제조하는 방법으로는 구매한 황화니켈이나 니켈을 이용하여 전극을 제조하거나(Electrochimica Acta 76 (2012) 145-151), (Ceramics International40(2014)8351-8356), 기계적 합성 방법(Journal of Alloys and Compounds 351 (2003) 273-278), (Journal of Alloys and Compounds 349 (2003) 290-296), (Journal of Alloys and Compounds 361 (2003) 247-251), 그리고 열 합성법(Materials Letters 60 (2006) 643-645), (Solid State Ionics 179 (2008) 2379-2382) 등이 있다. Conventional methods of preparing nickel sulfide include preparing electrodes using nickel sulfide or nickel purchased (Electrochimica Acta 76 (2012) 145-151), (Ceramics International 40 (2014) 8351-8356), or mechanical synthesis methods ( Journal of Alloys and Compounds 351 (2003) 273-278), Journal of Alloys and Compounds 349 (2003) 290-296), Journal of Alloys and Compounds 361 (2003) 247-251, and Thermals Letters 60 (2006) 643-645), and Solid State Ionics 179 (2008) 2379-2382.
대한민국 등록특허 제 10-0406979호(발명의 명칭: 니켈·황 화합물을 이용한 리튬이차전지용 전극의 제조방법, 이하 종래기술 1이라 한다.)에서는, 활물질로서 전체 조성물에 대하여 10∼70중량%의 니켈·황 화합물과, 전기전도체로서 카본분말과, 이온전도체 및 바인더를 칭량한 후 솔벤트에서 교반하여 슬러리를 제조하는 단계, 및 상기 슬러리를 건조하여 양극전극을 얻는 단계를 포함하는 니켈·황 화합물을 이용한 리튬이차전지용 전극의 제조방법이 개시되어 있다.In Korean Patent No. 10-0406979 (name of the invention: a method of manufacturing an electrode for a lithium secondary battery using a nickel / sulfur compound, hereinafter referred to as the prior art 1), 10 to 70% by weight of nickel is used as the active material. A sulfur compound, a carbon powder as the electric conductor, an ion conductor and a binder are weighed and stirred in a solvent to prepare a slurry, and the slurry is dried to obtain a cathode electrode. A method of manufacturing an electrode for a lithium secondary battery is disclosed.
종래기술 1은 도전재, 고분자 결합재를 함께 혼합하는 과정, 그 후 집전체 상에 도포하는 과정 그리고 건조하는 과정 등의 다단계 공정을 거친다. 상기 종래기술 1에 따라 제조된 황화니켈 전극은 전극의 두께가 두꺼워질 뿐 아니라 전자가 전극 표면으로 이동하는 거리나 리튬이온이 전극내로 확산되는 거리가 비교적 길다는 제1 문제점, 또한 고분자 결합재는 전기전도도가 매우 낮아 전극의 저항을 증가시킨다는 제2 문제점 및 2차원 집전체에 도포하므로 반응 면적이 좁고 활물질의 양이 적다는 제3 문제점을 갖는다. Prior art 1 undergoes a multi-step process, such as a process of mixing the conductive material, the polymer binder together, and then applying to the current collector and drying. Nickel sulfide electrode manufactured according to the prior art 1 has a first problem that the distance of electrons to the electrode surface or the distance that the lithium ions diffuse into the electrode is relatively long as well as the thickness of the electrode becomes thick, and the polymer binder is electrically The second problem is that the conductivity is very low and the resistance of the electrode is increased, and the third problem is that the reaction area is narrow and the amount of the active material is small because it is applied to the two-dimensional current collector.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
상기 기술적 과제를 달성하기 위하여, 본 발명은 (i) 3차원 집전체를 제조하는 단계; (ii) 상기 3차원 집전체에 니켈을 무전해도금하는 단계; (iii) 상기 니켈이 도금된 3차원 집전체에 황화처리하는 단계; 를 포함하는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법을 제공한다.In order to achieve the above technical problem, the present invention comprises the steps of (i) manufacturing a three-dimensional current collector; (ii) electroless plating nickel on the three-dimensional current collector; (iii) sulfiding the nickel plated three-dimensional current collector; It provides a nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
또한, 상기 (ii)단계에서의 무전해도금은 온도가 75℃ ~ 95℃이고 pH가 8 ~ 10인 조건에서 8분 ~ 16분의 시간 동안 수행될 수 있다. In addition, the electroless plating in the step (ii) may be carried out for a time of 8 minutes to 16 minutes under the condition that the temperature is 75 ℃ ~ 95 ℃ and pH is 8 ~ 10.
또한, 상기 (iii)단계에서의 황화 처리는 온도가 70℃ ~ 90℃인 조건에서 15분 ~ 40분의 시간 동안 수행될 수 있다.In addition, the sulfidation treatment in the step (iii) may be performed for a time of 15 minutes to 40 minutes under the condition that the temperature is 70 ℃ ~ 90 ℃.
또한, 상기 (i)단계는, (i-1) 집전체전구체를 포함하는 혼합용액을 준비하는 단계; (i-2) 상기 혼합용액을 전기방사하여 집전체전구체 섬유를 제조하는 단계;In addition, the step (i), (i-1) preparing a mixed solution containing the current collector precursor; (i-2) preparing a current collector precursor fiber by electrospinning the mixed solution;
(i-3) 상기 집전체전구체 섬유를 산화안정화 하는 단계; (i-4) 상기 산화안정화된 집전체전구체 섬유를 탄화시켜 3차원 집전체를 제조하는 단계; 를 포함할 수 있다.(i-3) oxidative stabilizing the current collector precursor fibers; (i-4) carbonizing the oxidatively stabilized current collector precursor fibers to produce a three-dimensional current collector; It may include.
또한, 상기 (i-2)단계에서 전기방사는 인가전압이 15kV ~ 25kV이고 주사기에서 콜렉터까지의 거리가 15cm ~ 20cm인 조건에서 1ml/h ~ 3ml/h의 속도로 상기 혼합용액을 토출하여 수행될 수 있다.In the step (i-2), the electrospinning is performed by discharging the mixed solution at a rate of 1 ml / h to 3 ml / h under an applied voltage of 15 kV to 25 kV and a distance from the syringe to the collector of 15 cm to 20 cm. Can be.
또한, 상기 집전체전구체는 폴리아크릴로나이트릴(polyacrylonitrile, PAN)계열, 레이온(Rayon)계열 또는 피치(Pitch)계열 중 하나일 수 있다.In addition, the current collector may be one of polyacrylonitrile (PAN), Rayon or Pitch.
또한, 상기 (i-3)단계에서 산화안정화는 산소분위기에서 5℃/min의 승온속도로 최종적으로 220℃ ~ 280℃의 온도에서 2~4시간 유지하며 수행될 수 있다.In addition, the oxidative stabilization in the step (i-3) may be carried out at an elevated temperature of 5 ℃ / min in the oxygen atmosphere and finally maintained for 2 to 4 hours at a temperature of 220 ℃ ~ 280 ℃.
또한, 상기 (i-4)단계에서 탄화는 아르곤분위기에서 5℃/min의 승온속도로 최종적으로 900℃ ~ 1100℃의 온도에서 2~4시간 유지하며 수행될 수 있다.In addition, the carbonization in the step (i-4) can be carried out at an elevated temperature of 5 ℃ / min in the argon atmosphere and finally maintained for 2 to 4 hours at a temperature of 900 ℃ ~ 1100 ℃.
또한, 상기 3차원 집전체는 직경이 100nm ~ 500nm인 탄소섬유를 포함하는 카본펠트 또는 카본매트일 수 있다.In addition, the three-dimensional current collector may be a carbon felt or carbon mat containing a carbon fiber having a diameter of 100nm ~ 500nm.
또한, 상기 3차원 집전체는 밀도가 0.6g/cm3 ~ 1.8g/ cm3일 수 있다.In addition, the three-dimensional current collector may have a density of 0.6 g / cm 3 to 1.8 g / cm 3 .
또한, 본 발명은 상기 본 발명에 따른 방법으로 제조되는 리튬이차전지용 황화니켈 전극을 제공한다.In addition, the present invention provides a nickel sulfide electrode for a lithium secondary battery manufactured by the method according to the present invention.
또한, 상기 리튬이차전지용 황화니켈 전극은 플렉서블할 수 있다.In addition, the nickel sulfide electrode for the lithium secondary battery may be flexible.
또한, 상기 리튬이차전지용 황화니켈 전극의 두께는 1μm ~ 25μm 일 수 있다. In addition, the thickness of the nickel sulfide electrode for the lithium secondary battery may be 1μm ~ 25μm.
또한, 본 발명은 양극; 음극; 전해질; 분리막; 을 포함하고, 상기 양극은 상기 본 발명에 따른 리튬이차전지용 황화니켈 전극인 것을 특징으로 하는 리튬이차전지를 제공한다.In addition, the present invention is an anode; cathode; Electrolyte; Separator; It includes, and the positive electrode provides a lithium secondary battery, characterized in that the nickel sulfide electrode for lithium secondary battery according to the present invention.
본 발명에 따른 리튬이차전지용 황화니켈 전극의 제조방법은 종래기술에 비해 전극의 두께가 감소되어 전자나 이온의 이동경로를 줄일 수 있다는 제1 효과, 도전재나 바인더 같은 별도의 부수적인 재료가 필요하지 않아 전극의 저항을 감소시킨다는 제2 효과, 무게가 가볍고 높은 전기전도도를 가지는 3차원 집전체를 사용하여 반응면적을 증대시키고 플렉서블한 성질을 가져 다양한 형상으로 제조할 수 있다는 제 3효과 및 무전해도금방법을 통해 제조한 구형의 니켈입자와 황화처리방법으로 꽃잎모양을 가지는 황화니켈 화합물을 제조하여 표면적이 큰 특징을 가지고 있어 높은 방전용량과 에너지밀도를 얻을 수 있다는 제4 효과를 갖는다.The method for manufacturing a nickel sulfide electrode for a lithium secondary battery according to the present invention has a first effect of reducing the thickness of the electrode compared to the prior art, thereby reducing the path of electrons and ions, and does not require a separate additional material such as a conductive material or a binder. Therefore, the second effect of reducing the resistance of the electrode, the third effect of using a three-dimensional current collector having a light weight and high electrical conductivity to increase the reaction area and have a flexible property and can be produced in various shapes and electroless plating Spherical nickel particles prepared by the method and a nickel sulfide compound having a petal shape by the sulfidation method have a large surface area and have a fourth effect of obtaining high discharge capacity and energy density.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 실시예에 따른 리튬이차전지용 황화니켈 전극 제조방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method of manufacturing a nickel sulfide electrode for a lithium secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라 제조된 3차원 집전체의 제조방법을 나타내는 흐름도이다.2 is a flowchart illustrating a method of manufacturing a three-dimensional current collector manufactured according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따라 제조된 3차원 카본펠트 집전체 사진이다.Figure 3 is a three-dimensional carbon felt current collector photograph prepared according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 니켈을 무전해도금 처리한 3차원 카본펠트 집전체의 도금시간별 SEM 이미지를 나타낸 도이다.Figure 4 is a view showing the SEM image of the plating time of the three-dimensional carbon felt collector electroless plating nickel according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 황화처리하여 제조된 리튬이차전지용 황화니켈 전극의 도금시간별 SEM 이미지를 나타낸 도이다.5 is a view showing a SEM image of the plating time of the nickel sulfide electrode for lithium secondary batteries prepared by sulfidation according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금시간별 방전 그래프이다.6 is a discharge graph of each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금시간별 방전 사이클을 나타낸 그래프이다.7 is a graph showing the discharge cycle for each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 니켈을 무전해도금 처리한 3차원 카본펠트 집전체의 도금온도별 SEM 이미지를 나타낸 도이다.8 is a view showing a SEM image of the plating temperature of the three-dimensional carbon felt current collector subjected to the electroless plating of nickel according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 황화처리하여 제조된 리튬이차전지용 황화니켈 전극의 도금온도별 SEM 이미지를 나타낸 도이다.FIG. 9 is a view showing SEM images of plating temperatures of nickel sulfide electrodes for lithium secondary batteries manufactured by sulfidation according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금온도별 방전 그래프이다.10 is a discharge graph of each plating temperature of a lithium secondary battery manufactured according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금온도별 방전 사이클을 나타낸 그래프이다.11 is a graph showing the discharge cycle for each plating temperature of the lithium secondary battery manufactured according to an embodiment of the present invention.
본 발명은 (i) 3차원 집전체를 제조하는 단계; (ii) 상기 3차원 집전체에 니켈을 무전해도금하는 단계; (iii) 상기 니켈이 도금된 3차원 집전체에 황화처리하는 단계; 를 포함하는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법을 제공한다.The present invention comprises the steps of (i) preparing a three-dimensional current collector; (ii) electroless plating nickel on the three-dimensional current collector; (iii) sulfiding the nickel plated three-dimensional current collector; It provides a nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 리튬이차전지용 황화니켈 전극 제조방법을 나타내는 흐름도이다. 도 1을 참조하면, 본 발명은 (i) 3차원 집전체를 제조하는 단계(S100); (ii) 상기 3차원 집전체에 니켈을 무전해도금하는 단계(S200); (iii) 상기 니켈이 도금된 3차원 집전체에 황화처리하는 단계(S300); 를 포함하는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법을 제공한다. 1 is a flowchart illustrating a method of manufacturing a nickel sulfide electrode for a lithium secondary battery according to an embodiment of the present invention. Referring to Figure 1, the present invention (i) step of manufacturing a three-dimensional current collector (S100); (ii) electroless plating nickel on the three-dimensional current collector (S200); (iii) sulfiding the nickel plated three-dimensional current collector (S300); It provides a nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
이하 본 발명에 따른 리튬이차전지용 황화니켈 전극 제조방법의 각 단계별로 상술하는 방식으로 본 발명을 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail in the manner described in detail for each step of the method for manufacturing a nickel sulfide electrode for a lithium secondary battery according to the present invention.
첫째, 3차원 집전체를 제조한다.First, a three-dimensional current collector is manufactured.
도 2는 본 발명의 실시예에 따라 제조된 3차원 집전체의 제조방법을 나타내는 흐름도이다. 도 2를 참조하면, 상기 첫째 단계는, (i-1) 집전체전구체를 포함하는 혼합용액을 준비하는 단계(S110); (i-2) 상기 혼합용액을 전기방사하여 집전체전구체 섬유를 제조하는 단계(S120); (i-3) 상기 집전체전구체 섬유를 산화안정화 하는 단계(S130); (i-4) 상기 산화안정화된 집전체전구체 섬유를 탄화시켜 3차원 집전체를 제조하는 단계(S140); 를 포함할 수 있다.2 is a flowchart illustrating a method of manufacturing a three-dimensional current collector manufactured according to an embodiment of the present invention. Referring to Figure 2, the first step, (i-1) preparing a mixed solution containing the current collector precursor (S110); (i-2) preparing a current collector precursor fiber by electrospinning the mixed solution (S120); (i-3) oxidative stabilizing the current collector precursor fibers (S130); (i-4) carbonizing the oxidative stabilized current collector precursor fibers to produce a three-dimensional current collector (S140); It may include.
도 3은 본 발명의 실시예에 따라 제조된 3차원 카본펠트 집전체 사진이다. 도 3을 참조하면, 좌측의 하얀색의 펠트는 전기방사하여 집전체전구체 섬유를 제조하는 단계(S120)까지 수행된 것이며, 가운데는 좌측의 펠트를 산화안정화(S130)한 것이고, 우측은 탄화처리(S140)까지 한 것이다.Figure 3 is a three-dimensional carbon felt current collector photograph prepared according to an embodiment of the present invention. Referring to FIG. 3, the white felt on the left side was performed to prepare the current collector precursor fiber by electrospinning, and the center of the left felt was oxidatively stabilized (S130), and the right side was carbonized ( S140).
먼저, 집전체전구체를 포함하는 혼합용액을 준비한다. 상기 집전체전구체는 3차원 집전체를 이루는 탄소섬유를 제조하기 위한 물질로, 전도성 고분자인 폴리아크릴로나이트릴(polyacrlonitrile, PAN)계열, 레이온(Rayon)계열 또는 피치(Pitch)계열 중 하나일 수 있으나 이에 한정되지 PAN을 사용하는 것이 바람직하다. 상기 집전체전구체를 용매에 용해시켜 혼합용액을 준비하고, 상기 용매는 집전체전구체가 용해되기만 하면 제한되지 않으나 디메틸포름아미드(N, N-Dimethylformamide, DMF), 디메틸아세트아미드(DMAC), 테트라하이드로퓨란(THF), 디옥산(dioxane) 또는 디메틸 설폭사이드(Dimethyl sulfoxide, DMSO)로 이루어진 군에서 선택된 1종 이상의 유기용매를 사용하는 것이 바람직하다.First, a mixed solution containing the current collector precursor is prepared. The current collector is a material for manufacturing a carbon fiber constituting a three-dimensional current collector, and may be one of a conductive polymer, polyacrlonitrile (PAN), Rayon, or Pitch. However, not limited to this, it is preferable to use a PAN. Dissolving the current collector precursor in a solvent to prepare a mixed solution, the solvent is not limited as long as the current collector precursor is dissolved, but dimethylformamide (N, N-Dimethylformamide, DMF), dimethylacetamide (DMAC), tetrahydro Preference is given to using at least one organic solvent selected from the group consisting of furan (THF), dioxane or dimethyl sulfoxide (DMSO).
다음, 상기 혼합용액을 전기방사하여 집전체전구체 섬유를 제조한다. 전기방사는 전기장을 이용하여 나노스케일의 섬유를 제조하는 방법으로 기존에 알려진 방법들에 비해 간단하고 나노섬유의 형상 및 크기의 조절이 용이하다는 장점이 있다. 상기 전기방사는 인가전압이 15kV ~ 25kV이고 주사기에서 콜렉터까지의 거리가 15cm ~ 20cm인 조건에서 1ml/h ~ 3ml/h의 속도로 상기 혼합용액을 토출하여 수행될 수 있다.Next, the mixed solution is electrospun to prepare current collector precursor fibers. Electrospinning is a method for producing nanoscale fibers using an electric field, which is simpler than the conventionally known methods and has the advantage of easy control of the shape and size of the nanofibers. The electrospinning may be performed by discharging the mixed solution at a rate of 1 ml / h to 3 ml / h under an applied voltage of 15 kV to 25 kV and a distance from a syringe to a collector of 15 cm to 20 cm.
인가전압이 15kV 미만인 경우 섬유의 직경이 두꺼워지고 덩어리가 생기는 문제점이 있을 수 있다. 25kV 초과인 경우 상기 혼합용액이 섬유형태가 아닌 응집된 형태와 덩어리의 형태로 콜렉터에 수집되는 문제점이 있을 수 있다.If the applied voltage is less than 15kV, there may be a problem that the diameter of the fiber is thickened and lumps are generated. If it is more than 25kV may have a problem that the mixed solution is collected in the collector in the form of agglomerates and agglomerates, not fibrous form.
또한, 균일한 나노 크기의 섬유를 얻기 위해서 토출속도는 1ml/h ~ 3ml/h의 범위인 것이 바람직하다.In addition, in order to obtain uniform nano-sized fibers, the discharge rate is preferably in the range of 1 ml / h to 3 ml / h.
다음, 상기 제조된 집전체전구체 섬유를 산화안정화 한다. 산화안정화는 면간 안정성을 향상시키고 화학적 반응속도에 결정적인 요인이 된다. 그리고 산화안정화는 다음단계인 탄화 반응을 쉽게 제어하기 위한 공정이다. Next, the prepared current collector precursor fiber is oxidatively stabilized. Oxidation stabilization improves interplanar stability and is a critical factor in chemical reaction rate. Oxidation stabilization is a process for easily controlling the next carbonization reaction.
산화안정화는 상기 집전체전구체 섬유를 산소분위기에서 5℃/min의 승온속도로 최종적으로 220℃ ~ 280℃의 온도에서 2~4시간 유지하며 수행될 수 있다. 온도가 220℃ 미만인 경우, 방사된 상기 집전체전구체 섬유에 남아있는 일부 불순물 제거가 어려울 수 있으며, 280℃를 초과하는 경우 상기 집전체전구체 섬유 내에 탄소성분과 산화물들이 탈수 있다.Oxidation stabilization may be carried out while maintaining the current collector precursor fibers at an elevated temperature of 5 ° C./min in an oxygen atmosphere and finally at a temperature of 220 ° C. to 280 ° C. for 2 to 4 hours. If the temperature is less than 220 ℃, it may be difficult to remove some impurities remaining in the spun the current collector precursor fiber, if the temperature exceeds 280 ℃ carbon components and oxides in the current collector precursor fiber can be dehydrated.
다음, 상기 산화안정화된 집전체전구체 섬유를 탄화시켜 3차원 집전체를 제조한다. 탄화과정은 카본으로 이루어진 섬유를 제조하기 위함으로 상기 탄화과정에서 강도, 탄성률과 같은 섬유의 물성을 상당한 범위로 변화시킬 수 있기 때문에 용도에 따라 탄화조건을 달리 설정할 수 있다. 상기 탄화는 아르곤분위기에서 5℃/min의 승온속도로 최종적으로 900℃ ~ 1100℃의 온도에서 2~4시간 유지하며 수행될 수 있다.Next, the three-dimensional current collector is manufactured by carbonizing the oxidatively stabilized current collector precursor fibers. The carbonization process is to produce a fiber made of carbon, so that the physical properties of the fiber, such as strength and elastic modulus, can be changed in a considerable range in the carbonization process, so that the carbonization conditions can be set differently according to the use. The carbonization may be performed at an elevated temperature of 5 ° C./min in an argon atmosphere and finally maintained at a temperature of 900 ° C. to 1100 ° C. for 2 to 4 hours.
탄화 온도가 900℃ 미만인 경우 탄화가 완전하게 이루어지지 않을 가능성이 있고, 1100℃를 초과하는 경우 에너지 소모가 많아지는 문제점이 있다.If the carbonization temperature is less than 900 ℃ there is a possibility that the carbonization is not made completely, if the temperature exceeds 1100 ℃ there is a problem that the energy consumption increases.
상기 단계를 거쳐 제조된 3차원 집전체는 직경이 100nm ~ 500nm인 탄소섬유를 포함하는 카본펠트 또는 카본매트일 수 있다. 직경이 100nm 미만인 경우 탄소섬유가 부서지기 쉽고 섬유간의 간격이 증가하여 상기 3차원 집전체의 내구성 및 전도도가 낮아질 수 있다. 직경이 500nm 초과인 경우 탄소섬유의 산화안정화가 제대로 이뤄지지 않아 다음 탄화 단계시 열융착 현상이 발생할 수 있고, 비표면적이 줄어들어 전극 제조시 에너지밀도 또는 방전용량이 감소할 수 있다.The three-dimensional current collector manufactured through the above step may be a carbon felt or carbon mat including carbon fibers having a diameter of 100 nm to 500 nm. When the diameter is less than 100 nm, carbon fibers are brittle and the spacing between the fibers increases, so that durability and conductivity of the 3D current collector may be lowered. If the diameter is more than 500nm, the oxidation stability of the carbon fiber is not properly performed, heat fusion may occur at the next carbonization step, and the specific surface area may be reduced, thereby reducing energy density or discharge capacity during electrode production.
또한, 상기 3차원 집전체는 밀도가 0.6g/cm3 ~ 1.8g/ cm3일 수 있다. 밀도가 0.6 g/cm3미만인 경우 기공의 크기도 크고 탄소섬유의 강도가 낮아서 상기 3차원 집전체의 내구성이 문제될 수 있고 또한 전극 제조시에도 전기전도도가 낮아질 수 있고, 밀도가 1.8 g/cm3초과인 경우 강도는 향상되지만 기공의 크기가 작아져 전해질과 이온의 이동경로가 나빠진다.In addition, the three-dimensional current collector may have a density of 0.6 g / cm 3 to 1.8 g / cm 3 . When the density is less than 0.6 g / cm 3 , the pore size is large and the strength of the carbon fiber is low, so durability of the three-dimensional current collector may be a problem, and electrical conductivity may be lowered even when manufacturing the electrode, and the density is 1.8 g / cm. If it is more than 3 , the strength is improved, but the pore size becomes smaller, resulting in a poor migration path between the electrolyte and the ions.
상기 3차원 집전체는 무게가 가볍고 전기전도성이 우수하여 본 발명에 따른 제조방법에 따라 황화니켈 전극 제조시에 도전재나 바인더 같은 별도의 부수적인 재료가 필요하지 않아 높은 방전용량과 에너지밀도를 얻는 효과가 있다.The three-dimensional current collector is light in weight and excellent in electrical conductivity, and thus does not require a separate material such as a conductive material or a binder in the manufacture of a nickel sulfide electrode according to the manufacturing method according to the present invention, thereby obtaining high discharge capacity and energy density. There is.
둘째, 상기 3차원 집전체에 니켈을 무전해도금한다.Second, nickel is electroless plated on the three-dimensional current collector.
종래기술은 구리판과 같은 2차원의 집전체 위에 Ni와 S의 화합물을 도전재와 고분자 결합재를 첨가하여 도포하였는데, 이렇게 제조된 황화니켈은 전극의 두께가 두꺼워질 뿐 아니라 전자가 전극 표면으로 이동하는 거리나 리튬이온이 전극내로 확산되는 거리가 비교적 길다. 또한 고분자 결합재는 전기전도도가 매우 낮아 전극의 저항을 증가시키는 요인이 된다. 본 발명은 이러한 문제점을 해결하기 위해 Ni을 3차원 집전체 전체에 무전해도금한다. 무전해도금은 전기반응이 아닌 화학반응을 이용한 도금방법이다. 다시 말해서 외부전기의 힘으로 하지 않고 환원제의 힘으로 금속의 석출을 이루게 하는 방법이 무전해도금이며 금속, 비금속 위에 도금된다. 무전해도금방법에서 니켈(Ni)을 이용하는 이유는 전이금속으로서 쉽게 양이온을 만들고 경도 및 유연성이 좋으며 다른 전이금속보다 우수한 특성을 가지고 있기 때문이다.The prior art applied a compound of Ni and S by adding a conductive material and a polymer binder on a two-dimensional current collector such as a copper plate. The nickel sulfide thus prepared not only thickens the electrode but also moves electrons to the electrode surface. The distance or distance at which lithium ions diffuse into the electrode is relatively long. In addition, the polymer binder has a very low electrical conductivity, which increases the resistance of the electrode. In order to solve this problem, the present invention is electroless plated Ni to the entire three-dimensional current collector. Electroless plating is a plating method using a chemical reaction rather than an electrical reaction. In other words, it is electroless plating and plated on metals and nonmetals. The reason why nickel (Ni) is used in the electroless plating method is that the cation is easily formed as a transition metal, has good hardness and flexibility, and has superior properties to other transition metals.
무전해도금을 위해 우선 도금액을 제조하는데, 상기 도금액의 주성분에는 니켈염, 환원제 및 착화제가 포함되고, 도금액 중의 환원제에 의해서 니켈염의 니켈이온이 상기 3차원 집전체에 구형의 니켈입자를 형성하게 된다.First, a plating solution is prepared for electroless plating. A main component of the plating solution includes a nickel salt, a reducing agent, and a complexing agent, and nickel ions of the nickel salt form spherical nickel particles in the three-dimensional current collector by the reducing agent in the plating solution. .
본 발명에서 사용할 수 있는 니켈이온의 공급원이 되는 상기 니켈염으로는 염화니켈육수화물(nickel chloride hexahydrate, NiCl2·6H2O)이 바람직하고, 상기 환원제로는 차아인산나트륨(sodium hypophosphite monohydrate, NaH2PO2·H2O), 상기 착화제로는 시트르산나트륨 (sodium citrate dihydrate, Na3C6H5O7·2H2O)을 사용할 수 있다. 그리고 PH조정역할을 하는 물질로 염화암모늄(ammonium chloride, NH4Cl)을 사용할 수 있다.Nickel chloride hexahydrate (NiCl 2 · 6H 2 O) is preferable as the nickel salt that is a source of nickel ions that can be used in the present invention, and sodium hypophosphite monohydrate (NaH) as the reducing agent. 2 PO 2 · H 2 O), the sodium citrate (sodium citrate dihydrate, Na 3 C 6 H 5 O 7 · 2H 2 O) may be used as the complexing agent. In addition, ammonium chloride (ammonium chloride, NH 4 Cl) may be used as a substance for adjusting pH.
또한, 상기 무전해도금은 온도가 75℃ ~ 95℃이고 pH가 8 ~ 10인 조건에서 8분 ~ 16분의 시간 동안 수행될 수 있다.In addition, the electroless plating may be performed for a time of 8 minutes to 16 minutes under the condition that the temperature is 75 ℃ ~ 95 ℃ and pH is 8 ~ 10.
무전해도금을 할 때 온도와 PH가 중요한 변수이다. 온도와 PH 값이 높으면 도금이 되는 속도가 빨라지고 표면저항이 낮아진다. 반대로 온도와 PH 값이 낮아지면 도금이 되는 속도는 느려지고 표면저항도 높아진다. 도금 온도가 75℃ 미만이거나 pH가 8 미만이면, 도금 속도가 느려서 제조시간이 오래 걸리고, 표면저항이 높아서 전기전도도가 감소한다. 결과적으로 방전용량이나 충방전 효율을 감소시킬 수 있다. 도금온도가 95℃ 초과하거나 pH가 10을 초과하면, 도금 속도가 빨라지면서 니켈입자가 너무 두껍게 도금되어 비표면적이 줄어들 수 있다. 결과적으로 방전용량이 감소할 수 있다.When electroless plating, temperature and pH are important parameters. Higher temperature and PH values result in faster plating and lower surface resistance. On the contrary, if the temperature and PH value are lowered, the plating speed will be slower and the surface resistance will be higher. If the plating temperature is less than 75 ° C or the pH is less than 8, the plating speed is slow, the manufacturing time is long, and the surface resistance is high, the electrical conductivity is reduced. As a result, discharge capacity and charge / discharge efficiency can be reduced. If the plating temperature exceeds 95 ° C. or the pH exceeds 10, the plating speed is increased and the nickel particles are plated too thick and the specific surface area may be reduced. As a result, the discharge capacity can be reduced.
높은 방전용량과 에너지밀도를 갖는 황화니켈 전극 제조를 위해 도금시간도 중요한 변수이다. 도금시간이 8분 미만이면 충분한 양의 니켈이 상기 3차원 집전체에 도금되지 않아서 방전용량이 낮아지고, 16분을 초과하면 도금된 니켈의 두께가 두꺼워지면서 구형의 니켈입자가 서로 뭉치게 되어 전체적으로 비표면적이 줄어들어 전해질과 접촉하는 면적이 너무 작아지게 되면서 전기 화학적 특성이 떨어지게 된다.Plating time is also an important parameter for the production of nickel sulfide electrodes with high discharge capacity and energy density. If the plating time is less than 8 minutes, a sufficient amount of nickel is not plated on the 3D current collector, so that the discharge capacity is lowered. If the plating time is more than 16 minutes, the thickness of the plated nickel becomes thick and the spherical nickel particles aggregate together. The specific surface area decreases, making the area in contact with the electrolyte too small, resulting in poor electrochemical properties.
상기 무전해도금방법을 통해 제조한 니켈입자는 탄소섬유 위에 구형모양을 가짐으로써 표면적이 크고 결정성이 뛰어나다.Nickel particles prepared by the electroless plating method have a spherical shape on the carbon fiber and have a large surface area and excellent crystallinity.
셋째, 상기 니켈이 도금된 3차원 집전체에 황화처리한다.Third, the nickel-plated three-dimensional current collector is sulfided.
이 때, 용매로는 다황화암모늄((NH4)2Sx), 황이온의 공급원으로는 설퍼 파우더를 사용할 수 있다. 먼저 다황화암모늄과 설퍼파우더를 혼합한 다음, 설정된 황화 온도가 되면 상기 니켈이 도금된 3차원 집전체를 용액에 담구어 황화처리한다. At this time, ammonium polysulfide ((NH 4 ) 2 S x ) may be used as a solvent, and sulfur powder may be used as a source of sulfur ions. First, ammonium polysulfide and sulfur powder are mixed, and when the sulfiding temperature is set, the nickel-plated 3D current collector is immersed in a solution and sulfided.
상기 단계에서의 황화 처리는 온도가 70℃ ~ 90℃인 조건에서 15분 ~ 40분의 시간 동안 수행될 수 있다. 온도가 70℃ 미만이면 설퍼파우더가 용액에 완전히 용해되지 않을 수 있고, 90℃ 초과하면 제조시간과 에너지가 많이 소모될 수 있다.The sulfidation treatment in this step may be carried out for a time of 15 minutes to 40 minutes at a temperature of 70 ℃ ~ 90 ℃. If the temperature is less than 70 ℃ sulfur powder may not be completely dissolved in the solution, if it exceeds 90 ℃ manufacturing time and energy may be consumed a lot.
또한, 황화처리 시간이 15분 미만인 경우 충분한 황화니켈이 형성되지 않아서 방전용량 및 충방전효율이 감소될 수 있고, 시간이 40분 초과하는 경우 생성되는 황화니켈층이 두꺼워지면서 비표면적이 감소하여 전자나 이온의 이동이 용이하지 않을 수 있다.In addition, when the sulfidation time is less than 15 minutes, sufficient nickel sulfide is not formed, thereby reducing the discharge capacity and the charging and discharging efficiency, and when the time is more than 40 minutes, the nickel sulfide layer is thickened and the specific surface area decreases to form electrons. The movement of ions may not be easy.
상기 황화처리를 통해 니켈이 도금되어있는 모든 면에 꽃잎모양을 가지는 황화니켈 화합물을 제조함으로써 표면적이 커지고 전자나 이온의 이동경로를 줄일 수 있다.Through the sulfidation process, a nickel sulfide compound having a petal shape on all surfaces of the nickel plated layer is manufactured to increase the surface area and reduce the electron or ion migration path.
또한, 본 발명은 상기 본 발명에 따른 방법으로 제조되는 리튬이차전지용 황화니켈 전극을 제공한다. 또한, 상기 리튬이차전지용 황화니켈 전극은 플렉서블할 수 있다. 따라서 다양한 형상으로 전극을 제조할 수 있어 리튬이차전지를 사용하는 다양한 응용제품에 활용할 수 있다.In addition, the present invention provides a nickel sulfide electrode for a lithium secondary battery manufactured by the method according to the present invention. In addition, the nickel sulfide electrode for the lithium secondary battery may be flexible. Therefore, the electrode can be manufactured in various shapes, and can be utilized for various applications using lithium secondary batteries.
또한, 상기 리튬이차전지용 황화니켈 전극의 두께는 1μm ~ 25μm 일 수 있다. 두께가 1μm 미만이면, 전극활물질의 양이 너무 적어 방전용량이 낮고 이차전지의 특성을 나타내지 않을 수 있고, 25μm를 초과하면 전자나 이온의 이동경로가 증가하면서 전극의 저항을 증가시켜 방전용량 또는 충방전 효율이 낮아질 수 있다. In addition, the thickness of the nickel sulfide electrode for the lithium secondary battery may be 1μm ~ 25μm. If the thickness is less than 1 μm, the amount of the electrode active material is too small, so that the discharge capacity is low and may not exhibit the characteristics of the secondary battery. The discharge efficiency can be lowered.
또한, 본 발명은 양극; 음극; 전해질; 분리막; 을 포함하고, 상기 양극은 상기 본 발명에 따른 리튬이차전지용 황화니켈 전극인 것을 특징으로 하는 리튬이차전지를 제공한다.In addition, the present invention is an anode; cathode; Electrolyte; Separator; It includes, and the positive electrode provides a lithium secondary battery, characterized in that the nickel sulfide electrode for lithium secondary battery according to the present invention.
상기 본 발명에 따라 제조된 리튬이차전지용 황화니켈 전극은 종래기술의 문제점인 도전재나 고분자 결합재 같은 부수적인 재료가 필요하지 않아서 두께를 감소시켜 전자나 이온의 이동경로를 줄이고, 높은 방전용량과 에너지밀도를 획득할 수 있다.The nickel sulfide electrode for a lithium secondary battery manufactured according to the present invention does not need an additional material such as a conductive material or a polymer binder, which is a problem of the prior art, thereby reducing the thickness and reducing the migration path of electrons and ions, and thus high discharge capacity and energy density. Can be obtained.
이하, 실시예, 비교예 및 실험예에 대해 설명하기로 한다.Hereinafter, Examples, Comparative Examples and Experimental Examples will be described.
[실시예 1]Example 1
[전기방사에 의한 3차원 카본펠트 집전체 제조][Production of 3D Carbon Felt Current Collector by Electrospinning]
먼저 폴리아크릴로니트릴(polyacrylonitrile, PAN) 10wt.%를 디메틸포름아미드(N,N-Dimethylformamide, DMF)에 넣어 80℃에서 2시간동안 용해시켜 혼합용액을 준비한다.First, 10 wt.% Of polyacrylonitrile (PAN) is added to dimethylformamide (N, N-Dimethylformamide, DMF) to dissolve at 80 ° C. for 2 hours to prepare a mixed solution.
다음은 전기방사를 하기 위해 10ml 주사기에 혼합용액을 1ml 채운 뒤 21 G(외경: 0.80 mm 내경: 0.50 mm) 노즐을 결합한다. 실린지 펌프에 주사기를 장착하고 전기방사를 실시한다. 이때 공정변수로는 전압은 19kV이고 토출 속도는 2.5ml/h 이며, 주사기에서 콜렉터까지의 거리는 18cm 그리고 콜렉터의 회전속도는 200RPM이다. 환경변수로는 온도는 상온이고 습도는 45%이다.Next, fill the 10ml syringe with 1ml of mixed solution for electrospinning, and then join the 21 G (outer diameter: 0.80 mm inner diameter: 0.50 mm) nozzles. Insert the syringe into the syringe pump and perform electrospinning. At this time, the process variable voltage is 19kV, discharge speed is 2.5ml / h, the distance from the syringe to the collector is 18cm and the collector's rotation speed is 200RPM. The environmental variable is temperature at room temperature and humidity at 45%.
상기 전기방사로 제조한 폴리아크릴로니트릴 섬유 펠트를 석영관 열처리로에 넣어 산화안정화 및 탄화과정을 거친다. 산화안정화는 온도 250℃에서 3시간 유지한다. 승온속도는 5℃/min이며 가스분위기는 산소이다. 다음으로 탄화과정은 온도 1000℃에서 3시간 유지한다. 승온조건은 5℃/min이며 가스분위기는 99.999 % 아르곤이다. 상기 탄화과정까지 거쳐서 3차원 카본펠트 집전체를 제조한다.The polyacrylonitrile fiber felt prepared by the electrospinning is put into a quartz tube heat treatment furnace to undergo oxidation stabilization and carbonization. Oxidation stabilization is maintained at a temperature of 250 ° C. for 3 hours. The temperature increase rate is 5 ℃ / min and the gas atmosphere is oxygen. Next, the carbonization process is maintained for 3 hours at a temperature of 1000 ℃. The temperature increase condition is 5 ℃ / min and the gas atmosphere is 99.999% argon. A three-dimensional carbon felt current collector is manufactured through the carbonization process.
[3차원 카본펠트 집전체에 니켈(Ni) 무전해도금][Nickel Electroless Plating on 3D Carbon Felt Current Collector]
비커에 증류수를 1L 채운 뒤 핫플레이트 위에 두고 마그네틱 바를 이용하여 용액을 회전시켜준다. 다음으로 니켈이온의 공급원이 되는 염화니켈육수화물(nickel chloride hexahydrate, NiCl2·6H2O, 96%)을 45g, 환원제인 차아인산나트륨(sodium hypophosphite monohydrate, NaH2PO2·H2O, 95%,)을 11g, 착화제인 시트르산나트륨 (sodium citrate dihydrate, Na3C6H5O7·2H2O, 99%)을 100g, 그리고 pH조정역할을 하는 염화암모늄(ammonium chloride, NH4Cl, 98.5%)을 50g 첨가하였다. 온도는 90℃에 pH는 9로 고정시켰다. Fill the beaker with 1 liter of distilled water and place it on a hotplate to rotate the solution using a magnetic bar. Next, 45 g of nickel chloride hexahydrate (NiCl 2 · 6H 2 O, 96%), which is a source of nickel ions, sodium hypophosphite monohydrate (NaH 2 PO 2 · H 2 O, 95) %,) 11g, sodium citrate (sodium citrate dihydrate, Na 3 C 6 H 5 O 7 · 2H 2 O, 99%) 100g, and ammonium chloride (ammonium chloride, NH 4 Cl, 50 g of 98.5%) was added. The temperature was fixed at 90 ° C. and the pH at 9.
다음으로 위에서 상기 제조한 3차원 카본펠트 집전체를 용액에 담구어 Ni을 도금시켰다. 이때 도금시간은 10분이다. 도금을 한 뒤 증류수로 씻어낸 뒤 70℃오븐에서 24시간 건조시켰다.Next, Ni was plated by dipping the prepared 3D carbon felt current collector in the solution. At this time, the plating time is 10 minutes. After the plating was washed with distilled water and dried at 70 ℃ oven for 24 hours.
[황화처리하여 리튬이차전지용 황화니켈 전극 제조][Sulfide Treatment to Produce Nickel Sulfide Electrode for Lithium Secondary Battery]
비커에 (NH4)2Sx 200 ml를 채운 뒤 핫플레이트 위에 두고 마그네틱 바를 이용하여 용액을 회전시켜준다. 40℃ 이상이 되면 설퍼 파우더를 1.5 g첨가시켜준다. 온도가 80℃가 되면 상기 제조한 니켈이 도금된 3차원 카본펠트 집전체를 용액에 담구어 30분간 유지시킨다. 그 후 증류수에 씻어낸 뒤 70℃ 오븐에서 24시간 건조시켜 리튬이차전지용 황화니켈 전극을 제조하였다.Fill the beaker with (NH 4 ) 2 S x 200 ml and place on a hotplate to rotate the solution using a magnetic bar. When the temperature is over 40 ℃, 1.5g of sulfur powder is added. When the temperature reaches 80 ° C., the nickel-plated 3D carbon felt current collector is immersed in a solution and maintained for 30 minutes. Then, washed with distilled water and dried in an oven at 70 ℃ for 24 hours to prepare a nickel sulfide electrode for lithium secondary batteries.
[상기 리튬이차전지용 황화니켈 전극이 구비된 리튬이차전지 제조][Production of lithium secondary battery with nickel sulfide electrode for lithium secondary battery]
양극으로는 상기 제조된 황화니켈을 부수적인 재료 없이 곧바로 전극으로 사용하였다. 음극으로는 리튬호일을 사용하였다. 분리막은 셀가드 2400(celgard Co.)을 사용하였다. 사용목적은 음극과 양극의 직접접촉을 피하기 위해서이다. 전해질은 유기용매 DME와 DOL을 부피비 1:1로 혼합한 뒤 0.5M의 LiTFSI염을 용해시켜 제조한 액체전해질을 사용하였다. 사용 셀은 스와질락셀을 사용하였으며 적층 순서는 1 cm2 로 펀칭한 리튬호일을 깔고 분리막, 황화니켈 전극순으로 적층하였다. 전해질은 각 재료 사이에 5μl를 넣어 리튬이차전지를 제조하였다.The prepared nickel sulfide was directly used as an electrode as an anode without any additional material. Lithium foil was used as a negative electrode. As a separator, Celgard 2400 (celgard Co.) was used. The purpose of use is to avoid direct contact between cathode and anode. As the electrolyte, a liquid electrolyte prepared by dissolving 0.5 M LiTFSI salt after mixing the organic solvent DME and DOL in a volume ratio of 1: 1. The cell used was Swazilaxel, and the lamination order was laminated with a lithium foil punched to 1 cm 2 , followed by a separator and a nickel sulfide electrode. The electrolyte was put in 5μl between each material to prepare a lithium secondary battery.
[실시예 2]Example 2
니켈 무전해도금 시간을 15분으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating time was 15 minutes.
[비교예 1]Comparative Example 1
니켈 무전해도금 시간을 5분으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating time was 5 minutes.
[비교예 2]Comparative Example 2
니켈 무전해도금 시간을 20분으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating time was 20 minutes.
[실시예 3] Example 3
니켈 무전해도금 온도를 75℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating temperature was 75 ° C.
[비교예 3]Comparative Example 3
니켈 무전해도금 온도를 50℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating temperature was set to 50 ° C.
[비교예 4][Comparative Example 4]
니켈 무전해도금 온도를 110℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the nickel electroless plating temperature was 110 ° C.
[실험예 1]Experimental Example 1
실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 제조된 니켈이 무전해도금된 3차원 카본펠트 집전체와 황화처리된 리튬이차전지용 황화니켈 전극을 주사전자현미경(SEM)으로 관찰하였다.Nickel electroless plated 3D carbon felt current collectors prepared in Examples 1, 2, Comparative Example 1 and Comparative Example 2 and nickel sulfide electrodes for sulfided lithium secondary batteries were observed by scanning electron microscope (SEM). .
도 4는 본 발명의 실시예에 따른 니켈을 무전해도금 처리한 3차원 카본펠트 집전체의 도금시간별 SEM 이미지를 나타낸 도이다. 도 4를 참조하면, 처음의 3차원 카본펠트 집전체에서는 탄소섬유 다발의 모습이 나타나는데 니켈 도금을 5분 처리한 비교예 1은 소량의 니켈입자만이 보이고, 10분 처리한 실시예 1에서 니켈은 탄소섬유를 따라 구형의 입자로 도금되어 전체 표면적이 가장 넓은 것을 확인할 수 있다. 15분 처리한 실시예 2에서는 니켈입자의 구형크기가 커지면서 입자끼리 서로 맞닿은 모습이 나타나 표면적이 조금 감소하고, 비교예 2에서는 서로 입자가 결합하여 굵은 니켈층이 형성되어 표면적이 상당히 줄어들었음을 확인할 수 있다.Figure 4 is a view showing the SEM image of the plating time of the three-dimensional carbon felt collector electroless plating nickel according to an embodiment of the present invention. Referring to FIG. 4, the first three-dimensional carbon felt current collector shows the appearance of a bundle of carbon fibers. In Comparative Example 1 treated with nickel plating for 5 minutes, only a small amount of nickel particles were seen, and in Example 1 treated with 10 minutes Silver is plated with spherical particles along the carbon fiber, it can be seen that the entire surface area is the largest. In Example 2 after 15 minutes of treatment, the spherical size of the nickel particles was increased so that the particles were in contact with each other, and the surface area was slightly reduced. In Comparative Example 2, the particles were bonded to each other to form a thick nickel layer, thereby confirming that the surface area was considerably reduced. Can be.
도 5는 본 발명의 실시예에 따른 황화처리하여 제조된 리튬이차전지용 황화니켈 전극의 도금시간별 SEM 이미지를 나타낸 도이다. 도 5를 참조하면, 실시예 1 내지 2는 니켈이 도금되어있는 모든 면에 꽃잎모양을 가지는 황화니켈 화합물이 나타나는 반면, 비교예 1은 탄소섬유 다발의 형태만 나타날 뿐이고, 비교예 2는 꽃잎모양이 아닌 판상의 모습이 나타나 표면적이 감소됨을 확인할 수 있다.5 is a view showing a SEM image of the plating time of the nickel sulfide electrode for lithium secondary batteries prepared by sulfidation according to an embodiment of the present invention. Referring to FIG. 5, Examples 1 to 2 show nickel sulfide compounds having petal shapes on all surfaces of nickel plated, whereas Comparative Example 1 shows only carbon fiber bundles, and Comparative Example 2 is petal shaped. The appearance of the plate rather than the appearance can be seen that the surface area is reduced.
[실험예 2]Experimental Example 2
실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 제조된 리튬이차전지를 100mA/g의 전류밀도로 0.8V에서 3.2V의 전압범위 내에서 20 회 방전 실험을 하였다.The lithium secondary batteries prepared in Examples 1, 2, Comparative Example 1 and Comparative Example 2 were subjected to 20 discharge experiments in a voltage range of 0.8V to 3.2V at a current density of 100mA / g.
도 6은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금시간별 방전 그래프이다. 도 6을 참조하면, 실시예 1 및 실시예 2는 비교예 1 및 비교예 2와 비교하여 현저히 높은 1.8 V, 1.4 V의 평탄전압과 이론용량에 가까운 560mAh/g의 방전용량을 나타냄을 확인할 수 있다.6 is a discharge graph of each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention. Referring to FIG. 6, Examples 1 and 2 exhibited significantly higher flat voltages of 1.8 V and 1.4 V and a discharge capacity of 560 mAh / g close to the theoretical capacity, compared to Comparative Examples 1 and 2. have.
도 7은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금시간별 방전 사이클을 나타낸 그래프이다. 도 7을 참조하면, 실시예 1과 실시예 2는 높은 방전용량에서 시작하여 20회 방전 이내에 안정한 사이클 특성을 보였다. 이에 비해 비교예 1 및 비교예 2는 방전 용량 자체가 다른 실시예에 비해 좋지 않은 사이클 특성을 확인할 수 있다.7 is a graph showing the discharge cycle for each plating time of a lithium secondary battery manufactured according to an embodiment of the present invention. Referring to FIG. 7, Example 1 and Example 2 showed stable cycle characteristics starting from a high discharge capacity within 20 discharges. On the other hand, Comparative Example 1 and Comparative Example 2 can confirm the cycle characteristics that the discharge capacity itself is not as good as the other examples.
[실험예 3]Experimental Example 3
실시예 1, 실시예 3, 비교예 3 및 비교예 4에서 제조된 니켈이 무전해도금된 3차원 카본펠트 집전체와 황화처리된 리튬이차전지용 황화니켈 전극을 주사전자현미경(SEM)으로 관찰하였다.Nickel electroless plated 3D carbon felt current collectors prepared in Examples 1, 3, Comparative Example 3 and Comparative Example 4 and nickel sulfide electrodes for sulfided lithium secondary batteries were observed by scanning electron microscopy (SEM). .
도 8은 본 발명의 실시예에 따른 니켈을 무전해도금 처리한 3차원 카본펠트 집전체의 도금온도별 SEM 이미지를 나타낸 도이다. 도 8을 참조하면, 도금 온도 50℃에서 니켈 도금처리한 비교예 3과 110℃에서 니켈 도금처리한 비교예 4의 경우는 탄소섬유다발에 니켈입자가 거의 존재하지 않는 것을 확인할 수 있고, 도금온도 75℃에서 니켈 도금처리한 실시예 3은 소량의 니켈입자가 도금되어 있는 것을 확인할 수 있다. 90℃에서 도금처리한 실시예 1에서 니켈은 탄소섬유를 따라 구형의 입자로 도금되어 전체 표면적이 가장 넓은 것을 확인할 수 있다. 8 is a view showing a SEM image of the plating temperature of the three-dimensional carbon felt current collector subjected to the electroless plating of nickel according to an embodiment of the present invention. Referring to FIG. 8, in the case of Comparative Example 3 subjected to nickel plating at a plating temperature of 50 ° C. and Comparative Example 4 subjected to nickel plating at 110 ° C., it was confirmed that almost no nickel particles were present in the carbon fiber bundles. In Example 3 subjected to nickel plating at 75 ° C., it can be confirmed that a small amount of nickel particles are plated. In Example 1 plated at 90 ℃ nickel is plated with spherical particles along the carbon fiber can be seen that the total surface area is the widest.
도 9는 본 발명의 실시예에 따른 황화처리하여 제조된 리튬이차전지용 황화니켈 전극의 도금시간별 SEM 이미지를 나타낸 도이다. 도 9를 참조하면, 실시예 1은 니켈이 도금되어있는 모든 면에 꽃잎모양을 가지는 황화니켈 화합물이 나타나고, 실시예3에서도 꽃잎모양의 황화니켈 화합물을 확인할 수 있는 반면, 비교예 3, 4는 탄소섬유 다발의 형태만 나타날 뿐임을 확인할 수 있다.9 is a view showing a SEM image of the plating time of the nickel sulfide electrode for a lithium secondary battery prepared by sulfidation according to an embodiment of the present invention. Referring to FIG. 9, Example 1 shows a nickel sulfide compound having a petal shape on all surfaces where nickel is plated, and in Example 3, a nickel sulfide compound having a petal shape may be confirmed, whereas Comparative Examples 3 and 4 may be used. It can be seen that only the shape of the carbon fiber bundle appears.
[실험예 4]Experimental Example 4
실시예 1, 실시예 3, 비교예 3 및 비교예 4에서 제조된 리튬이차전지를 100mA/g의 전류밀도로 0.8V에서 3.2V의 전압범위 내에서 10회 방전 실험을 하였다.The lithium secondary batteries prepared in Examples 1, 3, Comparative Example 3 and Comparative Example 4 were subjected to ten discharge experiments in a voltage range of 0.8V to 3.2V at a current density of 100mA / g.
도 10은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금온도별 방전 그래프이다. 도 10을 참조하면, 실시예 1 및 실시예 3은 종래보다 현저히 높은 1.8 V, 1.4 V의 평탄전압과 이론용량에 가까운 (560mAh/g)의 방전용량을 나타냄을 확인할 수 있다. 이에 비해 비교예 3 및 비교예 4는 방전 실험 자체가 이루어지지 않았다.10 is a discharge graph of each plating temperature of a lithium secondary battery manufactured according to an embodiment of the present invention. Referring to FIG. 10, it can be seen that Examples 1 and 3 exhibit flat voltages of 1.8 V and 1.4 V which are significantly higher than those of the related art, and a discharge capacity close to theoretical capacity (560 mAh / g). In contrast, Comparative Example 3 and Comparative Example 4 did not perform the discharge experiment itself.
도 11은 본 발명의 실시예에 따라 제조된 리튬이차전지의 도금온도별 방전 사이클을 나타낸 그래프이다. 도 11을 참조하면, 실시예 1과 실시예 3은 높은 방전용량에서 시작하여10회 방전 이내에 안정한 사이클 특성을 보이면서 방전용량 및 효율이 유지될 수 있음을 확인하였다. 11 is a graph showing the discharge cycle for each plating temperature of the lithium secondary battery manufactured according to an embodiment of the present invention. Referring to FIG. 11, it was confirmed that Example 1 and Example 3 can maintain the discharge capacity and efficiency, starting from a high discharge capacity and showing stable cycle characteristics within 10 discharges.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (14)

  1. (i) 3차원 집전체를 제조하는 단계;(i) manufacturing a three-dimensional current collector;
    (ii) 상기 3차원 집전체에 니켈을 무전해도금하는 단계;(ii) electroless plating nickel on the three-dimensional current collector;
    (iii) 상기 니켈이 도금된 3차원 집전체에 황화처리하는 단계; 를 포함하는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.(iii) sulfiding the nickel plated three-dimensional current collector; Nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 (ii)단계에서의 무전해도금은 온도가 75℃ ~ 95℃이고 pH가 8 ~ 10인 조건에서 8분 ~ 16분의 시간 동안 수행되는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.The electroless plating in the step (ii) is a method of manufacturing a nickel sulfide electrode for a lithium secondary battery, characterized in that carried out for a time of 8 minutes to 16 minutes at a temperature of 75 ℃ ~ 95 ℃ and pH of 8 to 10.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 (iii)단계에서의 황화 처리는 온도가 70℃ ~ 90℃인 조건에서 15분 ~ 40분의 시간 동안 수행되는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.The sulfidation process in the step (iii) is a method of manufacturing a nickel sulfide electrode for lithium secondary battery, characterized in that carried out for a time of 15 minutes to 40 minutes at a temperature of 70 ℃ ~ 90 ℃.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 (i)단계는,In step (i),
    (i-1) 집전체전구체를 포함하는 혼합용액을 준비하는 단계;(i-1) preparing a mixed solution containing a current collector precursor;
    (i-2) 상기 혼합용액을 전기방사하여 집전체전구체 섬유를 제조하는 단계;(i-2) preparing a current collector precursor fiber by electrospinning the mixed solution;
    (i-3) 상기 집전체전구체 섬유를 산화안정화 하는 단계;(i-3) oxidative stabilizing the current collector precursor fibers;
    (i-4) 상기 산화안정화된 집전체전구체 섬유를 탄화시켜 3차원 집전체를 제조하는 단계; 를 포함하는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.(i-4) carbonizing the oxidatively stabilized current collector precursor fibers to produce a three-dimensional current collector; Nickel sulfide electrode manufacturing method for a lithium secondary battery comprising a.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 (i-2)단계에서 전기방사는 인가전압이 15kV ~ 25kV이고 주사기에서 콜렉터까지의 거리가 15cm ~ 20cm인 조건에서 1ml/h ~ 3ml/h의 속도로 상기 혼합용액을 토출하여 수행되는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.Electrospinning in the step (i-2) is performed by discharging the mixed solution at a rate of 1ml / h ~ 3ml / h under the condition that the applied voltage is 15kV ~ 25kV and the distance from the syringe to the collector 15cm ~ 20cm A method of manufacturing a nickel sulfide electrode for a lithium secondary battery.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 집전체전구체는 폴리아크릴로나이트릴(polyacrylonitrile, PAN)계열, 레이온(Rayon)계열 또는 피치(Pitch)계열 중 하나인 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.The current collector is a polyacrylonitrile (PAN) series, rayon (Rayon) series or pitch (Ni) sulfide electrode manufacturing method for a lithium secondary battery, characterized in that one of.
  7. 청구항 4에 있어서,The method according to claim 4,
    상기 (i-3)단계에서 산화안정화는 산소분위기에서 5℃/min의 승온속도로 최종적으로 220℃ ~ 280℃의 온도에서 2~4시간 유지하며 수행되는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.In the step (i-3), oxidative stabilization is performed at an elevated temperature of 5 ° C./min in an oxygen atmosphere to be finally maintained at a temperature of 220 ° C. to 280 ° C. for 2 to 4 hours. Manufacturing method.
  8. 청구항 4에 있어서,The method according to claim 4,
    상기 (i-4)단계에서 탄화는 아르곤분위기에서 5℃/min의 승온속도로 최종적으로 900℃ ~ 1100℃의 온도에서 2~4시간 유지하며 수행되는 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.In the step (i-4), carbonization is performed in an argon atmosphere at a temperature increase rate of 5 ° C./min and finally maintained at 900 ° C. to 1100 ° C. for 2 to 4 hours to manufacture nickel sulfide electrodes for lithium secondary batteries. Way.
  9. 청구항 4에 있어서,The method according to claim 4,
    상기 3차원 집전체는 직경이 100nm ~ 500nm인 탄소섬유를 포함하는 카본펠트 또는 카본매트인 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.The three-dimensional current collector is a method of manufacturing a nickel sulfide electrode for lithium secondary battery, characterized in that the carbon felt or carbon mat containing carbon fibers having a diameter of 100nm ~ 500nm.
  10. 청구항 4에 있어서,The method according to claim 4,
    상기 3차원 집전체는 밀도가 0.6g/cm3 ~ 1.8g/ cm3인 것을 특징으로 하는 리튬이차전지용 황화니켈 전극 제조방법.The three-dimensional current collector has a density of 0.6g / cm 3 ~ 1.8g / cm 3 The nickel sulfide electrode manufacturing method for a lithium secondary battery.
  11. 청구항 1 내지 청구항 10중 어느 한 항의 방법으로 제조되는 리튬이차전지용 황화니켈 전극.The nickel sulfide electrode for lithium secondary batteries manufactured by the method of any one of Claims 1-10.
  12. 청구항 11에 있어서,The method according to claim 11,
    플렉서블한 것을 특징으로 하는 리튬이차전지용 황화니켈 전극.Nickel sulfide electrode for lithium secondary battery, characterized in that the flexible.
  13. 청구항 11에 있어서,The method according to claim 11,
    두께는 1μm ~ 25μm 인 것을 특징으로 하는 리튬이차전지용 황화니켈 전극.Nickel sulfide electrode for lithium secondary battery, characterized in that the thickness is 1μm ~ 25μm.
  14. 양극;anode;
    음극;cathode;
    전해질;Electrolyte;
    분리막; 을 포함하고,Separator; Including,
    상기 양극은 청구항 11의 리튬이차전지용 황화니켈 전극인 것을 특징으로 하는 리튬이차전지.The positive electrode is a lithium secondary battery of the lithium secondary battery of claim 11, characterized in that the lithium secondary battery.
PCT/KR2017/002807 2016-03-22 2017-03-15 Method for fabricating nickel sulfide electrode for lithium secondary battery WO2017164561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0033779 2016-03-22
KR1020160033779A KR101802301B1 (en) 2016-03-22 2016-03-22 Manufacturing method of nickel sulfide electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2017164561A1 true WO2017164561A1 (en) 2017-09-28

Family

ID=59900664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002807 WO2017164561A1 (en) 2016-03-22 2017-03-15 Method for fabricating nickel sulfide electrode for lithium secondary battery

Country Status (2)

Country Link
KR (1) KR101802301B1 (en)
WO (1) WO2017164561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018344A (en) * 2020-07-13 2020-12-01 昆明理工大学 Carbon-coated nickel sulfide electrode material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150615B1 (en) * 2019-01-07 2020-09-01 경상대학교산학협력단 Composite sulfide/sulfur electrodes and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070049770A (en) * 2005-11-09 2007-05-14 가야에이엠에이 주식회사 A methode for preparing iron sulfide composite electrode for positive electrode and li/iron sulfide composite secondary battery
KR20100081954A (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Cathode materials and lithium secondary battery containing the same
KR20110001845A (en) * 2009-06-29 2011-01-06 경상대학교산학협력단 3-dimension nano structure and manufacturing method thereof
KR20120115960A (en) * 2011-04-11 2012-10-19 주식회사 포스포 Carbonfiber by polyfurfuryl alcohol and its manufacturing method for thereof
KR20150128355A (en) * 2014-05-09 2015-11-18 충남대학교산학협력단 Electrode structure body, method of manufacturing the same and battery having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070049770A (en) * 2005-11-09 2007-05-14 가야에이엠에이 주식회사 A methode for preparing iron sulfide composite electrode for positive electrode and li/iron sulfide composite secondary battery
KR20100081954A (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Cathode materials and lithium secondary battery containing the same
KR20110001845A (en) * 2009-06-29 2011-01-06 경상대학교산학협력단 3-dimension nano structure and manufacturing method thereof
KR20120115960A (en) * 2011-04-11 2012-10-19 주식회사 포스포 Carbonfiber by polyfurfuryl alcohol and its manufacturing method for thereof
KR20150128355A (en) * 2014-05-09 2015-11-18 충남대학교산학협력단 Electrode structure body, method of manufacturing the same and battery having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018344A (en) * 2020-07-13 2020-12-01 昆明理工大学 Carbon-coated nickel sulfide electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
KR101802301B1 (en) 2017-11-29
KR20170110186A (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2016204565A1 (en) Silicon oxide-carbon-polymer composite, and anode active material comprising same
WO2015056925A1 (en) Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
WO2018030616A1 (en) Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
WO2012005556A2 (en) Carbon nanofiber containing metal oxide or intermetallic compound, preparation method thereof, and lithium secondary battery using same
WO2012165884A2 (en) Method for manufacturing a carbon-sulfur composite, carbon-sulfur composite manufactured thereby, and lithium-sulfur battery including same
WO2014042485A1 (en) Lithium secondary battery having improved electrochemical properties, and method for manufacturing same
CN105322132A (en) Positive electrode of lithium-sulfur battery with multifunctional elastic protection layer
WO2019078702A2 (en) Negative electrode active material and all-solid battery negative electrode comprising same
WO2014098419A1 (en) Cathode material for lithium secondary battery, method for manufacturing same and lithium secondary battery comprising same
WO2018212567A1 (en) Electrode for all-solid-state battery and method for manufacturing same
WO2019088475A1 (en) Sulfur-carbon composite and lithium-sulfur battery including same
WO2019013557A2 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
WO2020101301A1 (en) Anode active material and manufacturing method therefor
WO2020040613A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2017164561A1 (en) Method for fabricating nickel sulfide electrode for lithium secondary battery
WO2019088628A2 (en) Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same
WO2022014736A1 (en) All-solid-state battery comprising oxide-based solid electrolyte for low-temperature sintering process, and method for manufacturing same
WO2016013724A1 (en) Electrode, battery, and method for manufacturing electrode
WO2017209383A1 (en) Carbon-based fiber sheet and lithium-sulfur battery including same
WO2019009560A1 (en) Electrode and lithium secondary battery comprising same
WO2014084636A1 (en) Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
WO2018097695A1 (en) Cathode active material for lithium-sulfur battery, comprising metal sulfide nanoparticles, and method for producing same
WO2016122196A1 (en) Electrode, and method for producing battery and electrode
WO2020226329A1 (en) Functional separator having catalytic sites introduced thereinto, manufacturing method therefor, and lithium secondary battery comprising same
WO2020242095A1 (en) Method for manufacturing negative electrode for all-solid-state battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770532

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770532

Country of ref document: EP

Kind code of ref document: A1