WO2017164518A1 - Multicomponent ceria-zirconia-based composite metal oxide catalyst for removing volatile organic compound and method for preparing same - Google Patents

Multicomponent ceria-zirconia-based composite metal oxide catalyst for removing volatile organic compound and method for preparing same Download PDF

Info

Publication number
WO2017164518A1
WO2017164518A1 PCT/KR2017/001779 KR2017001779W WO2017164518A1 WO 2017164518 A1 WO2017164518 A1 WO 2017164518A1 KR 2017001779 W KR2017001779 W KR 2017001779W WO 2017164518 A1 WO2017164518 A1 WO 2017164518A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
volatile organic
oxide catalyst
composite metal
mol
Prior art date
Application number
PCT/KR2017/001779
Other languages
French (fr)
Korean (ko)
Inventor
서정권
박호식
허일정
안치웅
유영우
정윤호
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2017164518A1 publication Critical patent/WO2017164518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a low temperature oxidation catalyst for removing volatile organic compounds and a method for preparing the same, and more particularly, to a multi-component ceria-zirconia based composite metal oxide catalyst for low temperature oxidation of a volatile organic compound and a method for preparing the same.
  • VOCs volatile organic compounds
  • the methods for removing volatile organic compounds include direct combustion, adsorption, and catalytic oxidation.
  • catalytic oxidation is considered to be the most ideal method in terms of economy and environmental friendliness.
  • noble metal catalysts in which metals such as platinum (Pt), rhodium (Rh), and palladium (Pd) are supported on a porous carrier such as ⁇ -alumina are mainly used. Since these catalysts exhibit high activity, various catalysts are used. Is being applied to the reaction. However, due to the high price of the noble metal-based catalyst has a limitation in price competitiveness, and the problem of catalyst deactivation caused by catalyst poisoning and sintering has to be solved, it is required to develop a new catalyst to replace it.
  • Ceria CeO 2
  • Ceria is known to enhance the removal activity of volatile organic compounds because it increases the ability to store and deliver oxygen in the atmosphere.
  • the ceria catalyst itself has recently been studied for a ceria-zirconia composite oxide that can compensate for the low thermal stability, and a new type of catalyst in which a ceria-zirconia compound and the transition metal are mixed is also being studied.
  • the ceria-zirconia metal oxide catalyst including the noble metal prepared by the above method has a problem that it is not economical because the price of the catalyst is high because the noble metal is included in excess.
  • the amorphous copper-manganese oxide catalyst there is a problem in that the aromatic volatile organic compounds such as benzene cannot be removed in a low temperature region below 200 ° C.
  • An object of the present invention is to provide a complex oxide catalyst for removing volatile organic compounds, which is economical and thermally stable compared to conventional noble metal catalysts, and has superior volatile organic compound removal efficiency in a low temperature region compared to conventional metal oxide catalysts. .
  • the metal (M) is manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni)
  • a composite metal oxide catalyst for removing volatile organic compounds selected from the group consisting of:
  • Mn manganese
  • Co Cobalt
  • Ti Titanium
  • Zn Zinc
  • Tin Tin
  • Indium Indium
  • M aqueous solution comprising a precursor of a metal (M) selected from the group consisting of chromium (Cr), iron (Fe) and nickel (Ni) (step 1);
  • step 2 Adding a basic solution to the mixed aqueous solution mixed in step 1 to form a precipitate (step 2);
  • step 3 Aging the mixed aqueous solution containing the precipitate formed in step 2 (step 3);
  • It provides a method for producing a complex metal oxide catalyst for removing a volatile organic compound comprising a; firing the precipitate in the mixed aqueous solution aged in step 3 (step 4).
  • It provides a method of removing a volatile organic compound comprising the step of contacting with a volatile organic compound using the complex metal oxide catalyst for removing the volatile organic compound.
  • the composite metal oxide catalyst for removing volatile organic compounds according to the present invention includes cerium and zirconium in combination with two kinds of transition metals, in particular, a complex oxide of copper (Cu) and a transition metal other than copper (M), compared to conventional noble metal catalysts. It is economical, thermally stable, and has superior volatile organic compound removal efficiency in the low temperature region compared with conventional metal oxide catalysts. Conventional ceria-zirconia metal oxide catalysts or commercialized transition metal oxide catalysts are less efficient in removing volatile organic compounds at low temperatures ( ⁇ 200 ° C.), but the composite metal oxide catalysts for removing volatile organic compounds according to the present invention are precious metals. There is an effect that shows the ability to remove the excellent volatile organic compounds in the low temperature region without including.
  • Example 1 is a graph showing the benzene removal efficiency according to the temperature change of the catalyst prepared in Example 1 and Comparative Examples 1 to 3.
  • the present invention is a.
  • the metal (M) is manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni)
  • a composite metal oxide catalyst for removing volatile organic compounds selected from the group consisting of:
  • the complex metal oxide catalyst for removing a volatile organic compound according to the present invention is a complex oxide catalyst including a complex oxide of cerium (Ce), zirconium (Zr), copper (Cu) and a metal (M) except the metal. Used for compound removal, it is economical and thermally stable compared to conventional noble metal catalysts, and exhibits excellent volatile organic compound removal efficiency in low temperature region compared to conventional metal oxide catalysts.
  • the composite metal oxide is Ce-Zr-Cu-M composite metal oxide, wherein M is manganese (Mn), cobalt (Co), titanium (Ti) , Zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe), nickel (Ni), and the like.
  • cerium in the composite metal oxide catalyst, cerium may be 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst, and the remaining metals may be 70 mol% to 80 mol% with respect to the total mol% of the composite metal oxide catalyst. have. If the content of cerium in the composite metal oxide catalyst is less than 20 mol%, there is a problem in that the removal performance of volatile organic compounds of the catalyst is lowered and the heat resistance is also lowered. If the content is more than 30 mol%, the specific surface area is small. There is a problem that performance is reduced.
  • cerium is 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst
  • zirconium is 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst
  • copper is 20 mol% to 30 mol% based on the total mol% of the complex metal oxide catalyst
  • the metal (M) may be 20 mol% to 30 mol% based on the total mol% of the complex metal oxide catalyst.
  • Mn manganese
  • Co Cobalt
  • Ti Titanium
  • Zn Zinc
  • Tin Tin
  • Indium Indium
  • M aqueous solution comprising a precursor of a metal (M) selected from the group consisting of chromium (Cr), iron (Fe) and nickel (Ni) (step 1);
  • step 3 Aging the mixed aqueous solution containing the precipitate formed in step 2 (step 3);
  • It provides a method for producing a complex metal oxide catalyst for removing a volatile organic compound comprising a; firing the precipitate in the mixed aqueous solution aged in step 3 (step 4).
  • the present invention comprises the steps of mixing a ceria precursor and a zirconia precursor and a solution containing a precursor of two transition metals, and then precipitate it, aging the precipitate, followed by washing, drying and calcining at a relatively low temperature condition.
  • a method for preparing a multi-component ceria-zirconia-based composite metal oxide catalyst having excellent activity in a catalytic reaction process is provided.
  • step 1 is an aqueous solution containing a cerium precursor, an aqueous solution containing a zirconium precursor, an aqueous solution containing a copper precursor and manganese (Mn), Of metal (M) selected from the group consisting of cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni).
  • M Of metal (M) selected from the group consisting of cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni).
  • each precursor is mixed to form a composite metal oxide including a total of four metal oxides of cerium, zirconium, copper, and additional transition metals, and an aqueous solution including a cerium precursor and an aqueous solution including a zirconium precursor.
  • the method for preparing a composite metal oxide catalyst for removing volatile organic compounds according to the present invention is very economical because it does not use precious metals such as platinum or palladium.
  • the metal M added in step 1 is a transition metal, manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr) , Iron (Fe) and nickel (Ni) and the like, and as a preferred embodiment, may be manganese (Mn), but is not limited thereto.
  • the precursors of the step 1 is a material for forming a complex metal oxide of each metal (cerium, zirconium, copper, etc.), it is preferable that it is an acid salt compound such as nitrate, sulfate, phosphate, hydrochloride and fluoride, preferred practice For example, it may be in the form of nitrate, but is not limited thereto.
  • the cerium precursor of step 1 may be cerium nitrate (Ce (NO 3 ) 3 or cerium nitrate hydrate (Ce (NO 3 ) 3 .xH 2 O), and the zirconium precursor is zirconium nitrate (Zr (NO 3) ) 2 ) or zirconium nitrate hydrate (Zr (NO 3 ) 2 xH 2 O), and the copper precursor is copper nitrate (Cu (NO 3 ) 2 ) or copper nitrate hydrate (Cu (NO 3 ) 2 .xH 2 O), and the precursor of the metal M is a manganese precursor, which may be manganese nitrate (Mn (NO 3 ) 2 ) or manganese nitrate hydrate (Mn (NO 3 ) 2 .xH 2 O), but the precursor materials may It is not limited.
  • step 2 is a step of forming a precipitate by dropwise adding a basic solution to the mixed aqueous solution mixed in step 1 above.
  • step 2 as a precipitant is added to the mixed aqueous solution mixed in step 1 to form a precipitate, a precipitate is formed by dropwise addition using a basic solution as a precipitant.
  • the basic solution in step 2 is an aqueous sodium hydroxide solution or ammonia water, it may be added dropwise to co-precipitate to pH 10 or more.
  • the content of the basic solution is not particularly limited, but it is preferable to add the basic solution until the pH is 10 or more. If the pH is less than 10, the mixtures in the salt state are precipitated unevenly, and some remain in the ionic state without being precipitated, resulting in a decrease in catalyst productivity, wastewater treatment process, and catalyst efficiency of the resulting composite metal oxide catalyst. There is a problem falling.
  • step 3 is a step of aging a mixed aqueous solution including the precipitate formed in the step 2.
  • Step 3 is a step of aging the mixed aqueous solution, the mixed aqueous solution containing the precipitate formed in step 2 may be aged with stirring for at least 1 hour at a temperature near 80 °C.
  • the aging of step 3 may be performed for 1 hour to 480 hours at a temperature of 65 °C to 95 °C, may be carried out for 2 hours to 240 hours at a temperature of 75 °C to 90 °C, 80 °C to Although it may be carried out for 2 to 24 hours at a temperature of 90 °C, the aging temperature and stirring time of the step 3 is not limited thereto. However, when the aging of step 3 is performed at a temperature lower than 65 ° C., the reaction does not proceed sufficiently, which may affect the catalyst composition and crystallinity of the composite metal oxide.
  • washing the precipitate in the aged mixed aqueous solution preferably further comprises a.
  • the aged precipitation mixture may be washed with hot ultrapure water.
  • the high temperature ultrapure water is preferably used to be heated to 75 °C to 100 °C, more preferably 80 °C or more, the amount is used 5 to 10 times the amount of ultra pure or distilled water used to make the mixed aqueous solution It is desirable to.
  • the temperature of the ultrapure water is lower than 75 ° C, the ions present in the form of salts are not sufficiently washed and remain intact, resulting in a decrease in the removal efficiency of volatile organic compounds.
  • step 4 is a step of firing the precipitate in the mixed aqueous solution aged in step 3.
  • step 4 the precipitate aged in step 3 is calcined to obtain a composite metal oxide as a final product.
  • step 4 may be performed by heating to a high temperature in an oxidizing atmosphere such as air or an oxygen-containing mixed gas.
  • step 4 is preferably performed at a temperature of 300 °C to 600 °C, more preferably carried out at a temperature of 350 °C to 500 °C. If the calcination of step 4 is performed at a temperature below 300 ° C., impurities are not sufficiently removed, and thus, the removal efficiency of volatile organic compounds is lowered. When the baking is performed above 600 ° C., sintering is performed. Due to this there is a problem that the catalyst performance is lowered.
  • the composite metal oxide catalyst prepared by the preparation method according to the present invention is composed of cerium and zirconium in combination with two kinds of transition metals, in particular, a complex oxide of copper (Cu) and non-copper transition metal (M), compared to conventional noble metal catalysts. It is economical, thermally stable, and has superior volatile organic compound removal efficiency in the low temperature region compared with conventional metal oxide catalysts. Conventional ceria-zirconia metal oxide catalysts or commercialized transition metal oxide catalysts are less efficient at removing volatile organic compounds at low temperatures ( ⁇ 200 ° C.), but the composite metal oxide catalysts for removing volatile organic compounds according to the present invention are precious metals. There is an effect that shows the ability to remove the excellent volatile organic compounds in the low temperature region without including.
  • It provides a method of removing a volatile organic compound comprising the step of contacting with a volatile organic compound using the complex metal oxide catalyst for removing the volatile organic compound.
  • Step 1 Cerium nitrate (Ce (NO 3 ) 3 ⁇ 6H 2 O, Sigma Aldrich Korea) 25 mol% completely dissolved in ultrapure water to prepare a cerium nitrate aqueous solution, and then zirconium nitrate (ZrO (NO 3 ) 2 ⁇ xH 2 O, Sigma Aldrich Korea) 25 mol% was completely dissolved in ultrapure water to prepare a zirconium nitrate aqueous solution, and 25 mol% copper nitrate (Cu (NO 3 ) 2 ⁇ 3H 2 O, Sigma Aldrich Korea) was completely dissolved in ultrapure water. To prepare an aqueous copper nitrate solution.
  • manganese nitrate Mn (NO 3 ) 2 .xH 2 O, Sigma Aldrich Korea
  • aqueous solution of manganese nitrate 25 mol% of manganese nitrate (Mn (NO 3 ) 2 .xH 2 O, Sigma Aldrich Korea) was completely dissolved in ultrapure water to prepare an aqueous solution of manganese nitrate.
  • a mixed aqueous solution was prepared by mixing all of the prepared cerium nitrate aqueous solution, zirconium nitrate aqueous solution, copper nitrate aqueous solution and manganese nitrate aqueous solution.
  • Step 2 The mixed aqueous solution prepared in Step 1 was constantly stirred using a stirrer, and 1 M caustic soda (NaOH, Sigma Aldrich Korea) was added until pH 10, followed by stirring for 18 hours. Zr-Cu-Mn mixture was precipitated.
  • 1 M caustic soda NaOH, Sigma Aldrich Korea
  • Step 3 The mixture comprising the precipitate prepared in Step 2 was aged at a temperature of 70 ° C. to 80 ° C. for 2 hours, and then washed with 6 L of hot ultrapure water (70 ° C. to 80 ° C.). The filtered precipitate was then dried for 12 hours at a temperature of 110 ° C.
  • Step 4 The precipitate dried in Step 4 was calcined at 400 ° C. for 5 hours to prepare a complex metal oxide catalyst for removing volatile organic compounds.
  • step 1 of Example 1 25 mol% of cerium nitrate (Ce (NO 3 ) 3 ⁇ 6H 2 O, Sigma Aldrich Korea) was completely dissolved in ultrapure water to prepare an aqueous cerium nitrate solution, followed by zirconium nitrate (ZrO (NO 3 ) 2 ⁇ xH 2 O, Sigma Aldrich Korea) 25 mol% was completely dissolved in ultrapure water to prepare a zirconium nitrate solution, and copper nitrate (Cu (NO 3 ) 2 ⁇ 3H 2 O, Sigma Aldrich Korea) 50 mol% After fully dissolved in ultrapure water to prepare an aqueous solution of copper nitrate, the mixture was mixed in the same manner as in Example 1 except that the mixed aqueous solution was prepared to prepare a composite metal oxide catalyst.
  • Ce (NO 3 ) 3 ⁇ 6H 2 O Sigma Aldrich Korea
  • Copper-manganese composite oxide powder (Cu-Mn Oxide, Purelyst ER-1, Puresphere) was prepared as a commercial metal oxide catalyst.
  • Example 1 In order to confirm the performance of the ceria-zirconia-copper based multicomponent composite metal oxide catalyst prepared by the preparation method according to the present invention, the composite metal oxide prepared in Example 1, Comparative Example 1, Comparative Example 2, and Comparative 3 A benzene removal experiment was carried out using a catalyst at a space velocity of 100,000 h ⁇ 1 . Benzene removal experiments were carried out by filling the catalyst in the center of the fixed-bed reactor made of SUS material and flowing benzene to analyze the reactant concentration before and after the reaction using a FID-gas chromatograph, and the results are shown in FIG. 1.
  • Example 1 which is a Ce-Zr-Cu-Mn composite metal oxide catalyst prepared by the manufacturing method according to the present invention
  • a lower temperature range than those of Comparative Examples 1 to 3, which are known to be excellent in performance is used. It was confirmed that exhibiting excellent benzene removal efficiency at (170 °C ⁇ 275 °C).
  • the ceria-zirconia-based composite metal oxide catalyst prepared by the manufacturing method according to the present invention has an excellent effect of removing volatile organic compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention provides a composite metal oxide catalyst for removing a volatile organic compound which comprises a composite metal oxide of cerium (Ce), zirconium (Zr), copper (Cu), and metal (M), wherein the metal (M) is selected from the group consisting of manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe), and nickel (Ni). The composite metal oxide catalyst for removing a volatile organic compound according to the present invention comprises cerium, zirconium, and a composite oxide of two transition metals, in particular, copper (Cu) and a transition metal (M) other than copper, and thus is economical compared to a conventional precious metal catalyst, is thermally stable, and is excellent in the efficiency of removing a volatile organic compound at a low temperature region compared to conventional metal oxide catalysts. A conventional ceria-zirconia metal oxide catalyst or commercialized transition metal oxide catalyst has been inefficient in removing a volatile organic compound at a low temperature not greater than 200 ℃, but, the composite metal oxide catalyst for removing a volatile organic compound according to the present invention has an effect of exhibiting an excellent ability to remove a volatile organic compound at a low temperature region even without containing a precious metal.

Description

휘발성 유기화합물 제거용 다성분계 세리아-지르코니아 기반 복합 금속 산화물 촉매 및 이의 제조방법Multicomponent Ceria-Zirconia-based Composite Metal Oxide Catalyst for Removing Volatile Organic Compounds
본 발명은 휘발성 유기화합물 제거용 저온 산화 촉매 및 이의 제조방법에 관한 것으로, 구체적으로는 휘발성 유기화합물 저온 산화를 위한 다성분계 세리아-지르코니아 기반 복합 금속 산화물 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a low temperature oxidation catalyst for removing volatile organic compounds and a method for preparing the same, and more particularly, to a multi-component ceria-zirconia based composite metal oxide catalyst for low temperature oxidation of a volatile organic compound and a method for preparing the same.
산업현장에서는 다양한 종류의 휘발성 유기화합물(volatile organic compounds, VOC)이 배출되는데, 이들 물질은 인체와 환경에 매우 유해하기 때문에 반드시 제거되어야 한다. 휘발성 유기화합물을 제거하기 위한 방안으로는 직접연소법, 흡착법, 촉매산화법 등이 있으나 경제성과 환경 친화적인 측면에서 촉매산화법이 가장 이상적인 방법으로 평가되고 있다. Industrial sites emit various kinds of volatile organic compounds (VOCs), which must be removed because they are very harmful to humans and the environment. The methods for removing volatile organic compounds include direct combustion, adsorption, and catalytic oxidation. However, catalytic oxidation is considered to be the most ideal method in terms of economy and environmental friendliness.
촉매산화법에는 γ-알루미나와 같은 다공성 담체에 백금(Pt), 로듐(Rh), 팔라듐(Pd) 등과 같은 금속을 담지시킨 귀금속계 촉매가 주로 사용되고 있으며, 이들 촉매는 높은 활성을 나타내기 때문에 다양한 산화반응에 적용되고 있다. 하지만 귀금속계 촉매는 높은 가격으로 인해 가격 경쟁력에 한계가 있으며, 촉매독 및 신터링으로부터 야기되는 촉매 비활성화 문제가 해결되어야 하기 때문에, 이를 대체하기 위한 새로운 촉매 개발이 요구되고 있다.In catalytic oxidation, noble metal catalysts in which metals such as platinum (Pt), rhodium (Rh), and palladium (Pd) are supported on a porous carrier such as γ-alumina are mainly used. Since these catalysts exhibit high activity, various catalysts are used. Is being applied to the reaction. However, due to the high price of the noble metal-based catalyst has a limitation in price competitiveness, and the problem of catalyst deactivation caused by catalyst poisoning and sintering has to be solved, it is required to develop a new catalyst to replace it.
휘발성 유기화합물 촉매산화 시스템에서 귀금속계 촉매를 대체하기 위해 다양한 금속 산화물 촉매가 활발히 연구되고 있다. 구리(Cu), 망간(Mn), 니켈(Ni), 철(Fe), 바나듐(V), 몰리브덴(Mo), 코발트(Co), 아연(Zn) 등이 활성이 우수한 금속 산화물로 널리 알려져 있으며, 이들의 높은 휘발성 유기화합물 제거 성능과 높은 가격경쟁력으로 인해 상용 휘발성 유기화합물 촉매산화 시스템에 적용되고 있다.Various metal oxide catalysts have been actively studied to replace noble metal catalysts in volatile organic compound catalytic oxidation systems. Copper (Cu), manganese (Mn), nickel (Ni), iron (Fe), vanadium (V), molybdenum (Mo), cobalt (Co), zinc (Zn), etc. are widely known as excellent metal oxides. Due to their high volatile organic compound removal performance and high price competitiveness, they have been applied to commercial volatile organic compound catalytic oxidation systems.
상기 금속물질들의 휘발성 유기화합물 산화능을 향상시키기 위해 세리아(CeO2)를 포함한 촉매 개발이 연구되고 있다. 세리아는 대기 중의 산소를 저장하는 능력과 이를 전달하는 능력을 증대시키기 때문에, 휘발성 유기화합물의 제거 활성을 높이는 것으로 알려져 있다.Development of a catalyst including ceria (CeO 2 ) has been studied to improve the oxidizing ability of volatile organic compounds of the metal materials. Ceria is known to enhance the removal activity of volatile organic compounds because it increases the ability to store and deliver oxygen in the atmosphere.
그러나, 상기 세리아 촉매 자체는 낮은 열적 안정성 때문에 이를 보완할 수 있는 세리아-지르코니아 복합 산화물에 대한 연구가 최근 이루어지고 있으며, 세리아-지르코니아 화합물과 상기 전이금속을 혼합한 새로운 형태의 촉매도 연구되고 있다.However, the ceria catalyst itself has recently been studied for a ceria-zirconia composite oxide that can compensate for the low thermal stability, and a new type of catalyst in which a ceria-zirconia compound and the transition metal are mixed is also being studied.
세리아-지르코니아 금속 산화물 촉매와 관련된 종래기술로서, 대한민국 등록특허 제10-1566688호에서는 초산세륨과 초산지르코늄을 가성소다로 침전시킨 후, 이 혼합물을 코디어라이트 허니컴 지지체에 코팅하고 팔라듐과 백금 전구체를 함친 시킨 촉매의 제조방법에 관한 것이 제시되어 있다.As a related art related to a ceria-zirconia metal oxide catalyst, Korean Patent No. 10-1566688 discloses that cerium acetate and zirconium acetate are precipitated with caustic soda, and then the mixture is coated on a cordierite honeycomb support and palladium and platinum precursors are coated. A method for producing a catalyst which has been infiltrated is presented.
하지만, 상기와 같은 방법으로 제조한 귀금속 포함 세리아-지르코니아 금속 산화물 촉매는 귀금속이 과량 포함되어 있기 때문에 촉매의 가격이 높아져 경제적이지 못한 문제가 있다. 또한 무정형 구리-망간 산화물 촉매의 경우 벤젠과 같은 방향족 휘발성 유기화합물을 200 ℃ 이하의 저온 영역에서 제거하지 못한다는 문제가 있다. However, the ceria-zirconia metal oxide catalyst including the noble metal prepared by the above method has a problem that it is not economical because the price of the catalyst is high because the noble metal is included in excess. In addition, in the case of the amorphous copper-manganese oxide catalyst, there is a problem in that the aromatic volatile organic compounds such as benzene cannot be removed in a low temperature region below 200 ° C.
이에, 본 발명자들은 휘발성 유기화합물을 제거하기 위한 금속 산화물 촉매에 대하여 연구하던 중, 세리아-지르코니아와 두 가지의 다른 전이금속을 혼합킨 새로운 형태의 복합 산화물을 포함하는 휘발성 유기화합물 제거용 복합 산화물 촉매를 개발하였으며, 기존 촉매 대비 저온에서도 우수한 휘발성 유기화합물의 제거 성능을 보임을 확인하고, 본 발명을 완성하였다.Therefore, while the present inventors are studying a metal oxide catalyst for removing volatile organic compounds, a complex oxide catalyst for removing volatile organic compounds including a new type of composite oxide in which ceria-zirconia and two different transition metals are mixed. Was developed, confirming that the removal performance of volatile organic compounds excellent even at low temperatures compared to the existing catalyst, and completed the present invention.
본 발명의 목적은 기존의 귀금속 촉매에 비해 경제적이고, 열적으로 안정할 뿐만 아니라, 기존 금속 산화물 촉매에 비해 저온 영역에서 휘발성 유기화합물 제거 효율이 우수한 휘발성 유기화합물 제거용 복합 산화물 촉매를 제공하는 데 있다.An object of the present invention is to provide a complex oxide catalyst for removing volatile organic compounds, which is economical and thermally stable compared to conventional noble metal catalysts, and has superior volatile organic compound removal efficiency in a low temperature region compared to conventional metal oxide catalysts. .
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
세륨(Ce), 지르코늄(Zr), 구리(Cu) 및 금속(M)의 복합 금속 산화물을 포함하고,A composite metal oxide of cerium (Ce), zirconium (Zr), copper (Cu) and metal (M),
상기 금속(M)은 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni)로 이루어지는 군으로부터 선택되는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매를 제공한다.The metal (M) is manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni) Provided is a composite metal oxide catalyst for removing volatile organic compounds selected from the group consisting of:
또한, 본 발명은In addition, the present invention
세륨 전구체를 포함하는 수용액, 지르코늄 전구체를 포함하는 수용액, 구리 전구체를 포함하는 수용액 및 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni)로 이루어지는 군으로부터 선택되는 금속(M)의 전구체를 포함하는 수용액을 혼합하는 단계(단계 1);Aqueous solution containing cerium precursor, Aqueous solution containing zirconium precursor, Aqueous solution containing copper precursor and manganese (Mn), Cobalt (Co), Titanium (Ti), Zinc (Zn), Tin (Sn), Indium (In) Mixing an aqueous solution comprising a precursor of a metal (M) selected from the group consisting of chromium (Cr), iron (Fe) and nickel (Ni) (step 1);
상기 단계 1에서 혼합된 혼합 수용액에 염기성 용액을 적가하여 침전물을 형성시키는 단계(단계 2);Adding a basic solution to the mixed aqueous solution mixed in step 1 to form a precipitate (step 2);
상기 단계 2에서 형성된 침전물을 포함하는 혼합 수용액을 숙성시키는 단계(단계 3); 및Aging the mixed aqueous solution containing the precipitate formed in step 2 (step 3); And
상기 단계 3에서 숙성된 혼합 수용액 내 침전물을 소성하는 단계(단계 4);를 포함하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법을 제공한다.It provides a method for producing a complex metal oxide catalyst for removing a volatile organic compound comprising a; firing the precipitate in the mixed aqueous solution aged in step 3 (step 4).
나아가, 본 발명은Furthermore, the present invention
상기의 휘발성 유기화합물 제거용 복합 금속 산화물 촉매를 사용하여 휘발성 유기화합물과 접촉시키는 단계;를 포함하는 휘발성 유기화합물의 제거방법을 제공한다.It provides a method of removing a volatile organic compound comprising the step of contacting with a volatile organic compound using the complex metal oxide catalyst for removing the volatile organic compound.
본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매는 세륨, 지르코늄에 2 종의 전이금속, 특히 구리(Cu)와 구리가 아닌 전이금속(M)의 복합 산화물을 포함함으로써 기존의 귀금속 촉매에 비해 경제적이고, 열적으로 안정하며, 기존 금속 산화물 촉매들에 비해 저온영역에서 휘발성 유기화합물 제거 효율이 우수하다. 기존의 세리아-지르코니아 금속 산화물 촉매 또는 상용화된 전이금속 산화물 촉매는 휘발성 유기화합물을 저온영역(~ 200 ℃)에서 제거하는데 효율이 떨어졌으나, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매는 귀금속을 포함하지 않고도 저온영역에서 우수한 휘발성 유기화합물을 제거능을 보이는 효과가 있다.The composite metal oxide catalyst for removing volatile organic compounds according to the present invention includes cerium and zirconium in combination with two kinds of transition metals, in particular, a complex oxide of copper (Cu) and a transition metal other than copper (M), compared to conventional noble metal catalysts. It is economical, thermally stable, and has superior volatile organic compound removal efficiency in the low temperature region compared with conventional metal oxide catalysts. Conventional ceria-zirconia metal oxide catalysts or commercialized transition metal oxide catalysts are less efficient in removing volatile organic compounds at low temperatures (~ 200 ° C.), but the composite metal oxide catalysts for removing volatile organic compounds according to the present invention are precious metals. There is an effect that shows the ability to remove the excellent volatile organic compounds in the low temperature region without including.
도 1은 실시예 1 및 비교예 1 내지 3에서 제조된 촉매의 온도 변화에 따른 벤젠 제거효율을 나타낸 그래프이다.1 is a graph showing the benzene removal efficiency according to the temperature change of the catalyst prepared in Example 1 and Comparative Examples 1 to 3.
본 발명은The present invention
세륨(Ce), 지르코늄(Zr), 구리(Cu) 및 금속(M)의 복합 금속 산화물을 포함하고,A composite metal oxide of cerium (Ce), zirconium (Zr), copper (Cu) and metal (M),
상기 금속(M)은 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni)로 이루어지는 군으로부터 선택되는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매를 제공한다.The metal (M) is manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni) Provided is a composite metal oxide catalyst for removing volatile organic compounds selected from the group consisting of:
이하, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매에 대하여 상세히 설명한다.Hereinafter, a complex metal oxide catalyst for removing volatile organic compounds according to the present invention will be described in detail.
본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매는 세륨(Ce), 지르코늄(Zr), 구리(Cu)와 상기 금속을 제외한 금속(M)의 복합 산화물을 포함하는 복합 산화물 촉매로서, 휘발성 유기화합물 제거를 위해 사용되어 기존의 귀금속 촉매에 비해 경제적이고, 열적으로 안정하며, 기존 금속 산화물 촉매들에 비해 저온영역에서 휘발성 유기화합물 제거 효율이 우수한 특성을 나타낸다. The complex metal oxide catalyst for removing a volatile organic compound according to the present invention is a complex oxide catalyst including a complex oxide of cerium (Ce), zirconium (Zr), copper (Cu) and a metal (M) except the metal. Used for compound removal, it is economical and thermally stable compared to conventional noble metal catalysts, and exhibits excellent volatile organic compound removal efficiency in low temperature region compared to conventional metal oxide catalysts.
기존 세리아-지르코니아 금속 산화물 촉매 또는 상용화된 전이금속 산화물 촉매는 휘발성 유기화합물을 저온영역(~ 200 ℃)에서 제거하는데 효율이 떨어졌으나, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매는 귀금속을 포함하지 않고도 저온영역에서 우수한 휘발성 유기화합물을 제거능을 보인다.Existing ceria-zirconia metal oxide catalysts or commercialized transition metal oxide catalysts are less efficient in removing volatile organic compounds at low temperatures (~ 200 ° C.), but the composite metal oxide catalysts for removing volatile organic compounds according to the present invention are precious metals. It shows good ability to remove volatile organic compounds in low temperature range without inclusion.
본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매에 있어서, 상기 복합 금속 산화물은 Ce-Zr-Cu-M 복합 금속 산화물로서, 상기 M은 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni) 등일 수 있다.In the composite metal oxide catalyst for removing volatile organic compounds according to the present invention, the composite metal oxide is Ce-Zr-Cu-M composite metal oxide, wherein M is manganese (Mn), cobalt (Co), titanium (Ti) , Zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe), nickel (Ni), and the like.
또한, 상기 복합 금속 산화물 촉매에서, 세륨은 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%이고, 나머지 금속들은 복합 금속 산화물 촉매 총 몰%에 대하여 70 몰% 내지 80 몰%일 수 있다. 만약, 상기 복합 금속 산화물 촉매에서 세륨의 함량이 20 몰% 미만일 경우에는 촉매의 휘발성 유기화합물 제거 성능이 저하되고, 내열성 또한 저하되는 문제가 있으며, 30 몰%를 초과하는 경우에는 비표면적이 작아 촉매 성능이 저하되는 문제가 있다.Further, in the composite metal oxide catalyst, cerium may be 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst, and the remaining metals may be 70 mol% to 80 mol% with respect to the total mol% of the composite metal oxide catalyst. have. If the content of cerium in the composite metal oxide catalyst is less than 20 mol%, there is a problem in that the removal performance of volatile organic compounds of the catalyst is lowered and the heat resistance is also lowered. If the content is more than 30 mol%, the specific surface area is small. There is a problem that performance is reduced.
나아가, 상기 복합 금속 산화물 촉매에서, 세륨은 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%이고, 지르코늄은 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%이며, 구리는 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%이고, 금속(M)은 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%일 수 있다.Further, in the composite metal oxide catalyst, cerium is 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst, zirconium is 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst, and copper Is 20 mol% to 30 mol% based on the total mol% of the complex metal oxide catalyst, and the metal (M) may be 20 mol% to 30 mol% based on the total mol% of the complex metal oxide catalyst.
또한, 본 발명은In addition, the present invention
세륨 전구체를 포함하는 수용액, 지르코늄 전구체를 포함하는 수용액, 구리 전구체를 포함하는 수용액 및 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni)로 이루어지는 군으로부터 선택되는 금속(M)의 전구체를 포함하는 수용액을 혼합하는 단계(단계 1);Aqueous solution containing cerium precursor, Aqueous solution containing zirconium precursor, Aqueous solution containing copper precursor and manganese (Mn), Cobalt (Co), Titanium (Ti), Zinc (Zn), Tin (Sn), Indium (In) Mixing an aqueous solution comprising a precursor of a metal (M) selected from the group consisting of chromium (Cr), iron (Fe) and nickel (Ni) (step 1);
상기 단계 1에서 혼합된 혼합 수용액에 염기성 용액을 적가하여 침전물을 형성시키는 단계(단계 2);Adding a basic solution to the mixed aqueous solution mixed in step 1 to form a precipitate (step 2);
상기 단계 2에서 형성된 침전물을 포함하는 혼합 수용액을 숙성시키는 단계(단계 3); 및Aging the mixed aqueous solution containing the precipitate formed in step 2 (step 3); And
상기 단계 3에서 숙성된 혼합 수용액 내 침전물을 소성하는 단계(단계 4);를 포함하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법을 제공한다.It provides a method for producing a complex metal oxide catalyst for removing a volatile organic compound comprising a; firing the precipitate in the mixed aqueous solution aged in step 3 (step 4).
이하, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, a method for preparing a composite metal oxide catalyst for removing a volatile organic compound according to the present invention will be described in detail for each step.
본 발명은 세리아 전구체 및 지르코니아 전구체와 추가적으로 전이금속 2종의 전구체를 포함하는 용액을 혼합한 후 이를 침전시키고, 침전물을 숙성 시킨 후, 수세, 건조, 소성하는 단계를 포함하는, 상대적으로 저온조건의 촉매 반응공정에서도 활성이 우수한 다성분계 세리아-지르코니아 기반 복합 금속 산화물 촉매의 제조방법을 제공한다.The present invention comprises the steps of mixing a ceria precursor and a zirconia precursor and a solution containing a precursor of two transition metals, and then precipitate it, aging the precipitate, followed by washing, drying and calcining at a relatively low temperature condition. Provided is a method for preparing a multi-component ceria-zirconia-based composite metal oxide catalyst having excellent activity in a catalytic reaction process.
먼저, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법에 있어서, 단계 1은 세륨 전구체를 포함하는 수용액, 지르코늄 전구체를 포함하는 수용액, 구리 전구체를 포함하는 수용액 및 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni)로 이루어지는 군으로부터 선택되는 금속(M)의 전구체를 포함하는 수용액을 혼합하는 단계이다.First, in the method of preparing a composite metal oxide catalyst for removing a volatile organic compound according to the present invention, step 1 is an aqueous solution containing a cerium precursor, an aqueous solution containing a zirconium precursor, an aqueous solution containing a copper precursor and manganese (Mn), Of metal (M) selected from the group consisting of cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni). Mixing an aqueous solution containing a precursor.
상기 단계 1에서는 세륨, 지르코늄, 구리 및 추가 전이금속의 총 4 가지 금속 산화물이 포함되는 복합 금속 산화물을 형성하기 위하여 각 전구체를 혼합하는 단계로서, 세륨 전구체를 포함하는 수용액, 지르코늄 전구체를 포함하는 수용액, 구리 전구체를 포함하는 수용액 및 금속(M)의 전구체를 포함하는 수용액을 혼합한다.In step 1, each precursor is mixed to form a composite metal oxide including a total of four metal oxides of cerium, zirconium, copper, and additional transition metals, and an aqueous solution including a cerium precursor and an aqueous solution including a zirconium precursor. , An aqueous solution containing a copper precursor and an aqueous solution containing a precursor of a metal (M).
이에 따라, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법은 백금이나 팔라듐과 같은 귀금속을 사용하지 않기 때문에 매우 경제적이다.Accordingly, the method for preparing a composite metal oxide catalyst for removing volatile organic compounds according to the present invention is very economical because it does not use precious metals such as platinum or palladium.
구체적으로, 상기 단계 1에서 추가되는 금속 M은 전이금속으로, 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni) 등일 수 있으며, 바람직한 실시예로서, 망간(Mn)일 수 있으나 이에 제한되는 것은 아니다.Specifically, the metal M added in step 1 is a transition metal, manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr) , Iron (Fe) and nickel (Ni) and the like, and as a preferred embodiment, may be manganese (Mn), but is not limited thereto.
또한, 상기 단계 1의 전구체들은 각 금속(세륨, 지르코늄, 구리 등)의 복합 금속 산화물을 형성하기 위한 물질로서, 질산염, 황산염, 인산염, 염산염 및 불산염 등의 산염 화합물인 것이 바람직하고, 바람직한 실시예로서, 질산염 형태일 수 있으나, 이에 제한되는 것은 아니다. In addition, the precursors of the step 1 is a material for forming a complex metal oxide of each metal (cerium, zirconium, copper, etc.), it is preferable that it is an acid salt compound such as nitrate, sulfate, phosphate, hydrochloride and fluoride, preferred practice For example, it may be in the form of nitrate, but is not limited thereto.
구체적인 일례로써, 상기 단계 1의 세륨 전구체는 질산세륨(Ce(NO3)3 또는 질산세륨 수화물(Ce(NO3)3ㆍxH2O)일 수 있고, 지르코늄 전구체는 질산지르코늄(Zr(NO3)2) 또는 질산지르코늄 수화물(Zr(NO3)2ㆍxH2O)일 수 있으며, 구리 전구체는 질산구리(Cu(NO3)2) 또는 질산구리 수화물(Cu(NO3)2ㆍxH2O)일 수 있고, 금속 M의 전구체는 망간 전구체로, 질산망간(Mn(NO3)2) 또는 질산망관 수화물(Mn(NO3)2ㆍxH2O)일 수 있으나, 상기 전구체 물질들이 이에 제한되는 것은 아니다.As a specific example, the cerium precursor of step 1 may be cerium nitrate (Ce (NO 3 ) 3 or cerium nitrate hydrate (Ce (NO 3 ) 3 .xH 2 O), and the zirconium precursor is zirconium nitrate (Zr (NO 3) ) 2 ) or zirconium nitrate hydrate (Zr (NO 3 ) 2 xH 2 O), and the copper precursor is copper nitrate (Cu (NO 3 ) 2 ) or copper nitrate hydrate (Cu (NO 3 ) 2 .xH 2 O), and the precursor of the metal M is a manganese precursor, which may be manganese nitrate (Mn (NO 3 ) 2 ) or manganese nitrate hydrate (Mn (NO 3 ) 2 .xH 2 O), but the precursor materials may It is not limited.
다음으로, 본 발명에 따른 휘발성 유기화합물 제거용 복합 산화물 촉매의 제조방법에 있어서, 단계 2는 상기 단계 1에서 혼합된 혼합 수용액에 염기성 용액을 적가하여 침전물을 형성시키는 단계이다.Next, in the method for preparing a complex oxide catalyst for removing a volatile organic compound according to the present invention, step 2 is a step of forming a precipitate by dropwise adding a basic solution to the mixed aqueous solution mixed in step 1 above.
상기 단계 2에서는 상기 단계 1에서 혼합된 혼합 수용액에 침전제를 첨가시켜 침전물을 형성시키는 단계로서, 침전제로 염기성 용액을 사용하여 적가함으로써 침전물을 형성시킨다.In step 2, as a precipitant is added to the mixed aqueous solution mixed in step 1 to form a precipitate, a precipitate is formed by dropwise addition using a basic solution as a precipitant.
구체적으로, 상기 단계 2에서 염기성 용액은 수산화나트륨 수용액 또는 암모니아수이고, 이를 적가하여 pH 10 이상으로 적정하여 공침시킬 수 있다. 상기 염기성 용액의 함량은 특별히 제한되지는 않으나, pH가 10 이상이 될 때까지 염기성 용액을 첨가하는 것이 바람직하다. 만약, pH가 10 미만일 경우에는 염 상태의 혼합물들이 불균일하게 침전되고, 일부는 침전되지 않고 이온 상태로 남게되어 촉매 생산성이 떨어지고 폐수처리 공정이 필요하며, 최종 생성된 복합 금속 산화물 촉매의 촉매 효율 또한 떨어지는 문제가 있다.Specifically, the basic solution in step 2 is an aqueous sodium hydroxide solution or ammonia water, it may be added dropwise to co-precipitate to pH 10 or more. The content of the basic solution is not particularly limited, but it is preferable to add the basic solution until the pH is 10 or more. If the pH is less than 10, the mixtures in the salt state are precipitated unevenly, and some remain in the ionic state without being precipitated, resulting in a decrease in catalyst productivity, wastewater treatment process, and catalyst efficiency of the resulting composite metal oxide catalyst. There is a problem falling.
다음으로, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법에 있어서, 단계 3은 상기 단계 2에서 형성된 침전물을 포함하는 혼합 수용액을 숙성시키는 단계이다.Next, in the method for preparing a composite metal oxide catalyst for removing a volatile organic compound according to the present invention, step 3 is a step of aging a mixed aqueous solution including the precipitate formed in the step 2.
상기 단계 3은 혼합 수용액을 숙성시키는 단계로, 상기 단계 2에서 형성된 침전물을 포함하는 혼합 수용액을 80 ℃ 근처의 온도에서 1 시간 이상 교반하며 숙성시킬 수 있다.Step 3 is a step of aging the mixed aqueous solution, the mixed aqueous solution containing the precipitate formed in step 2 may be aged with stirring for at least 1 hour at a temperature near 80 ℃.
구체적으로, 상기 단계 3의 숙성은 65 ℃ 내지 95 ℃의 온도에서 1 시간 내지 480 시간 동안 수행할 수 있고, 75 ℃ 내지 90 ℃의 온도에서 2 시간 내지 240 시간 동안 수행할 수 있으며, 80 ℃ 내지 90 ℃의 온도에서 2 시간 내지 24 시간 동안 수행할 수 있으나, 상기 단계 3의 숙성 온도 및 교반 시간이 이에 제한되는 것은 아니다. 다만, 상기 단계 3의 숙성을 65 ℃ 미만의 낮은 온도에서 수행하는 경우 반응이 충분히 진행되지 않아 복합 금속 산화물의 촉매 조성 및 결정성에 영향을 줄 수 있다.Specifically, the aging of step 3 may be performed for 1 hour to 480 hours at a temperature of 65 ℃ to 95 ℃, may be carried out for 2 hours to 240 hours at a temperature of 75 ℃ to 90 ℃, 80 ℃ to Although it may be carried out for 2 to 24 hours at a temperature of 90 ℃, the aging temperature and stirring time of the step 3 is not limited thereto. However, when the aging of step 3 is performed at a temperature lower than 65 ° C., the reaction does not proceed sufficiently, which may affect the catalyst composition and crystallinity of the composite metal oxide.
또한, 상기 단계 3의 숙성 단계를 수행하고 난 후, 상기 숙성된 혼합 수용액 내 침전물을 수세하는 단계;를 더 포함하는 것이 바람직하다. 상기 숙성된 침전 혼합물은 고온의 초순수를 이용하여 수세시킬 수 있다. 상기 고온의 초순수는 75 ℃ 내지 100 ℃, 더욱 바람직하게는 80 ℃ 이상으로 가열된 것을 사용하는 것이 바람직하고, 그 양은 상기 혼합 수용액을 만들기 위해 사용된 초순수 또는 증류수 양의 5 배 내지 10 배를 사용하는 것이 바람직하다. 상기 초순수의 온도가 75 ℃ 미만의 낮은 온도일 경우, 염의 형태로 존재하는 이온들이 충분히 씻겨나가지 못해 그대로 남게되어 휘발성 유기화합물의 제거효율이 떨어지는 문제가 있다.In addition, after performing the aging step of step 3, washing the precipitate in the aged mixed aqueous solution; preferably further comprises a. The aged precipitation mixture may be washed with hot ultrapure water. The high temperature ultrapure water is preferably used to be heated to 75 ℃ to 100 ℃, more preferably 80 ℃ or more, the amount is used 5 to 10 times the amount of ultra pure or distilled water used to make the mixed aqueous solution It is desirable to. When the temperature of the ultrapure water is lower than 75 ° C, the ions present in the form of salts are not sufficiently washed and remain intact, resulting in a decrease in the removal efficiency of volatile organic compounds.
나아가, 상기 수세된 침전물은 건조과정을 통해 건조시켜 최종 침전물을 얻을 수 있다.Furthermore, the washed precipitate may be dried through a drying process to obtain a final precipitate.
다음으로, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법에 있어서, 단계 4는 상기 단계 3에서 숙성된 혼합 수용액 내 침전물을 소성하는 단계이다.Next, in the method for preparing a composite metal oxide catalyst for removing a volatile organic compound according to the present invention, step 4 is a step of firing the precipitate in the mixed aqueous solution aged in step 3.
상기 단계 4에서는 상기 단계 3에서 숙성된 침전물을 소성시켜 최종 생성물인 복합 금속 산화물을 얻는다.In step 4, the precipitate aged in step 3 is calcined to obtain a composite metal oxide as a final product.
구체적으로, 상기 단계 4의 소성은 공기 또는 산소 함유 혼합가스와 같은 산화 분위기 하에서 고온으로 가열함으로써 수행될 수 있다.Specifically, the firing of step 4 may be performed by heating to a high temperature in an oxidizing atmosphere such as air or an oxygen-containing mixed gas.
상기 단계 4의 소성은 300 ℃ 내지 600 ℃의 온도에서 수행되는 것이 바람직하고, 350 ℃ 내지 500 ℃의 온도에서 수행되는 것이 더욱 바람직하다. 만약, 상기 단계 4의 소성이 300 ℃의 온도 미만에서 수행되는 경우에는 불순물들이 충분하게 제거되지 않아 휘발성 유기화합물의 제거 효율이 떨어지는 문제가 있으며, 600 ℃를 초과하여 수행되는 경우에는 소결(sintering)로 인해 촉매 성능이 저하되는 문제가 있다.The firing of step 4 is preferably performed at a temperature of 300 ℃ to 600 ℃, more preferably carried out at a temperature of 350 ℃ to 500 ℃. If the calcination of step 4 is performed at a temperature below 300 ° C., impurities are not sufficiently removed, and thus, the removal efficiency of volatile organic compounds is lowered. When the baking is performed above 600 ° C., sintering is performed. Due to this there is a problem that the catalyst performance is lowered.
본 발명에 따른 제조방법으로 제조된 복합 금속 산화물 촉매는 세륨, 지르코늄에 2 종의 전이금속, 특히 구리(Cu)와 구리가 아닌 전이금속(M)의 복합 산화물을 포함함으로써 기존의 귀금속 촉매에 비해 경제적이고, 열적으로 안정하며, 기존 금속 산화물 촉매들에 비해 저온영역에서 휘발성 유기화합물 제거 효율이 우수하다. 기존의 세리아-지르코니아 금속 산화물 촉매 또는 상용화된 전이금속 산화물 촉매는 휘발성 유기화합물을 저온영역(< 200 ℃)에서 제거하는데 효율이 떨어졌으나, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매는 귀금속을 포함하지 않고도 저온영역에서 우수한 휘발성 유기화합물을 제거능을 보이는 효과가 있다.The composite metal oxide catalyst prepared by the preparation method according to the present invention is composed of cerium and zirconium in combination with two kinds of transition metals, in particular, a complex oxide of copper (Cu) and non-copper transition metal (M), compared to conventional noble metal catalysts. It is economical, thermally stable, and has superior volatile organic compound removal efficiency in the low temperature region compared with conventional metal oxide catalysts. Conventional ceria-zirconia metal oxide catalysts or commercialized transition metal oxide catalysts are less efficient at removing volatile organic compounds at low temperatures (<200 ° C.), but the composite metal oxide catalysts for removing volatile organic compounds according to the present invention are precious metals. There is an effect that shows the ability to remove the excellent volatile organic compounds in the low temperature region without including.
나아가, 본 발명은Furthermore, the present invention
상기의 휘발성 유기화합물 제거용 복합 금속 산화물 촉매를 사용하여 휘발성 유기화합물과 접촉시키는 단계;를 포함하는 휘발성 유기화합물의 제거방법을 제공한다.It provides a method of removing a volatile organic compound comprising the step of contacting with a volatile organic compound using the complex metal oxide catalyst for removing the volatile organic compound.
이하, 본 발명의 실시예 및 실험예를 통해 더욱 상세히 설명한다. Hereinafter, it will be described in more detail through Examples and Experimental Examples of the present invention.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.However, the following Examples and Experimental Examples are only illustrative of the present invention, and the content of the present invention is not limited by the following Examples and Experimental Examples.
<실시예 1> Ce-Zr-Cu-Mn 복합 금속 산화물 촉매의 제조Example 1 Preparation of Ce-Zr-Cu-Mn Composite Metal Oxide Catalyst
단계 1: 질산세륨(Ce(NO3)3ㆍ6H2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산세륨 수용액을 준비한 다음, 질산지르코늄(ZrO(NO3)2ㆍxH2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산지르코늄 수용액을 준비하였고, 질산구리(Cu(NO3)2ㆍ3H2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산구리 수용액을 준비하였다. 또한, 질산망간(Mn(NO3)2ㆍxH2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산망간 수용액을 준비하였다. 상기 준비된 질산세륨 수용액, 질산지르코늄 수용액, 질산구리 수용액 및 질산망간 수용액을 모두 혼합하여 혼합 수용액을 제조하였다.Step 1: Cerium nitrate (Ce (NO 3 ) 3 ㆍ 6H 2 O, Sigma Aldrich Korea) 25 mol% completely dissolved in ultrapure water to prepare a cerium nitrate aqueous solution, and then zirconium nitrate (ZrO (NO 3 ) 2 ㆍ xH 2 O, Sigma Aldrich Korea) 25 mol% was completely dissolved in ultrapure water to prepare a zirconium nitrate aqueous solution, and 25 mol% copper nitrate (Cu (NO 3 ) 2 ㆍ 3H 2 O, Sigma Aldrich Korea) was completely dissolved in ultrapure water. To prepare an aqueous copper nitrate solution. In addition, 25 mol% of manganese nitrate (Mn (NO 3 ) 2 .xH 2 O, Sigma Aldrich Korea) was completely dissolved in ultrapure water to prepare an aqueous solution of manganese nitrate. A mixed aqueous solution was prepared by mixing all of the prepared cerium nitrate aqueous solution, zirconium nitrate aqueous solution, copper nitrate aqueous solution and manganese nitrate aqueous solution.
단계 2: 상기 단계 1에서 제조된 혼합 수용액을 교반기를 사용하여 일정하게 교반시키며 pH 10이 될 때까지 1 M의 가성소다(NaOH, 씨그마알드리치코리아)를 투입하고, 18 시간 동안 교반시켜 Ce-Zr-Cu-Mn 혼합물을 침전시켰다. Step 2: The mixed aqueous solution prepared in Step 1 was constantly stirred using a stirrer, and 1 M caustic soda (NaOH, Sigma Aldrich Korea) was added until pH 10, followed by stirring for 18 hours. Zr-Cu-Mn mixture was precipitated.
단계 3: 상기 단계 2에서 제조된 침전물을 포함하는 혼합물을 70 ℃ 내지 80 ℃의 온도에서 2 시간 동안 숙성시킨 후, 6 L의 뜨거운 초순수(70 ℃ 내지 80 ℃)로 수세시켰다. 이후, 여과시킨 침전물을 110 ℃의 온도에서 12 시간 동안 건조시켰다.Step 3: The mixture comprising the precipitate prepared in Step 2 was aged at a temperature of 70 ° C. to 80 ° C. for 2 hours, and then washed with 6 L of hot ultrapure water (70 ° C. to 80 ° C.). The filtered precipitate was then dried for 12 hours at a temperature of 110 ° C.
단계 4: 상기 단계 4에서 건조된 침전물을 400 ℃의 온도에서 5 시간 동안 소성시켜 휘발성 유기화합물 제거용 복합 금속 산화물 촉매를 제조하였다.Step 4: The precipitate dried in Step 4 was calcined at 400 ° C. for 5 hours to prepare a complex metal oxide catalyst for removing volatile organic compounds.
<비교예 1> Ce-Zr-Cu 복합 금속 산화물 촉매의 제조Comparative Example 1 Preparation of Ce-Zr-Cu Composite Metal Oxide Catalyst
상기 실시예 1의 단계 1에서 질산세륨(Ce(NO3)3ㆍ6H2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산세륨 수용액을 준비한 다음, 질산지르코늄(ZrO(NO3)2ㆍxH2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산지르코늄 수용액을 준비하였고, 질산구리(Cu(NO3)2ㆍ3H2O, 씨그마알드리치코리아) 50 몰%를 초순수에 완전히 용해시켜 질산구리 수용액을 준비한 후, 이를 모두 혼합하여 혼합 수용액을 제조한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 복합 금속 산화물 촉매를 제조하였다.In step 1 of Example 1, 25 mol% of cerium nitrate (Ce (NO 3 ) 3 ㆍ 6H 2 O, Sigma Aldrich Korea) was completely dissolved in ultrapure water to prepare an aqueous cerium nitrate solution, followed by zirconium nitrate (ZrO (NO 3 ) 2 ㆍ xH 2 O, Sigma Aldrich Korea) 25 mol% was completely dissolved in ultrapure water to prepare a zirconium nitrate solution, and copper nitrate (Cu (NO 3 ) 2 ㆍ 3H 2 O, Sigma Aldrich Korea) 50 mol% After fully dissolved in ultrapure water to prepare an aqueous solution of copper nitrate, the mixture was mixed in the same manner as in Example 1 except that the mixed aqueous solution was prepared to prepare a composite metal oxide catalyst.
<비교예 2> Ce-Zr-Mn 복합 금속 산화물 촉매의 제조Comparative Example 2 Preparation of Ce-Zr-Mn Composite Metal Oxide Catalyst
상기 실시예 1의 단계 1에서 질산세륨(Ce(NO3)3ㆍ6H2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산세륨 수용액을 준비한 다음, 질산지르코늄(ZrO(NO3)2ㆍxH2O, 씨그마알드리치코리아) 25 몰%를 초순수에 완전히 용해시켜 질산지르코늄 수용액을 준비하였고, 질산망간(Mn(NO3)2ㆍ3H2O, 씨그마알드리치코리아) 50 몰%를 초순수에 완전히 용해시켜 질산망간 수용액을 준비한 후, 이를 모두 혼합하여 혼합 수용액을 제조한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 복합 금속 산화물 촉매를 제조하였다.In step 1 of Example 1, 25 mol% of cerium nitrate (Ce (NO 3 ) 3 ㆍ 6H 2 O, Sigma Aldrich Korea) was completely dissolved in ultrapure water to prepare an aqueous cerium nitrate solution, followed by zirconium nitrate (ZrO (NO 3 ) 2 ㆍ xH 2 O, Sigma Aldrich Korea) 25 mol% was completely dissolved in ultrapure water to prepare a zirconium nitrate solution, and manganese nitrate (Mn (NO 3 ) 2 ㆍ 3H 2 O, Sigma Aldrich Korea) 50 mol% Completely dissolved in ultrapure water to prepare an aqueous solution of manganese nitrate, and then mixed in the same manner as in Example 1 except that a mixed aqueous solution was prepared to prepare a composite metal oxide catalyst.
<비교예 3> Comparative Example 3
상용 금속 산화물 촉매인 구리-망간의 복합 산화물 분말(Cu-Mn Oxide, Purelyst ER-1, (주)퓨어스피어)을 준비하였다.Copper-manganese composite oxide powder (Cu-Mn Oxide, Purelyst ER-1, Puresphere) was prepared as a commercial metal oxide catalyst.
<실험예 1> 휘발성 유기 화합물 제거 효율 분석Experimental Example 1 Analysis of Removal Efficiency of Volatile Organic Compounds
본 발명에 따른 제조방법으로 제조된 세리아-지르코니아-구리 기반 다성분계 복합 금속 산화물 촉매의 성능을 확인하기 위하여, 상기 실시예 1, 비교예 1, 비교예 2, 비교에 3에서 제조된 복합 금속 산화물 촉매를 이용하여 공간속도 100,000 h-1에서 벤젠 제거 실험을 수행하였다. 벤젠 제거 실험은 SUS 재질의 고정층 반응기 중심에 촉매를 충진하고 벤젠을 흘려주어 반응 전후의 반응물 농도를 FID-기체 크로마토그래프를 이용하여 분석하여 수행하였고, 그 결과를 도 1에 나타내었다.In order to confirm the performance of the ceria-zirconia-copper based multicomponent composite metal oxide catalyst prepared by the preparation method according to the present invention, the composite metal oxide prepared in Example 1, Comparative Example 1, Comparative Example 2, and Comparative 3 A benzene removal experiment was carried out using a catalyst at a space velocity of 100,000 h −1 . Benzene removal experiments were carried out by filling the catalyst in the center of the fixed-bed reactor made of SUS material and flowing benzene to analyze the reactant concentration before and after the reaction using a FID-gas chromatograph, and the results are shown in FIG. 1.
도 1에 나타낸 바와 같이, 본 발명에 따른 제조방법으로 제조된 Ce-Zr-Cu-Mn복합 금속 산화물 촉매인 실시예 1의 경우 성능이 우수하다고 알려진 기존 상용 촉매인 비교예 1 내지 3보다 저온영역(170 ℃ ~ 275 ℃)에서 우수한 벤젠 제거효율을 나타내는 것을 확인할 수 있었다. As shown in FIG. 1, in the case of Example 1, which is a Ce-Zr-Cu-Mn composite metal oxide catalyst prepared by the manufacturing method according to the present invention, a lower temperature range than those of Comparative Examples 1 to 3, which are known to be excellent in performance, is used. It was confirmed that exhibiting excellent benzene removal efficiency at (170 ℃ ~ 275 ℃).
이와 같이, 본 발명에 따른 제조방법에 의해 제조된 세리아-지르코니아 기반 복합 금속 산화물 촉매는 휘발성 유기 화합물 제거 효율이 우수한 효과가 있다.As such, the ceria-zirconia-based composite metal oxide catalyst prepared by the manufacturing method according to the present invention has an excellent effect of removing volatile organic compounds.
본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매는 세륨, 지르코늄에 2 종의 전이금속, 특히 구리(Cu)와 구리가 아닌 전이금속(M)의 복합 산화물을 포함함으로써 기존의 귀금속 촉매에 비해 경제적이고, 열적으로 안정하며, 기존 금속 산화물 촉매들에 비해 저온영역에서 휘발성 유기화합물 제거 효율이 우수하다. 기존의 세리아-지르코니아 금속 산화물 촉매 또는 상용화된 전이금속 산화물 촉매는 휘발성 유기화합물을 저온영역(~ 200 ℃)에서 제거하는데 효율이 떨어졌으나, 본 발명에 따른 휘발성 유기화합물 제거용 복합 금속 산화물 촉매는 귀금속을 포함하지 않고도 저온영역에서 우수한 휘발성 유기화합물을 제거능을 보인다.The composite metal oxide catalyst for removing volatile organic compounds according to the present invention includes cerium and zirconium in combination with two kinds of transition metals, in particular, a complex oxide of copper (Cu) and a transition metal other than copper (M), compared to conventional noble metal catalysts. It is economical, thermally stable, and has superior volatile organic compound removal efficiency in the low temperature region compared with conventional metal oxide catalysts. Conventional ceria-zirconia metal oxide catalysts or commercialized transition metal oxide catalysts are less efficient in removing volatile organic compounds at low temperatures (~ 200 ° C.), but the composite metal oxide catalysts for removing volatile organic compounds according to the present invention are precious metals. It shows the ability to remove excellent volatile organic compounds in the low temperature range without including.

Claims (10)

  1. 세륨(Ce), 지르코늄(Zr), 구리(Cu) 및 금속(M)의 복합 금속 산화물을 포함하고,A composite metal oxide of cerium (Ce), zirconium (Zr), copper (Cu) and metal (M),
    상기 금속(M)은 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni)로 이루어지는 군으로부터 선택되는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매.The metal (M) is manganese (Mn), cobalt (Co), titanium (Ti), zinc (Zn), tin (Sn), indium (In), chromium (Cr), iron (Fe) and nickel (Ni) A composite metal oxide catalyst for removing volatile organic compounds selected from the group consisting of:
  2. 제1항에 있어서,The method of claim 1,
    상기 복합 금속 산화물 촉매에서,In the composite metal oxide catalyst,
    세륨은 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%이고,Cerium is from 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst,
    지르코늄은 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%이며,Zirconium is 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst,
    구리는 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%이고,Copper is 20 mol% to 30 mol% with respect to the total mol% of the composite metal oxide catalyst,
    금속(M)은 복합 금속 산화물 촉매 총 몰%에 대하여 20 몰% 내지 30 몰%인 것을 특징으로 하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매.Metal (M) is a composite metal oxide catalyst for removing volatile organic compounds, characterized in that 20 to 30 mol% based on the total mol% of the composite metal oxide catalyst.
  3. 세륨 전구체를 포함하는 수용액, 지르코늄 전구체를 포함하는 수용액, 구리 전구체를 포함하는 수용액 및 망간(Mn), 코발트(Co), 티타늄(Ti), 아연(Zn), 주석(Sn), 인듐(In), 크롬(Cr), 철(Fe) 및 니켈(Ni)로 이루어지는 군으로부터 선택되는 금속(M)의 전구체를 포함하는 수용액을 혼합하는 단계(단계 1);Aqueous solution containing cerium precursor, Aqueous solution containing zirconium precursor, Aqueous solution containing copper precursor and manganese (Mn), Cobalt (Co), Titanium (Ti), Zinc (Zn), Tin (Sn), Indium (In) Mixing an aqueous solution comprising a precursor of a metal (M) selected from the group consisting of chromium (Cr), iron (Fe) and nickel (Ni) (step 1);
    상기 단계 1에서 혼합된 혼합 수용액에 염기성 용액을 적가하여 침전물을 형성시키는 단계(단계 2);Adding a basic solution to the mixed aqueous solution mixed in step 1 to form a precipitate (step 2);
    상기 단계 2에서 형성된 침전물을 포함하는 혼합 수용액을 숙성시키는 단계(단계 3); 및Aging the mixed aqueous solution containing the precipitate formed in step 2 (step 3); And
    상기 단계 3에서 숙성된 혼합 수용액 내 침전물을 소성하는 단계(단계 4);를 포함하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법.Firing the precipitate in the mixed aqueous solution aged in step 3 (step 4); manufacturing method of a composite metal oxide catalyst for removing volatile organic compounds comprising a.
  4. 제3항에 있어서,The method of claim 3,
    상기 단계 3을 수행하고 난 후, 상기 숙성된 혼합 수용액 내 침전물을 수세하는 단계;를 더 포함하는 것을 특징으로 하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법.After performing step 3, washing the precipitate in the aged mixed aqueous solution; method for producing a complex metal oxide catalyst for removing a volatile organic compound, characterized in that it further comprises.
  5. 제3항에 있어서,The method of claim 3,
    상기 단계 1의 전구체는 질산염, 황산염, 인산염, 염산염 및 불산염으로 이루어지는 군으로부터 선택되는 산염 화합물인 것을 특징으로 하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법.The precursor of step 1 is a method for producing a complex metal oxide catalyst for removing volatile organic compounds, characterized in that the acid salt compound selected from the group consisting of nitrates, sulfates, phosphates, hydrochlorides and hydrochlorides.
  6. 제3항에 있어서,The method of claim 3,
    상기 단계 2에서 염기성 용액은 수산화나트륨 수용액 또는 암모니아수이고, 이를 적가하여 pH 10 이상으로 적정하여 공침시키는 것을 특징으로 하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법.In the step 2, the basic solution is an aqueous sodium hydroxide solution or ammonia water, and dropwise adding it to a pH of 10 or more to coprecipitate, thereby preparing a complex metal oxide catalyst for removing a volatile organic compound.
  7. 제3항에 있어서,The method of claim 3,
    상기 단계 3의 숙성은 65 ℃ 내지 95 ℃의 온도에서 1 시간 내지 480 시간 동안 교반하여 수행되는 것을 특징으로 하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법.The aging step 3 is a method for producing a composite metal oxide catalyst for removing volatile organic compounds, characterized in that the stirring is carried out for 1 to 480 hours at a temperature of 65 ℃ to 95 ℃.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 수세는 75 ℃ 내지 100 ℃의 온도로 가열된 초순수를 사용하여 수행되는 것을 특징으로 하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법.The washing method is a method for producing a composite metal oxide catalyst for removing volatile organic compounds, characterized in that performed using ultrapure water heated to a temperature of 75 ℃ to 100 ℃.
  9. 제3항에 있어서,The method of claim 3,
    상기 단계 4의 소성은 300 ℃ 내지 600 ℃의 온도에서 수행되는 것을 특징으로 하는 휘발성 유기화합물 제거용 복합 금속 산화물 촉매의 제조방법.Firing of the step 4 is a method for producing a composite metal oxide catalyst for removing volatile organic compounds, characterized in that carried out at a temperature of 300 ℃ to 600 ℃.
  10. 제1항의 휘발성 유기화합물 제거용 복합 금속 산화물 촉매를 사용하여 휘발성 유기화합물과 접촉시키는 단계;를 포함하는 휘발성 유기화합물의 제거방법.The method of removing volatile organic compounds comprising the step of contacting with a volatile organic compound using a complex metal oxide catalyst for removing volatile organic compounds of claim 1.
PCT/KR2017/001779 2016-03-24 2017-02-17 Multicomponent ceria-zirconia-based composite metal oxide catalyst for removing volatile organic compound and method for preparing same WO2017164518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0035486 2016-03-24
KR1020160035486A KR101685044B1 (en) 2016-03-24 2016-03-24 Complex metal oxides catalyst based multi-component ceria-zirconia for removal of volatile organic compounds and the preparation method thereof

Publications (1)

Publication Number Publication Date
WO2017164518A1 true WO2017164518A1 (en) 2017-09-28

Family

ID=57573964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001779 WO2017164518A1 (en) 2016-03-24 2017-02-17 Multicomponent ceria-zirconia-based composite metal oxide catalyst for removing volatile organic compound and method for preparing same

Country Status (2)

Country Link
KR (1) KR101685044B1 (en)
WO (1) WO2017164518A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604058A (en) * 2020-06-05 2020-09-01 临沂大学 Bifunctional catalyst for selectively catalyzing and oxidizing volatile organic amine and preparation method thereof
CN111744499A (en) * 2020-06-19 2020-10-09 上海汇允环境科技有限公司 Low-temperature catalytic oxidation VOCs catalyst and preparation method and application thereof
CN112169788A (en) * 2020-10-15 2021-01-05 南京工业大学 Organic mixed waste gas rare earth-based catalytic combustion catalyst and preparation method and application thereof
CN113019360A (en) * 2021-03-17 2021-06-25 南京工业大学 Supported composite oxide catalyst and preparation method and application thereof
CN113134358A (en) * 2020-01-20 2021-07-20 中大汇智源创(北京)科技有限公司 Water-resistant carbon monoxide catalyst and preparation method thereof
CN114471555A (en) * 2022-01-27 2022-05-13 中自环保科技股份有限公司 Low-temperature high-efficiency bimetallic synergetic catalytic purification catalyst for VOCs and preparation method thereof
CN114602536A (en) * 2020-12-03 2022-06-10 万华化学集团股份有限公司 Preparation method of catalyst and method for reducing VOC content in polyether polyol
CN115532273A (en) * 2022-10-17 2022-12-30 清华大学 Catalyst, preparation method and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101685044B1 (en) * 2016-03-24 2016-12-12 한국화학연구원 Complex metal oxides catalyst based multi-component ceria-zirconia for removal of volatile organic compounds and the preparation method thereof
KR101834271B1 (en) * 2016-12-23 2018-03-06 한국화학연구원 Development of low temperature VOC oxidation catalyst rival to PGM-based catalysts
KR101987534B1 (en) * 2017-06-01 2019-06-10 부산대학교 산학협력단 Catalyst composite having high oxygen storage capacity and method of forming the catalyst composite
CN110455978B (en) * 2019-06-30 2021-09-14 北京联合大学 Benzene and ammonia low-temperature catalytic luminescence cross-sensitive material
CN110833833A (en) * 2019-11-14 2020-02-25 西安凯立新材料股份有限公司 Non-noble metal composite oxide honeycomb catalyst for catalytic combustion of low-carbon hydrocarbons

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458741B1 (en) * 1999-12-20 2002-10-01 Eltron Research, Inc. Catalysts for low-temperature destruction of volatile organic compounds in air
KR100738676B1 (en) * 2006-04-13 2007-07-11 한국과학기술원 Transition metal catalysts based on ceria-zirconia for wet air oxidation of refractory wastewater
JP5422320B2 (en) * 2008-09-22 2014-02-19 地方独立行政法人東京都立産業技術研究センター Catalyst for decomposing volatile organic compounds and method for decomposing volatile organic compounds
KR20140087017A (en) * 2011-10-27 2014-07-08 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Process for producing ceria-zirconia-alumina composite oxides and applications thereof
KR101566688B1 (en) * 2015-02-25 2015-11-09 주식회사 퓨어스피어 Method for preparing ceria-zirconia complex oxide and catalyst containing a ceria-zirconia complex oxid
KR101685044B1 (en) * 2016-03-24 2016-12-12 한국화학연구원 Complex metal oxides catalyst based multi-component ceria-zirconia for removal of volatile organic compounds and the preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458741B1 (en) * 1999-12-20 2002-10-01 Eltron Research, Inc. Catalysts for low-temperature destruction of volatile organic compounds in air
KR100738676B1 (en) * 2006-04-13 2007-07-11 한국과학기술원 Transition metal catalysts based on ceria-zirconia for wet air oxidation of refractory wastewater
JP5422320B2 (en) * 2008-09-22 2014-02-19 地方独立行政法人東京都立産業技術研究センター Catalyst for decomposing volatile organic compounds and method for decomposing volatile organic compounds
KR20140087017A (en) * 2011-10-27 2014-07-08 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Process for producing ceria-zirconia-alumina composite oxides and applications thereof
KR101566688B1 (en) * 2015-02-25 2015-11-09 주식회사 퓨어스피어 Method for preparing ceria-zirconia complex oxide and catalyst containing a ceria-zirconia complex oxid
KR101685044B1 (en) * 2016-03-24 2016-12-12 한국화학연구원 Complex metal oxides catalyst based multi-component ceria-zirconia for removal of volatile organic compounds and the preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134358A (en) * 2020-01-20 2021-07-20 中大汇智源创(北京)科技有限公司 Water-resistant carbon monoxide catalyst and preparation method thereof
CN111604058B (en) * 2020-06-05 2023-02-28 临沂大学 Bifunctional catalyst for selectively catalyzing and oxidizing volatile organic amine and preparation method thereof
CN111604058A (en) * 2020-06-05 2020-09-01 临沂大学 Bifunctional catalyst for selectively catalyzing and oxidizing volatile organic amine and preparation method thereof
CN111744499A (en) * 2020-06-19 2020-10-09 上海汇允环境科技有限公司 Low-temperature catalytic oxidation VOCs catalyst and preparation method and application thereof
CN112169788A (en) * 2020-10-15 2021-01-05 南京工业大学 Organic mixed waste gas rare earth-based catalytic combustion catalyst and preparation method and application thereof
CN112169788B (en) * 2020-10-15 2023-10-27 南京工业大学 Organic mixed waste gas rare earth-based catalytic combustion catalyst and preparation method and application thereof
CN114602536A (en) * 2020-12-03 2022-06-10 万华化学集团股份有限公司 Preparation method of catalyst and method for reducing VOC content in polyether polyol
CN114602536B (en) * 2020-12-03 2023-07-11 万华化学集团股份有限公司 Preparation method of catalyst and method for reducing VOC content in polyether polyol
CN113019360A (en) * 2021-03-17 2021-06-25 南京工业大学 Supported composite oxide catalyst and preparation method and application thereof
CN114471555B (en) * 2022-01-27 2023-06-06 中自环保科技股份有限公司 Low-temperature efficient bimetal synergistic catalytic purification VOCs catalyst and preparation method thereof
CN114471555A (en) * 2022-01-27 2022-05-13 中自环保科技股份有限公司 Low-temperature high-efficiency bimetallic synergetic catalytic purification catalyst for VOCs and preparation method thereof
CN115532273A (en) * 2022-10-17 2022-12-30 清华大学 Catalyst, preparation method and application thereof
CN115532273B (en) * 2022-10-17 2023-12-05 清华大学 Catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
KR101685044B1 (en) 2016-12-12

Similar Documents

Publication Publication Date Title
WO2017164518A1 (en) Multicomponent ceria-zirconia-based composite metal oxide catalyst for removing volatile organic compound and method for preparing same
WO2017010775A1 (en) Scr catalyst for removing nitrogen oxides and method for producing same
WO2011040775A2 (en) Mixed metal oxide catalyst for decomposition of nitrogen oxides
JPWO2006067887A1 (en) PM combustion catalyst and filter
JP2007216099A (en) Exhaust gas purification oxidation catalyst
WO2020075920A1 (en) Composite ternary catalyst composed of composite oxide support and single atom, and preparation method therefor
JP5166245B2 (en) Catalyst composition
US20150352530A1 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
KR101574553B1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
WO2019117382A1 (en) Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same
CN109689205B (en) Use of vanadates as oxidation catalysts
JP2010069471A (en) Compound oxide catalyst for burning pm, slurry prepared by using the same, and filter for cleaning exhaust gas
CN110596196B (en) Semiconductor heterojunction gas sensitive material and preparation method and application thereof
JP2620624B2 (en) Exhaust gas purification catalyst
WO2018106021A1 (en) Marine denitrification catalyst using porous ceramic three-dimensional network structure and method for producing same
CN101657248B (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
WO2020256327A2 (en) Heat-resistant ruthenium composite and use thereof as catalyst for no x storage and reduction
HU202133B (en) Process for producing catalytic preparations acting on the catalytic oxidation of carbon monoxide and not burnt hydrocarbons being in the exhaust gases of vehicles
JP2002210365A (en) CATALYST FOR CLEANING NOx AND ITS PRODUCTION METHOD
KR101566688B1 (en) Method for preparing ceria-zirconia complex oxide and catalyst containing a ceria-zirconia complex oxid
WO2021107611A1 (en) Catalyst for simultaneously inhibiting emission of ammonia and nitrogen dioxide
JPH06304476A (en) Oxidation catalyst
CN111054355B (en) Integral non-noble metal catalyst for catalytic combustion treatment of PTA tail gas
JPH06205973A (en) Oxidation catalyst
JPH04166227A (en) Oxidation catalyst

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770489

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770489

Country of ref document: EP

Kind code of ref document: A1