WO2017163900A1 - Two-part curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-part curable laminate adhesive - Google Patents

Two-part curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-part curable laminate adhesive Download PDF

Info

Publication number
WO2017163900A1
WO2017163900A1 PCT/JP2017/009424 JP2017009424W WO2017163900A1 WO 2017163900 A1 WO2017163900 A1 WO 2017163900A1 JP 2017009424 W JP2017009424 W JP 2017009424W WO 2017163900 A1 WO2017163900 A1 WO 2017163900A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate adhesive
curable laminate
component curable
polyurethane polyurea
polyurea resin
Prior art date
Application number
PCT/JP2017/009424
Other languages
French (fr)
Japanese (ja)
Inventor
健一 島村
秀興 岩波
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017538745A priority Critical patent/JP6233551B1/en
Publication of WO2017163900A1 publication Critical patent/WO2017163900A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52

Definitions

  • the present invention relates to a two-component curable laminate adhesive, a cured product thereof, a laminated film obtained by laminating various films using the adhesive, and an amine solution for a two-component curable laminate adhesive. More specifically, the present invention relates to an adhesive for laminating used in the production of composite films mainly used for packaging materials such as foods, pharmaceuticals, and detergents by laminating various plastic films, metal vapor deposited films, aluminum foils and the like.
  • a multi-layer film by so-called dry lamination, in which the adhesive is applied to the surface of the film substrate, the solvent is evaporated to dryness, and other materials are laminated while heating and pressure bonding, It is widely used because any film can be selectively combined according to the required characteristics of each application.
  • the adhesive used for such dry lamination is mainly a two-component polyurethane adhesive mainly comprising a polyol component having a hydroxyl group at the polymer terminal and a polyisocyanate as a curing agent.
  • polyester polyol and polyester polyurethane polyol are used as the polyol component, and various monomer-type polyisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and isophorone diisocyanate (IPDI) are used as the polyisocyanate.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • the isocyanate component used as the curing agent exhibits significant sensitization by inhalation or skin contact, or the primary aromatic amine produced by the reaction of this isocyanate component with moisture in the container is European CLP. Its harmfulness has been pointed out, such as being classified as a carcinogenic substance in the regulations, and in recent years, development of laminate adhesives that do not contain isocyanates has been demanded.
  • a laminating adhesive not containing isocyanate for example, in Patent Document 1 below, a two-component curing type using tetraglycidyl-m-xylylenediamine as an epoxy compound and an amine compound as a curing agent is used.
  • a laminate adhesive is disclosed.
  • the problem to be solved by the present invention is a two-component curable laminate adhesive excellent in laminate adhesive strength, particularly laminate adhesive strength after boil treatment, and an adhesive suitable for non-isocyanate-based soft packaging laminates. It is to provide a laminated film used.
  • the present inventors have used a polyurethane polyurea resin having an amino group in the molecular structure as a main agent, and using a polyfunctional epoxy compound as its curing agent, As an isocyanate-based soft packaging laminating adhesive, the present inventors have found that the laminating strength, particularly the adhesive strength after the boil treatment of the laminating film and the laminating appearance are remarkably improved, and the present invention has been completed.
  • the present invention relates to a two-component curable laminate adhesive comprising, as essential components, a polyurethane polyurea resin (A) having a primary amino group in the molecular structure and a polyglycidyl ether (B) of a chain aliphatic polyol. .
  • the present invention further relates to a cured product obtained by curing the two-component curable laminate adhesive.
  • the present invention further provides a laminated film characterized in that the two-component curable laminate adhesive is applied to a first plastic film, the second plastic film is laminated on the coated surface, and the adhesive layer is cured. It relates to the manufacturing method.
  • a two-component curable laminate adhesive comprising a polyurethane polyurea resin (A) having a primary amino group in the molecular structure and an organic solvent (C) in a proportion of a solid content of 30 to 70% by mass.
  • the present invention relates to a pharmaceutical amine solution.
  • an adhesive suitable for a non-isocyanate-based soft packaging laminate a two-component curable laminate adhesive excellent in laminate adhesive strength, particularly laminate adhesive strength after boil treatment, and a laminate film using the same are provided. it can.
  • the polyurethane polyurea resin (A) used in the present invention has a primary amino group in the molecular structure, and the primary amino group in the polyglycidyl ether (B) of a chain aliphatic polyol whose curing agent is a curing agent.
  • a cured product can be obtained by reacting with an epoxy group to form a crosslinked structure.
  • the amount of the primary amino group in the polyurethane polyurea resin (A) is within the range of 3.0 to 30 mgKOH / g as the amine value of the polyurethane polyurea resin (A). It is preferable because it has a high film followability and a good film followability, and not only the initial laminate strength and appearance but also the laminate strength and laminate appearance after the boil treatment are good.
  • the amine value is specifically a value titrated by the following method.
  • Vb titration amount of 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution required for titration in blank test
  • F 20 force of 20 mol of 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution
  • Value t Temperature of 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution at the time of titration
  • the polyurethane polyurea resin (A) having a primary amino group in the molecular structure described above is a polyether polyurethane polyurea resin having a polyether structure site in the molecular structure. It is preferable from an excellent point.
  • the polyether structure part is a structure part derived from the later-described polyether polyol ( ⁇ 1) used as a raw material, and the one having a molecular weight in the range of 100 to 3,500 is described above. This is preferable from the viewpoint of excellent balance between flexibility and laminate strength when the adhesive is cured.
  • the molecular weight of the polyether polyol is a value calculated from the actual value of the hydroxyl value (mgKOH / g) and the valence of the polyol.
  • the primary amino group-containing polyurethane polyurea resin (A) is reacted with the polyol component ( ⁇ ) and the polyvalent isocyanate compound ( ⁇ ) to obtain a urethane prepolymer (X), and then the urethane prepolymer (X) ) Can be obtained by reacting with an amine compound (Y).
  • the polyurethane polyurea resin becomes a polyether polyurethane polyurea resin (a1) having a polyether structure in the resin structure.
  • the polyester polyurethane polyurea resin (a2) having a polyester structure in the resin structure and when the polyether polyester polyol ( ⁇ 3) is used, the polyether polyester structure is included in the resin structure.
  • the resulting polyether polyester polyurethane polyurea resin (a3) is included in the resin structure.
  • polyether polyol ( ⁇ 1) an oxirane compound such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran, and a low molecular weight polyol such as water, ethylene glycol, propylene glycol, trimethylolpropane, and glycerin as an initiator are used.
  • oxirane compound such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran
  • a low molecular weight polyol such as water, ethylene glycol, propylene glycol, trimethylolpropane, and glycerin as an initiator are used.
  • examples thereof include polyoxyalkylene glycols obtained by polymerization.
  • polyethylene glycol, polypropylene glycol, and polytetramethylene glycol are preferable from the viewpoint of excellent laminate strength when the finally obtained polyurethane polyurea resin is used as an adhesive.
  • a molecular weight in the range of 100 to 3,500 is preferable from the viewpoint of imparting appropriate flexibility to the adhesive and good laminate appearance.
  • the molecular weight of the polyoxyalkylene glycol is a value calculated from the measured value of the hydroxyl value (mgKOH / g) and the valence of the polyol.
  • such a glycol compound ( ⁇ ′) can be used in a proportion of 10 parts by mass or less based on 100 parts by mass in total with the polyether polyol ( ⁇ 1).
  • 2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2butyl-1,3propanediol, 1,3-butanediol, 1,4-butanediol examples thereof include aliphatic diols such as neopentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, hexanediol, octanediol, and 1,4-butanediol.
  • polyester polyol ( ⁇ 2) examples include polyester polyols obtained by esterifying the glycol compound ( ⁇ ′) with a polyvalent carboxylic acid or an anhydride thereof ( ⁇ 2-1).
  • Examples of the polyvalent carboxylic acid or its anhydride ( ⁇ 2-1) that can be used here include aliphatic dicarboxylic acids such as adipic acid, succinic acid, oxalic acid, glutaric acid, pimelic acid, speric acid, azelaic acid, and sebacic acid. ; Unsaturated dicarboxylic acids such as maleic acid and fumaric acid; aromatic polycarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid and pyromellitic acid; phthalic anhydride, trimellitic anhydride, pyromellitic acid Acid anhydrides such as anhydrides may be mentioned. Of these, aliphatic dicarboxylic acids are preferred from the viewpoint of obtaining a resin having particularly excellent flexibility.
  • the polyester polyol ( ⁇ 2) preferably has a weight average molecular weight (Mw) in the range of 400 to 5,000 from the viewpoint of excellent laminate strength after the boil treatment, and can easily be adjusted to such a molecular weight range.
  • Mw weight average molecular weight
  • the reaction ratio between the glycol compound ( ⁇ ′) and the polyvalent carboxylic acid or anhydride ( ⁇ 2-1) is determined by the number of equivalents of hydroxyl groups in the glycol compound ( ⁇ ′), the polyvalent carboxylic acid or
  • the ratio [( ⁇ ′) / ( ⁇ 2-1)] of the anhydride ( ⁇ 2-1) to the equivalent number of carboxylic acids is preferably in the range of 1 / 0.88 to 1 / 0.95.
  • This esterification reaction is preferably performed under a temperature condition of 180 to 260 ° C. in the presence of an esterification catalyst, for example.
  • esterification catalyst examples include organic tin compounds, inorganic tin compounds, organic titanium compounds, and organic zinc compounds.
  • the said polyester polyol ((alpha) 2) as a polyol component ((alpha)
  • the mass ratio [( ⁇ 2) / ( ⁇ 1)] is preferably in the range of 75/25 to 10/90.
  • the polyether polyester polyol ( ⁇ 3) is an esterification reaction between the polyether polyol ( ⁇ 1), the glycol compound ( ⁇ ′), and the polyvalent carboxylic acid or anhydride ( ⁇ 2-1). It is obtained by making it. Its weight average molecular weight (Mw) is in the range of 2,500 to 5,000.
  • Mw weight average molecular weight
  • the polyurethane polyurea resin finally obtained is moderately flexible and has excellent laminate strength and initial laminate appearance. It is preferable from the point of becoming.
  • the esterification reaction described above can be performed under the same conditions as the synthesis of the polyester polyol ( ⁇ 2), and the total of hydroxyl groups of the polyether polyol ( ⁇ 1) and the glycol compound ( ⁇ ′)
  • the ratio of the number of equivalents of the polyvalent carboxylic acid or its anhydride ( ⁇ 2-1) as the carboxylic acid [(OH) / (acid group)] may be in the range of 1 / 0.88 to 1 / 0.95. From the viewpoint of easily adjusting the molecular weight of the obtained polyester polyol to the above-mentioned range.
  • the polyisocyanate ( ⁇ ) to be reacted with the polyol component ( ⁇ ) is various known aromatic diisocyanates, chain aliphatic diisocyanates, alicyclic diisocyanates generally used in the production of polyurethane polyurea resins, and Examples thereof include tri- to tetrafunctional polyisocyanates.
  • Aromatic diisocyanates include 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyl Diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, m-tetramethylxylylene diisocyanate, 4,4-diphenylmethane diisocyanate, tolylene diisocyanate, bis-chloromethyl-diphenylmethane -Diisocyanate, 2,6-diisocyanate-benzyl chloride and the like, and chain aliphatic Examples of the isocyanate
  • Diisocyanates include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dimethylcyclohexyl diisocyanate, methylcyclohexyl diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate, norbornane diisocyanate.
  • Examples of the tri- to tetra-functional polyisocyanate include adduct type polyisocyanate having a urethane bond site in the molecule, and nurate type polyisocyanate having an isocyanurate ring structure in the molecule. These may be used alone or in combination of two or more.
  • the adduct polyisocyanate having a urethane bond site in the molecule can be obtained, for example, by reacting a diisocyanate monomer with a trifunctional or higher polyhydric alcohol.
  • the diisocyanate monomer used in the reaction include various diisocyanates exemplified as the diisocyanate, and each may be used alone or in combination of two or more.
  • the trifunctional or higher polyhydric alcohol used in the reaction include trimethylolethane, trimethylolpropane, glycerin, hexanetriol, pentaerythritol, etc., each of which may be used alone or in combination of two or more. You may do it.
  • Examples of the nurate type polyisocyanate having an isocyanurate ring structure in the molecule include those obtained by reacting a diisocyanate monomer trimer, a diisocyanate monomer and a monoalcohol or a dihydric alcohol.
  • Examples of the diisocyanate monomer used herein include various diisocyanate monomers exemplified as the diisocyanate, and each may be used alone or in combination of two or more.
  • Monoalcohols used in the reaction are hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n-hepta.
  • Diol 2-dimethyl-3-isopropyl-1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, 3- Examples include methyl 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1,4-bis (hydroxymethyl) cyclohesan.
  • lysine diisocyanate, dimerisocyanate obtained by converting a carboxyl group of dimer acid into an isocyanate group, and the like can also be used as the polyvalent isocyanate ( ⁇ ).
  • those having a cyclic structure in the molecular structure such as aromatic diisocyanate, alicyclic diisocyanate, and nurate type polyisocyanate are preferable from the viewpoint of being excellent in boil resistance.
  • the reaction ratio between the glycol component and the polyvalent isocyanate when the urethane prepolymer (X) is synthesized preferably has an equivalent ratio [OH / NCO] of 1.2 to 3.0. When the ratio is less than 1.2, gelation may occur. When the ratio is more than 3.0, the solubility of the resulting prepolymer tends to decrease.
  • the urethane prepolymer (X) thus obtained preferably has an isocyanate residual ratio in the range of 1.00 to 5.00% by mass from the viewpoint of good laminate strength.
  • the isocyanate residual rate is a sample of urethane prepolymer (X) taken out, dissolved in ethyl acetate, added with a predetermined concentration and a predetermined amount of amine solution, and then added with an indicator, The mass-based NCO group concentration obtained by titration with hydrochloric acid.
  • a polyurethane polyurea resin (A) having a primary amino group at the target molecular end is obtained by reacting the obtained urethane prepolymer (X) with a diamine as the amine compound (Y) and, if necessary, a monoamine. be able to.
  • the reaction ratio between the urethane prepolymer (X) and the amine component (Y) is such that the equivalent ratio [NCO / NH 2 ] is 1.00 / 1.01 to 1/2. Is preferable from the point of adjusting to a proper range.
  • the diamine described above functions as a chain extender, and the monoamine functions as a reaction terminator.
  • the equivalent ratio [NCO / NH 2 ] to a range of 1 / 1.01 to 1/2, a polyurethane polyurea resin (A) having a primary amino group at the terminal is obtained without using a monoamine.
  • the proportion of diamine and monoamine is preferably such that the mass ratio [diamine / monoamine] is 90/10 to 60/40.
  • diamines examples include ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, 1,2-cyclohexanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane.
  • Dicyclohexylmethane-4,4′-diamine 2-hydroxyethylethylenediamine, 2-hydroxyethylpropyldiamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylenediamine, di-2- Hydroxyethylpropylenediamine, (N-aminoethyl) -2-ethanolamine, 2-hydroxypyrroleethylenediamine, di-2-hydroxypyrroleethylenediamine, di- - hydroxypropyl ethylenediamine, and the like.
  • 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 1,2-cyclohexanediamine, or dicyclohexylmethane-4,4'-diamine (amine having a cyclohexane ring) is preferable.
  • Examples of monoamines include dialkylamines such as di-n-butylamine, compounds having an alicyclic hydrocarbon group such as N-methylcyclohexylamine, dicyclohexylamine, cyclohexylamine, cyclopentylamine, and cyclohexylethylamine, monoethanolamine, Examples include alkanolamines such as diethanolamine and monoisopropanolamine. Among these, one or more compounds of the group consisting of N-methylcyclohexylamine, dicyclohexylamine, cyclohexylamine, cyclopentylamine, and cyclohexylethylamine are laminated. This is preferable from the viewpoint of good strength.
  • the polyurethane polyurea resin (A) having a primary amino group thus obtained may be modified with a polyfunctional epoxy resin in order to further increase the crosslinking density when using an adhesive.
  • a polyfunctional epoxy resin examples include a polyfunctional epoxy compound (B) to be described later, and it is preferable to use the polyfunctional epoxy resin within a range in which the amine value of 3.0 to 30 mgKOH / g can be maintained.
  • the polyurethane polyurea resin (A) described in detail above has an excellent solubility in alcohol-based solvent components when the weight average molecular weight (Mw) is in the range of 20,000 to 60,000. From the viewpoint of excellent laminate strength.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) are values measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device HLC-8220GPC manufactured by Tosoh Corporation Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation + Tosoh Corporation TSK-GEL SuperHZM-M ⁇ 4 Detector: RI (differential refractometer)
  • Data processing Multi-station GPC-8020model II manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 ⁇ l)
  • the polyurethane polyurea resin (A) having the primary amino group in the molecular structure described in detail above can be used as an organic solvent solution dissolved in an organic solvent (C) when used as a main component of an adhesive.
  • organic solvent (C) examples include methanol, ethanol, isopropyl alcohol, methyl acetate, ethyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK), cyclohexanone, toluol, xylol, n-hexane, and cyclohexane.
  • Etc Among these, ethyl acetate is preferable from the viewpoint of solubility.
  • a resin solution containing the above-described polyurethane polyurea resin (A) and an organic solvent (C) as essential components can be used as a main component of a two-component curable laminate adhesive. Adjustment to the range of 30 to 70% by mass is preferable from the viewpoint of handling and excellent storage stability as an adhesive main agent. Moreover, when using an adhesive agent, the organic solvent (C) is further added to the appropriate viscosity by a coating machine to be used for use.
  • the resin solution described in detail above constitutes the amine solution for a two-component curable laminate adhesive of the present invention.
  • the amine solution for a two-component curable laminate adhesive described above further has an aminosilane coupling agent and has a good seal strength at the sealant portion when used in a laminate packaging bag, and a good adhesive strength to the printing surface. It is preferable from the point which becomes.
  • aminosilane coupling agents include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -amino.
  • Examples thereof include propyltrimethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, and the like, and the blending amount thereof is preferably in the range of 0.3 to 3% by mass in the amine solution for a two-component curable laminate adhesive. .
  • the polyfunctional epoxy compound (B) used as a curing agent in the two-component curable laminate adhesive of the present invention contains a polyglycidyl ether of a chain aliphatic polyol as an essential component.
  • a liquid or semi-solid epoxy compound at 25 ° C. is preferable from the viewpoint of handling, and specifically, an epoxy compound having an epoxy equivalent in the range of 100 to 300 g / equivalent is preferable.
  • glycerol polyglycidyl ether such as glycerol diglycidyl ether and polyglycidyl ether of polyglycerol
  • trimethylolpropane triglycidyl ether such as trimethylolpropane diglycidyl ether and trimethylolpropane triglycidyl ether
  • sorbitol tetraglycidyl ether
  • polyglycidyl ethers of chain aliphatic polyols such as pentaerythritol tetraglycidyl ether.
  • the epoxy equivalent is more preferably in the range of 100 to 250 g / equivalent, the epoxy equivalent is more preferably in the range of 100 to 230 g / equivalent, and the epoxy equivalent is most preferably in the range of 150 to 230 g / equivalent.
  • sorbitol polyglycidyl ether has excellent compatibility with the main agent, has a high crosslinking density and excellent boil resistance, and has excellent adhesion strength when printing is performed on the surface of the base film, And pentaerythritol tetraglycidyl ether are preferred.
  • Such sorbitol polyglycidyl ether may be a simple substance or a polymer, but in the present invention, those having a viscosity of 4,000 to 23,000 mPa ⁇ s at 25 ° C. are compatible with the main agent or coated with the adhesive itself. It is preferable from the viewpoint of excellent workability.
  • the polyfunctional epoxy compound (B) may be used in combination with other polyfunctional epoxy compounds as long as the effects of the present invention are not impaired.
  • bisphenol A type epoxy resins bisphenol F type epoxy resins, and hydrogens thereof.
  • Bisphenol-type epoxy resins such as additive-type epoxy resins; 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexanecarboxylate, vinylcyclohexylene dioxide, bis (3,4-epoxycyclohexylmethyl) adipate, dicycloaliphatic Alicyclic epoxy compounds such as fattic diester diepoxide; diglycidyl ester of dimer acid consisting of castor oil polyglycidyl ether, tall oil fatty acid, linolenic acid, linoleic acid, etc .; epoxidized polybutadiene; epoxidized soybean oil, linseed oil Epoxy resins derived from vegetable oils such as epoxidized products can be
  • the polyfunctional epoxy compound (B) detailed above may be used as a resin solution dissolved in the organic solvent (C) described above, but when using a liquid epoxy compound at 25 ° C. It can be used in combination with the main agent.
  • the adhesive of the present invention comprises the above-described polyurethane polyurea resin (A) having a primary amino group in the molecular structure and polyglycidyl ether of a chain aliphatic polyol as a polyfunctional epoxy compound (B) as essential components.
  • These blending ratios are such that the solid content of the polyglycidyl ether of the chain aliphatic polyol is 2 to 20 parts by weight, particularly 3 parts per 100 parts by weight of the solid content of the polyurethane polyurea resin (A).
  • a ratio of ⁇ 15 parts by mass is preferable from the viewpoint of boil resistance.
  • a pigment may be used in combination as necessary.
  • usable pigments are not particularly limited.
  • extender pigments, white pigments, black pigments, gray pigments, red pigments described in the Paint Material Handbook 1970 edition (edited by the Japan Paint Industry Association) examples thereof include organic pigments and inorganic pigments such as pigments, brown pigments, green pigments, blue pigments, metal powder pigments, luminescent pigments, and pearl pigments, and plastic pigments.
  • organic pigments include various types, and examples of organic pigments include various insoluble azo pigments such as Bench Gin Yellow, Hansa Yellow, Raked 4R, etc .; Soluble properties such as Raked C, Carmine 6B, Bordeaux 10 and the like.
  • Azo pigments include various (copper) phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; various chlorine dyeing lakes such as rhodamine lake and methyl violet lake; various mordant dye pigments such as quinoline lake and fast sky blue; anthraquinone Various vat dyes such as pigments, thioindigo pigments and perinone pigments; various quinacridone pigments such as Cincacia Red B; various dioxazine pigments such as dioxazine violet; various condensed azos such as chromoftal Pigment; aniline black, etc. And the like.
  • inorganic pigments include various chromates such as chrome lead, zinc chromate, and molybdate orange; various ferrocyan compounds such as bitumen; titanium oxide, zinc white, mapico yellow, iron oxide, bengara, chrome oxide Various metal oxides such as green and zirconium oxides; various sulfides or selenides such as cadmium yellow, cadmium red and mercury sulfide; various sulfates such as barium sulfate and lead sulfate; various types such as calcium silicate and ultramarine blue Silicates; various carbonates such as calcium carbonate and magnesium carbonate; various phosphates such as cobalt violet and manganese purple; various metal powders such as aluminum powder, gold powder, silver powder, copper powder, bronze powder and brass powder Pigments; flake pigments of these metals, mica flake pigments; mica flakes coated with metal oxides Click pigments, micaceous iron oxide pigments such as metallic pigment and pearl pigment; graphite, carbon black and the like.
  • extender pigments examples include precipitated barium sulfate, powder, precipitated calcium carbonate, calcium bicarbonate, cryolite, alumina white, silica, hydrous finely divided silica (white carbon), ultrafine anhydrous silica (Aerosil), and silica sand (silica). Sand), talc, precipitated magnesium carbonate, bentonite, clay, kaolin, ocher and the like.
  • plastic pigment examples include “Grandall PP-1000” and “PP-2000S” manufactured by DIC Corporation.
  • the pigment used in the present invention since it is excellent in durability, weather resistance and design, inorganic oxides such as titanium oxide and zinc white as a white pigment, and carbon black as a black pigment are more preferable.
  • the mass ratio of the pigment used in the present invention is 1 to 400 parts by mass with respect to 100 parts by mass of the synthetic mass (solid content) of the polyurethane polyurea resin (A) and the polyglycidyl ether of the chain aliphatic polyol.
  • the content of 10 to 300 parts by mass is more preferable because of excellent adhesion and blocking resistance.
  • the adhesive of the present invention may contain other additives other than those described above.
  • additives include leveling agents; inorganic fine particles such as colloidal silica and alumina sol; organic fine particles of polymethyl methacrylate; antifoaming agents; anti-sagging agents; wetting and dispersing agents; viscosity modifiers; ultraviolet absorbers; Deactivator; Peroxide decomposing agent; Flame retardant; Reinforcing agent; Plasticizer; Lubricant; Rust preventive agent; Fluorescent whitening agent; Inorganic heat absorber; Flameproof agent; Antistatic agent; Is mentioned.
  • pigments, adhesion promoters, and additives are either of the above-described amine solution for a two-component curable laminate adhesive or a solution of the chain aliphatic polyol polyglycidyl ether organic solvent (C). It can be mixed with the components, or can be used as a third component by blending at the time of coating.
  • the laminated film of the present invention is a laminated film having the two-component curable laminate adhesive between the first plastic film and the second plastic film, specifically, the two-component curable laminate adhesive.
  • a laminated film having a cured product between a first plastic film and a second plastic film, and the production method thereof comprises applying the two-component curable laminate adhesive to the first plastic film and then applying the second adhesive to the coated surface. This is a method of laminating two plastic films and curing the adhesive layer.
  • the two-component curable laminate adhesive of the present invention is applied to the first plastic film using, for example, a gravure coater, a die coater or a lip coater, and then dried and bonded to another substrate.
  • a gravure coater a die coater or a lip coater
  • the coating width can be freely adjusted by deckles attached to both ends of the die or the lip portion.
  • the coating conditions are preferably about 500 to 2500 mPa ⁇ s when heated to about 25 ° C. to 120 ° C. in a normal roll coater.
  • the coating amount is preferably 0.5 to 5 g / m 2 , more preferably about 1.5 to 4 g / m 2 .
  • the adhesive is cured by aging at 35 to 55 ° C. for 3 to 7 days after lamination, so that practical physical properties can be expressed.
  • first plastic film used here examples include PET (polyethylene terephthalate) film, nylon film, OPP (biaxially oriented polypropylene) film, base films such as various deposited films, aluminum foil, and the like.
  • base material examples include sealant films such as CPP (unstretched polypropylene) film and LLDPE (linear low density polyethylene) film.
  • the laminated film of the present invention can be used as a packaging material in foods, detergents, drugs, cosmetics and the toiletry industry.
  • it is particularly useful as a packaging material for food that requires retort sterilization because of its excellent laminate adhesive strength after boil treatment.
  • It can also be used for a secondary package for packaging a container made of the packaging material.
  • other applications such as barrier materials, roofing materials, solar cell panel materials, battery packaging materials, window materials, outdoor flooring materials, lighting protection materials, automotive parts, signs, stickers, etc. It can be suitably used as a decorative sheet used in the method.
  • the laminated film of the present invention has excellent adhesiveness and content resistance without causing delamination of the laminate structure such as delamination not only during filling of the contents but also after elapse of time after filling.
  • polypropylene glycol having a molecular weight of about 3000 (actol “PPG3000” manufactured by Mitsui Chemicals, Inc., molecular weight 3024 (hydroxyl value 37.1 mgKOH / g, Calculated value as the number
  • the obtained polyurethane polyurea resin solution A had a resin solid content concentration of 55% by mass, a resin amine value of 3.82 mg KOH / g, and a B-type rotational viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.).
  • the viscosity measured using this was 800 mPa ⁇ s (25 ° C.), and the weight average molecular weight (Mw) of the resin solid content was 52,000.
  • Example 2 (Preparation of polyurethane polyurea resin solution B) The same production method was carried out except that 1,3-butanediol in Example 1 was changed to 1,4-butane.
  • the obtained polyurethane polyurea resin solution B was designated.
  • the obtained polyurethane polyurea resin solution B has a resin solid content concentration of 55% by mass, a resin amine value of 3.82 mg KOH / g, and a B-type rotational viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.). The viscosity measured using this was 1,000 mPa ⁇ s (25 ° C.), and the weight average molecular weight (Mw) of the resin solid content was 53,000.
  • Example 3 (Preparation of polyurethane polyurea resin solution C) A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen gas introduction tube was charged with polypropylene glycol having a molecular weight of about 1000 (“Accor PPG 1,000” manufactured by Mitsui Chemicals, Ltd., molecular weight 1001 (hydroxyl value 112.0 mgKOH / g, calculated value as the number of functional groups 2)) and polypropylene glycol having molecular weight 2015 (calculated value from hydroxyl value) (“Accor PPG2000” manufactured by Mitsui Chemicals, Inc.), molecular weight 2015 (hydroxyl value 55.7 mgKOH / g, number of functional groups 2) and a mixture of 185.2 parts by mass of toluene diisocyanate and reacted at 90 ° C.
  • polypropylene glycol having a molecular weight of about 1000 (“Accor PPG 1,000” manufactured by Mitsui Chemicals,
  • the obtained polyurethane polyurea resin solution C has a resin solid content concentration of 55% by mass, a resin amine number of 23 mgKOH / g, and a B-type rotational viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.).
  • the measured viscosity was 800 mPa ⁇ s (25 ° C.), and the weight average molecular weight (Mw) of the resin solid content was 32,000.
  • the laminate was bonded to the surface and a linear low-density polyethylene film (LLDPE “TUX-HC 60 ⁇ m” manufactured by Mitsui Tosero Co., Ltd.).
  • LLDPE linear low-density polyethylene film
  • the laminate film was aged for 3 days in a constant temperature bath at 40 ° C.
  • peel strength before boil treatment The peel strength of a sample cut out from each of the above laminated films with a width of 15 mm was set to a peel rate of 300 mm / min using a tensile tester at an ambient temperature of 25 ° C., and the adhesive strength by a tensile test using a T-type peel method. (N / 15 mm) was measured.
  • break means a state in which the base film is broken without peeling at the adhesive layer because of excellent adhesive strength.
  • break at PET in the PET / LLDPE after the boil treatment in Example 4 indicates a state in which the PET is broken before peeling occurs in the adhesive layer.
  • the strength of the base film to break is roughly 12 N / 15 mm for the nylon film and 7 N / 15 mm for the PET film.
  • Aminosilane coupling agent “Dynasylan AMEO” manufactured by Evonik Pentaerythritol polyglycidyl ether: Polyglycidyl ether of pentaerythritol (3-4 functional, epoxy equivalent 229 g / eq.) TMP-based polyglycidyl ether: polyglycidyl ether of trimethylolpropane (2 to 3 functional, epoxy equivalent 134 g / eq.) BPA-based polyglycidyl ether: Diglycidyl ether of bisphenol A (“EPICLON850” epoxy equivalent of 188 g / eq.
  • Sorbitol-based polyglycidyl ether Polyglycidyl ether of sorbitol (3-4 functional, epoxy equivalent 173 g / eq., Viscosity 5,000 mPa ⁇ s) N, N, N ′, N′-tetraglycidyl-1,3-benzenedi (methanamine): “TETRAD-X” (viscosity 1600-3000 mPa ⁇ s) manufactured by Mitsubishi Gas Chemical Company, Inc.
  • N, N, N ′, N′-tetrakis (2,3-epoxypropyl) cyclohexane-1,3-dimethylamine “TETRAD-C” (viscosity 1600-3000 mPa ⁇ s) manufactured by Mitsubishi Gas Chemical Company, Inc. Ny: Nylon film ("emblem ON” thickness 15 ⁇ m, manufactured by Unitika) PET: PET film (Toyobo “E5100” thickness 12 ⁇ m) LLDPE: Linear low-density polyethylene film (“TUX-HC” 60 ⁇ m thick, manufactured by Mitsui Tosero)

Abstract

Provided are: a two-part curable laminate adhesive characterized by containing, as essential components, a polyurethane polyurea resin (A) having a primary amino group in the molecular structure thereof, and a polyglycidyl ether of a linear aliphatic polyol as a polyfunctional epoxy compound (B); a cured product thereof; a laminated film having the two-part curable laminate adhesive between a first plastic film and a second plastic film; and an amine solution for the two-part curable laminate adhesive, the amine solution containing a polyurethane polyurea resin (A) having a primary amino group in the molecular structure thereof, and an organic solvent (C) at such a ratio that the solid content concentration is 30-70 mass%.

Description

2液硬化型ラミネート接着剤、その硬化物、積層フィルムの製造方法、及び2液硬化型ラミネート接着剤用アミン溶液Two-component curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-component curable laminate adhesive
 本発明は2液硬化型ラミネート接着剤、その硬化物、該接着剤を用いて各種フィルムをラミネートしてなる積層フィルム、及び2液硬化型ラミネート接着剤用アミン溶液に関する。更に詳しくは、各種プラスチックフィルム、金属蒸着フィルム、アルミニウム箔等をラミネートして、主として食品、医薬品、洗剤等の包装材料に使用する複合フィルムを製造する際に用いるラミネート用接着剤に関する。 The present invention relates to a two-component curable laminate adhesive, a cured product thereof, a laminated film obtained by laminating various films using the adhesive, and an amine solution for a two-component curable laminate adhesive. More specifically, the present invention relates to an adhesive for laminating used in the production of composite films mainly used for packaging materials such as foods, pharmaceuticals, and detergents by laminating various plastic films, metal vapor deposited films, aluminum foils and the like.
 食品包装材や医薬品、日用品の包装材料には、フィルム基材表面に接着剤を塗布後、溶剤を蒸発乾燥除去し、他の材料を加熱、圧着しながら積層する所謂ドライラミネーションによる多層フィルムが、各用途の要求特性に合わせて任意のフィルムを選択組み合わせることが可能な点から広く用いられている。 For packaging materials for food packaging materials, pharmaceuticals, and daily necessities, a multi-layer film by so-called dry lamination, in which the adhesive is applied to the surface of the film substrate, the solvent is evaporated to dryness, and other materials are laminated while heating and pressure bonding, It is widely used because any film can be selectively combined according to the required characteristics of each application.
 斯かるドライラミネーションに用いられる接着剤は、主に高分子末端に水酸基を有するポリオール成分を主剤とし、他方、ポリイソシアネートを硬化剤とする二液型ポリウレタン系接着剤が主流である。ここで、前記ポリオール成分はポリエステルポリオールやポリエステルポリウレタンポリオールが使用され、他方、前記ポリイソシアネートとしてはトリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、イソホロンジイソシアネート(IPDI)等の各種のモノマー型ポリイソシアネートが、該硬化剤自体が反応性希釈剤として機能する点から使用されている。 The adhesive used for such dry lamination is mainly a two-component polyurethane adhesive mainly comprising a polyol component having a hydroxyl group at the polymer terminal and a polyisocyanate as a curing agent. Here, polyester polyol and polyester polyurethane polyol are used as the polyol component, and various monomer-type polyisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and isophorone diisocyanate (IPDI) are used as the polyisocyanate. However, it is used because the curing agent itself functions as a reactive diluent.
 然しながら、この硬化剤として使用されるイソシアネート成分は、吸入や皮膚接触により著しい感作性を発現したり、或いは、このイソシアネート成分が容器内の水分と反応して生成する一級芳香族アミンは欧州CLP規則において発がん性物質に分類されるなど、その有害性が指摘されており、近年、イソシアネートを含まないラミネート接着剤の開発が求められている。 However, the isocyanate component used as the curing agent exhibits significant sensitization by inhalation or skin contact, or the primary aromatic amine produced by the reaction of this isocyanate component with moisture in the container is European CLP. Its harmfulness has been pointed out, such as being classified as a carcinogenic substance in the regulations, and in recent years, development of laminate adhesives that do not contain isocyanates has been demanded.
 斯かるイソシアネートを含まないラミネート接着剤としては、例えば、下記特許文献1には、テトラグリシジル-m-キシリレンジアミンをエポキシ化合物として用い、これに硬化剤としてアミン化合物を用いた2液硬化型のラミネート接着剤が開示されている。 As such a laminating adhesive not containing isocyanate, for example, in Patent Document 1 below, a two-component curing type using tetraglycidyl-m-xylylenediamine as an epoxy compound and an amine compound as a curing agent is used. A laminate adhesive is disclosed.
 斯かる特許文献1に記載されたエポキシ/アミン硬化型の接着剤は、確かに優れた接着強度を発現するものの、エポキシ化合物自体が剛直な分子構造を有することから硬化物が固脆くなり、基材フィルムへの追随性に劣り98℃にてボイル処理した後に接着強度が著しく低下する他、外観不良を生じさせるものであった。 Although the epoxy / amine curable adhesive described in Patent Document 1 certainly exhibits excellent adhesive strength, the cured product becomes hard and brittle because the epoxy compound itself has a rigid molecular structure. It was inferior in followability to the material film, and after carrying out the boil treatment at 98 ° C., the adhesive strength was remarkably lowered and an appearance defect was caused.
特許第5651172号公報Japanese Patent No. 5651172
 従って、本発明が解決しようとする課題は、非イソシアネート系の軟包装ラミネートに適する接着剤として、ラミネート接着強度、とりわけボイル処理後のラミネート接着強度に優れる2液硬化型ラミネート接着剤、及びこれを用いたラミネートフィルムを提供することにある。 Therefore, the problem to be solved by the present invention is a two-component curable laminate adhesive excellent in laminate adhesive strength, particularly laminate adhesive strength after boil treatment, and an adhesive suitable for non-isocyanate-based soft packaging laminates. It is to provide a laminated film used.
 本発明者等は、前記課題を解決すべく鋭意研究した結果、アミノ基を分子構造中に有するポリウレタンポリウレア樹脂を主剤として使用し、かつ、その硬化剤として多官能エポキシ化合物を用いることにより、非イソシアネート系の軟包装ラミネート用接着剤としてラミネート強度、とりわけラミネートフィルムのボイル処理後の接着強度やラミネート外観が著しく改善されることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have used a polyurethane polyurea resin having an amino group in the molecular structure as a main agent, and using a polyfunctional epoxy compound as its curing agent, As an isocyanate-based soft packaging laminating adhesive, the present inventors have found that the laminating strength, particularly the adhesive strength after the boil treatment of the laminating film and the laminating appearance are remarkably improved, and the present invention has been completed.
 即ち、本発明は、1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)と、鎖状脂肪族ポリオールのポリグリシジルエーテル(B)とを必須成分とする2液硬化型ラミネート接着剤に関する。 That is, the present invention relates to a two-component curable laminate adhesive comprising, as essential components, a polyurethane polyurea resin (A) having a primary amino group in the molecular structure and a polyglycidyl ether (B) of a chain aliphatic polyol. .
 本発明は、更に、上記2液硬化型ラミネート接着剤を硬化させてなる硬化物に関する。 The present invention further relates to a cured product obtained by curing the two-component curable laminate adhesive.
 本発明は、更に、上記2液硬化型ラミネート接着剤を第一のプラスチックフィルムに塗布、次いで塗布面に第二のプラスチックフィルムを積層し、該接着剤層を硬化させることを特徴とする積層フィルムの製造方法に関する。 The present invention further provides a laminated film characterized in that the two-component curable laminate adhesive is applied to a first plastic film, the second plastic film is laminated on the coated surface, and the adhesive layer is cured. It relates to the manufacturing method.
 1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)と有機溶剤(C)とを、固形分濃度が30~70質量%となる割合で有することを特徴とする2液硬化型ラミネート接着剤用アミン溶液に関する。 A two-component curable laminate adhesive comprising a polyurethane polyurea resin (A) having a primary amino group in the molecular structure and an organic solvent (C) in a proportion of a solid content of 30 to 70% by mass. The present invention relates to a pharmaceutical amine solution.
 本発明によれば、非イソシアネート系の軟包装ラミネートに適する接着剤として、ラミネート接着強度、とりわけボイル処理後のラミネート接着強度に優れる2液硬化型ラミネート接着剤、及びこれを用いたラミネートフィルムを提供できる。 According to the present invention, as an adhesive suitable for a non-isocyanate-based soft packaging laminate, a two-component curable laminate adhesive excellent in laminate adhesive strength, particularly laminate adhesive strength after boil treatment, and a laminate film using the same are provided. it can.
 本発明で用いるポリウレタンポリウレア樹脂(A)は、1級アミノ基を分子構造中に有するものであり、該1級アミノ基が硬化剤である鎖状脂肪族ポリオールのポリグリシジルエーテル(B)中のエポキシ基と反応し架橋構造を形成することにより硬化物を得ることができる。ここで、ポリウレタンポリウレア樹脂(A)中の1級アミノ基の量は、該ポリウレタンポリウレア樹脂(A)のアミン価として3.0~30mgKOH/gの範囲のものであることが、架橋密度が適度に高くかつフィルム追随性を有し、初期のラミネート強度や外観のみならず、ボイル処理後のラミネート強度とラミネート外観が良好なものとなる点から好ましい。 The polyurethane polyurea resin (A) used in the present invention has a primary amino group in the molecular structure, and the primary amino group in the polyglycidyl ether (B) of a chain aliphatic polyol whose curing agent is a curing agent. A cured product can be obtained by reacting with an epoxy group to form a crosslinked structure. Here, the amount of the primary amino group in the polyurethane polyurea resin (A) is within the range of 3.0 to 30 mgKOH / g as the amine value of the polyurethane polyurea resin (A). It is preferable because it has a high film followability and a good film followability, and not only the initial laminate strength and appearance but also the laminate strength and laminate appearance after the boil treatment are good.
 ここで、アミン価とは、具体的は下記の方法にて滴定される値である。
[アミン価滴定方法]
 所定量のポリウレタンポリウレア樹脂(A)にクリスタルバイオレット指示薬を加え、これを0.1mol/Lの過塩素酸(HClO)酢酸溶液で青紫色から青色へ変化(赤みが消えた点)を終点として滴定する。同様にして試験も実施し、下記(式1)によって算出される値である。
Here, the amine value is specifically a value titrated by the following method.
[Amine titration method]
Crystal violet indicator is added to a predetermined amount of polyurethane polyurea resin (A), and this is changed from blue purple to blue (the point where the redness disappears) with 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution. Titrate. The test is performed in the same manner, and is a value calculated by the following (formula 1).
(式1)
アミン価(KOHmg)=56.1×[(Vs-Vb)/W]×0.1×[F20/1+W:滴定に使用したポリウレタンポリウレア樹脂(A)の質量(g)
0.0011(t-20)]
Vs:滴定に要した0.1mol/Lの過塩素酸(HClO)酢酸溶液の滴定量
(Formula 1)
Amine value (KOHmg) = 56.1 × [( Vs-Vb) / W] × 0.1 × [F 20/1 + W: mass of a polyurethane-polyurea resin used for titration (A) (g)
0.0011 (t-20)]
Vs: titration of 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution required for titration
Vb:空試験の滴定に要した0.1mol/Lの過塩素酸(HClO)酢酸溶液の滴定量
20:0.1mol/Lの過塩素酸(HClO)酢酸溶液の20℃における力価
t:滴定時の0.1mol/Lの過塩素酸(HClO)酢酸溶液の温度
Vb: titration amount of 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution required for titration in blank test F 20 : force of 20 mol of 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution Value t: Temperature of 0.1 mol / L perchloric acid (HClO 4 ) acetic acid solution at the time of titration
 また、前記した1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)は、その分子構造中にポリエーテル構造部位を持つポリエーテルポリウレタンポリウレア樹脂であることが、接着剤としての柔軟性に優れる点から好ましい。ここで、ポリエーテル構造部位とは、原料として用いた後述するポリエーテルポリオール(α1)に起因する構造部位であり、該ポリエーテルポリオールの分子量が100~3,500の範囲であるものが前記した柔軟性と、接着剤硬化時のラミネート強度とのバランスに優れる点から好ましい。なお、ポリエーテルポリオールの分子量は、水酸基価(mgKOH/g)の実測値と、ポリオールの価数から計算される値である。 In addition, the polyurethane polyurea resin (A) having a primary amino group in the molecular structure described above is a polyether polyurethane polyurea resin having a polyether structure site in the molecular structure. It is preferable from an excellent point. Here, the polyether structure part is a structure part derived from the later-described polyether polyol (α1) used as a raw material, and the one having a molecular weight in the range of 100 to 3,500 is described above. This is preferable from the viewpoint of excellent balance between flexibility and laminate strength when the adhesive is cured. The molecular weight of the polyether polyol is a value calculated from the actual value of the hydroxyl value (mgKOH / g) and the valence of the polyol.
 前記した1級アミノ基含有ポリウレタンポリウレア樹脂(A)は、ポリオール成分(α)と多価イソシアネート化合物(β)とを反応させてウレタンプレポリマー(X)を得、次いで、該ウレタンプレポリマー(X)をアミン化合物(Y)と反応させることにより得ることができる。 The primary amino group-containing polyurethane polyurea resin (A) is reacted with the polyol component (α) and the polyvalent isocyanate compound (β) to obtain a urethane prepolymer (X), and then the urethane prepolymer (X) ) Can be obtained by reacting with an amine compound (Y).
 ここで、前記ポリウレタンポリウレア樹脂は、前記ポリオール成分(α)として、ポリエーテルポリオール(α1)を用いた場合には、樹脂構造中にポリエーテル構造を持つポリエーテルポリウレタンポリウレア樹脂(a1)となり、ポリエステルポリオール(α2)を用いた場合には、樹脂構造中にポリエステル構造を持つポリエステルポリウレタンポリウレア樹脂(a2)、ポリエーテルポリエステルポリオール(α3)を用いた場合には、樹脂構造中にポリエーテルポリエステル構造を持つポリエーテルポリエステルポリウレタンポリウレア樹脂(a3)となる。 Here, when the polyether polyol (α1) is used as the polyol component (α), the polyurethane polyurea resin becomes a polyether polyurethane polyurea resin (a1) having a polyether structure in the resin structure. When the polyol (α2) is used, the polyester polyurethane polyurea resin (a2) having a polyester structure in the resin structure, and when the polyether polyester polyol (α3) is used, the polyether polyester structure is included in the resin structure. The resulting polyether polyester polyurethane polyurea resin (a3).
 ここで、ポリエーテルポリオール(α1)としては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフラン等のオキシラン化合物を、例えば水、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン等の低分子量ポリオールを開始剤として重合して得られるポリオキシアルキレングリコールが挙げられる。 Here, as the polyether polyol (α1), an oxirane compound such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran, and a low molecular weight polyol such as water, ethylene glycol, propylene glycol, trimethylolpropane, and glycerin as an initiator are used. Examples thereof include polyoxyalkylene glycols obtained by polymerization.
 これらの中でも、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールが、最終的に得られるポリウレタンポリウレア樹脂を接着剤にした場合のラミネート強度に優れる点から好ましい。これらのポリオキシアルキレングリコールは、被膜密着性が良好なことから分子量が100~3,500の範囲であることが接着剤に適度な柔軟性を付与できラミネート外観が良好なものとなる点から好ましい。ここで、ポリオキシアルキレングリコールの分子量は、前記した通り、ポリエーテルポリオールの分子量は、水酸基価(mgKOH/g)の実測値と、ポリオールの価数から計算される値である。 Among these, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol are preferable from the viewpoint of excellent laminate strength when the finally obtained polyurethane polyurea resin is used as an adhesive. Since these polyoxyalkylene glycols have good film adhesion, a molecular weight in the range of 100 to 3,500 is preferable from the viewpoint of imparting appropriate flexibility to the adhesive and good laminate appearance. . Here, as described above, the molecular weight of the polyoxyalkylene glycol is a value calculated from the measured value of the hydroxyl value (mgKOH / g) and the valence of the polyol.
 また、前記ポリエーテルポリオール(α1)を使用する場合、その他のグリコール化合物(α’)を併用することができる。 Moreover, when using the said polyether polyol ((alpha) 1), another glycol compound ((alpha) ') can be used together.
 また、斯かるグリコール化合物(α’)は、ポリエーテルポリオール(α1)との合計100質量部に対して10質量部以下となる割合で使用することができ、具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3プロパンジオール、2-エチル-2ブチル-1,3プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5ペンタンジオール、ヘキサンジオール、オクタンジオール、1,4-ブタンジオール等の脂肪族ジオールが挙げられる。 Moreover, such a glycol compound (α ′) can be used in a proportion of 10 parts by mass or less based on 100 parts by mass in total with the polyether polyol (α1). , 2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2butyl-1,3propanediol, 1,3-butanediol, 1,4-butanediol, Examples thereof include aliphatic diols such as neopentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, hexanediol, octanediol, and 1,4-butanediol.
 次に、前記ポリエステルポリオール(α2)は、前記グリコール化合物(α’)と多価カルボン酸又はその無水物(α2-1)とをエステル化反応させて得られるポリエステルポリオールが挙げられる。 Next, examples of the polyester polyol (α2) include polyester polyols obtained by esterifying the glycol compound (α ′) with a polyvalent carboxylic acid or an anhydride thereof (α2-1).
 ここで使用し得る多価カルボン酸又はその無水物(α2-1)としては、アジピン酸、コハク酸、シュウ酸、グルタル酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸;マレイン酸、フマル酸等の不飽和ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸等の芳香族ポリカルボン酸;無水フタル酸、トリメリット酸無水物、ピロメリット酸無水物等の酸無水物が挙げられる。これらになかでも特に柔軟性に優れた樹脂が得られる点から脂肪族ジカルボン酸が好ましい。 Examples of the polyvalent carboxylic acid or its anhydride (α2-1) that can be used here include aliphatic dicarboxylic acids such as adipic acid, succinic acid, oxalic acid, glutaric acid, pimelic acid, speric acid, azelaic acid, and sebacic acid. ; Unsaturated dicarboxylic acids such as maleic acid and fumaric acid; aromatic polycarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid and pyromellitic acid; phthalic anhydride, trimellitic anhydride, pyromellitic acid Acid anhydrides such as anhydrides may be mentioned. Of these, aliphatic dicarboxylic acids are preferred from the viewpoint of obtaining a resin having particularly excellent flexibility.
 ここで、前記ポリエステルポリオール(α2)は、その重量平均分子量(Mw)が400~5,000の範囲であることがボイル処理後のラミネート強度に優れる点から好ましく、斯かる分子量範囲に調整し易い点から、前記グリコール化合物(α’)と、多価カルボン酸又はその無水物(α2-1)との反応割合は、グリコール化合物(α’)中の水酸基の当量数と、多価カルボン酸又はその無水物(α2-1)のカルボン酸としての当量数との比[(α’)/(α2-1)]が1/0.88~1/0.95の範囲であることが好ましい。このエステル化反応は、例えばエステル化触媒の存在下、180~260℃の温度条件下に反応を行うことが好ましい。 Here, the polyester polyol (α2) preferably has a weight average molecular weight (Mw) in the range of 400 to 5,000 from the viewpoint of excellent laminate strength after the boil treatment, and can easily be adjusted to such a molecular weight range. In view of this, the reaction ratio between the glycol compound (α ′) and the polyvalent carboxylic acid or anhydride (α2-1) is determined by the number of equivalents of hydroxyl groups in the glycol compound (α ′), the polyvalent carboxylic acid or The ratio [(α ′) / (α2-1)] of the anhydride (α2-1) to the equivalent number of carboxylic acids is preferably in the range of 1 / 0.88 to 1 / 0.95. This esterification reaction is preferably performed under a temperature condition of 180 to 260 ° C. in the presence of an esterification catalyst, for example.
 ここで使用し得るエステル化触媒としては、例えば、有機スズ化合物、無機スズ化合物、有機チタン化合物、有機亜鉛化合物等が挙げられる。 Examples of the esterification catalyst that can be used here include organic tin compounds, inorganic tin compounds, organic titanium compounds, and organic zinc compounds.
 また、前記ポリエステルポリオール(α2)をポリオール成分(α)として使用する場合、ポリエステルポリオール(α2)と共に、前記ポリエーテルポリオール(α1)を併用することが好ましく、その使用割合は、接着剤のラミネート強度の点から、質量比[(α2)/(α1)]が75/25~10/90の範囲であることが好ましい。また、これらの合計100質量部あたり、前記グリコール化合物(α’)を10質量部以下の割合で併用してもよい。 Moreover, when using the said polyester polyol ((alpha) 2) as a polyol component ((alpha)), it is preferable to use the said polyether polyol ((alpha) 1) together with the polyester polyol ((alpha) 2), and the usage rate is the lamination strength of an adhesive agent. From this point, the mass ratio [(α2) / (α1)] is preferably in the range of 75/25 to 10/90. Moreover, you may use together the said glycol compound ((alpha) ') in the ratio of 10 mass parts or less per these 100 mass parts in total.
 次に、前記ポリエーテルポリエステルポリオール(α3)は、前記ポリエーテルポリオール(α1)と、前記グリコール化合物(α’)と、前記多価カルボン酸又はその無水物(α2-1)とをエステル化反応させることによって得られるものである。その重量平均分子量(Mw)は2,500~5,000の範囲のものであることが、最終的に得られるポリウレタンポリウレア樹脂に適度な柔軟性が付与されラミネート強度や、初期のラミネート外観に優れたものとなる点から好ましい。また、前記したエステル化反応は、前記ポリエステルポリオール(α2)の合成と同様の条件にて行うことができ、前記ポリエーテルポリオール(α1)及び前記グリコール化合物(α’)の水酸基の合計と、前記多価カルボン酸又はその無水物(α2-1)のカルボン酸としての当量数の比[(OH)/(酸基)]が1/0.88~1/0.95の範囲となることが、得られるポリエステルポリオールの分子量を前記した範囲に調整しやすい点から好ましい。 Next, the polyether polyester polyol (α3) is an esterification reaction between the polyether polyol (α1), the glycol compound (α ′), and the polyvalent carboxylic acid or anhydride (α2-1). It is obtained by making it. Its weight average molecular weight (Mw) is in the range of 2,500 to 5,000. The polyurethane polyurea resin finally obtained is moderately flexible and has excellent laminate strength and initial laminate appearance. It is preferable from the point of becoming. The esterification reaction described above can be performed under the same conditions as the synthesis of the polyester polyol (α2), and the total of hydroxyl groups of the polyether polyol (α1) and the glycol compound (α ′) The ratio of the number of equivalents of the polyvalent carboxylic acid or its anhydride (α2-1) as the carboxylic acid [(OH) / (acid group)] may be in the range of 1 / 0.88 to 1 / 0.95. From the viewpoint of easily adjusting the molecular weight of the obtained polyester polyol to the above-mentioned range.
 他方、前記したポリオール成分(α)と反応させる多価イソシアネート(β)は、ポリウレタンポリウレア樹脂の製造に一般的に用いられる各種公知の芳香族ジイソシアネート、鎖状脂肪族ジイソシアネート、脂環式ジイソシアネート、及び3~4官能のポリイソシアネートなどが挙げられる。 On the other hand, the polyisocyanate (β) to be reacted with the polyol component (α) is various known aromatic diisocyanates, chain aliphatic diisocyanates, alicyclic diisocyanates generally used in the production of polyurethane polyurea resins, and Examples thereof include tri- to tetrafunctional polyisocyanates.
 芳香族ジイソシアネートとしては、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ビス-クロロメチル-ジフェニルメタン-ジイソシアネート、2,6-ジイソシアネート-ベンジルクロライド等が挙げられ、鎖状脂肪族ジイソシアネートとしては、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート等の炭素原子数1~9のものが挙げられ、脂環式ジイソシアネートとしては、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジメチルシクロヘキシルジイソシアネート、メチルシクロヘキシルジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、ノルボルナンジイソシアネート等が挙げられる。 Aromatic diisocyanates include 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyl Diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, m-tetramethylxylylene diisocyanate, 4,4-diphenylmethane diisocyanate, tolylene diisocyanate, bis-chloromethyl-diphenylmethane -Diisocyanate, 2,6-diisocyanate-benzyl chloride and the like, and chain aliphatic Examples of the isocyanate include those having 1 to 9 carbon atoms such as butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate. Diisocyanates include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dimethylcyclohexyl diisocyanate, methylcyclohexyl diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate, norbornane diisocyanate. Etc.
 また、前記3~4官能のポリイソシアネートとしては、例えば、分子内にウレタン結合部位を有するアダクト型ポリイソシアネート、分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネートなどが挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。 Examples of the tri- to tetra-functional polyisocyanate include adduct type polyisocyanate having a urethane bond site in the molecule, and nurate type polyisocyanate having an isocyanurate ring structure in the molecule. These may be used alone or in combination of two or more.
 前記分子内にウレタン結合部位を有するアダクト型ポリイソシアネートは、例えば、ジイソシアネートモノマーと3官能以上の多価アルコールとを反応させて得られる。該反応で用いるジイソシアネートモノマーは、前記ジイソシアネートとして例示した各種のジイソシアネート挙げられ、それぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いる3官能以上の多価アルコールは、トリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ペンタエリスリトール等が挙げられ、それぞれ単独で使用しても良いし、二種類以上を併用しても良い。 The adduct polyisocyanate having a urethane bond site in the molecule can be obtained, for example, by reacting a diisocyanate monomer with a trifunctional or higher polyhydric alcohol. Examples of the diisocyanate monomer used in the reaction include various diisocyanates exemplified as the diisocyanate, and each may be used alone or in combination of two or more. Examples of the trifunctional or higher polyhydric alcohol used in the reaction include trimethylolethane, trimethylolpropane, glycerin, hexanetriol, pentaerythritol, etc., each of which may be used alone or in combination of two or more. You may do it.
 前記分子内に分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネートは、例えば、ジイソシアネートモノマーの三量体、ジイソシアネートモノマーとモノアルコール又は二価アルコールとを反応させて得られるものが挙げられる。ここで用いるジイソシアネートモノマーは、前記ジイソシアネートとして例示した各種のジイソシアネートモノマーが挙げられ、それぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いるモノアルコールは、ヘキサノール、2-エチルヘキサノール、オクタノール、n-デカノール、n-ウンデカノール、n-ドデカノール、n-トリデカノール、n-テトラデカノール、n-ペンタデカノール、n-ヘプタデカノール、n-オクタデカノール、n-ノナデカノール、エイコサノール、5-エチル-2-ノナノール、トリメチルノニルアルコール、2-ヘキシルデカノール、3,9-ジエチル-6-トリデカノール、2-イソヘプチルイソウンデカノール、2-オクチルドデカノール、2-デシルテトラデカノール等が挙げられ、二価アルコールは、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2,2-トリメチル-1,3-プロパンジオール、2,2-ジメチル-3-イソプロピル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、3-メチル1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,4-ビス(ヒドロキシメチル)シクロヘサンが挙げられる。また、その他リジンジイソシアネート、ダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等も前記多価イソシアネート(β)として使用することができる。 Examples of the nurate type polyisocyanate having an isocyanurate ring structure in the molecule include those obtained by reacting a diisocyanate monomer trimer, a diisocyanate monomer and a monoalcohol or a dihydric alcohol. Examples of the diisocyanate monomer used herein include various diisocyanate monomers exemplified as the diisocyanate, and each may be used alone or in combination of two or more. Monoalcohols used in the reaction are hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n-hepta. Decanol, n-octadecanol, n-nonadecanol, eicosanol, 5-ethyl-2-nonanol, trimethylnonyl alcohol, 2-hexyldecanol, 3,9-diethyl-6-tridecanol, 2-isoheptylisoundecanol, 2-octyldodecanol, 2-decyltetradecanol and the like, and dihydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-propane. Diol, , 2-dimethyl-3-isopropyl-1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, 3- Examples include methyl 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1,4-bis (hydroxymethyl) cyclohesan. In addition, lysine diisocyanate, dimerisocyanate obtained by converting a carboxyl group of dimer acid into an isocyanate group, and the like can also be used as the polyvalent isocyanate (β).
 これらのなかでも特に、芳香族ジイソシアネート、脂環式ジイソシアネート、及びヌレート型ポリイソシアネートなどの分子構造内に環状構造を持つもの耐ボイル性に優れる接着剤となる点から好ましい。 Among these, those having a cyclic structure in the molecular structure such as aromatic diisocyanate, alicyclic diisocyanate, and nurate type polyisocyanate are preferable from the viewpoint of being excellent in boil resistance.
 ウレタンプレポリマー(X)を合成する際の前記グリコール成分と多価イソシアネートとの反応割合は、当量比[OH/NCO]が、1.2~3.0であることが好ましい。前記比が1.2より小さいときはゲル化の恐れがあり、また、3.0より大きい場合には得られるプレポリマーの溶解性が低下する傾向が認められる。 The reaction ratio between the glycol component and the polyvalent isocyanate when the urethane prepolymer (X) is synthesized preferably has an equivalent ratio [OH / NCO] of 1.2 to 3.0. When the ratio is less than 1.2, gelation may occur. When the ratio is more than 3.0, the solubility of the resulting prepolymer tends to decrease.
 この様にして得られるウレタンプレポリマー(X)は、イソシアネート残存率が1.00~5.00質量%の範囲のものであることが、ラミネート強度が良好なものとなる点から好ましい。ここで、イソシアネート残存率とは、ウレタンプレポリマー(X)の一部サンプルを取り出し、これを酢酸エチルに溶解した後、所定濃度・所定量のアミン溶液を加え、次いで、指示薬を加えた後、塩酸で滴定して得られる質量基準のNCO基濃度である。 The urethane prepolymer (X) thus obtained preferably has an isocyanate residual ratio in the range of 1.00 to 5.00% by mass from the viewpoint of good laminate strength. Here, the isocyanate residual rate is a sample of urethane prepolymer (X) taken out, dissolved in ethyl acetate, added with a predetermined concentration and a predetermined amount of amine solution, and then added with an indicator, The mass-based NCO group concentration obtained by titration with hydrochloric acid.
 次いで、得られたウレタンプレポリマー(X)と、アミン化合物(Y)としてジアミン、必要によりモノアミンとを反応させることにより目的とする分子末端に1級アミノ基を有するポリウレタンポリウレア樹脂(A)を得ることができる。ここで、前記ウレタンプレポリマー(X)とアミン成分(Y)との反応割合は当量比[NCO/NH]が1.00/1.01~1/2となる割合であることがアミン価を適正範囲に調整する点から好ましい。 Next, a polyurethane polyurea resin (A) having a primary amino group at the target molecular end is obtained by reacting the obtained urethane prepolymer (X) with a diamine as the amine compound (Y) and, if necessary, a monoamine. be able to. Here, the reaction ratio between the urethane prepolymer (X) and the amine component (Y) is such that the equivalent ratio [NCO / NH 2 ] is 1.00 / 1.01 to 1/2. Is preferable from the point of adjusting to a proper range.
 なお、前記したジアミンは鎖伸長剤、モノアミンは反応停止剤として作用する。ここで、前記当量比[NCO/NH]を1/1.01~1/2なる範囲に高めることにより、モノアミンを使用することなく末端に一級アミノ基を持つポリウレタンポリウレア樹脂(A)を得ることができるが、本発明では、接着剤としての適度なポットライフを確保しつつ架橋密度を高める点からジアミンとモノアミンとを併用することが好ましい。この場合ジアミンとモノアミンとの使用割合は質量比[ジアミン/モノアミン]が90/10~60/40となる割合であることが好ましい。 The diamine described above functions as a chain extender, and the monoamine functions as a reaction terminator. Here, by increasing the equivalent ratio [NCO / NH 2 ] to a range of 1 / 1.01 to 1/2, a polyurethane polyurea resin (A) having a primary amino group at the terminal is obtained without using a monoamine. However, in the present invention, it is preferable to use diamine and monoamine in combination from the viewpoint of increasing the crosslinking density while ensuring an appropriate pot life as an adhesive. In this case, the proportion of diamine and monoamine is preferably such that the mass ratio [diamine / monoamine] is 90/10 to 60/40.
 ここで使用し得るジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、1,2-シクロヘキサンジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ジシクロヘキシルメタン-4,4’-ジアミン、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピルジアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、(N-アミノエチル)―2-エタノールアミン、2-ヒドロキシピロピルエチレンジアミン、ジ-2-ヒドロキシピロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン等が挙げられる。 Examples of diamines that can be used here include ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, 1,2-cyclohexanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane. , Dicyclohexylmethane-4,4′-diamine, 2-hydroxyethylethylenediamine, 2-hydroxyethylpropyldiamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylenediamine, di-2- Hydroxyethylpropylenediamine, (N-aminoethyl) -2-ethanolamine, 2-hydroxypyrroleethylenediamine, di-2-hydroxypyrroleethylenediamine, di- - hydroxypropyl ethylenediamine, and the like.
 これらの中でも、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、1,2-シクロヘキサンジアミン、又はジシクロヘキシルメタン-4,4’-ジアミン(シクロヘキサン環を有するアミン)が好ましい。 Among these, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 1,2-cyclohexanediamine, or dicyclohexylmethane-4,4'-diamine (amine having a cyclohexane ring) is preferable.
 また、モノアミンとしては、例えば、ジ-n-ブチルアミン等のジアルキルアミン、N-メチルシクロヘキシルアミン、ジシクロヘキシルアミン、シクロヘキシルアミン、シクロペンチルアミン、シクロヘキシルエチルアミン等の脂環炭化水素基を有する化合物、モノエタノールアミン、ジエタノールアミン、モノイソプロパノールアミン等のアルカノールアミンが挙げられるが、これらの中でも、N-メチルシクロヘキシルアミン、ジシクロヘキシルアミン、シクロヘキシルアミン、シクロペンチルアミン、及び、シクロヘキシルエチルアミンからなる群からなる1種以上の化合物が、ラミネート強度が良好なものとなる点から好ましい。 Examples of monoamines include dialkylamines such as di-n-butylamine, compounds having an alicyclic hydrocarbon group such as N-methylcyclohexylamine, dicyclohexylamine, cyclohexylamine, cyclopentylamine, and cyclohexylethylamine, monoethanolamine, Examples include alkanolamines such as diethanolamine and monoisopropanolamine. Among these, one or more compounds of the group consisting of N-methylcyclohexylamine, dicyclohexylamine, cyclohexylamine, cyclopentylamine, and cyclohexylethylamine are laminated. This is preferable from the viewpoint of good strength.
 この様にして得られる1級アミノ基を有するポリウレタンポリウレア樹脂(A)は、更に接着剤の使用時における架橋密度を高めるために、多官能エポキシ樹脂で変性してもよい。ここで使用し得る多官能エポキシ樹脂としては、後述する多官能エポキシ化合物(B)が挙げられ、前記したアミン価3.0~30mgKOH/gを保持できる範囲内で使用することが好ましい。 The polyurethane polyurea resin (A) having a primary amino group thus obtained may be modified with a polyfunctional epoxy resin in order to further increase the crosslinking density when using an adhesive. Examples of the polyfunctional epoxy resin that can be used here include a polyfunctional epoxy compound (B) to be described later, and it is preferable to use the polyfunctional epoxy resin within a range in which the amine value of 3.0 to 30 mgKOH / g can be maintained.
 以上詳述したポリウレタンポリウレア樹脂(A)は、前記した通り、その重量平均分子量(Mw)が20,000~60,000の範囲であることが、アルコール系溶剤成分への溶解性に優れ、また、ラミネート強度にも優れる点から好ましい。 As described above, the polyurethane polyurea resin (A) described in detail above has an excellent solubility in alcohol-based solvent components when the weight average molecular weight (Mw) is in the range of 20,000 to 60,000. From the viewpoint of excellent laminate strength.
 ここで、本発明において数平均分子量(Mn)、重量平均分子量(Mw)は、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。 Here, in the present invention, the number average molecular weight (Mn) and the weight average molecular weight (Mw) are values measured by gel permeation chromatography (GPC) under the following conditions.
 測定装置 ;東ソー株式会社製 HLC-8220GPC
 カラム  ;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L
       +東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220GPC manufactured by Tosoh Corporation
Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation
+ Tosoh Corporation TSK-GEL SuperHZM-M × 4
Detector: RI (differential refractometer)
Data processing: Multi-station GPC-8020model II manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)
 以上詳述した1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)は、接着剤の主剤成分として使用する場合、有機溶剤(C)へ溶解させた有機溶剤溶液として使用することができる。ここで使用し得る有機溶媒(C)としては、例えばメタノール、エタノール、イソプロピルアルコール、酢酸メチル、酢酸エチル、酢酸n-ブチル、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン、トルオール、キシロール、n-ヘキサン、シクロヘキサン等が挙げられる。これらの中でも溶解性の点から酢酸エチルが好ましい。 The polyurethane polyurea resin (A) having the primary amino group in the molecular structure described in detail above can be used as an organic solvent solution dissolved in an organic solvent (C) when used as a main component of an adhesive. . Examples of the organic solvent (C) that can be used here include methanol, ethanol, isopropyl alcohol, methyl acetate, ethyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK), cyclohexanone, toluol, xylol, n-hexane, and cyclohexane. Etc. Among these, ethyl acetate is preferable from the viewpoint of solubility.
 本発明では、上記したポリウレタンポリウレア樹脂(A)と有機溶媒(C)とを必須成分とする樹脂溶液を2液硬化型ラミネート接着剤の主剤として使用することができ、この場合、固形分濃度を30~70質量%の範囲に調整することが取扱いの点、接着剤主剤としての保存安定性に優れる点から好ましい。また、接着剤使用時には、更に前記有機溶媒(C)を加えて使用する塗工機械により適正な粘度に適宜調整して使用に供される。以上詳述した樹脂溶液は本発明の2液硬化型ラミネート接着剤用アミン溶液を構成する。 In the present invention, a resin solution containing the above-described polyurethane polyurea resin (A) and an organic solvent (C) as essential components can be used as a main component of a two-component curable laminate adhesive. Adjustment to the range of 30 to 70% by mass is preferable from the viewpoint of handling and excellent storage stability as an adhesive main agent. Moreover, when using an adhesive agent, the organic solvent (C) is further added to the appropriate viscosity by a coating machine to be used for use. The resin solution described in detail above constitutes the amine solution for a two-component curable laminate adhesive of the present invention.
 上記した2液硬化型ラミネート接着剤用アミン溶液は、更に、アミノシランカップリング剤を含有することがラミネート包装袋に使用した場合のシーラント部分のシール強度、また、印刷面に対する接着強度が良好なものとなる点から好ましい。アミノシランカップリング剤としては、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等が挙げられ、その配合量は2液硬化型ラミネート接着剤用アミン溶液中0.3~3質量%の範囲であることが好ましい。 The amine solution for a two-component curable laminate adhesive described above further has an aminosilane coupling agent and has a good seal strength at the sealant portion when used in a laminate packaging bag, and a good adhesive strength to the printing surface. It is preferable from the point which becomes. Examples of aminosilane coupling agents include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-amino. Examples thereof include propyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and the like, and the blending amount thereof is preferably in the range of 0.3 to 3% by mass in the amine solution for a two-component curable laminate adhesive. .
 次に、本発明の2液硬化型ラミネート接着剤において硬化剤として使用される、多官能エポキシ化合物(B)は、鎖状脂肪族ポリオールのポリグリシジルエーテルを必須成分とする。中でも、25℃で液状乃至半固形のエポキシ化合物であることが取扱いの点から好ましく、具体的には、エポキシ当量が100~300g/当量の範囲にあるエポキシ化合物が好ましい。具体的には、グリセロールジグリシジルエーテル、ポリグリセロールのポリグリシジルエーテル等のグリセロール系ポリグリシジルエーテル;トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等のトリメチロールプロパントリグリシジルエーテル;ソルビトールテトラグリシジルエーテルに代表されるソルビトールポリグリシジルエーテル;ペンタエリスリトールテトラグリシジルエーテル等の鎖状脂肪族ポリオールのポリグリシジルエーテルが挙げられる。中でもエポキシ当量が100~250g/当量の範囲にあることがなお好ましく、エポキシ当量が100~230g/当量の範囲がなお好ましく、エポキシ当量が150~230g/当量の範囲が最も好ましい。 Next, the polyfunctional epoxy compound (B) used as a curing agent in the two-component curable laminate adhesive of the present invention contains a polyglycidyl ether of a chain aliphatic polyol as an essential component. Among them, a liquid or semi-solid epoxy compound at 25 ° C. is preferable from the viewpoint of handling, and specifically, an epoxy compound having an epoxy equivalent in the range of 100 to 300 g / equivalent is preferable. Specifically, glycerol polyglycidyl ether such as glycerol diglycidyl ether and polyglycidyl ether of polyglycerol; trimethylolpropane triglycidyl ether such as trimethylolpropane diglycidyl ether and trimethylolpropane triglycidyl ether; sorbitol tetraglycidyl ether And polyglycidyl ethers of chain aliphatic polyols such as pentaerythritol tetraglycidyl ether. In particular, the epoxy equivalent is more preferably in the range of 100 to 250 g / equivalent, the epoxy equivalent is more preferably in the range of 100 to 230 g / equivalent, and the epoxy equivalent is most preferably in the range of 150 to 230 g / equivalent.
 これらのなかでも主剤との相溶性に優れ、かつ、架橋密度が高く耐ボイル性に優れる点から、基材フィルム表面に印刷が施されている際の接着強度に優れる点からソルビトールポリグリシジルエーテル、及びペンタエリスリトールテトラグリシジルエーテルが好ましい。斯かるソルビトールポリグリシジルエーテルはそれ単体乃至重合体であってもよいが、本発明では25℃での粘度4,000~23,000mPa・sのものが主剤への相溶性や接着剤自体の塗工性に優れる点から好ましい。 Among these, sorbitol polyglycidyl ether has excellent compatibility with the main agent, has a high crosslinking density and excellent boil resistance, and has excellent adhesion strength when printing is performed on the surface of the base film, And pentaerythritol tetraglycidyl ether are preferred. Such sorbitol polyglycidyl ether may be a simple substance or a polymer, but in the present invention, those having a viscosity of 4,000 to 23,000 mPa · s at 25 ° C. are compatible with the main agent or coated with the adhesive itself. It is preferable from the viewpoint of excellent workability.
また前記多官能エポキシ化合物(B)は、他の多官能エポキシ化合物を本発明の効果を損なわない範囲で併用してもよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、これらの水素添加型エポキシ樹脂等のビスフェノール型エポキシ樹脂;3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキサンカルボキシレート、ビニルシクロヘキセンジオキサイド、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ジシクロアリファティックジエステルジエポキシドなどの脂環式エポキシ化合物;ひまし油ポリグリシジルエーテル、トール油脂肪酸、リノレン酸、リノール酸等からなるダイマー酸のジグリシジルエステル;エポキシ化ポリブタジエン;大豆油のエポキシ化物、亜麻仁油のエポキシ化物等の植物油由来のエポキシ樹脂を使用することができる。 The polyfunctional epoxy compound (B) may be used in combination with other polyfunctional epoxy compounds as long as the effects of the present invention are not impaired. For example, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and hydrogens thereof. Bisphenol-type epoxy resins such as additive-type epoxy resins; 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexanecarboxylate, vinylcyclohexylene dioxide, bis (3,4-epoxycyclohexylmethyl) adipate, dicycloaliphatic Alicyclic epoxy compounds such as fattic diester diepoxide; diglycidyl ester of dimer acid consisting of castor oil polyglycidyl ether, tall oil fatty acid, linolenic acid, linoleic acid, etc .; epoxidized polybutadiene; epoxidized soybean oil, linseed oil Epoxy resins derived from vegetable oils such as epoxidized products can be used.
 以上詳述した多官能エポキシ化合物(B)は前記した有機溶剤(C)へ溶解させた樹脂溶液として使用してもよいが、25℃で液状のエポキシ化合物を用いる場合には、そのまま使用時に、主剤に配合して用いることができる。 The polyfunctional epoxy compound (B) detailed above may be used as a resin solution dissolved in the organic solvent (C) described above, but when using a liquid epoxy compound at 25 ° C. It can be used in combination with the main agent.
 本発明の接着剤は、上記した1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)と、多官能エポキシ化合物(B)として鎖状脂肪族ポリオールのポリグリシジルエーテルとを必須成分とするものであり、これらの配合割合は、固形分でポリウレタンポリウレア樹脂(A)の固形分100質量部に対して前記鎖状脂肪族ポリオールのポリグリシジルエーテルの固形分が2~20質量部、特に3~15質量部となる割合であることが耐ボイル性の点から好ましい。 The adhesive of the present invention comprises the above-described polyurethane polyurea resin (A) having a primary amino group in the molecular structure and polyglycidyl ether of a chain aliphatic polyol as a polyfunctional epoxy compound (B) as essential components. These blending ratios are such that the solid content of the polyglycidyl ether of the chain aliphatic polyol is 2 to 20 parts by weight, particularly 3 parts per 100 parts by weight of the solid content of the polyurethane polyurea resin (A). A ratio of ˜15 parts by mass is preferable from the viewpoint of boil resistance.
 本発明の接着剤は、必要に応じて、顔料を併用してもよい。この場合使用可能な顔料としては、特に限定されるものではなく、例えば、塗料原料便覧1970年度版(日本塗料工業会編)に記載されている体質顔料、白顔料、黒顔料、灰色顔料、赤色顔料、茶色顔料、緑色顔料、青顔料、金属粉顔料、発光顔料、真珠色顔料等の有機顔料や無機顔料、さらにはプラスチック顔料などが挙げられる。これら着色剤の具体例としては種々のものが掲げられ、有機顔料としては、例えば、ベンチジンエロー、ハンザエロー、レーキッド4R等の、各種の不溶性アゾ顔料;レーキッドC、カーミン6B、ボルドー10等の溶性アゾ顔料;フタロシアニンブルー、フタロシアニングリーン等の各種(銅)フタロシアニン系顔料;ローダミンレーキ、メチルバイオレットレーキ等の各種の塩素性染め付けレーキ;キノリンレーキ、ファストスカイブルー等の各種の媒染染料系顔料;アンスラキノン系顔料、チオインジゴ系顔料、ペリノン系顔料等の各種の建染染料系顔料;シンカシアレッドB等の各種のキナクリドン系顔料;ヂオキサジンバイオレット等の各種のヂオキサジン系顔料;クロモフタール等の各種の縮合アゾ顔料;アニリンブラックなどが挙げられる。 In the adhesive of the present invention, a pigment may be used in combination as necessary. In this case, usable pigments are not particularly limited. For example, extender pigments, white pigments, black pigments, gray pigments, red pigments described in the Paint Material Handbook 1970 edition (edited by the Japan Paint Industry Association) Examples thereof include organic pigments and inorganic pigments such as pigments, brown pigments, green pigments, blue pigments, metal powder pigments, luminescent pigments, and pearl pigments, and plastic pigments. Specific examples of these colorants include various types, and examples of organic pigments include various insoluble azo pigments such as Bench Gin Yellow, Hansa Yellow, Raked 4R, etc .; Soluble properties such as Raked C, Carmine 6B, Bordeaux 10 and the like. Azo pigments; various (copper) phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; various chlorine dyeing lakes such as rhodamine lake and methyl violet lake; various mordant dye pigments such as quinoline lake and fast sky blue; anthraquinone Various vat dyes such as pigments, thioindigo pigments and perinone pigments; various quinacridone pigments such as Cincacia Red B; various dioxazine pigments such as dioxazine violet; various condensed azos such as chromoftal Pigment; aniline black, etc. And the like.
 無機顔料としては、例えば、黄鉛、ジンククロメート、モリブデートオレンジ等の如き、各種のクロム酸塩;紺青等の各種のフェロシアン化合物;酸化チタン、亜鉛華、マピコエロー、酸化鉄、ベンガラ、酸化クロームグリーン、酸化ジルコニウム等の各種の金属酸化物;カドミウムエロー、カドミウムレッド、硫化水銀等の各種の硫化物ないしはセレン化物;硫酸バリウム、硫酸鉛等の各種の硫酸塩;ケイ酸カルシウム、群青等の各種のケイ酸塩;炭酸カルシウム、炭酸マグネシウム等の各種の炭酸塩;コバルトバイオレット、マンガン紫等の各種の燐酸塩;アルミニウム粉、金粉、銀粉、銅粉、ブロンズ粉、真鍮粉等の各種の金属粉末顔料;これら金属のフレーク顔料、マイカ・フレーク顔料;金属酸化物を被覆した形のマイカ・フレーク顔料、雲母状酸化鉄顔料等のメタリック顔料やパール顔料;黒鉛、カーボンブラック等が挙げられる。 Examples of inorganic pigments include various chromates such as chrome lead, zinc chromate, and molybdate orange; various ferrocyan compounds such as bitumen; titanium oxide, zinc white, mapico yellow, iron oxide, bengara, chrome oxide Various metal oxides such as green and zirconium oxides; various sulfides or selenides such as cadmium yellow, cadmium red and mercury sulfide; various sulfates such as barium sulfate and lead sulfate; various types such as calcium silicate and ultramarine blue Silicates; various carbonates such as calcium carbonate and magnesium carbonate; various phosphates such as cobalt violet and manganese purple; various metal powders such as aluminum powder, gold powder, silver powder, copper powder, bronze powder and brass powder Pigments; flake pigments of these metals, mica flake pigments; mica flakes coated with metal oxides Click pigments, micaceous iron oxide pigments such as metallic pigment and pearl pigment; graphite, carbon black and the like.
 体質顔料としては、例えば、沈降性硫酸バリウム、ご粉、沈降炭酸カルシウム、重炭酸カルシウム、寒水石、アルミナ白、シリカ、含水微粉シリカ(ホワイトカーボン)、超微粉無水シリカ(アエロジル)、珪砂(シリカサンド)、タルク、沈降性炭酸マグネシウム、ベントナイト、クレー、カオリン、黄土などが挙げられる。 Examples of extender pigments include precipitated barium sulfate, powder, precipitated calcium carbonate, calcium bicarbonate, cryolite, alumina white, silica, hydrous finely divided silica (white carbon), ultrafine anhydrous silica (Aerosil), and silica sand (silica). Sand), talc, precipitated magnesium carbonate, bentonite, clay, kaolin, ocher and the like.
 さらに、プラスチック顔料としては、例えば、DIC(株)製「グランドールPP-1000」、「PP-2000S」等が挙げられる。 Furthermore, examples of the plastic pigment include “Grandall PP-1000” and “PP-2000S” manufactured by DIC Corporation.
 本発明で用いる顔料としては、耐久性、耐侯性、意匠性に優れることから、白色顔料としての酸化チタン、亜鉛華等の無機酸化物、黒色顔料としてのカーボンブラックがより好ましい。 As the pigment used in the present invention, since it is excellent in durability, weather resistance and design, inorganic oxides such as titanium oxide and zinc white as a white pigment, and carbon black as a black pigment are more preferable.
 本発明で用いる顔料の質量割合は、前記ポリウレタンポリウレア樹脂(A)と、前記鎖状脂肪族ポリオールのポリグリシジルエーテルとの合成質量(固形分)100質量部に対して、1~400質量部、中でも10~300質量部とすることが、接着性、耐ブロッキング性などに優れることからより好ましい。 The mass ratio of the pigment used in the present invention is 1 to 400 parts by mass with respect to 100 parts by mass of the synthetic mass (solid content) of the polyurethane polyurea resin (A) and the polyglycidyl ether of the chain aliphatic polyol. In particular, the content of 10 to 300 parts by mass is more preferable because of excellent adhesion and blocking resistance.
 本発明の接着剤には、必要であれば、前記以外のその他の添加剤を含有させてもよい。添加剤としては、例えば、レベリング剤;コロイド状シリカ、アルミナゾルなどの無機微粒子;ポリメチルメタクリレート系の有機微粒子;消泡剤;タレ性防止剤;湿潤分散剤;粘性調整剤;紫外線吸収剤;金属不活性化剤;過酸化物分解剤;難燃剤;補強剤;可塑剤;潤滑剤;防錆剤;蛍光性増白剤;無機系熱線吸収剤;防炎剤;帯電防止剤;脱水剤などが挙げられる。 If necessary, the adhesive of the present invention may contain other additives other than those described above. Examples of additives include leveling agents; inorganic fine particles such as colloidal silica and alumina sol; organic fine particles of polymethyl methacrylate; antifoaming agents; anti-sagging agents; wetting and dispersing agents; viscosity modifiers; ultraviolet absorbers; Deactivator; Peroxide decomposing agent; Flame retardant; Reinforcing agent; Plasticizer; Lubricant; Rust preventive agent; Fluorescent whitening agent; Inorganic heat absorber; Flameproof agent; Antistatic agent; Is mentioned.
 これらの顔料、接着促進剤、添加剤は、前記した2液硬化型ラミネート接着剤用アミン溶液、又は、前記鎖状脂肪族ポリオールのポリグリシジルエーテルの有機溶剤(C)の溶液のどちらか一方の成分に混合させるか、或いは、第3成分として塗工時に配合して使用することができる。 These pigments, adhesion promoters, and additives are either of the above-described amine solution for a two-component curable laminate adhesive or a solution of the chain aliphatic polyol polyglycidyl ether organic solvent (C). It can be mixed with the components, or can be used as a third component by blending at the time of coating.
 本発明の積層フィルムは、前記2液硬化型ラミネート接着剤を第一のプラスチックフィルムと第二のプラスチックフィルムの間に有する積層フィルムであり、具体的には、前記2液硬化型ラミネート接着剤の硬化物を第一のプラスチックフィルムと第二のプラスチックフィルムの間に有する積層フィルムであり、その製造方法は、前記2液硬化型ラミネート接着剤を第一のプラスチックフィルムに塗布、次いで塗布面に第二のプラスチックフィルムを積層し、該接着剤層を硬化させる方法である。 The laminated film of the present invention is a laminated film having the two-component curable laminate adhesive between the first plastic film and the second plastic film, specifically, the two-component curable laminate adhesive. A laminated film having a cured product between a first plastic film and a second plastic film, and the production method thereof comprises applying the two-component curable laminate adhesive to the first plastic film and then applying the second adhesive to the coated surface. This is a method of laminating two plastic films and curing the adhesive layer.
 具体的には、本発明の2液硬化型ラミネート接着剤を、例えば、グラビアコーター、ダイコーター若しくはリップコーターにて第一のプラスチックフィルムに塗布し、次いで、乾燥後、他の基材を貼り合わせる方法が挙げられる。このダイコーターおよびリップコーターは、ダイまたはリップ部分の両端に付設されたディッケルによって塗工幅を自在に調整することができるものである。塗工条件は、通常のロールコーターでは、25℃~120℃程度まで加熱した状態で、500~2500mPa・s程度が好ましい。また塗布量は、0.5~5g/mが好ましく、より好ましくは、1.5~4g/m程度で使用するのがよい。 Specifically, the two-component curable laminate adhesive of the present invention is applied to the first plastic film using, for example, a gravure coater, a die coater or a lip coater, and then dried and bonded to another substrate. A method is mentioned. In the die coater and the lip coater, the coating width can be freely adjusted by deckles attached to both ends of the die or the lip portion. The coating conditions are preferably about 500 to 2500 mPa · s when heated to about 25 ° C. to 120 ° C. in a normal roll coater. The coating amount is preferably 0.5 to 5 g / m 2 , more preferably about 1.5 to 4 g / m 2 .
 また、本発明の2液硬化型ラミネート接着剤を用いた場合、ラミネート後、35~55℃で3日~7日間エージングさせることにより接着剤が硬化し、実用物性を発現させることができる。 In addition, when the two-component curable laminate adhesive of the present invention is used, the adhesive is cured by aging at 35 to 55 ° C. for 3 to 7 days after lamination, so that practical physical properties can be expressed.
 ここで用いる、第一のプラスチックフィルムとしては、PET(ポリエチレンテレフタレート)フィルム、ナイロンフィルム、OPP(2軸延伸ポリプロピレン)フィルム、各種蒸着フィルム等のベースフィルムやアルミ箔等が挙げられ、また、前記他の基材としては、CPP(無延伸ポリプロピレン)フィルム、LLDPE(直鎖低密度ポリエチレン)フィルム等のシーラントフィルムが挙げられる。 Examples of the first plastic film used here include PET (polyethylene terephthalate) film, nylon film, OPP (biaxially oriented polypropylene) film, base films such as various deposited films, aluminum foil, and the like. Examples of the base material include sealant films such as CPP (unstretched polypropylene) film and LLDPE (linear low density polyethylene) film.
 本発明の積層フィルムは、食品、洗剤、薬剤、化粧品やトイレタリー業界の包装材料として使用することができる。特にボイル処理後のラミネート接着強度に優れることからレトルト殺菌処理を要求されるような食品用包装材料として特に有用である。また前記包装材料からなる容器を包装する2次包装体にも使用できる。
もちろんその他の用途、例えば防壁材、屋根材、太陽電池パネル材、電池用包装材、窓材、屋外フローリング材、照明保護材、自動車部材、看板、ステッカー等の屋外産業用途、射出成形同時加飾方法等に使用する加飾用シート等として、好適に使用することができる。
The laminated film of the present invention can be used as a packaging material in foods, detergents, drugs, cosmetics and the toiletry industry. In particular, it is particularly useful as a packaging material for food that requires retort sterilization because of its excellent laminate adhesive strength after boil treatment. It can also be used for a secondary package for packaging a container made of the packaging material.
Of course, other applications such as barrier materials, roofing materials, solar cell panel materials, battery packaging materials, window materials, outdoor flooring materials, lighting protection materials, automotive parts, signs, stickers, etc. It can be suitably used as a decorative sheet used in the method.
 本発明の積層フィルムは、内容物の充填時はもとより、充填後の時間経過後も、デラミネーション等のラミネート構成体の剥離を発生させず、優れた接着性、内容物耐性を有する。 The laminated film of the present invention has excellent adhesiveness and content resistance without causing delamination of the laminate structure such as delamination not only during filling of the contents but also after elapse of time after filling.
 以下に、本発明の内容および効果を実施例により更に詳細に説明する。また、各実施例及び比較例で原料として用いた原料ポリオールを以下に示す。 Hereinafter, the contents and effects of the present invention will be described in more detail with reference to examples. Moreover, the raw material polyol used as a raw material by each Example and a comparative example is shown below.
 実施例1(ポリウレタンポリ尿素樹脂溶液Aの調製)
 攪拌機、温度計、環流冷却器および窒素ガス導入管を備えた4つ口フラスコに、分子量約3000のポリプロピレングリコール(三井化学社製 アクトコール「PPG3000」、分子量3024(水酸基価37.1mgKOH/g、官能基数2としての計算値))と、1,3-ブタンジオールの混合物(重量比=97/3)192.7質量部とイソフォロンジイソシアネート47.29質量部を仕込み、窒素気流下に90℃で5時間反応させ、遊離イソシアネート価(イソシアネート基含有率)3.07質量%のプレポリマーを製造した後、これに酢酸エチル60質量部を加えてウレタンプレポリマーの均一溶液とした。次いで、イソホロンジアミン14.88質量部、シクロヘキシルアミン1.25質量部、酢酸エチル2.9質量部およびエタノール146.7質量部からなる混合物に、前記ウレタンプレポリマー溶液を添加し、45℃で5時間攪拌反応させて、ポリウレタンポリ尿素樹脂溶液Aを得た。得られたポリウレタンポリ尿素樹脂溶液Aは、樹脂固形分濃度が55質量%、樹脂のアミン価3.82mgKOH/g、B型回転粘度計(東機産業株式会社社製「TVB-10M」)を用いて測定した粘度が800mPa・s(25℃)、樹脂固形分の重量平均分子量(Mw)が52,000であった。
Example 1 (Preparation of polyurethane polyurea resin solution A)
A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen gas inlet tube was charged with polypropylene glycol having a molecular weight of about 3000 (actol “PPG3000” manufactured by Mitsui Chemicals, Inc., molecular weight 3024 (hydroxyl value 37.1 mgKOH / g, Calculated value as the number of functional groups 2)), 192.7 parts by weight of a mixture of 1,3-butanediol (weight ratio = 97/3) and 47.29 parts by weight of isophorone diisocyanate were charged at 90 ° C. under a nitrogen stream. For 5 hours to produce a prepolymer having a free isocyanate value (isocyanate group content) of 3.07% by mass, and then 60 parts by mass of ethyl acetate was added thereto to obtain a uniform solution of a urethane prepolymer. Next, the urethane prepolymer solution was added to a mixture consisting of 14.88 parts by mass of isophoronediamine, 1.25 parts by mass of cyclohexylamine, 2.9 parts by mass of ethyl acetate and 146.7 parts by mass of ethanol, The polyurethane polyurea resin solution A was obtained by stirring for a period of time. The obtained polyurethane polyurea resin solution A had a resin solid content concentration of 55% by mass, a resin amine value of 3.82 mg KOH / g, and a B-type rotational viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.). The viscosity measured using this was 800 mPa · s (25 ° C.), and the weight average molecular weight (Mw) of the resin solid content was 52,000.
 実施例2(ポリウレタンポリ尿素樹脂溶液Bの調製)
 実施例1の1,3-ブタンジオールを1,4-ブタンに変更した以外は同じ製造法で行った。得られたポリウレタンポリ尿素樹脂溶液Bとした。得られたポリウレタンポリ尿素樹脂溶液Bは、樹脂固形分濃度が55質量%、樹脂のアミン価3.82mgKOH/g、B型回転粘度計(東機産業株式会社社製「TVB-10M」)を用いて測定した粘度が1,000mPa・s(25℃)、樹脂固形分の重量平均分子量(Mw)が53,000であった。
Example 2 (Preparation of polyurethane polyurea resin solution B)
The same production method was carried out except that 1,3-butanediol in Example 1 was changed to 1,4-butane. The obtained polyurethane polyurea resin solution B was designated. The obtained polyurethane polyurea resin solution B has a resin solid content concentration of 55% by mass, a resin amine value of 3.82 mg KOH / g, and a B-type rotational viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.). The viscosity measured using this was 1,000 mPa · s (25 ° C.), and the weight average molecular weight (Mw) of the resin solid content was 53,000.
 実施例3(ポリウレタンポリ尿素樹脂溶液Cの調製)
 攪拌機、温度計、環流冷却器および窒素ガス導入管を備えた4つ口フラスコに、分子量約1000のポリプロピレングリコール(三井化学社製「アクトコール PPG1,000」、分子量1001(水酸基価112.0mgKOH/g、官能基数2としての計算値))と、分子量2015(水酸基価からの計算値)のポリプロピレングリコール(三井化学社製「アクトコール PPG2000」、分子量2015(水酸基価55.7mgKOH/g、官能基数2としての計算値))の混合物(重量比=95/5)185.2質量部とトルエンジイソシアネート62.92質量部を仕込み、窒素気流下に90℃で5時間反応させ、遊離イソシアネート価(イソシアネート基含有率)6.07質量%のプレポリマーを製造した後、これに酢酸エチル62.03質量部を加えてウレタンプレポリマーの均一溶液とした。次いで、2-(2-アミノエチルアミノ)エタノール24.12質量部、モノエタノールアミン0.2質量部、酢酸エチル4.9質量部およびエタノール156.0質量部からなる混合物に、前記ウレタンプレポリマー溶液を添加し、45℃で5時間攪拌反応させて、ポリウレタンポリ尿素樹脂溶液Cを得た。得られたポリウレタンポリ尿素樹脂溶液Cは、樹脂固形分濃度が55質量%、樹脂のアミン価23mgKOH/g、B型回転粘度計(東機産業株式会社社製「TVB-10M」)を用いて測定した粘度が800mPa・s(25℃)、樹脂固形分の重量平均分子量(Mw)が32,000であった。
Example 3 (Preparation of polyurethane polyurea resin solution C)
A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen gas introduction tube was charged with polypropylene glycol having a molecular weight of about 1000 (“Accor PPG 1,000” manufactured by Mitsui Chemicals, Ltd., molecular weight 1001 (hydroxyl value 112.0 mgKOH / g, calculated value as the number of functional groups 2)) and polypropylene glycol having molecular weight 2015 (calculated value from hydroxyl value) (“Accor PPG2000” manufactured by Mitsui Chemicals, Inc.), molecular weight 2015 (hydroxyl value 55.7 mgKOH / g, number of functional groups 2) and a mixture of 185.2 parts by mass of toluene diisocyanate and reacted at 90 ° C. for 5 hours under a nitrogen stream to give a free isocyanate value (isocyanate). (Base content) 6.07% by mass of prepolymer was prepared, And a homogeneous solution of a urethane prepolymer by adding 62.03 parts by weight. Next, the urethane prepolymer was added to a mixture consisting of 24.12 parts by mass of 2- (2-aminoethylamino) ethanol, 0.2 parts by mass of monoethanolamine, 4.9 parts by mass of ethyl acetate and 156.0 parts by mass of ethanol. The solution was added and stirred at 45 ° C. for 5 hours to obtain a polyurethane polyurea resin solution C. The obtained polyurethane polyurea resin solution C has a resin solid content concentration of 55% by mass, a resin amine number of 23 mgKOH / g, and a B-type rotational viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.). The measured viscosity was 800 mPa · s (25 ° C.), and the weight average molecular weight (Mw) of the resin solid content was 32,000.
 実施例4~15及び比較例1~3
 下記の方法にて接着剤及びラミネートフィルムを製造し、各種評価を行った。結果を表1~表3に示す。
Examples 4 to 15 and Comparative Examples 1 to 3
An adhesive and a laminate film were produced by the following methods, and various evaluations were performed. The results are shown in Tables 1 to 3.
 [評価用ラミネートシートの作成1 PET/LLDPE]
 表1、表3の配合に従い、接着剤を製造した後、PETフィルム(東洋紡社製「E5100」厚さ12μm)に、塗布量が固形分3.0g/m程度となるように塗布し、ラミネーターでこのフィルムの塗布面と直鎖状低密度ポリエチレンフィルム(三井東セロ社製LLDPE「TUX-HC60μm」)と貼合し、ラミネートフィルムを作製した。このラミネートフィルムを40℃の恒温槽に3日間のエージングを実施した。
[Preparation of laminate sheet for evaluation 1 PET / LLDPE]
After producing an adhesive according to the formulation of Table 1 and Table 3, it was applied to a PET film (“E5100” thickness 12 μm manufactured by Toyobo Co., Ltd.) so that the coating amount was about 3.0 g / m 2 in solid content, A laminated film was prepared by laminating the coated surface of this film with a linear low-density polyethylene film (LLDPE “TUX-HC 60 μm” manufactured by Mitsui Tosero Co., Ltd.) using a laminator. The laminate film was aged for 3 days in a constant temperature bath at 40 ° C.
 [評価用ラミネートシートの作成2 ナイロン/LLDPE]
 表1、表3の配合に従い、接着剤を製造した後、ナイロン製フィルム(厚さ15μm)に、塗布量が固形分3.0g/m程度となるように塗布し、ラミネーターでこのフィルムの塗布面と直鎖状低密度ポリエチレンフィルム(三井東セロ社製LLDPE「TUX-HC60μm」)と貼合し、ラミネートフィルムを作製した。このラミネートフィルムを40℃の恒温槽に3日間のエージングを実施した。
[Preparation of laminate sheet for evaluation 2 Nylon / LLDPE]
After producing an adhesive according to the formulation of Table 1 and Table 3, it was applied to a nylon film (thickness 15 μm) so that the coating amount was about 3.0 g / m 2 in solid content, and this film was coated with a laminator. The coated surface was bonded to a linear low density polyethylene film (LLDPE “TUX-HC 60 μm” manufactured by Mitsui Tosero Co., Ltd.) to produce a laminate film. The laminate film was aged for 3 days in a constant temperature bath at 40 ° C.
 [評価用ラミネートシートの作成3 2色印刷PET/LLDPE]
 表2の配合に従い、各樹脂溶液とアミノシランカップリング剤とを配合して主剤成分を調整し、次いで、エポキシ化合物及び酢酸エチルを配合することによって接着剤を製造した後、印刷インキ(サンケミカル社製「Duralam PF」)で青、白の順にフレキソ印刷されたPETフィルム(東洋紡社製「E5100」厚さ12μm)に、塗布量が固形分3.0g/m程度となるように塗布し、ラミネーターでこのフィルムの塗布面と直鎖状低密度ポリエチレンフィルム(三井東セロ社製LLDPE「TUX-HC60μm」)と貼合し、ラミネートフィルムを作製した。このラミネートフィルムを40℃の恒温槽に3日間のエージングを実施した。
[Preparation of laminate sheet for evaluation 3 2-color printing PET / LLDPE]
According to the composition of Table 2, each resin solution and an aminosilane coupling agent are blended to adjust the main component, and then an adhesive is produced by blending an epoxy compound and ethyl acetate, and then printing ink (Sun Chemical Co., Ltd.) Applied to a PET film flexibly printed in the order of blue and white with “Duralam PF” (made by Toyobo Co., Ltd., “E5100” thickness 12 μm) so that the coating amount is about 3.0 g / m 2 in solid content, A laminated film was prepared by laminating the coated surface of this film with a linear low-density polyethylene film (LLDPE “TUX-HC 60 μm” manufactured by Mitsui Tosero Co., Ltd.) using a laminator. The laminate film was aged for 3 days in a constant temperature bath at 40 ° C.
 [評価用ラミネートシートの作成4 2色印刷ナイロン/LLDPE]
 表2の配合に従い、各樹脂溶液とアミノシランカップリング剤とを配合して主剤成分を調整し、次いで、エポキシ化合物及び酢酸エチルを配合することによって接着剤を製造した後、印刷インキ(サンケミカル社製「Duralam PF」)で青、白の順にフレキソ印刷されたナイロンフィルム(厚さ15μm)に、塗布量が固形分3.0g/m程度となるように塗布し、ラミネーターでこのフィルムの塗布面と直鎖状低密度ポリエチレンフィルム(三井東セロ社製LLDPE「TUX-HC60μm」)と貼合し、ラミネートフィルムを作製した。このラミネートフィルムを40℃の恒温槽に3日間のエージングを実施した。
[Preparation of laminate sheet for evaluation 4 2-color printing nylon / LLDPE]
According to the composition of Table 2, each resin solution and an aminosilane coupling agent are blended to adjust the main component, and then an adhesive is produced by blending an epoxy compound and ethyl acetate, and then printing ink (Sun Chemical Co., Ltd.) “Duralam PF” manufactured in Japan) is applied to a nylon film (thickness 15 μm) flexographically printed in the order of blue and white so that the coating amount is about 3.0 g / m 2 in solid content, and this film is applied with a laminator. The laminate was bonded to the surface and a linear low-density polyethylene film (LLDPE “TUX-HC 60 μm” manufactured by Mitsui Tosero Co., Ltd.). The laminate film was aged for 3 days in a constant temperature bath at 40 ° C.
 (ボイル処理前のピール強度)
 前記した各ラミネートフィルムから15mm幅で切り出したサンプルのピール強度を、雰囲気温度25℃で引張り試験機を用いて、剥離速度を300mm/分に設定し、T型の剥離方法で引張り試験による接着強度(N/15mm)を測定した。
(Peel strength before boil treatment)
The peel strength of a sample cut out from each of the above laminated films with a width of 15 mm was set to a peel rate of 300 mm / min using a tensile tester at an ambient temperature of 25 ° C., and the adhesive strength by a tensile test using a T-type peel method. (N / 15 mm) was measured.
 (ボイル処理後のピール強度)
 前記した各ラミネートフィルムをLLDPEが内側になるように折り曲げ、1atm、180℃、1秒間でヒートシールして内容物の接触部分が200cmとなるパウチを作製し、食品疑似溶液内容物[食用酢:ミートソース:サラダ油(質量比)=1:1:1の溶液]の50mlを充填した。
 充填したパウチを98℃の高温水で60分間浸漬し、取り出し、内容物を除去したパウチのラミネートフィルム部から15mm幅で切り出したサンプルのピール強度を、雰囲気温度25℃で引張り試験機を用いて、剥離速度を300mm/分に設定し、T型の剥離方法で測定した際の引張り試験による接着強度(N/15mm)を測定した。
(Peel strength after boil treatment)
Each of the above laminated films is folded so that the LLDPE is on the inside, and heat-sealed at 1 atm, 180 ° C. for 1 second to produce a pouch in which the contact portion of the contents is 200 cm 2. : Meat sauce: salad oil (mass ratio) = 1: 1: 1 solution].
The packed pouch is immersed in high-temperature water at 98 ° C. for 60 minutes, taken out, and the peel strength of the sample cut out from the laminated film part of the pouch from which the contents have been removed is cut to a width of 15 mm using a tensile tester at an ambient temperature of 25 ° C. The peeling strength was set to 300 mm / min, and the adhesive strength (N / 15 mm) was measured by a tensile test when measured by a T-type peeling method.
 (初期の外観)
 エージング処理して得られたラミネートフィルムの状態を目視にて観察し、トンネリング等のラミネート外観が良好なものを「良好」とした。
(Early appearance)
The state of the laminate film obtained by the aging treatment was visually observed, and those having a good laminate appearance such as tunneling were defined as “good”.
 (ボイル処理後の外観評価)
 ボイル処理後のパウチの外観を評価した。
 ○:デラミネーションなし
 ×:デラミネーションあり
(Appearance evaluation after boil processing)
The appearance of the pouch after the boil treatment was evaluated.
○: No delamination ×: Delamination
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記各表1~表3中、「破断」とは接着強度に優れる為に接着層での剥離が生じず、基材フィルムが破断してしまう状態を表す。例えば、実施例4のボイル処理後のPET/LLDPEにおける「PETで破断」とは、接着層で剥離が生じる前にPETが破断してしまう状態を示す。また、基材フィルムが破断に至る強度は大よそ、ナイロンフィルムで12N/15mm、PETフィルムで7N/15mmである。
 なお、表1~表3中に記載された各原料及び基材フィルムの詳細は以下のとおりである。
アミノシランカップリング剤:エボニック社製「Dynasylan AMEO」
ペンタエリスリトールポリグリシジルエーテル:ペンタエリスリトールのポリグリシジルエーテル(3~4官能、エポキシ当量229g/eq.)
TMP系ポリグリシジルエーテル:トリメチロールプロパンのポリグリシジルエーテル(2~3官能、エポキシ当量134g/eq.)
BPA系ポリグリシジルエーテル:ビスフェノールAのジグリシジルエーテル(DIC(株)製「EPICLON850」エポキシ当量188g/eq.)
ソルビトール系ポリグリシジルエーテル:ソルビトールのポリグリシジルエーテル(3~4官能、エポキシ当量173g/eq.、粘度5,000mPa・s)
N,N,N’,N’-テトラグリシジル-1,3-ベンゼンジ(メタンアミン):三菱瓦斯化学社製「TETRAD-X」(粘度1600-3000mPa・s)
N,N,N’,N’-テトラキス(2,3-エポキシプロピル)シクロヘキサン-1,3-ジメチルアミン:三菱瓦斯化学社製「TETRAD-C」(粘度1600-3000mPa・s)
Ny:ナイロンフィルム(ユニチカ社製「エンブレムON」厚さ15μm)
PET:PETフィルム(東洋紡社製「E5100」厚さ12μm)
LLDPE:直鎖状低密度ポリエチレンフィルム(三井東セロ社製「TUX-HC」厚さ60μm)
In each of the above-mentioned Tables 1 to 3, “break” means a state in which the base film is broken without peeling at the adhesive layer because of excellent adhesive strength. For example, “break at PET” in the PET / LLDPE after the boil treatment in Example 4 indicates a state in which the PET is broken before peeling occurs in the adhesive layer. Moreover, the strength of the base film to break is roughly 12 N / 15 mm for the nylon film and 7 N / 15 mm for the PET film.
The details of each raw material and base film described in Tables 1 to 3 are as follows.
Aminosilane coupling agent: “Dynasylan AMEO” manufactured by Evonik
Pentaerythritol polyglycidyl ether: Polyglycidyl ether of pentaerythritol (3-4 functional, epoxy equivalent 229 g / eq.)
TMP-based polyglycidyl ether: polyglycidyl ether of trimethylolpropane (2 to 3 functional, epoxy equivalent 134 g / eq.)
BPA-based polyglycidyl ether: Diglycidyl ether of bisphenol A (“EPICLON850” epoxy equivalent of 188 g / eq. Manufactured by DIC Corporation)
Sorbitol-based polyglycidyl ether: Polyglycidyl ether of sorbitol (3-4 functional, epoxy equivalent 173 g / eq., Viscosity 5,000 mPa · s)
N, N, N ′, N′-tetraglycidyl-1,3-benzenedi (methanamine): “TETRAD-X” (viscosity 1600-3000 mPa · s) manufactured by Mitsubishi Gas Chemical Company, Inc.
N, N, N ′, N′-tetrakis (2,3-epoxypropyl) cyclohexane-1,3-dimethylamine: “TETRAD-C” (viscosity 1600-3000 mPa · s) manufactured by Mitsubishi Gas Chemical Company, Inc.
Ny: Nylon film ("emblem ON" thickness 15 µm, manufactured by Unitika)
PET: PET film (Toyobo “E5100” thickness 12 μm)
LLDPE: Linear low-density polyethylene film (“TUX-HC” 60 μm thick, manufactured by Mitsui Tosero)

Claims (11)

  1. 1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)と、多官能エポキシ化合物(B)として鎖状脂肪族ポリオールのポリグリシジルエーテルとを必須成分とすることを特徴とする2液硬化型ラミネート接着剤。 A two-component curable type comprising a polyurethane polyurea resin (A) having a primary amino group in the molecular structure and a polyglycidyl ether of a chain aliphatic polyol as a polyfunctional epoxy compound (B) as essential components Laminate adhesive.
  2. 前記1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)が、アミン価3.0~30mgKOH/gの範囲である請求項1に記載の2液硬化型ラミネート接着剤。 The two-component curable laminate adhesive according to claim 1, wherein the polyurethane polyurea resin (A) having a primary amino group in the molecular structure has an amine value of 3.0 to 30 mgKOH / g.
  3. 前記1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)が、ポリエーテルポリウレタンポリウレア樹脂である請求項1~2に記載の2液硬化型ラミネート接着剤。 The two-component curable laminate adhesive according to claim 1, wherein the polyurethane polyurea resin (A) having a primary amino group in its molecular structure is a polyether polyurethane polyurea resin.
  4. 前記ポリエーテルポリウレタンポリウレア樹脂が、該樹脂中に存在するポリエーテル構造部位の原料の分子量が100~3,500の範囲である請求項3に記載の2液硬化型ラミネート接着剤。 The two-component curable laminate adhesive according to claim 3, wherein the polyether polyurethane polyurea resin has a molecular weight of 100 to 3,500 in a raw material of a polyether structure portion present in the resin.
  5. 前記鎖状脂肪族ポリオールのポリグリシジルエーテルのエポキシ当量が100~300g/当量の範囲にある請求項1~4のいずれかに記載の2液硬化型ラミネート接着剤。 The two-component curable laminate adhesive according to any one of claims 1 to 4, wherein an epoxy equivalent of the polyglycidyl ether of the chain aliphatic polyol is in a range of 100 to 300 g / equivalent.
  6. 有機溶剤(C)を含有する請求項1~5のいずれかに記載の2液硬化型ラミネート接着剤。 The two-component curable laminate adhesive according to any one of claims 1 to 5, comprising an organic solvent (C).
  7. アミノシランカップリング剤を含有する請求項1~6のいずれかに記載の2液硬化型ラミネート接着剤。 The two-component curable laminate adhesive according to any one of claims 1 to 6, comprising an aminosilane coupling agent.
  8. 請求項1~7のいずれかに記載の2液硬化型ラミネート接着剤を硬化させてなる硬化物。 A cured product obtained by curing the two-component curable laminate adhesive according to any one of claims 1 to 7.
  9. 請求項1~7のいずれかに記載の2液硬化型ラミネート接着剤を第一のプラスチックフィルムと第二のプラスチックフィルムの間に有することを特徴とする積層フィルム。 A laminated film comprising the two-component curable laminate adhesive according to any one of claims 1 to 7 between a first plastic film and a second plastic film.
  10. 1級アミノ基を分子構造中に有するポリウレタンポリウレア樹脂(A)と有機溶剤(C)とを、固形分濃度が30~70質量%となる割合で有することを特徴とする2液硬化型ラミネート接着剤用アミン溶液。 A two-component curable laminate adhesive comprising a polyurethane polyurea resin (A) having a primary amino group in the molecular structure and an organic solvent (C) in a proportion of a solid content of 30 to 70% by mass. Amine amine solution.
  11. アミノシランカップリング剤を含有する請求項10に記載の2液硬化型ラミネート接着剤用アミン溶液。 The amine solution for two-component curable laminate adhesives according to claim 10 containing an aminosilane coupling agent.
PCT/JP2017/009424 2016-03-25 2017-03-09 Two-part curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-part curable laminate adhesive WO2017163900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017538745A JP6233551B1 (en) 2016-03-25 2017-03-09 Two-component curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-component curable laminate adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016061855 2016-03-25
JP2016-061855 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017163900A1 true WO2017163900A1 (en) 2017-09-28

Family

ID=59901238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009424 WO2017163900A1 (en) 2016-03-25 2017-03-09 Two-part curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-part curable laminate adhesive

Country Status (2)

Country Link
JP (2) JP6233551B1 (en)
WO (1) WO2017163900A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035363A (en) * 2016-03-25 2018-03-08 Dic株式会社 Two-liquid curable laminate adhesive, cured article thereof, manufacturing method of laminate film, and amine solution for two-liquid curable laminate adhesive
JP2019077847A (en) * 2017-10-27 2019-05-23 Dic株式会社 Solventless type laminate adhesive, cured product of the same, laminate and package
CN112011049A (en) * 2019-05-30 2020-12-01 中国科学院化学研究所 Thermoplastic polyurea elastomer and preparation method thereof
WO2021024981A1 (en) * 2019-08-06 2021-02-11 凸版印刷株式会社 Curing agent, two-component adhesive, adhesive composition, cured product, laminate and method for producing same, packing material, and packed body
JP6905130B1 (en) * 2020-07-07 2021-07-21 大日精化工業株式会社 Printing ink using biopolyurethane resin
WO2022153705A1 (en) * 2021-01-13 2022-07-21 凸版印刷株式会社 Container and heating packaging bag
WO2023037762A1 (en) * 2021-09-08 2023-03-16 大日精化工業株式会社 Polyurethan-urea resin solution, and article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6960422B2 (en) * 2019-01-29 2021-11-05 大日精化工業株式会社 Adhesive composition and laminate
WO2021159300A1 (en) 2020-02-12 2021-08-19 Dic Corporation Adhesive composition, laminate, and package
WO2021193226A1 (en) 2020-03-27 2021-09-30 Dic株式会社 Lamination method and lamination device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112676A (en) * 1985-11-11 1987-05-23 Kuraray Co Ltd Water-based polyurethane adhesive
US4740539A (en) * 1986-04-21 1988-04-26 Ashland Oil, Inc. Flexible two-component epoxy structural adhesives
JPH0880571A (en) * 1994-09-14 1996-03-26 Dainippon Ink & Chem Inc Lamination method
JPH08291279A (en) * 1995-02-21 1996-11-05 Nippon Polyurethane Ind Co Ltd Adhesive composition for laminate and production of laminated film
JP2005298812A (en) * 2004-03-19 2005-10-27 Toyo Ink Mfg Co Ltd Adhesive composition, adhesive sheet using the same and flexible printed wiring board with reinforcing material
JP2016040369A (en) * 2014-08-12 2016-03-24 ユニチカ株式会社 Polyolefin resin aqueous dispersion, adhesive using the same, solar cell back sheet and solar cell module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297375A (en) * 1986-06-18 1987-12-24 Kao Corp Pressure-sensitive adhesive composition
JPH10130615A (en) * 1996-10-25 1998-05-19 Toyo Mooton Kk Polyurethane adhesive composition
JPH11335651A (en) * 1998-05-28 1999-12-07 Nippon Nsc Ltd Aqueous adhesive composition
JP4443852B2 (en) * 2002-04-19 2010-03-31 三洋化成工業株式会社 Adhesive composition
JP5726704B2 (en) * 2011-10-13 2015-06-03 日華化学株式会社 Water-based adhesive for fiber laminates
JP5953732B2 (en) * 2011-12-16 2016-07-20 Dic株式会社 Composite covering structure
JP5909779B2 (en) * 2012-06-27 2016-04-27 東洋インキScホールディングス株式会社 LAMINATE AND METHOD FOR PRODUCING LAMINATE
WO2017163900A1 (en) * 2016-03-25 2017-09-28 Dic株式会社 Two-part curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-part curable laminate adhesive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112676A (en) * 1985-11-11 1987-05-23 Kuraray Co Ltd Water-based polyurethane adhesive
US4740539A (en) * 1986-04-21 1988-04-26 Ashland Oil, Inc. Flexible two-component epoxy structural adhesives
JPH0880571A (en) * 1994-09-14 1996-03-26 Dainippon Ink & Chem Inc Lamination method
JPH08291279A (en) * 1995-02-21 1996-11-05 Nippon Polyurethane Ind Co Ltd Adhesive composition for laminate and production of laminated film
JP2005298812A (en) * 2004-03-19 2005-10-27 Toyo Ink Mfg Co Ltd Adhesive composition, adhesive sheet using the same and flexible printed wiring board with reinforcing material
JP2016040369A (en) * 2014-08-12 2016-03-24 ユニチカ株式会社 Polyolefin resin aqueous dispersion, adhesive using the same, solar cell back sheet and solar cell module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035363A (en) * 2016-03-25 2018-03-08 Dic株式会社 Two-liquid curable laminate adhesive, cured article thereof, manufacturing method of laminate film, and amine solution for two-liquid curable laminate adhesive
JP7003572B2 (en) 2017-10-27 2022-01-20 Dic株式会社 Solvent-free laminated adhesive, its cured product, laminate and package
JP2019077847A (en) * 2017-10-27 2019-05-23 Dic株式会社 Solventless type laminate adhesive, cured product of the same, laminate and package
CN112011049A (en) * 2019-05-30 2020-12-01 中国科学院化学研究所 Thermoplastic polyurea elastomer and preparation method thereof
WO2021024981A1 (en) * 2019-08-06 2021-02-11 凸版印刷株式会社 Curing agent, two-component adhesive, adhesive composition, cured product, laminate and method for producing same, packing material, and packed body
CN114174461A (en) * 2019-08-06 2022-03-11 凸版印刷株式会社 Curing agent, two-component adhesive, adhesive composition, cured product, laminate, method for producing same, packaging material, and package
JP2022014668A (en) * 2020-07-07 2022-01-20 大日精化工業株式会社 Printing ink using bio-polyurethane resin
JP6905130B1 (en) * 2020-07-07 2021-07-21 大日精化工業株式会社 Printing ink using biopolyurethane resin
WO2022153705A1 (en) * 2021-01-13 2022-07-21 凸版印刷株式会社 Container and heating packaging bag
JPWO2022153705A1 (en) * 2021-01-13 2022-07-21
JP7369342B2 (en) 2021-01-13 2023-10-26 Toppanホールディングス株式会社 Containers and heating packaging bags
WO2023037762A1 (en) * 2021-09-08 2023-03-16 大日精化工業株式会社 Polyurethan-urea resin solution, and article
JP7340110B2 (en) 2021-09-08 2023-09-06 大日精化工業株式会社 Polyurethane-urea resin solutions and articles

Also Published As

Publication number Publication date
JP2018035363A (en) 2018-03-08
JPWO2017163900A1 (en) 2018-04-05
JP6512256B2 (en) 2019-05-15
JP6233551B1 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6233551B1 (en) Two-component curable laminate adhesive, cured product thereof, method for producing laminated film, and amine solution for two-component curable laminate adhesive
JP6098914B2 (en) Solventless laminating adhesive, cured product thereof, polyol composition for laminating adhesive, and laminated film
US11739242B2 (en) Adhesive, laminated film using thereof and polyol composition for adhesive
JP6278166B1 (en) Urethane adhesive, polyol composition for urethane adhesive, polyisocyanate composition for urethane adhesive, cured product of urethane adhesive, and laminated film
JP6620963B2 (en) Reactive adhesive, laminated film and packaging
JP6797352B2 (en) Adhesives, laminated films, and methods for manufacturing laminated films
JP6451021B2 (en) Reactive adhesive, laminated film and packaging
WO2020130073A1 (en) Adhesive, laminated film, and method for producing laminated film
JP6452018B1 (en) Curing agent for two-component adhesive, two-component adhesive, laminated film, and package
JP7003572B2 (en) Solvent-free laminated adhesive, its cured product, laminate and package
JP7188047B2 (en) Reactive adhesives, laminated films, and packages
WO2020071134A1 (en) Adhesive, laminate, and method for producing laminate
JP2017149858A (en) Printing ink, method for producing polyurethane polyurea resin, and printed matter
JP6620964B2 (en) Solvent-free laminating adhesive, cured product thereof, laminate and packaging
JP6617916B2 (en) Polyol composition for solventless adhesive, solventless adhesive, and laminated film
JP2019104874A (en) Polyisocyanate composition, adhesive composition, laminated film and package
JP2023144899A (en) Packaging material, and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769945

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769945

Country of ref document: EP

Kind code of ref document: A1