WO2017163730A1 - 保護素子 - Google Patents

保護素子 Download PDF

Info

Publication number
WO2017163730A1
WO2017163730A1 PCT/JP2017/006505 JP2017006505W WO2017163730A1 WO 2017163730 A1 WO2017163730 A1 WO 2017163730A1 JP 2017006505 W JP2017006505 W JP 2017006505W WO 2017163730 A1 WO2017163730 A1 WO 2017163730A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive portion
insulating substrate
surface electrode
heating element
Prior art date
Application number
PCT/JP2017/006505
Other languages
English (en)
French (fr)
Inventor
亨 柿沼
幸市 向
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020187025556A priority Critical patent/KR102102840B1/ko
Priority to CN201780015962.6A priority patent/CN108701566B/zh
Publication of WO2017163730A1 publication Critical patent/WO2017163730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protective element that is mounted on a current path and cuts off the current path by fusing a fuse element by heating with a heater when a current exceeding the rating flows.
  • a protection element when a current exceeding the rating flows, a protection element is used that cuts off the current path by fusing the fuse element by heating with a heater.
  • a protective element is formed on a functional chip in which an electrode and a fuse element are mounted on an insulating substrate, and a surface-mounting type is known in which this chip is mounted on a circuit board.
  • the fuse element is blown by heating by energizing the heater based on the signal from the external circuit, so it can be used like a switch that cuts off the current path at the timing based on the control of the external circuit Is possible.
  • a protection element is used as a protection circuit for a secondary battery such as a lithium ion battery.
  • an object of the present invention is to provide a protective element that can cope with a large current, efficiently transfers heat from a heater to a fuse element without hindering downsizing, and is excellent in quick fusing property.
  • a protection element includes an insulating substrate, a first surface electrode and a second surface electrode provided on the surface of the insulating substrate so as to face each other, and a heating element. And a heating element extraction electrode electrically connected to the heating element, a first surface electrode, a second surface electrode, and a heating element extraction electrode connected to the heating element and melted by heating of the heating element. And a fuse element for cutting off a current path between the second surface electrode, a first back electrode and a second back electrode provided on the back surface of the insulating substrate, and a side surface of the insulating substrate.
  • the front surface electrode and the second front surface electrode are connected to the first back surface electrode and the second back surface electrode, respectively, and the first front surface electrode, the second front surface electrode, and the first surface electrode are connected between the front surface and the back surface of the insulating substrate. All connecting the back electrode and the second back electrode of Those comprising a first side surface conductive portion and the second side surface conductor portion constituting the flow path.
  • a protective element includes an insulating substrate, a first surface electrode and a second surface electrode provided on the surface of the insulating substrate so as to face each other, A heating element, a heating element extraction electrode electrically connected to the heating element, a first surface electrode, a second surface electrode, and a heating element extraction electrode are connected to the heating element and melted by heating the heating element.
  • a fuse element that cuts off a current path between the front surface electrode and the second front surface electrode, a first back surface electrode and a second back surface electrode provided on the back surface of the insulating substrate, and a hole penetrating the insulating substrate are formed.
  • First through-hole conductive layers that connect the first front-surface electrode and the second front-surface electrode to the first back-surface electrode and the second back-surface electrode, respectively, and serve as a conductive path between the front surface and the back surface of the insulating substrate.
  • a second penetrating conductive portion, the first Surface electrode and the second surface electrode is one which has a first surface protrusion protruding in a region in contact with the first through conducting portions and the second through conducting portions and the second surface protrusions, respectively.
  • the heat from the heater is concentrated in the fuse element without diffusing into the through holes. Can be transmitted, and the quick fusing property of the fuse element can be improved.
  • a through-hole is provided with a current path that conducts between the front and back surfaces of the insulating substrate as a through-hole, only the surface protrusions that protrude from the surface electrode to the periphery of the current path are formed to reduce the area of the surface electrode. By reducing the size, heat diffusion to the surface electrode can be prevented, heat can be concentrated and transferred to the fuse element, and the quick fusing property of the fuse element can be improved.
  • FIG. 1 is a plan view illustrating a fuse element according to a first embodiment with a fuse element seen through.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ shown in FIG.
  • FIG. 3 is a schematic diagram for explaining the shape of the first side surface conductive portion, and is a plan view of the first surface electrode as viewed from above, and FIG. 3 (A) shows a semicircular shape.
  • 3 (B) shows a rectangular groove shape
  • FIG. 3 (C) shows a semi-long hole shape
  • FIG. 3 (D) shows a wave groove shape.
  • FIG. 4 is an equivalent circuit diagram for explaining the circuit configuration of the fuse element.
  • FIG. 4A shows a state before the operation of the fuse element
  • FIG. 4B shows a state where the fuse element is melted after the operation of the fuse element. Shows the state.
  • FIG. 5 is a plan view showing a state in which the fuse element in FIG. 1 is activated and the fuse element is melted.
  • 6 is a cross-sectional view taken along line A-A ′ shown in FIG.
  • FIG. 7 is a plan view illustrating the fuse element according to the first modified example with a perspective view of the fuse element.
  • FIG. 8 is a plan view illustrating the fuse element according to the second modification example with the fuse element seen through.
  • FIG. 9 is a plan view illustrating a fuse element according to a third modification with a fuse element seen through.
  • FIG. 10 is a plan view illustrating the fuse element according to the fourth modification example with the fuse element seen through.
  • FIG. 11 is a plan view illustrating the fuse element according to the second embodiment with the fuse element seen through.
  • FIG. 12 is a plan view of the fuse element in FIG. 11 viewed from the back side.
  • 13 is a cross-sectional view taken along line A-A ′ shown in FIG.
  • FIG. 14 is a plan view showing a state where the fuse element in FIG. 11 is activated and the fuse element is melted.
  • FIG. 15 is a cross-sectional view taken along line A-A ′ shown in FIG.
  • the fuse element 1 according to the first embodiment is surface-mounted by reflow on a circuit board such as a protection circuit of a lithium ion secondary battery, for example, so that the lithium ion secondary
  • the fuse element 7 is incorporated on the charge / discharge path of the battery.
  • This protection circuit cuts off the current path by fusing the fuse element 7 by self-heating (Joule heat) when a large current exceeding the rating of the fuse element 1 flows.
  • the protection circuit is configured such that the heating element 5 is energized at a predetermined timing by a current control element provided on a circuit board or the like on which the fuse element 1 is mounted, and the fuse element 7 is blown by the heat generated by the heating element 5.
  • the current path can be interrupted.
  • FIG. 1 is a plan view showing the fuse element 1 with the case omitted
  • FIG. 2 is a cross-sectional view of the fuse element 1.
  • the fuse element 1 includes an insulating substrate 2, a first surface electrode 3 and a second surface electrode 4 provided on the surface 2 a of the insulating substrate 2 so as to face each other.
  • the heating element 5, the heating element extraction electrode 6 electrically connected to the heating element 5, the first surface electrode 3, the second surface electrode 4, and the heating element extraction electrode 6 are connected across the heating element 5.
  • a fuse element 7 which is melted by heating and interrupts a current path between the first surface electrode 3 and the second surface electrode 4, and the first back surface electrode 3 a and the second back surface electrode 2 a provided on the back surface 2 b of the insulating substrate 2.
  • the back electrode 4a is formed on the side surface of the insulating substrate 2, and the first surface electrode 3 and the second surface electrode 4 are connected to the first back electrode 3a and the second back electrode 3b, respectively. 2 between the front surface 2a and the back surface 2b of the first surface electrode 3 and the second surface electrode 2 And a a surface electrode 4 and the first back electrode 3a and the second first side conductive portion 3b and the second side conductive portion 4b constituting all of the current path for connecting the back electrode 3b.
  • the fuse element 1 is provided on the surface 2a of the insulating substrate 2 on both ends of the heating element 5 so as to cover the heating element 5 and prevent contact between the heating element 5 and the heating element extraction electrode 6.
  • a first heating element electrode 10 and a second heating element electrode 11 are provided. One end of the heating element extraction electrode 6 is connected to the second heating element electrode 11, and the other end is connected to the middle part of the fuse element 7.
  • the fuse element 1 is formed on the side surface of the insulating substrate 2 and the third back electrode 10a provided on the back surface 2b of the insulating substrate 2, and the first heating element electrode 10 and the third back electrode 10a are connected to each other.
  • a third side surface conductive portion 10b that is connected and serves as all the conductive paths between the front surface 2a and the back surface 2b of the insulating substrate 2 is provided.
  • the fuse element 1 has a structure in which no current path is formed except for the side surface of the insulating substrate 2.
  • the first side surface conductive portion 3b, the second side surface conductive portion 4b, and the third side surface conductive portion 10b in the fuse element 1 are respectively the first side surface 2c, the second side surface 2d, and the second side surface conductive portion 10b. It is provided on the third side surface 2e.
  • the fuse element 1 Since the fuse element 1 has no current path other than the side surface of the insulating substrate 2 and does not have a current path such as a through hole in the central portion of the insulating substrate, the heat generated from the heating element 5 is generated at the center of the insulating substrate.
  • the fuse element 7 is configured to be concentrated and overheated without being diffused by a through hole or the like of the portion.
  • the insulating substrate 2 is formed in a square shape by an insulating member such as alumina, glass ceramics, mullite, zirconia.
  • the insulating substrate 2 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
  • the insulating substrate 2 has side surfaces facing each other as a first side surface 2c and a second side surface 2d, and the remaining side surfaces being a third side surface 2e and a fourth side surface 2f facing each other.
  • the first surface electrode 3 and the second surface electrode 4 are opened by being spaced apart from each other in the vicinity of opposite side edges on the surface 2a of the insulating substrate 2, and the fuse element 7 is mounted. Thus, they are electrically connected via the fuse element 7.
  • the first surface electrode 3 and the second surface electrode 4 cause a large current exceeding the rating to flow through the fuse element 1 and the fuse element 7 is melted by self-heating (Joule heat), or the heating element 5 is energized. When the heat is generated and the fuse element 7 is melted, the current path is interrupted.
  • the first surface electrode 3 and the second surface electrode 4 are respectively connected to the first side surface 2c and the second side surface 2d of the insulating substrate 2 via half-through holes.
  • the fuse element 1 is connected to a circuit board on which an external circuit is formed via the first back electrode 3a and the second back electrode 4a, and constitutes a part of a current path of the external circuit. Therefore, the half through holes provided in the first side surface 2c and the second side surface 2d constitute the first side surface conductive portion 3b and the second side surface conductive portion 4b.
  • the first surface electrode 3 and the second surface electrode 4 can be formed using a general electrode material such as Cu or Ag.
  • a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is formed on the surfaces of the first surface electrode 3 and the second surface electrode 4 by a known method such as plating. Preferably it is coated.
  • the fuse element 1 can prevent the oxidation of the first surface electrode 3 and the second surface electrode 4, and can prevent the fluctuation of the rating due to the increase of the conduction resistance.
  • the fuse element 1 when the fuse element 1 is reflow-mounted, when the low melting point metal layer is formed on the outer layer of the connecting solder or the fuse element 7 to which the fuse element 7 is connected, the low melting point metal is melted to cause the first. It is possible to prevent the surface electrode 3 and the second surface electrode 4 from being corroded (soldered).
  • the heating element 5 is a conductive member that generates heat when energized, and is made of, for example, nichrome, W, Mo, Ru, Cu, Ag, or an alloy containing these as main components.
  • the heating element 5 is obtained by mixing a powdery body of these alloys, compositions, or compounds with a resin binder or the like, forming a paste on the insulating substrate 2 using a screen printing technique, and firing it. Etc. can be formed.
  • the heating element 5 has one end connected to the first heating element electrode 10 and the other end connected to the second heating element electrode 11.
  • an insulating material 9 is disposed so as to cover a heating element 5 formed on the surface 2 a of the insulating substrate 2, and a heating element extraction electrode is provided so as to face the heating element 5 through the insulator 9. 6 is formed.
  • an insulator may be laminated between the heating element 5 and the insulating substrate 2.
  • a glass material can be used as the insulator 9, for example.
  • the heating element extraction electrode 6 is connected to the second heating element electrode 11 and is continuous with one end of the heating element 5 through the second heating element electrode 11.
  • the second heating element electrode 11 is formed on the surface 2a side of the insulating substrate 2
  • the first heating element electrode 10 is formed on the third side surface 2e side from the surface 2a side of the insulating substrate 2.
  • the first heating element electrode 10 is connected to the third back surface electrode 10a formed on the back surface 2b of the insulating substrate 2 through a half through hole formed on the third side surface 2e. Therefore, the half through hole formed in the third side surface 2e constitutes the third side surface conductive portion 10b.
  • the heating element 5 is connected to an external circuit formed on the circuit board via the third back surface electrode 10a by mounting the fuse element 1 on the circuit board.
  • the heating element 5 is energized through the third back electrode 10a at a predetermined timing to interrupt the current path of the external circuit, and generates heat, whereby the first surface electrode 3 and the second surface electrode 4 are connected.
  • the connected fuse element 7 can be blown. Further, the heating element 5 stops its heat generation because the fuse element 7 is melted to cut off its own current path.
  • the heating element extraction electrode 6 can be formed using a general electrode material such as Cu or Ag. Moreover, it is preferable that a coating film such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is coated on the surface of the heating element extraction electrode 6 by a known method such as plating.
  • the first heating element electrode 10 and the second heating element electrode 11 are opened by disposing the neighboring side edges in the vicinity of each other on the surface 2a of the insulating substrate 2, and the heating element 5 is mounted. By doing so, they are electrically connected via the heating element 5.
  • the first heating element electrode 10 and the second heating element electrode 11 can be formed using a general electrode material such as Cu or Ag. Further, on the surfaces of the first heating element electrode 10 and the second heating element electrode 11, a coating such as Ni / Au plating, Ni / Pd plating, Ni / Pd / Au plating or the like is known such as plating treatment. It is preferably coated by a technique.
  • first back surface electrode 3a and the first side surface conductive portion 3b can be formed of the same material as that of the first surface electrode 3, and the second back surface electrode 4a and the second side surface conductive portion 3b.
  • the portion 4b can be formed of the same material as that of the second front surface electrode 4, and the third back surface electrode 10a and the third side surface conductive portion 10b are formed of the same material as that of the first heating element electrode 10. Shall be able to.
  • the fuse element 7 is made of a material that is quickly melted by the heat generated by the heating element 5, and for example, a low melting point metal such as solder or Pb-free solder whose main component is Sn can be suitably used.
  • the fuse element 7 may be made of a high melting point metal such as In, Pb, Ag, Cu, or an alloy containing any of these as a main component, or the inner layer is a low melting point metal layer and the outer layer is a high melting point. It may be a laminate of a low melting point metal and a high melting point metal such as a metal layer.
  • the fuse element 7 is connected to the heating element extraction electrode 6, the first surface electrode 3, and the second surface electrode 4 by solder or the like.
  • the fuse element 7 can be easily connected by reflow soldering.
  • the fuse element 7 is mounted on the heating element extraction electrode 6, the fuse element 7 is superimposed on the heating element extraction electrode 6 and also on the heating element 5.
  • the fuse element 7 connected between the first surface electrode 3 and the second surface electrode 4 is fused between the first surface electrode 3 and the second surface electrode 4, and the first surface electrode 3
  • the gap between the electrode 3 and the second surface electrode 4 is blocked. That is, the fuse element 7 is supported at the center by the heating element extraction electrode 6 and at the center supported by the heating element extraction electrode 6 as a fusing part.
  • the fuse element 7 is coated with a flux (not shown) to prevent oxidation and improve wettability.
  • a flux (not shown) to prevent oxidation and improve wettability.
  • the fuse element 7 can be blown quickly by preventing oxidation of the fuse element 7 and an increase in fusing temperature due to oxidation, suppressing fluctuations in fusing characteristics.
  • the first side surface conductive portion 3b, the second side surface conductive portion 4b, and the second side surface conductive portion 10b can be formed using a general electrode material such as Cu or Ag. Further, a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is formed on the surfaces of the first side surface conductive portion 3b, the second side surface conductive portion 4b, and the second side surface conductive portion 10b. However, it is preferably coated by a known method such as plating.
  • first side surface conductive portion 3b the second side surface conductive portion 4b, and the second side surface conductive portion 10b
  • first side surface conductive portion 3b Only the first side surface conductive portion 3b will be described.
  • second side surface conductive portion 4b and the second side surface conductive portion 10b can have the same shape, and thus description thereof is omitted. To do.
  • the first side surface conductive portion 3b shown in FIG. 3A is formed by adding a semicircular cutout to the insulating substrate 2 to form a recess, and patterning a conductive material in the recess.
  • the first side surface conductive portion 3b is a so-called half-through hole, and electrically connects the first surface electrode 3 and the first back surface electrode 3b between the front surface 2a and the back surface 2b of the insulating substrate 2. .
  • the first side surface conductive portion 3b shown in FIG. 3A is provided with a circular through hole between individual insulating substrates adjacent to each other when the insulating substrate 2 is cut out from a mother substrate (not shown). By cutting out the insulating substrate, it can be formed as a semicircular recess.
  • the through-hole is easy to manufacture because it can be easily created by providing a cylindrical projection on a mold for forming the mother substrate.
  • the first side surface conductive portion 3b can be formed in other shapes.
  • the first side surface conductive portion 3c shown in FIG. Is formed by patterning a conductive material in the recess.
  • the first side surface conductive portion 3c electrically connects the first front surface electrode 3 and the first back surface electrode 3b between the front surface 2a and the back surface 2b of the insulating substrate 2.
  • the first side surface conductive portion 3c shown in FIG. 3B is provided with a rectangular through hole between individual insulating substrates adjacent to each other when the insulating substrate 2 is cut out from a mother substrate (not shown). By cutting out the insulating substrate, it can be formed as a rectangular groove-shaped recess.
  • the through-hole can be easily created by providing a rectangular prism-shaped protrusion on a mold for forming the mother substrate, and thus is easy to manufacture.
  • the first side surface conductive portion 3c shown in FIG. 3 (B) has an area of a recess in the first side surface 2c of the insulating substrate 2 as compared with the first side surface conductive portion 3b shown in FIG. 3 (A). As a result, the width of the current path can be widened to reduce the electric resistance value, which is suitable for dealing with a large current.
  • first side surface conductive portion 3b can be formed in another shape.
  • first side surface conductive portion 3d shown in FIG. A recess is formed by adding a notch, and a conductive material is patterned in the recess.
  • the first side surface conductive portion 3d electrically connects the first front surface electrode 3 and the first back surface electrode 3b between the front surface 2a and the back surface 2b of the insulating substrate 2.
  • the first side surface conductive portion 3d shown in FIG. 3C is provided with an elongated through hole between individual insulating substrates adjacent to each other when the insulating substrate 2 is cut out from a mother substrate (not shown). By cutting out each insulating substrate, it can be formed as a recess having a semi-long hole shape.
  • the through-hole can be easily produced by providing a columnar protrusion corresponding to the rectangular elongated hole shape on the mold for forming the mother substrate.
  • the first side surface conductive portion 3d shown in FIG. 3C has an area of a recess on the first side surface 2c of the insulating substrate 2 as compared with the first side surface conductive portion 3b shown in FIG. As a result, the width of the current path can be widened to reduce the electric resistance value, which is suitable for dealing with a large current.
  • first side surface conductive portion 3b in another shape.
  • first side surface conductive portion 3e shown in FIG. A recess is formed by adding a notch, and a conductive material is patterned in the recess.
  • the first side surface conductive portion 3e electrically connects the first surface electrode 3 and the first back surface electrode 3b between the front surface 2a and the back surface 2b of the insulating substrate 2.
  • the first side surface conductive portion 3e shown in FIG. 3 (D) is provided with a corrugated long hole-shaped through hole between adjacent individual insulating substrates when the insulating substrate 2 is cut out from a mother substrate (not shown). By cutting out each insulating substrate at the boundary, it can be formed as a wave groove-shaped recess.
  • the through-hole can be easily produced by providing a columnar protrusion corresponding to the corrugated long hole shape on the mold for forming the mother substrate.
  • the first side surface conductive portion 3e shown in FIG. 3 (D) has a concave area on the first side surface 2c of the insulating substrate 2 as compared with the first side surface conductive portion 3b shown in FIG. 3 (A). As a result, the width of the current path can be widened to reduce the electric resistance value, which is suitable for dealing with a large current.
  • the side surface of the insulating substrate 2 is configured by a non-planar surface including a curved surface, so that the area of the recess can be increased, and as a result, the width of the current path is increased to increase the electric resistance value. Therefore, it can be said that it is suitable for dealing with a large current.
  • the fuse element 1 realizes a small and highly rated protective element.
  • the insulating substrate 2 has a size of about 2 to 3 mm ⁇ 1 to 2 mm, and has a resistance value of 0.5 to 1m ⁇ , 50-60A rating and higher rating.
  • the present invention can be applied to protective elements having all sizes, resistance values, and current ratings.
  • the size of the insulating substrate 2 is 2.7 mm ⁇ 1.8 mm.
  • the fuse element 1 is provided with a cover member (not shown) that protects the inside and prevents the molten fuse element 7 from scattering on the surface 2 a of the insulating substrate 2.
  • the cover member has a side wall mounted on the surface 2 a of the insulating substrate 2 and a top surface constituting the upper surface of the fuse element 1.
  • This cover member can be formed using, for example, an insulating member such as a thermoplastic plastic, ceramics, or a glass epoxy substrate. Since the characteristic structure of the present invention is the internal structure of the cover member, reference to the cover member is omitted in the following description.
  • the fuse element 1 has a fuse element 7 connected from the first surface electrode 3 to the second surface electrode 4, and a heating element in the middle of the fuse element 7.
  • An extraction electrode 6 is connected.
  • the heating element extraction electrode 6 is connected to the side opposite to the side connected to the fuse element 7 in the order of the second heating element electrode 11, the heating element 5, and the first heating element electrode 10.
  • the fuse element 1 includes the first side surface conductive portion 3b, the second side surface conductive portion 4b, and the second side electrode from the first surface electrode 3, the second surface electrode 4, and the first heating element electrode 10, respectively. It can be said that this is a three-terminal element having the first back electrode 3a, the second back electrode 4a, and the third back electrode 10a connected via the side conductive portion 10b as external terminals.
  • the fuse element 1 is configured such that the current of the main circuit flows from the first surface electrode 3 toward the second surface electrode 4, and generates heat when current flows from the first heating element electrode 10. As shown in FIGS. 5, 6, and 4 (B), the body 5 generates heat, the fuse element 7 is melted, the melt 7 a is agglomerated on the heating element extraction electrode 6, and the fuse element 7 is cut. Thereby, in the fuse element 1, the current path between the first surface electrode 3 and the second surface electrode 4 is blocked, and the current path to the heating element 5 is also blocked.
  • the first surface electrode 3 extends to the fourth side surface 2f of the insulating substrate 2, and the first side surface conductive portion 3b is not provided.
  • the side surface conductive portion 3b 1 is provided on the fourth side surface 2f of the insulating substrate 2
  • the second surface electrode 4 extends to the third side surface 2e of the insulating substrate 2
  • the second side surface conductive portion 4b is not provided.
  • a configuration in which the second side surface conductive portion 4b 1 is provided on the third side surface 2e of the insulating substrate 2, and the first side surface conductive portion 3b 1 and the second side surface conductive portion 4b 1 are arranged at diagonal positions on the insulating substrate 2. It is what.
  • the fuse element 20 includes a first side surface conductive portion in which the first back surface electrode 3a extends to the fourth side surface 2f of the insulating substrate 2 on the back surface 2b side of the insulating substrate 2. 3b 1 , the second back surface electrode 4a extends to the third side surface 2e of the insulating substrate 2 and is connected to the second side surface conductive portion 4b 1 .
  • the fuse element 20 since the first side surface conductive portion 3 b 1 and the second side surface conductive portion 4 b 1 are disposed at a position far from the heat generating element 5, the effect of preventing the diffusion of heat from the heat generating element 5 is enhanced, and the fuse element 20 It becomes easy to concentrate heat on the element 7.
  • the fuse element 30 according to the modified example 2 includes the first surface electrode 3 extending to the fourth side surface 2f of the insulating substrate 2 and the first side surface conductive portion 3b.
  • the side surface conductive portion 3b 1 is provided on the fourth side surface 2f of the insulating substrate 2, and the second surface electrode 4 is extended to the third side surface 2e of the insulating substrate 2 while including the second side surface conductive portion 4b.
  • a second side conductive portion 4b 1 is provided with a third aspect 2e of the insulating substrate 2, a first side conductive portion 3b and the second side conductive portion 4b in the opposite position, the first side surface conductor portions 3b 1 and The second side surface conductive portion 4b 1 is arranged at a diagonal position of the insulating substrate 2.
  • the fuse element 30 includes a first side surface conductive portion in which the first back surface electrode 3a is extended to the fourth side surface 2f of the insulating substrate 2 on the back surface 2b side of the insulating substrate 2. 3b 1 , the second back surface electrode 4a extends to the third side surface 2e of the insulating substrate 2 and is connected to the second side surface conductive portion 4b 1 .
  • the fuse element 30 includes the first side surface conductive portion 3b 1 and the second side surface conductive portion 4b 1 in addition to the first side surface conductive portion 3b and the second side surface conductive portion 4b, there are a plurality of current paths. It is possible to reduce the electric resistance value of the entire current path. Therefore, the fuse element 30 can cope with a large current by reducing the electric resistance value of the current path.
  • the fuse element 40 according to the modification 3 has two energization paths of the first side surface conductive portion 3 b 2 and the first side surface conductive portion 3 b 3 on the first side surface 2 c of the insulating substrate 2.
  • the second side surface 2d of the insulating substrate 2 is provided with two current paths of the second side surface conductive portion 4b 2 and the second side surface conductive portion 4b 3 , and the first side surface conductive portion 3b 2 and the second side surface are provided.
  • the conductive portion 4b 2 is disposed at the opposite position, and the first side surface conductive portion 3b 3 and the second side surface conductive portion 4b 3 are disposed at the opposite position.
  • the first back surface electrode 3a is connected to the first side surface conductive portion 3b 2 and the first side surface conductive portion 3b 3.
  • the second back surface electrode 4a is connected to the second side surface conductive portion 4b 2 and the second side surface conductive portion 4b 3 .
  • the first side surface conductive portion 3b and the second side surface conductive portion 4b are respectively connected to the first side surface conductive portion 3b 2 , the first side surface conductive portion 3b 3, and the second side surface conductive portion 4b 2 , Since the second side conductive portion 4b 3 has a plurality of configurations, there are a plurality of current paths, and it is possible to reduce the electric resistance value of the entire current path. Therefore, the fuse element 40 can cope with a large current by reducing the electric resistance value of the current path.
  • the first side surface conductive portion 3 b 2 , the first side surface conductive portion 3 b 3, the second side surface conductive portion 4 b 2 , and the second side surface conductive portion 4 b 3 are respectively connected to the first side conductive portion 3 b 2.
  • Side surface 2c and second side surface 2d that is, they are provided on the same side surface. Since the part to be cut when the insulating substrate is cut out from the mother substrate is a place where the through hole is cut out, it is possible to easily perform the cutting operation at the portion where the plurality of through holes are arranged.
  • the first surface electrode 3 is extended to the third side surface 2e of the insulating substrate 2, and the first side surface conductive portion 3b is not provided.
  • the side surface conductive portion 3b 4 is provided on the third side surface 2e of the insulating substrate 2
  • the second surface electrode 4 is extended to the third side surface 2e of the insulating substrate 2, and the second side surface conductive portion 4b is not provided.
  • the second side surface conductive portion 4b 4 is provided on the third side surface 2e of the insulating substrate 2, and the first side surface conductive portion 3b 1 and the second side surface conductive portion 4b 1 are insulated, including the third side surface conductive portion 10b.
  • the third side surface 2e of the substrate 2, that is, the same side surface is used.
  • the fuse element 50 includes a first side surface conductive portion in which the first back surface electrode 3a extends to the third side surface 2e of the insulating substrate 2 on the back surface 2b side of the insulating substrate 2. is connected to 3b 4, the second back electrode 4a is connected to the second side conductive portion 4b 4 is extended to the third aspect 2e of the insulating substrate 2.
  • the fuse element 50 since the first side surface conductive portion 3b 1 and the second side surface conductive portion 4b 1 including the third side surface conductive portion 10b are arranged on the same side surface of the insulating substrate 2, the fuse element 50 is insulated from the mother substrate. Since the parting part when cutting out the substrate is a place where the through hole is cut out, it becomes possible to easily perform the cutting work.
  • the fuse element 50 since the first side surface conductive portion 3b 1 and the second side surface conductive portion 4b 1 including the third side surface conductive portion 10b are arranged on the same side surface of the insulating substrate 2, a circuit is provided. Whether the solder for connection is sucked up by the third side surface conductive portion 10b, the first side surface conductive portion 3b 4 and the second side surface conductive portion 4b 4 during the mounting on the board, and the electrical connection is normally performed. Since the work of visually confirming is completed only by looking at one side, the connection confirmation process can be simplified.
  • This protection circuit cuts off the current path by blowing the fuse element 7 by self-heating (Joule heat) when a large current exceeding the rating of the fuse element 60 flows.
  • the protection circuit is configured such that the heating element 5 is energized at a predetermined timing by a current control element provided on a circuit board or the like on which the fuse element 1 is mounted, and the fuse element 7 is blown by the heat generated by the heating element 5.
  • the current path can be interrupted.
  • 11 is a plan view showing the fuse element 60 with the case omitted.
  • FIG. 12 is a plan view of the fuse element 60 as viewed from the back side. FIG. It is sectional drawing.
  • the fuse element 60 includes an insulating substrate 2, a first surface electrode 3 and a second surface electrode 4 provided on the surface 2 a of the insulating substrate 2 so as to face each other.
  • the heating element 5, the heating element extraction electrode 6 electrically connected to the heating element 5, the first surface electrode 3, the second surface electrode 4, and the heating element extraction electrode 6 are connected across the heating element 5.
  • a fuse element 7 which is melted by heating and interrupts a current path between the first surface electrode 3 and the second surface electrode 4, and the first back surface electrode 3 a and the second back surface electrode 2 a provided on the back surface 2 b of the insulating substrate 2.
  • the back electrode 4a is formed as a hole penetrating the insulating substrate 2, and the first surface electrode 3 and the second surface electrode 4 are connected to the first back electrode 3a and the second back electrode 4a, respectively.
  • the current path between the front surface 2a and the back surface 2b of the insulating substrate 2 And the first surface electrode 3 and the second surface electrode 4 are formed of the first through conductive portion 15 and the second through conductive portion.
  • the first surface convex portion 3 f and the second surface convex portion 4 f that protrude in a region in contact with 16 are respectively provided.
  • the fuse element 60 covers the heating element 5 and prevents the contact between the heating element 5 and the heating element extraction electrode 6, and the first element provided on both ends of the heating element 5 on the insulating substrate 2.
  • a heating element electrode 10 and a second heating element electrode 11 are provided. One end of the heating element extraction electrode 6 is connected to the second heating element electrode 11, and the other end is connected to the middle part of the fuse element 7.
  • the first back electrode 3a and the second back electrode 4a protrude into a region in contact with the first through conductive portion 15 and the second through conductive portion 16.
  • the first back surface convex portion 3g and the second back surface convex portion 4g are provided.
  • the fuse element 60 is formed on the side surface of the insulating substrate 2 and connects the first front surface electrode 3 and the second front surface electrode 4 to the first back surface electrode 3a and the second back surface electrode 3b, respectively. Between the front surface 2a and the back surface 2b of the board
  • first side surface conductive portion 3b, the second side surface conductive portion 4b, and the third side surface conductive portion 10b in the fuse element 60 are respectively connected to the first side surface 2c, the second side surface 2d, and the second side surface conductive portion 10b. It is provided on the third side surface 2e.
  • first surface convex portion 3f and the second surface convex portion 4f are the rectangular portions described in the fuse element 1 described in the first embodiment with respect to the first surface electrode 3 and the second surface electrode 4.
  • region corresponding to the 1st penetration conductive part 15 and the 2nd penetration conductive part 16 among some shapes is represented. In other words, it can be said that the region protrudes from the main portion of the first surface electrode 3 in order to connect the first surface electrode 3 and the first penetrating conductive portion 15.
  • the fuse element 60 has a current path that penetrates the insulating substrate 2 in addition to the first side surface 2c and the second side surface 2d of the insulating substrate 2, and a large current is used to reduce the electric resistance value of the entire current path. It becomes easy to cope with.
  • the fuse element 60 corresponds to the first through conductive portion 15 and the second through conductive portion 16 on the side of the first surface electrode 3 and the second surface electrode 4 that is close to the heating element 5. Since the first surface convex portion 3f and the second surface convex portion 4f are formed only in the region, the heat generated from the heating element 5 is diffused to the first surface electrode 3 and the second surface electrode 4. The fuse element 7 can be concentrated and overheated.
  • the fuse element 60 includes the first back surface electrode 3a and the second back surface electrode 4a on the side close to the heating element 5 in the same manner as the first surface electrode 3 and the second surface electrode 4. Since the first back surface convex portion 3g and the second front surface convex portion 4g are formed only in the region corresponding to the first through conductive portion 15 and the second through conductive portion 16, heat generated from the heating element 5 is generated. The fuse element 7 can be concentrated and overheated without diffusing to the first back electrode 3a and the second back electrode 4a.
  • the heating element 5 is disposed on the surface 2a of the insulating substrate 2, the heat diffusion prevention by the first surface convex portion 3f and the second surface convex portion 4f is prevented. The effect is particularly great.
  • the first surface electrode 3 and the second surface electrode 4 include the first surface convex portion 3 f and the second surface electrode. It is only necessary to have the front surface convex portion 4f, and the first back surface convex portion 3g and the second back surface convex portion 4g may not be provided.
  • the heat diffusion preventing effect by the first back surface convex portion 3g and the second back surface convex portion 4g is particularly large.
  • the first back electrode 3a and the second back electrode 4a are provided with the first back surface protrusion 3g and the second back surface electrode. It is only necessary to have the back surface convex part 4g, and the first front surface convex part 3f and the second front surface convex part 4f may not be provided.
  • the first penetrating conductive portion 15 and the second penetrating conductive portion 16 are through holes, and in particular, by filling the inside of the hole with a conductive material, the electric resistance value in the entire current path. It is possible to increase the reduction effect.
  • the first side conductive portion 3b and the second side conductive portion 4b are not provided.
  • a fuse element may be configured, it is preferably left as a half-through hole that sucks up the bonding solder in order to ensure the mounting state on the circuit board or the like.
  • the fuse element 60 includes two first through conductive portions 15 and two second through conductive portions 16. Therefore, the fuse element 60 includes the first front surface convex portion 3f, the second front surface convex portion 4f, the first back surface convex portion 3g, and the first back surface conductive portion 3g corresponding to the first through conductive portion 15 and the second through conductive portion 16. Two back surface convex portions 4g are also provided.
  • the number of the first through-conductive portions 15 and the second through-conductive portions 16 and the shape and diameter of the through-holes can be changed as appropriate in adjusting the electric resistance value of the current path. It is not limited to description of.
  • the fuse element described as the first embodiment, each modification, and the second embodiment prevents thermal diffusion from the heating element to other than the fuse element, and the resistance value of the entire conductive path is increased. Therefore, it is possible to reduce the size of the device while accommodating a large current.
  • the fuse element in the first embodiment a structure in which the above-described modified examples are appropriately combined may be used.
  • the shape, the number, the arrangement position, and the like of the side surface conductive portions are arbitrarily combined. Needless to say.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

発熱体からの熱をヒューズエレメントに効率的に伝達して熱の拡散を防止することで、速溶断性に優れる保護素子を提供する。 ヒューズ素子1は、絶縁基板2と、絶縁基板2の表面2aに互いに対向するように設けられた第1の表面電極3及び第2の表面電極4と、発熱体5と、発熱体5に電気的に接続された発熱体引出電極6と、第1の表面電極3、第2の表面電極4及び発熱体引出電極6にわたって接続され、発熱体5の加熱によって溶融し、第1の表面電極3及び第2の表面電極4の間の電流経路を遮断するヒューズエレメント7と、絶縁基板2の裏面2bに設けられた第1の裏面電極3a及び第2の裏面電極4aと、絶縁基板2の側面2c,2d,2eに形成され、第1の表面電極3及び第2の表面電極4と、第1の裏面電極3a及び第2の裏面電極4aとをそれぞれ接続し、絶縁基板2の表面2aと裏面2bの間で、第1の表面電極3及び第2の表面電極4と第1の裏面電極3a及び第2の裏面電極4aとを接続する全ての電流経路を構成する第1の側面導電部3b及び第2の側面導電部4bとを備える。

Description

保護素子
 本発明は、電流経路上に実装され、定格を超える電流が流れた時にヒータによる加熱でヒューズエレメントを溶断し当該電流経路を遮断する保護素子に関する。本出願は、日本国において2016年3月23日に出願された日本特許出願番号特願2016-058426を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来、定格を超える電流が流れた時にヒータによる加熱でヒューズエレメントを溶断し、当該電流経路を遮断する保護素子が用いられている。このような保護素子は、絶縁基板上に電極やヒューズエレメントを搭載した機能型のチップに形成され、このチップを回路基板上に実装する表面実装型のものが知られている。
 上述のような保護素子では、外部回路からの信号に基づきヒータに通電して加熱をすることでヒューズエレメントを溶断するため、外部回路の制御に基づくタイミングで電流経路を遮断するスイッチのような使い方が可能である。このような保護素子は、例えばリチウムイオンバッテリ等の二次電池の保護回路として用いられる。
 近年、リチウムイオンバッテリ等の二次電池の用途に大電流出力を要求するもの、例えば電気アシスト自転車や電動工具等が増えてきており、保護回路の定格電流が上昇し、大電流に耐えうるヒューズエレメントが用いられるようになってきた。
 特許文献1に記載の技術にあっては、大電流対応可能とするヒューズエレメントを用いた保護素子が開示されている。
特開2015-035281号公報
 しかし、上記特許文献1に記載の技術にあっては、絶縁基板の表面から裏面にかけて導通する電流経路が明示されてはいないが、大電流に対応するためには絶縁基板側面の導電経路だけでは抵抗値が大きく、絶縁基板の表裏を直結するスルーホールや、スルーホール内を導電体で穴埋めした電流経路を形成して抵抗値の低減を図る必要が生じる。
 また、上記特許文献1に記載の技術にあっては、絶縁基板の表裏を直結するスルーホールや、スルーホール内を導電体で穴埋めした電流経路を形成した場合に、ヒータからの熱がこの電流経路によって拡散し、ヒューズエレメントに熱を集中して伝達することが困難となり、ヒューズエレメントの速溶断性が悪化してしまう。
 そこで、本発明は、大電流に対応可能であり小型化を阻害することなくヒータからヒューズエレメントに熱を効率的に伝達し、速溶断性に優れる保護素子を提供することを目的とする。
 上述した課題を解決するために、本発明に係る保護素子は、絶縁基板と、絶縁基板の表面に、互いに対向するように設けられた第1の表面電極及び第2の表面電極と、発熱体と、発熱体に電気的に接続された発熱体引出電極と、第1の表面電極、第2の表面電極及び発熱体引出電極にわたって接続され、発熱体の加熱によって溶融し、第1の表面電極及び第2の表面電極の間の電流経路を遮断するヒューズエレメントと、絶縁基板の裏面に設けられた第1の裏面電極及び第2の裏面電極と、絶縁基板の側面に形成され、第1の表面電極及び第2の表面電極と第1の裏面電極及び第2の裏面電極とをそれぞれ接続し、絶縁基板の表面と裏面の間で、第1の表面電極及び第2の表面電極と第1の裏面電極及び第2の裏面電極とを接続する全ての電流経路を構成する第1の側面導電部及び第2の側面導電部とを備えるものである。
 また、上述した課題を解決するために、本発明に係る保護素子は、絶縁基板と、絶縁基板の表面に、互いに対向するように設けられた第1の表面電極及び第2の表面電極と、発熱体と、発熱体に電気的に接続された発熱体引出電極と、第1の表面電極、第2の表面電極及び発熱体引出電極にわたって接続され、発熱体の加熱によって溶融し、第1の表面電極及び第2の表面電極の間の電流経路を遮断するヒューズエレメントと、絶縁基板の裏面に設けられた第1の裏面電極及び第2の裏面電極と、絶縁基板を貫通する孔として形成され、第1の表面電極及び第2の表面電極と、第1の裏面電極及び第2の裏面電極とをそれぞれ接続し、絶縁基板の表面と裏面の間での導電経路となる第1の貫通導電部及び第2の貫通導電部とを備え、第1の表面電極及び第2の表面電極は、第1の貫通導電部及び第2の貫通導電部と接する領域に突出する第1の表面凸部及び第2の表面凸部をそれぞれ有するものである。
 本発明によれば、絶縁基板の表面と裏面を導通する電流経路を絶縁基板の側面のみに配置することで、ヒータからの熱がスルーホール等に拡散することなく、ヒューズエレメントに熱を集中して伝達することが可能となり、ヒューズエレメントの速溶断性を向上させることができる。また、絶縁基板の表面と裏面を導通する電流経路を貫通孔としてスルーホール等を設けた場合であっても、電流経路周辺まで表面電極が突出した表面凸部だけを形成し表面電極の面積を小さくすることで、表面電極への熱拡散を防止し、ヒューズエレメントに熱を集中して伝達することが可能となり、ヒューズエレメントの速溶断性を向上させることができる。
図1は、第1の実施の形態にかかるヒューズ素子についてヒューズエレメントを透視して示す平面図である。 図2は、図1に示すA-A’線における断面図である。 図3は、第1の側面導電部の形状を説明するための模式図であり、第1の表面電極を上面から見た平面図であり、図3(A)が半円形状を示し、図3(B)が矩形溝形状を示し、図3(C)が半長穴形状を示し、図3(D)が波溝形状を示す。 図4は、ヒューズ素子の回路構成を説明する等価回路図であり、図4(A)がヒューズ素子の動作前の状態を示し、図4(B)がヒューズ素子の動作後、ヒューズエレメントが溶融した状態を示す。 図5は、図1におけるヒューズ素子が作動しヒューズエレメントが溶融した状態を示す平面図である。 図6は、図5に示すA-A’線における断面図である。 図7は、第1の変形例にかかるヒューズ素子についてヒューズエレメントを透視して示す平面図である。 図8は、第2の変形例にかかるヒューズ素子についてヒューズエレメントを透視して示す平面図である。 図9は、第3の変形例にかかるヒューズ素子についてヒューズエレメントを透視して示す平面図である。 図10は、第4の変形例にかかるヒューズ素子についてヒューズエレメントを透視して示す平面図である。 図11は、第2の実施の形態にかかるヒューズ素子についてヒューズエレメントを透視して示す平面図である。 図12は、図11におけるヒューズ素子を裏面から見た平面図である。 図13は、図11に示すA-A’線における断面図である。 図14は、図11におけるヒューズ素子が作動しヒューズエレメントが溶融した状態を示す平面図である。 図15は、図14に示すA-A’線における断面図である。
 以下、本発明が適用された保護素子として、ヒューズ素子について図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [第1の実施の形態]
 第1の実施の形態にかかるヒューズ素子1は、図1及び図2に示すように、例えばリチウムイオン二次電池の保護回路等の回路基板にリフローにより表面実装されることにより、リチウムイオン二次電池の充放電経路上にヒューズエレメント7を組み込むものである。
 この保護回路は、ヒューズ素子1の定格を超える大電流が流れると、ヒューズエレメント7が自己発熱(ジュール熱)によって溶断することにより電流経路を遮断する。また、この保護回路は、ヒューズ素子1が実装された回路基板等に設けられた電流制御素子によって所定のタイミングで発熱体5へ通電し、発熱体5の発熱によってヒューズエレメント7を溶断させることによって電流経路を遮断することができる。なお、図1は、ヒューズ素子1をケースを省略して示す平面図であり、図2は、このヒューズ素子1の断面図である。
 [ヒューズ素子]
 ヒューズ素子1は、図1及び図2に示すように、絶縁基板2と、絶縁基板2の表面2aに、互いに対向するように設けられた第1の表面電極3及び第2の表面電極4と、発熱体5と、発熱体5に電気的に接続された発熱体引出電極6と、第1の表面電極3、第2の表面電極4及び発熱体引出電極6にわたって接続され、発熱体5の加熱によって溶融し、第1の表面電極3及び第2の表面電極4の間の電流経路を遮断するヒューズエレメント7と、絶縁基板2の裏面2bに設けられた第1の裏面電極3a及び第2の裏面電極4aと、絶縁基板2の側面に形成され、第1の表面電極3及び第2の表面電極4と第1の裏面電極3a及び第2の裏面電極3bとをそれぞれ接続し、絶縁基板2の表面2aと裏面2bの間で、第1の表面電極3及び第2の表面電極4と第1の裏面電極3a及び第2の裏面電極3bとを接続する全ての電流経路を構成する第1の側面導電部3b及び第2の側面導電部4bとを備えている。
 また、ヒューズ素子1は、発熱体5を覆い発熱体5と発熱体引出電極6との接触を妨げる絶縁体9と、絶縁基板2の表面2a上であって発熱体5の両端に設けられた第1の発熱体電極10及び第2の発熱体電極11とを備えている。発熱体引出電極6は、一端が第2の発熱体電極11と接続され、他方がヒューズエレメント7の中途部分に接続されている。
 また、ヒューズ素子1は、絶縁基板2の裏面2bに設けられた第3の裏面電極10aと、絶縁基板2の側面に形成され、第1の発熱体電極10と第3の裏面電極10aとを接続し、絶縁基板2の表面2aと裏面2bの間での全ての導電経路となる第3の側面導電部10bを備えている。
 ここで、絶縁基板2の表面2aと裏面2bの間での全ての電流経路とは、第1の表面電極3、第2の表面電極4及び第1の発熱体電極10と、第1の裏面電極3a、第2の裏面電極4a及び第3の裏面電極10aとをそれぞれ結ぶ電流経路を表す。従って、絶縁基板2の側面のみに電流経路が構成されていることを表す。言い換えると、ヒューズ素子1は、絶縁基板2の側面以外に電流経路が形成されない構造である。
 具体的に、ヒューズ素子1における第1の側面導電部3b、第2の側面導電部4b及び第3の側面導電部10bは、それぞれ絶縁基板2の第1の側面2c、第2の側面2d及び第3の側面2eに設けられている。
 ヒューズ素子1は、絶縁基板2の側面以外に電流経路が形成されないことから、絶縁基板の中央部にスルーホール等の電流経路を有さないため、発熱体5から発せられる熱が絶縁基板の中央部のスルーホール等によって拡散することがなく、ヒューズエレメント7を集中して過熱することができるように構成したものである。
 [絶縁基板]
 絶縁基板2は、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって方形状に形成される。その他、絶縁基板2は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。絶縁基板2は、互いに対向する側面が第1の側面2c及び第2の側面2dとされ、残りの側面が互いに対向する第3の側面2e及び第4の側面2fとされている。
 [第1の表面電極及び第2の表面電極]
 第1の表面電極3及び第2の表面電極4は、絶縁基板2の表面2a上に、相対向する側縁近傍にそれぞれ離間して配置されることにより開放され、ヒューズエレメント7が搭載されることにより、ヒューズエレメント7を介して電気的に接続されている。また、第1の表面電極3及び第2の表面電極4は、ヒューズ素子1に定格を超える大電流が流れヒューズエレメント7が自己発熱(ジュール熱)によって溶断し、あるいは発熱体5が通電に伴って発熱しヒューズエレメント7が溶断することによって、電流経路が遮断される。
 図1及び図2に示すように、第1の表面電極3及び第2の表面電極4は、それぞれ絶縁基板2の第1の側面2c及び第2の側面2dに設けられたハーフスルーホールを介して裏面2bに設けられた外部接続電極である第1の裏面電極3a及び第2の裏面電極4aと接続されている。ヒューズ素子1は、これら第1の裏面電極3a及び第2の裏面電極4aを介して外部回路が形成された回路基板と接続され、当該外部回路の電流経路の一部を構成する。従って、第1の側面2c及び第2の側面2dに設けられたハーフスルーホールが、第1の側面導電部3b及び第2の側面導電部4bを構成する。
 第1の表面電極3及び第2の表面電極4は、CuやAg等の一般的な電極材料を用いて形成することができる。また、第1の表面電極3及び第2の表面電極4の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、メッキ処理等の公知の手法によりコーティングされていることが好ましい。これにより、ヒューズ素子1は、第1の表面電極3及び第2の表面電極4の酸化を防止し、導通抵抗の上昇に伴う定格の変動を防止することができる。
 また、ヒューズ素子1をリフロー実装する場合に、ヒューズエレメント7を接続する接続用ハンダあるいはヒューズエレメント7の外層に低融点金属層が形成されている場合に当該低融点金属が溶融することにより第1の表面電極3及び第2の表面電極4を溶食(ハンダ食われ)するのを防ぐことができる。
 [発熱体]
 発熱体5は、通電すると発熱する導電性を有する部材であって、例えばニクロム、W、Mo、Ru、Cu、Ag、あるいはこれらを主成分とする合金等からなる。発熱体5は、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板2上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。また、発熱体5は、一端が第1の発熱体電極10と接続され、他端が第2の発熱体電極11と接続されている。
 ヒューズ素子1は、絶縁基板2の表面2a上に形成された発熱体5を覆うように絶縁材9が配設され、この絶縁体9を介して発熱体5に対向するように発熱体引出電極6が形成されている。発熱体5の熱を効率良くヒューズエレメント7に伝えるために、発熱体5と絶縁基板2の間にも絶縁体を積層しても良い。絶縁体9としては、例えばガラス材料を用いることができる。
 発熱体引出電極6の一端は、第2の発熱体電極11に接続されるとともに、第2の発熱体電極11を介して発熱体5の一端と連続されている。なお、第2の発熱体電極11は、絶縁基板2の表面2a側に形成され、第1の発熱体電極10は、絶縁基板2の表面2a側から第3の側面2e側に形成されている。また、第1の発熱体電極10は、第3の側面2eに形成されたハーフスルーホールを介して絶縁基板2の裏面2bに形成された第3の裏面電極10aと接続されている。従って、第3の側面2eに形成されたハーフスルーホールが第3の側面導電部10bを構成する。
 発熱体5は、ヒューズ素子1が回路基板に実装されることにより、第3の裏面電極10aを介して回路基板に形成された外部回路と接続される。そして、発熱体5は、外部回路の電流経路を遮断する所定のタイミングで第3の裏面電極10aを介して通電され、発熱することにより、第1の表面電極3及び第2の表面電極4を接続しているヒューズエレメント7を溶断することができる。また、発熱体5は、ヒューズエレメント7が溶断することにより、自身の電流経路も遮断されることから発熱が停止する。
 [発熱体引出電極]
 発熱体引出電極6は、CuやAg等の一般的な電極材料を用いて形成することができる。また、発熱体引出電極6の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、メッキ処理等の公知の手法によりコーティングされていることが好ましい。
 [第1の発熱体電極及び第2の発熱体電極]
 第1の発熱体電極10及び第2の発熱体電極11は、絶縁基板2の表面2a上で、相対向する側縁近傍がそれぞれ離間して配置されることにより開放され、発熱体5が搭載されることにより、発熱体5を介して電気的に接続されている。
 第1の発熱体電極10及び第2の発熱体電極11は、CuやAg等の一般的な電極材料を用いて形成することができる。また、第1の発熱体電極10及び第2の発熱体電極11の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、メッキ処理等の公知の手法によりコーティングされていることが好ましい。
 なお、ここで、第1の裏面電極3a及び第1の側面導電部3bは、第1の表面電極3と同様の材料により形成することができ、第2の裏面電極4a及び第2の側面導電部4bは、第2の表面電極4と同様の材料により形成することができ、第3の裏面電極10a及び第3の側面導電部10bは、第1の発熱体電極10と同様の材料により形成することができるものとする。
 [ヒューズエレメント]
 ヒューズエレメント7は、発熱体5の発熱により速やかに溶断される材料からなり、例えばハンダや、Snを主成分とするPbフリーハンダ等の低融点金属を好適に用いることができる。
 また、ヒューズエレメント7は、In、Pb、Ag、Cu又はこれらのうちのいずれかを主成分とする合金等の高融点金属を用いてもよく、あるいは内層を低融点金属層とし外層を高融点金属層とする等の低融点金属と高融点金属との積層体であってもよい。高融点金属と低融点金属とを含有することによって、ヒューズ素子1をリフロー実装する場合に、リフロー温度が低融点金属の溶融温度を超えて、低融点金属が溶融しても、低融点金属の外部への流出を抑制し、ヒューズエレメント7の形状を維持することができる。また、溶断時も、低融点金属が溶融することにより、高融点金属を溶食(ハンダ食われ)することで、高融点金属の融点以下の温度で速やかに溶断することができる。
 なお、ヒューズエレメント7は、発熱体引出電極6及び第1の表面電極3及び第2の表面電極4へ、ハンダ等により接続されている。ヒューズエレメント7は、リフローはんだ付けによって容易に接続することができる。ヒューズエレメント7は、発熱体引出電極6上に搭載されることにより、発熱体引出電極6と重畳され、また発熱体5とも重畳される。また、第1の表面電極3及び第2の表面電極4の間にわたって接続されたヒューズエレメント7は、第1の表面電極3と第2の表面電極4との間において溶断し、第1の表面電極3及び第2の表面電極4間を遮断する。すなわち、ヒューズエレメント7は、中央部が発熱体引出電極6に支持されるとともに、発熱体引出電極6に支持された中央部が溶断部とされている。
 また、ヒューズエレメント7は、酸化防止、濡れ性の向上等のため、図示しないフラックスが塗布されている。ヒューズエレメント7は、フラックスが保持されることによって、ヒューズエレメント7の酸化及び酸化に伴う溶断温度の上昇を防止して、溶断特性の変動を抑制し、速やかに溶断することができる。
 [側面導電部]
 ここで、第1の側面導電部3b、第2の側面導電部4b及び第2の側面導電部10bについて、詳細に説明を行う。
 第1の側面導電部3b、第2の側面導電部4b及び第2の側面導電部10bは、CuやAg等の一般的な電極材料を用いて形成することができる。また、第1の側面導電部3b、第2の側面導電部4b及び第2の側面導電部10bの表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、メッキ処理等の公知の手法によりコーティングされていることが好ましい。
 次に、第1の側面導電部3b、第2の側面導電部4b及び第2の側面導電部10bの形状について、図3に基づき説明を行う。なお、以下では、第1の側面導電部3bについてのみ説明を行うが、第2の側面導電部4b及び第2の側面導電部10bの形状も同様の形状とすることができるため、説明を省略する。
 図3(A)に示す第1の側面導電部3bは、絶縁基板2に半円形状の切り欠きを加えて凹部を形成し、この凹部に導電材料がパターニングされて形成される。第1の側面導電部3bは、いわゆるハーフスルーホールであり、絶縁基板2の表面2aと裏面2bとの間で、第1の表面電極3と第1の裏面電極3bとを電気的に接続する。
 図3(A)に示す第1の側面導電部3bは、絶縁基板2を図示しないマザー基板から切り出す際に隣り合う個別の絶縁基板間に円形の貫通孔を設け、この貫通孔を境に各絶縁基板を切り出すことで、半円形状の凹部として形成することができる。貫通孔は、マザー基板を形成する際の金型に円柱形状の突起を設けることで簡単に作成することができるため製造が容易である。
 また、第1の側面導電部3bを他の形状で形成することも可能であり、例えば、図3(B)に示す第1の側面導電部3cは、絶縁基板2に矩形溝形状の切り欠きを加えて凹部を形成し、この凹部に導電材料がパターニングされて形成される。第1の側面導電部3cは、絶縁基板2の表面2aと裏面2bとの間で、第1の表面電極3と第1の裏面電極3bとを電気的に接続する。
 図3(B)に示す第1の側面導電部3cは、絶縁基板2を図示しないマザー基板から切り出す際に隣り合う個別の絶縁基板間に矩形の貫通孔を設け、この貫通孔を境に各絶縁基板を切り出すことで、矩形溝形状の凹部として形成することができる。貫通孔は、マザー基板を形成する際の金型に矩角柱形状の突起を設けることで簡単に作成することができるため製造が容易である。
 図3(B)に示す第1の側面導電部3cは、図3(A)に示す第1の側面導電部3bと比較して、絶縁基板2の第1の側面2cにおいて、凹部の面積を広くとることができ、結果として電流経路の幅を広げて電気抵抗値を低減することが可能となり、大電流に対応するために好適である。
 また、第1の側面導電部3bをさらに他の形状で形成することも可能であり、例えば、図3(C)に示す第1の側面導電部3dは、絶縁基板2に半長穴形状の切り欠きを加えて凹部を形成し、この凹部に導電材料がパターニングされて形成される。第1の側面導電部3dは、絶縁基板2の表面2aと裏面2bとの間で、第1の表面電極3と第1の裏面電極3bとを電気的に接続する。
 図3(C)に示す第1の側面導電部3dは、絶縁基板2を図示しないマザー基板から切り出す際に隣り合う個別の絶縁基板間に長穴形の貫通孔を設け、この貫通孔を境に各絶縁基板を切り出すことで、半長穴形状の凹部として形成することができる。貫通孔は、マザー基板を形成する際の金型に矩長穴形状に対応する柱状の突起を設けることで簡単に作成することができるため製造が容易である。
 図3(C)に示す第1の側面導電部3dは、図3(A)に示す第1の側面導電部3bと比較して、絶縁基板2の第1の側面2cにおいて、凹部の面積を広くとることができ、結果として電流経路の幅を広げて電気抵抗値を低減することが可能となり、大電流に対応するために好適である。
 また、第1の側面導電部3bを更に他の形状で形成することも可能であり、例えば、図3(D)に示す第1の側面導電部3eは、絶縁基板2に波溝形状の切り欠きを加えて凹部を形成し、この凹部に導電材料がパターニングされて形成される。第1の側面導電部3eは、絶縁基板2の表面2aと裏面2bとの間で、第1の表面電極3と第1の裏面電極3bとを電気的に接続する。
 図3(D)に示す第1の側面導電部3eは、絶縁基板2を図示しないマザー基板から切り出す際に隣り合う個別の絶縁基板間に波状の長穴形の貫通孔を設け、この貫通孔を境に各絶縁基板を切り出すことで、波溝形状の凹部として形成することができる。貫通孔は、マザー基板を形成する際の金型に波状の長穴形に対応する柱状の突起を設けることで簡単に作成することができるため製造が容易である。
 図3(D)に示す第1の側面導電部3eは、図3(A)に示す第1の側面導電部3bと比較して、絶縁基板2の第1の側面2cにおいて、凹部の面積を広くとることができ、結果として電流経路の幅を広げて電気抵抗値を低減することが可能となり、大電流に対応するために好適である。
 上述した各凹部の形状についてまとめると、絶縁基板2の側面を、曲面を含む非平面によって構成することで、凹部の面積を広くとることができ、結果として電流経路の幅を広げて電気抵抗値を低減することが可能となり、大電流に対応するために好適であると言える。
 なお、ヒューズ素子1は、小型且つ高定格の保護素子を実現するものであり、例えば、絶縁基板2の寸法として2~3mm×1~2mm程度と小型でありながら、抵抗値が0.5~1mΩ、50~60A定格と高定格化が図られている。なお、本発明は、あらゆるサイズ、抵抗値及び電流定格を備える保護素子に適用することができるのはもちろんである。本実施例において、絶縁基板2のサイズは、2.7mm×1.8mmとする。
 なお、ヒューズ素子1は、絶縁基板2の表面2a上に、内部を保護するとともに溶融したヒューズエレメント7の飛散を防止する図示しないカバー部材を取り付けるようにしている。カバー部材は、絶縁基板2の表面2a上に搭載される側壁と、ヒューズ素子1の上面を構成する天面とを有する。このカバー部材は、例えば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成することができる。なお、本発明の特徴的な構造はカバー部材の内部の構造であるため、以後の説明ではカバー部材については言及を省略する。
 [回路構成]
 ここで、ヒューズ素子1の回路構成と、通電経路の遮断動作について説明する。ヒューズ素子1は、図1及び図4(A)に示すように、第1の表面電極3から第2の表面電極4にわたってヒューズエレメント7が接続されており、ヒューズエレメント7の中途部分に発熱体引出電極6が接続されている。また、発熱体引出電極6は、ヒューズエレメント7と接続された側の反対側に、第2の発熱体電極11、発熱体5、第1の発熱体電極10の順に接続されている。従って、ヒューズ素子1は、第1の表面電極3、第2の表面電極4及び第1の発熱体電極10から、それぞれ第1の側面導電部3b、第2の側面導電部4b及び第2の側面導電部10bを介してつながる第1の裏面電極3a、第2の裏面電極4a及び第3の裏面電極10aを外部端子とする3端子の素子であるといえる。
 ヒューズ素子1は、第1の表面電極3から第2の表面電極4に向かって主回路の電流が流れるように構成されており、第1の発熱体電極10から電流が流れた場合に、発熱体5が発熱し図5、図6及び図4(B)に示すように、ヒューズエレメント7が溶融し、溶融体7aが発熱体引出電極6上に凝集し、ヒューズエレメント7が切断される。これにより、ヒューズ素子1は、第1の表面電極3及び第2の表面電極4間の電流経路が遮断されるとともに、発熱体5に対する電流経路も遮断される。
 [変形例1]
 次に、上述で説明したヒューズ素子1の変形例について説明する。また、上述で説明したヒューズ素子1と略同等の部位については同じ符号を付して説明を省略し、差異について説明する。また、等価回路としては、図4で説明したものと同じであるため説明を省略する。
 変形例1にかかるヒューズ素子20は、図7に示すように、第1の表面電極3が絶縁基板2の第4の側面2fまで延長し、第1の側面導電部3bを設けず、第1の側面導電部3b1を絶縁基板2の第4の側面2fに設け、第2の表面電極4が絶縁基板2の第3の側面2eまで延長し、第2の側面導電部4bを設けず、第2の側面導電部4b1を絶縁基板2の第3の側面2eに設け、第1の側面導電部3b1及び第2の側面導電部4b1を絶縁基板2の対角位置に配置した構成としたものである。
 なお、図示を省略しているが、ヒューズ素子20は、絶縁基板2の裏面2b側において、第1の裏面電極3aが絶縁基板2の第4の側面2fまで延長されて第1の側面導電部3b1と接続され、第2の裏面電極4aが絶縁基板2の第3の側面2eまで延長されて第2の側面導電部4b1と接続されている。
 ヒューズ素子20では、第1の側面導電部3b1及び第2の側面導電部4b1が発熱体5から遠い位置に配置したため、発熱体5からの熱の拡散を防止する効果が高くなり、ヒューズエレメント7に熱を集中しやすくなる。
 [変形例2]
 また、上述で説明したヒューズ素子1の変形例について説明する。また、上述で説明したヒューズ素子1と略同等の部位については同じ符号を付して説明を省略し、差異について説明する。また、等価回路としては、図4で説明したものと同じであるため説明を省略する。
 変形例2にかかるヒューズ素子30は、図8に示すように、第1の表面電極3が絶縁基板2の第4の側面2fまで延長され、第1の側面導電部3bを備えつつも第1の側面導電部3b1を絶縁基板2の第4の側面2fに設け、第2の表面電極4が絶縁基板2の第3の側面2eまで延長され、第2の側面導電部4bを備えつつも第2の側面導電部4b1を絶縁基板2の第3の側面2eに設け、第1の側面導電部3b及び第2の側面導電部4bを対向位置に、第1の側面導電部3b1及び第2の側面導電部4b1を絶縁基板2の対角位置に配置した構成としたものである。
 なお、図示を省略しているが、ヒューズ素子30は、絶縁基板2の裏面2b側において、第1の裏面電極3aが絶縁基板2の第4の側面2fまで延長されて第1の側面導電部3b1と接続され、第2の裏面電極4aが絶縁基板2の第3の側面2eまで延長されて第2の側面導電部4b1と接続されている。
 ヒューズ素子30では、第1の側面導電部3b及び第2の側面導電部4bに加え、第1の側面導電部3b1及び第2の側面導電部4b1を有するため、電流経路が複数個所となり、電流経路全体として電気抵抗値を低減することが可能となる。従ってヒューズ素子30は、電流経路の電気抵抗値の低減によって大電流に対応することが可能となる。
 [変形例3]
 また、上述で説明したヒューズ素子1の変形例について説明する。また、上述で説明したヒューズ素子1と略同等の部位については同じ符号を付して説明を省略し、差異について説明する。また、等価回路としては、図4で説明したものと同じであるため説明を省略する。
 変形例3にかかるヒューズ素子40は、図9に示すように、絶縁基板2の第1の側面2cに第1の側面導電部3b2と第1の側面導電部3b3の2つの通電経路を設け、絶縁基板2の第2の側面2dに第2の側面導電部4b2と第2の側面導電部4b3の2つの電流経路を設け、第1の側面導電部3b2及び第2の側面導電部4b2を対向位置に、第1の側面導電部3b3及び第2の側面導電部4b3を対向位置にそれぞれ配置した構成としたものである。
 なお、図示を省略しているが、ヒューズ素子40は、絶縁基板2の裏面2b側において、第1の裏面電極3aが第1の側面導電部3b2及び第1の側面導電部3b3と接続され、第2の裏面電極4aが第2の側面導電部4b2及び第2の側面導電部4b3と接続されている。
 ヒューズ素子40では、第1の側面導電部3b及び第2の側面導電部4bを、それぞれ第1の側面導電部3b2,第1の側面導電部3b3及び第2の側面導電部4b2,第2の側面導電部4b3の複数構成としたため、電流経路が複数個所となり、電流経路全体として電気抵抗値を低減することが可能となる。従ってヒューズ素子40は、電流経路の電気抵抗値の低減によって大電流に対応することが可能となる。
 また、ヒューズ素子40では、第1の側面導電部3b2,第1の側面導電部3b3及び第2の側面導電部4b2,第2の側面導電部4b3をそれぞれ絶縁基板2の第1の側面2c及び第2の側面2d、即ち、それぞれ同一側面に設けている。マザー基板から絶縁基板を切り出す際の分断箇所が貫通孔として肉抜きされた場所であることから、貫通孔が複数並べられている部分における切断作業を簡単に行うことが可能となる
 [変形例4]
 また、上述で説明したヒューズ素子1の変形例について説明する。また、上述で説明したヒューズ素子1と略同等の部位については同じ符号を付して説明を省略し、差異について説明する。また、等価回路としては、図4で説明したものと同じであるため説明を省略する。
 変形例4にかかるヒューズ素子50は、図10に示すように、第1の表面電極3が絶縁基板2の第3の側面2eまで延長され、第1の側面導電部3bを設けず、第1の側面導電部3b4を絶縁基板2の第3の側面2eに設け、第2の表面電極4が絶縁基板2の第3の側面2eまで延長され、第2の側面導電部4bを設けず、第2の側面導電部4b4を絶縁基板2の第3の側面2eに設け、第3の側面導電部10bを含め,第1の側面導電部3b1及び第2の側面導電部4b1が絶縁基板2の第3の側面2e、即ち同一側面に配置した構成としたものである。
 なお、図示を省略しているが、ヒューズ素子50は、絶縁基板2の裏面2b側において、第1の裏面電極3aが絶縁基板2の第3の側面2eまで延長されて第1の側面導電部3b4と接続され、第2の裏面電極4aが絶縁基板2の第3の側面2eまで延長されて第2の側面導電部4b4と接続されている。
 ヒューズ素子50では、第3の側面導電部10bを含め,第1の側面導電部3b1及び第2の側面導電部4b1が絶縁基板2の同一側面に配置することとしたため、マザー基板から絶縁基板を切り出す際の分断箇所が貫通孔として肉抜きされた場所であることから、切断作業を簡単に行うことが可能となる
 更には、ヒューズ素子50では、第3の側面導電部10bを含め,第1の側面導電部3b1及び第2の側面導電部4b1が絶縁基板2の同一側面に配置することとしたため、回路基板への実装時に、接続用のハンダが第3の側面導電部10b、第1の側面導電部3b4及び第2の側面導電部4b4に吸い上げられ電気的な接続が正常に行われているかを目視確認する作業が一側面を見るだけで終了するため、接続確認行程を簡略化することが可能となる。
 [第2の実施の形態]
 次に、第2の実施の形態にかかるヒューズ素子60について、図11乃至図15を用いて説明をする。また、上述で説明したヒューズ素子1と略同等の部位については同じ符号を付して説明を省略し、差異について説明する。また、等価回路としては、図4で説明したものと同じであるため説明を省略する。
 この保護回路は、ヒューズ素子60の定格を超える大電流が流れると、ヒューズエレメント7が自己発熱(ジュール熱)によって溶断することにより電流経路を遮断する。また、この保護回路は、ヒューズ素子1が実装された回路基板等に設けられた電流制御素子によって所定のタイミングで発熱体5へ通電し、発熱体5の発熱によってヒューズエレメント7を溶断させることによって電流経路を遮断することができる。なお、図11は、ヒューズ素子60を、ケースを省略して示す平面図であり、図12は、このヒューズ素子60を裏面側から見た平面図であり、図13は、このヒューズ素子60の断面図である。
 [ヒューズ素子]
 ヒューズ素子60は、図11乃至図13に示すように、絶縁基板2と、絶縁基板2の表面2aに、互いに対向するように設けられた第1の表面電極3及び第2の表面電極4と、発熱体5と、発熱体5に電気的に接続された発熱体引出電極6と、第1の表面電極3、第2の表面電極4及び発熱体引出電極6にわたって接続され、発熱体5の加熱によって溶融し、第1の表面電極3及び第2の表面電極4の間の電流経路を遮断するヒューズエレメント7と、絶縁基板2の裏面2bに設けられた第1の裏面電極3a及び第2の裏面電極4aと、絶縁基板2を貫通する孔として形成され、第1の表面電極3及び第2の表面電極4と、第1の裏面電極3a及び第2の裏面電極4aとをそれぞれ接続し、絶縁基板2の表面2aと裏面2bの間での電流経路となる第1の貫通導電部15及び第2の貫通導電部16とを備え、第1の表面電極3及び上記第2の表面電極4は、第1の貫通導電部15及び第2の貫通導電部16と接する領域に突出する第1の表面凸部3f及び第2の表面凸部4fをそれぞれ有している。
 また、ヒューズ素子60は、発熱体5を覆い発熱体5と発熱体引出電極6との接触を妨げる絶縁体9と、絶縁基板2上であって発熱体5の両端に設けられた第1の発熱体電極10及び第2の発熱体電極11とを備えている。発熱体引出電極6は、一端が第2の発熱体電極11と接続され、他方がヒューズエレメント7の中途部分に接続されている。
 また、ヒューズ素子60は、図12に示すように、第1の裏面電極3a及び第2の裏面電極4aは、上記第1の貫通導電部15及び第2の貫通導電部16と接する領域に突出する第1の裏面凸部3g及び第2の裏面凸部4gとをそれぞれ有している。
 また、ヒューズ素子60は、絶縁基板2の側面に形成され、第1の表面電極3及び第2の表面電極4と第1の裏面電極3a及び第2の裏面電極3bとをそれぞれ接続し、絶縁基板2の表面2aと裏面2bの間で、電流経路となる第1の側面導電部3b及び第2の側面導電部4bを有している。
 具体的に、ヒューズ素子60における第1の側面導電部3b、第2の側面導電部4b及び第3の側面導電部10bは、それぞれ絶縁基板2の第1の側面2c、第2の側面2d及び第3の側面2eに設けられている。
 ここで、第1の表面凸部3f及び第2の表面凸部4fは、第1の表面電極3、第2の表面電極4について、第1の実施例で説明したヒューズ素子1で説明した矩形状の一部のうち、第1の貫通導電部15及び第2の貫通導電部16に対応する領域以外の発熱体5に近い部分を切り欠いて形成した構造を表す。また、言い方を変えると、第1の表面電極3と第1の貫通導電部15を接続するために第1の表面電極3の主部から突き出した領域ともいえる。
 ヒューズ素子60は、絶縁基板2の第1の側面2c及び第2の側面2dに加え、絶縁基板2を貫通する電流経路を有しており、電流経路全体として電気抵抗値を低減させるため大電流に対応することが容易となる。
 また、ヒューズ素子60は、第1の表面電極3、第2の表面電極4のうち、発熱体5に近接する側において、第1の貫通導電部15及び第2の貫通導電部16に対応する領域にのみ第1の表面凸部3f及び第2の表面凸部4fを形成しているため、発熱体5から発せられる熱が第1の表面電極3及び第2の表面電極4に拡散することがなく、ヒューズエレメント7を集中して過熱することができるように構成したものである。
 また、ヒューズ素子60は、第1の裏面電極3a、第2の裏面電極4aのうち、発熱体5に近接する側において、第1の表面電極3及び第2の表面電極4と同様に、第1の貫通導電部15及び第2の貫通導電部16に対応する領域にのみ第1の裏面凸部3g及び第2の表面凸部4gを形成しているため、発熱体5から発せられる熱が第1の裏面電極3a及び第2の裏面電極4aに拡散することがなく、ヒューズエレメント7を集中して過熱することができるように構成したものである。
 第2の実施の形態にかかるヒューズ素子60は、発熱体5が絶縁基板2の表面2aに配設されているため、第1の表面凸部3f及び第2の表面凸部4fによる熱拡散防止効果が特に大きい。
 従って、発熱体5が絶縁基板2の表面2aに設けられているヒューズ素子にあっては、少なくとも第1の表面電極3及び第2の表面電極4が第1の表面凸部3f及び第2の表面凸部4fを有していればよく、第1の裏面凸部3g及び第2の裏面凸部4gを設けずともよい。
 また、発熱体5が絶縁基板2の裏面2bに設けられているヒューズ素子にあっては、第1の裏面凸部3g及び第2の裏面凸部4gによる熱拡散防止効果が特に大きい。
 従って、発熱体5が絶縁基板2の裏面2bに設けられているヒューズ素子にあっては、少なくとも第1の裏面電極3a及び第2の裏面電極4aが第1の裏面凸部3g及び第2の裏面凸部4gを有していればよく、第1の表面凸部3f及び第2の表面凸部4fを設けずともよい。
 ここで、第1の貫通導電部15及び第2の貫通導電部16は、スルーホールであり、特に孔内部を導電材料で充填した穴埋めスルーホールとすることで、電流経路全体での電気抵抗値の低減効果を高めることが可能である。
 ここで、第1の貫通導電部15及び第2の貫通導電部16による電気抵抗値の低減効果が高い場合には、第1の側面導電部3b及び第2の側面導電部4bを設けずにヒューズ素子を構成してもよいが、回路基板等への実装状態を確実なものとするために接着用半田を吸い上げるハーフスルーホールとして残しておくことが好ましい。
 また、ヒューズ素子60は、第1の貫通導電部15及び第2の貫通導電部16は、それぞれ2つ設けている。従って、ヒューズ素子60は、第1の貫通導電部15及び第2の貫通導電部16に対応する第1の表面凸部3f及び第2の表面凸部4f及び第1の裏面凸部3g及び第2の裏面凸部4gも2つ設けるようにしている。
 なお、第1の貫通導電部15及び第2の貫通導電部16を設ける数、貫通孔の形状及び径は、電流経路の電気抵抗値を調整するうえで適宜変更可能であり、本実施の形態の記載に限定されるものではない。
 [まとめ]
 以上のように第1の実施の形態と各変形例及び第2の実施の形態として説明したヒューズ素子は、発熱体からヒューズエレメント以外への熱拡散を防止するとともに、導電経路全体として抵抗値を低減することが可能となり、大電流に対応しつつも素子の小型化を達成することができる。
 なお、第1の実施の形態におけるヒューズ素子の構造としては、上述した各変形例を適宜組み合わせた構造としてもよく、例えば、側面導電部の形状、個数、配置位置等は任意の組み合わせを用いてもよいことは言うまでもない。
 1,20,30,40,50,60 ヒューズ素子、2 絶縁基板、2a 表面、2b 裏面、2c 第1の側面、2d 第2の側面、2e 第3の側面、2f 第4の側面、3 第1の表面電極、3a 第1の裏面電極、3b,3c,3d,3e 第1の側面導電部、3f 第1の表面凸部、3g 第1の裏面凸部、4 第2の表面電極、4a 第2の裏面電極、4b,4c,4d,4e 第2の側面導電部、4f 第2の表面凸部、4g 第2の裏面凸部、5 発熱体、6 発熱体引出電極、7 ヒューズエレメント、7a 溶融体、9 絶縁体、10 第1の発熱体電極、10a 第3の裏面電極、10b 第3の側面導電部、11 第2の発熱体電極、15 第1の貫通導電部、16 第2の貫通導電部

Claims (13)

  1.  絶縁基板と、
     上記絶縁基板の表面に、互いに対向するように設けられた第1の表面電極及び第2の表面電極と、
     発熱体と、
     上記発熱体に電気的に接続された発熱体引出電極と、
     上記第1の表面電極、上記第2の表面電極及び上記発熱体引出電極にわたって接続され、上記発熱体の加熱によって溶融し、上記第1の表面電極及び上記第2の表面電極の間の電流経路を遮断するヒューズエレメントと、
     上記絶縁基板の裏面に設けられた第1の裏面電極及び第2の裏面電極と、
     上記絶縁基板の側面に形成され、上記第1の表面電極及び上記第2の表面電極と、上記第1の裏面電極及び上記第2の裏面電極とをそれぞれ接続し、上記絶縁基板の表面と裏面の間で、上記第1の表面電極及び上記第2の表面電極と上記第1の裏面電極及び上記第2の裏面電極とを接続する全ての電流経路を構成する第1の側面導電部及び第2の側面導電部とを備える保護素子。
  2.  上記絶縁基板は、上記第1の表面電極及び上記第2の表面電極に対応する側面に凹部を設け、当該凹部に上記第1の側面導電部及び上記第2の側面導電部が形成されている請求項1に記載の保護素子。
  3.  上記第1の側面導電部及び上記第2の側面導電部は、それぞれ上記絶縁基板の互いに対向する側面に設けられた請求項2記載の保護素子。
  4.  上記第1の側面導電部及び上記第2の側面導電部は、それぞれ互いに対向する位置に設けられた請求項3記載の保護素子。
  5.  上記第1の側面導電部及び上記第2の側面導電部は、それぞれ互いに対向する位置からオフセットした位置に設けられた請求項3記載の保護素子。
  6.  上記第1の側面導電部及び上記第2の側面導電部は、上記絶縁基板の同一側面に設けられた請求項2記載の保護素子。
  7.  上記第1の側面導電部又は上記第2の表面電極は、それぞれ複数設けられている請求項2乃至請求項6の何れか1項に記載の保護素子。
  8.  上記凹部は、ハーフスルーホールである請求項2乃至請求項7の何れか1項に記載の保護素子。
  9.  上記凹部は、上記絶縁基板の側面を、曲面を含む非平面によって構成した請求項2乃至請求項8の何れか1項に記載の保護素子。
  10.  絶縁基板と、
     上記絶縁基板の表面に、互いに対向するように設けられた第1の表面電極及び第2の表面電極と、
     発熱体と、
     上記発熱体に電気的に接続された発熱体引出電極と、
     上記第1の表面電極、上記第2の表面電極及び上記発熱体引出電極にわたって接続され、上記発熱体の加熱によって溶融し、上記第1の表面電極及び第2の表面電極の間の電流経路を遮断するヒューズエレメントと、
     上記絶縁基板の裏面に設けられた第1の裏面電極及び第2の裏面電極と、
     上記絶縁基板を貫通する孔として形成され、上記第1の表面電極及び上記第2の表面電極と、上記第1の裏面電極及び上記第2の裏面電極とをそれぞれ接続し、上記絶縁基板の表面と裏面の間での電流経路となる第1の貫通導電部及び第2の貫通導電部とを備え、
     上記第1の表面電極及び上記第2の表面電極は、上記第1の貫通導電部及び第2の貫通導電部と接する領域に突出する第1の表面凸部及び第2の表面凸部をそれぞれ有する保護素子。
  11.  上記第1の裏面電極及び上記第2の裏面電極は、上記第1の貫通導電部及び第2の貫通導電部と接する領域に突出する第1の裏面凸部及び第2の裏面凸部をそれぞれ有する請求項10に記載の保護素子。
  12.  上記第1の貫通導電部及び第2の貫通導電部は、スルーホールである請求項10又は請求項11に記載の保護素子。
  13.  上記第1の貫通導電部及び第2の貫通導電部は、孔内部を導電材料で充填した穴埋めスルーホールである請求項10又は請求項11に記載の保護素子。
PCT/JP2017/006505 2016-03-23 2017-02-22 保護素子 WO2017163730A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187025556A KR102102840B1 (ko) 2016-03-23 2017-02-22 보호 소자
CN201780015962.6A CN108701566B (zh) 2016-03-23 2017-02-22 保护元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058426 2016-03-23
JP2016058426A JP6707377B2 (ja) 2016-03-23 2016-03-23 保護素子

Publications (1)

Publication Number Publication Date
WO2017163730A1 true WO2017163730A1 (ja) 2017-09-28

Family

ID=59899983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006505 WO2017163730A1 (ja) 2016-03-23 2017-02-22 保護素子

Country Status (5)

Country Link
JP (1) JP6707377B2 (ja)
KR (1) KR102102840B1 (ja)
CN (1) CN108701566B (ja)
TW (1) TWI719170B (ja)
WO (1) WO2017163730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245928A (zh) * 2019-08-23 2022-03-25 迪睿合株式会社 熔丝、熔断器元件以及保护元件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393898B2 (ja) 2019-09-04 2023-12-07 デクセリアルズ株式会社 保護素子
TWI731801B (zh) * 2020-10-12 2021-06-21 功得電子工業股份有限公司 保護元件及其製作方法
JP2024001714A (ja) * 2022-06-22 2024-01-10 デクセリアルズ株式会社 保護素子、及び保護素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035281A (ja) * 2013-08-07 2015-02-19 デクセリアルズ株式会社 保護素子、及びこれを用いた保護回路基板
WO2016039208A1 (ja) * 2014-09-12 2016-03-17 デクセリアルズ株式会社 保護素子及び実装体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852868B2 (en) * 2012-09-28 2017-12-26 Kamaya Electric Co., Ltd. Chip fuse and manufacturing method therefor
TWI527183B (zh) * 2013-03-06 2016-03-21 佳邦科技股份有限公司 過電壓保護元件及其製備方法
JP6231324B2 (ja) * 2013-08-07 2017-11-15 デクセリアルズ株式会社 保護回路基板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035281A (ja) * 2013-08-07 2015-02-19 デクセリアルズ株式会社 保護素子、及びこれを用いた保護回路基板
WO2016039208A1 (ja) * 2014-09-12 2016-03-17 デクセリアルズ株式会社 保護素子及び実装体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245928A (zh) * 2019-08-23 2022-03-25 迪睿合株式会社 熔丝、熔断器元件以及保护元件
CN114245928B (zh) * 2019-08-23 2024-05-17 迪睿合株式会社 熔丝、熔断器元件以及保护元件

Also Published As

Publication number Publication date
JP6707377B2 (ja) 2020-06-10
JP2017174592A (ja) 2017-09-28
KR102102840B1 (ko) 2020-04-22
CN108701566B (zh) 2020-06-30
KR20180108791A (ko) 2018-10-04
TWI719170B (zh) 2021-02-21
CN108701566A (zh) 2018-10-23
TW201738922A (zh) 2017-11-01

Similar Documents

Publication Publication Date Title
KR102049712B1 (ko) 퓨즈 엘리먼트, 퓨즈 소자, 및 발열체 내장 퓨즈 소자
KR102523229B1 (ko) 보호 소자 및 실장체
JP6214318B2 (ja) 電流ヒューズ
KR102232981B1 (ko) 실장체의 제조 방법, 온도 퓨즈 소자의 실장 방법 및 온도 퓨즈 소자
WO2017163730A1 (ja) 保護素子
KR102089478B1 (ko) 보호 소자
TW201711075A (zh) 熔絲單元、熔絲元件、保護元件、短路元件、切換元件
WO2019138752A1 (ja) ヒューズ素子
KR102368741B1 (ko) 퓨즈 소자 및 퓨즈 엘리먼트
WO2017163766A1 (ja) 保護素子
JP7433811B2 (ja) ヒューズエレメント、ヒューズ素子および保護素子
CN110957188A (zh) 切断元件和切断元件电路
KR102276500B1 (ko) 스위치 소자, 스위치 회로, 및 경보 회로
JP6959964B2 (ja) 保護素子
WO2015199170A1 (ja) スイッチ素子、スイッチ回路及び警報回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025556

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025556

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769776

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769776

Country of ref document: EP

Kind code of ref document: A1