WO2017163666A1 - Resonance-type power conversion device and abnormality determining method - Google Patents

Resonance-type power conversion device and abnormality determining method Download PDF

Info

Publication number
WO2017163666A1
WO2017163666A1 PCT/JP2017/005211 JP2017005211W WO2017163666A1 WO 2017163666 A1 WO2017163666 A1 WO 2017163666A1 JP 2017005211 W JP2017005211 W JP 2017005211W WO 2017163666 A1 WO2017163666 A1 WO 2017163666A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
switching elements
bridge circuit
power converter
Prior art date
Application number
PCT/JP2017/005211
Other languages
French (fr)
Japanese (ja)
Inventor
小南 智
暢晃 佐藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017021245A external-priority patent/JP6839816B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780018332.4A priority Critical patent/CN108781039B/en
Priority to DE112017001544.8T priority patent/DE112017001544T5/en
Priority to US16/085,074 priority patent/US10530262B2/en
Publication of WO2017163666A1 publication Critical patent/WO2017163666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present disclosure relates to a resonance type power converter using current resonance and an abnormality determination method.
  • Electric vehicles and hybrid vehicles that use storage battery power as power are in widespread use.
  • a DC-DC converter which is a power conversion device that boosts or lowers a direct current (DC) voltage for battery charging and voltage conversion, is used.
  • DC direct current
  • a DC-DC converter using current resonance can perform zero voltage (current) switching that operates a switching element in a state where at least one of voltage and current is zero, and can reduce power loss during operation. it can.
  • the resonance frequency may fluctuate due to aging deterioration of a transformer or a resonance capacitor, which is a resonance component, or a change in characteristics due to a temperature change.
  • a transformer or a resonance capacitor which is a resonance component
  • a change in characteristics due to a temperature change since zero voltage (current) switching cannot be performed accurately, power conversion efficiency is reduced due to an increase in switching loss, switching noise is generated, a circuit is broken, and the like.
  • Patent Document 1 discloses power conversion that resets the switching frequency only when the time during which input / output power is limited by input / output power limiting means that limits input / output power continues for a predetermined time.
  • An apparatus is disclosed.
  • the present disclosure provides a resonance type power converter and an abnormality determination method that can accurately detect a change in resonance frequency in a short time.
  • the resonant power converter of the present disclosure includes a bridge circuit, a transformer, a current detection circuit, and a control circuit.
  • the bridge circuit has a plurality of switching elements and receives DC power.
  • the transformer is connected to the output side of the bridge circuit.
  • the current detection circuit detects a current value flowing through at least one of the plurality of switching elements.
  • the control circuit determines whether an abnormality has occurred in the resonant power converter based on the detection value of the current detection circuit at a predetermined timing during switching control.
  • An abnormality determination method for a resonance type power converter includes: a current detection that detects a current value flowing through at least one of a plurality of switching elements, a bridge circuit having a plurality of switching elements, a transformer, and a direct current input; An abnormality of the resonance type power converter having the circuit and the control circuit is determined.
  • the current value flowing through at least one of the plurality of switching elements is detected by the current detection circuit at a predetermined timing during the switching control. Based on the detected current value, the control circuit determines whether or not an abnormality has occurred in the resonant power converter.
  • a circuit diagram showing an example of composition of a power converter concerning an embodiment of this indication Equivalent circuit diagram with parasitic elements added to the power converter shown in FIG.
  • a diagram comparing the current value flowing through the bridge circuit during normal operation and the current value flowing through the bridge circuit during abnormal operation The circuit diagram which shows the other example of a structure of the power converter device which concerns on embodiment of this indication
  • Patent Document 1 Prior to the description of the embodiment of the present disclosure, the problems in the prior art will be briefly described. With the technique disclosed in Patent Document 1 described above, it is difficult to detect a change in resonance frequency unless a predetermined time elapses, and it is difficult to detect a change in resonance frequency in a short time.
  • FIG. 1 is a circuit diagram showing an example of the configuration of the power conversion apparatus 100 according to the present embodiment.
  • the power conversion apparatus 100 includes a DC power supply circuit 1, a bridge circuit 2, a control circuit 3, a current detection circuit 4, a resonance capacitor 5, a transformer 6, a rectifier circuit 7, and a smoothing capacitor 8.
  • the DC power supply circuit 1 is a device that supplies DC power, such as a fuel cell, a battery, and an AC / DC converter.
  • a bridge circuit 2 is connected between both terminals of the DC power supply circuit 1. As shown in FIG. 1, the bridge circuit 2 includes switching elements Q1 to Q4 connected in a full bridge.
  • switching elements Q1 and Q2 are connected in series, and switching elements Q3 and Q4 are connected in series.
  • Switching elements Q1 and Q2 and switching elements Q3 and Q4 are connected in parallel to form a full-bridge bridge circuit 2.
  • the switching elements Q1 to Q4 are configured by, for example, a field effect transistor (FET: Field Effect Transistor), particularly a MOSFET (Metal-Oxide-Semiconductor FET).
  • Switching elements Q1 to Q4 have parasitic diodes D1 to D4, respectively. Note that the switching elements Q1 to Q4 do not have the parasitic diodes D1 to D4, but diodes independent of the switching elements Q1 to Q4 may be connected in parallel.
  • the drain terminals of the switching elements Q1 and Q3 are connected to the DC power supply circuit 1.
  • the source terminal of the switching element Q1 is connected to the drain terminal of the switching element Q2, and the source terminal of the switching element Q3 is connected to the drain terminal of the switching element Q4.
  • the source terminals of the switching elements Q2 and Q4 are connected to the DC power supply circuit 1 via the current detection circuit 4. Further, resonance occurs between a node n1 provided between the source terminal of the switching element Q1 and the drain terminal of the switching element Q2, and a node n2 provided between the source terminal of the switching element Q3 and the drain terminal of the switching element Q4.
  • the capacitor 5 and the primary winding 61 of the transformer 6 are connected in series.
  • control circuit 3 is connected to the gate terminals of the switching elements Q1 to Q4.
  • the control circuit 3 performs on / off control (switching control) of the switching elements Q1 to Q4 at a drive frequency determined in advance based on the resonance frequency of the power conversion device 100.
  • the bridge circuit 2 converts the DC power of the DC power supply circuit 1 into high-frequency AC power.
  • the drive frequency may be set to a value larger by a predetermined (minute) amount than the resonance frequency at the time of circuit design.
  • the current detection circuit 4 detects a current value that passes through the bridge circuit 2. In the present embodiment, current detection circuit 4 flows to bridge circuit 2 with the direction flowing from the side connected to switching elements Q1 and Q3 of DC power supply circuit 1 to the side connected to switching elements Q2 and Q4 being positive. Detect current.
  • the transformer 6 has a primary winding 61 and a secondary winding 62 that are magnetically coupled.
  • Primary winding 61 of transformer 6 is connected to resonance capacitor 5 and a connection line between the source terminal of switching element Q3 and the drain terminal of switching element Q4. That is, the transformer 6 is connected to the output side of the bridge circuit 2.
  • the secondary winding 62 of the transformer 6 is connected to the rectifier circuit 7.
  • the voltage of the AC power supplied to the primary winding 61 is transformed and transmitted to the secondary winding 62.
  • the AC power generated in the secondary winding 62 of the transformer 6 is converted into DC power by the rectifier circuit 7 and the smoothing capacitor 8 and supplied to a DC load (not shown).
  • FIG. 2 is an equivalent circuit diagram in which parasitic elements are added to the power conversion apparatus 100 shown in FIG. C1 to C4 are output capacities of the switching elements Q1 to Q4, Le is a leakage inductance of the transformer 6, and Lm is an exciting inductance of the transformer 6.
  • a series LLC circuit is configured by the resonant capacitor 5, the leakage inductance Le, and the exciting inductance Lm. Below, it demonstrates using this equivalent circuit.
  • the exciting inductance Lm and the primary winding 61 may be shared and configured as one inductor.
  • a circuit composed of the bridge circuit 2, the resonance capacitor 5, the leakage inductance Le, and the excitation inductance Lm is referred to as a primary side, and a circuit composed of a rectifier circuit 7, a smoothing capacitor 8, and a DC load (not shown) is denoted as 2.
  • a circuit composed of a rectifier circuit 7, a smoothing capacitor 8, and a DC load (not shown) is denoted as 2.
  • FIG. 3 is a diagram illustrating waveforms of the gate signals Vg1 and Vg2 output for the control circuit 3 to control the bridge circuit 2 and the current value flowing through the bridge circuit 2.
  • the current value flowing through the bridge circuit 2 is the sum of the current flowing through the switching elements Q1 and Q4 and the current flowing through the switching elements Q2 and Q3.
  • the gate signal Vg1 is a signal for turning on or off the switching elements Q1 and Q4 of the bridge circuit 2
  • the gate signal Vg2 is a signal for turning on or off the switching elements Q2 and Q3.
  • the gate signal Vg1 will be described for the case where the switching elements Q1 and Q4 are turned on or off at the same time.
  • Q4 is turned on or off slightly after the switching element Q1. May be.
  • the gate signal Vg2 turns on or off the switching elements Q2 and Q3 at the same time.
  • Q3 is turned on or off slightly after the switching element Q2. It may be.
  • times t 1 and t 5 indicate the timing when the switching elements Q1 and Q4 are turned on
  • times t 2 and t 6 indicate the timing when the switching elements Q1 and Q4 are turned off
  • Times t 3 and t 7 indicate timings at which the switching elements Q2 and Q3 are turned on
  • times t 0 and t 4 indicate timings at which the switching elements Q2 and Q3 are turned off.
  • Dead time (td) is provided.
  • the current value detected by the current detection circuit 4 is a measured value of the current passing through the bridge circuit 2.
  • the signal detected by the current detection circuit 4 is positive in the direction flowing from the side connected to the switching elements Q1 and Q3 of the DC power supply circuit 1 to the side connected to the switching elements Q2 and Q4.
  • the control circuit 3 when the launch to High (high-level) gate signal Vg1 from Low (low-level), the switching elements Q1 and Q4 are turned on.
  • the switching elements Q1 and Q4 from time t 1 to time t 2 is turned on, the switching element Q1 from the DC power supply circuit 1, the resonance capacitor 5, primary winding 61 of the transformer 6, the load current in the order of the switching element Q4 Flowing. That is, as shown in FIG. 3, the value of the current flowing through the bridge circuit 2 increases in the positive direction.
  • the voltage applied to the primary winding 61 decreases. For this reason, the current discharged to the secondary side is also reduced.
  • the exciting current flows only on the primary side, and the charging of the resonant capacitor 5 is maintained.
  • the control circuit 3 when the fall to Low gate signal Vg1 from High, the switching elements Q1 and Q4 are turned off. Immediately after the switching elements Q1 and Q4 are turned off, the output capacitor C1 and the output capacitor C4 are charged by the exciting current flowing through the primary side, and the output capacitor C2 and the output capacitor C3 are discharged. As a result, the drain-source voltage of switching elements Q1 and Q4 increases, and the drain-source voltage of switching elements Q2 and Q3 decreases.
  • the control circuit 3 when launching the High gate signal Vg2 from Low, the switching elements Q2 and Q3 are turned on. At this time, since the exciting current flows in the switching elements Q2 and Q3 in the direction from the source to the drain, that is, in the negative direction, the switching is performed at the timing when the drain-source voltages of the switching elements Q2 and Q3 are zero. For this reason, zero-voltage switching (ZVS) is achieved, and switching loss at turn-on can be avoided.
  • ZVS zero-voltage switching
  • the control circuit 3 when the fall to Low gate signal Vg2 from High, the switching elements Q2 and Q3 are turned off. Immediately after the switching elements Q2 and Q3 are turned off, the output capacitor C1 and the output capacitor C4 are discharged by the exciting current flowing through the primary side, and the output capacitor C2 and the output capacitor C3 are charged. As a result, the drain-source voltage of switching elements Q1 and Q4 decreases, and the drain-source voltage of switching elements Q2 and Q3 gradually increases.
  • the turn-on operation of switching elements Q1 and Q4 at time t 5 (t 1 ) is switching at a timing when the drain-source voltage of switching elements Q1 and Q4 is zero. For this reason, zero voltage switching is performed, and switching loss at turn-on can be avoided.
  • the abnormality is assumed to be a failure of the resonant capacitor 5. Specifically, for example, when a plurality of capacitors are connected in parallel to form the resonance capacitor 5, one of them has failed, and the capacitance of the resonance capacitor 5 has decreased. State.
  • the resonance frequency fr of the series LLC circuit is calculated by the following formula (1).
  • the drive frequency of the bridge circuit 2 is designed to be larger by a predetermined minute amount than the resonance frequency at the time of circuit design. For this reason, when the resonance frequency of the series LLC circuit increases due to an abnormality in the power conversion device 100, the increased resonance frequency exceeds the drive frequency of the bridge circuit 2.
  • FIG. 4 is a diagram comparing the current value flowing through the bridge circuit 2 during normal operation and the current value flowing through the bridge circuit 2 during abnormal operation.
  • the period from turning off the switching elements Q1 and Q4 of the bridge circuit 2 to turning off the switching elements Q2 and Q3 is one cycle.
  • the current waveform during abnormal operation is such that the current waveform during normal operation is reversed left and right every cycle.
  • the control circuit 3 refers to the detection value of the current detection circuit 4 at the predetermined timing by determining in advance the range that can be taken by the current value at the normal operation at the predetermined timing. Can be determined whether or not the power conversion apparatus 100 is operating abnormally.
  • the range of current values that can be taken during normal operation at a predetermined timing includes the current value that flows through the bridge circuit 2 during normal operation (current during normal operation) and the current that flows through the bridge circuit 2 during abnormal operation as shown in FIG. What is necessary is just to experimentally acquire a value (current at the time of abnormality) beforehand and to confirm by comparing these.
  • the control circuit 3 for example, time t 1, t 3, and t, such as 5 or the like, the current value during the rise of the gate signal Vg1 or Vg2, an abnormality is determined whether or not.
  • the gate signal Vg1 or Vg2 rises that is, when the switching elements Q1 and Q4 or Q2 and Q3 are turned on
  • the normal current passes through the parasitic diode D3 and the parasitic diode D2 of the switching elements Q3 and Q2, and passes through the bridge circuit 2. Backflow. For this reason, the current value is always smaller than zero as shown in the normal current in FIG.
  • the control circuit 3 raises the gate signal Vg1 or Vg2 from Low to High, the control circuit 3 refers to the current value flowing through the bridge circuit 2 obtained from the current detection circuit 4, and the value is greater than zero. In this case, it can be determined that an abnormal operation has occurred in the power conversion device 100.
  • the control circuit 3 outputs a signal indicating that an abnormal operation has occurred to the outside (for example, a higher-level control circuit).
  • the abnormal current illustrated in FIG. 4 is an example, and the current value detected by the current detection circuit 4 during the abnormal operation of the power conversion apparatus 100 does not always have such a waveform. For this reason, even if the current value at the time of rising of the gate signal Vg1 or Vg2 is a value smaller than zero, an abnormality may occur in the power conversion device 100. However, when the resonance frequency is greatly increased from the time of circuit design, the current shifts to the phase advance side, so that the current value at the rise of the gate signal Vg1 or Vg2 becomes a value larger than zero.
  • the resonance frequency is greatly increased from the circuit design time, not only can the zero voltage switching not be performed in the bridge circuit 2, but also, for example, a through current flows from the switching element Q1 to Q2, or the bridge circuit 2
  • the power conversion device 100 may break down due to heat generation, or the like may occur.
  • the above-described abnormality detection method for the control circuit 3 may not be able to detect a small fluctuation of the resonance current from the circuit design time, it can accurately detect a big fluctuation that causes the power conversion device 100 to be destroyed. be able to.
  • the control circuit 3 determines whether or not there is an abnormality based on the current value when a little time elapses from the time when the gate signal Vg1 or Vg2 falls, for example.
  • the points in time when the gate signal Vg1 or Vg2 falls slightly are indicated as t 2 ′, t 4 ′, and t 6 ′.
  • the normal-time current is accompanied by the turn-off as shown in FIG. 2 flows backward, but then increases in the positive direction.
  • the abnormal current does not flow back through the bridge circuit 2 and then increases in the positive direction.
  • the control circuit 3 refers to the current value flowing through the bridge circuit 2 acquired from the current detection circuit 4 when the gate signal Vg1 or Vg2 falls, and if the value is greater than zero, Then, it is determined that an abnormal operation has occurred in the power conversion device 100.
  • the control circuit 3 has an abnormal operation outside (for example, a higher-level control circuit). The signal which shows that is output.
  • the predetermined timing for specifying the current value range in normal operation in advance has been described with reference to two specific examples. However, the present disclosure is not limited to these two examples. Any timing may be used as long as it can clearly discriminate between a normal current and an abnormal current in which the resonance frequency fluctuates greatly from the circuit design time.
  • the power conversion device 100 includes the bridge circuit 2, the transformer 6, the current detection circuit 4, and the control circuit 3.
  • the bridge circuit 2 has a plurality of switching elements and receives DC power.
  • the transformer 6 is connected to the output side of the bridge circuit 2.
  • the current detection circuit 4 detects a current value flowing through at least one of the plurality of switching elements.
  • the control circuit 3 determines whether or not an abnormality has occurred in the power conversion device 100 based on the detection value of the current detection circuit 4 at a predetermined timing during switching control.
  • the current detection circuit 4 is connected downstream of the bridge circuit 2 and detects the current value flowing through the bridge circuit 2, but the present disclosure is not limited to this.
  • the current detection circuit 4 may be installed upstream of the bridge circuit 2 or inside the bridge circuit 2.
  • the current detection circuit 4 may detect only the current value flowing through one of the switching elements, instead of detecting the current value flowing through the entire bridge circuit 2. In this case, the range of the current value flowing through the switching element during normal operation and abnormal operation is acquired in advance, and the control circuit 3 determines whether or not the operation is abnormal based on this range. That's fine.
  • the power conversion device 100 including the full-bridge bridge circuit 2 has been described, but the present disclosure is not limited thereto.
  • the power conversion device 100 including the transformer 6 has been described, but the present disclosure is not limited to this.
  • a primary winding (power feeding coil) and a secondary winding (power receiving coil) used for non-contact charging may be used as the transformer 6.
  • a signal indicating that the abnormal operation has occurred is output to the outside (for example, a higher-level control circuit).
  • the operation power conversion
  • the operation may be continued by changing the drive frequency so that the value is larger by a predetermined amount than the fluctuating resonance frequency.
  • the present disclosure is suitable as a power conversion device that transforms DC power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A resonance-type power conversion device of the present invention has a bridge circuit, a transformer, a current detection circuit, and a control circuit. The bridge circuit has a plurality of switching elements, and direct current power is inputted to the bridge circuit. The transformer is connected to the output side of the bridge circuit. The current detection circuit detects the value of a current flowing at least in one of the switching elements. On the basis of a detection value of the current detection circuit at predetermined timing while a switching control is being performed, the control circuit determines whether an abnormality has occurred in the resonance-type power conversion device.

Description

共振型電力変換装置および異常判定方法Resonant power converter and abnormality determination method
 本開示は、電流共振を利用した共振型電力変換装置および異常判定方法に関する。 The present disclosure relates to a resonance type power converter using current resonance and an abnormality determination method.
 蓄電池の電力を動力として用いる電気自動車やハイブリッド車が普及している。このような電気自動車やハイブリッド車では、バッテリの充電や電圧変換のために直流(DC)電圧を昇圧または降圧する電力変換装置であるDC-DCコンバータが使用されている。特に、電気自動車やハイブリッド車では、高効率かつ低ノイズが要求されることから、近年では電流共振を利用した電力変換装置が使用されている。 Electric vehicles and hybrid vehicles that use storage battery power as power are in widespread use. In such electric vehicles and hybrid vehicles, a DC-DC converter, which is a power conversion device that boosts or lowers a direct current (DC) voltage for battery charging and voltage conversion, is used. In particular, since electric vehicles and hybrid vehicles require high efficiency and low noise, power converters using current resonance have been used in recent years.
 電流共振を利用したDC-DCコンバータは、電圧または電流の少なくとも一方をゼロとした状態でスイッチング素子を動作させるゼロ電圧(電流)スイッチングを行うことができ、動作時における電力損失を低減することができる。 A DC-DC converter using current resonance can perform zero voltage (current) switching that operates a switching element in a state where at least one of voltage and current is zero, and can reduce power loss during operation. it can.
 しかしながら、電流共振を利用したDC-DCコンバータでは、共振用の部品であるトランスや共振コンデンサの経年劣化や温度変化に伴う特性の変化により、共振周波数が変動してしまう場合がある。このような場合、正確にゼロ電圧(電流)スイッチングを行うことができなくなるので、スイッチングロスの増加による電力変換効率の低下や、スイッチングノイズの発生、回路の故障等が生じる。 However, in a DC-DC converter using current resonance, the resonance frequency may fluctuate due to aging deterioration of a transformer or a resonance capacitor, which is a resonance component, or a change in characteristics due to a temperature change. In such a case, since zero voltage (current) switching cannot be performed accurately, power conversion efficiency is reduced due to an increase in switching loss, switching noise is generated, a circuit is broken, and the like.
 トランスや共振コンデンサの特性の変化による共振周波数の変動に対応するための技術として、例えば特許文献1に開示された技術がある。特許文献1には、入出力電力を制限する入出力電力制限手段により入出力電力が制限されている時間が所定時間に亘って継続しているときに限り、スイッチング周波数の再設定を行う電力変換装置が開示されている。 As a technique for coping with fluctuations in the resonance frequency due to changes in the characteristics of the transformer and the resonance capacitor, for example, there is a technique disclosed in Patent Document 1. Patent Document 1 discloses power conversion that resets the switching frequency only when the time during which input / output power is limited by input / output power limiting means that limits input / output power continues for a predetermined time. An apparatus is disclosed.
特開2014-217199号公報JP 2014-217199 A
 本開示は、短時間で精度よく共振周波数の変動を検知することができる共振型電力変換装置および異常判定方法を提供する。 The present disclosure provides a resonance type power converter and an abnormality determination method that can accurately detect a change in resonance frequency in a short time.
 本開示の共振型電力変換装置は、ブリッジ回路と、トランスと、電流検出回路と、制御回路とを有する。ブリッジ回路は、複数のスイッチング素子を有し、直流電力が入力される。トランスは、ブリッジ回路の出力側に接続されている。電流検出回路は、複数のスイッチング素子のうちの少なくとも1つを流れる電流値を検出する。制御回路は、スイッチング制御中の所定のタイミングにおける電流検出回路の検出値に基づいて、共振型電力変換装置に異常が発生しているか否かを判定する。 The resonant power converter of the present disclosure includes a bridge circuit, a transformer, a current detection circuit, and a control circuit. The bridge circuit has a plurality of switching elements and receives DC power. The transformer is connected to the output side of the bridge circuit. The current detection circuit detects a current value flowing through at least one of the plurality of switching elements. The control circuit determines whether an abnormality has occurred in the resonant power converter based on the detection value of the current detection circuit at a predetermined timing during switching control.
 本開示の共振型電力変換装置の異常判定方法は、直流電流が入力され、複数のスイッチング素子を有するブリッジ回路と、トランスと、複数のスイッチング素子の少なくとも1つを流れる電流値を検出する電流検出回路と、制御回路と、を有する共振型電力変換装置の異常を判定する。この方法では、スイッチング制御中の所定のタイミングにおいて、電流検出回路によって複数のスイッチング素子のうちの少なくとも1つを流れる電流値を検出する。そして、検出された電流値に基づいて、共振型電力変換装置に異常が発生しているか否かを、制御回路によって判定する。 An abnormality determination method for a resonance type power converter according to the present disclosure includes: a current detection that detects a current value flowing through at least one of a plurality of switching elements, a bridge circuit having a plurality of switching elements, a transformer, and a direct current input; An abnormality of the resonance type power converter having the circuit and the control circuit is determined. In this method, the current value flowing through at least one of the plurality of switching elements is detected by the current detection circuit at a predetermined timing during the switching control. Based on the detected current value, the control circuit determines whether or not an abnormality has occurred in the resonant power converter.
 本開示によれば、短時間で精度よく共振周波数の変動を検知することができる。 According to the present disclosure, it is possible to detect fluctuations in the resonance frequency with high accuracy in a short time.
本開示の実施の形態に係る電力変換装置の構成の一例を示す回路図A circuit diagram showing an example of composition of a power converter concerning an embodiment of this indication 図1に示した電力変換装置に寄生要素を加えた等価回路図Equivalent circuit diagram with parasitic elements added to the power converter shown in FIG. 制御回路がブリッジ回路を制御するために出力するゲート信号Vg1およびVg2と、ブリッジ回路を流れる電流値との波形を示す図The figure which shows the waveform of the gate signals Vg1 and Vg2 which a control circuit outputs in order to control a bridge circuit, and the electric current value which flows through a bridge circuit 正常動作時でのブリッジ回路を流れる電流値と、異常動作時でのブリッジ回路を流れる電流値と、を対比した図A diagram comparing the current value flowing through the bridge circuit during normal operation and the current value flowing through the bridge circuit during abnormal operation 本開示の実施の形態に係る電力変換装置の構成の他の例を示す回路図The circuit diagram which shows the other example of a structure of the power converter device which concerns on embodiment of this indication
 本開示の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。上述した特許文献1に開示された技術では、所定時間が経過しないと共振周波数の変動を検知することができず、短時間で共振周波数の変動を検知することが難しい。 Prior to the description of the embodiment of the present disclosure, the problems in the prior art will be briefly described. With the technique disclosed in Patent Document 1 described above, it is difficult to detect a change in resonance frequency unless a predetermined time elapses, and it is difficult to detect a change in resonance frequency in a short time.
 以下、図面を参照して本開示の実施の形態について説明する。図1は、本実施の形態に係る電力変換装置100の構成の一例を示す回路図である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an example of the configuration of the power conversion apparatus 100 according to the present embodiment.
 <電力変換装置100の構成例>
 電力変換装置100は、直流電源回路1、ブリッジ回路2、制御回路3、電流検出回路4、共振コンデンサ5、トランス6、整流回路7、および平滑コンデンサ8を有する。
<Configuration Example of Power Conversion Device 100>
The power conversion apparatus 100 includes a DC power supply circuit 1, a bridge circuit 2, a control circuit 3, a current detection circuit 4, a resonance capacitor 5, a transformer 6, a rectifier circuit 7, and a smoothing capacitor 8.
 直流電源回路1は、例えば燃料電池やバッテリ、AC/DCコンバータ等の直流電源を供給する装置である。直流電源回路1の両端子間には、ブリッジ回路2が接続されている。ブリッジ回路2は、図1に示すように、フルブリッジ接続されたスイッチング素子Q1~Q4を有する。 The DC power supply circuit 1 is a device that supplies DC power, such as a fuel cell, a battery, and an AC / DC converter. A bridge circuit 2 is connected between both terminals of the DC power supply circuit 1. As shown in FIG. 1, the bridge circuit 2 includes switching elements Q1 to Q4 connected in a full bridge.
 ブリッジ回路2において、スイッチング素子Q1とQ2とが直列に接続され、スイッチング素子Q3とQ4とが直列に接続されている。そして、スイッチング素子Q1およびQ2と、スイッチング素子Q3およびQ4とが並列に接続されてフルブリッジのブリッジ回路2が構成されている。スイッチング素子Q1~Q4は、例えば電界効果トランジスタ(FET:Field Effect Transistor)、特にMOSFET(Metal-Oxide-Semiconductor FET)で構成される。 In the bridge circuit 2, switching elements Q1 and Q2 are connected in series, and switching elements Q3 and Q4 are connected in series. Switching elements Q1 and Q2 and switching elements Q3 and Q4 are connected in parallel to form a full-bridge bridge circuit 2. The switching elements Q1 to Q4 are configured by, for example, a field effect transistor (FET: Field Effect Transistor), particularly a MOSFET (Metal-Oxide-Semiconductor FET).
 スイッチング素子Q1~Q4は、寄生ダイオードD1~D4をそれぞれ有する。なお、スイッチング素子Q1~Q4が寄生ダイオードD1~D4を有するのではなく、スイッチング素子Q1~Q4と独立したダイオードをそれぞれ並列に接続して有していてもよい。 Switching elements Q1 to Q4 have parasitic diodes D1 to D4, respectively. Note that the switching elements Q1 to Q4 do not have the parasitic diodes D1 to D4, but diodes independent of the switching elements Q1 to Q4 may be connected in parallel.
 ブリッジ回路2において、スイッチング素子Q1およびQ3のドレイン端子は直流電源回路1に接続されている。スイッチング素子Q1のソース端子とスイッチング素子Q2のドレイン端子、スイッチング素子Q3のソース端子とスイッチング素子Q4のドレイン端子とがそれぞれ接続されている。スイッチング素子Q2およびQ4のソース端子は電流検出回路4を経由して直流電源回路1に接続されている。また、スイッチング素子Q1のソース端子とスイッチング素子Q2のドレイン端子間に設けられたノードn1と、スイッチング素子Q3のソース端子とスイッチング素子Q4のドレイン端子間に設けられたノードn2との間に、共振コンデンサ5とトランス6の1次巻き線61とが直列に接続されている。 In the bridge circuit 2, the drain terminals of the switching elements Q1 and Q3 are connected to the DC power supply circuit 1. The source terminal of the switching element Q1 is connected to the drain terminal of the switching element Q2, and the source terminal of the switching element Q3 is connected to the drain terminal of the switching element Q4. The source terminals of the switching elements Q2 and Q4 are connected to the DC power supply circuit 1 via the current detection circuit 4. Further, resonance occurs between a node n1 provided between the source terminal of the switching element Q1 and the drain terminal of the switching element Q2, and a node n2 provided between the source terminal of the switching element Q3 and the drain terminal of the switching element Q4. The capacitor 5 and the primary winding 61 of the transformer 6 are connected in series.
 さらに、スイッチング素子Q1~Q4のゲート端子には制御回路3が接続される。制御回路3は、電力変換装置100の共振周波数に基づいて予め決定された駆動周波数で、スイッチング素子Q1~Q4をオンオフ制御(スイッチング制御)する。これにより、ブリッジ回路2は直流電源回路1の直流電力を高周波交流電力に変換する。駆動周波数は、例えば回路設計時の共振周波数より所定の(微少)量だけ大きな値とすればよい。また、電流検出回路4は、ブリッジ回路2を通過する電流値を検出する。本実施の形態では、電流検出回路4は、直流電源回路1のスイッチング素子Q1およびQ3に接続された側から、スイッチング素子Q2およびQ4に接続された側に流れる方向を正としてブリッジ回路2に流れる電流を検出する。 Furthermore, the control circuit 3 is connected to the gate terminals of the switching elements Q1 to Q4. The control circuit 3 performs on / off control (switching control) of the switching elements Q1 to Q4 at a drive frequency determined in advance based on the resonance frequency of the power conversion device 100. Thereby, the bridge circuit 2 converts the DC power of the DC power supply circuit 1 into high-frequency AC power. For example, the drive frequency may be set to a value larger by a predetermined (minute) amount than the resonance frequency at the time of circuit design. The current detection circuit 4 detects a current value that passes through the bridge circuit 2. In the present embodiment, current detection circuit 4 flows to bridge circuit 2 with the direction flowing from the side connected to switching elements Q1 and Q3 of DC power supply circuit 1 to the side connected to switching elements Q2 and Q4 being positive. Detect current.
 トランス6は、磁気結合された1次巻き線61と2次巻き線62とを有する。トランス6の1次巻き線61は、共振コンデンサ5、および、スイッチング素子Q3のソース端子とスイッチング素子Q4のドレイン端子との接続線に接続される。すなわち、トランス6はブリッジ回路2の出力側に接続されている。トランス6の2次巻き線62は、整流回路7に接続される。トランス6において、1次巻き線61に供給された交流電力の電圧が変圧されて2次巻き線62に伝達される。トランス6の2次巻き線62に生じた交流電力は、整流回路7および平滑コンデンサ8によって直流電力に変換され、図示しない直流負荷に供給される。 The transformer 6 has a primary winding 61 and a secondary winding 62 that are magnetically coupled. Primary winding 61 of transformer 6 is connected to resonance capacitor 5 and a connection line between the source terminal of switching element Q3 and the drain terminal of switching element Q4. That is, the transformer 6 is connected to the output side of the bridge circuit 2. The secondary winding 62 of the transformer 6 is connected to the rectifier circuit 7. In the transformer 6, the voltage of the AC power supplied to the primary winding 61 is transformed and transmitted to the secondary winding 62. The AC power generated in the secondary winding 62 of the transformer 6 is converted into DC power by the rectifier circuit 7 and the smoothing capacitor 8 and supplied to a DC load (not shown).
 図2は、図1に示した電力変換装置100に寄生要素を加えた等価回路図である。C1~C4は、スイッチング素子Q1~Q4の出力容量であり、Leはトランス6の漏れインダクタンス、およびLmはトランス6の励磁インダクタンスである。共振コンデンサ5、漏れインダクタンスLeおよび励磁インダクタンスLmによって直列LLC回路が構成されている。以下では、この等価回路を用いて説明を行う。なお、励磁インダクタンスLmと1次巻き線61を共通化して1つのインダクタとして構成しても良い。 FIG. 2 is an equivalent circuit diagram in which parasitic elements are added to the power conversion apparatus 100 shown in FIG. C1 to C4 are output capacities of the switching elements Q1 to Q4, Le is a leakage inductance of the transformer 6, and Lm is an exciting inductance of the transformer 6. A series LLC circuit is configured by the resonant capacitor 5, the leakage inductance Le, and the exciting inductance Lm. Below, it demonstrates using this equivalent circuit. The exciting inductance Lm and the primary winding 61 may be shared and configured as one inductor.
 なお、以下では、ブリッジ回路2、共振コンデンサ5、漏れインダクタンスLeおよび励磁インダクタンスLmで構成される回路を1次側、整流回路7、平滑コンデンサ8、および図示しない直流負荷で構成される回路を2次側と称することがある。 In the following description, a circuit composed of the bridge circuit 2, the resonance capacitor 5, the leakage inductance Le, and the excitation inductance Lm is referred to as a primary side, and a circuit composed of a rectifier circuit 7, a smoothing capacitor 8, and a DC load (not shown) is denoted as 2. Sometimes called the next side.
 <電力変換装置100の動作原理>
 以下では、電力変換装置100が正常に動作している場合の動作と、動作原理について説明する。図3は、制御回路3がブリッジ回路2を制御するために出力するゲート信号Vg1およびVg2と、ブリッジ回路2を流れる電流値との波形を示す図である。なお、ブリッジ回路2を流れる電流値とは、スイッチング素子Q1およびQ4を流れる電流と、スイッチング素子Q2およびQ3を流れる電流とを加算したものであり、上述したように電流検出回路4が検出する電流値である。
<Operation Principle of Power Converter 100>
Below, the operation | movement in case the power converter device 100 is operate | moving normally, and an operation principle are demonstrated. FIG. 3 is a diagram illustrating waveforms of the gate signals Vg1 and Vg2 output for the control circuit 3 to control the bridge circuit 2 and the current value flowing through the bridge circuit 2. The current value flowing through the bridge circuit 2 is the sum of the current flowing through the switching elements Q1 and Q4 and the current flowing through the switching elements Q2 and Q3. The current detected by the current detection circuit 4 as described above. Value.
 ゲート信号Vg1は、ブリッジ回路2のスイッチング素子Q1およびQ4をターンオンまたはターンオフする信号であり、ゲート信号Vg2は、スイッチング素子Q2およびQ3をターンオンまたはターンオフする信号である。なお、以下の説明においては、ゲート信号Vg1は、スイッチング素子Q1とQ4とを同時にターンオンまたはターンオフする場合について説明するが、例えばスイッチング素子Q1よりもQ4を、わずかに遅れてターンオンまたはターンオフするようにしてもよい。同様に、以下の説明においては、ゲート信号Vg2は、スイッチング素子Q2とQ3とを同時にターンオンまたはターンオフする場合について説明するが、例えばスイッチング素子Q2よりもQ3を、わずかに遅れてターンオンまたはターンオフするようにしてもよい。 The gate signal Vg1 is a signal for turning on or off the switching elements Q1 and Q4 of the bridge circuit 2, and the gate signal Vg2 is a signal for turning on or off the switching elements Q2 and Q3. In the following description, the gate signal Vg1 will be described for the case where the switching elements Q1 and Q4 are turned on or off at the same time. For example, Q4 is turned on or off slightly after the switching element Q1. May be. Similarly, in the following description, the case where the gate signal Vg2 turns on or off the switching elements Q2 and Q3 at the same time will be described. For example, Q3 is turned on or off slightly after the switching element Q2. It may be.
 図3に示すように、時刻tおよびtは、スイッチング素子Q1およびQ4がターンオンするタイミングを、時刻tおよびtは、スイッチング素子Q1およびQ4がターンオフするタイミングを示している。また、時刻tおよびtは、スイッチング素子Q2およびQ3がターンオンするタイミングを、時刻tおよびtはスイッチング素子Q2およびQ3がターンオフするタイミングを示している。なお、スイッチング素子Q1およびQ4がターンオフしてからスイッチング素子Q2およびQ3がターンオンするまでの間、および、スイッチング素子Q2およびQ3がターンオフしてからスイッチング素子Q1およびQ4がターンオンするまでの間には、デッドタイム(td)が設けられている。 As shown in FIG. 3, times t 1 and t 5 indicate the timing when the switching elements Q1 and Q4 are turned on, and times t 2 and t 6 indicate the timing when the switching elements Q1 and Q4 are turned off. Times t 3 and t 7 indicate timings at which the switching elements Q2 and Q3 are turned on, and times t 0 and t 4 indicate timings at which the switching elements Q2 and Q3 are turned off. In addition, after switching elements Q1 and Q4 are turned off until switching elements Q2 and Q3 are turned on, and between when switching elements Q2 and Q3 are turned off and until switching elements Q1 and Q4 are turned on, Dead time (td) is provided.
 上述したように、電流検出回路4の検出する電流値は、ブリッジ回路2を通過する電流の計測値である。上述したように、電流検出回路4の検出する信号は、直流電源回路1のスイッチング素子Q1およびQ3に接続された側から、スイッチング素子Q2およびQ4に接続された側に流れる方向を正としている。 As described above, the current value detected by the current detection circuit 4 is a measured value of the current passing through the bridge circuit 2. As described above, the signal detected by the current detection circuit 4 is positive in the direction flowing from the side connected to the switching elements Q1 and Q3 of the DC power supply circuit 1 to the side connected to the switching elements Q2 and Q4.
 図3に示す時刻tにおいて、制御回路3がゲート信号Vg1をLow(低レベル)からHigh(高レベル)に立ち上げると、スイッチング素子Q1およびQ4がターンオンされる。時刻tから時刻tまでのスイッチング素子Q1およびQ4がオンの状態では、直流電源回路1からスイッチング素子Q1、共振コンデンサ5、トランス6の1次巻き線61、スイッチング素子Q4の順に負荷電流が流れる。すなわち、図3に示すように、ブリッジ回路2を流れる電流値は正方向に増大する。 At time t 1 shown in FIG. 3, the control circuit 3 when the launch to High (high-level) gate signal Vg1 from Low (low-level), the switching elements Q1 and Q4 are turned on. The switching elements Q1 and Q4 from time t 1 to time t 2 is turned on, the switching element Q1 from the DC power supply circuit 1, the resonance capacitor 5, primary winding 61 of the transformer 6, the load current in the order of the switching element Q4 Flowing. That is, as shown in FIG. 3, the value of the current flowing through the bridge circuit 2 increases in the positive direction.
 共振コンデンサ5、漏れインダクタンスLeおよび励磁インダクタンスLmにより構成されるLLC回路に入力電圧が印加されることにより、共振動作により共振コンデンサ5に電荷が蓄積される。また、共振コンデンサ5と漏れインダクタンスLeによる共振電流が2次巻き線62を通して図示しない直流負荷に放出される。 When an input voltage is applied to the LLC circuit constituted by the resonance capacitor 5, the leakage inductance Le, and the excitation inductance Lm, electric charges are accumulated in the resonance capacitor 5 by the resonance operation. In addition, the resonance current due to the resonance capacitor 5 and the leakage inductance Le is discharged through the secondary winding 62 to a DC load (not shown).
 共振コンデンサ5の電圧が上昇するにつれて、1次巻き線61に印加される電圧が減少する。このため、2次側に放出される電流も減少する。共振が終了し、2次側の電流がゼロとなると、1次側にのみ励磁電流が流れ、共振コンデンサ5の充電が維持される。 As the voltage of the resonant capacitor 5 increases, the voltage applied to the primary winding 61 decreases. For this reason, the current discharged to the secondary side is also reduced. When the resonance ends and the secondary side current becomes zero, the exciting current flows only on the primary side, and the charging of the resonant capacitor 5 is maintained.
 時刻tにおいて、制御回路3がゲート信号Vg1をHighからLowに立ち下げると、スイッチング素子Q1およびQ4がターンオフされる。スイッチング素子Q1およびQ4がターンオフされた直後は、1次側を流れる励磁電流により出力容量C1および出力容量C4が充電され、出力容量C2および出力容量C3が放電する。これにより、スイッチング素子Q1およびQ4のドレイン-ソース間電圧が上昇し、スイッチング素子Q2とQ3のドレイン-ソース間電圧が下降する。スイッチング素子Q2とQ3のドレイン-ソース間電圧がゼロまで低下すると、スイッチング素子Q2およびQ3の寄生ダイオードD2およびD3を通して漏れインダクタンスLeおよび励磁インダクタンスLmに蓄積されている励磁エネルギーをリセットする方向に励磁電流が流れる。 In time t 2, the control circuit 3 when the fall to Low gate signal Vg1 from High, the switching elements Q1 and Q4 are turned off. Immediately after the switching elements Q1 and Q4 are turned off, the output capacitor C1 and the output capacitor C4 are charged by the exciting current flowing through the primary side, and the output capacitor C2 and the output capacitor C3 are discharged. As a result, the drain-source voltage of switching elements Q1 and Q4 increases, and the drain-source voltage of switching elements Q2 and Q3 decreases. When the drain-source voltage of the switching elements Q2 and Q3 decreases to zero, the exciting current in a direction to reset the excitation energy accumulated in the leakage inductance Le and the exciting inductance Lm through the parasitic diodes D2 and D3 of the switching elements Q2 and Q3. Flows.
 なお、時刻tから時刻tまでの間はデッドタイムの期間であり、全てのスイッチング素子Q1~Q4がオフとなっている。 Incidentally, during the period from time t 2 to time t 3 is a period of dead time, all the switching elements Q1 ~ Q4 is off.
 時刻tにおいて、制御回路3がゲート信号Vg2をLowからHighに立ち上げると、スイッチング素子Q2およびQ3がターンオンされる。このとき、スイッチング素子Q2およびQ3にはソースからドレインの方向、すなわち負の方向に励磁電流が流れているので、スイッチング素子Q2とQ3のドレイン-ソース間電圧がゼロのタイミングでのスイッチングとなる。このため、ゼロ電圧スイッチング(ZVS:Zero-Voltage Switching)となり、ターンオン時のスイッチング損失を回避することができる。 At time t 3, the control circuit 3 when launching the High gate signal Vg2 from Low, the switching elements Q2 and Q3 are turned on. At this time, since the exciting current flows in the switching elements Q2 and Q3 in the direction from the source to the drain, that is, in the negative direction, the switching is performed at the timing when the drain-source voltages of the switching elements Q2 and Q3 are zero. For this reason, zero-voltage switching (ZVS) is achieved, and switching loss at turn-on can be avoided.
 時刻tから時刻tまでのスイッチング素子Q2およびQ3がオンの状態では、共振コンデンサ5に充電された電圧によって直列LLC回路に励磁電流が流れ、共振コンデンサ5の電荷が放電される。同時に、共振コンデンサ5と漏れインダクタンスLeとによる共振電流が2次巻き線62を通して図示しない直流負荷に放出される。 Switching elements Q2 and Q3 from time t 3 to time t 4 is in the ON state, the exciting current flows through the series LLC circuit by the voltage charged in the resonant capacitor 5, the charge of the resonance capacitor 5 is discharged. At the same time, a resonance current caused by the resonance capacitor 5 and the leakage inductance Le is discharged through a secondary winding 62 to a DC load (not shown).
 共振コンデンサ5の電圧が低下するにつれて、1次巻き線61に印加される電圧が減少する。このため、2次側に放出される電流も減少する。2次側の電流がゼロとなると、1次側にのみ励磁電流が流れ、共振コンデンサ5の充電が維持される。 As the voltage of the resonant capacitor 5 decreases, the voltage applied to the primary winding 61 decreases. For this reason, the current discharged to the secondary side is also reduced. When the current on the secondary side becomes zero, an exciting current flows only on the primary side, and charging of the resonant capacitor 5 is maintained.
 時刻tにおいて、制御回路3がゲート信号Vg2をHighからLowに立ち下げると、スイッチング素子Q2およびQ3がターンオフされる。スイッチング素子Q2およびQ3がターンオフされた直後は、1次側を流れる励磁電流により出力容量C1および出力容量C4が放電され、出力容量C2および出力容量C3が充電される。これにより、スイッチング素子Q1およびQ4のドレイン-ソース間電圧が下降し、スイッチング素子Q2とQ3のドレイン-ソース間電圧が緩やかに上昇する。 At time t 4, the control circuit 3 when the fall to Low gate signal Vg2 from High, the switching elements Q2 and Q3 are turned off. Immediately after the switching elements Q2 and Q3 are turned off, the output capacitor C1 and the output capacitor C4 are discharged by the exciting current flowing through the primary side, and the output capacitor C2 and the output capacitor C3 are charged. As a result, the drain-source voltage of switching elements Q1 and Q4 decreases, and the drain-source voltage of switching elements Q2 and Q3 gradually increases.
 スイッチング素子Q2とQ3のドレイン-ソース間電圧が入力電圧まで上昇すると、スイッチング素子Q1およびQ4の寄生ダイオードD1および寄生ダイオードD4を通して直流電源回路1に回生され、漏れインダクタンスLeおよび励磁インダクタンスLmに蓄積されている励磁エネルギーをリセットする方向に共振電流が流れ続ける。この後、時刻tにおいて再びスイッチング素子Q1およびQ4がターンオンされる。時刻tの動作は、時刻tの動作と同じ動作であり、以後上記と同様の動作が繰り返される。 When the drain-source voltage of switching elements Q2 and Q3 rises to the input voltage, it is regenerated in DC power supply circuit 1 through parasitic diode D1 and parasitic diode D4 of switching elements Q1 and Q4, and is stored in leakage inductance Le and excitation inductance Lm. The resonance current continues to flow in the direction to reset the excitation energy. Thereafter, the switching elements Q1 and Q4 again at time t 5 is turned on. Operation of the time t 5 is the same operation as the operation at time t 1, hereinafter the same operation is repeated.
 なお、時刻t(t)におけるスイッチング素子Q1およびQ4のターンオン動作は、スイッチング素子Q1およびQ4のドレイン-ソース間電圧がゼロのタイミングでのスイッチングとなる。このため、ゼロ電圧スイッチングとなり、ターンオン時のスイッチング損失を回避することができる。 The turn-on operation of switching elements Q1 and Q4 at time t 5 (t 1 ) is switching at a timing when the drain-source voltage of switching elements Q1 and Q4 is zero. For this reason, zero voltage switching is performed, and switching loss at turn-on can be avoided.
 <異常時における電力変換装置100の動作例>
 次に、電力変換装置100において異常が発生した場合の動作例について説明する。本開示の実施の形態において、異常とは、共振コンデンサ5の故障を想定している。具体的には、例えば複数個のコンデンサが並列に接続されて共振コンデンサ5を構成している場合に、そのうちの1個が故障してしまい、共振コンデンサ5の静電容量が低下してしまった状態である。
<Operation Example of Power Conversion Device 100 at Abnormal Time>
Next, an operation example when an abnormality occurs in the power conversion device 100 will be described. In the embodiment of the present disclosure, the abnormality is assumed to be a failure of the resonant capacitor 5. Specifically, for example, when a plurality of capacitors are connected in parallel to form the resonance capacitor 5, one of them has failed, and the capacitance of the resonance capacitor 5 has decreased. State.
 一般に、直列LLC回路の共振周波数frは、以下の数式(1)により算出される。 Generally, the resonance frequency fr of the series LLC circuit is calculated by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、電力変換装置100において共振コンデンサ5の静電容量Cが低下する異常が発生した場合、直列LLC回路の共振周波数が増大する。 That is, when an abnormality occurs in the power conversion device 100 in which the capacitance C of the resonance capacitor 5 decreases, the resonance frequency of the series LLC circuit increases.
 上述したように、ブリッジ回路2の駆動周波数は、回路設計時の共振周波数よりも所定の微少量だけ大きな値に設計されている。このため、電力変換装置100の異常により、直列LLC回路の共振周波数が増大すると、増大した共振周波数がブリッジ回路2の駆動周波数を超えてしまうことになる。 As described above, the drive frequency of the bridge circuit 2 is designed to be larger by a predetermined minute amount than the resonance frequency at the time of circuit design. For this reason, when the resonance frequency of the series LLC circuit increases due to an abnormality in the power conversion device 100, the increased resonance frequency exceeds the drive frequency of the bridge circuit 2.
 これにより、直列LLC回路の共振動作が進相側に移行し、直列LLC回路を流れる共振電流が進相になる。図4は、正常動作時でのブリッジ回路2を流れる電流値と、異常動作時でのブリッジ回路2を流れる電流値と、を対比した図である。 Thereby, the resonance operation of the series LLC circuit shifts to the phase advance side, and the resonance current flowing through the series LLC circuit becomes the phase advance. FIG. 4 is a diagram comparing the current value flowing through the bridge circuit 2 during normal operation and the current value flowing through the bridge circuit 2 during abnormal operation.
 図4に示すように、異常時には電流が進相側に移行しているため、ブリッジ回路2のスイッチング素子Q1およびQ4をターンオフしてからスイッチング素子Q2およびQ3をターンオフするまでを1周期としたとき、異常動作時の電流波形は、正常動作時の電流波形を1周期毎に左右反転したような形となっている。 As shown in FIG. 4, when the current is shifted to the phase advance side at the time of abnormality, the period from turning off the switching elements Q1 and Q4 of the bridge circuit 2 to turning off the switching elements Q2 and Q3 is one cycle. The current waveform during abnormal operation is such that the current waveform during normal operation is reversed left and right every cycle.
 <異常動作の検出処理>
 以上のことを踏まえて、本開示の実施の形態に係る電力変換装置100における、異常動作の検出処理について説明する。
<Abnormal operation detection processing>
Based on the above, the abnormal operation detection process in the power conversion device 100 according to the embodiment of the present disclosure will be described.
 図4に示すように、正常動作時と異常動作時では、電流検出回路4が検出する、ブリッジ回路2を流れる電流値に明らかな差異が存在する。従って、所定のタイミングにおける、正常動作時での電流値の取り得る範囲を予め確定しておくことにより、制御回路3は、所定のタイミングにおける電流検出回路4の検出値を参照し、当該検出値が予め確定した範囲内にあるか否かを判定することで、電力変換装置100が異常動作をしているか否かを判定することができる。 As shown in FIG. 4, there is a clear difference in the current value flowing through the bridge circuit 2 detected by the current detection circuit 4 between the normal operation and the abnormal operation. Therefore, the control circuit 3 refers to the detection value of the current detection circuit 4 at the predetermined timing by determining in advance the range that can be taken by the current value at the normal operation at the predetermined timing. Can be determined whether or not the power conversion apparatus 100 is operating abnormally.
 所定のタイミングにおける、正常動作時での電流値の取り得る範囲は、図4に示すような正常動作時にブリッジ回路2を流れる電流値(正常時電流)と、異常動作時にブリッジ回路2を流れる電流値(異常時電流)とを予め実験的に取得しておき、これらを対比することで確定すればよい。 The range of current values that can be taken during normal operation at a predetermined timing includes the current value that flows through the bridge circuit 2 during normal operation (current during normal operation) and the current that flows through the bridge circuit 2 during abnormal operation as shown in FIG. What is necessary is just to experimentally acquire a value (current at the time of abnormality) beforehand and to confirm by comparing these.
 以下、具体例を挙げて説明する。1つ目の例として、制御回路3は、例えば時刻t、t、およびt等のような、ゲート信号Vg1あるいはVg2の立ち上がり時の電流値により、異常か否かの判定を行う。ゲート信号Vg1あるいはVg2の立ち上がり時、すなわちスイッチング素子Q1およびQ4あるいはQ2およびQ3がターンオンされるときには、正常時電流はスイッチング素子Q3およびQ2の寄生ダイオードD3および寄生ダイオードD2を通って、ブリッジ回路2を逆流する。このため、図4の正常時電流に示すように、電流値は必ずゼロより小さい値となる。 Hereinafter, a specific example will be described. As the first example, the control circuit 3, for example, time t 1, t 3, and t, such as 5 or the like, the current value during the rise of the gate signal Vg1 or Vg2, an abnormality is determined whether or not. When the gate signal Vg1 or Vg2 rises, that is, when the switching elements Q1 and Q4 or Q2 and Q3 are turned on, the normal current passes through the parasitic diode D3 and the parasitic diode D2 of the switching elements Q3 and Q2, and passes through the bridge circuit 2. Backflow. For this reason, the current value is always smaller than zero as shown in the normal current in FIG.
 一方、異常動作時には、電流が進相に移相するため、ゲート信号Vg1あるいはVg2の立ち上がり時の電流値が図4の異常時電流に示すようにゼロ以上の値となっている場合がある。すなわち、制御回路3は、ゲート信号Vg1あるいはVg2をLowからHighに立ち上げる際に、電流検出回路4から取得したブリッジ回路2を流れる電流値を参照し、その値がゼロより大きい値であった場合には、電力変換装置100に異常動作が生じていると判定することができる。なお、電力変換装置100に異常動作が生じていると判定した場合、制御回路3は、外部(例えば、上位の制御回路等)に、異常動作が生じていることを示す信号を出力する。 On the other hand, during an abnormal operation, the current shifts to the leading phase, so that the current value at the rising edge of the gate signal Vg1 or Vg2 may be zero or more as shown in the abnormal current in FIG. That is, when the control circuit 3 raises the gate signal Vg1 or Vg2 from Low to High, the control circuit 3 refers to the current value flowing through the bridge circuit 2 obtained from the current detection circuit 4, and the value is greater than zero. In this case, it can be determined that an abnormal operation has occurred in the power conversion device 100. When it is determined that an abnormal operation has occurred in the power conversion apparatus 100, the control circuit 3 outputs a signal indicating that an abnormal operation has occurred to the outside (for example, a higher-level control circuit).
 なお、図4に例示した異常時電流は一例であり、電力変換装置100の異常動作時に電流検出回路4が検出する電流値は必ずこのような波形となるとは限らない。このため、ゲート信号Vg1あるいはVg2の立ち上がり時の電流値がゼロより小さい値であっても、電力変換装置100に異常が発生している場合はある。しかしながら、共振周波数が回路設計時から大きく増大している場合には、電流が進相側に移行するため、ゲート信号Vg1あるいはVg2の立ち上がり時の電流値はゼロより大きな値となる。共振周波数が回路設計時から大きく増大している場合には、ブリッジ回路2においてゼロ電圧スイッチングを行うことができなくなるだけでなく、例えばスイッチング素子Q1からQ2に貫通電流が流れたり、ブリッジ回路2が発熱して電力変換装置100が故障したり、等の事態が発生することがある。上記説明した制御回路3の異常検出方法では、共振電流の回路設計時からの小さな変動は検出できない場合があるものの、電力変換装置100の破壊の原因となるような大きな変動については精度よく検出することができる。 Note that the abnormal current illustrated in FIG. 4 is an example, and the current value detected by the current detection circuit 4 during the abnormal operation of the power conversion apparatus 100 does not always have such a waveform. For this reason, even if the current value at the time of rising of the gate signal Vg1 or Vg2 is a value smaller than zero, an abnormality may occur in the power conversion device 100. However, when the resonance frequency is greatly increased from the time of circuit design, the current shifts to the phase advance side, so that the current value at the rise of the gate signal Vg1 or Vg2 becomes a value larger than zero. When the resonance frequency is greatly increased from the circuit design time, not only can the zero voltage switching not be performed in the bridge circuit 2, but also, for example, a through current flows from the switching element Q1 to Q2, or the bridge circuit 2 The power conversion device 100 may break down due to heat generation, or the like may occur. Although the above-described abnormality detection method for the control circuit 3 may not be able to detect a small fluctuation of the resonance current from the circuit design time, it can accurately detect a big fluctuation that causes the power conversion device 100 to be destroyed. be able to.
 2つ目の例として、制御回路3は、例えばゲート信号Vg1あるいはVg2の立ち下がり時から少し経過した時点の電流値により、異常か否かの判定を行う。図4において、ゲート信号Vg1あるいはVg2の立ち下がり時から少し経過した時点をt’、t’、t’と示している。図4に示すように、ゲート信号Vg1あるいはVg2の立ち下がり時、すなわちスイッチング素子Q1およびQ4あるいはQ2およびQ3がターンオフされた直後は、図4に示すように正常時電流はターンオフに伴ってブリッジ回路2を逆流するが、その後正方向に増大する。一方、異常時電流は、図4に示すように、ブリッジ回路2を逆流せず、その後正方向に増大する。 As a second example, the control circuit 3 determines whether or not there is an abnormality based on the current value when a little time elapses from the time when the gate signal Vg1 or Vg2 falls, for example. In FIG. 4, the points in time when the gate signal Vg1 or Vg2 falls slightly are indicated as t 2 ′, t 4 ′, and t 6 ′. As shown in FIG. 4, when the gate signal Vg1 or Vg2 falls, that is, immediately after the switching elements Q1 and Q4 or Q2 and Q3 are turned off, the normal-time current is accompanied by the turn-off as shown in FIG. 2 flows backward, but then increases in the positive direction. On the other hand, as shown in FIG. 4, the abnormal current does not flow back through the bridge circuit 2 and then increases in the positive direction.
 このため、制御回路3は、ゲート信号Vg1あるいはVg2を立ち下げる際に、電流検出回路4から取得したブリッジ回路2を流れる電流値を参照し、その値がゼロより大きい値であった場合には、電力変換装置100に異常動作が生じていると判定する。なお、1つ目の例と同様に、電力変換装置100に異常動作が生じていると判定した場合、制御回路3は、外部(例えば、上位の制御回路等)に、異常動作が生じていることを示す信号を出力する。 For this reason, the control circuit 3 refers to the current value flowing through the bridge circuit 2 acquired from the current detection circuit 4 when the gate signal Vg1 or Vg2 falls, and if the value is greater than zero, Then, it is determined that an abnormal operation has occurred in the power conversion device 100. As in the first example, when it is determined that an abnormal operation has occurred in the power conversion device 100, the control circuit 3 has an abnormal operation outside (for example, a higher-level control circuit). The signal which shows that is output.
 以上、正常動作時での電流値の範囲を予め特定する所定のタイミングについて2つの具体例を挙げて説明したが、本開示はこれら2つの例に限定されるものではない。正常時電流と、共振周波数が回路設計時から大きく変動した異常時の電流とを明確に判別することができるタイミングであれば、どのようなタイミングであってもよい。 As described above, the predetermined timing for specifying the current value range in normal operation in advance has been described with reference to two specific examples. However, the present disclosure is not limited to these two examples. Any timing may be used as long as it can clearly discriminate between a normal current and an abnormal current in which the resonance frequency fluctuates greatly from the circuit design time.
 以上説明したように、本開示の実施の形態に係る電力変換装置100は、ブリッジ回路2と、トランス6と、電流検出回路4と、制御回路3とを有する。ブリッジ回路2は、複数のスイッチング素子を有し、直流電力が入力される。トランス6は、ブリッジ回路2の出力側に接続されている。電流検出回路4は、複数のスイッチング素子のうちの少なくとも1つを流れる電流値を検出する。制御回路3は、スイッチング制御中の所定のタイミングにおける電流検出回路4の検出値に基づいて、電力変換装置100に異常が発生しているか否かを判定する。 As described above, the power conversion device 100 according to the embodiment of the present disclosure includes the bridge circuit 2, the transformer 6, the current detection circuit 4, and the control circuit 3. The bridge circuit 2 has a plurality of switching elements and receives DC power. The transformer 6 is connected to the output side of the bridge circuit 2. The current detection circuit 4 detects a current value flowing through at least one of the plurality of switching elements. The control circuit 3 determines whether or not an abnormality has occurred in the power conversion device 100 based on the detection value of the current detection circuit 4 at a predetermined timing during switching control.
 このような構成により、共振周波数が大きく増大する等の電力変換装置100の異常を、検出に時間を要することなく、精度よく検出することができる。 With such a configuration, it is possible to accurately detect an abnormality of the power conversion apparatus 100 such as a significant increase in the resonance frequency without requiring time for detection.
 以上、図面を参照しながら各種の実施形態について説明したが、本開示はかかる例に限定されない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであるため、それらについても本開示の技術的範囲に属する。 Although various embodiments have been described above with reference to the drawings, the present disclosure is not limited to such examples. Since it is clear that those skilled in the art can arrive at various changes and modifications within the scope of the claims, they also fall within the technical scope of the present disclosure.
 上述した実施の形態では、電流検出回路4は、ブリッジ回路2の下流に接続され、ブリッジ回路2に流れる電流値を検出していたが、本開示はこれには限定されない。例えば、電流検出回路4は、ブリッジ回路2の上流や、ブリッジ回路2の内部に設置されてもよい。また、電流検出回路4は、ブリッジ回路2全体に流れる電流値を検出するのではなく、いずれかのスイッチング素子に流れる電流値のみを検出するようにしてもよい。この場合は、予め正常動作時と異常動作時における、当該スイッチング素子を流れる電流値の範囲を予め取得しておき、制御回路3はこれに基づいて異常動作か否かの判定を行うようにすればよい。 In the above-described embodiment, the current detection circuit 4 is connected downstream of the bridge circuit 2 and detects the current value flowing through the bridge circuit 2, but the present disclosure is not limited to this. For example, the current detection circuit 4 may be installed upstream of the bridge circuit 2 or inside the bridge circuit 2. Further, the current detection circuit 4 may detect only the current value flowing through one of the switching elements, instead of detecting the current value flowing through the entire bridge circuit 2. In this case, the range of the current value flowing through the switching element during normal operation and abnormal operation is acquired in advance, and the control circuit 3 determines whether or not the operation is abnormal based on this range. That's fine.
 また、上述した実施の形態では、フルブリッジのブリッジ回路2を有する電力変換装置100について説明したが、本開示はこれには限定されない。例えば図5に示すように、ハーフブリッジのブリッジ回路21を有していてもよい。 In the above-described embodiment, the power conversion device 100 including the full-bridge bridge circuit 2 has been described, but the present disclosure is not limited thereto. For example, as shown in FIG. 5, you may have the bridge circuit 21 of a half bridge.
 また、上述した実施の形態では、トランス6を有する電力変換装置100について説明したが、本開示はこれには限定されない。例えば、トランス6として、非接触充電に用いられる1次巻き線(給電コイル)と2次巻き線(受電コイル)を用いても良い。 In the above-described embodiment, the power conversion device 100 including the transformer 6 has been described, but the present disclosure is not limited to this. For example, a primary winding (power feeding coil) and a secondary winding (power receiving coil) used for non-contact charging may be used as the transformer 6.
 また、上述した実施の形態では、異常動作が生じていると判定した場合、外部(例えば、上位の制御回路等)に、異常動作が生じていることを示す信号を出力したが、本開示はこれには限定されない。例えば、変動した共振周波数よりも所定の量だけ大きな値となるように駆動周波数を可変して動作(電力変換)を継続してもよい。 In the above-described embodiment, when it is determined that an abnormal operation has occurred, a signal indicating that the abnormal operation has occurred is output to the outside (for example, a higher-level control circuit). This is not a limitation. For example, the operation (power conversion) may be continued by changing the drive frequency so that the value is larger by a predetermined amount than the fluctuating resonance frequency.
 本開示は、直流電力を変圧する電力変換装置として好適である。 The present disclosure is suitable as a power conversion device that transforms DC power.
100  電力変換装置
1  直流電源回路
2,21  ブリッジ回路
Q1,Q2,Q3,Q4  スイッチング素子
D1,D2,D3,D4  寄生ダイオード
C1,C2,C3,C4  出力容量
3  制御回路
4  電流検出回路
5  共振コンデンサ
6  トランス
61  1次巻き線
62  2次巻き線
7  整流回路
8  平滑コンデンサ
Le  漏れインダクタンス
Lm  励磁インダクタンス
n1,n2  ノード
100 Power converter 1 DC power supply circuit 2, 21 Bridge circuit Q1, Q2, Q3, Q4 Switching element D1, D2, D3, D4 Parasitic diode C1, C2, C3, C4 Output capacity 3 Control circuit 4 Current detection circuit 5 Resonant capacitor 6 transformer 61 primary winding 62 secondary winding 7 rectifier circuit 8 smoothing capacitor Le leakage inductance Lm exciting inductance n1, n2 node

Claims (8)

  1. 複数のスイッチング素子を有し、直流電力が入力されるブリッジ回路と、
    前記ブリッジ回路の出力側に接続されたトランスと、
    前記複数のスイッチング素子のうちの少なくとも1つを流れる電流値を検出する電流検出回路と、
    制御回路と、を備えた共振型電力変換装置であって、
    前記制御回路は、スイッチング制御中の所定のタイミングにおける前記電流検出回路の検出値に基づいて、前記共振型電力変換装置に異常が発生しているか否かを判定する、
    共振型電力変換装置。
    A bridge circuit having a plurality of switching elements and receiving DC power;
    A transformer connected to the output side of the bridge circuit;
    A current detection circuit for detecting a current value flowing through at least one of the plurality of switching elements;
    A resonant power converter comprising a control circuit,
    The control circuit determines whether or not an abnormality has occurred in the resonant power converter based on a detection value of the current detection circuit at a predetermined timing during switching control.
    Resonant power converter.
  2. 前記制御回路は、共振周波数の回路設計時からの所定周波数以上の増大を前記共振型電力変換装置の前記異常として判定する、
    請求項1に記載の共振型電力変換装置。
    The control circuit determines an increase of the resonance frequency over a predetermined frequency from the circuit design time as the abnormality of the resonance type power converter,
    The resonant power converter according to claim 1.
  3. 前記制御回路は、前記異常が発生していると判定した場合、前記異常が生じていることを示す信号を出力する、
    請求項1または2に記載の共振型電力変換装置。
    When the control circuit determines that the abnormality has occurred, the control circuit outputs a signal indicating that the abnormality has occurred.
    The resonance type power converter according to claim 1 or 2.
  4. 前記所定のタイミングは、前記制御回路が前記ブリッジ回路の前記スイッチング素子をターンオンする制御信号を出力するタイミングであって、
    前記制御回路は、前記制御信号を出力する前記タイミングにおける前記電流検出回路の検出値がゼロより大きい場合に、前記共振型電力変換回路に前記異常が発生していると判定する、
    請求項1または2に記載の共振型電力変換装置。
    The predetermined timing is a timing at which the control circuit outputs a control signal for turning on the switching element of the bridge circuit,
    The control circuit determines that the abnormality has occurred in the resonant power conversion circuit when a detection value of the current detection circuit at the timing of outputting the control signal is greater than zero.
    The resonance type power converter according to claim 1 or 2.
  5. 前記所定のタイミングは、前記制御回路が前記ブリッジ回路の前記スイッチング素子をターンオンする制御信号を出力してから所定の微少時間が経過したタイミングであって、
    前記制御回路は、前記制御信号を出力してから前記所定の微少時間が経過した前記タイミングにおける前記電流検出回路の検出値がゼロより大きい場合に、前記共振型電力変換回路に前記異常が発生していると判定する、
    請求項1または2に記載の共振型電力変換装置。
    The predetermined timing is a timing at which a predetermined minute time has elapsed after the control circuit outputs a control signal for turning on the switching element of the bridge circuit,
    The control circuit generates the abnormality in the resonant power conversion circuit when a detection value of the current detection circuit at the timing when the predetermined minute time has elapsed after outputting the control signal is greater than zero. It is determined that
    The resonance type power converter according to claim 1 or 2.
  6. 前記ブリッジ回路は、フルブリッジ回路である、
    請求項1または2に記載の共振型電力変換装置。
    The bridge circuit is a full bridge circuit,
    The resonance type power converter according to claim 1 or 2.
  7. 前記ブリッジ回路は、ハーフブリッジ回路である、
    請求項1または2に記載の共振型電力変換装置。
    The bridge circuit is a half bridge circuit,
    The resonance type power converter according to claim 1 or 2.
  8. 複数のスイッチング素子を有し、直流電力が入力されるブリッジ回路と、前記ブリッジ回路の出力側に接続されたトランスと、前記複数のスイッチング素子のうちの少なくとも1つを流れる電流値を検出する電流検出回路と、制御回路と、を有する共振型電力変換装置の異常判定方法であって、
    スイッチング制御中の所定のタイミングにおいて、前記電流検出回路によって前記複数のスイッチング素子のうちの少なくとも1つを流れる電流値を検出するステップと、
    検出された前記電流値に基づいて、前記共振型電力変換装置に異常が発生しているか否かを、前記制御回路によって判定する、
    異常判定方法。
    A bridge circuit having a plurality of switching elements, to which DC power is input, a transformer connected to the output side of the bridge circuit, and a current for detecting a current value flowing through at least one of the plurality of switching elements An abnormality determination method for a resonant power converter having a detection circuit and a control circuit,
    Detecting a current value flowing through at least one of the plurality of switching elements by the current detection circuit at a predetermined timing during switching control; and
    Based on the detected current value, the control circuit determines whether or not an abnormality has occurred in the resonant power converter.
    Abnormality judgment method.
PCT/JP2017/005211 2016-03-25 2017-02-14 Resonance-type power conversion device and abnormality determining method WO2017163666A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780018332.4A CN108781039B (en) 2016-03-25 2017-02-14 Resonance type power conversion device and abnormality determination method
DE112017001544.8T DE112017001544T5 (en) 2016-03-25 2017-02-14 Resonance-type power conversion device and anomaly determination method
US16/085,074 US10530262B2 (en) 2016-03-25 2017-02-14 Resonance-type power conversion device and abnormality determining method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-062313 2016-03-25
JP2016062313 2016-03-25
JP2017-021245 2017-02-08
JP2017021245A JP6839816B2 (en) 2016-03-25 2017-02-08 Resonant power converter and abnormality determination method

Publications (1)

Publication Number Publication Date
WO2017163666A1 true WO2017163666A1 (en) 2017-09-28

Family

ID=59901122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005211 WO2017163666A1 (en) 2016-03-25 2017-02-14 Resonance-type power conversion device and abnormality determining method

Country Status (1)

Country Link
WO (1) WO2017163666A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143833A (en) * 2001-11-01 2003-05-16 Hitachi Ltd Gate driver of semiconductor switching element
JP2004364493A (en) * 2003-05-09 2004-12-24 Canon Inc Electric power conversion apparatus and control method therefor, as well as solar power generation arrangement
JP2010252443A (en) * 2009-04-13 2010-11-04 Toshiba Corp Power supply device for electric train
JP2015023587A (en) * 2013-07-16 2015-02-02 スパンション エルエルシー Dc-dc converter and driving method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143833A (en) * 2001-11-01 2003-05-16 Hitachi Ltd Gate driver of semiconductor switching element
JP2004364493A (en) * 2003-05-09 2004-12-24 Canon Inc Electric power conversion apparatus and control method therefor, as well as solar power generation arrangement
JP2010252443A (en) * 2009-04-13 2010-11-04 Toshiba Corp Power supply device for electric train
JP2015023587A (en) * 2013-07-16 2015-02-02 スパンション エルエルシー Dc-dc converter and driving method therefor

Similar Documents

Publication Publication Date Title
KR100790185B1 (en) Switching power supply device
JP6390823B2 (en) Switching power supply
US9525358B2 (en) Resonant converter, control circuit and associated control method with adaptive dead-time adjustment
JP5397024B2 (en) Switching power supply device, switching power supply control circuit, and switching power supply device control method
JP5463759B2 (en) Switching power supply device and switching power supply control circuit
US7339799B2 (en) Switching power supply
US9929661B2 (en) Switching power supply apparatus
US9077254B2 (en) Switching mode power supply using pulse mode active clamping
EP3522350B1 (en) Power conversion device
US20210305889A1 (en) Active clamp circuit
EP2661804B1 (en) Method and apparatus for resonant converter control
JP6839816B2 (en) Resonant power converter and abnormality determination method
US11133747B1 (en) Auto-tuned synchronous rectifier controller
US20120081084A1 (en) Controller with Valley Switching and Limited Maximum Frequency for Quasi-Resonant Power Converters
JP2007189877A (en) Resonant switching power supply device
KR102136564B1 (en) Power supply apparatus and driving method thereof
CN101442865A (en) Discharge lamp lighting apparatus
JP2009284667A (en) Power supply device, its control method, and semiconductor device
US11128228B2 (en) Switching power supply device
JP6017831B2 (en) Series resonance type DC / DC converter
JP6009027B1 (en) Power converter
US11671026B2 (en) Integrated self-driven active clamp
US20180083543A1 (en) Power supply control unit and isolation type switching power supply device
JP2017099182A (en) Resonance-type power supply device
JP7166843B2 (en) Power supply and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769713

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769713

Country of ref document: EP

Kind code of ref document: A1