WO2017163628A1 - Powder dispensing device, powder supply device, and powder dispensing method - Google Patents

Powder dispensing device, powder supply device, and powder dispensing method Download PDF

Info

Publication number
WO2017163628A1
WO2017163628A1 PCT/JP2017/003909 JP2017003909W WO2017163628A1 WO 2017163628 A1 WO2017163628 A1 WO 2017163628A1 JP 2017003909 W JP2017003909 W JP 2017003909W WO 2017163628 A1 WO2017163628 A1 WO 2017163628A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclined plane
granular material
gap
powder
opening
Prior art date
Application number
PCT/JP2017/003909
Other languages
French (fr)
Japanese (ja)
Inventor
古市 考次
竜一 半山
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2017163628A1 publication Critical patent/WO2017163628A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/04Apparatus specially adapted for applying particulate materials to surfaces the particulate material being projected, poured or allowed to flow onto the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials

Definitions

  • This invention relates to a technique for uniformly delivering powder particles.
  • the bottom plate is disposed so as to face the lower end of the conduit through which the granular material is circulated with a minute gap. And the quantity of the granular material discharged
  • a lithium ion electrode is manufactured by applying powder such as lithium cobaltate or graphite carbon as an active material to the surface of a metal foil constituting a screen electrode and fixing the powder. It is described. The above prior art is expected to be applied to such fields.
  • the above prior art is intended to control the discharge amount of the granular material, and can accurately control the amount of the granular material discharged per unit time even when the delivery amount is very small. It is expected. On the other hand, the spread of the granular material after being discharged is not taken into consideration, and it is not possible to form a uniform layer from the discharged granular material.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of delivering a certain amount of powder particles with a uniform spread.
  • one aspect of the granular material delivery device has an inclined plane inclined with respect to a horizontal plane, and the granular material flows down along the inclined plane and faces downward from the lower end of the inclined plane.
  • a shooter section that feeds the shooter, a vibration section that vibrates the shooter section, and a width direction parallel to the inclined plane and facing the inclined plane with a constant first gap in the horizontal width direction.
  • a barrier part extending upward from the opposing part, and the granular material stored between the barrier part and the inclined plane flows down from the opening along the inclined plane.
  • the method of delivering a granular material according to the present invention inclines across a shooter portion having an inclined plane inclined with respect to a horizontal plane and a fixed first gap in a horizontal width direction parallel to the inclined plane.
  • a first restricting portion having a facing portion that forms a slit-like opening having a longitudinal direction in a width direction between the facing portion and the inclined plane; and a barrier portion extending upward from the facing portion;
  • a slit-like shape that is constant in the width direction between the position facing the restricting portion and the lower end and is opposed to the inclined plane with a second gap smaller than the first gap and having the width direction as the longitudinal direction between the inclined plane.
  • the granular material applicable to these inventions is, for example, a granular material having a number average particle diameter of 2 ⁇ m to 100 ⁇ m.
  • the material for example, lithium cobaltate or graphite carbon can be used.
  • a granular material is stored in the space between the inclination plane of a shooter part, and the barrier site
  • a vibration part vibrates a shooter part, and a part of the stored granular material passes along the inclined plane through the opening between the opposing site
  • a 1st control part is downstream from a 1st control part in the flow direction of a granular material between the opposing position with a 1st control part among inclination planes, and the lower end of an inclined plane.
  • a second restricting portion facing the inclined plane with a second gap smaller than the first gap formed between the inclined plane and the inclined plane is provided.
  • one aspect of the granular material supply device is a substrate holding means for holding the substrate in a horizontal posture, the granular material delivery device according to the present invention, and the granular material.
  • a delivery device holding means for holding the delivery device with the lower end of the inclined plane facing the upper surface of the base material close to each other, and a moving means for relatively moving the base material and the granular material delivery device in the horizontal direction are provided.
  • the granular material is transferred from the granular material supply apparatus to the substrate surface while relatively moving the base material and the granular material supply apparatus held in a horizontal posture in the horizontal direction. Is sent out.
  • the powder particles can be uniformly sent in the width direction from the powder material delivery device, it is possible to form a uniform layer of the powder materials on the surface of the substrate.
  • the 2nd control part which has a 2nd gap smaller than a 1st gap for the granular material which flows down from the opening between the 1st control part which has a 1st gap, and an inclination plane. Through an opening between the flat surface and the inclined plane. By carrying out like this, a fixed amount of granular material can be sent out with uniform spread.
  • FIG. 1 is a view showing an embodiment of a powder and particle supply device according to the present invention.
  • This granular material supply apparatus 1 is an apparatus for forming a surface layer of granular material by thinly and uniformly dispersing the granular material on the surface of the substrate S.
  • This granular material supply apparatus 1 is an apparatus for forming a surface layer of granular material by thinly and uniformly dispersing the granular material on the surface of the substrate S.
  • it is used for the purpose of supplying a powdery or granular thin film material to the surface of the substrate S.
  • a thin film can be formed on the surface of the substrate S by heating or pressurizing the dispersed layer of the granular material to adhere to the surface of the substrate S.
  • a stage moving mechanism 2 is provided on a base 11, and the stage 3 is supported by the stage moving mechanism 2 so as to be movable in the XY plane (horizontal plane) shown in FIG. .
  • the stage 3 has a base material placement surface with a horizontal top surface, and holds the base material S placed on the top surface in a horizontal posture. Further, a support column 13 is erected upward from the base 11 that holds the substrate S, and a granular material delivery head 5 described later is attached to the support column 13.
  • the stage moving mechanism 2 includes an X-direction moving mechanism 21 that moves the stage 3 in the X direction, a Y-direction moving mechanism 22 that moves the stage 3 in the Y direction, and a ⁇ -rotation mechanism that rotates around an axis that faces the Z direction. 23.
  • the X-direction moving mechanism 21 has a structure in which a ball screw 212 is connected to a motor 211 and a nut 213 fixed to the Y-direction moving mechanism 22 is attached to the ball screw 212.
  • the guide rail 214 is fixed above the ball screw 212 and the motor 211 rotates, the Y-direction moving mechanism 22 moves smoothly along the guide rail 214 in the X direction along with the nut 213.
  • the Y-direction moving mechanism 22 also has a motor 221, a ball screw mechanism, and a guide rail 224.
  • the motor 221 rotates, the ⁇ -rotation mechanism 23 moves in the Y direction along the guide rail 224 by the ball screw mechanism.
  • the ⁇ rotation mechanism 23 rotates the stage 3 about the axis facing the Z direction by the motor 231.
  • the granular material delivery head 5 is attached to a support column 13 extending upward from the base 11.
  • the granular material sending head 5 stores therein the granular material to be dispersed on the substrate S, and sends the granular material to the surface of the substrate S so as to spread uniformly in the Y direction. It is.
  • the stage moving mechanism 2 moves the substrate S held on the stage 3 at a constant speed in the X direction in a state in which a certain amount of particles is delivered from the particle delivery head 5.
  • a layer having a certain thickness can be formed on the surface by a granular material.
  • FIG. 2A, FIG. 2B, FIG. 3A, and FIG. 3B are diagrams showing the structure of the powder body delivery head. More specifically, FIG. 2A is a side sectional view of the granular material delivery head 5, and FIG. 2B is a top view of the granular material delivery head 5 viewed from the direction of arrow V in FIG. 2A. 3A is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 2B.
  • the granular material delivery head 5 includes a casing 50 having a box shape with an upper part and a front part opened. More specifically, the housing 50 includes a bottom plate 51 having a flat upper surface 511, a back plate 52 rising from the (+ X) side end surface of the bottom plate 51, and the (+ Y) side and ( ⁇ Y) side of the bottom plate 51.
  • the outer shape is a combination of side plates 53 and 54 rising from the end face.
  • the casing 50 may be a combination of the above-described parts manufactured as separate members, or may be integrally formed in advance.
  • a rectangular plate-shaped first regulating plate 56 is provided substantially perpendicular to the inner bottom surface 511 of the bottom plate 51. Surrounded by the upper surface 511 of the bottom plate 51, the ( ⁇ X) side surface of the back plate 52, the (+ Y) side surface of the side plate 53, the ( ⁇ Y) side surface of the side plate 54, and the (+ X) side surface 561 of the first regulating plate 56.
  • the created space forms a storage space SP, and the granular material P is stored in the storage space SP.
  • the upper part of the storage space SP is open, and it is possible to replenish the powder P afterwards.
  • a top plate that covers the upper portion of the storage space SP may be separately provided.
  • the lower end surface 562 of the first regulating plate 56 is not in contact with the upper surface 511 of the bottom plate 51, and a minute gap is provided between the first regulating plate 56 and the bottom plate 51.
  • the lower end surface 562 of the first regulating plate 56 is a plane parallel to the upper surface 511 of the bottom plate 51, and the lower end surface 562 of the first regulating plate 56 and the upper surface of the bottom plate 51 are shown in FIG. 3A. 511 is in close proximity to each other with a certain small gap G1 in the horizontal direction.
  • a slit-like opening A1 whose longitudinal direction is the Y direction is formed by the lower end portion of the first regulating plate 56 and the upper surface 511 of the bottom plate 51 in the lower part of the storage space SP. It leaks out of the storage space SP through the opening A1.
  • a vibration unit 55 is attached to the housing 50, and the vibration unit 55 is driven and controlled by a vibration control unit 62 provided in the control unit 6.
  • the vibration unit 55 In response to a control command from the vibration control unit 62, the vibration unit 55 generates vibration with an appropriate frequency and amplitude, for example, ultrasonic vibration, thereby vibrating the housing 50 in the direction of arrow Dv shown in FIG. 2A.
  • the vibration unit 55 When the bottom plate 51 vibrates, the leakage of the granular material P from the storage space SP through the opening A1 is promoted. When a constant vibration is applied, a certain amount of powder P leaks continuously from the opening A1.
  • the housing 50 is supported by the support mechanism 14 so that the bottom plate 51 has a predetermined gradient with respect to the horizontal plane.
  • an elevating member 141 of a support mechanism 14 is attached to a support column 13 extending upward from the base 11 so as to be movable up and down.
  • the elevating member 141 is attached with a rotating member 142 that is rotatable about an axis parallel to the Y direction with respect to the elevating member 141.
  • the rotating member 142 is attached to the (+ Y) side surface of the casing 50 of the granular material delivery head 5 to support the casing 50.
  • the elevating member 141 and the rotating member 142 function as the support mechanism 14.
  • the height of the elevating member 141 from the base 11, that is, the position in the Z direction, and the rotation angle of the rotation member 142 are adjusted as appropriate by the operator's prior adjustment work.
  • the height of the elevating member 141 By changing the height of the elevating member 141, the distance between the granular material delivery head 5 and the substrate S in the Z direction can be changed. Therefore, it is possible to appropriately adjust the height of the granular material delivery head 5 with respect to the base material S having various thicknesses.
  • the rotation angle of the rotation member 142 it is possible to adjust the tilt angle of the powder delivery head 5 and control the flow rate of the powder P to be described later.
  • the casing 50 is supported by such a support mechanism 14 so that the upper surface 511 of the bottom plate 51 has a downward slope from the storage section SP side toward the ( ⁇ X) direction. Therefore, the granular material P leaked from the opening A1 is conveyed in the ( ⁇ X) direction along the upper surface 511 by the vibration of the bottom plate 51. More precisely, the conveying direction of the granular material P is the lower left direction in the figure as shown by the arrow Dt in FIG. 2A. That is, the transport direction Dt is a direction parallel to the upper surface 511 of the bottom plate 51, and includes a ( ⁇ X) direction component and a ( ⁇ Z) direction component. More generally, the direction in which the gradient of the upper surface 511 of the bottom plate 51 is the largest, that is, the direction in which the sphere placed on the upper surface 511 rolls is the transport direction Dt.
  • the upper surface 511 of the bottom plate 51 is thinly and uniformly covered with the granular material P on the downstream side of the opening A1 in the transport direction Dt.
  • the layer of the granular material P that covers the upper surface 511 of the bottom plate 51 with a certain thickness is further conveyed downstream.
  • a direction parallel to the upper surface 511 of the bottom plate 51 and perpendicular to the conveying direction Dt of the powder P is referred to as a “width direction” Dw.
  • the Y direction and the width direction Dw coincide, but more generally, the width direction Dw is a direction parallel to and parallel to the upper surface 511 of the bottom plate 51.
  • the width direction Dw and the conveyance direction Dt are orthogonal to each other. According to such a definition, the longitudinal direction of the opening A1 coincides with the width direction Dw.
  • the second regulating plate 57 is disposed on the downstream side of the opening A1, more specifically, slightly upstream of the lower end portion 512 of the bottom plate 51. Similar to the first restriction plate 56, the second restriction plate 57 is a flat plate member that is supported perpendicular to the upper surface 511 of the bottom plate 51.
  • the lower end surface 572 of the second restricting plate is a plane parallel to the upper surface 511 of the bottom plate 51 and is in close proximity to the upper surface 511 of the bottom plate 51 with a certain small gap G2 in the horizontal direction. For this reason, a slit-like opening A ⁇ b> 2 whose longitudinal direction is the Y direction is formed between the second regulating plate 57 and the bottom plate 51.
  • the gap G2 is set to a smaller value than the gap G1. Therefore, a part of the layer of the granular material P conveyed along the upper surface 511 of the bottom plate 51 is scraped off by the (+ X) side surface 571 of the second regulating plate 57 and has a thickness corresponding to the gap G2. Only is conveyed downstream from the opening A2. The layer of the granular material P conveyed downstream of the opening A2 falls downward from the lower end portion 512 of the bottom plate 51. The end side of the lower end portion 512 of the bottom plate 51 has a linear shape parallel to the width direction Dw. Thus, the granular material P is finally delivered from the granular material delivery head 5.
  • casing 50 has the function as a shooter which sends out the granular material P uniformly by predetermined width.
  • the powder body P falling from the lower end portion 512 of the bottom plate 51 lands on the surface of the base material S.
  • the substrate S is horizontally conveyed in the conveyance direction Dx at a constant speed by the stage moving mechanism 2, the landing position of the granular material P on the surface of the substrate S changes every moment, whereby the surface of the substrate S is changed. It will be covered by the layer of the granular material P.
  • the thickness of the layer of the granular material P formed on the surface of the base material S is the amount of the granular material P delivered from the granular material delivery head 5 per unit time (delivery amount), and the thickness of the base material S. It depends on the moving speed. In order to stabilize the thickness of the layer of the granular material P, it is preferable that the conveying speed of the granular material P in the granular material delivery head 5 and the moving speed of the base material S are substantially matched. Accordingly, the layer thickness of the granular material P is substantially controlled by the amount of the granular material P delivered from the granular material delivery head 5.
  • the conveyance speed of the granular material P and the moving speed of the base material S in the granular material delivery head 5 are substantially the same, the granular material delivered from the opening A2 between the second regulating plate 57 and the bottom plate 51.
  • the layer thickness of P is approximately the layer thickness of the granular material P on the surface of the substrate S.
  • the second restriction plate 57 is fixed to the housing 50 by a fixing member 573 such as a screw or a clamp (in this embodiment, fixed to the side plates 53 and 54). It is possible to temporarily relax or release the fixing by the fixing member 573 and change the distance from the bottom plate 51.
  • the gap G2 can be adjusted by fixing the second restriction plate 57 with the fixing member 573 with a shim or spacer having an appropriate thickness interposed between the bottom plate 51 and the second restriction plate 57, for example. is there. By adjusting the gap G2 in this way, it is possible to increase or decrease the layer thickness of the granular material P delivered from the granular material delivery head 5.
  • this purpose can be achieved by adjusting the gradient of the bottom plate 51 to control the flow speed of the powder P. Since the fluidity of the powder P varies depending on the type, it is desirable that the gradient of the bottom plate 51 is set according to the type of the powder P. Further, in order to prevent the falling granular material P from scattering and the layer thickness from fluctuating, it is desirable that the distance between the lower end portion 512 of the bottom plate 51 and the surface of the substrate S is as small as possible.
  • the support mechanism 14 can be used for these purposes.
  • FIG. 4 is a diagram schematically showing an actual measurement example of the layer thickness of the granular material.
  • the layer thickness was larger at the center of the opening A1 than at the end in the width direction Dw.
  • one of the causes is that the gap size fluctuates due to vibration of each member due to vibration.
  • the second regulating plate 57 facing the bottom plate 51 with a smaller gap G2 is provided on the downstream side of the first regulating plate 56 facing the bottom plate 51 with a relatively wide gap G1 as in the above embodiment.
  • a substantially uniform layer thickness corresponding to the size of the gap G2 was obtained. This is considered to be because even if there is some unevenness in the layer thickness on the upstream side of the opening A2, the portion thicker than the gap G2 is rubbed off by the second restricting plate 57 and is made uniform on the downstream side. .
  • the size of the gap G1 is suitably about 5 to 20 times the particle diameter of the powder P.
  • the gap G2 is about 1 to 10 times the particle diameter (where G1> G2), a layer thickness substantially equal to the gap G2 can be obtained.
  • a particle diameter can be represented, for example by a number average particle diameter.
  • the supply amount of the granular material P is adjusted by regulating the layer of the granular material P to a certain thin layer at the opening A1 formed between the first regulating plate 56 and the bottom plate 51. And the layer thickness of the granular material P finally sent out by opening A2 which the 2nd control board 57 forms between the baseplates 51 is prescribed
  • the thin layer of the granular material P with little thickness nonuniformity can be formed also in the width direction Dw.
  • the particle size distribution of the used granular material P is as small as possible, that is, the particle diameter is as small as possible. It is desirable that they are well aligned. For this reason, it is preferable to use the granular material P classified using an appropriate classification method.
  • FIG. 5 is a flowchart showing a process for forming a granular material layer on a substrate by the granular material supply device.
  • the operating conditions of each part of the apparatus are set (step S101).
  • the operating conditions to be set are the height and inclination of the powder and particle sending head 5, the size of the gap G2, the frequency and amplitude of the vibration generated by the vibration unit 55, and the like. The relationship between these operating conditions and the layer thickness to be formed can be obtained experimentally in advance.
  • the base material S is placed on the stage 3 and the granular material P is put into the storage space SP (step S102). Then, when the vibration control unit 62 starts the vibration to the housing 50 by the vibration unit 55 (step S103), the granular material P in the storage space SP leaks from the opening A1, and the upper surface 511 of the bottom plate 51 is discharged. The flow down in the conveyance direction Dt is started. The layer of the granular material P is finally regulated in thickness by the second regulating plate 57 and falls from the lower end portion 512 of the bottom plate 51.
  • the stage control unit 61 operates the stage moving mechanism 2 at an appropriate timing to move the base material S on the stage 3 (step S104), whereby the powder P from the powder feed head 5 to the base S is transferred. Supply is started and the granular material P adheres to the surface of the base material S.
  • the stage moving mechanism 2 horizontally moves the base material S at a constant speed, so that the surface of the base material S is made uniform. A layer of the granular material P having such a thickness is formed.
  • the vibration and stage movement are sequentially stopped (steps S106 and S107), and the supply of the granular material P to the base material S is stopped. . In this way, a uniform layer of the powder body P can be formed on the substrate S.
  • the granular material supply head 5 functions as the “powder supply apparatus” of the present invention.
  • the stage 3 functions as the “base material holding means” of the present invention, and the stage moving mechanism 2 functions as the “moving means” of the present invention.
  • pillar 13 and the support mechanism 14 function as the "sending-device holding means" of this invention integrally.
  • the housing 50 particularly the bottom plate 51 functions as the “shooter portion” of the present invention
  • the upper surface 511 of the bottom plate 51 is the “inclined plane” of the present invention
  • the lower end portion 512 Corresponds to the “lower end” of the present invention.
  • the vibration unit 55 functions as the “excitation unit” of the present invention.
  • the first restricting plate 56 functions as the “first restricting portion” of the present invention
  • the side surface 561 and the lower end surface 562 correspond to the “barrier part” and the “opposing part” of the present invention, respectively.
  • the second restricting plate 57 functions as the “second restricting portion” of the present invention.
  • the gaps G1 and G2 correspond to the “first gap” and the “second gap” of the present invention, respectively.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
  • the above embodiment is configured as a “powder supply device” that forms a thin layer of the powder P on the substrate S, and the “substrate holding means” and “movement means” of the present invention.
  • the present invention may be embodied as a mere “powder delivery device” that does not have these configurations. That is, the granular material delivery head 5 in the above-described embodiment can function alone as the “powder material delivery device” of the present invention.
  • the above embodiment does not have a mechanism for adjusting the gap G1 between the first regulating plate 56 and the bottom plate 51.
  • the first restriction plate 56 may be configured to be able to approach and separate from the bottom plate 51.
  • the method for fixing these restricting plates is not limited to the above embodiment and is arbitrary.
  • first restriction plate 56 and the second restriction plate 57 in the above embodiment are provided perpendicular to the bottom plate 51.
  • these restricting plates are strictly perpendicular to the bottom plate 51.
  • the powder P that has been scraped out flows over the upper portion of the restricting plate to the downstream side, or the powder P that is originally to be scraped is restricted. It may happen that it is guided by the opening while being compressed by the plate and conveyed downstream.
  • the layer thickness of the granular material P sent out by performing the two-step layer thickness regulation by the first regulation plate 56 and the second regulation plate 57 is intended to be uniform. It is possible to further increase the number of thickness regulation steps. However, according to the experiment by the present inventor, even if the number of layers for regulating the layer thickness is set to three or more, no obvious improvement in effect is recognized in terms of the uniformity of the layer thickness.
  • the base material S in the said embodiment is a plate-shaped thing
  • this invention also to the use which forms the layer of the granular material P on the sheet-like base material surface.
  • various transport mechanisms capable of transporting the sheet-like base material may be combined with the granular material delivery head 5, for example, using a sheet-like base material that is transported in a so-called roll-to-roll system. Is possible.
  • the length in the width direction of the inclined plane is lower than the position facing the first restricting portion. It may be constant during the period. According to such a configuration, since the granular material that has passed through the opening between the first restricting portion and the inclined plane is conveyed along the inclined plane, it is possible to prevent disturbance of the layer thickness during conveyance. it can.
  • the second restricting portion may be movable relative to the inclined plane, and the size of the second gap may be adjustable by changing the distance between the second restricting portion and the inclined plane. According to such a structure, it becomes possible to adjust the layer thickness of the granular material sent out by the magnitude
  • the size of the first gap may be 5 to 20 times the number average particle size of the granular material.
  • the first gap is too small, the supply amount of the granular material is insufficient, and when it is too wide, the uniformity of the layer thickness in the width direction is deteriorated.
  • the first gap is in the above numerical range, it is possible to manage the layer thickness of the granular material with good controllability in the second gap.
  • each of the first restricting portion and the second restricting portion may be a flat plate member perpendicular to the inclined plane. According to such a configuration, since the configuration is simple, the apparatus cost can be reduced. Further, by scraping excess powder particles in a plane perpendicular to the inclined plane, the powder particles passing through the opening are prevented from being compressed by the first or second restricting portion.
  • the lower end of the inclined plane may have a straight side parallel to the width direction. According to such a structure, it is possible to send a granular material from the lower end of an inclined plane, maintaining a uniform layer in the width direction.
  • the delivery device holding means may be capable of changing the gradient of the inclined plane.
  • rate of a granular material can be adjusted with the magnitude
  • the delivery amount of the granular material per unit time can be increased or decreased.
  • At least one of the substrate holding means and the delivery device holding means may be capable of adjusting the gap between the lower end of the inclined plane and the substrate upper surface. According to such a structure, it becomes possible to supply the granular material to a base material, maintaining a suitable gap corresponding to the base material of various thickness.
  • the present invention is suitable for applications in which powder particles are sent out uniformly and particularly thinly, and can be applied to various industrial fields depending on the type of powder particles used.
  • it is suitable for the purpose of manufacturing an electrode of a chemical battery such as a lithium ion battery by applying a granular active material to the surface of a metal foil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

The purpose of the present invention is to enable a fixed amount of powder to be dispensed in a uniformly spreading manner. Provided is a powder dispensing device comprising: a chute section 50 having a sloped flat surface 511 tilted relative to a horizontal plane, the sloped flat surface 511 allowing powder P to flow down along the sloped flat surface and dispensing the powder P downward from the lower end of the sloped flat surface; a vibration section 55 for vibrating the chute section; a first restriction section 56 having a facing portion which, in a width direction parallel to the sloped flat surface and being horizontal, faces the sloped flat surface with a constant first gap therebetween, and which forms a slit-like opening A1 between the facing portion and the sloped flat surface, the opening A1 having a longitudinal direction aligned with the width direction, the first restriction section 56 also having a barrier wall portion extending upward from the facing portion, the first restriction section 56 allowing powder accumulated between the barrier wall portion and the sloped flat surface to flow down from the opening along the sloped flat surface; and a second restriction section 57 which, between the portion of the sloped flat surface which faces the first restriction section and the lower end of the sloped flat surface, faces the sloped flat surface with a second gap therebetween, the second gap being constant in the width direction and being smaller than the first gap, the second restriction section 57 forming a slit-like opening A2 between the second restriction section 57 and the sloped flat surface, the opening A2 having a longitudinal direction aligned with the width direction.

Description

粉粒体送出装置、粉粒体供給装置および粉粒体送出方法Granule delivery device, powder delivery device, and powder delivery method
 この発明は、粉粒体を均一に送出するための技術に関するものである。 This invention relates to a technique for uniformly delivering powder particles.
 デバイス製造や薄膜形成等の表面処理のために、基材の表面に薄く均一な粉粒体の層を形成することが必要な場合がある。この目的のための粉粒体の送出装置を構成するに際しては、送出される粉粒体の量が一定であり、かつ送出後の粉粒体が位置による偏りなく均一に広がることが求められる。このうち一定量の粉粒体を送出するための技術としては、例えば特許文献1に記載されたものがある。 In some cases, it is necessary to form a thin and uniform layer of powder on the surface of the substrate for surface treatment such as device manufacturing or thin film formation. In constructing the powder delivery device for this purpose, it is required that the amount of the powder delivered is constant, and that the powder after delivery is spread uniformly without deviation depending on the position. Among these, as a technique for delivering a certain amount of powder particles, there is one described in Patent Document 1, for example.
 特許文献1に記載の技術では、粉粒体を流通させる管路の下端に対し、微小な隙間を以って底板が対向配置される。そして、管路および底板に与える振動の振動数や振幅を制御することで、隙間を介して管路から少しずつ排出される粉粒体の量が調整される。また、特許文献2には、スクリーン電極を構成する金属箔の表面に活物質材料としてのコバルト酸リチウムやグラファイトカーボン等の粉体を塗布し、これを定着させることでリチウムイオン用電極を製造することが記載されている。上記従来技術はこのような分野への応用も期待される。 In the technique described in Patent Document 1, the bottom plate is disposed so as to face the lower end of the conduit through which the granular material is circulated with a minute gap. And the quantity of the granular material discharged | emitted little by little from a pipe line through a clearance gap is adjusted by controlling the frequency and amplitude of the vibration given to a pipe line and a baseplate. In Patent Document 2, a lithium ion electrode is manufactured by applying powder such as lithium cobaltate or graphite carbon as an active material to the surface of a metal foil constituting a screen electrode and fixing the powder. It is described. The above prior art is expected to be applied to such fields.
特開2008-221116号公報JP 2008-221116 A 特開2010-207780号公報JP 2010-207780 A
 上記従来技術は、粉粒体の排出量を制御しようとするものであり、送出量が微少である場合でも、単位時間当たりに排出される粉粒体の量を精密に制御することができるものと期待される。一方、排出された後の粉粒体の広がりについては考慮されておらず、定量で排出された粉粒体により均一な層を形成することができるものとはなっていない。 The above prior art is intended to control the discharge amount of the granular material, and can accurately control the amount of the granular material discharged per unit time even when the delivery amount is very small. It is expected. On the other hand, the spread of the granular material after being discharged is not taken into consideration, and it is not possible to form a uniform layer from the discharged granular material.
 この発明は上記課題に鑑みなされたものであり、一定量の粉粒体を均一な広がりで送出することのできる技術を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of delivering a certain amount of powder particles with a uniform spread.
 この発明にかかる粉粒体送出装置の一の態様は、上記目的を達成するため、水平面に対し傾いた傾斜平面を有し、粉粒体を傾斜平面に沿って流下させ傾斜平面の下端から下向きに送出するシューター部と、シューター部を振動させる加振部と、傾斜平面に平行かつ水平な幅方向において一定の第1ギャップを隔てて傾斜平面と対向し傾斜平面との間で幅方向を長手方向とするスリット状の開口を形成する対向部位と前記対向部位から上方に延びる障壁部位とを有し、障壁部位と傾斜平面との間に貯留した粉粒体を開口から傾斜平面に沿って流下させる第1規制部と、傾斜平面のうち第1規制部との対向位置と下端との間で、幅方向において一定かつ前記第1ギャップより小さい第2ギャップを隔てて傾斜平面と対向し、傾斜平面との間で幅方向を長手方向とするスリット状の開口を形成する第2規制部とを備えている。 In order to achieve the above object, one aspect of the granular material delivery device according to the present invention has an inclined plane inclined with respect to a horizontal plane, and the granular material flows down along the inclined plane and faces downward from the lower end of the inclined plane. A shooter section that feeds the shooter, a vibration section that vibrates the shooter section, and a width direction parallel to the inclined plane and facing the inclined plane with a constant first gap in the horizontal width direction. And a barrier part extending upward from the opposing part, and the granular material stored between the barrier part and the inclined plane flows down from the opening along the inclined plane. A first regulating portion to be opposed to the inclined plane with a second gap that is constant in the width direction and smaller than the first gap between the opposed position of the first regulating portion and the lower end of the inclined plane, and is inclined Width between planes And a second regulating portion for forming a slit-shaped opening that the direction to the longitudinal direction.
 この発明にかかる粉粒体送出方法は、上記目的を達成するため、水平面に対し傾いた傾斜平面を有するシューター部と、傾斜平面に平行かつ水平な幅方向において一定の第1ギャップを隔てて傾斜平面と対向し傾斜平面との間で幅方向を長手方向とするスリット状の開口を形成する対向部位と対向部位から上方に延びる障壁部位とを有する第1規制部と、傾斜平面のうち第1規制部との対向位置と前記下端との間で幅方向において一定かつ第1ギャップより小さい第2ギャップを隔てて傾斜平面と対向し傾斜平面との間で幅方向を長手方向とするスリット状の開口を形成する第2規制部とを配置する工程と、障壁部位と傾斜平面との間に粉粒体を貯留させシューター部を振動させて、第1規制部と傾斜平面との間の開口から傾斜平面に沿って粉粒体を流下させる工程と、流下した粉粒体を第2規制部と傾斜平面との間の開口に通過させる工程と、第2規制部と傾斜平面との間の開口を通過した粉粒体を、傾斜平面の下端から下向きに送出する工程とを備えている。 In order to achieve the above-mentioned object, the method of delivering a granular material according to the present invention inclines across a shooter portion having an inclined plane inclined with respect to a horizontal plane and a fixed first gap in a horizontal width direction parallel to the inclined plane. A first restricting portion having a facing portion that forms a slit-like opening having a longitudinal direction in a width direction between the facing portion and the inclined plane; and a barrier portion extending upward from the facing portion; A slit-like shape that is constant in the width direction between the position facing the restricting portion and the lower end and is opposed to the inclined plane with a second gap smaller than the first gap and having the width direction as the longitudinal direction between the inclined plane. From the opening between the first restricting portion and the inclined plane by arranging the second restricting portion forming the opening, and storing the granular material between the barrier portion and the inclined plane to vibrate the shooter portion. Along the inclined plane A step of flowing the granular material, a step of passing the flowing granular material through the opening between the second restricting portion and the inclined plane, and a powder passing through the opening between the second restricting portion and the inclined plane And delivering the body downward from the lower end of the inclined plane.
 これらの発明に適用可能な粉粒体は、例えば個数平均粒径が2μmないし100μmの粒状物質である。その材料としては、例えばコバルト酸リチウムやグラファイトカーボン等を用いることができる。本発明の構成によれば、シューター部の傾斜平面と、第1規制部の障壁部位との間の空間に粉粒体が貯留される。そして、加振部がシューター部を振動させることにより、貯留された粉粒体の一部が第1規制部の対向部位とシューター部の傾斜平面との間の開口を通って傾斜平面に沿ってその下端に向けて流下する。幅方向に一定の第1ギャップを有する開口を介して粉粒体を流下させることで、一定量でかつ幅方向において比較的均一な広がりをもって粉粒体が送出されると期待される。 The granular material applicable to these inventions is, for example, a granular material having a number average particle diameter of 2 μm to 100 μm. As the material, for example, lithium cobaltate or graphite carbon can be used. According to the structure of this invention, a granular material is stored in the space between the inclination plane of a shooter part, and the barrier site | part of a 1st control part. And a vibration part vibrates a shooter part, and a part of the stored granular material passes along the inclined plane through the opening between the opposing site | part of a 1st control part, and the inclined plane of a shooter part. It flows down toward its lower end. It is expected that the powder particles are sent out with a constant amount and a relatively uniform spread in the width direction by flowing down the powder particles through an opening having a constant first gap in the width direction.
 ただし、本願発明者が、第1規制部と傾斜平面との間の開口から送出される粉粒体の量の幅方向の分布を詳しく分析したところ、幅方向における開口の中央部分で比較的送出量が多く、端部ではより少なくなることが明らかになった。そこで、本発明では、傾斜平面のうち第1規制部との対向位置と傾斜平面の下端との間、つまり粉粒体の流下方向において第1規制部よりも下流側に、第1規制部が傾斜平面との間になす第1ギャップよりも小さい第2ギャップをもって傾斜平面と対向する第2規制部が設けられる。傾斜平面の下端により近い位置で第2規制部と傾斜平面との間の開口を通過させることにより、幅方向における粉粒体の送出量の偏りを抑制し、均一な広がりをもって送出することが可能となる。 However, when the inventor of the present application has analyzed in detail the distribution in the width direction of the amount of the granular material sent from the opening between the first restricting portion and the inclined plane, it is relatively sent out at the central portion of the opening in the width direction. It was found that the amount was large and less at the edges. So, in this invention, a 1st control part is downstream from a 1st control part in the flow direction of a granular material between the opposing position with a 1st control part among inclination planes, and the lower end of an inclined plane. A second restricting portion facing the inclined plane with a second gap smaller than the first gap formed between the inclined plane and the inclined plane is provided. By passing through the opening between the second restricting portion and the inclined plane at a position closer to the lower end of the inclined plane, it is possible to suppress unevenness in the amount of powder particles sent in the width direction and to send out with a uniform spread. It becomes.
 この発明にかかる粉粒体供給装置の一の態様は、上記目的を達成するため、基材を水平姿勢に保持する基材保持手段と、本発明にかかる粉粒体送出装置と、粉粒体送出装置を、傾斜平面の下端を基材の上面に近接対向させて保持する送出装置保持手段と、基材と粉粒体送出装置とを水平方向に相対移動させる移動手段とを備えている。 In order to achieve the above object, one aspect of the granular material supply device according to the present invention is a substrate holding means for holding the substrate in a horizontal posture, the granular material delivery device according to the present invention, and the granular material. A delivery device holding means for holding the delivery device with the lower end of the inclined plane facing the upper surface of the base material close to each other, and a moving means for relatively moving the base material and the granular material delivery device in the horizontal direction are provided.
 このように構成された粉粒体供給装置では、水平姿勢に保持された基材と粉粒体送出装置とを水平方向に相対移動させながら、粉粒体送出装置から基材表面に粉粒体が送出される。上記のように粉粒体送出装置から定量かつ幅方向において均一に粉粒体を送出することができるため、基材の表面に粉粒体による均一な層を形成することが可能である。 In the granular material supply apparatus configured as described above, the granular material is transferred from the granular material supply apparatus to the substrate surface while relatively moving the base material and the granular material supply apparatus held in a horizontal posture in the horizontal direction. Is sent out. As described above, since the powder particles can be uniformly sent in the width direction from the powder material delivery device, it is possible to form a uniform layer of the powder materials on the surface of the substrate.
 上記のように、本発明によれば、第1ギャップを有する第1規制部と傾斜平面との間の開口から流下する粉粒体を、第1ギャップより小さい第2ギャップを有する第2規制部と傾斜平面との間の開口を通過させて送出する。こうすることにより、一定量の粉粒体を均一な広がりで送出することができる。 As mentioned above, according to this invention, the 2nd control part which has a 2nd gap smaller than a 1st gap for the granular material which flows down from the opening between the 1st control part which has a 1st gap, and an inclination plane. Through an opening between the flat surface and the inclined plane. By carrying out like this, a fixed amount of granular material can be sent out with uniform spread.
 この発明の前記ならびにその他の目的と新規な特徴は、添付図面を参照しながら次の詳細な説明を読めば、より完全に明らかとなるであろう。ただし、図面は専ら解説のためのものであって、この発明の範囲を限定するものではない。 The above and other objects and novel features of the present invention will become more fully apparent when the following detailed description is read with reference to the accompanying drawings. However, the drawings are for explanation only and do not limit the scope of the present invention.
この発明にかかる粉粒体供給装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the granular material supply apparatus concerning this invention. 粉粒体送出ヘッドの構造を示す第1の図である。It is a 1st figure which shows the structure of a granular material delivery head. 粉粒体送出ヘッドの構造を示す第2の図である。It is a 2nd figure which shows the structure of a granular material delivery head. 粉粒体送出ヘッドの構造を示す第3の図である。It is a 3rd figure which shows the structure of a granular material delivery head. 粉粒体送出ヘッドの構造を示す第4の図である。It is a 4th figure which shows the structure of a granular material delivery head. 粉粒体の層の厚さの実測例を模式的に示す図である。It is a figure which shows typically the measurement example of the thickness of the layer of a granular material. 基材に粉粒体の層を形成するための処理を示すフローチャートである。It is a flowchart which shows the process for forming the layer of a granular material on a base material.
 図1はこの発明にかかる粉粒体供給装置の一実施形態を示す図である。この粉粒体供給装置1は、基材Sの表面に、粉粒体を薄く均一に散布して粉粒体による表面層を形成するための装置である。例えば基材Sの表面に薄膜を形成するために、粉末状または粒状の薄膜材料を基材Sの表面に供給する目的で用いられる。散布された粉粒体の層を加熱または加圧して基材S表面に密着させることにより、基材Sの表面に薄膜を形成することができる。 FIG. 1 is a view showing an embodiment of a powder and particle supply device according to the present invention. This granular material supply apparatus 1 is an apparatus for forming a surface layer of granular material by thinly and uniformly dispersing the granular material on the surface of the substrate S. For example, in order to form a thin film on the surface of the substrate S, it is used for the purpose of supplying a powdery or granular thin film material to the surface of the substrate S. A thin film can be formed on the surface of the substrate S by heating or pressurizing the dispersed layer of the granular material to adhere to the surface of the substrate S.
 この粉粒体供給装置1では、基台11上にステージ移動機構2が設けられ、ステージ移動機構2によりステージ3が図1に示すX-Y平面(水平面)内で移動可能に支持されている。ステージ3は上面が水平な基材載置面となっており、上面に載置される基材Sを水平姿勢に保持する。また、基材Sを保持する基台11から上方に向けて支柱13が立設されており、支柱13には後述する粉粒体送出ヘッド5が取り付けられる。 In this granular material supply apparatus 1, a stage moving mechanism 2 is provided on a base 11, and the stage 3 is supported by the stage moving mechanism 2 so as to be movable in the XY plane (horizontal plane) shown in FIG. . The stage 3 has a base material placement surface with a horizontal top surface, and holds the base material S placed on the top surface in a horizontal posture. Further, a support column 13 is erected upward from the base 11 that holds the substrate S, and a granular material delivery head 5 described later is attached to the support column 13.
 ステージ移動機構2は、下段から順に、ステージ3をX方向に移動させるX方向移動機構21、Y方向に移動させるY方向移動機構22、および、Z方向を向く軸を中心に回転させるθ回転機構23を有する。X方向移動機構21は、モータ211にボールねじ212が接続され、さらに、Y方向移動機構22に固定されたナット213がボールねじ212に取り付けられた構造となっている。ボールねじ212の上方にはガイドレール214が固定され、モータ211が回転すると、ナット213とともにY方向移動機構22がガイドレール214に沿ってX方向に滑らかに移動する。 The stage moving mechanism 2 includes an X-direction moving mechanism 21 that moves the stage 3 in the X direction, a Y-direction moving mechanism 22 that moves the stage 3 in the Y direction, and a θ-rotation mechanism that rotates around an axis that faces the Z direction. 23. The X-direction moving mechanism 21 has a structure in which a ball screw 212 is connected to a motor 211 and a nut 213 fixed to the Y-direction moving mechanism 22 is attached to the ball screw 212. When the guide rail 214 is fixed above the ball screw 212 and the motor 211 rotates, the Y-direction moving mechanism 22 moves smoothly along the guide rail 214 in the X direction along with the nut 213.
 Y方向移動機構22もモータ221、ボールねじ機構およびガイドレール224を有し、モータ221が回転するとボールねじ機構によりθ回転機構23がガイドレール224に沿ってY方向に移動する。θ回転機構23はモータ231によりステージ3をZ方向を向く軸を中心に回転させる。以上の構成により、粉粒体送出ヘッド5の基材Sに対する相対的な移動方向および向きが変更可能とされる。ステージ移動機構2の各モータは、装置各部の動作を制御する制御部6に設けられたステージ制御部61により制御される。 The Y-direction moving mechanism 22 also has a motor 221, a ball screw mechanism, and a guide rail 224. When the motor 221 rotates, the θ-rotation mechanism 23 moves in the Y direction along the guide rail 224 by the ball screw mechanism. The θ rotation mechanism 23 rotates the stage 3 about the axis facing the Z direction by the motor 231. With the above configuration, the relative movement direction and orientation of the powder body delivery head 5 with respect to the base material S can be changed. Each motor of the stage moving mechanism 2 is controlled by a stage control unit 61 provided in the control unit 6 that controls the operation of each unit of the apparatus.
 基台11から上向きに延びる支柱13には粉粒体送出ヘッド5が取り付けられている。粉粒体送出ヘッド5は、基材Sに散布されるべき粉粒体を内部に貯留し、一定量かつY方向に均一に広がるように、粉粒体を基材Sの表面に送出するものである。粉粒体送出ヘッド5から一定量の粉粒体が送出される状態で、ステージ移動機構2がステージ3に保持された基材SをX方向に一定速度で移動させることにより、基材Sの表面に粉粒体による一定厚さの層を形成することができる。 The granular material delivery head 5 is attached to a support column 13 extending upward from the base 11. The granular material sending head 5 stores therein the granular material to be dispersed on the substrate S, and sends the granular material to the surface of the substrate S so as to spread uniformly in the Y direction. It is. The stage moving mechanism 2 moves the substrate S held on the stage 3 at a constant speed in the X direction in a state in which a certain amount of particles is delivered from the particle delivery head 5. A layer having a certain thickness can be formed on the surface by a granular material.
 図2A、図2B、図3Aおよび図3Bは粉粒体送出ヘッドの構造を示す図である。より具体的には、図2Aは粉粒体送出ヘッド5の側面断面図であり、図2Bは粉粒体送出ヘッド5を図2Aの矢印V方向から見た上面図である。また、図3Aは図2AのA-A線断面図であり、図3Bは図2BのB-B線断面図である。 FIG. 2A, FIG. 2B, FIG. 3A, and FIG. 3B are diagrams showing the structure of the powder body delivery head. More specifically, FIG. 2A is a side sectional view of the granular material delivery head 5, and FIG. 2B is a top view of the granular material delivery head 5 viewed from the direction of arrow V in FIG. 2A. 3A is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 2B.
 図2Aおよび図2Bに示すように、粉粒体送出ヘッド5は、上部および前方が開放された箱型を有する筐体50を備えている。より具体的には、筐体50は、上面511が平面となった底板51と、底板51の(+X)側端面から立ち上がる背面板52と、底板51の(+Y)側および(-Y)側端面から立ち上がる側板53,54とを組み合わせた外形を有している。なお、筐体50は別部材として製造された上記各部が組み合わされたものでもよく、また予め一体形成されたものであってもよい。 As shown in FIG. 2A and FIG. 2B, the granular material delivery head 5 includes a casing 50 having a box shape with an upper part and a front part opened. More specifically, the housing 50 includes a bottom plate 51 having a flat upper surface 511, a back plate 52 rising from the (+ X) side end surface of the bottom plate 51, and the (+ Y) side and (−Y) side of the bottom plate 51. The outer shape is a combination of side plates 53 and 54 rising from the end face. The casing 50 may be a combination of the above-described parts manufactured as separate members, or may be integrally formed in advance.
 底板51の上面中央付近には、矩形平板状の第1規制板56が底板51の内底面511に対し略垂直に設けられている。底板51の上面511、背面板52の(-X)側側面、側板53の(+Y)側側面、側板54の(-Y)側側面および第1規制板56の(+X)側側面561に囲まれた空間が貯留空間SPをなしており、この貯留空間SPに粉粒体Pが貯留される。貯留空間SPの上部は開放されており、事後的に粉粒体Pを補充することも可能である。また貯留空間SPの上部を覆う天板が別途設けられてもよい。 Near the center of the upper surface of the bottom plate 51, a rectangular plate-shaped first regulating plate 56 is provided substantially perpendicular to the inner bottom surface 511 of the bottom plate 51. Surrounded by the upper surface 511 of the bottom plate 51, the (−X) side surface of the back plate 52, the (+ Y) side surface of the side plate 53, the (−Y) side surface of the side plate 54, and the (+ X) side surface 561 of the first regulating plate 56. The created space forms a storage space SP, and the granular material P is stored in the storage space SP. The upper part of the storage space SP is open, and it is possible to replenish the powder P afterwards. A top plate that covers the upper portion of the storage space SP may be separately provided.
 第1規制板56の下端面562は底板51の上面511に接しておらず、第1規制板56と底板51との間には微小なギャップが設けられている。具体的には、第1規制板56の下端面562は底板51の上面511と平行な平面となっており、図3Aに示すように、第1規制板56の下端面562と底板51の上面511とは、水平方向において一定の微小なギャップG1を隔てて近接対向している。このため、貯留空間SPの下部には第1規制板56の下端部と底板51の上面511とによりY方向を長手方向とするスリット状の開口A1が形成されており、粉粒体Pはこの開口A1を介して貯留空間SPの外部へ洩出する。 The lower end surface 562 of the first regulating plate 56 is not in contact with the upper surface 511 of the bottom plate 51, and a minute gap is provided between the first regulating plate 56 and the bottom plate 51. Specifically, the lower end surface 562 of the first regulating plate 56 is a plane parallel to the upper surface 511 of the bottom plate 51, and the lower end surface 562 of the first regulating plate 56 and the upper surface of the bottom plate 51 are shown in FIG. 3A. 511 is in close proximity to each other with a certain small gap G1 in the horizontal direction. For this reason, a slit-like opening A1 whose longitudinal direction is the Y direction is formed by the lower end portion of the first regulating plate 56 and the upper surface 511 of the bottom plate 51 in the lower part of the storage space SP. It leaks out of the storage space SP through the opening A1.
 筐体50には振動ユニット55が取り付けられており、振動ユニット55は制御部6に設けられた振動制御部62により駆動制御されている。振動制御部62からの制御指令に応じて振動ユニット55が適宜の振動数および振幅の振動、例えば超音波振動を発生することで、筐体50を図2Aに示す矢印Dv方向に振動させる。底板51が振動することにより、開口A1を介した貯留空間SPからの粉粒体Pの洩出が促進される。定常的な振動が与えられることにより、開口A1から定量の粉粒体Pが継続的に洩出する。 A vibration unit 55 is attached to the housing 50, and the vibration unit 55 is driven and controlled by a vibration control unit 62 provided in the control unit 6. In response to a control command from the vibration control unit 62, the vibration unit 55 generates vibration with an appropriate frequency and amplitude, for example, ultrasonic vibration, thereby vibrating the housing 50 in the direction of arrow Dv shown in FIG. 2A. When the bottom plate 51 vibrates, the leakage of the granular material P from the storage space SP through the opening A1 is promoted. When a constant vibration is applied, a certain amount of powder P leaks continuously from the opening A1.
 筐体50は、支持機構14により、底板51が水平面に対して所定の勾配を有するように支持されている。具体的には、図2Bおよび図3Aに示すように、基台11から上向きに延びる支柱13には支持機構14の昇降部材141が昇降自在に取り付けられている。また、昇降部材141には、昇降部材141に対しY方向と平行な軸周りに回動自在の回動部材142が取り付けられている。そして、回動部材142が粉粒体送出ヘッド5の筐体50の(+Y)側側面に取り付けられて、筐体50を支持している。昇降部材141および回動部材142が支持機構14として機能している。 The housing 50 is supported by the support mechanism 14 so that the bottom plate 51 has a predetermined gradient with respect to the horizontal plane. Specifically, as shown in FIGS. 2B and 3A, an elevating member 141 of a support mechanism 14 is attached to a support column 13 extending upward from the base 11 so as to be movable up and down. The elevating member 141 is attached with a rotating member 142 that is rotatable about an axis parallel to the Y direction with respect to the elevating member 141. Then, the rotating member 142 is attached to the (+ Y) side surface of the casing 50 of the granular material delivery head 5 to support the casing 50. The elevating member 141 and the rotating member 142 function as the support mechanism 14.
 昇降部材141の基台11からの高さ、つまりZ方向位置と、回動部材142の回動角度とは、オペレータによる事前の調整作業によってそれぞれ適宜に調整される。昇降部材141の高さを変化させることで、Z方向における粉粒体送出ヘッド5と基材Sとの間隔を変えることができる。したがって、種々の厚さを有する基材Sに対して、粉粒体送出ヘッド5の高さを適切に調整することが可能である。また、回動部材142の回動角度を変化させることで、粉粒体送出ヘッド5の傾き角を調整して後述する粉粒体Pの流下速度を制御することが可能である。 The height of the elevating member 141 from the base 11, that is, the position in the Z direction, and the rotation angle of the rotation member 142 are adjusted as appropriate by the operator's prior adjustment work. By changing the height of the elevating member 141, the distance between the granular material delivery head 5 and the substrate S in the Z direction can be changed. Therefore, it is possible to appropriately adjust the height of the granular material delivery head 5 with respect to the base material S having various thicknesses. In addition, by changing the rotation angle of the rotation member 142, it is possible to adjust the tilt angle of the powder delivery head 5 and control the flow rate of the powder P to be described later.
 このような支持機構14により、筐体50は底板51の上面511が貯留区間SP側から(-X)方向に向かって下り勾配となるように支持されている。そのため、開口A1から洩出した粉粒体Pは、底板51の振動により、その上面511に沿って(-X)方向へ搬送される。より厳密には、粉粒体Pの搬送方向は、図2Aに矢印Dtにより示すように図における左下方向である。すなわち、搬送方向Dtは、底板51の上面511と平行な方向であって、(-X)方向成分と(-Z)方向成分とからなる。より一般には、底板51の上面511の勾配が最も大きくなる方向、つまり上面511に置かれた球体が転がる方向が搬送方向Dtである。 The casing 50 is supported by such a support mechanism 14 so that the upper surface 511 of the bottom plate 51 has a downward slope from the storage section SP side toward the (−X) direction. Therefore, the granular material P leaked from the opening A1 is conveyed in the (−X) direction along the upper surface 511 by the vibration of the bottom plate 51. More precisely, the conveying direction of the granular material P is the lower left direction in the figure as shown by the arrow Dt in FIG. 2A. That is, the transport direction Dt is a direction parallel to the upper surface 511 of the bottom plate 51, and includes a (−X) direction component and a (−Z) direction component. More generally, the direction in which the gradient of the upper surface 511 of the bottom plate 51 is the largest, that is, the direction in which the sphere placed on the upper surface 511 rolls is the transport direction Dt.
 このように、筐体50に振動が与えられることにより、開口A1から継続的に一定量の粉粒体Pが送出され、粉粒体Pは底板51の上面511に沿って搬送方向Dtの下流側へ向けて搬送される。図2Bに示すように、底板51から立ち上がる両側板53,54は平行であり、底板51の幅、すなわちY方向長さはX方向位置によらず一定である。したがって、開口A1から搬送方向Dtに沿って下流へ向かう粉粒体Pの流路の幅は一定である。そのため、開口A1から送出された粉粒体Pは側壁に衝突することなく搬送方向Dtにまっすぐ搬送される。その結果、搬送方向Dtにおいて開口A1の下流側では、底板51の上面511が粉粒体Pによって薄く均一に覆われることになる。こうして底板51の上面511を一定の厚さで覆う粉粒体Pの層がさらに下流側へ搬送される。 In this way, by applying vibration to the housing 50, a certain amount of the powder P is continuously sent out from the opening A1, and the powder P is downstream in the transport direction Dt along the upper surface 511 of the bottom plate 51. It is conveyed toward the side. As shown in FIG. 2B, both side plates 53 and 54 rising from the bottom plate 51 are parallel, and the width of the bottom plate 51, that is, the length in the Y direction is constant regardless of the position in the X direction. Therefore, the width of the flow path of the granular material P going from the opening A1 to the downstream along the transport direction Dt is constant. Therefore, the granular material P delivered from the opening A1 is directly conveyed in the conveyance direction Dt without colliding with the side wall. As a result, the upper surface 511 of the bottom plate 51 is thinly and uniformly covered with the granular material P on the downstream side of the opening A1 in the transport direction Dt. Thus, the layer of the granular material P that covers the upper surface 511 of the bottom plate 51 with a certain thickness is further conveyed downstream.
 以下、底板51の上面511に平行な方向であって、粉粒体Pの搬送方向Dtに直交する方向を「幅方向」Dwと称する。この例ではY方向と幅方向Dwとが一致しているが、より一般には、底板51の上面511に平行かつ水平な方向が幅方向Dwである。幅方向Dwと搬送方向Dtとは互いに直交する。このような定義によれば、開口A1の長手方向が幅方向Dwと一致する。 Hereinafter, a direction parallel to the upper surface 511 of the bottom plate 51 and perpendicular to the conveying direction Dt of the powder P is referred to as a “width direction” Dw. In this example, the Y direction and the width direction Dw coincide, but more generally, the width direction Dw is a direction parallel to and parallel to the upper surface 511 of the bottom plate 51. The width direction Dw and the conveyance direction Dt are orthogonal to each other. According to such a definition, the longitudinal direction of the opening A1 coincides with the width direction Dw.
 粉粒体Pの搬送方向Dtにおいて開口A1よりも下流側、より具体的には底板51の下端部512よりも少し上流側に、第2規制板57が配置されている。第2規制板57は、第1規制板56と同様、底板51の上面511に対し垂直に支持された平板状部材である。そして、第2規制板の下端面572は底板51の上面511と平行な平面となっており、底板51の上面511に対し水平方向において一定の微小なギャップG2を隔てて近接対向している。このため、第2規制板57と底板51との間にはY方向を長手方向とするスリット状の開口A2が形成される。 In the conveying direction Dt of the granular material P, the second regulating plate 57 is disposed on the downstream side of the opening A1, more specifically, slightly upstream of the lower end portion 512 of the bottom plate 51. Similar to the first restriction plate 56, the second restriction plate 57 is a flat plate member that is supported perpendicular to the upper surface 511 of the bottom plate 51. The lower end surface 572 of the second restricting plate is a plane parallel to the upper surface 511 of the bottom plate 51 and is in close proximity to the upper surface 511 of the bottom plate 51 with a certain small gap G2 in the horizontal direction. For this reason, a slit-like opening A <b> 2 whose longitudinal direction is the Y direction is formed between the second regulating plate 57 and the bottom plate 51.
 ギャップG2はギャップG1より小さな値に設定される。したがって、底板51の上面511に沿って搬送されてきた粉粒体Pの層の一部は第2規制板57の(+X)側側面571によって摺り切られ、ギャップG2に対応する厚さの層だけが開口A2よりも下流まで搬送される。開口A2の下流に搬送された粉粒体Pの層は、底板51の下端部512から下向きに落下する。底板51の下端部512の端辺は幅方向Dwに平行な直線状となっている。こうして粉粒体Pは粉粒体送出ヘッド5から最終的に送出される。このように、筐体50は粉粒体Pを所定の幅で均一に送出するシューターとしての機能を有している。 The gap G2 is set to a smaller value than the gap G1. Therefore, a part of the layer of the granular material P conveyed along the upper surface 511 of the bottom plate 51 is scraped off by the (+ X) side surface 571 of the second regulating plate 57 and has a thickness corresponding to the gap G2. Only is conveyed downstream from the opening A2. The layer of the granular material P conveyed downstream of the opening A2 falls downward from the lower end portion 512 of the bottom plate 51. The end side of the lower end portion 512 of the bottom plate 51 has a linear shape parallel to the width direction Dw. Thus, the granular material P is finally delivered from the granular material delivery head 5. Thus, the housing | casing 50 has the function as a shooter which sends out the granular material P uniformly by predetermined width.
 粉粒体送出ヘッド5の直下位置に基材Sがあるとき、底板51の下端部512から落下した粉粒体Pは基材Sの表面に着弾する。ステージ移動機構2により基材Sが一定速度で搬送方向Dxに水平搬送されることで、基材Sの表面における粉粒体Pの着弾位置が刻々と変化し、これにより基材Sの表面が粉粒体Pの層によって覆われることになる。 When the base material S is located immediately below the powder body delivery head 5, the powder body P falling from the lower end portion 512 of the bottom plate 51 lands on the surface of the base material S. When the substrate S is horizontally conveyed in the conveyance direction Dx at a constant speed by the stage moving mechanism 2, the landing position of the granular material P on the surface of the substrate S changes every moment, whereby the surface of the substrate S is changed. It will be covered by the layer of the granular material P.
 基材Sの表面に形成される粉粒体Pの層の厚さは、単位時間あたりに粉粒体送出ヘッド5から送出される粉粒体Pの量(送出量)と、基材Sの移動速度とによって決まる。粉粒体Pの層の厚さを安定したものとするためには、粉粒体送出ヘッド5における粉粒体Pの搬送速度と、基材Sの移動速度とを概ね一致させることが好ましい。したがって、実質的には、粉粒体Pの層厚は粉粒体送出ヘッド5からの粉粒体Pの送出量によって制御されることになる。粉粒体送出ヘッド5における粉粒体Pの搬送速度と基材Sの移動速度とが概ね同じであれば、第2規制板57と底板51との間の開口A2から送出される粉粒体Pの層厚が、ほぼ基材S表面における粉粒体Pの層厚となる。 The thickness of the layer of the granular material P formed on the surface of the base material S is the amount of the granular material P delivered from the granular material delivery head 5 per unit time (delivery amount), and the thickness of the base material S. It depends on the moving speed. In order to stabilize the thickness of the layer of the granular material P, it is preferable that the conveying speed of the granular material P in the granular material delivery head 5 and the moving speed of the base material S are substantially matched. Accordingly, the layer thickness of the granular material P is substantially controlled by the amount of the granular material P delivered from the granular material delivery head 5. If the conveyance speed of the granular material P and the moving speed of the base material S in the granular material delivery head 5 are substantially the same, the granular material delivered from the opening A2 between the second regulating plate 57 and the bottom plate 51. The layer thickness of P is approximately the layer thickness of the granular material P on the surface of the substrate S.
 図3Bに示すように、第2規制板57は例えばねじ、クランプなどの固定部材573によって筐体50に固定されている(本実施形態では側板53,54に固定されている)。固定部材573による固定を一時的に緩和または解除して、底板51との距離を変更することが可能である。底板51と第2規制板57との間に例えば適宜の厚さのシムまたはスペーサを挟んだ状態で固定部材573により第2規制板57を固定することで、ギャップG2を調整することが可能である。こうしてギャップG2を調整することで、粉粒体送出ヘッド5から送出される粉粒体Pの層厚を増減することが可能である。 As shown in FIG. 3B, the second restriction plate 57 is fixed to the housing 50 by a fixing member 573 such as a screw or a clamp (in this embodiment, fixed to the side plates 53 and 54). It is possible to temporarily relax or release the fixing by the fixing member 573 and change the distance from the bottom plate 51. For example, the gap G2 can be adjusted by fixing the second restriction plate 57 with the fixing member 573 with a shim or spacer having an appropriate thickness interposed between the bottom plate 51 and the second restriction plate 57, for example. is there. By adjusting the gap G2 in this way, it is possible to increase or decrease the layer thickness of the granular material P delivered from the granular material delivery head 5.
 また、開口A2で粉粒体Pの層厚を制御するためには、開口A2の上流側に必要十分な量の粉粒体Pが安定的に供給されている必要がある。例えば底板51の勾配を調整して粉粒体Pの流下速度を制御することで、この目的を達成することが可能である。粉粒体Pの流動性はその種類によって異なるから、粉粒体Pの種類に応じて底板51の勾配が設定されることが望ましい。また、落下する粉粒体Pが飛散して層厚が変動するのを防止するために、底板51の下端部512と基材Sの表面との距離はできるだけ小さいことが望ましい。支持機構14はこれらの目的に利用可能なものである。 Also, in order to control the layer thickness of the powder P at the opening A2, it is necessary that a necessary and sufficient amount of the powder P is stably supplied to the upstream side of the opening A2. For example, this purpose can be achieved by adjusting the gradient of the bottom plate 51 to control the flow speed of the powder P. Since the fluidity of the powder P varies depending on the type, it is desirable that the gradient of the bottom plate 51 is set according to the type of the powder P. Further, in order to prevent the falling granular material P from scattering and the layer thickness from fluctuating, it is desirable that the distance between the lower end portion 512 of the bottom plate 51 and the surface of the substrate S is as small as possible. The support mechanism 14 can be used for these purposes.
 次に、第1規制板56と第2規制板57とで粉粒体Pの流れを規制している理由について説明する。幅方向Dwにおいて一定ギャップG1を有する第1規制板56と底板51との間の開口A1から粉粒体Pを送出することで、搬送方向Dtにおいて開口A1の下流側では、幅方向Dwにおいて均一な粉粒体Pの層が形成されることが期待される。しかしながら、本願発明者の実験では必ずしもそのような結果とならなかった。 Next, the reason why the flow of the granular material P is regulated by the first regulating plate 56 and the second regulating plate 57 will be described. By sending the granular material P from the opening A1 between the first regulating plate 56 and the bottom plate 51 having the constant gap G1 in the width direction Dw, it is uniform in the width direction Dw on the downstream side of the opening A1 in the transport direction Dt. It is expected that a layer of fine powder P will be formed. However, in the experiment of the present inventor, such a result was not always obtained.
 図4は粉粒体の層の厚さの実測例を模式的に示す図である。第2規制板57を設けず、ギャップG1を最終的に送出しようとする層厚に調整した第1規制板56のみで粉粒体Pの層厚規制を試みた実験では、図4に示すように、幅方向Dwにおいて開口A1の中央部で端部よりも層厚が大きくなる傾向が見られた。例えば、加振による各部材の振動によってギャップの大きさが変動することが原因の1つと推測される。 FIG. 4 is a diagram schematically showing an actual measurement example of the layer thickness of the granular material. As shown in FIG. 4, in an experiment in which the second regulating plate 57 is not provided and the layer thickness regulation of the granular material P is attempted only by the first regulating plate 56 adjusted to the layer thickness to which the gap G1 is finally sent out. In addition, there was a tendency that the layer thickness was larger at the center of the opening A1 than at the end in the width direction Dw. For example, it is estimated that one of the causes is that the gap size fluctuates due to vibration of each member due to vibration.
 一方、上記実施形態のように、比較的広いギャップG1で底板51と対向する第1規制板56の下流側に、より小さいギャップG2で底板51と対向する第2規制板57を設けたケースでは、ギャップG2の大きさに対応するほぼ均一な層厚が得られた。これは、開口A2の上流側で層厚に多少のムラがあったとしても、ギャップG2よりも厚い部分が第2規制板57で摺り切られることで下流側では均一化されるためと考えられる。 On the other hand, in the case where the second regulating plate 57 facing the bottom plate 51 with a smaller gap G2 is provided on the downstream side of the first regulating plate 56 facing the bottom plate 51 with a relatively wide gap G1 as in the above embodiment. A substantially uniform layer thickness corresponding to the size of the gap G2 was obtained. This is considered to be because even if there is some unevenness in the layer thickness on the upstream side of the opening A2, the portion thicker than the gap G2 is rubbed off by the second restricting plate 57 and is made uniform on the downstream side. .
 開口A1のギャップG1については、開口A2の上流側に必要十分な量の粉粒体Pを安定的に送出することができれば足りる。ギャップG1が小さすぎると十分な量の粉粒体Pが送出されず、また広すぎると幅方向Dwにおける層厚の均一性が悪化する。本願発明者の知見によれば、ギャップG1の大きさとしては粉粒体Pの粒子径の5倍以上20倍以下程度が適当である。この場合、ギャップG2を粒子径の1倍以上10倍以下程度(ただし、G1>G2)とすると、ほぼギャップG2と同程度の層厚を得ることができる。なお、粉粒体Pが粒子径にばらつきを有するものである場合には、例えば個数平均粒径によって粒子径を表すことができる。 For the gap G1 of the opening A1, it is sufficient if a necessary and sufficient amount of the granular material P can be stably delivered to the upstream side of the opening A2. When the gap G1 is too small, a sufficient amount of the granular material P is not delivered, and when it is too wide, the uniformity of the layer thickness in the width direction Dw is deteriorated. According to the knowledge of the present inventor, the size of the gap G1 is suitably about 5 to 20 times the particle diameter of the powder P. In this case, when the gap G2 is about 1 to 10 times the particle diameter (where G1> G2), a layer thickness substantially equal to the gap G2 can be obtained. In addition, when the granular material P has a dispersion | variation in a particle diameter, a particle diameter can be represented, for example by a number average particle diameter.
 つまり、この実施形態では、第1規制板56が底板51との間で形成する開口A1で粉粒体Pの層をある程度薄層規制して粉粒体Pの供給量を調整しておく。そして、第2規制板57が底板51との間で形成する開口A2で最終的に送出される粉粒体Pの層厚を規定する。こうすることで、幅方向Dwにおいても厚さのムラの少ない粉粒体Pの薄層を形成することができる。 That is, in this embodiment, the supply amount of the granular material P is adjusted by regulating the layer of the granular material P to a certain thin layer at the opening A1 formed between the first regulating plate 56 and the bottom plate 51. And the layer thickness of the granular material P finally sent out by opening A2 which the 2nd control board 57 forms between the baseplates 51 is prescribed | regulated. By carrying out like this, the thin layer of the granular material P with little thickness nonuniformity can be formed also in the width direction Dw.
 なお、粉粒体送出ヘッド5から最終的に送出される粉粒体Pの層厚を高精度に制御するためには、使用される粉粒体Pの粒度分布ができるだけ小さい、つまり粒子径がよく揃っていることが望ましい。このために、適宜の分級方法を用いて分級された粉粒体Pが用いられることが好ましい。 In addition, in order to control the layer thickness of the granular material P finally sent from the granular material sending head 5, the particle size distribution of the used granular material P is as small as possible, that is, the particle diameter is as small as possible. It is desirable that they are well aligned. For this reason, it is preferable to use the granular material P classified using an appropriate classification method.
 図5はこの粉粒体供給装置により基材に粉粒体の層を形成するための処理を示すフローチャートである。最初に、使用される粉粒体の種類や形成されるべき層厚等の条件に基づき、装置各部の動作条件が設定される(ステップS101)。設定されるべき動作条件は、粉粒体送出ヘッド5の高さ、傾き、ギャップG2の大きさ、振動ユニット55が発生する振動の振動数や振幅などである。これらの動作条件と形成される層厚との関係は予め実験的に求めておくことができる。 FIG. 5 is a flowchart showing a process for forming a granular material layer on a substrate by the granular material supply device. First, based on conditions such as the type of granular material used and the layer thickness to be formed, the operating conditions of each part of the apparatus are set (step S101). The operating conditions to be set are the height and inclination of the powder and particle sending head 5, the size of the gap G2, the frequency and amplitude of the vibration generated by the vibration unit 55, and the like. The relationship between these operating conditions and the layer thickness to be formed can be obtained experimentally in advance.
 設定された動作条件に応じて装置各部が調整された後、基材Sがステージ3に載置され、また貯留空間SPに粉粒体Pが投入される(ステップS102)。そして、振動制御部62が振動ユニット55による筐体50への加振を開始させることで(ステップS103)、貯留空間SP内の粉粒体Pが開口A1から洩出し、底板51の上面511に沿って搬送方向Dtへの流下が開始される。粉粒体Pの層は第2規制板57で最終的に層厚規制され、底板51の下端部512から落下する。適当なタイミングでステージ制御部61がステージ移動機構2を作動させステージ3上の基材Sを移動させることにより(ステップS104)、粉粒体送出ヘッド5から基材Sへの粉粒体Pの供給が開始され、粉粒体Pが基材Sの表面に付着する。 After each part of the apparatus is adjusted according to the set operating conditions, the base material S is placed on the stage 3 and the granular material P is put into the storage space SP (step S102). Then, when the vibration control unit 62 starts the vibration to the housing 50 by the vibration unit 55 (step S103), the granular material P in the storage space SP leaks from the opening A1, and the upper surface 511 of the bottom plate 51 is discharged. The flow down in the conveyance direction Dt is started. The layer of the granular material P is finally regulated in thickness by the second regulating plate 57 and falls from the lower end portion 512 of the bottom plate 51. The stage control unit 61 operates the stage moving mechanism 2 at an appropriate timing to move the base material S on the stage 3 (step S104), whereby the powder P from the powder feed head 5 to the base S is transferred. Supply is started and the granular material P adheres to the surface of the base material S.
 粉粒体送出ヘッド5から一定量かつ幅方向Dwにおいて均一に粉粒体Pを送出する一方、ステージ移動機構2が基材Sを一定速度で水平移動させることにより、基材Sの表面に一様な厚さの粉粒体Pの層が形成されてゆく。基材Sが予め定められた終了位置まで到達すると(ステップS105)、加振およびステージ移動が順次停止されて(ステップS106、S107)、基材Sへの粉粒体Pの供給が停止される。このようにして、基材Sに粉粒体Pによる一様な層を形成することができる。 While the granular material P is sent uniformly from the granular material sending head 5 in the width direction Dw, the stage moving mechanism 2 horizontally moves the base material S at a constant speed, so that the surface of the base material S is made uniform. A layer of the granular material P having such a thickness is formed. When the base material S reaches a predetermined end position (step S105), the vibration and stage movement are sequentially stopped (steps S106 and S107), and the supply of the granular material P to the base material S is stopped. . In this way, a uniform layer of the powder body P can be formed on the substrate S.
 以上説明したように、上記実施形態の粉粒体供給装置1においては、粉粒体送出ヘッド5が本発明の「粉粒体送出装置」として機能している。また、ステージ3が本発明の「基材保持手段」として機能し、ステージ移動機構2が本発明の「移動手段」として機能している。そして、支柱13および支持機構14が一体として本発明の「送出装置保持手段」として機能している。 As described above, in the granular material supply apparatus 1 of the above-described embodiment, the granular material supply head 5 functions as the “powder supply apparatus” of the present invention. Further, the stage 3 functions as the “base material holding means” of the present invention, and the stage moving mechanism 2 functions as the “moving means” of the present invention. And the support | pillar 13 and the support mechanism 14 function as the "sending-device holding means" of this invention integrally.
 また、粉粒体送出ヘッド5においては、筐体50、特に底板51が本発明の「シューター部」として機能しており、底板51の上面511が本発明の「傾斜平面」に、下端部512が本発明の「下端」にそれぞれ相当している。また、振動ユニット55が本発明の「加振部」として機能している。また、第1規制板56が本発明の「第1規制部」として機能し、その側面561および下端面562がそれぞれ本発明の「障壁部位」および「対向部位」に相当している。そして、第2規制板57が本発明の「第2規制部」として機能している。また、ギャップG1、G2がそれぞれ本発明の「第1ギャップ」、「第2ギャップ」に相当する。 Further, in the granular material delivery head 5, the housing 50, particularly the bottom plate 51 functions as the “shooter portion” of the present invention, the upper surface 511 of the bottom plate 51 is the “inclined plane” of the present invention, and the lower end portion 512. Corresponds to the “lower end” of the present invention. Further, the vibration unit 55 functions as the “excitation unit” of the present invention. The first restricting plate 56 functions as the “first restricting portion” of the present invention, and the side surface 561 and the lower end surface 562 correspond to the “barrier part” and the “opposing part” of the present invention, respectively. The second restricting plate 57 functions as the “second restricting portion” of the present invention. The gaps G1 and G2 correspond to the “first gap” and the “second gap” of the present invention, respectively.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態は、基材Sに粉粒体Pによる薄層を形成する「粉粒体供給装置」として構成されたものであり、本発明の「基材保持手段」や「移動手段」等に相当する構成を有している。しかしながら、本発明は、これらの構成を有しない単なる「粉粒体送出装置」として具現化されてもよい。すなわち、上記実施形態における粉粒体送出ヘッド5が単独で、本発明の「粉粒体送出装置」として機能し得るものである。 Note that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, the above embodiment is configured as a “powder supply device” that forms a thin layer of the powder P on the substrate S, and the “substrate holding means” and “movement means” of the present invention. And the like. However, the present invention may be embodied as a mere “powder delivery device” that does not have these configurations. That is, the granular material delivery head 5 in the above-described embodiment can function alone as the “powder material delivery device” of the present invention.
 また例えば、上記実施形態は第1規制板56と底板51との間のギャップG1を調整するための機構を有していない。しかしながら、第2規制板57の場合と同様に、第1規制板56を底板51に対し接近・離間可能な構成としてもよい。また、これらの規制板を固定する方法についても、上記実施形態に限定されず任意である。 For example, the above embodiment does not have a mechanism for adjusting the gap G1 between the first regulating plate 56 and the bottom plate 51. However, as in the case of the second restriction plate 57, the first restriction plate 56 may be configured to be able to approach and separate from the bottom plate 51. Further, the method for fixing these restricting plates is not limited to the above embodiment and is arbitrary.
 また、上記実施形態における第1規制板56および第2規制板57は底板51に対し垂直に設けられている。しかしながら、これらの規制板が底板51に対し厳密に垂直である必要は必ずしもない。ただし、これらの規制板を底板51に対して傾けすぎると、摺り切られた粉粒体Pが規制板の上部を超えて下流側に流出したり、本来摺り切られるべき粉粒体Pが規制板により圧縮されつつ開口に案内され下流側に搬送されたりすることが起こり得る。これらはいずれも粉粒体Pの層厚を乱す原因となる現象である。 Further, the first restriction plate 56 and the second restriction plate 57 in the above embodiment are provided perpendicular to the bottom plate 51. However, it is not always necessary that these restricting plates are strictly perpendicular to the bottom plate 51. However, if these restricting plates are tilted too much with respect to the bottom plate 51, the powder P that has been scraped out flows over the upper portion of the restricting plate to the downstream side, or the powder P that is originally to be scraped is restricted. It may happen that it is guided by the opening while being compressed by the plate and conveyed downstream. These are all phenomena that cause the disturbance of the layer thickness of the powder P.
 また、上記実施形態は第1規制板56および第2規制板57によって2段階の層厚規制を行うことで送出される粉粒体Pの層厚を均一にしようとするものであるが、層厚規制の段数をさらに増加させることも考えられる。ただし、本願発明者の実験によれば、層厚規制の段数を3段以上にしても、層厚の均一さという点で明らかな効果の向上は認められていない。 In the above-described embodiment, the layer thickness of the granular material P sent out by performing the two-step layer thickness regulation by the first regulation plate 56 and the second regulation plate 57 is intended to be uniform. It is possible to further increase the number of thickness regulation steps. However, according to the experiment by the present inventor, even if the number of layers for regulating the layer thickness is set to three or more, no obvious improvement in effect is recognized in terms of the uniformity of the layer thickness.
 また、上記実施形態における基材Sは平板状のものであるが、シート状の基材表面に粉粒体Pの層を形成する用途にも、本発明を適用することが可能である。この場合、シート状基材を搬送可能な種々の搬送機構が粉粒体送出ヘッド5と組み合わせられてもよく、例えばシート状基材がいわゆるロール・トゥ・ロール方式で搬送されるものを用いることが可能である。 Moreover, although the base material S in the said embodiment is a plate-shaped thing, it is possible to apply this invention also to the use which forms the layer of the granular material P on the sheet-like base material surface. In this case, various transport mechanisms capable of transporting the sheet-like base material may be combined with the granular material delivery head 5, for example, using a sheet-like base material that is transported in a so-called roll-to-roll system. Is possible.
 以上、具体的な実施形態を例示して説明してきたように、この発明の粉粒体送出装置においては、例えば、傾斜平面の幅方向における長さが、第1規制部との対向位置から下端までの間において一定であってもよい。このような構成によれば、第1規制部と傾斜平面との間の開口を通過した粉粒体がまっすぐ傾斜平面に沿って搬送されるため、搬送中の層厚の乱れを防止することができる。 As described above, the specific embodiment has been described by way of example. In the granular material delivery device of the present invention, for example, the length in the width direction of the inclined plane is lower than the position facing the first restricting portion. It may be constant during the period. According to such a configuration, since the granular material that has passed through the opening between the first restricting portion and the inclined plane is conveyed along the inclined plane, it is possible to prevent disturbance of the layer thickness during conveyance. it can.
 また例えば、第2規制部が傾斜平面に対し相対的に移動可能であり、第2規制部と傾斜平面との距離を変更することで第2ギャップの大きさを調整可能であってもよい。このような構成によれば、第2ギャップの大きさによって送出される粉粒体の層厚を調整することが可能になる。 Also, for example, the second restricting portion may be movable relative to the inclined plane, and the size of the second gap may be adjustable by changing the distance between the second restricting portion and the inclined plane. According to such a structure, it becomes possible to adjust the layer thickness of the granular material sent out by the magnitude | size of a 2nd gap.
 また例えば、第1ギャップの大きさは粉粒体の個数平均粒径の5倍ないし20倍であってもよい。第1ギャップが小さすぎると粉粒体の供給量が不足し、また広すぎると幅方向における層厚の均一性が悪化する。本願発明者の知見によれば、第1ギャップが上記数値範囲にあるとき、第2ギャップにおいて制御性よく粉粒体の層厚を管理することが可能である。 Further, for example, the size of the first gap may be 5 to 20 times the number average particle size of the granular material. When the first gap is too small, the supply amount of the granular material is insufficient, and when it is too wide, the uniformity of the layer thickness in the width direction is deteriorated. According to the knowledge of the present inventor, when the first gap is in the above numerical range, it is possible to manage the layer thickness of the granular material with good controllability in the second gap.
 また例えば、第1規制部および第2規制部のそれぞれは、傾斜平面に対し垂直な平板状部材であってもよい。このような構成によれば、構成が簡単であるため装置コストが抑えられる。また、傾斜平面に対し垂直な平面で過剰な粉粒体を摺り切ることで、開口を通過する粉粒体が第1または第2規制部で圧縮されることが防止される。 Further, for example, each of the first restricting portion and the second restricting portion may be a flat plate member perpendicular to the inclined plane. According to such a configuration, since the configuration is simple, the apparatus cost can be reduced. Further, by scraping excess powder particles in a plane perpendicular to the inclined plane, the powder particles passing through the opening are prevented from being compressed by the first or second restricting portion.
 また例えば、傾斜平面の下端は幅方向に平行な直線状の辺を有するものであってもよい。このような構成によれば、幅方向に均一な層を保ったまま傾斜平面の下端から粉粒体を送出することが可能である。 For example, the lower end of the inclined plane may have a straight side parallel to the width direction. According to such a structure, it is possible to send a granular material from the lower end of an inclined plane, maintaining a uniform layer in the width direction.
 また、本発明にかかる粉粒体供給装置においては、例えば、送出装置保持手段は、傾斜平面の勾配を変更可能であってもよい。このような構成によれば、傾斜平面の勾配の大きさによって粉粒体の送出速度を調整することができる。これにより、例えば単位時間当たりの粉粒体の送出量を増減することができる。 Moreover, in the granular material supply device according to the present invention, for example, the delivery device holding means may be capable of changing the gradient of the inclined plane. According to such a structure, the delivery speed | rate of a granular material can be adjusted with the magnitude | size of the gradient of an inclined plane. Thereby, for example, the delivery amount of the granular material per unit time can be increased or decreased.
 また例えば、基材保持手段および送出装置保持手段の少なくとも一方が、傾斜平面の下端と基材上面との間のギャップを調整可能であってもよい。このような構成によれば、種々の厚さの基材に対応して、適正なギャップを維持しながら基材への粉粒体の供給を行うことが可能になる。 Also, for example, at least one of the substrate holding means and the delivery device holding means may be capable of adjusting the gap between the lower end of the inclined plane and the substrate upper surface. According to such a structure, it becomes possible to supply the granular material to a base material, maintaining a suitable gap corresponding to the base material of various thickness.
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 Although the invention has been described with reference to specific embodiments, this description is not intended to be construed in a limiting sense. Reference to the description of the invention, as well as other embodiments of the present invention, various modifications of the disclosed embodiments will become apparent to those skilled in the art. Accordingly, the appended claims are intended to include such modifications or embodiments without departing from the true scope of the invention.
 この発明は、粉粒体を均一に、特に薄く広げつつ送出する用途に好適なものであり、使用される粉粒体の種類により、種々の産業分野に適用することが可能である。例えば、金属箔の表面に粉粒体状の活物質を塗布してリチウムイオン電池等の化学電池の電極を製造する目的に好適である。 The present invention is suitable for applications in which powder particles are sent out uniformly and particularly thinly, and can be applied to various industrial fields depending on the type of powder particles used. For example, it is suitable for the purpose of manufacturing an electrode of a chemical battery such as a lithium ion battery by applying a granular active material to the surface of a metal foil.
 1 粉粒体供給装置
 2 ステージ移動機構(移動手段)
 3 ステージ(基材保持手段)
 5 粉粒体送出ヘッド(粉粒体送出装置)
 13 支柱(送出装置保持手段)
 14 支持機構(送出装置保持手段)
 50 筐体(シューター部)
 51 (筐体50の)底板(シューター部)
 55 振動ユニット(加振部)
 56 第1規制板(第1規制部)
 57 第2規制板(第2規制部)
 511 (底板51の)上面(傾斜平面)
 512 (底板51の)下端部(下端)
 561 (第1規制板56の)側面(障壁部位)
 562 (第1規制板56の)下端面(対向部位)
 A1,A2 開口
 G1 第1ギャップ
 G2 第2ギャップ
DESCRIPTION OF SYMBOLS 1 Powder supply apparatus 2 Stage moving mechanism (moving means)
3 stages (base material holding means)
5 Powder and particle sending head (powder and powder sending device)
13 Post (sending device holding means)
14 Support mechanism (delivery device holding means)
50 Housing (shooter)
51 Bottom plate (of the housing 50) (shooter part)
55 Vibration unit (excitation unit)
56 First restriction plate (first restriction part)
57 Second restriction plate (second restriction part)
511 Upper surface (inclined plane) of the bottom plate 51
512 Lower end (lower end) of bottom plate 51
561 Side surface (barrier part) of first regulating plate 56
562 (first restriction plate 56) lower end surface (opposite part)
A1, A2 opening G1 first gap G2 second gap

Claims (10)

  1.  水平面に対し傾いた傾斜平面を有し、粉粒体を前記傾斜平面に沿って流下させ前記傾斜平面の下端から下向きに送出するシューター部と、
     前記シューター部を振動させる加振部と、
     前記傾斜平面に平行かつ水平な幅方向において一定の第1ギャップを隔てて前記傾斜平面と対向し前記傾斜平面との間で前記幅方向を長手方向とするスリット状の開口を形成する対向部位と前記対向部位から上方に延びる障壁部位とを有し、前記障壁部位と前記傾斜平面との間に貯留した前記粉粒体を前記開口から前記傾斜平面に沿って流下させる第1規制部と、
     前記傾斜平面のうち前記第1規制部との対向位置と前記下端との間で、前記幅方向において一定かつ前記第1ギャップより小さい第2ギャップを隔てて前記傾斜平面と対向し、前記傾斜平面との間で前記幅方向を長手方向とするスリット状の開口を形成する第2規制部と
    を備える粉粒体送出装置。
    A shooter unit having an inclined plane inclined with respect to a horizontal plane, and causing powder particles to flow along the inclined plane and to be sent downward from a lower end of the inclined plane;
    An excitation unit that vibrates the shooter unit;
    A facing part that forms a slit-like opening with the width direction as a longitudinal direction between the inclined plane and the inclined plane with a constant first gap in a horizontal width direction parallel to the inclined plane; A first restricting portion that has a barrier portion extending upward from the facing portion, and causes the granular material stored between the barrier portion and the inclined plane to flow down from the opening along the inclined plane;
    The inclined plane is opposed to the inclined plane with a second gap that is constant in the width direction and smaller than the first gap between a position facing the first restricting portion of the inclined plane and the lower end. And a second regulating part that forms a slit-like opening with the width direction as a longitudinal direction between the first and second parts.
  2.  前記傾斜平面の前記幅方向における長さが、前記第1規制部との対向位置から前記下端までの間において一定である請求項1に記載の粉粒体送出装置。 The granular material delivery device according to claim 1, wherein a length of the inclined plane in the width direction is constant from a position facing the first restricting portion to the lower end.
  3.  前記第2規制部が前記傾斜平面に対し相対的に移動可能であり、前記第2規制部と前記傾斜平面との距離を変更することで前記第2ギャップの大きさを調整可能である請求項1または2に記載の粉粒体送出装置。 The second restricting portion is movable relative to the inclined plane, and the size of the second gap can be adjusted by changing a distance between the second restricting portion and the inclined plane. 3. The granular material delivery device according to 1 or 2.
  4.  前記第1ギャップの大きさは前記粉粒体の個数平均粒径の5倍ないし20倍である請求項1ないし3のいずれかに記載の粉粒体送出装置。 The granular material delivery device according to any one of claims 1 to 3, wherein the size of the first gap is 5 to 20 times the number average particle diameter of the granular material.
  5.  前記第1規制部および前記第2規制部のそれぞれは、前記傾斜平面に対し垂直な平板状部材である請求項1ないし4のいずれかに記載の粉粒体送出装置。 Each of the said 1st control part and the said 2nd control part is a flat member perpendicular | vertical with respect to the said inclined plane, The granular material delivery apparatus in any one of Claim 1 thru | or 4.
  6.  前記傾斜平面の前記下端は前記幅方向に平行な直線状の辺を有する請求項1ないし5のいずれかに記載の粉粒体送出装置。 The powder body delivery device according to any one of claims 1 to 5, wherein the lower end of the inclined plane has a linear side parallel to the width direction.
  7.  基材を水平姿勢に保持する基材保持手段と、
     請求項1ないし6のいずれかに記載の粉粒体送出装置と、
     前記粉粒体送出装置を、前記傾斜平面の下端を前記基材の上面に対向させて保持する送出装置保持手段と、
     前記基材と前記粉粒体送出装置とを水平方向に相対移動させる移動手段と
    を備える粉粒体供給装置。
    A substrate holding means for holding the substrate in a horizontal position;
    The powder and granular material delivery device according to any one of claims 1 to 6,
    A delivery device holding means for holding the powder body delivery device with the lower end of the inclined plane facing the upper surface of the substrate;
    A granular material supply apparatus comprising a moving means for relatively moving the base material and the granular material delivery apparatus in a horizontal direction.
  8.  前記送出装置保持手段は、前記傾斜平面の勾配を変更可能である請求項7に記載の粉粒体供給装置。 The powder supply apparatus according to claim 7, wherein the delivery device holding means is capable of changing a slope of the inclined plane.
  9.  前記基材保持手段および前記送出装置保持手段の少なくとも一方が、前記傾斜平面の下端と前記基材上面との間のギャップを調整可能である請求項7または8に記載の粉粒体供給装置。 The granular material supply apparatus according to claim 7 or 8, wherein at least one of the substrate holding means and the delivery device holding means is capable of adjusting a gap between a lower end of the inclined plane and the upper surface of the substrate.
  10.  水平面に対し傾いた傾斜平面を有するシューター部と、前記傾斜平面に平行かつ水平な幅方向において一定の第1ギャップを隔てて前記傾斜平面と対向し前記傾斜平面との間で前記幅方向を長手方向とするスリット状の開口を形成する対向部位と前記対向部位から上方に延びる障壁部位とを有する第1規制部と、前記傾斜平面のうち前記第1規制部との対向位置と前記傾斜平面の下端との間で前記幅方向において一定かつ前記第1ギャップより小さい第2ギャップを隔てて前記傾斜平面と対向し前記傾斜平面との間で前記幅方向を長手方向とするスリット状の開口を形成する第2規制部とを配置する工程と、
     前記障壁部位と前記傾斜平面との間に粉粒体を貯留させ前記シューター部を振動させて、前記第1規制部と前記傾斜平面との間の前記開口から前記傾斜平面に沿って前記粉粒体を流下させる工程と、
     流下した前記粉粒体を前記第2規制部と前記傾斜平面との間の前記開口に通過させる工程と、
     前記第2規制部と前記傾斜平面との間の前記開口を通過した前記粉粒体を、前記下端から下向きに送出する工程と
    を備える粉粒体送出方法。
    A shooter portion having an inclined plane inclined with respect to a horizontal plane, and a longitudinal direction extending between the inclined plane and the inclined plane facing the inclined plane with a constant first gap in a width direction parallel to and parallel to the inclined plane. A first restricting portion having a facing portion that forms a slit-shaped opening as a direction and a barrier portion extending upward from the facing portion; a position facing the first restricting portion of the inclined plane; and the inclined plane A slit-shaped opening having a width direction as a longitudinal direction is formed between the lower end and the lower end of the inclined plane that is opposed to the inclined plane with a second gap that is constant in the width direction and smaller than the first gap. A step of arranging a second restricting portion to be performed;
    The powder particles are stored between the barrier portion and the inclined plane, and the shooter portion is vibrated, and the particles along the inclined plane from the opening between the first restricting portion and the inclined plane. A process of flowing down the body,
    Passing the flowed down granular material through the opening between the second restricting portion and the inclined plane;
    A method of delivering a granular material, the method comprising: delivering the granular material that has passed through the opening between the second restricting portion and the inclined plane downward from the lower end.
PCT/JP2017/003909 2016-03-23 2017-02-03 Powder dispensing device, powder supply device, and powder dispensing method WO2017163628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016057871 2016-03-23
JP2016-057871 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163628A1 true WO2017163628A1 (en) 2017-09-28

Family

ID=59901124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003909 WO2017163628A1 (en) 2016-03-23 2017-02-03 Powder dispensing device, powder supply device, and powder dispensing method

Country Status (1)

Country Link
WO (1) WO2017163628A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135923U (en) * 1980-03-18 1981-10-15
JPS5988016U (en) * 1982-12-04 1984-06-14 鹿瀬電工株式会社 Vibration feeder
JPS649909U (en) * 1987-07-03 1989-01-19
JP2001215147A (en) * 2000-01-31 2001-08-10 Shinko Electric Co Ltd Powder feed device
JP2005278648A (en) * 2005-04-28 2005-10-13 Bizen:Kk Spread gutter for application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135923U (en) * 1980-03-18 1981-10-15
JPS5988016U (en) * 1982-12-04 1984-06-14 鹿瀬電工株式会社 Vibration feeder
JPS649909U (en) * 1987-07-03 1989-01-19
JP2001215147A (en) * 2000-01-31 2001-08-10 Shinko Electric Co Ltd Powder feed device
JP2005278648A (en) * 2005-04-28 2005-10-13 Bizen:Kk Spread gutter for application

Similar Documents

Publication Publication Date Title
KR101307509B1 (en) Powder application system
EP3085517B1 (en) Powder recoater
US20160368215A1 (en) Powder recoater
CN105268594B (en) System and method for dispensing a substance on a surface
CN108137243B (en) Powder/granular material distribution device, powder/granular material distribution method, and method for manufacturing powder/granular material-containing article
US6827783B2 (en) Paste application apparatus and method for applying paste
WO2017163628A1 (en) Powder dispensing device, powder supply device, and powder dispensing method
JP5835008B2 (en) Powder feeder
KR102629280B1 (en) Slit nozzle and substrate processing apparatus
KR20160088690A (en) Flow control member for die coater and Coating apparatus comprising the same
TWI839739B (en) Slit nozzle, slit nozzle adjustment method and substrate processing device
US10087516B2 (en) Evaporation apparatus and evaporation method
JP2016067974A (en) Coating applicator and coating method
RU2379158C2 (en) Method of powder plating
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
KR20210085560A (en) Powder Distributor and 3D Printing Device Including the Same
JP7149170B2 (en) Fluid material coating method, coating device, and nozzle head
JP6960111B2 (en) Coating equipment
JP6396791B2 (en) Powder and particle dispersion device and powder particle dispersion method
JP7495986B2 (en) Wide slot die and method of operating same
JP3900970B2 (en) Powder feeder
TW202319125A (en) Substrate coating apparatus and substrate coating method
JP2021062328A (en) Coating method and coating device
WO2023287996A1 (en) Three-dimensional (&#34;3d&#34;) printing apparatus with counter-rotating roller
JP5080178B2 (en) Resist coating device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769675

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP