WO2017163615A1 - Binder resin for electroconductive composition, composition containing same for electroconductive pattern formation, and polyurethane - Google Patents

Binder resin for electroconductive composition, composition containing same for electroconductive pattern formation, and polyurethane Download PDF

Info

Publication number
WO2017163615A1
WO2017163615A1 PCT/JP2017/003343 JP2017003343W WO2017163615A1 WO 2017163615 A1 WO2017163615 A1 WO 2017163615A1 JP 2017003343 W JP2017003343 W JP 2017003343W WO 2017163615 A1 WO2017163615 A1 WO 2017163615A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
mass
metal
conductive
composition
Prior art date
Application number
PCT/JP2017/003343
Other languages
French (fr)
Japanese (ja)
Inventor
周平 米田
内田 博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2018507093A priority Critical patent/JP6994455B2/en
Priority to KR1020187026815A priority patent/KR102121758B1/en
Priority to CN201780019859.9A priority patent/CN109071938B/en
Publication of WO2017163615A1 publication Critical patent/WO2017163615A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a binder resin for a conductive composition, a composition for forming a conductive pattern including the binder resin, and polyurethane.
  • a method of forming a wiring pattern by a lithography method using a combination of a copper foil and a photoresist is generally used, but this method has many processes, drainage, The burden of waste liquid treatment is large, and environmental improvement is desired.
  • a method of patterning a metal thin film produced by a heat deposition method or a sputtering method by a photolithography method is also known.
  • the heating vapor deposition method and the sputtering method are indispensable for a vacuum environment, and the price is very expensive. When applied to a wiring pattern, it is difficult to reduce the manufacturing cost.
  • Patent Document 1 discloses a step of discharging a conductive inorganic composition containing conductive inorganic metal particles on a substrate, and a conductive organic composition containing a conductive organometallic complex on the conductive inorganic composition.
  • a method for manufacturing a substrate is disclosed which includes a step of discharging the conductive inorganic composition and the conductive organic composition.
  • the method of using light energy or microwaves for heating can be said to be a very good method because it may heat only the ink portion.
  • the substrate may not be able to withstand the energy as in the case of firing in a heating furnace.
  • JP 2010-183082 A Special table 2008-522369 Pamphlet of WO2010 / 110969 Special table 2010-528428 Pamphlet of WO2013 / 077447 WO2015 / 064567 pamphlet
  • the conductive pattern formed on the substrate is more desirable as the electrical conductivity is higher (the volume resistivity is lower).
  • the lower the sintering energy for reaching the same electrical conductivity is, the lower the electrical conductivity for forming the conductive pattern is.
  • the composition can be said to have high performance. Therefore, it is desirable that the above-described conventional conductive composition also improve the conductivity with a lower sintering energy.
  • An object of the present invention is to provide a binder resin for a conductive composition capable of improving the conductivity of a conductive pattern with a low sintering energy, a composition for forming a conductive pattern and a polyurethane containing the binder resin.
  • an embodiment of the present invention is a binder resin for a conductive composition, wherein the binder resin is a carboxylate metal salt moiety represented by (COO) n M in a polymer skeleton. It includes a polyurethane having (M is a metal atom selected from metals belonging to Group 11 of the periodic table, and n is a valence of the metal atom M).
  • the polyurethane includes a urethane bond unit of (a1) a polyisocyanate compound and (a2) a dihydroxy compound having a carboxyl group as a structural unit.
  • the metal constituting the metal salt contains either silver or copper.
  • the (a2) carboxyl group-containing dihydroxy compound is preferably at least one of 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid.
  • the (a1) polyisocyanate compound is preferably an alicyclic polyisocyanate, and the alicyclic polyisocyanate is 3-isocyanate methyl-3,3,5-trimethylcyclohexane (IPDI, isophorone diisocyanate), Alternatively, bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI) is more preferable.
  • composition for conductive pattern formation Comprising: The said binder resin for conductive compositions (A), a conductive material (B), and the said binder resin for conductive compositions are included. And a solvent (C) that dissolves.
  • a conductive material (B) metal particles (B1), metal nanowires and / or metal nanotubes (B2) can be used.
  • the ratio of the metal particles (B1) to the entire conductive pattern forming composition is 20% by mass to 95% by mass, and the binder resin for the conductive composition is dissolved.
  • the content of the solvent (C) is 5 mass% to 80 mass%, and the binder resin for conductive composition (A) is 1 mass part to 15 mass parts with respect to 100 mass parts of the metal particles (B1). Is preferred.
  • the ratio of metal nanowires and / or metal nanotubes (B2) to the entire conductive pattern forming composition is 0.01% by mass to 10%.
  • the content of the solvent (C) for dissolving the binder resin for conductive composition is 90% by mass or more, and the binder resin for conductive composition (A) is a metal nanowire and / or metal nanotube (B2) 100.
  • the amount is preferably 10 to 400 parts by mass with respect to parts by mass.
  • the metal constituting the conductive material (B) preferably contains either silver or copper.
  • Another embodiment of the present invention is a polyurethane containing at least one of the structural units represented by the following formula (1).
  • the conductivity of the conductive pattern can be improved with a lower sintering energy than when a binder resin containing no metal atom is used in the polymer skeleton.
  • FIG. 3 is a graph showing the results of simultaneous differential thermal-thermogravimetric measurement of polyurethane silver salt (using silver nitrate) according to Example 1. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver oxide) concerning Example 2.
  • FIG. It is a figure which shows the measurement result of the infrared rays (IR) absorption spectrum of the polyurethane synthesize
  • FIG. It is a figure which shows the measurement result of IR absorption spectrum of the polyurethane silver salt concerning Example 1.
  • NMR nuclear magnetic resonance
  • FIG. 1 It is a figure which shows the measurement result of the NMR spectrum of the polyurethane silver salt concerning Example 1.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane copper salt (use copper sulfate) concerning Example 3.
  • FIG. It is a figure which shows the measurement result of IR absorption spectrum of the polyurethane copper salt concerning Example 3.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (using silver nitrate) concerning Example 4.
  • FIG. 5 shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver oxide) concerning Example 5.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver nitrate) concerning Example 6.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver nitrate) concerning Example 7.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (using silver nitrate) concerning Example 8.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (uses silver oxide) concerning Example 10.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver oxide) concerning Example 11.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (uses silver oxide) concerning Example 12.
  • FIG. It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane copper salt (using copper hydroxide) concerning Example 16.
  • the binder resin for a conductive composition according to the present embodiment is a metal atom selected from metals belonging to Group 11 of the periodic table, wherein the carboxylate metal salt moiety represented by (COO) n M in the polymer skeleton. , N includes a polyurethane having a valence of a metal atom M).
  • the polyurethane of this embodiment includes a urethane bond unit of at least a polyisocyanate compound and a dihydroxy compound having a carboxyl group in a structural unit.
  • a urethane bond unit between a polyisocyanate compound and a polyol other than a dihydroxy compound having a carboxyl group can be included. That is, it may be a polyurethane resin obtained by mixing (a1) a polyisocyanate compound and (a2) a dihydroxy compound having a carboxyl group with (a3) a polyol compound other than (a2) as required. .
  • (A1) Polyisocyanate Compound (a1) As the polyisocyanate compound, diisocyanate having two isocyanate groups per molecule is usually used.
  • the polyisocyanate compound include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, and araliphatic polyisocyanate.
  • a small amount of polyisocyanate having 3 or more isocyanate groups such as triphenylmethane triisocyanate can be used as long as the polyurethane containing carboxyl groups does not gel.
  • An alicyclic polyisocyanate is preferred in that it has less yellowing.
  • aliphatic polyisocyanate examples include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2′-diethyl ether diisocyanate, dimer acid diisocyanate and the like.
  • Examples of the alicyclic polyisocyanate include 1,4-cyclohexane diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, 3-isocyanate methyl-3,3,5- Examples thereof include trimethylcyclohexane (IPDI, isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-) xylylene diisocyanate, norbornane diisocyanate, and the like.
  • IPDI trimethylcyclohexane
  • isophorone diisocyanate isophorone diisocyanate
  • bis- (4-isocyanatocyclohexyl) methane hydrogenated (1,3- or 1,4-) xylylene diisocyanate
  • norbornane diisocyanate
  • aromatic polyisocyanate examples include 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, (1 , 2,1,3 or 1,4) -xylene diisocyanate, 3,3′-dimethyl-4,4′-diisocyanate biphenyl, 3,3′-dimethyl-4,4′-diisocyanate diphenylmethane, 1,5- Examples thereof include naphthylene diisocyanate, 4,4′-diphenyl ether diisocyanate, and tetrachlorophenylene diisocyanate.
  • Examples of the araliphatic polyisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate, and 3,3′-methylene ditolylene. -4,4'-diisocyanate and the like.
  • diisocyanates can be used singly or in combination of two or more.
  • IPDI 3-isocyanate methyl-3,3,5-trimethylcyclohexane
  • MDI bis- (4-isocyanatocyclohexyl) methane
  • (A2) Dihydroxy compound having a carboxyl group (a2)
  • the dihydroxy compound having a carboxyl group has a molecular weight of 200 or less having either a hydroxy group or two selected from a hydroxyalkyl group having 1 or 2 carbon atoms.
  • Carboxylic acid or aminocarboxylic acid is preferable in that the crosslinking point can be controlled. Specific examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine, and the like. In view of solubility, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferred.
  • These (a2) dihydroxy compounds having a carboxyl group can be used singly or in combination of two or more.
  • (A3) Polyol compound The number average of (a3) polyol compound (however, (a3) polyol compound does not include the above-mentioned (a2) dihydroxy compound having a carboxyl group) that can be used in combination as needed.
  • the molecular weight is usually 250 to 50,000, preferably 400 to 10,000, more preferably 500 to 5,000. This molecular weight is a value in terms of polystyrene measured by GPC under the conditions described later.
  • the number average molecular weight is 50,000 or less, the solubility in a solvent is high, and the viscosity becomes an appropriate viscosity even after dissolution, which is preferable in terms of easy use.
  • the polyol compound is, for example, a polycarbonate polyol, a polyether polyol, a polyester polyol, a polylactone polyol, a polybutadiene polyol, a hydroxylated polysilicon at both ends, and an oxygen atom only in the hydroxyl group and having 18 to 72 carbon atoms. It is a polyol compound.
  • the polycarbonate polyol can be obtained by reacting a diol having 3 to 18 carbon atoms with a carbonate or phosgene as a raw material, and is represented by the following structural formula (2), for example.
  • R 1 is a residue obtained by removing a hydroxyl group from the corresponding diol (HO—R 1 —OH), and n 1 is a positive integer, preferably 2 to 50.
  • n 1 is 50 or less, deterioration of solubility due to excessive increase in molecular weight can be suppressed.
  • the polycarbonate polyol represented by the formula (2) includes 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1 , 5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 It can be produced by using decamethylene glycol or 1,2-tetradecanediol as a raw material.
  • the polycarbonate polyol may be a polycarbonate polyol having a plurality of types of alkylene groups in its skeleton (copolymerized polycarbonate polyol).
  • copolymerized polycarbonate polyol is often advantageous from the viewpoint of preventing crystallization of polyurethane having a carboxyl group.
  • the polyether polyol is obtained by dehydration condensation of a diol having 2 to 12 carbon atoms or ring-opening polymerization of an oxirane compound, oxetane compound or tetrahydrofuran compound having 2 to 12 carbon atoms. It is represented by the structural formula (3).
  • R 2 is a residue obtained by removing a hydroxyl group from the corresponding diol (HO—R 2 —OH), and n 2 is a positive integer, preferably 4 to 50.
  • the above diols having 2 to 12 carbon atoms can be used alone to form a homopolymer, or a combination of two or more can be used as a copolymer.
  • n 2 is 50 or less, deterioration of solubility due to excessive increase in molecular weight can be suppressed.
  • polyether polyol represented by the above formula (3) examples include polyethylene glycol, polypropylene glycol, poly-1,2-butylene glycol, polytetramethylene glycol (poly 1,4-butanediol), poly Examples include polyalkylene glycols such as -3-methyltetramethylene glycol and polyneopentyl glycol. Further, for the purpose of improving the compatibility of (polyether polyol) and the hydrophobicity of (polyether polyol), these copolymers such as 1,4-butanediol-neopentyl glycol can also be used.
  • the polyester polyol is obtained by dehydration condensation of a dicarboxylic acid and a diol or an ester exchange reaction between an esterified product of a lower alcohol of a dicarboxylic acid and a diol, and is represented by the following structural formula (4), for example. .
  • R 3 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO—R 3 —OH), and R 4 represents two carboxyl groups from the corresponding dicarboxylic acid (HOCO—R 4 —COOH).
  • n 3 is a positive integer, preferably 2 to 50. When n 3 is 50 or less, deterioration of solubility due to excessive increase in molecular weight can be suppressed.
  • diol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, , 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4- Cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol or 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, Butylethylpropanediol, 1,3-cyclohexanedimethanol, 3-xylylene glycol
  • dicarboxylic acid examples include succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, brassic acid, 1,4-cyclohexanedicarboxylic acid, hexa Hydrophthalic acid, methyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, chlorendic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,4- And naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid.
  • the polylactone polyol is obtained by a condensation reaction of a lactone ring-opening polymer and a diol, or a condensation reaction of a diol and a hydroxyalkanoic acid, and is represented, for example, by the following structural formula (5).
  • R 5 is a residue obtained by removing a hydroxyl group and a carboxyl group from the corresponding hydroxyalkanoic acid (HO—R 5 —COOH), and R 6 is a corresponding diol (HO—R 6 —OH). It is a residue excluding a hydroxyl group, and n 4 is a positive integer, preferably 2 to 50. When n 4 is 50 or less, deterioration in solubility due to excessive increase in molecular weight can be suppressed.
  • hydroxyalkanoic acid examples include 3-hydroxybutanoic acid, 4-hydroxypentanoic acid, and 5-hydroxyhexanoic acid.
  • the polybutadiene polyol is, for example, a diol obtained by polymerizing butadiene or isoprene by anionic polymerization and introducing hydroxyl groups at both ends by terminal treatment, and a diol obtained by hydrogen reduction of these double bonds.
  • polybutadiene polyol examples include hydroxylated polybutadiene mainly having 1,4-repeating units (for example, Poly bd R-45HT, Poly bd R-15HT (manufactured by Idemitsu Kosan Co., Ltd.)), hydroxylated hydrogenation Polybutadiene (for example, Polytail (registered trademark) H, Polytail (registered trademark) HA (manufactured by Mitsubishi Chemical Corporation)), hydroxylated polybutadiene having mainly 1,2-repeating units (for example, G-1000, G-2000, G-3000 (manufactured by Nippon Soda Co., Ltd.)), hydroxylated hydrogenated polybutadiene (for example, GI-1000, GI-2000, GI-3000 (manufactured by Nippon Soda Co., Ltd.)), hydroxylated polyisoprene (for example, Poly IP ( Idemitsu Kosan Co., Ltd.)), hydroxylated
  • R 7 is independently an aliphatic hydrocarbon divalent residue or an aromatic hydrocarbon divalent residue having 2 to 50 carbon atoms
  • n 5 is a positive integer, preferably 2 to 50 It is.
  • R 8 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group having 1 to 12 carbon atoms.
  • Examples of the commercial products of the both-end hydroxylated polysilicone include “X-22-160AS, KF6001, KF6002, KF-6003” manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
  • Specific examples of the “polyol compound having an oxygen atom only in the hydroxyl group and having 18 to 72 carbon atoms” include a diol compound having a skeleton obtained by hydrogenating dimer acid.
  • SOVERMOL registered trademark
  • a diol having a molecular weight of 300 or less that does not have a repeating unit can be used as the (a3) polyol compound as long as the effects of the present invention are not impaired.
  • specific examples of such low molecular weight diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and 1,4-butane.
  • Diol 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol, 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, butylethylpropanediol 1,3-cyclohexanedimethanol, 1,3-xylylene glycol, 1,4-xylylene Call, diethylene glycol, triethylene glycol, or dipropylene glycol.
  • the above-mentioned polyurethane having a carboxyl group can be synthesized only from the above components (a1), (a2) or (a1), (a2), (a3). And (a4) monohydroxy compound and / or (a5) monoisocyanate compound may be synthesized for the purpose of imparting properties or suppressing the influence of the isocyanate group or hydroxyl group residue at the end of the polyurethane. it can.
  • Monohydroxy compounds can be used singly or in combination of two or more.
  • 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, allyl alcohol, glycolic acid, and hydroxypivalic acid are preferable, and 2-hydroxyethyl (meth) ) Acrylate and 4-hydroxybutyl (meth) acrylate are more preferred.
  • (a4) monohydroxy compounds include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, amyl alcohol, hexyl alcohol, octyl alcohol and the like.
  • Monoisocyanate compound include (meth) acryloyloxyethyl isocyanate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate to diisocyanate compounds, Cyclohexanedimethanol mono (meth) acrylate, caprolactone or alkylene oxide adduct of each (meth) acrylate, glycerin di (meth) acrylate, trimethylol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Radicals such as mono-adducts of (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, allyl alcohol, and allyloxyethanol It includes compounds having a carbon double bond - carbon.
  • examples of the monoisocyanate hydroxy compound used for the purpose of suppressing the influence of the terminal hydroxyl residue include phenyl isocyanate, hexyl isocyanate, and dodecyl isocyanate.
  • the above-mentioned polyurethane having a carboxyl group is obtained by using the above-mentioned (a1) polyisocyanate compound and (a2) carboxyl in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate using an appropriate organic solvent. It can be synthesized by reacting a dihydroxy compound having a group, (a3) a polyol compound, and (a4) a monohydroxy compound or (a5) a monoisocyanate compound as necessary. It is not necessary to consider the mixing of tin and the like.
  • the organic solvent is not particularly limited as long as it has low reactivity with the isocyanate compound, but when the polyurethane obtained after the reaction is used as a raw material for the conductive pattern forming composition (conductive ink) in a solution, A solvent having a boiling point of 110 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher is preferable. When the boiling point is 110 ° C. or higher, volatilization of the solvent during ink preparation can be suppressed.
  • solvents examples include toluene, xylene, ethylbenzene, nitrobenzene, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether monoacetate, propylene glycol monomethyl ether monoacetate, propylene glycol monoethyl ether monoacetate, diethylene Propylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, n-butyl acetate, isoamyl acetate, ethyl lactate, cyclohexanone, N, N -Dimethylformamide, N, N-dimethylacetate Amide, N- methylpyrrolidone, .gamma.-butyrolactone, and di
  • the organic solvent with low solubility of the polyurethane to be produced is not preferable, and considering that polyurethane is used as the raw material of the ink in electronic material applications, among these, in particular, propylene glycol monomethyl ether monoacetate, propylene glycol monoacetate.
  • propylene glycol monomethyl ether monoacetate propylene glycol monoacetate.
  • Ethyl ether monoacetate, dipropylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, ⁇ -butyrolactone and the like are preferable.
  • the obtained polyurethane is used as a conductive ink raw material after solvent substitution, it is more preferable to use a solvent having a boiling point lower than 110 ° C. because the lower the boiling point, the easier the distillation under reduced pressure.
  • a solvent having a boiling point lower than 110 ° C. examples include cyclohexane, ethyl acetate, acetone, methyl ethyl ketone, chloroform, methylene chloride and the like. Even when a solvent having a boiling point of 110 ° C. or higher is used, there is no problem in carrying out the solvent replacement.
  • the order in which the raw materials are charged is not particularly limited.
  • (a2) a dihydroxy compound having a carboxyl group and (a3) a polyol compound are charged first and dissolved in a solvent, and more preferably 20 to 150 ° C. Is added dropwise with (a1) polyisocyanate compound at 50 to 120 ° C., and then reacted at 30 to 160 ° C., more preferably at 50 to 130 ° C.
  • the temperature at the time of dropping is 20 ° C. or higher
  • (a2) the dihydroxy compound having a carboxyl group is easily dissolved, and when it is 150 ° C. or lower, runaway due to rapid progress of the reaction at the time of dropping can be prevented.
  • the starting molar ratio of the raw material is adjusted according to the molecular weight and acid value of the target polyurethane resin, but when the (a4) monohydroxy compound is introduced into the polyurethane resin, the end of the polyurethane molecule becomes an isocyanate group.
  • these charged molar ratios are such that (a1) isocyanate group of polyisocyanate compound: ((a2) hydroxyl group of dihydroxy compound having carboxyl group + (a3) hydroxyl group of polyol compound) is 0.5 to 1. .5: 1, preferably 0.8 to 1.2: 1, more preferably 0.95 to 1.05. (A1) When the molar ratio of isocyanate groups of the polyisocyanate compound is 0.5 or more and 1.5 or less, it becomes easy to obtain a polyurethane having a large molecular weight.
  • the ratio of (a2) the hydroxyl group of the dihydroxy compound having a carboxyl group to ((a2) the hydroxyl group of the dihydroxy compound having a carboxyl group + (a3) the hydroxyl group of the polyol compound) is preferably 1: 0.05 to 1, preferably It is 1: 0.35 to 1, more preferably 1: 0.45 to 1. (A2) When the ratio of the hydroxyl group of the dihydroxy compound having a carboxyl group is 0.05 or more, an amount of a metal salt site necessary for improving the electrical conductivity can be introduced into the polyurethane.
  • the number of moles of the (a1) polyisocyanate compound is made larger than the number of moles of ((a2) dihydroxy compound having a carboxyl group + (a3) polyol compound), and (a4)
  • the monohydroxy compound is preferably used in an amount of 0.5 to 1.5 times mol, preferably 0.8 to 1.2 times mol, based on the excess number of moles of isocyanate groups.
  • the molar amount of the monohydroxy compound is 0.5 times the molar amount or more, the isocyanate group at the terminal of the polyurethane can be reduced, and when it is 1.5 times the molar amount or less, the unreacted monohydroxy compound Can be prevented from adversely affecting the subsequent processes.
  • the reaction between the (a2) dihydroxy compound having a carboxyl group and the (a3) polyol compound and the (a1) polyisocyanate compound is almost completed.
  • the (a4) monohydroxy compound is added to the reaction solution at 20 to 150 ° C., more preferably 70 ° C. Add dropwise at ⁇ 120 ° C and then hold at the same temperature to complete the reaction.
  • the dropping and the reaction temperature are 20 ° C. or higher, the reaction of the remaining isocyanate group and (a4) monohydroxy group proceeds rapidly, and when the temperature is 150 ° C. or lower, the reaction rapidly proceeds during the dropping. Can be prevented.
  • the number of moles of ((a2) dihydroxy compound having a carboxyl group + (a3) polyol compound) is made larger than the number of moles of (a1) polyisocyanate compound, and an excess of hydroxyl groups
  • the molar amount is 0.5 to 1.5 times the molar amount, preferably 0.8 to 1.2 times the molar amount.
  • the molar amount of the monoisocyanate compound is 0.5 times or more, it is possible to prevent the hydroxyl group from remaining at the terminal of the polyurethane, and when it is 1.5 times or less, the monoisocyanate compound. Can be prevented from adversely affecting the subsequent processes.
  • the reaction between the (a2) dihydroxy compound having a carboxyl group and the (a3) polyol compound and the (a1) polyisocyanate compound is almost completed.
  • the (a5) monoisocyanate compound is reacted in the reaction solution at 20 to 150 ° C., more preferably 50 to The reaction is completed by dropping at 120 ° C. and then holding at the same temperature.
  • the dropping and reaction temperature are 20 ° C. or higher, the reaction between the remaining hydroxyl group and the (a5) monoisocyanate compound proceeds rapidly, and when it is 150 ° C. or lower, the reaction proceeds rapidly during the dropping and runs away. Can be prevented.
  • the number average molecular weight of the polyurethane having a carboxyl group is preferably 1,000 to 100,000, and more preferably 3,000 to 50,000.
  • the molecular weight is a value in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as GPC).
  • GPC gel permeation chromatography
  • the acid value of the polyurethane having a carboxyl group is preferably 5 to 160 mgKOH / g, more preferably 10 to 150 mgKOH / g.
  • an amount of the metal salt portion necessary for improving the conductivity can be introduced into the polyurethane.
  • the solubility to a solvent is favorable in it being 160 mgKOH / g or less, and there are many kinds of the solvent which can be used.
  • the acid value of resin is the value measured by the method described in the Example mentioned later.
  • the metal atom M forming a salt with all or part of the carboxyl groups of the polyurethane having a carboxyl group is a metal belonging to Group 11 of the periodic table.
  • the metal atom M silver and copper are preferable because of low volume resistivity.
  • the polyurethane metal salt may be synthesized by any method. For example, after neutralizing the carboxyl group in the said polyurethane with a base, it is made to react with the metal salt of inorganic acids, such as nitric acid, a sulfuric acid, and carbonic acid.
  • a basic oxide or hydroxide of a metal such as a carboxyl group and silver oxide, silver hydroxide, copper oxide, cuprous oxide, copper hydroxide or the like can be directly reacted.
  • the powder of the basic oxide or hydroxide may be added directly to the polyurethane solution, or the powder is dispersed in advance in a solvent. To the polyurethane solution.
  • the reaction temperature is 20 ° C to 150 ° C, more preferably 20 ° C to 120 ° C.
  • the reaction temperature is 20 ° C to 150 ° C, more preferably 20 ° C to 120 ° C.
  • the reaction proceeds rapidly, and even if the solid content concentration of the metal salt obtained as a solution is increased, the fluidity is increased, so that the reaction can be promoted. Therefore, the degree of freedom of the composition of the ink (conductive pattern forming composition) can be increased.
  • the ratio of being a metal salt is unclear because it is affected by the chemical structure, molecular weight, and acid value of the original polyurethane, but is preferably 5 to 100 mol%. 35 to 100 mol% is preferred.
  • the effect which improves electrical conductivity can be expressed as the ratio made into metal salt is 5 mol% or more.
  • the conductive pattern forming composition according to the embodiment includes the binder resin for conductive composition (A), the conductive material (B), and a solvent (C) for dissolving the binder resin for conductive composition. It is configured.
  • the conductive material (B) that can be used is not particularly limited as long as it has conductivity. It is preferable to use mainly at least one of metal particles (including metal nanoparticles), metal nanowires, and metal nanotubes.
  • a metal nanowire and / or a metal nanotube is a thin wire metal with a diameter of nanometer order size.
  • a metal nanowire is a wire shape, and a metal nanotube is a conductive material having a porous or non-porous tube shape. Material.
  • “wire” and “tube” are both linear, but the former is not hollow (hollow) along the long axis, and the latter is long along the long axis. Intended to be hollow (hollow).
  • the property may be flexible or rigid.
  • a metal nanowire or a metal nanotube may be used, or a mixture of both may be used.
  • the metal constituting the conductive material may be the same type of metal as the metal forming the metal salt in the binder resin for conductive compositions, or may be a different metal.
  • the metal species is appropriately selected according to the conductivity, corrosion resistance and other physical properties required for the conductive pattern forming composition (conductive ink). For example, silver, copper, nickel, gold, platinum, palladium, aluminum, etc. can be mentioned. In particular, it is preferable to use silver or copper because of its high conductivity.
  • the shape of the metal particles is not particularly limited, but the use of flat particles is preferable in that the area where the particles are in contact with each other is increased and resistance is easily reduced.
  • the shape of the flat metal particles was changed by observing 10 points by SEM at a magnification of 10,000 times to measure the thickness and width of the flat metal particles, and the thickness was obtained as the number average value thereof.
  • the thickness is preferably 5 nm to 2 ⁇ m, more preferably 20 nm to 1 ⁇ m.
  • an average particle diameter (approximate particle diameter in the case of spherical particles) of other shapes of metal particles including flat metal particles for example, those in the range of 0.01 to 100 ⁇ m can be used.
  • the thickness is preferably in the range of 0.02 to 50 ⁇ m, more preferably in the range of 0.04 to 10 ⁇ m.
  • the average particle diameter is a median diameter (D 50 ) measured by a laser diffraction method.
  • SALD-3100 manufactured by Shimadzu Corporation
  • LA-950V2 manufactured by Horiba Seisakusho
  • the average diameter of metal nanowires and metal nanotubes is preferably thinner from the viewpoint of conductivity, but thicker from the viewpoint of strength and ease of handling. Therefore, the average value of the wire diameter is preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, and particularly preferably 80 nm or less from the viewpoint of conductivity. On the other hand, from the viewpoints of strength and ease of handling, the thickness is preferably 1 nm or more, more preferably 5 nm or more, and further preferably 10 nm or more.
  • the average length of the major axis of the metal nanowires and metal nanotubes is preferably longer from the viewpoint of conductivity, but it is necessary to limit the length to some extent in order to cope with the fine pattern. Therefore, the average value of the wire length is preferably 1 ⁇ m or more from the viewpoint of conductivity, more preferably 2 ⁇ m or more, and further preferably 5 ⁇ m or more. On the other hand, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less from the viewpoint of handling fine patterns.
  • the average diameter thickness and the average long axis length satisfy the above ranges, and the average aspect ratio is preferably larger than 5, more preferably 10 or more, More preferably, it is more preferably 200 or more.
  • the aspect ratio is a value obtained by a / b when the average diameter of the metal nanowires and metal nanotubes is approximated as b and the average length of the major axis is approximated as a.
  • a and b can be arbitrarily measured using a scanning electron microscope and obtained as an average value.
  • metal oxides and carbon-based materials can be used.
  • the metal constituting the metal oxide particles may be the same type of metal as the metal forming the metal salt in the binder resin for conductive compositions, or may be a different metal.
  • the metal species is appropriately selected according to the electrical conductivity, corrosion resistance and other physical properties required for the conductive pattern forming composition.
  • the metal oxide include indium tin oxide (ITO), zinc oxide, tin dioxide, indium oxide and the like.
  • the carbon-based material include carbon black, graphite, and carbon nanotube.
  • the shape of the metal oxide particles is not particularly limited, but it is preferable to use flat particles like the metal particles. Moreover, about a preferable average particle diameter, it is equivalent to a metal particle.
  • the polyurethane which has a carboxyl group used for binder resin for conductive compositions can be melt
  • Specific examples include ethyl carbitol acetate, ethyl carbitol, butyl carbitol acetate, butyl carbitol, terpineol, dihydroterpineol, and isobornylcyclohexanol.
  • the ratio of the binder resin for conductive composition (A) in the composition for forming a conductive pattern, the ratio of the conductive material (B), and the ratio of the solvent (C) are obtained when the metal particles (B1) are used. This is different from the case of using metal nanowires and / or metal nanotubes (B2). In the case where the metal particles (B1) are electrically conductive, the metal particles (B1) are in contact with each other at points or planes, whereas when metal nanowires and / or metal nanotubes (B2) are used, the intersection (overlapping) portion.
  • the ratio of the metal composition (B1) to the entire composition is smaller than when the metal particle (B1) is used. Moreover, the ratio of the binder resin (A) and the ratio of the solvent (C) are relatively larger when the metal nanowires and / or metal nanotubes (B2) are used than when the metal particles (B1) are used.
  • the ratio of the binder resin (A) for the conductive composition is 1 to 15 parts by weight with respect to 100 parts by weight of the metal particles (B1) in the composition. Parts by mass, preferably 2 to 10 parts by mass, more preferably 2.5 to 5 parts by mass. When the ratio is 1 part by mass or more, the dispersibility of the conductive material is maintained, and the adhesion between the conductive pattern and the substrate is expressed. Moreover, when the ratio is 15 parts by mass or less, the deterioration of the conductivity due to the excessive increase of the polymer component contained in the finally formed conductive pattern can be suppressed.
  • the ratio of the metal particles (B1) to the whole composition is 20% by mass to 95% by mass, preferably 30% by mass to 92% by mass, and more preferably 45% by mass to 90% by mass.
  • the ratio of the metal particles is 20% by mass or more, the conductivity of the finally formed conductive pattern is obtained.
  • the ratio of the metal particles is 95% by mass or less, the viscosity of the conductive pattern forming composition becomes too high, and problems such as blurring do not occur when forming a conductive pattern by printing or coating.
  • the proportion of the solvent (C) is 5% by mass to 80% by mass, preferably 10% by mass to 70% by mass, and more preferably with respect to the entire composition. Is 15% by mass to 60% by mass. If it is 5 mass% or more, the said binder resin for conductive compositions (A) can fully be dissolved. Moreover, it can be set as the viscosity of the composition for conductive pattern formation which can carry out pattern printing as it is 80 mass% or less.
  • the ratio of the binder resin (A) for the conductive composition is the same as the metal nanowire and / or the metal nanotube (B2) 100 in the composition.
  • the amount is 10 parts by mass to 400 parts by mass, preferably 50 parts by mass to 300 parts by mass, and more preferably 100 parts by mass to 250 parts by mass with respect to parts by mass. If the ratio is 10 parts by mass or more, it can be expected that the resistance reduction effect derived from the metal salt site is exhibited. Moreover, when the ratio is 400 parts by mass or less, it is possible to suppress the deterioration of the conductivity due to the excessive increase of the polymer component contained in the finally formed conductive pattern.
  • the ratio of metal nanowires and / or metal nanotubes (B2) to the whole composition is 0.01 to 10% by mass, preferably 0.02 to 5% by mass, more preferably 0.05 to 2% by mass. .
  • the metal nanowires and / or metal nanotubes are 0.01% by mass or more, it is not necessary to print the transparent conductive layer thick in order to ensure desired conductivity, and printing becomes easy. Moreover, if it is 10 mass% or less, in order to ensure a desired optical characteristic, it becomes unnecessary to thinly print a transparent conductive film layer, and also in this case, printing becomes easy.
  • the ratio of the solvent (C) is 90% by mass or more, more preferably 98% by mass or more with respect to the entire composition.
  • the ratio is 90% by mass or more, it is possible to suppress deterioration of conductivity due to excessive increase of polymer components in the finally formed conductive pattern and deterioration of optical characteristics due to excessive increase of conductive components. .
  • the binder resin a carboxylate metal salt moiety represented by (COO) n M in the polymer skeleton (M is a metal atom selected from metals belonging to Group 11 of the periodic table, and n is a valence of the metal atom M).
  • the resin other than the polyurethane having the number can be used in combination as long as the effects of the present invention are not impaired.
  • the ratio of the said polyurethane with respect to all the binder resins is 50 mass% or more, It is more preferable that it is 70 mass% or more, It is further more preferable that it is 90 mass% or more.
  • binder resins that can be used in combination include poly-N-vinyl pyrrolidone, poly-N-vinylacetamide, poly-N-vinyl compounds such as poly-N-vinylcaprolactam, polyethylene glycol, polypropylene glycol, and polyTHF.
  • binder resins include poly-N-vinyl pyrrolidone, poly-N-vinylacetamide, poly-N-vinyl compounds such as poly-N-vinylcaprolactam, polyethylene glycol, polypropylene glycol, and polyTHF.
  • additives can be used in combination as necessary within a range not impairing the properties of the conductive pattern forming composition.
  • Additives that can be used in combination may contain additives such as surfactants, antioxidants, fillers, thixotropic agents, leveling agents, and UV absorbers.
  • a filler such as fumed silica can be used. These blending amounts (ratio to the whole composition) are preferably within 5% by mass.
  • the conductive pattern forming composition includes a conductive resin (A), a conductive material (B), and a solvent (C) that dissolves the conductive composition binder resin.
  • Additives that can be added as necessary are 100% by mass in total (ratio by mass), that is, binder resin for conductive composition (A) and conductive material (B ) And the solvent (C) for dissolving the binder resin for conductive composition, the total amount of the composition can be 100% by mass or less.
  • ratio by mass ratio by mass
  • the solvent (C) for dissolving the binder resin for conductive composition the total amount of the composition can be 100% by mass or less.
  • blend It can manufacture by mixing with a rotation revolution revolution stirrer, a homogenizer, a three roll, a high shear mixer, a propeller stirrer, a mix rotor, etc.
  • the conductivity of the conductive pattern can be improved with low sintering energy.
  • the conductive pattern is formed as a result of sintering the conductive material by printing the conductive pattern forming composition on a base material in a predetermined pattern and applying energy as necessary. Pattern.
  • This pattern is not necessarily a fine line, and a so-called solid shape such as a square having a certain area is also included in the pattern.
  • the substrate for applying and printing the conductive pattern forming composition of the present embodiment is not particularly limited as long as it is insulating. From the viewpoint of ease of application and printing, a plate shape, a sheet shape, and a film shape are preferable.
  • ceramics such as glass and alumina, polyester resins, cellulose resins, vinyl alcohol resins, vinyl chloride resins, cycloolefin resins, polycarbonate resins, acrylic resins, ABS resins, polyimide resins, and other thermoplastic resins, photocurable resins, A thermosetting resin etc. are mentioned.
  • glass having a functional group (hydroxyl group, carbonyl group, amino group, etc.) having an interaction (hydrogen bond, etc.) with urethane bond in the binder resin, polyester resin, cellulose resin, vinyl alcohol resin, acrylic resin, A polyimide resin or the like is preferable.
  • the conductive pattern printing method is not particularly limited as long as it is a known method. Spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, gravure printing method Etc. can be used. Depending on the method of application and the conditions of the material, the substrate may be heated after wet coating to remove the applied material and the solvent used, or the process of washing away the solvent by washing, etc. .
  • the value of the weight average molecular weight is a value in terms of polystyrene measured by GPC, and the measurement conditions are as follows. ⁇ Measuring device Shodex GPC-101 ⁇ Column Shodex column LF-804 ⁇ Mobile phase Tetrahydrofuran (THF) ⁇ Flow rate 1.0mL / min ⁇ Measurement time 40min ⁇ Detector Shodex RI-71S ⁇ Temperature 40.0 °C Sample volume Sample loop 100 ⁇ L ⁇ Sample concentration Prepared to be about 1% by mass THF solution
  • the acid value of the resin was measured by the following method. About 1 g of a sample is precisely weighed with a precision balance in a 100 ml flask, and 30 ml of methanol is added to dissolve it. Furthermore, add 1 to 3 drops of phenolphthalein ethanol solution as an indicator and stir well until the sample is uniform. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is obtained when the indicator is slightly red for 30 seconds. The value obtained from the result using the following calculation formula is defined as the acid value of the resin.
  • TG-DTA Differential heat-thermogravimetry was performed under the following measurement conditions.
  • ⁇ Measurement device Differential thermothermal weight simultaneous measurement device TG / DTA6200 (SII Nanotechnology Inc.) ⁇ Temperature range 30 °C -500 °C ⁇ Temperature increase rate 10 °C / min ⁇ Atmosphere Nitrogen gas
  • DMBA dimethylolbutanoic acid
  • IPDI isophorone diisocyanate
  • the obtained polyurethane has a structural unit represented by the following formula (7).
  • n 6 represents a positive integer, is approximately 17 from the value of the weight-average molecular weight.
  • the measured value of the acid value of the solid content of the obtained polyurethane solution having a carboxyl group was 43 mgKOH / g, and the weight average molecular weight was 1.2 ⁇ 10 4 .
  • Example 1 Synthesis of polyurethane silver salt PU-1Ag 1 using silver nitrate
  • 2.03 g containing 0.73 mmol of carboxyl group
  • 20 ml of acetone manufactured by Wako Pure Chemical Industries, Ltd.
  • sodium hydroxide A solution prepared by dissolving 0.03 g (0.73 mmol) of Wako Pure Chemical Industries, Ltd. in 3 ml of water was added and stirred until uniform.
  • Fig. 1 shows the results of simultaneous differential thermal-thermogravimetric measurement (TG-DTA) of polyurethane silver salt.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 9.9 mass%, which was a value close to 7.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
  • Example 2 Synthesis of polyurethane silver salt PU-1Ag 2 using silver oxide
  • 6.04 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 1 (containing a carboxyl group corresponding to 2.2 mmol) was dissolved in 14.05 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). .26 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd.) (1.1 mmol, 2.2 mmol in terms of silver) was added. The mixture was stirred at room temperature for 10 hours under light shielding, and it was confirmed that silver oxide had disappeared and became a uniform solution.
  • a portion of the obtained silver salt solution (solid content concentration: 16% by mass) was dried under reduced pressure for 1 hour using a vacuum dryer while heating at 100 ° C.
  • TG-DTA measurement of the solid polyurethane silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 8.1 mass%, which was a value close to 7.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula. 1 and 2, it was confirmed that the same polyurethane silver salt obtained by the method using silver nitrate and the polyurethane silver salt obtained by the method using silver oxide were obtained.
  • the obtained silver salt of polyurethane has a structural unit represented by the following formula (8).
  • n 6 represents a positive integer, is approximately 17 from the value of the weight-average molecular weight.
  • Example 3 Synthesis of polyurethane copper salt PU-1Cu using copper sulfate
  • 2.02 g containing 0.73 mmol of carboxyl group
  • 20 ml of acetone manufactured by Wako Pure Chemical Industries, Ltd.
  • sodium hydroxide A solution prepared by dissolving 0.03 g (0.73 mmol) of Wako Pure Chemical Industries, Ltd. in 3 ml of water was added and stirred until uniform.
  • the TG-DTA measurement result of the obtained copper salt is shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 2.3 mass%, which coincided with 2.3 mass%, which is the theoretical value of the copper content calculated from the molecular formula.
  • the obtained copper salt of polyurethane has a structural unit represented by the following formula (9). In the following formula, only the coordination structure around the copper atom is shown for simplification.
  • the dotted line in the formula represents a coordination bond.
  • Urethane bond units that are cross-linked by copper atoms may be contained in the same polyurethane skeleton, or may be contained in different polyurethane skeletons.
  • the divalent copper atom is a substitutionally active metal species, it is considered that the polyurethane chain cross-linked with the copper atom is exchanged over time.
  • a lanthanum type binuclear complex in which four carboxyl groups are coordinated to two copper atoms may be partially formed. In either case, the ratio of the carboxyl group and the copper atom is 2: 1. There is no change in the formation of salt.
  • the obtained polyurethane has a structural unit represented by the following formula (10).
  • n 7 is a positive integer and is approximately 9 from the value of the weight average molecular weight.
  • the actually measured value of the acid value of the solid content of the obtained polyurethane solution having a carboxyl group was 65 mgKOH / g, and the weight average molecular weight was 1.0 ⁇ 10 4 .
  • Example 4 Synthesis of polyurethane silver salt PU-2Ag 1 using silver nitrate
  • 2.53 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 2 (containing 1.1 mmol of carboxyl group) was dissolved in 20 ml of acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.046 g (1.1 mmol) of Wako Pure Chemical Industries, Ltd. in 5 ml of water was added and stirred until uniform.
  • TG-DTA measurement results of polyurethane silver salt are shown in FIG.
  • the mass ratio of the residue after the TG-DTA measurement was 15.2% by mass, which was close to 11.0% by mass, which is the theoretical value of the silver content calculated from the molecular formula.
  • Example 5 Synthesis of polyurethane silver salt PU-2Ag 2 using silver oxide
  • 5.02 g (containing 2.2 mmol of carboxyl group) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 2 was dissolved in 15.02 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). .26 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd.) (1.1 mmol, 2.2 mmol in terms of silver) was added. The mixture was stirred at room temperature for 15 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
  • a part of the obtained polyurethane silver salt solution (solid content concentration 11% by mass) was dried under reduced pressure for 1 hour using a vacuum dryer while heating at 100 ° C.
  • TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 10.9 mass%, which was close to 11.0 mass%, which is the theoretical value of the silver content calculated from the molecular formula. 9 and 10, it was confirmed that the same polyurethane silver salt obtained by the method using silver nitrate and the polyurethane silver salt obtained by the method using silver oxide were obtained.
  • the obtained silver salt of polyurethane has a structural unit represented by the following formula (11).
  • n 7 is a positive integer and is approximately 9 from the value of the weight average molecular weight.
  • the structural unit of the obtained polyurethane is represented by the following formula (12).
  • n 8 is a positive integer, is approximately 18 from the value of the weight-average molecular weight.
  • the obtained paste-like polyurethane group having a carboxyl group had an acid value of 150 mgKOH / g and a weight average molecular weight of 6.5 ⁇ 10 3 .
  • Example 6 Synthesis of polyurethane silver salt PU-3Ag 1 .
  • 1.74 g of the polyurethane composition having a paste-like carboxyl group obtained in Synthesis Example 3 (containing a carboxyl group corresponding to 2.6 mmol) was dissolved in 30 ml of methanol (manufactured by Wako Pure Chemical Industries, Ltd.)
  • the structural unit of the silver salt of the polyurethane is represented by the following formula (13).
  • n 8 is a positive integer, is approximately 18 from the value of the weight-average molecular weight.
  • the TG-DTA measurement result of the obtained polyurethane silver salt is shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 20.5 mass%, which was close to the theoretical value of 22.6 mass% of the silver content calculated from the molecular formula.
  • the obtained polyurethane has a structural unit represented by the following formula (14).
  • Et represents an ethyl group
  • Bu represents an n-butyl group.
  • the obtained polyurethane solution having a carboxyl group had an acid value of 93 mgKOH / g and a weight average molecular weight of 9.0 ⁇ 10 3 .
  • Example 7 Synthesis of polyurethane silver salt PU-4Ag 1 ) 1.56 g of a polyurethane solution having a carboxyl group obtained in Synthesis Example 4 (containing a carboxyl group corresponding to 0.78 mmol) was dissolved in 10 ml of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.03 g (0.78 mmol) of Wako Pure Chemical Industries, Ltd. in 3 ml of water was added and stirred until uniform.
  • the precipitate was filtered with suction, and in order to completely remove the remaining solvent, it was dried under reduced pressure for 1 hour using a vacuum dryer while heating at 110 ° C. to obtain a silver salt of polyurethane (yield 0.41 g). .
  • the TG-DTA measurement result of the obtained silver salt is shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 14.8% by mass, which coincided with 14.8% of the theoretical value of the silver content calculated from the molecular formula.
  • the obtained silver salt of polyurethane has a structural unit represented by the following formula (15).
  • Et represents an ethyl group
  • Bu represents an n-butyl group.
  • the obtained polyurethane has a structural unit represented by the following formula (16).
  • n 9 is a positive integer, is approximately 17 from the value of the weight-average molecular weight.
  • the actually measured value of the acid value of the solid content of the obtained polyurethane solution having a carboxyl group was 85 mgKOH / g, and the weight average molecular weight was 9.4 ⁇ 10 3 .
  • Example 8 Synthesis of polyurethane silver salt PU-5Ag 1 ) 2.00 g of a polyurethane solution having a carboxyl group obtained in Synthesis Example 5 (containing a carboxyl group equivalent to 1.3 mmol) was dissolved in 20 ml of acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.05 g (1, 3 mmol) of Wako Pure Chemical Industries, Ltd. in 5 ml of water was added and stirred until uniform.
  • FIG. 13 shows the TG-DTA measurement result of the obtained polyurethane silver salt.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 20.6 mass%, which was a value close to 14.7 mass% of the theoretical silver content calculated from the molecular formula.
  • the obtained silver salt of the polyurethane has a structural unit represented by the following formula (17).
  • n 9 is a positive integer, is approximately 17 from the value of the weight-average molecular weight.
  • the resulting polyurethane solution having a carboxyl group had an acid value of 62 mgKOH / g and a weight average molecular weight of 2.6 ⁇ 10 4 in the solid content.
  • the obtained polyurethane has a structural unit represented by the following formula (18).
  • n 10 is a positive integer, is about 3 from the value of the weight average molecular weight.
  • R 9 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
  • Example 9 Synthesis of polyurethane silver salt PU-6Ag (8) in which silver atoms are bonded to 8% of carboxyl groups
  • 4.01 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 6 (containing a carboxyl group corresponding to 2.10 mmol) was dissolved in 5.96 g of diethylene glycol monoethyl ether (manufactured by Junsei Kagaku Co., Ltd.). 0.02 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 0.16 mmol as Ag) was added. The mixture was stirred at room temperature for 6 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
  • a part of the obtained polyurethane silver salt solution (solid content concentration: 21% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C.
  • TG-DTA measurement of the solid polyurethane silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 2.0 mass%, which was close to 0.8 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
  • Example 10 Synthesis of polyurethane silver salt PU-6Ag (63) in which silver atoms are bonded to 63% of carboxyl groups
  • 2.06 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 6 (containing a carboxyl group corresponding to 1.08 mmol) was dissolved in 7.99 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.).
  • 0.08 g of silver oxide manufactured by Wako Pure Chemical Industries, Ltd., 0.68 mmol as Ag was added. The mixture was stirred at room temperature for 6 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
  • a part of the obtained polyurethane silver salt solution (solid content concentration: 11% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C.
  • TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 8.5 mass%, which was close to 6.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
  • Example 11 Synthesis of polyurethane silver salt PU-6Ag (50) in which silver atoms are bonded to 50% of carboxyl groups
  • 8.00 g (containing a carboxyl group equivalent to 4.20 mmol) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 6 was dissolved in 8.01 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.).
  • a part of the obtained polyurethane silver salt solution (solid content concentration: 23% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C.
  • TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 5.5% by mass, which was close to 5.1% by mass, which is the theoretical value of the silver content calculated from the molecular formula.
  • Example 12 Synthesis of polyurethane silver salt PU-6Ag (100) in which silver atoms are bonded to 100% of carboxyl groups
  • a part of the obtained polyurethane silver salt solution (solid content concentration: 23% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C.
  • TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 9.5 mass%, which was close to 10.2 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
  • the resulting silver salt of polyurethane having silver atoms bonded to some or all of the carboxyl groups has a structural unit represented by the following formula (19).
  • n 10 is a positive integer, is about 3 from the value of the weight average molecular weight.
  • R 9 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
  • the obtained polyurethane solution having a carboxyl group had an acid value of 59 mgKOH / g and a weight average molecular weight of 2.8 ⁇ 10 4 .
  • the obtained polyurethane has a structural unit represented by the following formula (20).
  • n 11 is a positive integer, is about 3 from the value of the weight average molecular weight.
  • R 10 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
  • Example 13 (Synthesis of polyurethane silver salt PU-7Ag) 8.00 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 7 (containing a carboxyl group corresponding to 4.20 mmol) was dissolved in 7.99 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). Subsequently, 0.49 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 4.20 mmol as Ag) was dispersed in 4.00 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). Added to the polyurethane solution. It stirred at 85 degreeC for 5 hours, and it confirmed that silver oxide disappeared and became a uniform solution.
  • a part of the obtained polyurethane silver salt solution (solid content concentration: 23% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 100 ° C.
  • TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 9.4 mass%, which was close to 10.3 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
  • the obtained silver salt of polyurethane has a structural unit represented by the following formula (21).
  • n 11 is a positive integer, is about 3 from the value of the weight average molecular weight.
  • R 10 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
  • Synthesis Example 8 ⁇ Silver salt of polyurethane containing polyethylene glycol 1000> (Synthesis of polyurethane PU-8) In a 500 mL four-necked separable flask equipped with a dropping funnel, a stirrer, a thermocouple for temperature measurement, and a Liebig condenser, 62.72 g of polyethylene glycol 1000 (weight average molecular weight 1000, manufactured by NOF Corporation) as a diol compound ( 62 mmol, 0.45 equivalents relative to diisocyanate), 11.41 g (77 mmol, 0.55 equivalents relative to diisocyanate) DMBA (manufactured by Huzhou Nagamori Chemical Co., Ltd.) as a dihydroxy compound having a carboxyl group, and as a solvent 105.05 g of ethyl carbitol acetate (manufactured by Daicel Corporation) was charged, and all raw materials were dissolved at 55 ° C.
  • the obtained polyurethane solution having a carboxyl group had an acid value of 42 mgKOH / g and a weight average molecular weight of 1.5 ⁇ 10 4 .
  • the obtained polyurethane has a structural unit represented by the following formula (22).
  • n 12 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
  • Example 14 Synthesis of polyurethane silver salt PU-8Ag (TP) using terpineol as reaction solvent
  • 2.01 g (containing 0.73 mmol of carboxyl group) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 8 was dissolved in 8.00 g of terpineol C (manufactured by Nippon Terpene Chemical Co., Ltd.).
  • 08 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 0.73 mmol as Ag) was added. The mixture was stirred at room temperature for 6 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
  • a part of the obtained polyurethane silver salt solution (solid content concentration: 11% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 100 ° C.
  • TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 7.7 mass%, which was close to 7.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
  • the obtained silver salt of the polyurethane has a structural unit represented by the following formula (23).
  • n 12 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
  • Example 15 Synthesis of polyurethane silver salt PU-8Ag (ECA / EC) using ECA / EC as a reaction solvent
  • 0.08 g of silver oxide manufactured by Wako Pure Chemical Industries, Ltd., 0.73 mmol as Ag was added. The mixture was stirred at room temperature for 7 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
  • the obtained polyurethane silver salt solution was dried under reduced pressure while heating by the method shown in Example 14, and TG-DTA measurement of the solid silver salt obtained after drying was performed. Similar results were obtained.
  • Example 16 (Synthesis of polyurethane copper salt PU-8Cu using copper hydroxide) 4.02 g (containing a carboxyl group corresponding to 1.46 mmol) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 8 was dissolved in 15.99 g of diethylene glycol monoethyl ether (manufactured by Junsei Kagaku Co., Ltd.). 0.07 g of copper hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) (0.73 mmol) was added. After heating to 120 ° C. in an oil bath, the mixture was stirred for 6 hours, and it was confirmed that copper hydroxide had disappeared and became a uniform solution.
  • diethylene glycol monoethyl ether manufactured by Junsei Kagaku Co., Ltd.
  • copper hydroxide manufactured by Wako Pure Chemical Industries, Ltd.
  • a part of the obtained polyurethane copper salt solution (solid content concentration 11% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C.
  • TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG.
  • the mass ratio of the residue after completion of the TG-DTA measurement was 3.2 mass%, which was close to 2.3 mass%, which is the theoretical value of the copper content calculated from the molecular formula.
  • the obtained copper salt of the polyurethane has a crosslinked structure as shown in the above formula (9).
  • the obtained polyurethane solution having a carboxyl group had an acid value of 43 mgKOH / g and a weight average molecular weight of 2.0 ⁇ 10 4 in a solid content.
  • the obtained polyurethane has a structural unit represented by the following formula (24).
  • n 13 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
  • Example 17 Synthesis of polyurethane silver salt PU-9Ag (50) in which silver atoms are bonded to 50% of carboxyl groups
  • the obtained silver salt of polyurethane has a structural unit represented by the following formula (25).
  • n 13 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
  • the used solvent is Daicel Corporation's ethyl carbitol acetate (ECA) and Daicel Corporation's ethyl carbitol (EC).
  • ECA ethyl carbitol acetate
  • EC ethyl carbitol
  • EC ethyl carbitol
  • ⁇ Performance evaluation 1> (1) Volume resistivity After measuring the film thickness of the said conductive pattern with the micrometer, the surface resistance of the conductive pattern was measured with the resistivity meter Loresta GP (made by Mitsubishi Chemical Analytech Co., Ltd.) based on the 4-terminal method. The ESP mode was used for the measurement mode and the terminals used. The obtained film thickness was multiplied by the surface resistance to obtain the volume resistivity of the thin film. The results are shown in Table 1.
  • the polyurethane having a carboxyl group in which all or a part of the carboxyl group is a metal salt (silver salt or copper salt).
  • the Example Evaluation Examples 1 to 19 used have a lower volume resistivity than the Comparative Evaluation Examples 1 to 11 using a polyurethane having a carboxyl group which is not a metal salt.
  • a part of the carboxyl group is a metal salt, it is understood that the volume resistivity is further decreased as the ratio of the metal salt is increased.
  • the conductive paste using the polyurethane which has the carboxyl group in which all or one part of the carboxyl group concerning the Example became a metal salt is the conductive paste using the polyurethane which has the carboxyl group which is not a metal salt
  • the conductivity of the conductive pattern can be improved with lower sintering energy.
  • the amount of metal atoms in the metal (silver or copper) salt of polyurethane, which is a binder resin is larger than the metal atom comparative example, but the amount is 100 parts by mass of metal particles. Therefore, the influence on the change in conductivity is almost negligible.
  • the conductive paste using the polyurethane which has the carboxyl group in which all or a part of the carboxyl groups according to the examples are metal salts has two characteristics required for the conductive pattern, ie, volume resistivity and adhesion. It can be seen that both are well balanced.
  • a conductive paste was prepared in which the sum of the silver amount derived from the silver salt and the silver amount derived from the particles was made constant, and the performance was evaluated.
  • the conductive pattern formation and performance evaluation methods were the same as in the conductive pattern formation 1 and performance evaluation 1, and the results of baking at 120 ° C. and 170 ° C. were further added.
  • Examples 1 to 21 in which all or part of the carboxyl groups are silver salts are comparative evaluation examples that are not silver salts. It can be seen that the volume resistivity is lower than that of 1 to 18 without deteriorating the adhesion. In addition, as shown in Examples 1 to 9 and Comparative Evaluations 1 to 6, the volume resistivity is further decreased as the ratio of silver chloride of the carboxyl group is increased. It can be confirmed again that it originates from the part.
  • Examples 1 to 12 in which all or part of the carboxyl groups are silver salts are comparative evaluation examples that are not silver salts. It can be seen that the volume resistivity is lower than that of 1 to 12 without impairing the adhesion. As described above, even when silver particles other than AgC239 are used, the same results as in the performance evaluation can be obtained. Therefore, the effect of improving the conductivity is not limited to the case where specific particles are used. It was shown that a polyurethane silver salt of the present invention is applicable to a wide range.
  • ⁇ Conductive pattern formation 4 Composition for conductive pattern formation using silver nanoparticles> DF-AT-5100 manufactured by DOWA Electronics Co., Ltd. (spherical, the average value of the primary particle diameter is 40 nm) is used as the silver particles, and the rotation and revolution of each component and blending ratio (part by mass [g]) shown in Table 4 Mixing under normal temperature and normal pressure using mixer Awatori Nertaro (manufactured by Sinky Co., Ltd.) (spinning 600 rpm, revolution 1200 rpm for 3 minutes three times) to prepare 10 g of conductive paste (conductive pattern forming composition) did.
  • the solvent used is Daicel Corporation's ethyl carbitol acetate (ECA), Daicel Corporation's ethyl carbitol (EC), and Nippon Terpene Chemical Co., Ltd. Tersolve MTPH.
  • ECA ethyl carbitol acetate
  • EC ethyl carbitol
  • Nippon Terpene Chemical Co., Ltd. Tersolve MTPH Tersolve MTPH.
  • non-alkali glass product name Eagle XG, manufactured by Corning
  • ⁇ Performance evaluation 4> (1) Volume resistivity Since the film thickness of the conductive pattern was thinner than the measurable range of a micrometer, it was measured with a stylus type surface shape measuring device DEKTAK-6M (manufactured by Bruker Nano). The surface resistance of the conductive pattern was measured with a resistivity meter Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) based on the 4-terminal method, and the measurement mode and the terminals used were measured using the ESP mode. The obtained film thickness was multiplied by the surface resistance to obtain the volume resistivity of the thin film. The results are shown in Table 4.
  • the polyurethane silver salt of the present invention exhibits the effect of improving the conductivity not only when combined with micron-sized silver particles but also when combined with nano-sized silver particles.
  • composition for conductive pattern formation using silver nanowire Using silver nanowire as a conductive component, mixing at each component and mixing ratio (parts by mass [g]) shown in Table 5 under normal temperature and normal pressure using a rotating / revolving mixer Awatori Neritarou (Sinky Corp.) Then, 10 g of conductive paste (composition for forming a conductive pattern) was prepared (3 times for 3 minutes at 600 rpm for rotation and 1200 rpm for revolution).
  • Silver nanowires synthesized by the polyol method (average length 20 ⁇ m, average diameter 35 nm) were used, and terpineol C and tersolve MTPH (both manufactured by Nippon Terpene Chemical Co., Ltd.) were used as the solvent. Printing and baking are possible even when only polyurethane and polyurethane silver salt are used as the binder resin, but polyvinyl pyrrolidone K-90 (manufactured by BASF) was used in combination in order to keep the pattern shape after baking better.
  • the measuring device was a resistivity meter Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) based on the four-terminal method, and the measuring mode and terminals used were ESP mode. The results are shown in Table 5.

Abstract

[Problem] To provide: a binder resin for electroconductive compositions which, with lower sintering energy, give electroconductive patterns having improved electroconductivity; a composition for electroconductive pattern formation which contains the binder resin; and a polyurethane. [Solution] The binder resin for electroconductive compositions comprises a polyurethane having, in the polymer skeleton, a metal carboxylate moiety represented by (COO)nM (where M is the atom of a metal selected from the metals belonging to Group 11 of the periodic table and n is the valence of the metal atom M). The binder resin for electroconductive compositions is mixed with an electroconductive material and a solvent in which the binder resin for electroconductive compositions dissolves, thereby giving a composition for electroconductive pattern formation which attains improved electroconductivity with low sintering energy.

Description

導電性組成物用バインダー樹脂、これを含む導電パターン形成用組成物及びポリウレタンBinder resin for conductive composition, conductive pattern forming composition containing the same, and polyurethane
 本発明は、導電性組成物用バインダー樹脂、これを含む導電パターン形成用組成物及びポリウレタンに関する。 The present invention relates to a binder resin for a conductive composition, a composition for forming a conductive pattern including the binder resin, and polyurethane.
 微細な配線パターンを作製する技術として、従来銅箔とフォトレジストを組み合わせてリソグラフィー法で配線パターンを形成する方法が一般的に用いられているが、この方法は工程数も多い上に、排水、廃液処理の負担が大きく、環境的に改善が望まれている。また、加熱蒸着法やスパッタリング法で作製した金属薄膜をフォトリソグラフィー法によりパターニングする手法も知られている。しかし、加熱蒸着法やスパッタリング法は真空環境が不可欠である上に、価格も非常に高価になり、配線パターンへ適用した場合には製造コストを低減させることが困難であった。 As a technique for producing a fine wiring pattern, a method of forming a wiring pattern by a lithography method using a combination of a copper foil and a photoresist is generally used, but this method has many processes, drainage, The burden of waste liquid treatment is large, and environmental improvement is desired. Also known is a method of patterning a metal thin film produced by a heat deposition method or a sputtering method by a photolithography method. However, the heating vapor deposition method and the sputtering method are indispensable for a vacuum environment, and the price is very expensive. When applied to a wiring pattern, it is difficult to reduce the manufacturing cost.
 そこで、金属や金属酸化物を含むインキを用いて印刷により配線を作製する技術が提案されている。印刷による配線技術は、低コストで多量の製品を高速に作製することが可能であるため、既に一部で実用的な電子デバイスの作製が検討されている。 Therefore, a technique for producing a wiring by printing using an ink containing a metal or a metal oxide has been proposed. Since the wiring technology by printing is capable of producing a large quantity of products at low cost and at high speed, the production of practical electronic devices has already been studied in part.
 例えば、下記特許文献1には、基材上に導電性無機金属粒子を含む導電性無機組成物を吐出するステップ、前記導電性無機組成物上に導電性有機金属錯体を含む導電性有機組成物を吐出するステップ、および前記導電性無機組成物および導電性有機組成物を焼成するステップを含む基板の製造方法が開示されている。 For example, the following Patent Document 1 discloses a step of discharging a conductive inorganic composition containing conductive inorganic metal particles on a substrate, and a conductive organic composition containing a conductive organometallic complex on the conductive inorganic composition. A method for manufacturing a substrate is disclosed which includes a step of discharging the conductive inorganic composition and the conductive organic composition.
 しかし、加熱炉を用いて金属等を含むインキを加熱焼成する方法では、加熱工程で時間がかかる上に、加熱温度にプラスチック基材が耐えることが出来ない場合には、満足な導電率に到達しないという問題があった。 However, the method of heating and baking ink containing metal using a heating furnace takes time in the heating process, and if the plastic substrate cannot withstand the heating temperature, it reaches a satisfactory conductivity. There was a problem of not doing.
 また、上記特許文献1では、導電性無機組成物と導電性有機組成物とを別々に吐出する必要があり、工程が煩雑であるという問題もあった。 Moreover, in the said patent document 1, it was necessary to discharge a conductive inorganic composition and a conductive organic composition separately, and there also existed a problem that a process was complicated.
 そこで、特許文献2~6に記載のように、ナノ粒子を含む導電性組成物(インキ)を用いて、光照射により金属配線に転化させることが考えられる。 Therefore, as described in Patent Documents 2 to 6, it is conceivable to use a conductive composition (ink) containing nanoparticles and convert it to metal wiring by light irradiation.
 光エネルギーやマイクロ波を加熱に用いる方法は、インキ部分のみを加熱出来る可能性があり、非常に良い方法であるといえる。 The method of using light energy or microwaves for heating can be said to be a very good method because it may heat only the ink portion.
 しかし、所望の導電率を得るためには高エネルギーの光照射が必要となることがあり、この場合には加熱炉での焼成と同様に基材がそのエネルギーに耐えられないというおそれもある。 However, in order to obtain a desired conductivity, high energy light irradiation may be required. In this case, the substrate may not be able to withstand the energy as in the case of firing in a heating furnace.
特開2010-183082号公報JP 2010-183082 A 特表2008-522369号公報Special table 2008-522369 WO2010/110969号のパンフレットPamphlet of WO2010 / 110969 特表2010-528428号公報Special table 2010-528428 WO2013/077447号のパンフレットPamphlet of WO2013 / 077447 WO2015/064567号のパンフレットWO2015 / 064567 pamphlet
 一般に、基板上に形成された導電パターンは、導電率が高い(体積抵抗率が低い)ほど望ましいが、同じ導電率に到達させるための焼結エネルギーが低いほど、導電パターンを形成するための導電性組成物は性能が高いといえる。そのため、上記従来の導電性組成物も、さらに低い焼結エネルギーで導電率を向上させることが望ましい。 In general, the conductive pattern formed on the substrate is more desirable as the electrical conductivity is higher (the volume resistivity is lower). However, the lower the sintering energy for reaching the same electrical conductivity is, the lower the electrical conductivity for forming the conductive pattern is. The composition can be said to have high performance. Therefore, it is desirable that the above-described conventional conductive composition also improve the conductivity with a lower sintering energy.
 本発明の目的は、低い焼結エネルギーで導電パターンの導電率を向上させうる導電性組成物用バインダー樹脂、これを含む導電パターン形成用組成物及びポリウレタンを提供することにある。 An object of the present invention is to provide a binder resin for a conductive composition capable of improving the conductivity of a conductive pattern with a low sintering energy, a composition for forming a conductive pattern and a polyurethane containing the binder resin.
 上記目的を達成するために、本発明の一実施形態は、導電性組成物用バインダー樹脂であって、該バインダー樹脂が高分子骨格中に(COO)Mで表されるカルボン酸金属塩部位(Mは周期表第11族に属する金属から選択される金属原子、nは金属原子Mの価数)を有するポリウレタンを含むことを特徴とする。 In order to achieve the above object, an embodiment of the present invention is a binder resin for a conductive composition, wherein the binder resin is a carboxylate metal salt moiety represented by (COO) n M in a polymer skeleton. It includes a polyurethane having (M is a metal atom selected from metals belonging to Group 11 of the periodic table, and n is a valence of the metal atom M).
 上記ポリウレタンは、構成単位に(a1)ポリイソシアネート化合物と(a2)カルボキシル基を有するジヒドロキシ化合物とのウレタン結合単位を含むのが好適である。 It is preferable that the polyurethane includes a urethane bond unit of (a1) a polyisocyanate compound and (a2) a dihydroxy compound having a carboxyl group as a structural unit.
 また、上記金属塩を構成する金属は、銀、銅のいずれかを含むのが好適である。 Moreover, it is preferable that the metal constituting the metal salt contains either silver or copper.
 また、上記(a2)カルボキシル基を有するジヒドロキシ化合物が、2,2-ジメチロールプロピオン酸および2,2-ジメチロールブタン酸の少なくとも一つであるのが好適である。 The (a2) carboxyl group-containing dihydroxy compound is preferably at least one of 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid.
 また、上記(a1)ポリイソシアネート化合物が、脂環族ポリイソシアネートであるのが好適であり、脂環族ポリイソシアネートが3-イソシアネートメチル-3,3,5-トリメチルシクロヘキサン(IPDI、イソホロンジイソシアネート)、又はビス-(4-イソシアネートシクロヘキシル)メタン(水添MDI)であることがさらに好適である。 The (a1) polyisocyanate compound is preferably an alicyclic polyisocyanate, and the alicyclic polyisocyanate is 3-isocyanate methyl-3,3,5-trimethylcyclohexane (IPDI, isophorone diisocyanate), Alternatively, bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI) is more preferable.
 また、本発明の他の実施形態は、導電パターン形成用組成物であって、上記導電性組成物用バインダー樹脂(A)と、導電材(B)と、前記導電性組成物用バインダー樹脂を溶解する溶媒(C)と、を備えるのが好適である。導電材(B)としては金属粒子(B1)、又は金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いることができる。 Moreover, other embodiment of this invention is a composition for conductive pattern formation, Comprising: The said binder resin for conductive compositions (A), a conductive material (B), and the said binder resin for conductive compositions are included. And a solvent (C) that dissolves. As the conductive material (B), metal particles (B1), metal nanowires and / or metal nanotubes (B2) can be used.
 上記導電材(B)として金属粒子(B1)を用いる場合は、導電パターン形成用組成物全体に対する金属粒子(B1)の割合が20質量%~95質量%、導電性組成物用バインダー樹脂を溶解する溶媒(C)の含有量が5質量%~80質量%であり、導電性組成物用バインダー樹脂(A)が金属粒子(B1)100質量部に対して1質量部~15質量部であるのが好適である。 When the metal particles (B1) are used as the conductive material (B), the ratio of the metal particles (B1) to the entire conductive pattern forming composition is 20% by mass to 95% by mass, and the binder resin for the conductive composition is dissolved. The content of the solvent (C) is 5 mass% to 80 mass%, and the binder resin for conductive composition (A) is 1 mass part to 15 mass parts with respect to 100 mass parts of the metal particles (B1). Is preferred.
 上記導電材(B)として金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いる場合は、導電パターン形成用組成物全体に対する金属ナノワイヤ及び/又は金属ナノチューブ(B2)の割合が0.01質量%~10質量%、導電性組成物用バインダー樹脂を溶解する溶媒(C)の含有量が90質量%以上であり、導電性組成物用バインダー樹脂(A)が金属ナノワイヤ及び/又は金属ナノチューブ(B2)100質量部に対して10質量部~400質量部であるのが好適である。 When metal nanowires and / or metal nanotubes (B2) are used as the conductive material (B), the ratio of metal nanowires and / or metal nanotubes (B2) to the entire conductive pattern forming composition is 0.01% by mass to 10%. The content of the solvent (C) for dissolving the binder resin for conductive composition is 90% by mass or more, and the binder resin for conductive composition (A) is a metal nanowire and / or metal nanotube (B2) 100. The amount is preferably 10 to 400 parts by mass with respect to parts by mass.
 上記導電材(B)を構成する金属は、銀、銅のいずれかを含むのが好適である。 The metal constituting the conductive material (B) preferably contains either silver or copper.
 また、本発明の他の実施形態は、以下の式(1)で表される構成単位の少なくとも一つを含むポリウレタンである。 Another embodiment of the present invention is a polyurethane containing at least one of the structural units represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明によれば、高分子骨格中に金属原子を含まないバインダー樹脂を用いた場合に比べてより低い焼結エネルギーで導電パターンの導電率を向上することができる。 According to the present invention, the conductivity of the conductive pattern can be improved with a lower sintering energy than when a binder resin containing no metal atom is used in the polymer skeleton.
実施例1にかかるポリウレタン銀塩(硝酸銀使用)の示差熱-熱重量同時測定結果を示す図である。FIG. 3 is a graph showing the results of simultaneous differential thermal-thermogravimetric measurement of polyurethane silver salt (using silver nitrate) according to Example 1. 実施例2にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver oxide) concerning Example 2. FIG. 合成例1で合成されたポリウレタンの赤外線(IR)吸収スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the infrared rays (IR) absorption spectrum of the polyurethane synthesize | combined in the synthesis example 1. FIG. 実施例1にかかるポリウレタン銀塩のIR吸収スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of IR absorption spectrum of the polyurethane silver salt concerning Example 1. FIG. 合成例1で合成されたポリウレタンの核磁気共鳴(NMR)スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the nuclear magnetic resonance (NMR) spectrum of the polyurethane synthesize | combined in the synthesis example 1. FIG. 実施例1にかかるポリウレタン銀塩のNMRスペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the NMR spectrum of the polyurethane silver salt concerning Example 1. FIG. 実施例3にかかるポリウレタン銅塩(硫酸銅使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane copper salt (use copper sulfate) concerning Example 3. FIG. 実施例3にかかるポリウレタン銅塩のIR吸収スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of IR absorption spectrum of the polyurethane copper salt concerning Example 3. FIG. 実施例4にかかるポリウレタン銀塩(硝酸銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (using silver nitrate) concerning Example 4. 実施例5にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver oxide) concerning Example 5. FIG. 実施例6にかかるポリウレタン銀塩(硝酸銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver nitrate) concerning Example 6. FIG. 実施例7にかかるポリウレタン銀塩(硝酸銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver nitrate) concerning Example 7. FIG. 実施例8にかかるポリウレタン銀塩(硝酸銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (using silver nitrate) concerning Example 8. 実施例9にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (using silver oxide) concerning Example 9. FIG. 実施例10にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (uses silver oxide) concerning Example 10. FIG. 実施例11にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (use silver oxide) concerning Example 11. FIG. 実施例12にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (uses silver oxide) concerning Example 12. 実施例13にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (using silver oxide) concerning Example 13. 実施例14にかかるポリウレタン銀塩(酸化銀使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane silver salt (using silver oxide) concerning Example 14. FIG. 実施例16にかかるポリウレタン銅塩(水酸化銅使用)の示差熱-熱重量同時測定結果を示す図である。It is a figure which shows the differential thermal-thermogravimetric simultaneous measurement result of the polyurethane copper salt (using copper hydroxide) concerning Example 16.
 以下、本発明を実施するための形態(以下、実施形態という)について説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.
 本実施形態にかかる導電性組成物用バインダー樹脂は、高分子骨格中に(COO)Mで表されるカルボン酸金属塩部位(Mは周期表第11族に属する金属から選択される金属原子、nは金属原子Mの価数)を有するポリウレタンを含むことに特徴がある。 The binder resin for a conductive composition according to the present embodiment is a metal atom selected from metals belonging to Group 11 of the periodic table, wherein the carboxylate metal salt moiety represented by (COO) n M in the polymer skeleton. , N includes a polyurethane having a valence of a metal atom M).
 本実施形態のポリウレタンは、構成単位に少なくともポリイソシアネート化合物とカルボキシル基を有するジヒドロキシ化合物とのウレタン結合単位を含む。ポリイソシアネート化合物とカルボキシル基を有するジヒドロキシ化合物以外のポリオールとのウレタン結合単位を含むことができる。すなわち(a1)ポリイソシアネート化合物、(a2)カルボキシル基を有するジヒドロキシ化合物に、必要に応じて(a2)以外の(a3)ポリオール化合物を混合し、反応させることにより得られるポリウレタン樹脂であってもよい。得られたポリウレタン樹脂中のカルボキシル基(COOH基)に周期表第11族に属する金属原子Mを含む化合物を反応させることにより、ポリウレタン骨格中に(COO)M(nは金属原子Mの価数)で表されるカルボン酸金属塩部位を有するポリウレタン樹脂を得ることができる。 The polyurethane of this embodiment includes a urethane bond unit of at least a polyisocyanate compound and a dihydroxy compound having a carboxyl group in a structural unit. A urethane bond unit between a polyisocyanate compound and a polyol other than a dihydroxy compound having a carboxyl group can be included. That is, it may be a polyurethane resin obtained by mixing (a1) a polyisocyanate compound and (a2) a dihydroxy compound having a carboxyl group with (a3) a polyol compound other than (a2) as required. . By reacting a carboxyl group (COOH group) in the obtained polyurethane resin with a compound containing a metal atom M belonging to Group 11 of the periodic table, (COO) n M (n is the value of the metal atom M) in the polyurethane skeleton. It is possible to obtain a polyurethane resin having a carboxylic acid metal salt moiety represented by
 以下、本実施形態のバインダー樹脂に含まれるポリウレタン樹脂の製造に用いられる各構成成分についてより詳細に説明する。 Hereinafter, each component used for manufacturing the polyurethane resin contained in the binder resin of the present embodiment will be described in more detail.
(a1)ポリイソシアネート化合物
 (a1)ポリイソシアネート化合物としては、通常、1分子当たりのイソシアネート基が2個であるジイソシアネートが用いられる。ポリイソシアネート化合物としては、たとえば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート等が挙げられる。カルボキシル基を含有するポリウレタンがゲル化をしない範囲で、トリフェニルメタントリイソシアネートのような、イソシアネート基を3個以上有するポリイソシアネートも少量使用することができる。脂環族ポリイソシアネートが黄変性が少ないという点で好ましい。
(A1) Polyisocyanate Compound (a1) As the polyisocyanate compound, diisocyanate having two isocyanate groups per molecule is usually used. Examples of the polyisocyanate compound include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, and araliphatic polyisocyanate. A small amount of polyisocyanate having 3 or more isocyanate groups such as triphenylmethane triisocyanate can be used as long as the polyurethane containing carboxyl groups does not gel. An alicyclic polyisocyanate is preferred in that it has less yellowing.
 脂肪族ポリイソシアネートとしては、たとえば、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,9-ノナメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,2’-ジエチルエーテルジイソシアネート、ダイマー酸ジイソシアネート等が挙げられる。 Examples of the aliphatic polyisocyanate include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2′-diethyl ether diisocyanate, dimer acid diisocyanate and the like.
 脂環族ポリイソシアネートとしては、たとえば、1,4-シクロヘキサンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、3-イソシアネートメチル-3,3,5-トリメチルシクロヘキサン(IPDI、イソホロンジイソシアネート)、ビス-(4-イソシアネートシクロヘキシル)メタン(水添MDI)、水素化(1,3-又は1,4-)キシリレンジイソシアネート、ノルボルナンジイソシアネート等が挙げられる。 Examples of the alicyclic polyisocyanate include 1,4-cyclohexane diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, 3-isocyanate methyl-3,3,5- Examples thereof include trimethylcyclohexane (IPDI, isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-) xylylene diisocyanate, norbornane diisocyanate, and the like.
 芳香族ポリイソシアネートとしては、たとえば、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、(1,2,1,3,又は1,4)-キシレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアネートビフェニル、3,3’-ジメチル-4,4’-ジイソシアネートジフェニルメタン、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、テトラクロロフェニレンジイソシアネート、等が挙げられる。 Examples of the aromatic polyisocyanate include 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, (1 , 2,1,3 or 1,4) -xylene diisocyanate, 3,3′-dimethyl-4,4′-diisocyanate biphenyl, 3,3′-dimethyl-4,4′-diisocyanate diphenylmethane, 1,5- Examples thereof include naphthylene diisocyanate, 4,4′-diphenyl ether diisocyanate, and tetrachlorophenylene diisocyanate.
 芳香脂肪族ポリイソシアネートとしては、たとえば、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、3,3’-メチレンジトリレン-4,4’-ジイソシアネート等が挙げられる。 Examples of the araliphatic polyisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, α, α, α ′, α′-tetramethylxylylene diisocyanate, and 3,3′-methylene ditolylene. -4,4'-diisocyanate and the like.
 これらのジイソシアネートは、1種単独で又は2種以上を組み合わせて用いることができる。これらの中でも3-イソシアネートメチル-3,3,5-トリメチルシクロヘキサン(IPDI、イソホロンジイソシアネート)、ビス-(4-イソシアネートシクロヘキシル)メタン(水添MDI)等が工業的に入手しやすいという観点から好ましい。 These diisocyanates can be used singly or in combination of two or more. Among these, 3-isocyanate methyl-3,3,5-trimethylcyclohexane (IPDI, isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI) and the like are preferable from the viewpoint of industrial availability.
(a2)カルボキシル基を有するジヒドロキシ化合物
 (a2)カルボキシル基を有するジヒドロキシ化合物としては、ヒドロキシ基、炭素原子数が1又は2のヒドロキシアルキル基から選択されるいずれかを2つ有する分子量が200以下のカルボン酸又はアミノカルボン酸であることが架橋点を制御できる点で好ましい。具体的には2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン等が挙げられ、この中でも、溶媒への溶解度から、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸が特に好ましい。これらの(a2)カルボキシル基を有するジヒドロキシ化合物は、1種単独で又は2種以上を組み合わせて用いることができる。
(A2) Dihydroxy compound having a carboxyl group (a2) The dihydroxy compound having a carboxyl group has a molecular weight of 200 or less having either a hydroxy group or two selected from a hydroxyalkyl group having 1 or 2 carbon atoms. Carboxylic acid or aminocarboxylic acid is preferable in that the crosslinking point can be controlled. Specific examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine, and the like. In view of solubility, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferred. These (a2) dihydroxy compounds having a carboxyl group can be used singly or in combination of two or more.
(a3)ポリオール化合物
 必要に応じて併用することができる(a3)ポリオール化合物(ただし、(a3)ポリオール化合物には、前述した(a2)カルボキシル基を有するジヒドロキシ化合物は含まれない。)の数平均分子量は通常250~50,000であり、好ましくは400~10,000、より好ましくは500~5,000である。この分子量は後述する条件でGPCにより測定したポリスチレン換算の値である。数平均分子量が50,000以下の場合は、溶媒への溶解性が高く、溶解後も適度な粘度となるために使用しやすいという点で好ましい。
(A3) Polyol compound The number average of (a3) polyol compound (however, (a3) polyol compound does not include the above-mentioned (a2) dihydroxy compound having a carboxyl group) that can be used in combination as needed. The molecular weight is usually 250 to 50,000, preferably 400 to 10,000, more preferably 500 to 5,000. This molecular weight is a value in terms of polystyrene measured by GPC under the conditions described later. When the number average molecular weight is 50,000 or less, the solubility in a solvent is high, and the viscosity becomes an appropriate viscosity even after dissolution, which is preferable in terms of easy use.
 (a3)ポリオール化合物は、たとえば、ポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリラクトンポリオール、ポリブタジエンポリオール、両末端水酸基化ポリシリコーン、および水酸基のみに酸素原子を含み炭素原子数が18~72であるポリオール化合物である。 (A3) The polyol compound is, for example, a polycarbonate polyol, a polyether polyol, a polyester polyol, a polylactone polyol, a polybutadiene polyol, a hydroxylated polysilicon at both ends, and an oxygen atom only in the hydroxyl group and having 18 to 72 carbon atoms. It is a polyol compound.
 上記ポリカーボネートポリオールは、炭素原子数3~18のジオールを原料として、炭酸エステル又はホスゲンと反応させることにより得ることができ、たとえば、以下の構造式(2)で表される。 The polycarbonate polyol can be obtained by reacting a diol having 3 to 18 carbon atoms with a carbonate or phosgene as a raw material, and is represented by the following structural formula (2), for example.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(2)において、Rは対応するジオール(HO-R-OH)から水酸基を除いた残基であり、nは正の整数、好ましくは2~50である。nが50以下であると、分子量が大きくなりすぎることによる溶解性の悪化を抑えることができる。 In the formula (2), R 1 is a residue obtained by removing a hydroxyl group from the corresponding diol (HO—R 1 —OH), and n 1 is a positive integer, preferably 2 to 50. When n 1 is 50 or less, deterioration of solubility due to excessive increase in molecular weight can be suppressed.
 式(2)で表されるポリカーボネートポリオールは、具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコール又は1,2-テトラデカンジオールなどを原料として用いることにより製造できる。 Specifically, the polycarbonate polyol represented by the formula (2) includes 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1 , 5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 It can be produced by using decamethylene glycol or 1,2-tetradecanediol as a raw material.
 上記ポリカーボネートポリオールは、その骨格中に複数種のアルキレン基を有するポリカーボネートポリオール(共重合ポリカーボネートポリオール)であってもよい。共重合ポリカーボネートポリオールの使用は、カルボキシル基を有するポリウレタンの結晶化防止の観点から有利な場合が多い。また、溶媒への溶解性を考慮すると、分岐骨格を有し、分岐鎖の末端に水酸基を有するポリカーボネートポリオールが併用されることが好ましい。 The polycarbonate polyol may be a polycarbonate polyol having a plurality of types of alkylene groups in its skeleton (copolymerized polycarbonate polyol). The use of copolymerized polycarbonate polyol is often advantageous from the viewpoint of preventing crystallization of polyurethane having a carboxyl group. In consideration of solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and having a hydroxyl group at the end of the branched chain.
 上記ポリエーテルポリオールは、炭素原子数2~12のジオールを脱水縮合、又は炭素原子数2~12のオキシラン化合物、オキセタン化合物、もしくはテトラヒドロフラン化合物を開環重合して得られたものであり、たとえば以下の構造式(3)で表される。 The polyether polyol is obtained by dehydration condensation of a diol having 2 to 12 carbon atoms or ring-opening polymerization of an oxirane compound, oxetane compound or tetrahydrofuran compound having 2 to 12 carbon atoms. It is represented by the structural formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)において、Rは対応するジオール(HO-R-OH)から水酸基を除いた残基であり、nは正の整数、好ましくは4~50である。上記炭素原子数2~12のジオールは一種を単独で用いて単独重合体とすることもできるし、2種以上を併用することにより共重合体とすることもできる。nが50以下であると、分子量が大きくなりすぎることによる溶解性の悪化を抑えることができる。 In the formula (3), R 2 is a residue obtained by removing a hydroxyl group from the corresponding diol (HO—R 2 —OH), and n 2 is a positive integer, preferably 4 to 50. The above diols having 2 to 12 carbon atoms can be used alone to form a homopolymer, or a combination of two or more can be used as a copolymer. When n 2 is 50 or less, deterioration of solubility due to excessive increase in molecular weight can be suppressed.
 上記式(3)で表されるポリエーテルポリオールとしては、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリ-1,2-ブチレングリコール、ポリテトラメチレングリコール(ポリ1,4-ブタンジオール)、ポリ-3-メチルテトラメチレングリコール、ポリネオペンチルグリコール等のポリアルキレングリコールが挙げられる。また、(ポリエーテルポリオール)の相溶性、(ポリエーテルポリオール)の疎水性を向上させる目的で、これらの共重合体、たとえば1,4-ブタンジオール-ネオペンチルグリコール等も用いることができる。 Specific examples of the polyether polyol represented by the above formula (3) include polyethylene glycol, polypropylene glycol, poly-1,2-butylene glycol, polytetramethylene glycol (poly 1,4-butanediol), poly Examples include polyalkylene glycols such as -3-methyltetramethylene glycol and polyneopentyl glycol. Further, for the purpose of improving the compatibility of (polyether polyol) and the hydrophobicity of (polyether polyol), these copolymers such as 1,4-butanediol-neopentyl glycol can also be used.
 上記ポリエステルポリオールとしては、ジカルボン酸及びジオールを脱水縮合又はジカルボン酸の低級アルコールのエステル化物とジオールとのエステル交換反応をして得られるものであり、たとえば以下の構造式(4)で表される。 The polyester polyol is obtained by dehydration condensation of a dicarboxylic acid and a diol or an ester exchange reaction between an esterified product of a lower alcohol of a dicarboxylic acid and a diol, and is represented by the following structural formula (4), for example. .
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(4)において、Rは対応するジオール(HO-R-OH)から水酸基を除いた残基であり、Rは対応するジカルボン酸(HOCO-R-COOH)から2つのカルボキシル基を除いた残基であり、nは正の整数、好ましくは2~50である。nが50以下であると、分子量が大きくなりすぎることによる溶解性の悪化を抑えることができる。 In the formula (4), R 3 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO—R 3 —OH), and R 4 represents two carboxyl groups from the corresponding dicarboxylic acid (HOCO—R 4 —COOH). And n 3 is a positive integer, preferably 2 to 50. When n 3 is 50 or less, deterioration of solubility due to excessive increase in molecular weight can be suppressed.
 上記ジオール(HO-R-OH)としては、具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコール又は1,2-テトラデカンジオール、2,4-ジエチル-1,5-ペンタンジオール、ブチルエチルプロパンジオール、1,3-シクロヘキサンジメタノール、3-キシリレングリコール、1,4-キシリレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等が挙げられる。 Specific examples of the diol (HO—R 3 —OH) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, , 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4- Cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol or 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, Butylethylpropanediol, 1,3-cyclohexanedimethanol, 3-xylylene glycol, 1,4-xylylene Glycol, diethylene glycol, triethylene glycol, dipropylene glycol, and the like.
 上記ジカルボン酸(HOCO-R-COOH)としては、具体的には、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ブラシル酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、クロレンド酸、フマル酸、マレイン酸、イタコン酸、シトラコン酸、フタル酸、イソフタル酸、テレフタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸が挙げられる。 Specific examples of the dicarboxylic acid (HOCO-R 4 -COOH) include succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, brassic acid, 1,4-cyclohexanedicarboxylic acid, hexa Hydrophthalic acid, methyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, chlorendic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,4- And naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid.
 上記ポリラクトンポリオールは、ラクトンの開環重合物とジオールとの縮合反応、又はジオールとヒドロキシアルカン酸との縮合反応により得られるものであり、たとえば以下の構造式(5)で表される。 The polylactone polyol is obtained by a condensation reaction of a lactone ring-opening polymer and a diol, or a condensation reaction of a diol and a hydroxyalkanoic acid, and is represented, for example, by the following structural formula (5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(5)において、Rは対応するヒドロキシアルカン酸(HO-R-COOH)から水酸基およびカルボキシル基を除いた残基であり、Rは対応するジオール(HO-R-OH)から水酸基を除いた残基であり、nは正の整数、好ましくは2~50である。nが50以下であると、分子量が大きくなりすぎることによる溶解性の悪化を抑えることができる。 In the formula (5), R 5 is a residue obtained by removing a hydroxyl group and a carboxyl group from the corresponding hydroxyalkanoic acid (HO—R 5 —COOH), and R 6 is a corresponding diol (HO—R 6 —OH). It is a residue excluding a hydroxyl group, and n 4 is a positive integer, preferably 2 to 50. When n 4 is 50 or less, deterioration in solubility due to excessive increase in molecular weight can be suppressed.
 上記ヒドロキシアルカン酸(HO-R-COOH)としては、具体的には、3-ヒドロキシブタン酸、4-ヒドロキシペンタン酸、5-ヒドロキシヘキサン酸等が挙げられる。 Specific examples of the hydroxyalkanoic acid (HO—R 5 —COOH) include 3-hydroxybutanoic acid, 4-hydroxypentanoic acid, and 5-hydroxyhexanoic acid.
 上記ポリブタジエンポリオールは、たとえば、ブタジエンやイソプレンをアニオン重合により重合し、末端処理により両末端に水酸基を導入して得られるジオール、及びそれらの二重結合を水素還元して得られるジオールである。 The polybutadiene polyol is, for example, a diol obtained by polymerizing butadiene or isoprene by anionic polymerization and introducing hydroxyl groups at both ends by terminal treatment, and a diol obtained by hydrogen reduction of these double bonds.
 ポリブタジエンポリオールとしては、具体的には、1,4-繰り返し単位を主に有する水酸基化ポリブタジエン(たとえば、Poly bd R-45HT、Poly bd R-15HT(出光興産株式会社製))、水酸基化水素化ポリブタジエン(たとえば、ポリテール(登録商標)H、ポリテール(登録商標)HA(三菱化学株式会社製))、1,2-繰り返し単位を主に有する水酸基化ポリブタジエン(たとえば、G-1000、G-2000,G-3000(日本曹達株式会社製))、水酸基化水素化ポリブタジエン(たとえば、GI-1000、GI-2000、GI-3000(日本曹達株式会社製))、水酸基化ポリイソプレン(たとえば、Poly IP(出光興産株式会社製))、水酸基化水素化ポリイソプレン(たとえば、エポール(登録商標、出光興産株式会社製))が挙げられる。 Specific examples of the polybutadiene polyol include hydroxylated polybutadiene mainly having 1,4-repeating units (for example, Poly bd R-45HT, Poly bd R-15HT (manufactured by Idemitsu Kosan Co., Ltd.)), hydroxylated hydrogenation Polybutadiene (for example, Polytail (registered trademark) H, Polytail (registered trademark) HA (manufactured by Mitsubishi Chemical Corporation)), hydroxylated polybutadiene having mainly 1,2-repeating units (for example, G-1000, G-2000, G-3000 (manufactured by Nippon Soda Co., Ltd.)), hydroxylated hydrogenated polybutadiene (for example, GI-1000, GI-2000, GI-3000 (manufactured by Nippon Soda Co., Ltd.)), hydroxylated polyisoprene (for example, Poly IP ( Idemitsu Kosan Co., Ltd.)), hydroxylated hydrogenated polyisoprene (TATO) If, EPOL (registered trademark, manufactured by Idemitsu Kosan Co., Ltd.)), and the like.
 上記両末端水酸基化ポリシリコーンは、たとえば以下の構造式(6)で表される。 The above-mentioned both-end hydroxylated polysilicone is represented by the following structural formula (6), for example.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(6)において、Rは独立に炭素原子数2~50の脂肪族炭化水素二価残基又は芳香族炭化水素二価残基であり、nは正の整数、好ましくは2~50である。これらはエーテル基を含んでいてもよく、複数個あるRは、それぞれ独立に、炭素原子数1~12の脂肪族炭化水素基又は芳香族炭化水素基である。nが50以下であると、分子量が大きくなりすぎることによる溶解性の悪化を抑えることができる。 In the formula (6), R 7 is independently an aliphatic hydrocarbon divalent residue or an aromatic hydrocarbon divalent residue having 2 to 50 carbon atoms, and n 5 is a positive integer, preferably 2 to 50 It is. These may contain an ether group, and the plurality of R 8 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group having 1 to 12 carbon atoms. When n 5 is 50 or less, deterioration of solubility due to excessive increase in molecular weight can be suppressed.
 上記両末端水酸基化ポリシリコーンの市販品としては、たとえば信越化学工業株式会社製「X-22-160AS、KF6001、KF6002、KF-6003」などが挙げられる。上記「水酸基のみに酸素原子を含み炭素原子数が18~72であるポリオール化合物」としては、具体的にはダイマー酸を水素化した骨格を有するジオール化合物が挙げられ、その市販品としては、たとえば、コグニス社製「SOVERMOL(登録商標)908」などが挙げられる。 Examples of the commercial products of the both-end hydroxylated polysilicone include “X-22-160AS, KF6001, KF6002, KF-6003” manufactured by Shin-Etsu Chemical Co., Ltd., and the like. Specific examples of the “polyol compound having an oxygen atom only in the hydroxyl group and having 18 to 72 carbon atoms” include a diol compound having a skeleton obtained by hydrogenating dimer acid. And “SOVERMOL (registered trademark) 908” manufactured by Cognis.
 また、本発明の効果を損なわない範囲で、(a3)ポリオール化合物として繰り返し単位を有さない分子量300以下のジオールを用いることもできる。このような低分子量ジオールとしては、具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコール、1,2-テトラデカンジオール、2,4-ジエチル-1,5-ペンタンジオール、ブチルエチルプロパンジオール、1,3-シクロヘキサンジメタノール、1,3-キシリレングリコール、1,4-キシリレングリコール、ジエチレングリコール、トリエチレングリコール、又はジプロピレングリコールなどが挙げられる。 In addition, a diol having a molecular weight of 300 or less that does not have a repeating unit can be used as the (a3) polyol compound as long as the effects of the present invention are not impaired. Specific examples of such low molecular weight diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and 1,4-butane. Diol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol, 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, butylethylpropanediol 1,3-cyclohexanedimethanol, 1,3-xylylene glycol, 1,4-xylylene Call, diethylene glycol, triethylene glycol, or dipropylene glycol.
 前述のカルボキシル基を有するポリウレタンは、上記の成分(a1)、(a2)又は(a1)、(a2)、(a3)のみから合成が可能であるが、このポリウレタンに更にラジカル重合性やカチオン重合性を付与する目的で、あるいはポリウレタン末端のイソシアネート基や水酸基の残基の影響を抑制する目的で、さらに(a4)モノヒドロキシ化合物及び/又は(a5)モノイソシアネート化合物を反応させて合成することができる。 The above-mentioned polyurethane having a carboxyl group can be synthesized only from the above components (a1), (a2) or (a1), (a2), (a3). And (a4) monohydroxy compound and / or (a5) monoisocyanate compound may be synthesized for the purpose of imparting properties or suppressing the influence of the isocyanate group or hydroxyl group residue at the end of the polyurethane. it can.
(a4)モノヒドロキシ化合物
 (a4)モノヒドロキシ化合物として、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、前記各(メタ)アクリレートのカプロラクトン又は酸化アルキレン付加物、グリセリンジ(メタ)アクリレート、トリメチロールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、アリルアルコール、アリロキシエタノール等のラジカル重合性二重結合を有する化合物、グリコール酸、ヒドロキシピバリン酸等カルボン酸を有する化合物が挙げられる。
(A4) Monohydroxy compound (a4) As the monohydroxy compound, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, each of the above (meta ) Caprolactone or alkylene oxide adduct of acrylate, glycerin di (meth) acrylate, trimethylol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane tri (meth) acrylate , Compounds having radically polymerizable double bonds such as allyl alcohol and allyloxyethanol, and compounds having carboxylic acids such as glycolic acid and hydroxypivalic acid. It is.
 (a4)モノヒドロキシ化合物は、1種単独で又は2種以上を組み合わせて用いることができる。また、これらの化合物の中では、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、アリルアルコール、グリコール酸、ヒドロキシピバリン酸が好ましく、2-ヒドロキシエチル(メタ)アクリレートおよび4-ヒドロキシブチル(メタ)アクリレートがより好ましい。 (A4) Monohydroxy compounds can be used singly or in combination of two or more. Among these compounds, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, allyl alcohol, glycolic acid, and hydroxypivalic acid are preferable, and 2-hydroxyethyl (meth) ) Acrylate and 4-hydroxybutyl (meth) acrylate are more preferred.
 この他、(a4)モノヒドロキシ化合物として、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、アミルアルコール、ヘキシルアルコール、オクチルアルコール等が挙げられる。 In addition, (a4) monohydroxy compounds include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, amyl alcohol, hexyl alcohol, octyl alcohol and the like.
(a5)モノイソシアネート化合物
 (a5)モノイソシアネート化合物としては、(メタ)アクリロイルオキシエチルイソシアネート、ジイソシアネート化合物への2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、前記各(メタ)アクリレートのカプロラクトン又は酸化アルキレン付加物、グリセリンジ(メタ)アクリレート、トリメチロールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、アリルアルコール、アリロキシエタノールのモノ付加体等のラジカル性炭素-炭素二重結合を有する化合物が挙げられる。
(A5) Monoisocyanate compound (a5) Monoisocyanate compounds include (meth) acryloyloxyethyl isocyanate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate to diisocyanate compounds, Cyclohexanedimethanol mono (meth) acrylate, caprolactone or alkylene oxide adduct of each (meth) acrylate, glycerin di (meth) acrylate, trimethylol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Radicals such as mono-adducts of (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, allyl alcohol, and allyloxyethanol It includes compounds having a carbon double bond - carbon.
 また、末端の水酸基残基の影響を抑制する目的で用いるモノイソシアネートヒドロキシ化合物としては、フェニルイソシアネート、ヘキシルイソシアネート、ドデシルイソシアネート等が挙げられる。 Also, examples of the monoisocyanate hydroxy compound used for the purpose of suppressing the influence of the terminal hydroxyl residue include phenyl isocyanate, hexyl isocyanate, and dodecyl isocyanate.
 前述のカルボキシル基を有するポリウレタンは、ジブチル錫ジラウリレートのような公知のウレタン化触媒の存在下又は非存在下で、適切な有機溶媒を用いて、上記した(a1)ポリイソシアネート化合物、(a2)カルボキシル基を有するジヒドロキシ化合物、(a3)ポリオール化合物、および必要に応じて(a4)モノヒドロキシ化合物や(a5)モノイソシアネート化合物を反応させることにより合成できるが、無触媒で反応させた方が、最終的にスズ等の混入を考える必要がなく好適である。 The above-mentioned polyurethane having a carboxyl group is obtained by using the above-mentioned (a1) polyisocyanate compound and (a2) carboxyl in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate using an appropriate organic solvent. It can be synthesized by reacting a dihydroxy compound having a group, (a3) a polyol compound, and (a4) a monohydroxy compound or (a5) a monoisocyanate compound as necessary. It is not necessary to consider the mixing of tin and the like.
 上記有機溶媒は、イソシアネート化合物と反応性が低いものであれば特に限定されないが、反応後に得られたポリウレタンを溶液のまま導電パターン形成用組成物(導電性インク)の原料として用いる場合には、沸点が110℃以上、好ましくは150℃以上、より好ましくは200℃以上である溶媒が好ましい。沸点が110℃以上であると、インク作製中の溶剤の揮発を抑えることができる。このような溶媒としては、たとえば、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、イソホロン、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノエチルエーテルモノアセテート、ジプロピレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノエチルエーテルモノアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、γ-ブチロラクトン、ジメチルスルホキシド等を挙げることができる。 The organic solvent is not particularly limited as long as it has low reactivity with the isocyanate compound, but when the polyurethane obtained after the reaction is used as a raw material for the conductive pattern forming composition (conductive ink) in a solution, A solvent having a boiling point of 110 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher is preferable. When the boiling point is 110 ° C. or higher, volatilization of the solvent during ink preparation can be suppressed. Examples of such solvents include toluene, xylene, ethylbenzene, nitrobenzene, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether monoacetate, propylene glycol monomethyl ether monoacetate, propylene glycol monoethyl ether monoacetate, diethylene Propylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, n-butyl acetate, isoamyl acetate, ethyl lactate, cyclohexanone, N, N -Dimethylformamide, N, N-dimethylacetate Amide, N- methylpyrrolidone, .gamma.-butyrolactone, and dimethyl sulfoxide.
 なお、生成するポリウレタンの溶解性が低い有機溶媒は好ましくないこと、および電子材料用途においてポリウレタンをインクの原料にすることを考えると、これらの中でも、特に、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノエチルエーテルモノアセテート、ジプロピレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノエチルエーテルモノアセテート、ジエチレングリコールモノブチルエーテルモノアセテート、γ-ブチロラクトン等が好ましい。 In view of the fact that the organic solvent with low solubility of the polyurethane to be produced is not preferable, and considering that polyurethane is used as the raw material of the ink in electronic material applications, among these, in particular, propylene glycol monomethyl ether monoacetate, propylene glycol monoacetate. Ethyl ether monoacetate, dipropylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, γ-butyrolactone and the like are preferable.
 また、得られたポリウレタンを溶剤置換したのちに導電性インク原料として用いる場合には、沸点が低いほど減圧留去が容易になることから、沸点が110℃より低い溶媒を用いるほうが好ましい。このような溶媒としては、例えば、シクロヘキサン、酢酸エチル、アセトン、メチルエチルケトン、クロロホルム、塩化メチレン等を挙げることができる。なお、前記の沸点が110℃以上の溶媒を用いた場合でも、溶剤置換を実施することに問題はない。 Further, when the obtained polyurethane is used as a conductive ink raw material after solvent substitution, it is more preferable to use a solvent having a boiling point lower than 110 ° C. because the lower the boiling point, the easier the distillation under reduced pressure. Examples of such a solvent include cyclohexane, ethyl acetate, acetone, methyl ethyl ketone, chloroform, methylene chloride and the like. Even when a solvent having a boiling point of 110 ° C. or higher is used, there is no problem in carrying out the solvent replacement.
 原料の仕込みを行う順番については特に制約はないが、通常は(a2)カルボキシル基を有するジヒドロキシ化合物および(a3)ポリオール化合物を先に仕込み、溶媒に溶解させた後、20~150℃、より好ましくは50~120℃で、(a1)ポリイソシアネート化合物を滴下しながら加え、その後、30~160℃、より好ましくは50~130℃でこれらを反応させる。滴下時の温度が20℃以上であると(a2)カルボキシル基を有するジヒドロキシ化合物が溶解しやすくなり、150℃以下であると滴下時に反応が急速に進行することによる暴走を防ぐことができる。また、反応時の温度が30℃以上であると重合反応が速やかに進行し、160℃以下であるとポリウレタンの着色を抑えることができる。なお、(a3)ポリオール化合物を使用しない場合には、(a2)カルボキシル基を有するジヒドロキシ化合物のみを先に仕込む。 The order in which the raw materials are charged is not particularly limited. Usually, (a2) a dihydroxy compound having a carboxyl group and (a3) a polyol compound are charged first and dissolved in a solvent, and more preferably 20 to 150 ° C. Is added dropwise with (a1) polyisocyanate compound at 50 to 120 ° C., and then reacted at 30 to 160 ° C., more preferably at 50 to 130 ° C. When the temperature at the time of dropping is 20 ° C. or higher, (a2) the dihydroxy compound having a carboxyl group is easily dissolved, and when it is 150 ° C. or lower, runaway due to rapid progress of the reaction at the time of dropping can be prevented. Further, when the temperature during the reaction is 30 ° C. or higher, the polymerization reaction proceeds rapidly, and when it is 160 ° C. or lower, the coloring of the polyurethane can be suppressed. When (a3) a polyol compound is not used, only (a2) a dihydroxy compound having a carboxyl group is charged first.
 原料の仕込みモル比は、目的とするポリウレタン樹脂の分子量および酸価に応じて調節するが、ポリウレタン樹脂に(a4)モノヒドロキシ化合物を導入する場合には、ポリウレタン分子の末端がイソシアネート基になるように、(a2)カルボキシル基を有するジヒドロキシ化合物および(a3)ポリオール化合物よりも(a1)ポリイソシアネート化合物を過剰に(水酸基の合計よりもイソシアネート基が過剰になるように)用いる必要がある。 The starting molar ratio of the raw material is adjusted according to the molecular weight and acid value of the target polyurethane resin, but when the (a4) monohydroxy compound is introduced into the polyurethane resin, the end of the polyurethane molecule becomes an isocyanate group. In addition, it is necessary to use (a1) a polyisocyanate compound in excess of (a2) a carboxyl group-containing dihydroxy compound and (a3) a polyol compound (so that isocyanate groups are in excess of the total of hydroxyl groups).
 具体的には、これらの仕込みモル比は、(a1)ポリイソシアネート化合物のイソシアネート基:((a2)カルボキシル基を有するジヒドロキシ化合物の水酸基+(a3)ポリオール化合物の水酸基)が、0.5~1.5:1、好ましくは0.8~1.2:1、より好ましくは0.95~1.05である。(a1)ポリイソシアネート化合物のイソシアネート基のモル比が0.5以上および1.5以下の場合は分子量が大きいポリウレタンを得ることが容易になる。 Specifically, these charged molar ratios are such that (a1) isocyanate group of polyisocyanate compound: ((a2) hydroxyl group of dihydroxy compound having carboxyl group + (a3) hydroxyl group of polyol compound) is 0.5 to 1. .5: 1, preferably 0.8 to 1.2: 1, more preferably 0.95 to 1.05. (A1) When the molar ratio of isocyanate groups of the polyisocyanate compound is 0.5 or more and 1.5 or less, it becomes easy to obtain a polyurethane having a large molecular weight.
 また、(a2)カルボキシル基を有するジヒドロキシ化合物の水酸基と((a2)カルボキシル基を有するジヒドロキシ化合物の水酸基+(a3)ポリオール化合物の水酸基)との割合は、1:0.05~1、好ましくは1:0.35~1、より好ましくは1:0.45~1である。(a2)カルボキシル基を有するジヒドロキシ化合物の水酸基の割合が0.05以上であると、導電率を向上させるために必要な量の金属塩部位をポリウレタン中に導入させることができる。 The ratio of (a2) the hydroxyl group of the dihydroxy compound having a carboxyl group to ((a2) the hydroxyl group of the dihydroxy compound having a carboxyl group + (a3) the hydroxyl group of the polyol compound) is preferably 1: 0.05 to 1, preferably It is 1: 0.35 to 1, more preferably 1: 0.45 to 1. (A2) When the ratio of the hydroxyl group of the dihydroxy compound having a carboxyl group is 0.05 or more, an amount of a metal salt site necessary for improving the electrical conductivity can be introduced into the polyurethane.
 (a4)モノヒドロキシ化合物を用いる場合には、((a2)カルボキシル基を有するジヒドロキシ化合物+(a3)ポリオール化合物)のモル数よりも(a1)ポリイソシアネート化合物のモル数を過剰とし、(a4)モノヒドロキシ化合物を、イソシアネート基の過剰モル数に対して、0.5~1.5倍モル量、好ましくは0.8~1.2倍モル量で用いることが好ましい。(a4)モノヒドロキシ化合物のモル量が0.5倍モル量以上であると、ポリウレタンの末端のイソシアネート基を低減することができ、1.5倍モル量以下であると未反応のモノヒドロキシ化合物が残存して後工程に悪影響を及ぼすことを防ぐことができる。 When (a4) a monohydroxy compound is used, the number of moles of the (a1) polyisocyanate compound is made larger than the number of moles of ((a2) dihydroxy compound having a carboxyl group + (a3) polyol compound), and (a4) The monohydroxy compound is preferably used in an amount of 0.5 to 1.5 times mol, preferably 0.8 to 1.2 times mol, based on the excess number of moles of isocyanate groups. (A4) When the molar amount of the monohydroxy compound is 0.5 times the molar amount or more, the isocyanate group at the terminal of the polyurethane can be reduced, and when it is 1.5 times the molar amount or less, the unreacted monohydroxy compound Can be prevented from adversely affecting the subsequent processes.
 (a4)モノヒドロキシ化合物をカルボキシル基を有するポリウレタンに導入するためには、(a2)カルボキシル基を有するジヒドロキシ化合物および(a3)ポリオール化合物と(a1)ポリイソシアネート化合物との反応がほぼ終了した時点で、カルボキシル基を有するポリウレタンの両末端に残存しているイソシアネート基と(a4)モノヒドロキシ化合物とを反応させるために、反応溶液中に(a4)モノヒドロキシ化合物を20~150℃、より好ましくは70~120℃で滴下し、その後同温度で保持して反応を完結させる。滴下および反応温度が20℃以上であると、残存しているイソシアネート基と(a4)モノヒドロキシ基の反応が速やかに進行し、150℃以下の場合は滴下時に反応が急速に進行して暴走することを防ぐことができる。 In order to introduce the (a4) monohydroxy compound into the polyurethane having a carboxyl group, the reaction between the (a2) dihydroxy compound having a carboxyl group and the (a3) polyol compound and the (a1) polyisocyanate compound is almost completed. In order to react the isocyanate group remaining at both ends of the polyurethane having a carboxyl group with the (a4) monohydroxy compound, the (a4) monohydroxy compound is added to the reaction solution at 20 to 150 ° C., more preferably 70 ° C. Add dropwise at ~ 120 ° C and then hold at the same temperature to complete the reaction. When the dropping and the reaction temperature are 20 ° C. or higher, the reaction of the remaining isocyanate group and (a4) monohydroxy group proceeds rapidly, and when the temperature is 150 ° C. or lower, the reaction rapidly proceeds during the dropping. Can be prevented.
 (a5)モノイソシアネート化合物を用いる場合には、(a1)ポリイソシアネート化合物のモル数よりも((a2)カルボキシル基を有するジヒドロキシ化合物+(a3)ポリオール化合物)のモル数を過剰とし、水酸基の過剰モル数に対して、0.5~1.5倍モル量、好ましくは0.8~1.2倍モル量である。(a5)モノイソシアネート化合物のモル量が0.5倍モル量以上であると、ポリウレタンの末端にヒドロキシ基が残存することを防ぐことができ、1.5倍モル量以下であるとモノイソシアネート化合物が残存して後工程に悪影響を及ぼすことを防ぐことができる。 (A5) When a monoisocyanate compound is used, the number of moles of ((a2) dihydroxy compound having a carboxyl group + (a3) polyol compound) is made larger than the number of moles of (a1) polyisocyanate compound, and an excess of hydroxyl groups The molar amount is 0.5 to 1.5 times the molar amount, preferably 0.8 to 1.2 times the molar amount. (A5) When the molar amount of the monoisocyanate compound is 0.5 times or more, it is possible to prevent the hydroxyl group from remaining at the terminal of the polyurethane, and when it is 1.5 times or less, the monoisocyanate compound. Can be prevented from adversely affecting the subsequent processes.
 (a5)モノイソシアネート化合物をカルボキシル基を有するポリウレタンに導入するためには、(a2)カルボキシル基を有するジヒドロキシ化合物および(a3)ポリオール化合物と(a1)ポリイソシアネート化合物との反応がほぼ終了した時点で、カルボキシル基を有するポリウレタンの両末端に残存している水酸基と(a5)モノイソシアネート化合物とを反応させるために、反応溶液中に(a5)モノイソシアネート化合物を20~150℃、より好ましくは50~120℃で滴下し、その後同温度で保持して反応を完結させる。滴下および反応温度が20℃以上であると、残存している水酸基と(a5)モノイソシアネート化合物の反応が速やかに進行し、150℃以下の場合は滴下時に反応が急速に進行して暴走することを防ぐことができる。 In order to introduce the (a5) monoisocyanate compound into the polyurethane having a carboxyl group, the reaction between the (a2) dihydroxy compound having a carboxyl group and the (a3) polyol compound and the (a1) polyisocyanate compound is almost completed. In order to react the hydroxyl groups remaining at both ends of the polyurethane having a carboxyl group with the (a5) monoisocyanate compound, the (a5) monoisocyanate compound is reacted in the reaction solution at 20 to 150 ° C., more preferably 50 to The reaction is completed by dropping at 120 ° C. and then holding at the same temperature. When the dropping and reaction temperature are 20 ° C. or higher, the reaction between the remaining hydroxyl group and the (a5) monoisocyanate compound proceeds rapidly, and when it is 150 ° C. or lower, the reaction proceeds rapidly during the dropping and runs away. Can be prevented.
 上記カルボキシル基を有するポリウレタンの数平均分子量は、1,000~100,000であることが好ましく、3,000~50,000であるとさらに好ましい。ここで、分子量は、ゲルパーミエーションクロマトグラフィー(以下GPCと表記)で測定したポリスチレン換算の値である。数平均分子量が1,000以上であると、最終的に形成される導電パターンと基材間に密着性が発現し、100,000以下であると、分子量が大きくなりすぎることによる溶媒への溶解性の悪化や、溶解後に粘度が高くなりすぎることを抑えることができる。 The number average molecular weight of the polyurethane having a carboxyl group is preferably 1,000 to 100,000, and more preferably 3,000 to 50,000. Here, the molecular weight is a value in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as GPC). When the number average molecular weight is 1,000 or more, adhesion between the finally formed conductive pattern and the substrate is expressed. When the number average molecular weight is 100,000 or less, the molecular weight becomes too high, so that the solvent dissolves in the solvent. It is possible to suppress the deterioration of properties and the viscosity becoming too high after dissolution.
 なお、本明細書において、GPCの測定条件は、後述する実施例に記載したとおりである。 In addition, in this specification, the measurement conditions of GPC are as having described in the Example mentioned later.
 また、カルボキシル基を有するポリウレタンの酸価は5~160mgKOH/gであることが好ましく、10~150mgKOH/gであるとさらに好ましい。酸価が5mgKOH/g以上であると、導電率を向上させるために必要な量の金属塩部位をポリウレタン中に導入することができる。また、160mgKOH/g以下であると、溶媒への溶解性が良好であり、用いることができる溶媒の種類も多い。 The acid value of the polyurethane having a carboxyl group is preferably 5 to 160 mgKOH / g, more preferably 10 to 150 mgKOH / g. When the acid value is 5 mgKOH / g or more, an amount of the metal salt portion necessary for improving the conductivity can be introduced into the polyurethane. Moreover, the solubility to a solvent is favorable in it being 160 mgKOH / g or less, and there are many kinds of the solvent which can be used.
 なお、本明細書において、樹脂の酸価は、後述する実施例において記載した方法により測定した値である。 In addition, in this specification, the acid value of resin is the value measured by the method described in the Example mentioned later.
 また、上記カルボキシル基を有するポリウレタンのカルボキシル基の全部又は一部と塩を形成する金属原子Mは、周期表第11族に属する金属である。金属原子Mとしては体積抵抗率が小さい点で銀、銅が好ましい。 The metal atom M forming a salt with all or part of the carboxyl groups of the polyurethane having a carboxyl group is a metal belonging to Group 11 of the periodic table. As the metal atom M, silver and copper are preferable because of low volume resistivity.
 ポリウレタンの金属塩はいかなる方法で合成されたものでもよい。例えば、前記ポリウレタン中のカルボキシル基を塩基で中和したのち、硝酸、硫酸、炭酸等の無機酸の金属塩と反応させる方法が挙げられる。また、カルボキシル基と酸化銀、水酸化銀、酸化銅、亜酸化銅、水酸化銅等の金属の塩基性酸化物又は水酸化物を直接反応させることもできる。カルボキシル基を金属の塩基性酸化物又は水酸化物と直接反応させる場合は、ポリウレタン溶液に直接塩基性酸化物又は水酸化物の粉末を加えてもよいし、あらかじめ前記粉末を溶媒に分散させてからポリウレタン溶液に加えてもよい。反応中に前記粉末が容器の底などに固着して反応が停止してしまう場合は、後者の方法をとることで粉末がダマになりにくくなり、固着を防ぐことができる。さらに、必要に応じて加温して反応させてもよい。反応温度は20℃~150℃、より好ましくは20℃~120℃である。20℃以上であると反応が速やかに進行するとともに、溶液として得られる金属塩の固形分濃度が高くなっても流動性が増すため反応を促進することができる。従って、インク(導電パターン形成用組成物)組成の自由度を高めることができる。また、150℃以下の場合は過熱によるポリウレタンの熱分解を防ぐことができる。ポリウレタンの金属塩の合成方法としては、特に以下の方法が例示される。 The polyurethane metal salt may be synthesized by any method. For example, after neutralizing the carboxyl group in the said polyurethane with a base, it is made to react with the metal salt of inorganic acids, such as nitric acid, a sulfuric acid, and carbonic acid. In addition, a basic oxide or hydroxide of a metal such as a carboxyl group and silver oxide, silver hydroxide, copper oxide, cuprous oxide, copper hydroxide or the like can be directly reacted. When the carboxyl group is reacted directly with a metal basic oxide or hydroxide, the powder of the basic oxide or hydroxide may be added directly to the polyurethane solution, or the powder is dispersed in advance in a solvent. To the polyurethane solution. In the case where the powder adheres to the bottom of the container during the reaction and the reaction stops, the latter method makes it difficult for the powder to become lumpy and prevents sticking. Furthermore, you may make it react by heating as needed. The reaction temperature is 20 ° C to 150 ° C, more preferably 20 ° C to 120 ° C. When the temperature is 20 ° C. or higher, the reaction proceeds rapidly, and even if the solid content concentration of the metal salt obtained as a solution is increased, the fluidity is increased, so that the reaction can be promoted. Therefore, the degree of freedom of the composition of the ink (conductive pattern forming composition) can be increased. Moreover, when it is 150 degrees C or less, the thermal decomposition of the polyurethane by overheating can be prevented. Examples of the method for synthesizing the metal salt of polyurethane include the following methods.
<銀塩の合成>
(1)ポリウレタン中のカルボキシル基を水酸化ナトリウムで中和してナトリウム塩とした後、硝酸銀と反応させてカルボキシル基と銀とを結合させる方法。
(2)ポリウレタン中のカルボキシル基と酸化銀とを反応させ、カルボキシル基と銀とを結合させる方法。
<Synthesis of silver salt>
(1) A method in which a carboxyl group in polyurethane is neutralized with sodium hydroxide to form a sodium salt, and then reacted with silver nitrate to bond the carboxyl group and silver.
(2) A method in which a carboxyl group in polyurethane and silver oxide are reacted to bond the carboxyl group and silver.
<銅塩の合成>
(1)ポリウレタン中のカルボキシル基を水酸化ナトリウムで中和してナトリウム塩とした後、硫酸銅と反応させてカルボキシル基と銅とを結合させる方法。
(2)ポリウレタン中のカルボキシル基と水酸化銅とを反応させ、カルボキシル基と銅とを結合させる方法。
<Synthesis of copper salt>
(1) A method in which a carboxyl group in polyurethane is neutralized with sodium hydroxide to form a sodium salt, and then reacted with copper sulfate to bond the carboxyl group and copper.
(2) A method in which a carboxyl group in polyurethane is reacted with copper hydroxide to bond the carboxyl group and copper.
 上記ポリウレタンのカルボキシル基の内、金属塩となっている割合は、もとのポリウレタンの化学構造や分子量、酸価によって影響を受けるため一概に言えないが、5~100モル%が好適であり、35~100モル%が好適である。金属塩にした割合が5モル%以上であると導電率を向上させる効果を発現することができる。 Of the carboxyl groups of the polyurethane, the ratio of being a metal salt is unclear because it is affected by the chemical structure, molecular weight, and acid value of the original polyurethane, but is preferably 5 to 100 mol%. 35 to 100 mol% is preferred. The effect which improves electrical conductivity can be expressed as the ratio made into metal salt is 5 mol% or more.
 実施形態にかかる導電パターン形成用組成物は、上記導電性組成物用バインダー樹脂(A)と、導電材(B)と、上記導電性組成物用バインダー樹脂を溶解する溶媒(C)を含んで構成されている。 The conductive pattern forming composition according to the embodiment includes the binder resin for conductive composition (A), the conductive material (B), and a solvent (C) for dissolving the binder resin for conductive composition. It is configured.
 使用することができる導電材(B)は、導電性を有するものであれば特に制限はない。主として金属粒子(金属ナノ粒子を含む)、金属ナノワイヤ、金属ナノチューブの少なくとも1種を用いることが好ましい。金属ナノワイヤ及び/又は金属ナノチューブとは、径の太さがナノメーターオーダーのサイズである細線状金属であり、金属ナノワイヤはワイヤ状、金属ナノチューブはポーラスあるいはノンポーラスのチューブ状の形状を有する導電性材料である。本明細書において、「ワイヤ状」と「チューブ状」はいずれも線状であるが、前者は中心部が長軸方向に沿って空洞(中空)ではないもの、後者は中心部が長軸方向に沿って空洞(中空)であるものを意図する。性状は、柔軟であってもよく、剛直であってもよい。金属ナノワイヤ又は金属ナノチューブは、いずれかを用いてもよく、両者を混合したものを用いてもよい。導電材を構成する金属は、導電性組成物用バインダー樹脂において金属塩を形成している金属と同種の金属であってもよいし、異なる金属であってもよい。導電パターン形成用組成物(導電性インク)に要求される導電性、耐腐食性その他の物性に応じて適宜金属種を選択する。例えば、銀、銅、ニッケル、金、白金、パラジウム、アルミニウム等を挙げることができる。特に導電率の高さから、銀又は銅を用いるのが好適である。 The conductive material (B) that can be used is not particularly limited as long as it has conductivity. It is preferable to use mainly at least one of metal particles (including metal nanoparticles), metal nanowires, and metal nanotubes. A metal nanowire and / or a metal nanotube is a thin wire metal with a diameter of nanometer order size. A metal nanowire is a wire shape, and a metal nanotube is a conductive material having a porous or non-porous tube shape. Material. In this specification, “wire” and “tube” are both linear, but the former is not hollow (hollow) along the long axis, and the latter is long along the long axis. Intended to be hollow (hollow). The property may be flexible or rigid. Either a metal nanowire or a metal nanotube may be used, or a mixture of both may be used. The metal constituting the conductive material may be the same type of metal as the metal forming the metal salt in the binder resin for conductive compositions, or may be a different metal. The metal species is appropriately selected according to the conductivity, corrosion resistance and other physical properties required for the conductive pattern forming composition (conductive ink). For example, silver, copper, nickel, gold, platinum, palladium, aluminum, etc. can be mentioned. In particular, it is preferable to use silver or copper because of its high conductivity.
 金属粒子の形状は特に制限はないが、扁平状の粒子を用いると粒子同士の接する面積が大きくなり低抵抗化しやすいという点で好ましい。扁平状の金属粒子のアスペクト比(扁平金属粒子の幅/厚さ)は、大きい方が金属粒子同士の接触面積が大きくなるため導電性の点では有利であるが、あまりに大きすぎると印刷精度が落ち(ファインパターンの印刷が困難)、分散性も低下する。そこで、好ましいアスペクト比は3~200の範囲であり、より好ましくは5~100の範囲である。扁平状の金属粒子の形状は、1万倍の倍率で観察箇所を変えて10点SEM観察して扁平金属粒子の厚さと幅を実測し、厚さはその数平均値として求めており、その厚さは、5nm~2μmが好適であり、さらに好ましくは20nm~1μmの範囲である。 The shape of the metal particles is not particularly limited, but the use of flat particles is preferable in that the area where the particles are in contact with each other is increased and resistance is easily reduced. The larger the aspect ratio of flat metal particles (width / thickness of the flat metal particles), the larger the contact area between the metal particles, which is advantageous in terms of conductivity. Drop (fine pattern printing is difficult), dispersibility is also reduced. Therefore, the preferred aspect ratio is in the range of 3 to 200, more preferably in the range of 5 to 100. The shape of the flat metal particles was changed by observing 10 points by SEM at a magnification of 10,000 times to measure the thickness and width of the flat metal particles, and the thickness was obtained as the number average value thereof. The thickness is preferably 5 nm to 2 μm, more preferably 20 nm to 1 μm.
 なお、扁平状の金属粒子を含む他の形状の金属粒子の球近似の平均粒径(球状粒子の場合はその平均粒径)としては、例えば、0.01~100μmの範囲のものが使用でき、好ましくは0.02~50μmの範囲、より好ましくは0.04~10μmの範囲である。ここでの平均粒径とはレーザー回折法で測定されたメジアン径(D50)のことであり、測定には例えばSALD-3100(島津製作所製)やLA-950V2(堀場製作所製)を用いることができる。 In addition, as an average particle diameter (approximate particle diameter in the case of spherical particles) of other shapes of metal particles including flat metal particles, for example, those in the range of 0.01 to 100 μm can be used. The thickness is preferably in the range of 0.02 to 50 μm, more preferably in the range of 0.04 to 10 μm. Here, the average particle diameter is a median diameter (D 50 ) measured by a laser diffraction method. For the measurement, for example, SALD-3100 (manufactured by Shimadzu Corporation) or LA-950V2 (manufactured by Horiba Seisakusho) is used. Can do.
 金属ナノワイヤ、金属ナノチューブの径の太さの平均は、細いほうが導電性の観点からは好ましいが、強度、取扱易さの観点からは太いほうが好ましい。そのため、ワイヤ径の平均値としては、導電性の観点から500nm以下が好ましく、200nm以下がより好ましく、100nm以下がさらに好ましく、80nm以下が特に好ましい。一方、強度、取扱易さの観点から1nm以上が好ましく、5nm以上がより好ましく、10nm以上がさらに好ましい。 The average diameter of metal nanowires and metal nanotubes is preferably thinner from the viewpoint of conductivity, but thicker from the viewpoint of strength and ease of handling. Therefore, the average value of the wire diameter is preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, and particularly preferably 80 nm or less from the viewpoint of conductivity. On the other hand, from the viewpoints of strength and ease of handling, the thickness is preferably 1 nm or more, more preferably 5 nm or more, and further preferably 10 nm or more.
 また、金属ナノワイヤ、金属ナノチューブの長軸の長さの平均は、導電性の観点からは長いほうが好ましいが、ファインパターンに対応しようとすればある程度長さを制限する必要がある。そのため、ワイヤ長の平均値としては、導電性の観点から1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましい。一方、ファインパターンへの対応の観点から100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましい。 In addition, the average length of the major axis of the metal nanowires and metal nanotubes is preferably longer from the viewpoint of conductivity, but it is necessary to limit the length to some extent in order to cope with the fine pattern. Therefore, the average value of the wire length is preferably 1 μm or more from the viewpoint of conductivity, more preferably 2 μm or more, and further preferably 5 μm or more. On the other hand, it is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less from the viewpoint of handling fine patterns.
 金属ナノワイヤ、金属ナノチューブは、径の太さの平均および長軸の長さの平均が上記範囲を満たすとともに、アスペクト比の平均が5より大きいことが好ましく、10以上であることがより好ましく、100以上であることがさらに好ましく、200以上であることが特に好ましい。ここで、アスペクト比は、金属ナノワイヤ、金属ナノチューブの径の平均的な太さをb、長軸の平均的な長さをaと近似した場合、a/bで求められる値である。a及びbは、走査型電子顕微鏡を用いて任意に20本測定しその平均値として求めることができる。 In the metal nanowire and the metal nanotube, the average diameter thickness and the average long axis length satisfy the above ranges, and the average aspect ratio is preferably larger than 5, more preferably 10 or more, More preferably, it is more preferably 200 or more. Here, the aspect ratio is a value obtained by a / b when the average diameter of the metal nanowires and metal nanotubes is approximated as b and the average length of the major axis is approximated as a. a and b can be arbitrarily measured using a scanning electron microscope and obtained as an average value.
 また、前記の金属粒子、金属ナノワイヤ、金属ナノチューブ以外に、金属酸化物や炭素系材料を用いることも可能である。金属酸化物粒子を構成する金属は、導電性組成物用バインダー樹脂において金属塩を形成している金属と同種の金属であってもよいし、異なる金属であってもよい。導電パターン形成用組成物に要求される導電性、耐腐食性その他の物性に応じて適宜金属種を選択する。金属酸化物の例としては、酸化インジウムスズ(ITO)、酸化亜鉛、二酸化スズ、酸化インジウム等が挙げられる。炭素系材料の例としては、カーボンブラック、グラファイト、カーボンナノチューブ等が挙げられる。 In addition to the metal particles, metal nanowires, and metal nanotubes, metal oxides and carbon-based materials can be used. The metal constituting the metal oxide particles may be the same type of metal as the metal forming the metal salt in the binder resin for conductive compositions, or may be a different metal. The metal species is appropriately selected according to the electrical conductivity, corrosion resistance and other physical properties required for the conductive pattern forming composition. Examples of the metal oxide include indium tin oxide (ITO), zinc oxide, tin dioxide, indium oxide and the like. Examples of the carbon-based material include carbon black, graphite, and carbon nanotube.
 金属酸化物粒子の形状に特に制限はないが、金属粒子と同様に扁平状の粒子を用いることが好ましい。また、好ましい平均粒径については金属粒子と同等である。 The shape of the metal oxide particles is not particularly limited, but it is preferable to use flat particles like the metal particles. Moreover, about a preferable average particle diameter, it is equivalent to a metal particle.
 上記溶媒(C)としては、導電性組成物用バインダー樹脂に使用されるカルボキシル基を有するポリウレタンを溶解できるものであり、導電パターン形成用組成物をインクとして使用する際に適当な粘度を付与できれば使用できる。具体的には、エチルカルビトールアセテート、エチルカルビトール、ブチルカルビトールアセテート、ブチルカルビトール、ターピネオール、ジヒドロターピネオール、イソボルニルシクロヘキサノール等が挙げられる。 As said solvent (C), if the polyurethane which has a carboxyl group used for binder resin for conductive compositions can be melt | dissolved and an appropriate viscosity can be provided when using the composition for conductive pattern formation as an ink, Can be used. Specific examples include ethyl carbitol acetate, ethyl carbitol, butyl carbitol acetate, butyl carbitol, terpineol, dihydroterpineol, and isobornylcyclohexanol.
 導電パターン形成用組成物中における上記導電性組成物用バインダー樹脂(A)の割合と、導電材(B)の割合と、溶媒(C)の割合は、金属粒子(B1)を用いる場合と、金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いる場合とで異なる。導電性の発現の仕方が金属粒子(B1)では金属粒子同士の点又は面での接触であるのに対して、金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いる場合には交差(重畳)部のみでの接触(接続)であるため、金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いる場合の方が金属粒子(B1)を用いる場合に比べて組成物全体に対する割合は少なくなる。また、バインダー樹脂(A)の割合と溶媒(C)の割合は、金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いる場合のほうが金属粒子(B1)を用いる場合に比べて相対的に大きくなる。 The ratio of the binder resin for conductive composition (A) in the composition for forming a conductive pattern, the ratio of the conductive material (B), and the ratio of the solvent (C) are obtained when the metal particles (B1) are used. This is different from the case of using metal nanowires and / or metal nanotubes (B2). In the case where the metal particles (B1) are electrically conductive, the metal particles (B1) are in contact with each other at points or planes, whereas when metal nanowires and / or metal nanotubes (B2) are used, the intersection (overlapping) portion. Since the contact (connection) is made only with the metal nanowire and / or the metal nanotube (B2), the ratio of the metal composition (B1) to the entire composition is smaller than when the metal particle (B1) is used. Moreover, the ratio of the binder resin (A) and the ratio of the solvent (C) are relatively larger when the metal nanowires and / or metal nanotubes (B2) are used than when the metal particles (B1) are used.
 導電材(B)として金属粒子(B1)を用いる場合の上記導電性組成物用バインダー樹脂(A)の割合は、組成物中の金属粒子(B1)100質量部に対して1質量部~15質量部、好ましくは2質量部~10質量部、より好ましくは2.5質量部~5質量部である。割合が1質量部以上であると、導電材の分散性が保たれ、導電パターンと基材間の密着性を発現する。また、割合が15質量部以下であると、最終的に形成される導電パターン中に含まれる高分子成分が増えすぎることによる導電率の悪化をおさえることができる。 When the metal particles (B1) are used as the conductive material (B), the ratio of the binder resin (A) for the conductive composition is 1 to 15 parts by weight with respect to 100 parts by weight of the metal particles (B1) in the composition. Parts by mass, preferably 2 to 10 parts by mass, more preferably 2.5 to 5 parts by mass. When the ratio is 1 part by mass or more, the dispersibility of the conductive material is maintained, and the adhesion between the conductive pattern and the substrate is expressed. Moreover, when the ratio is 15 parts by mass or less, the deterioration of the conductivity due to the excessive increase of the polymer component contained in the finally formed conductive pattern can be suppressed.
 また、組成物全体に対する金属粒子(B1)の割合は、20質量%~95質量%、好ましくは30質量%~92質量%、より好ましくは45質量%~90質量%である。金属粒子の割合が20質量%以上であると、最終的に形成される導電パターンの導電性が得られる。また金属粒子の割合が95質量%以下であると、導電パターン形成用組成物の粘度が高くなりすぎて印刷又は塗布による導電パターン形成時にかすれなどの問題が生じることがない。 Further, the ratio of the metal particles (B1) to the whole composition is 20% by mass to 95% by mass, preferably 30% by mass to 92% by mass, and more preferably 45% by mass to 90% by mass. When the ratio of the metal particles is 20% by mass or more, the conductivity of the finally formed conductive pattern is obtained. Moreover, when the ratio of the metal particles is 95% by mass or less, the viscosity of the conductive pattern forming composition becomes too high, and problems such as blurring do not occur when forming a conductive pattern by printing or coating.
 導電材(B)として金属粒子(B1)を用いる場合の上記溶媒(C)の割合は、組成物全体に対して5質量%~80質量%、好ましくは10質量%~70質量%、より好ましくは15質量%~60質量%である。5質量%以上であれば、上記導電性組成物用バインダー樹脂(A)を十分溶解させることができる。また、80質量%以下であると、パターン印刷することが可能な導電パターン形成用組成物の粘度とすることができる。 When the metal particles (B1) are used as the conductive material (B), the proportion of the solvent (C) is 5% by mass to 80% by mass, preferably 10% by mass to 70% by mass, and more preferably with respect to the entire composition. Is 15% by mass to 60% by mass. If it is 5 mass% or more, the said binder resin for conductive compositions (A) can fully be dissolved. Moreover, it can be set as the viscosity of the composition for conductive pattern formation which can carry out pattern printing as it is 80 mass% or less.
 導電材(B)として金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いる場合の上記導電性組成物用バインダー樹脂(A)の割合は、組成物中の金属ナノワイヤ及び/又は金属ナノチューブ(B2)100質量部に対して10質量部~400質量部、好ましくは50質量部~300質量部、より好ましくは100質量部~250質量部である。割合が10質量部以上であると、金属塩部位に由来する低抵抗化効果の発現が期待できる。また、割合が400質量部以下であると、最終的に形成される導電パターン中に含まれる高分子成分が増えすぎることによる導電率の悪化をおさえることができる。 When the metal nanowire and / or the metal nanotube (B2) is used as the conductive material (B), the ratio of the binder resin (A) for the conductive composition is the same as the metal nanowire and / or the metal nanotube (B2) 100 in the composition. The amount is 10 parts by mass to 400 parts by mass, preferably 50 parts by mass to 300 parts by mass, and more preferably 100 parts by mass to 250 parts by mass with respect to parts by mass. If the ratio is 10 parts by mass or more, it can be expected that the resistance reduction effect derived from the metal salt site is exhibited. Moreover, when the ratio is 400 parts by mass or less, it is possible to suppress the deterioration of the conductivity due to the excessive increase of the polymer component contained in the finally formed conductive pattern.
 また、組成物全体に対する金属ナノワイヤ及び/又は金属ナノチューブ(B2)の割合は、0.01~10質量%、好ましくは0.02~5質量%、より好ましくは0.05~2質量%である。金属ナノワイヤ及び/又は金属ナノチューブが0.01質量%以上であれば、所望の導電性を確保するために透明導電膜層を厚く印刷する必要がなくなり印刷が容易になる。また、10質量%以下であれば所望の光学特性を確保するために透明導電膜層を薄く印刷する必要がなくなり、この場合も印刷が容易になる。 The ratio of metal nanowires and / or metal nanotubes (B2) to the whole composition is 0.01 to 10% by mass, preferably 0.02 to 5% by mass, more preferably 0.05 to 2% by mass. . When the metal nanowires and / or metal nanotubes are 0.01% by mass or more, it is not necessary to print the transparent conductive layer thick in order to ensure desired conductivity, and printing becomes easy. Moreover, if it is 10 mass% or less, in order to ensure a desired optical characteristic, it becomes unnecessary to thinly print a transparent conductive film layer, and also in this case, printing becomes easy.
 導電材(B)として金属ナノワイヤ及び/又は金属ナノチューブ(B2)を用いる場合の上記溶媒(C)の割合は、組成物全体に対して90質量%以上、より好ましくは98質量%以上である。割合が90質量%以上であると、最終的に形成される導電パターン中に高分子成分が増えすぎることによる導電率の悪化や、導電成分が増えすぎることによる光学特性の悪化を抑えることができる。 When the metal nanowire and / or the metal nanotube (B2) is used as the conductive material (B), the ratio of the solvent (C) is 90% by mass or more, more preferably 98% by mass or more with respect to the entire composition. When the ratio is 90% by mass or more, it is possible to suppress deterioration of conductivity due to excessive increase of polymer components in the finally formed conductive pattern and deterioration of optical characteristics due to excessive increase of conductive components. .
 なお、バインダー樹脂として、高分子骨格中に(COO)Mで表されるカルボン酸金属塩部位(Mは周期表第11族に属する金属から選択される金属原子、nは金属原子Mの価数)を有するポリウレタン以外の樹脂を、本発明の効果を阻害しない範囲で併用することができる。併用する場合、全バインダー樹脂に対する前記ポリウレタンの割合が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。全バインダー樹脂に対する前記ポリウレタンの割合が50質量%以上であると、最終的に形成される導電パターンにおいて、低抵抗化の効果を有さない高分子成分が多くなりすぎて導電率が向上しなくなることを防ぐことができる。併用することが可能なバインダー樹脂としては、ポリ-N-ビニルピロリドン、ポリ-N-ビニルアセトアミド、ポリ-N-ビニルカプロラクタムのようなポリ-N-ビニル化合物、ポリエチレングリコール、ポリプロピレングリコール、ポリTHFのようなポリアルキレングリコール、セルロース及びその誘導体、エポキシ樹脂、ポリエステル、塩素化ポリオレフィン、ポリアクリル樹脂のような熱可塑性樹脂、熱硬化性樹脂等が挙げられる。 As the binder resin, a carboxylate metal salt moiety represented by (COO) n M in the polymer skeleton (M is a metal atom selected from metals belonging to Group 11 of the periodic table, and n is a valence of the metal atom M). The resin other than the polyurethane having the number) can be used in combination as long as the effects of the present invention are not impaired. When using together, it is preferable that the ratio of the said polyurethane with respect to all the binder resins is 50 mass% or more, It is more preferable that it is 70 mass% or more, It is further more preferable that it is 90 mass% or more. When the proportion of the polyurethane with respect to the total binder resin is 50% by mass or more, in the finally formed conductive pattern, there are too many polymer components that do not have the effect of reducing resistance, and the conductivity is not improved. Can be prevented. Examples of binder resins that can be used in combination include poly-N-vinyl pyrrolidone, poly-N-vinylacetamide, poly-N-vinyl compounds such as poly-N-vinylcaprolactam, polyethylene glycol, polypropylene glycol, and polyTHF. Such polyalkylene glycols, cellulose and derivatives thereof, epoxy resins, polyesters, chlorinated polyolefins, thermoplastic resins such as polyacrylic resins, thermosetting resins and the like.
 実施形態にかかる導電パターン形成用組成物には、導電パターン形成用組成物の特性を阻害しない範囲で必要に応じて他の添加剤を併用することができる。併用することが可能な添加剤としては、界面活性剤、酸化防止剤、フィラー、チキソ性付与剤、レベリング剤、紫外線吸収剤等の添加剤を含有しても良い。組成物の粘性を調整するためにヒュームドシリカ等のフィラーを用いることができる。これらの配合量(組成物全体に対する割合)はトータルで5質量%以内とすることが好ましい。 In the conductive pattern forming composition according to the embodiment, other additives can be used in combination as necessary within a range not impairing the properties of the conductive pattern forming composition. Additives that can be used in combination may contain additives such as surfactants, antioxidants, fillers, thixotropic agents, leveling agents, and UV absorbers. In order to adjust the viscosity of the composition, a filler such as fumed silica can be used. These blending amounts (ratio to the whole composition) are preferably within 5% by mass.
 実施形態にかかる導電パターン形成用組成物は、以上に述べた上記導電性組成物用バインダー樹脂(A)と、導電材(B)と、上記導電性組成物用バインダー樹脂を溶解する溶媒(C)、必要に応じて添加することができる添加剤を上記配合の割合(質量%)で、全体で100質量%となる、すなわち、導電性組成物用バインダー樹脂(A)と、導電材(B)と、上記導電性組成物用バインダー樹脂を溶解する溶媒(C)との合計量が100質量%以下となるように配合して製造することができる。配合する方法に特に制限はなく、自転公転攪拌機、ホモジナイザー、三本ロール、ハイシアミキサー、プロペラ攪拌機、ミックスローター等で混合することにより製造することができる。 The conductive pattern forming composition according to the embodiment includes a conductive resin (A), a conductive material (B), and a solvent (C) that dissolves the conductive composition binder resin. ), Additives that can be added as necessary are 100% by mass in total (ratio by mass), that is, binder resin for conductive composition (A) and conductive material (B ) And the solvent (C) for dissolving the binder resin for conductive composition, the total amount of the composition can be 100% by mass or less. There is no restriction | limiting in particular in the method to mix | blend, It can manufacture by mixing with a rotation revolution revolution stirrer, a homogenizer, a three roll, a high shear mixer, a propeller stirrer, a mix rotor, etc.
 実施形態にかかる導電パターン形成用組成物(導電性インク)を使用すると、低い焼結エネルギーで導電パターンの導電率を向上させることができる。なお、本明細書中において、導電パターンとは、導電パターン形成用組成物を基材に所定のパターンに印刷し、必要に応じてエネルギーを加えることにより導電材が焼結された結果、形成されたパターンをいう。このパターンは必ずしも細線ではなく、一定の面積を有する正方形のような、いわゆるベタ状もパターンに含まれる。 When the conductive pattern forming composition (conductive ink) according to the embodiment is used, the conductivity of the conductive pattern can be improved with low sintering energy. In this specification, the conductive pattern is formed as a result of sintering the conductive material by printing the conductive pattern forming composition on a base material in a predetermined pattern and applying energy as necessary. Pattern. This pattern is not necessarily a fine line, and a so-called solid shape such as a square having a certain area is also included in the pattern.
 本実施形態の導電パターン形成用組成物を塗布、印刷する基材としては、絶縁性のものであれば形状に特に制限はない。塗布、印刷のし易さという観点では板状、シート状、フィルム状のものが好ましい。例えばガラス、アルミナなどのセラミックや、ポリエステル樹脂、セルロース樹脂、ビニルアルコール樹脂、塩化ビニル樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、アクリル樹脂、ABS樹脂、ポリイミド樹脂等の熱可塑性樹脂、光硬化性樹脂、熱硬化性樹脂などが挙げられる。更にはこれら基材表面を、より密着性を高める処理を用いて活性化処理して用いることも可能である。上記基材の中でもバインダー樹脂中のウレタン結合と相互作用(水素結合等)を有する官能基(水酸基、カルボニル基、アミノ基等)を有するガラス、ポリエステル樹脂、セルロース樹脂、ビニルアルコール樹脂、アクリル樹脂、ポリイミド樹脂等が好ましい。 The substrate for applying and printing the conductive pattern forming composition of the present embodiment is not particularly limited as long as it is insulating. From the viewpoint of ease of application and printing, a plate shape, a sheet shape, and a film shape are preferable. For example, ceramics such as glass and alumina, polyester resins, cellulose resins, vinyl alcohol resins, vinyl chloride resins, cycloolefin resins, polycarbonate resins, acrylic resins, ABS resins, polyimide resins, and other thermoplastic resins, photocurable resins, A thermosetting resin etc. are mentioned. Furthermore, it is also possible to use these substrate surfaces by activating them using a treatment for improving the adhesion. Among the above base materials, glass having a functional group (hydroxyl group, carbonyl group, amino group, etc.) having an interaction (hydrogen bond, etc.) with urethane bond in the binder resin, polyester resin, cellulose resin, vinyl alcohol resin, acrylic resin, A polyimide resin or the like is preferable.
 導電パターンの印刷方法としては、公知の方法であれば特に制限はなく、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、凸版印刷法、凹版印刷法、グラビア印刷法等を用いることができる。また塗布する方法や材料の条件によっては、ウェットコートの後に基材を加熱して、塗布した材料や用いた溶媒を除去するプロセスや、溶媒などを洗浄によって洗い流すプロセスなどが含まれていてもよい。 The conductive pattern printing method is not particularly limited as long as it is a known method. Spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, gravure printing method Etc. can be used. Depending on the method of application and the conditions of the material, the substrate may be heated after wet coating to remove the applied material and the solvent used, or the process of washing away the solvent by washing, etc. .
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。 Hereinafter, embodiments of the present invention will be specifically described. In addition, the following examples are for facilitating understanding of the present invention, and the present invention is not limited to these examples.
<物性値の測定方法>
(GPC)
 重量平均分子量の値は、GPCで測定したポリスチレン換算の値であり、測定条件は以下の通りである。
・測定装置 Shodex GPC-101
・カラム  ShodexカラムLF-804
・移動相  テトラヒドロフラン(THF)
・流速   1.0mL/min
・測定時間 40min
・検出器  Shodex RI-71S
・温度   40.0℃
・試料量  サンプルループ100μL
・試料濃度 約1質量%のTHF溶液となるように調製
<Measurement method of physical properties>
(GPC)
The value of the weight average molecular weight is a value in terms of polystyrene measured by GPC, and the measurement conditions are as follows.
・ Measuring device Shodex GPC-101
・ Column Shodex column LF-804
・ Mobile phase Tetrahydrofuran (THF)
・ Flow rate 1.0mL / min
・ Measurement time 40min
・ Detector Shodex RI-71S
・ Temperature 40.0 ℃
Sample volume Sample loop 100 μL
・ Sample concentration Prepared to be about 1% by mass THF solution
(酸価)
 樹脂の酸価は以下の方法で測定した。
 100mlフラスコに試料約1gを精密天秤にて精秤し、これにメタノール30mlを加えて溶解する。さらに、指示薬としてフェノールフタレインエタノール溶液を1~3滴添加し、試料が均一になるまで十分に撹拌する。これを0.1N水酸化カリウム-エタノール溶液で滴定し、指示薬の微紅色が30秒続いたときを中和の終点とする。その結果から下記の計算式を用いて得た値を、樹脂の酸価とする。
酸価(mgKOH/g)=〔B×f×5.611〕/S
B:0.1N水酸化カリウム‐エタノール溶液の使用量(ml)
f:0.1N水酸化カリウム‐エタノール溶液のファクター
S:試料の採取量(g)
(Acid value)
The acid value of the resin was measured by the following method.
About 1 g of a sample is precisely weighed with a precision balance in a 100 ml flask, and 30 ml of methanol is added to dissolve it. Furthermore, add 1 to 3 drops of phenolphthalein ethanol solution as an indicator and stir well until the sample is uniform. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is obtained when the indicator is slightly red for 30 seconds. The value obtained from the result using the following calculation formula is defined as the acid value of the resin.
Acid value (mgKOH / g) = [B × f × 5.611] / S
B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml)
f: Factor of 0.1N potassium hydroxide-ethanol solution S: Amount of sample collected (g)
(TG-DTA)
 示差熱-熱重量測定は以下の測定条件で行った。
・測定装置 示差熱熱重量同時測定装置 TG/DTA6200(エスアイアイ・ナノテクノロジー株式会社)
・温度範囲 30℃-500℃
・昇温速度 10℃/分
・雰囲気  窒素ガス雰囲気
(TG-DTA)
Differential heat-thermogravimetry was performed under the following measurement conditions.
・ Measurement device Differential thermothermal weight simultaneous measurement device TG / DTA6200 (SII Nanotechnology Inc.)
Temperature range 30 ℃ -500 ℃
Temperature increase rate 10 ℃ / min ・ Atmosphere Nitrogen gas
<ポリプロピレングリコール1000含有ポリウレタン(酸価40mgKOH/g)の金属塩>
合成例1.(カルボキシル基を有するポリウレタンPU-1の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物としてポリプロピレングリコール1000(重量平均分子量1000、日油(株)製)を62.11g(62mmol、ジイソシアネートに対して0.45当量)、カルボキシル基を有するジヒドロキシ化合物としてジメチロールブタン酸(以下、DMBAと略す)(日本化成(株)製)を11.42g(77mmol、ジイソシアネートに対して0.55当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を104.41g仕込み、45℃で全ての原料を溶解した。滴下ロートを用い、ジイソシアネート化合物としてイソホロンジイソシアネート(以下、IPDIと略す)(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.89g(139mmol)を5分かけて滴下した。滴下終了後、1時間かけて110℃まで昇温したのち、110℃で5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.17g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃、3時間)より求めた固形分濃度は50質量%であった。
<Metal salt of polypropylene glycol 1000-containing polyurethane (acid value 40 mgKOH / g)>
Synthesis Example 1 (Synthesis of polyurethane PU-1 having carboxyl group)
62.11 g of polypropylene glycol 1000 (weight average molecular weight 1000, manufactured by NOF Corporation) as a diol compound was added to a 500 mL four-necked separable flask equipped with a dropping funnel, a stirring device, a thermocouple for temperature measurement, and a Liebig condenser. 62 mmol, 0.45 equivalent to diisocyanate), 11.42 g (77 mmol, 0 to diisocyanate) dimethylolbutanoic acid (hereinafter abbreviated as DMBA) as a dihydroxy compound having a carboxyl group. .55 equivalents) and 104.41 g of ethyl carbitol acetate (manufactured by Daicel Corporation) as a solvent were charged, and all raw materials were dissolved at 45 ° C. Using a dropping funnel, 30.89 g (139 mmol) of isophorone diisocyanate (hereinafter abbreviated as IPDI) (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise as a diisocyanate compound over 5 minutes. After completion of dropping, the temperature was raised to 110 ° C. over 1 hour, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.17 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an end-capping agent. After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (120 ° C., 3 hours) was 50% by mass.
 得られた上記ポリウレタンは以下の式(7)で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式においてx1+y1=1であり、x1=0.55、y1=0.45である。nは正の整数であり、重量平均分子量の値からおよそ17である。 In the formula, x1 + y1 = 1, x1 = 0.55, and y1 = 0.45. n 6 represents a positive integer, is approximately 17 from the value of the weight-average molecular weight.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価の実測値は43mgKOH/g、重量平均分子量は1.2×10であった。 The measured value of the acid value of the solid content of the obtained polyurethane solution having a carboxyl group was 43 mgKOH / g, and the weight average molecular weight was 1.2 × 10 4 .
実施例1
(硝酸銀を用いたポリウレタン銀塩PU-1Agの合成)
 上記合成例1で得られたカルボキシル基を有するポリウレタン溶液2.03g(0.73mmol相当のカルボキシル基を含有)を20mlのアセトン(和光純薬工業(株)製)に溶解し、水酸化ナトリウム(和光純薬工業(株)製)0.03g(0.73mmol)を水3mlに溶解したものを加え、均一になるまで撹拌した。これに、硝酸銀(和光純薬工業(株)製)0.13g(0.73mmol)を水5mlに溶解させたものを滴下し、沈殿を生じさせた。上澄み液をデカンテーションによって取り除き、一晩風乾して乾燥し、残留している溶媒を完全に除去するために、100℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥してポリウレタンの銀塩を得た(収量0.56g)。
Example 1
(Synthesis of polyurethane silver salt PU-1Ag 1 using silver nitrate)
2.03 g (containing 0.73 mmol of carboxyl group) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 1 above was dissolved in 20 ml of acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.03 g (0.73 mmol) of Wako Pure Chemical Industries, Ltd. in 3 ml of water was added and stirred until uniform. To this, 0.13 g (0.73 mmol) of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 5 ml of water was added dropwise to cause precipitation. The supernatant liquid is removed by decantation, air-dried overnight, and dried to dryness. To completely remove the remaining solvent, it is dried under reduced pressure for 1 hour using a vacuum dryer while heating at 100 ° C. A salt was obtained (yield 0.56 g).
 ポリウレタン銀塩の示差熱-熱重量同時測定(TG-DTA)結果を図1に示す。TG-DTA測定終了後の残渣の質量割合は9.9質量%であり、分子式から計算される銀の含有量の理論値である7.4質量%に近い値であった。 Fig. 1 shows the results of simultaneous differential thermal-thermogravimetric measurement (TG-DTA) of polyurethane silver salt. The mass ratio of the residue after completion of the TG-DTA measurement was 9.9 mass%, which was a value close to 7.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
実施例2
(酸化銀を用いたポリウレタン銀塩PU-1Agの合成)
 上記合成例1で得られたカルボキシル基を有するポリウレタン溶液6.04g(2.2mmol相当のカルボキシル基を含有)を14.05gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解し、0.26gの酸化銀(和光純薬工業(株)製)(1.1mmol、銀に換算して2.2mmol)を加えた。遮光下、室温で10時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 2
(Synthesis of polyurethane silver salt PU-1Ag 2 using silver oxide)
6.04 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 1 (containing a carboxyl group corresponding to 2.2 mmol) was dissolved in 14.05 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). .26 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd.) (1.1 mmol, 2.2 mmol in terms of silver) was added. The mixture was stirred at room temperature for 10 hours under light shielding, and it was confirmed that silver oxide had disappeared and became a uniform solution.
 得られた銀塩溶液(固形分濃度16質量%)の一部を、100℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥した。乾燥後に得られた固体状ポリウレタン銀塩のTG-DTA測定を行った。測定結果を図2に示す。TG-DTA測定終了後の残渣の質量割合は8.1質量%であり、分子式から計算される銀の含有量の理論値である7.4質量%に近い値であった。図1及び図2から、上記硝酸銀を用いた方法で得られたポリウレタン銀塩と酸化銀を用いた方法で得られたポリウレタン銀塩とで、同一のものが得られたことを確認した。 A portion of the obtained silver salt solution (solid content concentration: 16% by mass) was dried under reduced pressure for 1 hour using a vacuum dryer while heating at 100 ° C. TG-DTA measurement of the solid polyurethane silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 8.1 mass%, which was a value close to 7.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula. 1 and 2, it was confirmed that the same polyurethane silver salt obtained by the method using silver nitrate and the polyurethane silver salt obtained by the method using silver oxide were obtained.
 樹脂のカルボキシル基部分に銀原子が配位していることを確認するために、得られた固体のIR測定を行った。合成例1で得られたポリウレタンのIRスペクトルを図3に、実施例1で得られたポリウレタン銀塩のIRスペクトルを図4に示す。一般的に、カルボン酸が塩を形成しカルボキシル基中のC=O二重結合とC-O単結合が等価となるような配位構造をとる場合、1600cm-1付近と1400cm-1付近にピークが観測されることが知られている。図3および図4の比較ではそのような変化が見られないことから、この銀塩では銀原子が一方の酸素原子にのみ配位していることが示唆された。 In order to confirm that a silver atom is coordinated to the carboxyl group portion of the resin, IR measurement of the obtained solid was performed. The IR spectrum of the polyurethane obtained in Synthesis Example 1 is shown in FIG. 3, and the IR spectrum of the polyurethane silver salt obtained in Example 1 is shown in FIG. Generally, if the carboxylic acid takes C = O at the double bond and the C-O single bond coordination structure such that the equivalent in the carboxyl group forms a salt, in the vicinity of 1600 cm -1 and around 1400 cm -1 It is known that a peak is observed. Since such a change was not seen in the comparison between FIG. 3 and FIG. 4, it was suggested that in this silver salt, the silver atom is coordinated to only one oxygen atom.
 樹脂のカルボキシル基部分に銀原子が配位していることを確認するために、上記IR測定に加えてNMR測定を行った。合成例1で得られた樹脂のH-NMRスペクトルを図5に、実施例1で得られたポリウレタン銀塩のH-NMRスペクトルを図6に示す。水分の混入を防ぐため、測定の直前にサンプルを真空乾燥機で1時間減圧乾燥し、重溶媒はアンプル入りの重ジメチルスルホキシドを用いた。その結果、図5で12ppm付近に観測されるカルボキシル基のピークが図6では消失していることから、銀原子がカルボキシル基部分に配位していることが確認できた。 In order to confirm that the silver atom is coordinated to the carboxyl group portion of the resin, NMR measurement was performed in addition to the IR measurement. The 1 H-NMR spectrum of the resin obtained in Synthesis Example 1 is shown in FIG. 5, and the 1 H-NMR spectrum of the polyurethane silver salt obtained in Example 1 is shown in FIG. In order to prevent moisture from entering, the sample was dried under reduced pressure for 1 hour in a vacuum dryer immediately before the measurement, and deuterated dimethyl sulfoxide was used as the heavy solvent. As a result, the peak of the carboxyl group observed in the vicinity of 12 ppm in FIG. 5 disappeared in FIG. 6, so that it was confirmed that the silver atom was coordinated to the carboxyl group portion.
 得られた上記ポリウレタンの銀塩は以下の式(8)で表される構成単位を有している。 The obtained silver salt of polyurethane has a structural unit represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式においてx1+y1=1であり、x1=0.55、y1=0.45である。nは正の整数であり、重量平均分子量の値からおよそ17である。 In the formula, x1 + y1 = 1, x1 = 0.55, and y1 = 0.45. n 6 represents a positive integer, is approximately 17 from the value of the weight-average molecular weight.
実施例3
(硫酸銅を用いたポリウレタン銅塩PU-1Cuの合成)
 上記合成例1で得られたカルボキシル基を有するポリウレタン溶液2.02g(0.73mmol相当のカルボキシル基を含有)を20mlのアセトン(和光純薬工業(株)製)に溶解し、水酸化ナトリウム(和光純薬工業(株)製)0.03g(0.73mmol)を水3mlに溶解したものを加え、均一になるまで撹拌した。これに、硫酸銅五水和物(和光純薬工業(株)製)0.092g(0.37mmol、カルボキシル基に対して0.5当量)を水5mlに溶解させたものを滴下し、沈殿を生じさせた。室温で2時間撹拌したのち、上澄み液をデカンテーションによって取り除き、残留している溶媒を完全に除去するために、100℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥してポリウレタンの銅塩を得た(収量0.62g)。
Example 3
(Synthesis of polyurethane copper salt PU-1Cu using copper sulfate)
2.02 g (containing 0.73 mmol of carboxyl group) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 1 above was dissolved in 20 ml of acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.03 g (0.73 mmol) of Wako Pure Chemical Industries, Ltd. in 3 ml of water was added and stirred until uniform. A solution prepared by dissolving 0.092 g (0.37 mmol, 0.5 equivalent to the carboxyl group) of copper sulfate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 5 ml of water was added dropwise to this and precipitated. Gave rise to After stirring at room temperature for 2 hours, the supernatant liquid is removed by decantation, and in order to completely remove the remaining solvent, it is dried under reduced pressure for 1 hour using a vacuum dryer while heating at 100 ° C. A salt was obtained (yield 0.62 g).
 得られた銅塩のTG-DTA測定結果を図7に示す。TG-DTA測定終了後の残渣の質量割合は2.3質量%であり、分子式から計算される銅の含有量の理論値である2.3質量%に一致した。 The TG-DTA measurement result of the obtained copper salt is shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 2.3 mass%, which coincided with 2.3 mass%, which is the theoretical value of the copper content calculated from the molecular formula.
 樹脂のカルボキシル基部分に銅原子が配位していることを確認するために、得られた固体のIR測定を行った。実施例3で得られたポリウレタン銅塩のIRスペクトルを図8に示す。図3と図8を比較すると、図8では1618cm-1と1410cm-1に新たなピークが観測されることから、銅原子がカルボキシル基と塩を形成し、C=O二重結合とC-O単結合が等価な配位構造をとっていることが確認できた。 In order to confirm that a copper atom is coordinated to the carboxyl group portion of the resin, IR measurement of the obtained solid was performed. The IR spectrum of the polyurethane copper salt obtained in Example 3 is shown in FIG. 3 with Fig. 8, since the new peak in 1618cm -1 and 1410 cm -1 in FIG. 8 is observed, the copper atoms to form a carboxyl group and salts, C = O double bond and C- It was confirmed that the O single bond had an equivalent coordination structure.
 得られた上記ポリウレタンの銅塩は以下の式(9)式で表される構成単位を有する。以下の式では簡略化のため、銅原子周りの配位構造のみを示した。 The obtained copper salt of polyurethane has a structural unit represented by the following formula (9). In the following formula, only the coordination structure around the copper atom is shown for simplification.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中点線は配位結合を表す。銅原子によって架橋されているウレタン結合単位は、同じポリウレタン骨格中に含まれていてもよく、異なるポリウレタン骨格中に含まれていてもよい。実際には、二価の銅原子は置換活性な金属種であることから、銅原子で架橋されているポリウレタン鎖は時間経過とともに交換していると考えられる。また、2つの銅原子に4つのカルボキシル基が配位したランタン型二核錯体が一部生成している可能性も考えられるが、いずれの場合においてもカルボキシル基と銅原子が2:1の割合で塩を形成しているということに変わりはない。 The dotted line in the formula represents a coordination bond. Urethane bond units that are cross-linked by copper atoms may be contained in the same polyurethane skeleton, or may be contained in different polyurethane skeletons. Actually, since the divalent copper atom is a substitutionally active metal species, it is considered that the polyurethane chain cross-linked with the copper atom is exchanged over time. In addition, there is a possibility that a lanthanum type binuclear complex in which four carboxyl groups are coordinated to two copper atoms may be partially formed. In either case, the ratio of the carboxyl group and the copper atom is 2: 1. There is no change in the formation of salt.
<ポリエチレングリコール400含有ポリウレタンの銀塩>
合成例2.(カルボキシル基を有するポリウレタンPU-2の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物としてポリエチレングリコール400(重量平均分子量400、日油(株)製)を24.95g(62mmol、ジイソシアネートに対して0.45当量)、カルボキシル基を有するジヒドロキシ化合物としてDMBA(日本化成(株)製)を11.41g(77mmol、ジイソシアネートに対して0.55当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を100.90g仕込み、55℃で全ての原料を溶解した。滴下ロートを用い、ジイソシアネートとしてIPDI(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.90g(139mmol)を5分かけて滴下した。滴下終了後、1時間かけて110℃まで昇温したのち、110℃にて5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.17g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃、2時間)より求めた固形分濃度は40質量%であった。
<Silver salt of polyethylene glycol 400-containing polyurethane>
Synthesis Example 2 (Synthesis of polyurethane PU-2 having carboxyl group)
24.95 g of polyethylene glycol 400 (weight average molecular weight 400, manufactured by NOF Corporation) as a diol compound in a 500 mL four-necked separable flask equipped with a dropping funnel, a stirring device, a thermocouple for temperature measurement, and a Liebig condenser. 62 mmol, 0.45 equivalent to diisocyanate), 11.41 g (77 mmol, 0.55 equivalent to diisocyanate) DMBA (manufactured by Nippon Kasei Co., Ltd.) as a dihydroxy compound having a carboxyl group, and ethyl carbitol as a solvent 100.90 g of acetate (manufactured by Daicel Corporation) was charged, and all raw materials were dissolved at 55 ° C. Using a dropping funnel, 30.90 g (139 mmol) of IPDI (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise as diisocyanate over 5 minutes. After completion of the dropwise addition, the temperature was raised to 110 ° C. over 1 hour, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.17 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an end-capping agent. After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (120 ° C., 2 hours) was 40% by mass.
 得られた上記ポリウレタンは以下の式(10)式で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式においてx2+y2=1であり、x2=0.55、y2=0.45である。nは正の整数であり、重量平均分子量の値からおよそ9である。 In the equation, x2 + y2 = 1, x2 = 0.55, and y2 = 0.45. n 7 is a positive integer and is approximately 9 from the value of the weight average molecular weight.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価の実測値は65mgKOH/g、重量平均分子量は1.0×10であった。 The actually measured value of the acid value of the solid content of the obtained polyurethane solution having a carboxyl group was 65 mgKOH / g, and the weight average molecular weight was 1.0 × 10 4 .
実施例4
(硝酸銀を用いたポリウレタン銀塩PU-2Agの合成)
 上記合成例2で得られたカルボキシル基を有するポリウレタン溶液2.53g(1.1mmol相当のカルボキシル基を含有)を20mlのアセトン(和光純薬工業(株)製)に溶解し、水酸化ナトリウム(和光純薬工業(株)製)0.046g(1.1mmol)を水5mlに溶解したものを加え、均一になるまで撹拌した。これに、硝酸銀(和光純薬工業(株)製)0.20g(1.1mmol)を水5mlに溶解させたものを滴下し、沈殿を生じさせた。室温で30分撹拌したのち、上澄み液をデカンテーションによって取り除き、一晩風乾して乾燥したのち、残留している溶媒を完全に除去するために、100℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥してポリウレタンの銀塩を得た(収量0.47g)。
Example 4
(Synthesis of polyurethane silver salt PU-2Ag 1 using silver nitrate)
2.53 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 2 (containing 1.1 mmol of carboxyl group) was dissolved in 20 ml of acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.046 g (1.1 mmol) of Wako Pure Chemical Industries, Ltd. in 5 ml of water was added and stirred until uniform. A solution prepared by dissolving 0.20 g (1.1 mmol) of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 5 ml of water was added dropwise thereto to cause precipitation. After stirring at room temperature for 30 minutes, the supernatant liquid is removed by decantation, air-dried overnight, dried, and then heated at 100 ° C. using a vacuum dryer to completely remove the remaining solvent. It was dried under reduced pressure for 1 hour to obtain a silver salt of polyurethane (yield 0.47 g).
 ポリウレタン銀塩のTG-DTA測定結果を図9に示す。TG-DTA測定終了後の残渣の質量割合は15.2質量%で、分子式から計算される銀の含有量の理論値である11.0質量%に近い値であった。 TG-DTA measurement results of polyurethane silver salt are shown in FIG. The mass ratio of the residue after the TG-DTA measurement was 15.2% by mass, which was close to 11.0% by mass, which is the theoretical value of the silver content calculated from the molecular formula.
実施例5
(酸化銀を用いたポリウレタン銀塩PU-2Agの合成)
 上記合成例2で得られたカルボキシル基を有するポリウレタン溶液5.02g(2.2mmol相当のカルボキシル基を含有)を15.02gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解し、0.26gの酸化銀(和光純薬工業(株)製)(1.1mmol、銀に換算して2.2mmol)を加えた。遮光下、室温で15時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 5
(Synthesis of polyurethane silver salt PU-2Ag 2 using silver oxide)
5.02 g (containing 2.2 mmol of carboxyl group) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 2 was dissolved in 15.02 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). .26 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd.) (1.1 mmol, 2.2 mmol in terms of silver) was added. The mixture was stirred at room temperature for 15 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液(固形分濃度11質量%)の一部を、100℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥した。乾燥後に得られた固体状銀塩のTG-DTA測定を行った。測定結果を図10に示す。TG-DTA測定終了後の残渣の質量割合は10.9質量%で、分子式から計算される銀の含有量の理論値である11.0質量%に近い値であった。図9及び図10から、上記硝酸銀を用いた方法で得られたポリウレタン銀塩と酸化銀を用いた方法で得られたポリウレタン銀塩とで、同一のものが得られたことを確認した。 A part of the obtained polyurethane silver salt solution (solid content concentration 11% by mass) was dried under reduced pressure for 1 hour using a vacuum dryer while heating at 100 ° C. TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 10.9 mass%, which was close to 11.0 mass%, which is the theoretical value of the silver content calculated from the molecular formula. 9 and 10, it was confirmed that the same polyurethane silver salt obtained by the method using silver nitrate and the polyurethane silver salt obtained by the method using silver oxide were obtained.
 得られた上記ポリウレタンの銀塩は以下の式(11)で表される構成単位を有している。 The obtained silver salt of polyurethane has a structural unit represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式においてx2+y2=1であり、x2=0.55、y2=0.45である。nは正の整数であり、重量平均分子量の値からおよそ9である。 In the equation, x2 + y2 = 1, x2 = 0.55, and y2 = 0.45. n 7 is a positive integer and is approximately 9 from the value of the weight average molecular weight.
<DMBAとIPDIからなるカルボキシル基を有するポリウレタンの銀塩>
合成例3.(ポリウレタンPU-3の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、カルボキシル基を有するジヒドロキシ化合物としてDMBA(湖州長盛化工製)を20.59g(139mmol、ジイソシアネートに対して1.0当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を120.27g仕込み、65℃でDMBAが溶解していることを確認した後、滴下ロートを用い、ジイソシアネート化合物としてIPDI(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.97g(139mmol)を5分かけて滴下した。滴下終了後、反応液を1時間かけて110℃まで昇温し、その後110℃にて5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.17g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷することで、粘稠なペースト状のカルボキシル基を有するポリウレタン組成物91.21gが析出・沈殿した。真空乾燥機を用いた減圧加熱乾燥(120℃、2時間)より求めた固形分濃度は54質量%であった。
<Silver salt of polyurethane having carboxyl group composed of DMBA and IPDI>
Synthesis Example 3 (Synthesis of polyurethane PU-3)
In a 500 mL four-necked separable flask equipped with a dropping funnel, a stirrer, a thermocouple for temperature measurement, and a Liebig condenser, 20.59 g (139 mmol, diisocyanate) of DMBA (manufactured by Huzhou Nagamori Chemical) as a dihydroxy compound having a carboxyl group. 1.0 equivalent) and 120.27 g of ethyl carbitol acetate (manufactured by Daicel Corporation) as a solvent, and after confirming that DMBA is dissolved at 65 ° C., using a dropping funnel as a diisocyanate compound 30.97 g (139 mmol) of IPDI (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise over 5 minutes. After completion of the dropping, the reaction solution was heated to 110 ° C. over 1 hour, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.17 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an end-capping agent. After reacting at 110 ° C. for 1 hour, the mixture was allowed to cool to room temperature, whereby 91.21 g of a polyurethane composition having a viscous paste-like carboxyl group precipitated and precipitated. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (120 ° C., 2 hours) was 54 mass%.
 得られた上記ポリウレタンの構成単位は以下の式(12)で表される。 The structural unit of the obtained polyurethane is represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式において、nは正の整数であり、重量平均分子量の値からおよそ18である。 In the formula, n 8 is a positive integer, is approximately 18 from the value of the weight-average molecular weight.
 得られたペースト状のカルボキシル基を有するポリウレタン組成物の固形分の酸価は150mgKOH/g、重量平均分子量は6.5×10であった。 The obtained paste-like polyurethane group having a carboxyl group had an acid value of 150 mgKOH / g and a weight average molecular weight of 6.5 × 10 3 .
実施例6
(ポリウレタン銀塩PU-3Agの合成)
 上記合成例3で得られたペースト状のカルボキシル基を有するポリウレタン組成物1.74g(2.6mmol相当のカルボキシル基を含有)を30mlのメタノール(和光純薬工業(株)製)に溶解し、水酸化ナトリウム(和光純薬工業(株)製)0.10g(2.6mmol)を水1mlに溶解したものを加え、均一になるまで撹拌した。これに、硝酸銀(和光純薬工業(株)製)0.44g(2.6mmol)を水5mlに溶解させたものを滴下し、沈殿を生じさせ、室温で30分撹拌した。沈殿を吸引濾過し、残留している溶媒を完全に除去するために、110℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥し、ポリウレタンの銀塩を得た(収量0.72g)。
Example 6
(Synthesis of polyurethane silver salt PU-3Ag 1 )
1.74 g of the polyurethane composition having a paste-like carboxyl group obtained in Synthesis Example 3 (containing a carboxyl group corresponding to 2.6 mmol) was dissolved in 30 ml of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) A solution prepared by dissolving 0.10 g (2.6 mmol) of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in 1 ml of water was added and stirred until uniform. To this, 0.44 g (2.6 mmol) of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 5 ml of water was added dropwise to cause precipitation, followed by stirring at room temperature for 30 minutes. In order to completely remove the remaining solvent by suction filtration, the precipitate was dried under reduced pressure for 1 hour using a vacuum dryer while heating at 110 ° C. to obtain a silver salt of polyurethane (yield 0.72 g). .
 上記ポリウレタンの銀塩の構成単位は以下の式(13)式で表される。 The structural unit of the silver salt of the polyurethane is represented by the following formula (13).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式において、nは正の整数であり、重量平均分子量の値からおよそ18である。 In the formula, n 8 is a positive integer, is approximately 18 from the value of the weight-average molecular weight.
 得られたポリウレタン銀塩のTG-DTA測定結果を図11に示す。TG-DTA測定終了後の残渣の質量割合は20.5質量%で、分子式から計算される銀の含有量の理論値22.6質量%に近い値であった。 The TG-DTA measurement result of the obtained polyurethane silver salt is shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 20.5 mass%, which was close to the theoretical value of 22.6 mass% of the silver content calculated from the molecular formula.
<2-ブチル-2-エチル-1,3-プロパンジオール含有ポリウレタンの銀塩>
合成例4.(ポリウレタンPU-4の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物として2-ブチル-2-エチル-1,3-プロパンジオール(東京化成工業(株)製)を8.81g(55mmol、ジイソシアネートに対して0.4当量)、カルボキシル基を有するジヒドロキシ化合物としてDMBA(湖州長盛化工製)を12.45g(84mmol、ジイソシアネートに対して0.6当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を121.70g仕込み、50℃で全ての原料を溶解させた。滴下ロートを用い、ジイソシアネート化合物としてIPDI(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.90g(139mmol)を5分かけて滴下した。滴下終了後、1時間かけて110℃まで昇温したのち、110℃にて5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.17g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃、2時間)より求めた固形分濃度は30質量%であった。
<Silver salt of polyurethane containing 2-butyl-2-ethyl-1,3-propanediol>
Synthesis Example 4 (Synthesis of polyurethane PU-4)
2-Butyl-2-ethyl-1,3-propanediol (Tokyo Chemical Industry Co., Ltd.) as a diol compound in a 500 mL four-necked separable flask equipped with a dropping funnel, a stirrer, a thermocouple for temperature measurement, and a Liebig condenser. Product) 8.81 g (55 mmol, 0.4 equivalents relative to diisocyanate), and 12.45 g (84 mmol, 0.6 equivalents relative to diisocyanate) DMBA (manufactured by Huzhou Nagamori Chemical) as the dihydroxy compound having a carboxyl group Then, 121.70 g of ethyl carbitol acetate (manufactured by Daicel Corporation) was charged as a solvent, and all raw materials were dissolved at 50 ° C. Using a dropping funnel, 30.90 g (139 mmol) of IPDI (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise as a diisocyanate compound over 5 minutes. After completion of the dropwise addition, the temperature was raised to 110 ° C. over 1 hour, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.17 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an end-capping agent. After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (120 ° C., 2 hours) was 30% by mass.
 得られた上記ポリウレタンは以下の式(14)で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (14).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式においてx3+y3=1であり、x3=0.60、y3=0.40である。また、式中Etはエチル基を、Buはn-ブチル基を表す。 In the formula, x3 + y3 = 1, x3 = 0.60, and y3 = 0.40. In the formula, Et represents an ethyl group, and Bu represents an n-butyl group.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価は93mgKOH/g、重量平均分子量は9.0×10であった。 The obtained polyurethane solution having a carboxyl group had an acid value of 93 mgKOH / g and a weight average molecular weight of 9.0 × 10 3 .
実施例7
(ポリウレタン銀塩PU-4Agの合成)
 上記合成例4で得られたカルボキシル基を有するポリウレタン溶液1.56g(0.78mmol相当のカルボキシル基を含有)を10mlのエタノール(和光純薬工業(株)製)に溶解し、水酸化ナトリウム(和光純薬工業(株)製)0.03g(0.78mmol)を水3mlに溶解したものを加え、均一になるまで撹拌した。これに、硝酸銀(和光純薬工業(株)製)0.12g(0.78mmol)を水5mlに溶解させたものを滴下し、沈殿を生じさせ、室温で30分撹拌した。沈殿を吸引濾過し、残留している溶媒を完全に除去するために、110℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥し、ポリウレタンの銀塩を得た(収量0.41g)。
Example 7
(Synthesis of polyurethane silver salt PU-4Ag 1 )
1.56 g of a polyurethane solution having a carboxyl group obtained in Synthesis Example 4 (containing a carboxyl group corresponding to 0.78 mmol) was dissolved in 10 ml of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.03 g (0.78 mmol) of Wako Pure Chemical Industries, Ltd. in 3 ml of water was added and stirred until uniform. A solution prepared by dissolving 0.12 g (0.78 mmol) of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 5 ml of water was added dropwise thereto to cause precipitation, followed by stirring at room temperature for 30 minutes. The precipitate was filtered with suction, and in order to completely remove the remaining solvent, it was dried under reduced pressure for 1 hour using a vacuum dryer while heating at 110 ° C. to obtain a silver salt of polyurethane (yield 0.41 g). .
 得られた銀塩のTG-DTA測定結果を図12に示す。TG-DTA測定終了後の残渣の質量割合は14.8質量%で、分子式から計算される銀の含有量の理論値の14.8%と一致した。 The TG-DTA measurement result of the obtained silver salt is shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 14.8% by mass, which coincided with 14.8% of the theoretical value of the silver content calculated from the molecular formula.
 得られた上記ポリウレタンの銀塩は以下の式(15)で表される構成単位を有している。 The obtained silver salt of polyurethane has a structural unit represented by the following formula (15).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式においてx3+y3=1であり、x3=0.60、y3=0.40である。また、式中Etはエチル基を、Buはn-ブチル基を表す。 In the formula, x3 + y3 = 1, x3 = 0.60, and y3 = 0.40. In the formula, Et represents an ethyl group, and Bu represents an n-butyl group.
<ポリプロピレングリコール1000含有ポリウレタン(酸価90mgKOH/g)の銀塩>
合成例5.(ポリウレタンPU-5の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物としてポリプロピレングリコール1000(重量平均分子量1000、日油(株)製)を24.06g(24mmol、ジイソシアネートに対して0.17当量)、カルボキシル基を有するジヒドロキシ化合物としてDMBA(日本化成(株)製)を17.04g(115mmol、ジイソシアネートに対して0.83当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を108.04g仕込み、60℃で全ての原料を溶解した。滴下ロートを用い、ジイソシアネート化合物としてIPDI(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.88g(139mmol)を5分かけて滴下した。滴下終了後、1時間かけて110℃まで昇温したのち、110℃で5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.17g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃、2時間)より求めた固形分濃度は38質量%であった。
<Silver salt of polypropylene glycol 1000-containing polyurethane (acid value 90 mgKOH / g)>
Synthesis Example 5 (Synthesis of polyurethane PU-5)
In a 500 mL four-necked separable flask equipped with a dropping funnel, a stirrer, a thermocouple for temperature measurement, and a Liebig condenser, 24.06 g of polypropylene glycol 1000 (weight average molecular weight 1000, manufactured by NOF Corporation) as a diol compound ( 24 mmol, 0.17 equivalent to diisocyanate), 17.04 g (115 mmol, 0.83 equivalent to diisocyanate) DMBA (manufactured by Nippon Kasei Co., Ltd.) as a dihydroxy compound having a carboxyl group, and ethyl carbitol as a solvent 108.04 g of acetate (manufactured by Daicel Corporation) was charged, and all raw materials were dissolved at 60 ° C. Using a dropping funnel, 30.88 g (139 mmol) of IPDI (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise as a diisocyanate compound over 5 minutes. After completion of dropping, the temperature was raised to 110 ° C. over 1 hour, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.17 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an end-capping agent. After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (120 ° C., 2 hours) was 38% by mass.
 得られた上記ポリウレタンは以下の式(16)式で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (16).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式においてx4+y4=1であり、x4=0.83、y4=0.17である。nは正の整数であり、重量平均分子量の値からおよそ17である。 In the formula, x4 + y4 = 1, x4 = 0.83, and y4 = 0.17. n 9 is a positive integer, is approximately 17 from the value of the weight-average molecular weight.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価の実測値は85mgKOH/g、重量平均分子量は9.4×10であった。 The actually measured value of the acid value of the solid content of the obtained polyurethane solution having a carboxyl group was 85 mgKOH / g, and the weight average molecular weight was 9.4 × 10 3 .
実施例8
(ポリウレタン銀塩PU-5Agの合成)
 上記合成例5で得られたカルボキシル基を有するポリウレタン溶液2.00g(1.3mmol相当のカルボキシル基を含有)を20mlのアセトン(和光純薬工業(株)製)に溶解し、水酸化ナトリウム(和光純薬工業(株)製)0.05g(1,3mmol)を水5mlに溶解したものを加え、均一になるまで撹拌した。これに、硝酸銀(和光純薬工業(株)製)0.23g(1.3mmol)を水5mlに溶解させたものを滴下し、沈殿を生じさせた。室温で30分撹拌したのち、上澄み液をデカンテーションによって取り除いた。残留している溶媒を完全に除去するために、100℃で加熱しながら真空乾燥機を用いて1時間減圧乾燥してポリウレタンの銀塩を得た(収量0.56g)。
Example 8
(Synthesis of polyurethane silver salt PU-5Ag 1 )
2.00 g of a polyurethane solution having a carboxyl group obtained in Synthesis Example 5 (containing a carboxyl group equivalent to 1.3 mmol) was dissolved in 20 ml of acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydroxide ( A solution prepared by dissolving 0.05 g (1, 3 mmol) of Wako Pure Chemical Industries, Ltd. in 5 ml of water was added and stirred until uniform. A solution prepared by dissolving 0.23 g (1.3 mmol) of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 5 ml of water was added dropwise thereto to cause precipitation. After stirring at room temperature for 30 minutes, the supernatant was removed by decantation. In order to completely remove the remaining solvent, a silver salt of polyurethane was obtained by drying under reduced pressure for 1 hour using a vacuum dryer while heating at 100 ° C. (yield 0.56 g).
 得られたポリウレタン銀塩のTG-DTA測定結果を図13に示す。TG-DTA測定終了後の残渣の質量割合は20.6質量%で、分子式から計算される銀の含有量の理論値の14.7質量%に近い値であった。 FIG. 13 shows the TG-DTA measurement result of the obtained polyurethane silver salt. The mass ratio of the residue after completion of the TG-DTA measurement was 20.6 mass%, which was a value close to 14.7 mass% of the theoretical silver content calculated from the molecular formula.
 得られた上記ポリウレタンの銀塩は以下の式(17)式で表される構成単位を有している。 The obtained silver salt of the polyurethane has a structural unit represented by the following formula (17).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式においてx4+y4=1であり、x4=0.83、y4=0.17である。nは正の整数であり、重量平均分子量の値からおよそ17である。 In the formula, x4 + y4 = 1, x4 = 0.83, and y4 = 0.17. n 9 is a positive integer, is approximately 17 from the value of the weight-average molecular weight.
<ポリカーボネートジオール含有ポリウレタンの銀塩>
合成例6.(ポリウレタンPU-6の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物としてポリカーボネートジオール(重量平均分子量500、旭化成ケミカルズ(株)製、デュラノール(登録商標)T5650E)を31.20g(62mmol、ジイソシアネートに対して0.45当量)、カルボキシル基を有するジヒドロキシ化合物としてDMBA(湖州長盛化工製(株)製)を11.41g(77mmol、ジイソシアネートに対して0.55当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を73.50g仕込み、55℃で全ての原料を溶解した。滴下ロートを用い、ジイソシアネート化合物としてIPDI(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.96g(139mmol)を5分かけて滴下した。滴下終了後、1時間かけて110℃まで昇温したのち、110℃で5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.19g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃で5時間乾燥したのち、135℃で1時間乾燥)より求めた固形分濃度は50質量%であった。
<Silver salt of polycarbonate diol-containing polyurethane>
Synthesis Example 6 (Synthesis of polyurethane PU-6)
To a 500 mL four-necked separable flask equipped with a dropping funnel, a stirrer, a thermocouple for temperature measurement, and a Liebig condenser, polycarbonate diol (weight average molecular weight 500, manufactured by Asahi Kasei Chemicals Corporation, DURANOL (registered trademark) T5650E as a diol compound 31.20 g (62 mmol, 0.45 equivalents relative to diisocyanate), and 11.41 g (77 mmol, 0.1 mol relative to diisocyanate) DMBA (manufactured by Huzhou Nagamori Chemical Co., Ltd.) as a dihydroxy compound having a carboxyl group. 55 equivalents) and 73.50 g of ethyl carbitol acetate (manufactured by Daicel Corporation) as a solvent was charged, and all raw materials were dissolved at 55 ° C. Using a dropping funnel, 30.96 g (139 mmol) of IPDI (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise as a diisocyanate compound over 5 minutes. After completion of dropping, the temperature was raised to 110 ° C. over 1 hour, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.19 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a terminal blocking agent, and After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (drying at 120 ° C. for 5 hours and then drying at 135 ° C. for 1 hour) was 50% by mass.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価は62mgKOH/g、重量平均分子量は2.6×10であった。 The resulting polyurethane solution having a carboxyl group had an acid value of 62 mgKOH / g and a weight average molecular weight of 2.6 × 10 4 in the solid content.
 得られた上記ポリウレタンは以下の式(18)で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (18).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式においてx5+y5=1であり、x5=0.55、y5=0.45である。n10は正の整数であり、重量平均分子量の値からおよそ3である。またRは、炭素原子数5又は6の脂肪族炭化水素基である。 In the equation, x5 + y5 = 1, x5 = 0.55, and y5 = 0.45. n 10 is a positive integer, is about 3 from the value of the weight average molecular weight. R 9 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
(カルボキシル基の一部又は全部に銀原子を結合させたポリウレタン銀塩PU-6Agの合成)
 上記合成例6で得られたポリウレタン溶液と酸化銀を反応させ、カルボキシル基の一部又は全部に銀原子が結合した銀塩を得た。銀塩になった割合は、IRスペクトル測定又はNMRスペクトル測定や、酸価滴定といった実験的手法では正確に決定することが困難であったことから、加えた酸化銀が完全に溶解(=完全に反応)したことを目視で確認したうえで、原料の仕込み比から計算した値を採用した。
(Synthesis of polyurethane silver salt PU-6Ag having silver atoms bonded to some or all of the carboxyl groups)
The polyurethane solution obtained in Synthesis Example 6 was reacted with silver oxide to obtain a silver salt in which silver atoms were bonded to part or all of the carboxyl groups. The ratio of silver salt was difficult to determine accurately by experimental methods such as IR spectrum measurement or NMR spectrum measurement or acid value titration, so that the added silver oxide was completely dissolved (= completely The value calculated from the raw material charge ratio was adopted after visually confirming that the reaction had occurred.
実施例9
(カルボキシル基の8%に銀原子が結合したポリウレタン銀塩PU-6Ag(8)の合成)
 上記合成例6で得られたカルボキシル基を有するポリウレタン溶液4.01g(2.10mmol相当のカルボキシル基を含有)を5.96gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解し、0.02gの酸化銀(和光純薬工業(株)製、Agとして0.16mmol)を加えた。遮光下、室温で6時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 9
(Synthesis of polyurethane silver salt PU-6Ag (8) in which silver atoms are bonded to 8% of carboxyl groups)
4.01 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 6 (containing a carboxyl group corresponding to 2.10 mmol) was dissolved in 5.96 g of diethylene glycol monoethyl ether (manufactured by Junsei Kagaku Co., Ltd.). 0.02 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 0.16 mmol as Ag) was added. The mixture was stirred at room temperature for 6 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液(固形分濃度21質量%)の一部を、120℃で加熱しながら真空乾燥機を用いて2時間減圧乾燥した。乾燥後に得られた固体状のポリウレタン銀塩のTG-DTA測定を行った。測定結果を図14に示す。TG-DTA測定終了後の残渣の質量割合は2.0質量%で、分子式から計算される銀の含有量の理論値である0.8質量%に近い値であった。 A part of the obtained polyurethane silver salt solution (solid content concentration: 21% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C. TG-DTA measurement of the solid polyurethane silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 2.0 mass%, which was close to 0.8 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
実施例10
(カルボキシル基の63%に銀原子が結合したポリウレタン銀塩PU-6Ag(63)の合成)
 上記合成例6で得られたカルボキシル基を有するポリウレタン溶液2.06g(1.08mmol相当のカルボキシル基を含有)を7.99gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解し、0.08gの酸化銀(和光純薬工業(株)製、Agとして0.68mmol)を加えた。遮光下、室温で6時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 10
(Synthesis of polyurethane silver salt PU-6Ag (63) in which silver atoms are bonded to 63% of carboxyl groups)
2.06 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 6 (containing a carboxyl group corresponding to 1.08 mmol) was dissolved in 7.99 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). 0.08 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 0.68 mmol as Ag) was added. The mixture was stirred at room temperature for 6 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液(固形分濃度11質量%)の一部を、120℃で加熱しながら真空乾燥機を用いて2時間減圧乾燥した。乾燥後に得られた固体状銀塩のTG-DTA測定を行った。測定結果を図15に示す。TG-DTA測定終了後の残渣の質量割合は8.5質量%で、分子式から計算される銀の含有量の理論値である6.4質量%に近い値であった。 A part of the obtained polyurethane silver salt solution (solid content concentration: 11% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C. TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 8.5 mass%, which was close to 6.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
実施例11
(カルボキシル基の50%に銀原子が結合したポリウレタン銀塩PU-6Ag(50)の合成)
 上記合成例6で得られたカルボキシル基を有するポリウレタン溶液8.00g(4.20mmol相当のカルボキシル基を含有)を8.01gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解した。続いて、0.25gの酸化銀(和光純薬工業(株)製、Agとして2.10mmol)を4.06gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に分散させ、この分散液をポリウレタン溶液に加えた。85℃で10時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 11
(Synthesis of polyurethane silver salt PU-6Ag (50) in which silver atoms are bonded to 50% of carboxyl groups)
8.00 g (containing a carboxyl group equivalent to 4.20 mmol) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 6 was dissolved in 8.01 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). Subsequently, 0.25 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 2.10 mmol as Ag) was dispersed in 4.06 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.), and this dispersion was Added to the polyurethane solution. It stirred at 85 degreeC for 10 hours, and it confirmed that silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液(固形分濃度23質量%)の一部を、120℃で加熱しながら真空乾燥機を用いて2時間減圧乾燥した。乾燥後に得られた固体状銀塩のTG-DTA測定を行った。測定結果を図16に示す。TG-DTA測定終了後の残渣の質量割合は5.5質量%で、分子式から計算される銀の含有量の理論値である5.1質量%に近い値であった。 A part of the obtained polyurethane silver salt solution (solid content concentration: 23% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C. TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 5.5% by mass, which was close to 5.1% by mass, which is the theoretical value of the silver content calculated from the molecular formula.
実施例12
(カルボキシル基の100%に銀原子が結合したポリウレタン銀塩PU-6Ag(100)の合成)
 上記合成例6で得られたカルボキシル基を有するポリウレタン溶液8.00g(4.20mmol相当のカルボキシル基を含有)を8.00gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解した。続いて、0.49gの酸化銀(和光純薬工業(株)製、Agとして4.20mmol)を4.01gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に分散させ、この分散液をポリウレタン溶液に加えた。85℃で10時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 12
(Synthesis of polyurethane silver salt PU-6Ag (100) in which silver atoms are bonded to 100% of carboxyl groups)
8.00 g of a polyurethane solution having a carboxyl group obtained in Synthesis Example 6 (containing a carboxyl group corresponding to 4.20 mmol) was dissolved in 8.00 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). Subsequently, 0.49 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 4.20 mmol as Ag) was dispersed in 4.01 g of diethylene glycol monoethyl ether (manufactured by Junsei Kagaku Co., Ltd.). Added to the polyurethane solution. It stirred at 85 degreeC for 10 hours, and it confirmed that silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液(固形分濃度23質量%)の一部を、120℃で加熱しながら真空乾燥機を用いて2時間減圧乾燥した。乾燥後に得られた固体状銀塩のTG-DTA測定を行った。測定結果を図17に示す。TG-DTA測定終了後の残渣の質量割合は9.5質量%で、分子式から計算される銀の含有量の理論値である10.2質量%に近い値であった。 A part of the obtained polyurethane silver salt solution (solid content concentration: 23% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C. TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 9.5 mass%, which was close to 10.2 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
 得られた上記カルボキシル基の一部又は全部に銀原子を結合させたポリウレタンの銀塩は以下の式(19)で表される構成単位を有している。 The resulting silver salt of polyurethane having silver atoms bonded to some or all of the carboxyl groups has a structural unit represented by the following formula (19).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式においてx6+x7+y5=1であり、実施例9ではx6=0.04、x7=0.51、y5=0.45である。実施例10ではx6=0.35、x7=0.20、y5=0.45である。実施例11ではx6=0.275、x7=0.275、y5=0.45である。実施例12ではx6=0.55、x7=0、y5=0.45である。n10は正の整数であり、重量平均分子量の値からおよそ3である。またRは、炭素原子数5又は6の脂肪族炭化水素基である。 In the equation, x6 + x7 + y5 = 1, and in Example 9, x6 = 0.04, x7 = 0.51, and y5 = 0.45. In Example 10, x6 = 0.35, x7 = 0.20, and y5 = 0.45. In Example 11, x6 = 0.275, x7 = 0.275, and y5 = 0.45. In Example 12, x6 = 0.55, x7 = 0, and y5 = 0.45. n 10 is a positive integer, is about 3 from the value of the weight average molecular weight. R 9 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
<DMBAをDMPA(ジメチロールプロピオン酸)に変更したポリカーボネートジオール含有ポリウレタンの銀塩>
合成例7.(ポリウレタンPU-7の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物としてポリカーボネートジオール(重量平均分子量500、旭化成ケミカルズ(株)製、製品名デュラノールT5650E)を31.19g(62mmol、ジイソシアネートに対して0.45当量)、カルボキシル基を有するジヒドロキシ化合物としてDMPA(東京化成工業(株)製)を10.13g(77mmol、ジイソシアネートに対して0.55当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を72.40g仕込み、55℃まで加熱した。滴下ロートを用い、ジイソシアネート化合物としてIPDI(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.92g(139mmol)を10分かけて滴下した。滴下終了後、1時間かけて110℃まで昇温してDMPAを完全に溶解したのち、110℃で5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.22g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃で4時間乾燥)より求めた固形分濃度は51質量%であった。
<Silver salt of polycarbonate diol-containing polyurethane in which DMBA is changed to DMPA (dimethylolpropionic acid)>
Synthesis Example 7 (Synthesis of polyurethane PU-7)
Polycarbonate diol (weight average molecular weight 500, manufactured by Asahi Kasei Chemicals Corporation, product name DURANOL T5650E) as a diol compound was added to a 500 mL four-necked separable flask equipped with a dropping funnel, a stirring device, a thermocouple for temperature measurement, and a Liebig condenser. 31.19 g (62 mmol, 0.45 equivalent to diisocyanate), 10.13 g (77 mmol, 0.55 equivalent to diisocyanate) of DMPA (manufactured by Tokyo Chemical Industry Co., Ltd.) as a dihydroxy compound having a carboxyl group, As a solvent, 72.40 g of ethyl carbitol acetate (manufactured by Daicel Corporation) was charged and heated to 55 ° C. Using a dropping funnel, 30.92 g (139 mmol) of IPDI (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise as a diisocyanate compound over 10 minutes. After completion of the dropwise addition, the temperature was raised to 110 ° C. over 1 hour to completely dissolve DMPA, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.22 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a terminal blocking agent. After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration obtained by drying under reduced pressure using a vacuum dryer (drying at 120 ° C. for 4 hours) was 51% by mass.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価は59mgKOH/g、重量平均分子量は2.8×10であった。 The obtained polyurethane solution having a carboxyl group had an acid value of 59 mgKOH / g and a weight average molecular weight of 2.8 × 10 4 .
 得られた上記ポリウレタンは以下の式(20)で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (20).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式においてx8+y6=1であり、x8=0.55、y6=0.45である。n11は正の整数であり、重量平均分子量の値からおよそ3である。またR10は、炭素原子数5又は6の脂肪族炭化水素基である。 In the equation, x8 + y6 = 1, x8 = 0.55, and y6 = 0.45. n 11 is a positive integer, is about 3 from the value of the weight average molecular weight. R 10 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
実施例13
(ポリウレタン銀塩PU-7Agの合成)
 上記合成例7で得られたカルボキシル基を有するポリウレタン溶液8.00g(4.20mmol相当のカルボキシル基を含有)を7.99gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解した。続いて、0.49gの酸化銀(和光純薬工業(株)製、Agとして4.20mmol)を4.00gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に分散させ、この分散液をポリウレタン溶液に加えた。85℃で5時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 13
(Synthesis of polyurethane silver salt PU-7Ag)
8.00 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 7 (containing a carboxyl group corresponding to 4.20 mmol) was dissolved in 7.99 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). Subsequently, 0.49 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 4.20 mmol as Ag) was dispersed in 4.00 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). Added to the polyurethane solution. It stirred at 85 degreeC for 5 hours, and it confirmed that silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液(固形分濃度23質量%)の一部を、100℃で加熱しながら真空乾燥機を用いて2時間減圧乾燥した。乾燥後に得られた固体状銀塩のTG-DTA測定を行った。測定結果を図18に示す。TG-DTA測定終了後の残渣の質量割合は9.4質量%で、分子式から計算される銀の含有量の理論値である10.3質量%に近い値であった。 A part of the obtained polyurethane silver salt solution (solid content concentration: 23% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 100 ° C. TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 9.4 mass%, which was close to 10.3 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
 得られた上記ポリウレタンの銀塩は以下の式(21)式で表される構成単位を有している。 The obtained silver salt of polyurethane has a structural unit represented by the following formula (21).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式においてx8+y6=1であり、x8=0.55、y6=0.45である。n11は正の整数であり、重量平均分子量の値からおよそ3である。またR10は、炭素原子数5又は6の脂肪族炭化水素基である。 In the equation, x8 + y6 = 1, x8 = 0.55, and y6 = 0.45. n 11 is a positive integer, is about 3 from the value of the weight average molecular weight. R 10 is an aliphatic hydrocarbon group having 5 or 6 carbon atoms.
合成例8.<ポリエチレングリコール1000含有ポリウレタンの銀塩>
(ポリウレタンPU-8の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物としてポリエチレングリコール1000(重量平均分子量1000、日油(株)製)を62.72g(62mmol、ジイソシアネートに対して0.45当量)、カルボキシル基を有するジヒドロキシ化合物としてDMBA(湖州長盛化工製(株)製)を11.41g(77mmol、ジイソシアネートに対して0.55当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を105.05g仕込み、55℃で全ての原料を溶解した。滴下ロートを用い、ジイソシアネート化合物としてIPDI(住化バイエルウレタン(株)製、デスモジュール(登録商標)I)30.91g(139mmol)を5分かけて滴下した。滴下終了後、1時間かけて110℃まで昇温したのち、110℃で5時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.17g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃で1時間乾燥)より求めた固形分濃度は51質量%であった。
Synthesis Example 8 <Silver salt of polyurethane containing polyethylene glycol 1000>
(Synthesis of polyurethane PU-8)
In a 500 mL four-necked separable flask equipped with a dropping funnel, a stirrer, a thermocouple for temperature measurement, and a Liebig condenser, 62.72 g of polyethylene glycol 1000 (weight average molecular weight 1000, manufactured by NOF Corporation) as a diol compound ( 62 mmol, 0.45 equivalents relative to diisocyanate), 11.41 g (77 mmol, 0.55 equivalents relative to diisocyanate) DMBA (manufactured by Huzhou Nagamori Chemical Co., Ltd.) as a dihydroxy compound having a carboxyl group, and as a solvent 105.05 g of ethyl carbitol acetate (manufactured by Daicel Corporation) was charged, and all raw materials were dissolved at 55 ° C. Using a dropping funnel, 30.91 g (139 mmol) of IPDI (manufactured by Sumika Bayer Urethane Co., Ltd., Desmodur (registered trademark) I) was added dropwise as a diisocyanate compound over 5 minutes. After completion of dropping, the temperature was raised to 110 ° C. over 1 hour, and then the reaction was continued at 110 ° C. for 5 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.17 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an end-capping agent. After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (drying at 120 ° C. for 1 hour) was 51% by mass.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価は42mgKOH/g、重量平均分子量は1.5×10であった。 The obtained polyurethane solution having a carboxyl group had an acid value of 42 mgKOH / g and a weight average molecular weight of 1.5 × 10 4 .
 得られた上記ポリウレタンは以下の式(22)で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (22).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式においてx9+y7=1であり、x9=0.55、y7=0.45である。n12は正の整数であり、重量平均分子量の値からおよそ22である。 In the equation, x9 + y7 = 1, x9 = 0.55, and y7 = 0.45. n 12 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
実施例14
(反応溶媒としてターピネオールを用いたポリウレタン銀塩PU-8Ag(TP)の合成)
 上記合成例8で得られたカルボキシル基を有するポリウレタン溶液2.01g(0.73mmol相当のカルボキシル基を含有)を8.00gのターピネオールC(日本テルペン化学(株)製)に溶解し、0.08gの酸化銀(和光純薬工業(株)製、Agとして0.73mmol)を加えた。遮光下、室温で6時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 14
(Synthesis of polyurethane silver salt PU-8Ag (TP) using terpineol as reaction solvent)
2.01 g (containing 0.73 mmol of carboxyl group) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 8 was dissolved in 8.00 g of terpineol C (manufactured by Nippon Terpene Chemical Co., Ltd.). 08 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 0.73 mmol as Ag) was added. The mixture was stirred at room temperature for 6 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液(固形分濃度11質量%)の一部を、100℃で加熱しながら真空乾燥機を用いて2時間減圧乾燥した。乾燥後に得られた固体状銀塩のTG-DTA測定を行った。測定結果を図19に示す。TG-DTA測定終了後の残渣の質量割合は7.7質量%で、分子式から計算される銀の含有量の理論値である7.4質量%に近い値であった。 A part of the obtained polyurethane silver salt solution (solid content concentration: 11% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 100 ° C. TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 7.7 mass%, which was close to 7.4 mass%, which is the theoretical value of the silver content calculated from the molecular formula.
 得られた上記ポリウレタンの銀塩は以下の式(23)式で表される構成単位を有している。 The obtained silver salt of the polyurethane has a structural unit represented by the following formula (23).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式においてx9+y7=1であり、x9=0.55、y7=0.45である。n12は正の整数であり、重量平均分子量の値からおよそ22である。 In the equation, x9 + y7 = 1, x9 = 0.55, and y7 = 0.45. n 12 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
実施例15
(反応溶媒としてECA/ECを用いたポリウレタン銀塩PU-8Ag(ECA/EC)の合成)
 上記合成例8で得られたカルボキシル基を有するポリウレタン溶液2.01g(0.73mmol相当のカルボキシル基を含有)を8.00gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解し、0.08gの酸化銀(和光純薬工業(株)製、Agとして0.73mmol)を加えた。遮光下、室温で7時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 15
(Synthesis of polyurethane silver salt PU-8Ag (ECA / EC) using ECA / EC as a reaction solvent)
Dissolve 2.01 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 8 (containing a carboxyl group equivalent to 0.73 mmol) in 8.00 g of diethylene glycol monoethyl ether (manufactured by Junsei Kagaku Co., Ltd.). 0.08 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 0.73 mmol as Ag) was added. The mixture was stirred at room temperature for 7 hours under light shielding, and it was confirmed that the silver oxide disappeared and became a uniform solution.
 得られたポリウレタン銀塩溶液を実施例14に示した方法で加熱しながら減圧乾燥し、乾燥後に得られた固体状銀塩のTG-DTA測定を実施したところ、実施例14に示したものと同様の結果が得られた。 The obtained polyurethane silver salt solution was dried under reduced pressure while heating by the method shown in Example 14, and TG-DTA measurement of the solid silver salt obtained after drying was performed. Similar results were obtained.
実施例16
(水酸化銅を用いたポリウレタン銅塩PU-8Cuの合成)
 上記合成例8で得られたカルボキシル基を有するポリウレタン溶液4.02g(1.46mmol相当のカルボキシル基を含有)を15.99gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解し、0.07gの水酸化銅(和光純薬工業(株)製)(0.73mmol)を加えた。オイルバスで120℃に加熱した後6時間撹拌し、水酸化銅が消失して一様な溶液になったことを確認した。
Example 16
(Synthesis of polyurethane copper salt PU-8Cu using copper hydroxide)
4.02 g (containing a carboxyl group corresponding to 1.46 mmol) of the polyurethane solution having a carboxyl group obtained in Synthesis Example 8 was dissolved in 15.99 g of diethylene glycol monoethyl ether (manufactured by Junsei Kagaku Co., Ltd.). 0.07 g of copper hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) (0.73 mmol) was added. After heating to 120 ° C. in an oil bath, the mixture was stirred for 6 hours, and it was confirmed that copper hydroxide had disappeared and became a uniform solution.
 得られたポリウレタン銅塩溶液(固形分濃度11質量%)の一部を、120℃で加熱しながら真空乾燥機を用いて2時間減圧乾燥した。乾燥後に得られた固体状銀塩のTG-DTA測定を行った。測定結果を図20に示す。TG-DTA測定終了後の残渣の質量割合は3.2質量%で、分子式から計算される銅の含有量の理論値である2.3質量%に近い値であった。 A part of the obtained polyurethane copper salt solution (solid content concentration 11% by mass) was dried under reduced pressure for 2 hours using a vacuum dryer while heating at 120 ° C. TG-DTA measurement of the solid silver salt obtained after drying was performed. The measurement results are shown in FIG. The mass ratio of the residue after completion of the TG-DTA measurement was 3.2 mass%, which was close to 2.3 mass%, which is the theoretical value of the copper content calculated from the molecular formula.
 得られた上記ポリウレタンの銅塩は、上述した式(9)に示されるような架橋構造を有している。 The obtained copper salt of the polyurethane has a crosslinked structure as shown in the above formula (9).
(ジイソシアネートとしてMDIを用いたポリエチレングリコール1000含有ポリウレタンの銀塩)
合成例9.(ポリウレタンPU-9の合成)
 滴下ロート、撹拌装置、温度測定用熱電対、リービッヒ冷却管を備えた500mL4つ口セパラブルフラスコに、ジオール化合物としてポリエチレングリコール1000(重量平均分子量1000、日油(株)製)を62.68g(62mmol、ジイソシアネートに対して0.45当量)、カルボキシル基を有するジヒドロキシ化合物としてDMBA(湖州長盛化工製(株)製)を11.41g(77mmol、ジイソシアネートに対して0.55当量)、溶媒としてエチルカルビトールアセテート((株)ダイセル製)を108.90g仕込み、55℃で全ての原料を溶解した。滴下ロートを用い、ジイソシアネート化合物としてMDI(BASF INOAC ポリウレタン(株)製、製品名ルプラネート(登録商標)MI)34.82g(139mmol)を30分かけて滴下した。滴下終了後、2時間かけて110℃まで昇温したのち、110℃で4時間反応を継続した。赤外線吸収スペクトルで2270cm-1に観測されるイソシアネート基の吸収スペクトルがほぼ消失したことを確認したのち、末端封止剤としてイソブタノール0.17g(和光純薬工業(株)製)を加え、更に110℃にて1時間反応を行った後、室温まで放冷し、一様なカルボキシル基を有するポリウレタン溶液を得た。真空乾燥機を用いた減圧加熱乾燥(120℃で1時間乾燥)より求めた固形分濃度は50質量%であった。
(Silver salt of polyethylene glycol 1000-containing polyurethane using MDI as diisocyanate)
Synthesis Example 9 (Synthesis of polyurethane PU-9)
In a 500 mL four-necked separable flask equipped with a dropping funnel, a stirrer, a thermocouple for temperature measurement, and a Liebig condenser, 62.68 g of polyethylene glycol 1000 (weight average molecular weight 1000, manufactured by NOF Corporation) as a diol compound ( 62 mmol, 0.45 equivalents relative to diisocyanate), 11.41 g (77 mmol, 0.55 equivalents relative to diisocyanate) DMBA (manufactured by Huzhou Nagamori Chemical Co., Ltd.) as a dihydroxy compound having a carboxyl group, and as a solvent 108.90 g of ethyl carbitol acetate (manufactured by Daicel Corporation) was charged, and all raw materials were dissolved at 55 ° C. Using a dropping funnel, 34.82 g (139 mmol) of MDI (manufactured by BASF INOAC Polyurethane Co., Ltd., product name Luplanate (registered trademark) MI) was added dropwise as a diisocyanate compound over 30 minutes. After completion of dropping, the temperature was raised to 110 ° C. over 2 hours, and then the reaction was continued at 110 ° C. for 4 hours. After confirming that the absorption spectrum of the isocyanate group observed at 2270 cm −1 in the infrared absorption spectrum almost disappeared, 0.17 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an end-capping agent. After reacting at 110 ° C. for 1 hour, it was allowed to cool to room temperature to obtain a polyurethane solution having a uniform carboxyl group. The solid content concentration determined by drying under reduced pressure using a vacuum dryer (drying at 120 ° C. for 1 hour) was 50% by mass.
 得られたカルボキシル基を有するポリウレタン溶液の固形分の酸価は43mgKOH/g、重量平均分子量は2.0×10であった。 The obtained polyurethane solution having a carboxyl group had an acid value of 43 mgKOH / g and a weight average molecular weight of 2.0 × 10 4 in a solid content.
 得られた上記ポリウレタンは以下の式(24)で表される構成単位を有している。 The obtained polyurethane has a structural unit represented by the following formula (24).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式においてx10+y8=1であり、x10=0.55、y8=0.45である。n13は正の整数であり、重量平均分子量の値からおよそ22である。 In the formula, x10 + y8 = 1, x10 = 0.55, and y8 = 0.45. n 13 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
実施例17
(カルボキシル基の50%に銀原子が結合したポリウレタン銀塩PU-9Ag(50)の合成)
 上記合成例9で得られたカルボキシル基を有するポリウレタン溶液8.00g(2.85mmol相当のカルボキシル基を含有)を8.00gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に溶解した。続いて、0.17gの酸化銀(和光純薬工業(株)製、Agとして1.43mmol)を4.00gのジエチレングリコールモノエチルエーテル(純正化学(株)製)に分散させ、この分散液をポリウレタン溶液に加えた。85℃で3時間撹拌し、酸化銀が消失して一様な溶液になったことを確認した。
Example 17
(Synthesis of polyurethane silver salt PU-9Ag (50) in which silver atoms are bonded to 50% of carboxyl groups)
8.00 g of the polyurethane solution having a carboxyl group obtained in Synthesis Example 9 (containing a carboxyl group corresponding to 2.85 mmol) was dissolved in 8.00 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.). Subsequently, 0.17 g of silver oxide (manufactured by Wako Pure Chemical Industries, Ltd., 1.43 mmol as Ag) was dispersed in 4.00 g of diethylene glycol monoethyl ether (manufactured by Junsei Chemical Co., Ltd.), and this dispersion was Added to the polyurethane solution. It stirred at 85 degreeC for 3 hours, and it confirmed that silver oxide disappeared and became a uniform solution.
 得られた上記ポリウレタンの銀塩は以下の式(25)式で表される構成単位を有している。 The obtained silver salt of polyurethane has a structural unit represented by the following formula (25).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式においてx11+x12+y9=1であり、x11=0.275、x12=0.275、y9=0.45である。n13は正の整数であり、重量平均分子量の値からおよそ22である。 In the formula, x11 + x12 + y9 = 1, x11 = 0.275, x12 = 0.275, and y9 = 0.45. n 13 is a positive integer, is approximately 22 from the value of the weight-average molecular weight.
<導電パターン形成1>
 銀粒子として福田金属箔粉工業株式会社製AgC239(扁平形状、D50=2.3μm,厚み0.67μm)を用い、表1に示す各成分及び配合割合(質量部[g])で、自転・公転ミキサーあわとり練太郎((株)シンキー製)を用いて常温常圧下で混合し(自転600rpm、公転1200rpmで3分間を3回)、10gの導電性ペースト(導電パターン形成用組成物)を調製した。なお、使用した溶媒(分散媒)は株式会社ダイセル製エチルカルビトールアセテート(ECA)および株式会社ダイセル製エチルカルビトール(EC)である。得られた導電性ペーストを使用し、スクリーン印刷にて膜厚10μm以上の2cm×2cmの正方形パターンとなるように、ポリイミドフィルム(製品名カプトン(登録商標)150EN-C、東レ・デュポン(株)製)上に印刷した。インクパターン形成後、乾燥機VO-420(アドバンテック(株)製)を使用して、空気下140℃のもと、表1に示す時間で熱焼成し導電パターンを形成した。
<Conductive pattern formation 1>
Using AgC239 (flat shape, D 50 = 2.3 μm, thickness 0.67 μm) manufactured by Fukuda Metal Foil Industry Co., Ltd. as the silver particles, the components and the mixing ratios shown in Table 1 (parts by mass [g]) were rotated.・ Remixing mixer Awatori Nertaro (manufactured by Shinky Co., Ltd.) was mixed under normal temperature and normal pressure (rotation 600 rpm, revolution 1200 rpm for 3 minutes 3 times), 10 g of conductive paste (composition for conductive pattern formation) Was prepared. In addition, the used solvent (dispersion medium) is Daicel Corporation's ethyl carbitol acetate (ECA) and Daicel Corporation's ethyl carbitol (EC). Using the obtained conductive paste, polyimide film (product name: Kapton (registered trademark) 150EN-C, Toray DuPont Co., Ltd.) so that it becomes a 2 cm × 2 cm square pattern with a film thickness of 10 μm or more by screen printing. Printed on). After the ink pattern was formed, using a dryer VO-420 (manufactured by Advantech Co., Ltd.), it was fired at 140 ° C. in air for the time shown in Table 1 to form a conductive pattern.
<性能評価1>
(1)体積抵抗率
 上記導電パターンの膜厚をマイクロメータで測定したのち、導電パターンの表面抵抗を4端子法に基づく抵抗率計ロレスタGP((株)三菱化学アナリテック製)で測定した。測定モードおよび使用端子はESPモードを用いた。得られた膜厚に表面抵抗を乗じて、薄膜の体積抵抗率とした。結果を表1に示す。
<Performance evaluation 1>
(1) Volume resistivity After measuring the film thickness of the said conductive pattern with the micrometer, the surface resistance of the conductive pattern was measured with the resistivity meter Loresta GP (made by Mitsubishi Chemical Analytech Co., Ltd.) based on the 4-terminal method. The ESP mode was used for the measurement mode and the terminals used. The obtained film thickness was multiplied by the surface resistance to obtain the volume resistivity of the thin film. The results are shown in Table 1.
 表1に示されるように、焼成時間及び使用したカルボキシル基を有するポリウレタンが同じ場合には、カルボキシル基の全部又は一部が金属塩(銀塩又は銅塩)となったカルボキシル基を有するポリウレタンを使用した実施評価例1~19の方が、金属塩となっていないカルボキシル基を有するポリウレタンを使用した比較評価例1~11よりも体積抵抗率が低下している。また、カルボキシル基の一部を金属塩とした場合には、金属塩となったものの割合が増えるほど体積抵抗率がより低下していることがわかる。これより、実施例にかかるカルボキシル基の全部又は一部が金属塩となったカルボキシル基を有するポリウレタンを使用した導電性ペーストは、金属塩となっていないカルボキシル基を有するポリウレタンを使用した導電性ペーストよりも、低い焼結エネルギーで導電パターンの導電率を向上させることができることがわかる。なお、実施例ではバインダー樹脂であるポリウレタンの金属(銀又は銅)塩中の金属原子分比較例に比べて金属原子としての量は多いことになるが、その量は金属粒子100質量部に対して0.3質量部以下と微量であるため、導電性の変化への影響は殆ど無視できる。 As shown in Table 1, when the firing time and the used polyurethane having the carboxyl group are the same, the polyurethane having a carboxyl group in which all or a part of the carboxyl group is a metal salt (silver salt or copper salt). The Example Evaluation Examples 1 to 19 used have a lower volume resistivity than the Comparative Evaluation Examples 1 to 11 using a polyurethane having a carboxyl group which is not a metal salt. In addition, when a part of the carboxyl group is a metal salt, it is understood that the volume resistivity is further decreased as the ratio of the metal salt is increased. From this, the conductive paste using the polyurethane which has the carboxyl group in which all or one part of the carboxyl group concerning the Example became a metal salt is the conductive paste using the polyurethane which has the carboxyl group which is not a metal salt It can be seen that the conductivity of the conductive pattern can be improved with lower sintering energy. In the examples, the amount of metal atoms in the metal (silver or copper) salt of polyurethane, which is a binder resin, is larger than the metal atom comparative example, but the amount is 100 parts by mass of metal particles. Therefore, the influence on the change in conductivity is almost negligible.
(2)密着性
 前記の体積抵抗率以外に導電パターンに求められる特性として、基材との密着性が挙げられる。そこで導電パターンと基材間の密着性の評価を、以下に示す方法で行った。
(2) Adhesiveness In addition to the above-described volume resistivity, as a characteristic required for a conductive pattern, there is an adhesiveness with a substrate. Therefore, the adhesion between the conductive pattern and the substrate was evaluated by the method shown below.
 前記導電パターンに、カッターナイフとクロスカットガイドCCJ-1(コーテック(株)製)を用いて1mm間隔で切り込みを11本入れた後、90°向きを変えてさらに11本引いて100個の1mm角のマス目を形成した。カットした印刷面に付着するようにセロハン粘着テープを貼りつけ、セロハン粘着テープ上をこすって塗膜にテープを付着させた。テープを付着させてから1~2分後にテープの端を持って印刷面に直角に保ち、瞬間的に引きはがした。剥離したマス目の数を碁盤目剥離とした。結果を表1に示す。 Using the cutter knife and cross cut guide CCJ-1 (Cortech Co., Ltd.), 11 cuts were made in the conductive pattern at intervals of 1 mm, and then the 90 ° direction was changed and another 11 pieces were drawn to obtain 100 1 mm pieces. A square cell was formed. A cellophane adhesive tape was attached so as to adhere to the cut printed surface, and the cellophane adhesive tape was rubbed to adhere the tape to the coating film. One to two minutes after the tape was attached, the tape was held at a right angle to the printed surface and peeled off instantaneously. The number of squares peeled off was defined as cross-cut peeling. The results are shown in Table 1.
 表1に示されるように、カルボキシル基を有するポリウレタン中のカルボキシル基の全部又は一部を金属塩(銀塩又は銅塩)とした場合でも、碁盤目剥離が0のままであることから、密着性が維持されていることがわかる。これより、実施例にかかるカルボキシル基の全部又は一部が金属塩となったカルボキシル基を有するポリウレタンを使用した導電性ペーストは、体積抵抗率と密着性という、導電パターンに求められる2つの特性を良好に両立させられることがわかる。 As shown in Table 1, even when all or part of the carboxyl groups in the polyurethane having carboxyl groups is a metal salt (silver salt or copper salt), the cross-cut peeling remains 0, It can be seen that the sex is maintained. From this, the conductive paste using the polyurethane which has the carboxyl group in which all or a part of the carboxyl groups according to the examples are metal salts has two characteristics required for the conductive pattern, ie, volume resistivity and adhesion. It can be seen that both are well balanced.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
<導電パターン形成2・性能評価2>
 次に、銀塩由来の銀量と粒子由来の銀量との和を一定にした導電性ペーストを作製し、性能を評価した。導電パターンの形成および性能の評価方法は上記導電パターン形成1及び性能評価1と同様の方法を用い、120℃と170℃での焼成結果をさらに加えた。
<Conductive pattern formation 2 and performance evaluation 2>
Next, a conductive paste was prepared in which the sum of the silver amount derived from the silver salt and the silver amount derived from the particles was made constant, and the performance was evaluated. The conductive pattern formation and performance evaluation methods were the same as in the conductive pattern formation 1 and performance evaluation 1, and the results of baking at 120 ° C. and 170 ° C. were further added.
 表2に示されるように、焼成条件とポリウレタン骨格が同じ場合には、カルボキシル基の全部又は一部が銀塩となった実施評価例1~21のほうが、銀塩となっていない比較評価例1~18よりも密着性を損なうことなく体積抵抗率が低下していることがわかる。また、実施評価例1~9と比較評価例1~6に示されるように、カルボキシル基を銀塩化した割合が増えるほど体積抵抗率がより低下していることから、導電性の向上が銀塩部分に由来していることがあらためて確認できる。このように、銀塩由来の銀量と粒子由来の銀量を一定にした場合でも、前記性能評価と同様の結果が得られることから、導電率の向上が単にペースト中の銀量の増加によるものではないことが明らかとなった。 As shown in Table 2, when the firing conditions and the polyurethane skeleton are the same, Examples 1 to 21 in which all or part of the carboxyl groups are silver salts are comparative evaluation examples that are not silver salts. It can be seen that the volume resistivity is lower than that of 1 to 18 without deteriorating the adhesion. In addition, as shown in Examples 1 to 9 and Comparative Evaluations 1 to 6, the volume resistivity is further decreased as the ratio of silver chloride of the carboxyl group is increased. It can be confirmed again that it originates from the part. Thus, even when the amount of silver derived from the silver salt and the amount of silver derived from the particles are made constant, the same result as in the performance evaluation can be obtained, so the improvement in conductivity is simply due to the increase in the amount of silver in the paste. It became clear that it was not.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
<導電パターン形成3・性能評価3>
 続いて、AgC239以外の銀粒子を用いた導電性ペーストを作製した。導電パターンの形成および性能の評価方法は上記導電パターン形成1及び性能評価1と同様の方法を用いた。新たに用いた銀粒子は福田金属箔粉工業株式会社製AgC-A(扁平形状、D50=3.1μm,厚み0.90μm)およびAgC-201Z(扁平形状、D50=2.6μm,厚み0.76μm)である。
<Conductive pattern formation 3 / performance evaluation 3>
Subsequently, a conductive paste using silver particles other than AgC239 was produced. The formation method of a conductive pattern and the evaluation method of performance used the method similar to the said conductive pattern formation 1 and the performance evaluation 1. The newly used silver particles were AgC-A (flat shape, D 50 = 3.1 μm, thickness 0.90 μm) and AgC-201Z (flat shape, D 50 = 2.6 μm, thickness) manufactured by Fukuda Metal Foil Powder Co., Ltd. 0.76 μm).
 表3に示されるように、焼成条件とポリウレタン骨格が同じ場合には、カルボキシル基の全部又は一部が銀塩となった実施評価例1~12のほうが、銀塩となっていない比較評価例1~12よりも密着性を損なうことなく体積抵抗率が低下していることがわかる。このように、AgC239以外の銀粒子を用いた場合でも前記性能評価と同様の結果が得られることから、導電率の向上効果は特定の粒子を使用した場合に限定されるものではなく、本発明のポリウレタン銀塩が幅広い範囲に適用可能であることが示された。 As shown in Table 3, when the baking conditions and the polyurethane skeleton are the same, Examples 1 to 12 in which all or part of the carboxyl groups are silver salts are comparative evaluation examples that are not silver salts. It can be seen that the volume resistivity is lower than that of 1 to 12 without impairing the adhesion. As described above, even when silver particles other than AgC239 are used, the same results as in the performance evaluation can be obtained. Therefore, the effect of improving the conductivity is not limited to the case where specific particles are used. It was shown that a polyurethane silver salt of the present invention is applicable to a wide range.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
<導電パターン形成4 銀ナノ粒子を使用した導電パターン形成用組成物>
 銀粒子としてDOWAエレクトロニクス株式会社製DF-AT-5100(球状、1次粒子径の平均値は40nm)を用い、表4に示す各成分及び配合割合(質量部[g])で、自転・公転ミキサーあわとり練太郎((株)シンキー製)を用いて常温常圧下で混合し(自転600rpm、公転1200rpmで3分間を3回)、10gの導電性ペースト(導電パターン形成用組成物)を調製した。なお、使用した溶媒は株式会社ダイセル製エチルカルビトールアセテート(ECA)および株式会社ダイセル製エチルカルビトール(EC)、日本テルペン化学株式会社製テルソルブMTPHである。得られた導電性ペーストを使用し、スクリーン印刷にて膜厚約1μmの2cm×2cmの正方形パターンとなるように、無アルカリガラス(製品名イーグルXG、コーニング社製)上に印刷した。インクパターン形成後、乾燥機VO-420(アドバンテック(株)製)を使用して、空気下200℃、1時間熱焼成し導電パターンを形成した。
<Conductive pattern formation 4 Composition for conductive pattern formation using silver nanoparticles>
DF-AT-5100 manufactured by DOWA Electronics Co., Ltd. (spherical, the average value of the primary particle diameter is 40 nm) is used as the silver particles, and the rotation and revolution of each component and blending ratio (part by mass [g]) shown in Table 4 Mixing under normal temperature and normal pressure using mixer Awatori Nertaro (manufactured by Sinky Co., Ltd.) (spinning 600 rpm, revolution 1200 rpm for 3 minutes three times) to prepare 10 g of conductive paste (conductive pattern forming composition) did. In addition, the solvent used is Daicel Corporation's ethyl carbitol acetate (ECA), Daicel Corporation's ethyl carbitol (EC), and Nippon Terpene Chemical Co., Ltd. Tersolve MTPH. Using the obtained conductive paste, printing was performed on non-alkali glass (product name Eagle XG, manufactured by Corning) so as to form a 2 cm × 2 cm square pattern with a film thickness of about 1 μm by screen printing. After forming the ink pattern, using a dryer VO-420 (manufactured by Advantech Co., Ltd.), heat conduction was performed in air at 200 ° C. for 1 hour to form a conductive pattern.
<性能評価4>
(1)体積抵抗率
 上記導電パターンの膜厚はマイクロメータの測定可能範囲より薄いため、触針式表面形状測定器DEKTAK-6M(Bruker Nano社製)で測定した。導電パターンの表面抵抗を4端子法に基づく抵抗率計ロレスタGP((株)三菱化学アナリテック製)で、測定モードおよび使用端子はESPモードを用いて測定した。得られた膜厚に表面抵抗を乗じて薄膜の体積抵抗率とした。結果を表4に示す。
<Performance evaluation 4>
(1) Volume resistivity Since the film thickness of the conductive pattern was thinner than the measurable range of a micrometer, it was measured with a stylus type surface shape measuring device DEKTAK-6M (manufactured by Bruker Nano). The surface resistance of the conductive pattern was measured with a resistivity meter Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) based on the 4-terminal method, and the measurement mode and the terminals used were measured using the ESP mode. The obtained film thickness was multiplied by the surface resistance to obtain the volume resistivity of the thin film. The results are shown in Table 4.
(2)密着性
 上記性能評価1と同様の方法で評価した。結果を表4に示す。
(2) Adhesiveness It evaluated by the method similar to the said performance evaluation 1. The results are shown in Table 4.
 表4に示されるように、焼成条件とポリウレタン骨格が同じ場合には、上記の評価結果と同様に、実施評価例のほうが比較評価例よりも密着性を損なうことなく体積抵抗率が低下していることがわかる。この結果より、本発明のポリウレタン銀塩は、ミクロンサイズの銀粒子と組み合わせた場合のみならず、ナノサイズの銀粒子と組み合わせた場合も導電率を向上させる効果を発揮することが示された。 As shown in Table 4, when the firing conditions and the polyurethane skeleton are the same, the volume resistivity is lower in the example of the evaluation example without losing the adhesion than in the comparative evaluation example, as in the above evaluation results. I understand that. From this result, it was shown that the polyurethane silver salt of the present invention exhibits the effect of improving the conductivity not only when combined with micron-sized silver particles but also when combined with nano-sized silver particles.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
<導電パターン形成5 銀ナノワイヤを使用した導電パターン形成用組成物>
 導電性成分として銀ナノワイヤを用い、表5に示す各成分及び配合割合(質量部[g])で、自転・公転ミキサーあわとり練太郎((株)シンキー製)を用いて常温常圧下で混合し(自転600rpm、公転1200rpmで3分間を3回)、10gの導電性ペースト(導電パターン形成用組成物)を調製した。銀ナノワイヤはポリオール法で合成したもの(平均長20μm、平均径35nm)を用い、溶媒はターピネオールCおよびテルソルブMTPH(ともに日本テルペン化学株式会社製)を用いた。また、バインダー樹脂としてポリウレタンおよびポリウレタン銀塩のみを用いても印刷・焼成は可能であるが、焼成後のパターン形状をより良好に保つためにポリビニルピロリドンK-90(BASF社製)を併用した。得られた導電性ペーストを使用し、スクリーン印刷にて2cm×2cmの正方形パターンとなるように、PETフィルム(ルミラー(登録商標)125T60、東レ(株)製))上に印刷した。インクパターン形成後、乾燥機VO-420(アドバンテック(株)製)を使用して、空気下、表1に示す温度で1時間熱焼成し導電パターンを形成した。
<Conductive pattern formation 5 Composition for conductive pattern formation using silver nanowire>
Using silver nanowire as a conductive component, mixing at each component and mixing ratio (parts by mass [g]) shown in Table 5 under normal temperature and normal pressure using a rotating / revolving mixer Awatori Neritarou (Sinky Corp.) Then, 10 g of conductive paste (composition for forming a conductive pattern) was prepared (3 times for 3 minutes at 600 rpm for rotation and 1200 rpm for revolution). Silver nanowires synthesized by the polyol method (average length 20 μm, average diameter 35 nm) were used, and terpineol C and tersolve MTPH (both manufactured by Nippon Terpene Chemical Co., Ltd.) were used as the solvent. Printing and baking are possible even when only polyurethane and polyurethane silver salt are used as the binder resin, but polyvinyl pyrrolidone K-90 (manufactured by BASF) was used in combination in order to keep the pattern shape after baking better. Using the obtained conductive paste, printing was performed on a PET film (Lumirror (registered trademark) 125T60, manufactured by Toray Industries, Inc.) so as to form a 2 cm × 2 cm square pattern by screen printing. After the ink pattern was formed, using a dryer VO-420 (manufactured by Advantech Co., Ltd.), heat conduction was performed at a temperature shown in Table 1 for 1 hour in the air to form a conductive pattern.
<性能評価5>
 銀ナノワイヤはタッチパネル用の透明導電膜として用いられる材料であり、透明導電膜の評価では体積抵抗率より表面抵抗の値が重要であることから、表面抵抗のみを評価した。測定装置は4端子法に基づく抵抗率計ロレスタGP((株)三菱化学アナリテック製)で、測定モードおよび使用端子はESPモードを用いた。結果を表5に示す。
<Performance evaluation 5>
Since silver nanowire is a material used as a transparent conductive film for touch panels, and the value of surface resistance is more important than volume resistivity in evaluating the transparent conductive film, only the surface resistance was evaluated. The measuring device was a resistivity meter Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) based on the four-terminal method, and the measuring mode and terminals used were ESP mode. The results are shown in Table 5.
 表5に示されるように、焼成条件とポリウレタン骨格が同じ場合には、上記の評価結果と同様に、実施評価例のほうが比較評価例よりも表面抵抗が低下していることがわかる。この結果より、本発明のポリウレタン銀塩は銀ナノワイヤと組み合わせた場合も導電率を向上させる効果を発揮することが示された。 As shown in Table 5, when the firing conditions and the polyurethane skeleton are the same, it can be seen that the surface resistance is lower in the practical evaluation example than in the comparative evaluation example, as in the above evaluation results. From this result, it was shown that the polyurethane silver salt of the present invention exhibits the effect of improving the conductivity even when combined with silver nanowires.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031

Claims (11)

  1.  高分子骨格中に(COO)Mで表されるカルボン酸金属塩部位(Mは周期表第11族に属する金属から選択される金属原子、nは金属原子Mの価数)を有するポリウレタンを含むことを特徴とする導電性組成物用バインダー樹脂。 A polyurethane having a carboxylate metal salt moiety represented by (COO) n M in a polymer skeleton (M is a metal atom selected from metals belonging to Group 11 of the periodic table, and n is a valence of metal atom M) A binder resin for conductive compositions, comprising:
  2.  前記ポリウレタンは、構成単位に(a1)ポリイソシアネート化合物と(a2)カルボキシル基を有するジヒドロキシ化合物とのウレタン結合単位を含む、請求項1に記載の導電性組成物用バインダー樹脂。 2. The binder resin for an electrically conductive composition according to claim 1, wherein the polyurethane includes a urethane bond unit of (a1) a polyisocyanate compound and (a2) a dihydroxy compound having a carboxyl group in a structural unit.
  3.  前記金属塩を構成する金属が、銀、銅のいずれかである、請求項1又は2に記載の導電性組成物用バインダー樹脂。 The binder resin for conductive compositions according to claim 1 or 2, wherein the metal constituting the metal salt is either silver or copper.
  4.  前記(a2)カルボキシル基を有するジヒドロキシ化合物が、2,2-ジメチロールプロピオン酸および2,2-ジメチロールブタン酸の少なくとも一つである、請求項2又は3に記載の導電性組成物用バインダー樹脂。 The binder for conductive compositions according to claim 2 or 3, wherein the (a2) dihydroxy compound having a carboxyl group is at least one of 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid. resin.
  5.  前記(a1)ポリイソシアネート化合物が、脂環族ポリイソシアネートである、請求項2~4のいずれかに記載の導電性組成物用バインダー樹脂。 The binder resin for conductive compositions according to any one of claims 2 to 4, wherein the (a1) polyisocyanate compound is an alicyclic polyisocyanate.
  6.  前記脂環族ポリイソシアネートが3-イソシアネートメチル-3,3,5-トリメチルシクロヘキサン(IPDI、イソホロンジイソシアネート)、又はビス-(4-イソシアネートシクロヘキシル)メタン(水添MDI)である、請求項5に記載の導電性組成物用バインダー樹脂。 6. The alicyclic polyisocyanate is 3-isocyanate methyl-3,3,5-trimethylcyclohexane (IPDI, isophorone diisocyanate) or bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI). Binder resin for conductive composition.
  7.  前記請求項1から6のいずれかに記載の導電性組成物用バインダー樹脂(A)と、
     導電材(B)と、
     前記導電性組成物用バインダー樹脂(A)を溶解する溶媒(C)と、
    を備える、導電パターン形成用組成物。
    Binder resin (A) for conductive composition according to any one of claims 1 to 6,
    A conductive material (B);
    A solvent (C) for dissolving the binder resin (A) for the conductive composition;
    A composition for forming a conductive pattern.
  8.  前記導電材(B)が金属粒子(B1)であって、導電パターン形成用組成物全体に対する、金属粒子(B1)の割合が20質量%~95質量%、導電性組成物用バインダー樹脂を溶解する溶媒(C)の含有量が5質量%~80質量%であり、導電性組成物用バインダー樹脂(A)が金属粒子(B1)100質量部に対して1質量部~15質量部である、請求項7に記載の導電パターン形成用組成物。 The conductive material (B) is metal particles (B1), and the ratio of the metal particles (B1) to the entire conductive pattern forming composition is 20% by mass to 95% by mass, and the binder resin for the conductive composition is dissolved. The content of the solvent (C) is 5 mass% to 80 mass%, and the binder resin for conductive composition (A) is 1 mass part to 15 mass parts with respect to 100 mass parts of the metal particles (B1). The composition for conductive pattern formation of Claim 7.
  9.  前記導電材(B)が金属ナノワイヤ及び/又は金属ナノチューブ(B2)であって、前記導電パターン形成用組成物全体に対する、金属ナノワイヤ及び/又は金属ナノチューブ(B2)の割合が0.01質量%~10質量%、導電性組成物用バインダー樹脂を溶解する溶媒(C)の含有量が90質量%以上であり、導電性組成物用バインダー樹脂(A)が金属ナノワイヤ及び/又は金属ナノチューブ(B2)100質量部に対して10質量部~400質量部である、請求項7に記載の導電パターン形成用組成物。 The conductive material (B) is a metal nanowire and / or metal nanotube (B2), and the ratio of the metal nanowire and / or metal nanotube (B2) to the whole composition for forming a conductive pattern is 0.01% by mass to 10% by mass, the content of the solvent (C) for dissolving the binder resin for conductive composition is 90% by mass or more, and the binder resin for conductive composition (A) is a metal nanowire and / or metal nanotube (B2) The composition for forming a conductive pattern according to claim 7, wherein the composition is 10 to 400 parts by mass with respect to 100 parts by mass.
  10.  前記金属塩および導電材(B)を構成する金属が、銀、銅のいずれかである、請求項7から9に記載の導電パターン形成用組成物。 The conductive pattern forming composition according to claim 7, wherein the metal salt and the metal constituting the conductive material (B) are either silver or copper.
  11.  以下の式(1)で表される構成単位の少なくとも一つを含むポリウレタン。
    Figure JPOXMLDOC01-appb-C000001
    A polyurethane containing at least one of structural units represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
PCT/JP2017/003343 2016-03-23 2017-01-31 Binder resin for electroconductive composition, composition containing same for electroconductive pattern formation, and polyurethane WO2017163615A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018507093A JP6994455B2 (en) 2016-03-23 2017-01-31 Binder resin for conductive composition, composition for forming conductive pattern containing this, and polyurethane
KR1020187026815A KR102121758B1 (en) 2016-03-23 2017-01-31 Binder resin for conductive composition, composition for forming conductive pattern comprising the same, and polyurethane
CN201780019859.9A CN109071938B (en) 2016-03-23 2017-01-31 Binder resin for conductive composition, conductive pattern-forming composition containing same, and polyurethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058290 2016-03-23
JP2016058290 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163615A1 true WO2017163615A1 (en) 2017-09-28

Family

ID=59899935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003343 WO2017163615A1 (en) 2016-03-23 2017-01-31 Binder resin for electroconductive composition, composition containing same for electroconductive pattern formation, and polyurethane

Country Status (5)

Country Link
JP (1) JP6994455B2 (en)
KR (1) KR102121758B1 (en)
CN (1) CN109071938B (en)
TW (1) TWI774658B (en)
WO (1) WO2017163615A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074163A1 (en) * 2017-11-30 2019-05-31 Tri-D-Innov PRECURSOR COMPOUND OF PRINTED CIRCUIT TRACKS, METHOD FOR MANUFACTURING CIRCUIT TRACKS PRINTED THEREFROM, AND SUPPORT COMPRISING SUCH TRACKS OF PRINTED CIRCUITS.
WO2019203159A1 (en) * 2018-04-19 2019-10-24 東洋インキScホールディングス株式会社 Conductive composition for molded film, molded film, molded article, and method for production thereof
KR20220046583A (en) 2019-08-09 2022-04-14 오사카 유키가가쿠고교 가부시키가이샤 New Conductivity Enhancer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108644B1 (en) 2018-11-01 2020-05-08 한국생산기술연구원 Self-healing conductive paste and electronic textile using the same
KR102553367B1 (en) * 2021-08-17 2023-07-10 ㈜ 엘프스 resin composition for self-assembled conductive bonding film, self-assembled conductive bonding film comprising the same and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234912A (en) * 1993-02-08 1994-08-23 Yuho Chem Kk Water-base polyurethane resin composition and its production
JP2012022798A (en) * 2010-07-12 2012-02-02 Yokohama Rubber Co Ltd:The Conductive composition and solar cell
JP2015069877A (en) * 2013-09-30 2015-04-13 東洋紡株式会社 Conductive paste, conductive film and touch panel
WO2015068654A1 (en) * 2013-11-05 2015-05-14 昭和電工株式会社 Conductive pattern formation method, production method for on-cell-type touch panel using same, transfer film used in same, and on-cell-type touch panel
WO2016152722A1 (en) * 2015-03-24 2016-09-29 昭和電工株式会社 Composition for forming conductive pattern and method for forming conductive pattern

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565143A (en) * 1995-05-05 1996-10-15 E. I. Du Pont De Nemours And Company Water-based silver-silver chloride compositions
CA2588343C (en) 2004-11-24 2011-11-08 Nanotechnologies, Inc. Electrical, plating and catalytic uses of metal nanomaterial compositions
US8945686B2 (en) 2007-05-24 2015-02-03 Ncc Method for reducing thin films on low temperature substrates
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
KR101180475B1 (en) 2009-02-05 2012-09-07 주식회사 엘지화학 Method of forming conductive pattern and substrate having conductive pattern manufactured by the same method
TWI481326B (en) 2011-11-24 2015-04-11 Showa Denko Kk A conductive pattern forming method, and a conductive pattern forming composition by light irradiation or microwave heating
EP3064556B1 (en) 2013-10-31 2019-10-02 Showa Denko K.K. Electrically conductive composition for thin film printing, and method for forming thin film conductive pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234912A (en) * 1993-02-08 1994-08-23 Yuho Chem Kk Water-base polyurethane resin composition and its production
JP2012022798A (en) * 2010-07-12 2012-02-02 Yokohama Rubber Co Ltd:The Conductive composition and solar cell
JP2015069877A (en) * 2013-09-30 2015-04-13 東洋紡株式会社 Conductive paste, conductive film and touch panel
WO2015068654A1 (en) * 2013-11-05 2015-05-14 昭和電工株式会社 Conductive pattern formation method, production method for on-cell-type touch panel using same, transfer film used in same, and on-cell-type touch panel
WO2016152722A1 (en) * 2015-03-24 2016-09-29 昭和電工株式会社 Composition for forming conductive pattern and method for forming conductive pattern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074163A1 (en) * 2017-11-30 2019-05-31 Tri-D-Innov PRECURSOR COMPOUND OF PRINTED CIRCUIT TRACKS, METHOD FOR MANUFACTURING CIRCUIT TRACKS PRINTED THEREFROM, AND SUPPORT COMPRISING SUCH TRACKS OF PRINTED CIRCUITS.
WO2019203159A1 (en) * 2018-04-19 2019-10-24 東洋インキScホールディングス株式会社 Conductive composition for molded film, molded film, molded article, and method for production thereof
JP2019189680A (en) * 2018-04-19 2019-10-31 東洋インキScホールディングス株式会社 Conductive composition for molding film, molding film, molded body, and manufacturing method therefor
KR20220046583A (en) 2019-08-09 2022-04-14 오사카 유키가가쿠고교 가부시키가이샤 New Conductivity Enhancer

Also Published As

Publication number Publication date
KR20180107283A (en) 2018-10-01
CN109071938A (en) 2018-12-21
JPWO2017163615A1 (en) 2019-03-07
TW201805323A (en) 2018-02-16
KR102121758B1 (en) 2020-06-11
CN109071938B (en) 2022-03-04
JP6994455B2 (en) 2022-01-14
TWI774658B (en) 2022-08-21

Similar Documents

Publication Publication Date Title
WO2017163615A1 (en) Binder resin for electroconductive composition, composition containing same for electroconductive pattern formation, and polyurethane
TWI677434B (en) Transparent conductive substrate and method for producing transparent conductive substrate
JP6732161B1 (en) Transparent conductive film laminate and processing method thereof
TWI796606B (en) Transparent conductive film laminate and processing method thereof
JP2011166100A (en) Curable, electromagnetic-wave shielding and bonding film, and method of manufacturing the same
TW202100355A (en) Transparent electroconductive substrate, and touch panel including same
JPWO2015053160A1 (en) Conductive paste, conductive thin film and circuit
TW201247808A (en) Conductive paste
CN109689812A (en) The manufacturing method that the protection film composition of conductive pattern, the protective film of conductive pattern, protection film manufacturing method and electrically conducting transparent form a film
JP6592328B2 (en) Polyurethane resin, method for producing polyurethane resin, and resin composition
JP7101203B2 (en) Method for manufacturing conductive paste, conductive pattern and conductive pattern
US20220344072A1 (en) Method for producing transparent conducting film
JP2016173933A (en) Conductive paste, conductive pattern and method for producing conductive pattern
JP2008093914A (en) Copper-clad plastic substrate and its production method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507093

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187026815

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026815

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769662

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769662

Country of ref document: EP

Kind code of ref document: A1