WO2017163452A1 - Gas analysis method and gas measurement device - Google Patents

Gas analysis method and gas measurement device Download PDF

Info

Publication number
WO2017163452A1
WO2017163452A1 PCT/JP2016/075858 JP2016075858W WO2017163452A1 WO 2017163452 A1 WO2017163452 A1 WO 2017163452A1 JP 2016075858 W JP2016075858 W JP 2016075858W WO 2017163452 A1 WO2017163452 A1 WO 2017163452A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sample
signal
wave number
absorption
Prior art date
Application number
PCT/JP2016/075858
Other languages
French (fr)
Japanese (ja)
Inventor
隆 麻柄
明 津村
長谷川 裕
陽 前川
美幸 草場
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2017163452A1 publication Critical patent/WO2017163452A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • Embodiments described herein relate generally to a gas analysis method and a gas measurement device.
  • Gas has a specific absorption spectrum for infrared rays.
  • the gas absorption coefficient and gas concentration can be calculated by measuring the infrared intensity transmitted through the sample gas.
  • Infrared rays having a wavelength of 3 ⁇ m or more can be emitted from the quantum cascade laser.
  • the laser beam causes output fluctuations and wavelength fluctuations. If the measurement value is corrected each time using the reference signal, an error due to characteristic variation can be reduced.
  • the infrared wave number is changed within the wave number band including at least one absorption line of the target gas included in the sample gas, and the change in the intensity of the infrared light transmitted through the sample gas is measured.
  • a first step of setting a sample signal a second step of estimating a provisional reference signal from a sample signal in a section with a low absorption rate, and dividing the provisional reference signal from the sample signal to calculate a distribution of provisional absorption rate
  • a third step a fourth step of determining a wave number interval in which the temporary absorption rate is equal to or less than a predetermined value, and re-estimating a reference signal based on the sample signal of the wave number interval; and re-estimation from the sample signal
  • FIG. 2 (a) to 2 (c) are graphs for explaining the effect of tuning the infrared wave number to the absorption line
  • FIG. 2 (a) is a waveform diagram of the operating current of the QCL
  • FIG. 2 (b) is a graph
  • FIG. 2C is a graph showing a change in wavelength
  • FIG. 2C is a graph showing a detector output.
  • FIG. 4 (a) shows the detector output of the first sample signal
  • FIG. 4 (b) shows the first absorption rate
  • FIG. 4 (c) shows the first determined wave number interval
  • FIG. 6 (a) to 6 (c) are graphs for explaining the measurement principle of isotope ratio
  • FIG. 6 (a) is a graph showing the detector output dependency with respect to time
  • FIG. 6 (b) is a graph with respect to wave number
  • FIG. 6C is a graph showing the absorption coefficient dependency after fitting to the wave number
  • FIG. 7A is a graph showing the absorption coefficient dependency on the wave number with the pressure as a parameter
  • FIG. 7B is a graph showing the absorption coefficient dependency on the wave number with the temperature as a parameter. It is a graph explaining the determination method of a fitting range. It is a graph explaining the reference signal estimation method concerning 3rd Embodiment. It is a graph explaining the reference signal estimation method concerning 4th Embodiment.
  • FIG. 1 is a schematic view illustrating a gas measurement device used in the gas analysis method according to the first embodiment.
  • the gas analyzer 110 includes a cell unit 20, a light source unit 30, a detection unit 40, and a control unit 45.
  • the sample gas 50 is introduced into the cell unit 20. That is, the sample gas 50 is introduced into the space 23 s provided in the cell unit 20.
  • the sample gas 50 includes carbon dioxide (including isotopes), hydrogen sulfide, acetone, ammonium, and the like.
  • the light source unit 30 causes the infrared rays 30L to enter the space 23s. Moreover, the light source part 30 changes the wavelength of the infrared rays 30L by the drive part 30b.
  • the light source unit 30 includes a QCL (Quantum Cascade Laser) 30a.
  • QCL Quantum Cascade Laser
  • a distributed feedback (DFB) QCL is used as the QCL 30a.
  • the QCL 30a may be an edge emitting type or a surface emitting type.
  • the detection unit 40 detects, for example, the infrared ray 30L that has passed through the space 23s in a state where the sample 50 is introduced into the space 23s.
  • the detection unit 40 detects the intensity I of the transmitted light that has passed through the space 23s.
  • an element having sensitivity in the infrared region is used.
  • a thermopile or a semiconductor sensor element for example, InAsSb is used.
  • the absorbance A is expressed by the equation (1). Is done.
  • the molar concentration c of the sample gas is represented by the formula (3).
  • the control unit 45 calculates the absorption coefficient ⁇ , the absorption rate B, the molar concentration c, the absorption spectrum based on the HITRAN database, and the like based on the measured transmitted light intensity I.
  • 2 (a) to 2 (c) are graphs for explaining the effect of tuning the infrared wave number to the absorption line.
  • 2A is a waveform diagram of the operating current of the QCL
  • FIG. 2B is a graph showing the change in wavelength
  • FIG. 2C is a graph showing the detector output.
  • the vertical axis represents the current J of the QCL 30a
  • the horizontal axis represents time t.
  • the vertical axis represents wavelength and the horizontal axis represents time t.
  • the wave number is the reciprocal of the wavelength.
  • the vertical axis represents the detector output Sg
  • the horizontal axis represents time t.
  • the current J supplied to the QCL 30a changes monotonously as the time t increases.
  • the wavelength ⁇ increases with time within one period (FIG. 2B)
  • the infrared wavelength becomes ⁇ 1 at time t1
  • the infrared wavelength at time t2 becomes ⁇ 2 (> ⁇ 1).
  • the right half is when the sample gas containing the target gas is introduced into the cell
  • the left half is when the reference gas not containing the target gas is introduced.
  • the wavelength ⁇ 1 corresponds to the first absorption line and the wavelength ⁇ 2 corresponds to the second absorption line.
  • the infrared light is absorbed by the sample gas 50, so that the infrared detector output transmitted through the sample gas 50 is the target gas.
  • the reference gas that does not contain is reduced compared to the left half introduced into the cell.
  • a triangular wave is repeatedly generated for one sample gas 50 and an average value of detector outputs is obtained, measurement accuracy can be improved.
  • the wavelength ⁇ is changed in a short time (for example, about 100 ms or less).
  • a short time for example, about 100 ms or less.
  • the center value of the wavelength ⁇ of infrared rays is set to be not less than 4.345 micrometers and not more than 4.384 micrometers, carbon dioxide absorption lines are included.
  • the wave number band is 2281 cm ⁇ 1 or more and 2301 cm ⁇ 1 or less.
  • (I / I 0 ) used in the equation (1) matches the ratio of the detector output with and without the absorption. Therefore, a “reference signal” when there is no absorption is required for the “sample signal” that is the detector output that has passed through the sample gas.
  • this reference signal is obtained by measuring a reference gas that does not include the target gas. However, in the present invention, since it is obtained from the sample signal, measurement with the reference gas is not required.
  • FIG. 3 is a flowchart of the gas analysis method according to the embodiment.
  • 4A shows the detector output of the sample signal
  • FIG. 4B shows the provisional absorption rate
  • FIG. 4C shows the determined wave number interval
  • FIG. 4D shows the determined reference estimation signal.
  • FIG. 4A the vertical axis represents the detector output (V)
  • the horizontal axis represents time (s).
  • FIG. 4B the vertical axis represents the absorption rate
  • the horizontal axis represents time (s).
  • shaft is an absorptivity and a horizontal axis is time (s).
  • the wave number of infrared rays is changed within the wave number band including the absorption line of at least one target gas contained in the sample gas 50, and the change in the transmitted light intensity I of the infrared ray that has passed through the sample gas 50 is measured to obtain a sample signal ( First step S100 and FIG. 4 (a)).
  • a provisional reference signal is estimated from the interpolation of the signal level, for example, by a quadratic curve (second step S102).
  • the provisional reference signal is divided from the sample signal to calculate the provisional absorption rate (third step S104 and FIG. 4B).
  • a plurality of wave number intervals of a predetermined absorption rate (for example, 5 ⁇ 10 ⁇ 5 ) or less are determined, and the reference signal is re-estimated from interpolation of, for example, a quadratic curve of the level of the sample signal in the wave number interval (fourth step) S106 and FIG. 4 (d)).
  • a predetermined absorption rate for example, 5 ⁇ 10 ⁇ 5
  • the reference signal is re-estimated from interpolation of, for example, a quadratic curve of the level of the sample signal in the wave number interval (fourth step) S106 and FIG. 4 (d)).
  • the reference signal re-estimated from the sample signal is divided to calculate the absorption rate (fifth step S108).
  • FIG. 5 is a graph for explaining a gas analysis method according to a comparative example.
  • the vertical axis represents the detector output (V), and the horizontal axis represents time t.
  • wave number intervals F11 and F12 for estimating the reference signal by interpolation are fixed on the time axis.
  • the characteristics of QCL fluctuate as shown in FIG. 5 on the time axis due to changes over time and changes in the environment (temperature, pressure, etc.) inside and outside the gas cell. For this reason, when the wave number bands F11 and F12 are fixed in the range on the time axis, the reference signal is correctly estimated in the sample signal A1, but in the sample signal A2, the estimated reference signal is less than the original reference estimation signal. Thus, the error in calculating the absorption rate B increases.
  • the interval is determined for each sample gas. For this reason, since the wave number section with a high absorption rate B is not included in the interpolation range, the estimation accuracy of the reference signal is not impaired, and the measurement accuracy of the absorption rate B can be increased.
  • FIGS. 6A to 6C are graphs for explaining the measurement principle of the isotope ratio.
  • 6A is a graph showing the detector output dependency with respect to time
  • FIG. 6B is a graph showing the absorption coefficient dependency with respect to the wave number
  • FIG. 6C is an absorption coefficient after fitting with respect to the wave number. It is a graph showing a dependency.
  • the vertical axis represents the detector output
  • the horizontal axis represents time
  • the vertical axis represents the absorption coefficient
  • the horizontal axis represents the wave number (cm ⁇ 1 ).
  • FIG. 6C the vertical axis represents the absorption coefficient
  • the horizontal axis represents the wave number (cm ⁇ 1 ).
  • the isotopes are 13 CO 2 and 12 CO 2 .
  • the reference estimation signal is calculated by the gas analysis method according to the first embodiment.
  • the absorption coefficient distribution is calculated by dividing the intensity distribution of the reference estimation signal from the intensity distribution of the detector output.
  • the absorption coefficient spectra of 13 CO 2 and 12 CO 2 are separated by fitting with theoretical values.
  • the absorption spectrum is calculated using the value of the HITRAN database. The calculation is performed for each absorption line (3190 lines) in consideration of pressure dependency and temperature dependency.
  • the absorption coefficient ⁇ i is calculated by equation (4).
  • Each absorption line intensity S (T) is calculated by the equation (5).
  • the spectrum shape function f ( ⁇ , T, p) is calculated by the equation (6).
  • FIG. 7A is a graph showing the absorption coefficient dependence on the wave number with pressure as a parameter
  • FIG. 7B is a graph showing the absorption coefficient dependence on the wave number with temperature as a parameter.
  • the vertical axis represents the absorption coefficient (cm ⁇ 1 )
  • the horizontal axis represents the wave number (cm ⁇ 1 ).
  • FIG. 8 is a graph illustrating an example of a method for determining the fitting range.
  • the spectrum curve fitting range of the absorption rate B is, for example, 13 or more of the absorption lines of 13 CO 2 and 12 CO 2 , and the signal intensity ratio SNR is 10 or more of each peak intensity. Can be a region.
  • Formula (7) represents a display formula using delta notation.
  • the concentration ratio between 13 CO 2 and 12 CO 2 can be represented by ⁇ 13 C ( ⁇ ).
  • the tropospheric free air ⁇ 13 C is ⁇ 8 ⁇
  • the fossil fuel concentration ratio ⁇ 13 C is ⁇ 28 ⁇
  • the soil ⁇ 13 C is ⁇ 25.7 ⁇ , etc.
  • the concentration ratio ⁇ 13 C by the two generation sources is different. For this reason, it is possible to specify the generation source of CO 2 by measuring the concentration ratio ⁇ 13 C.
  • concentration ratio (delta) 13C varies depending on the volcanic activity level. For this reason, it can utilize for an eruption prediction by measuring density
  • the isotope ratio can be obtained with high accuracy by fitting the measured value of the absorption coefficient including two isotopes with the theoretical spectrum.
  • FIG. 9 is a graph for explaining the reference signal estimation method according to the third embodiment.
  • the third embodiment as shown in FIG. 9, when there are two isotope absorption spectra in the sample signal, the reference signals at the respective absorption wave numbers are individually received from the low absorption sections on both sides. Interpolate.
  • the reference estimation is performed by using, for example, one quadratic curve from all the low absorption sections in the sample signal, the error of the reference signal increases in each absorption wave number. Errors can be suppressed.
  • FIG. 10 is a graph illustrating the reference signal estimation method according to the fourth embodiment.
  • the wave number is associated with the peak time, and the theoretical value determined from, for example, the HITRAN database or the like. Only the low-absorption wavenumber interval is subdivided, and the reference signal is estimated by interpolating them.
  • a range that is not theoretically low absorption is included in the interpolation interval, whereas in this embodiment, since interpolation is performed only from the lower absorption interval, the estimation accuracy of the reference signal Will improve.
  • a gas analysis method capable of measuring the soot absorption rate with high accuracy.
  • the reference estimation signal for correcting the measured value of the transmitted light intensity is estimated for each sample gas based on the intensity distribution of the absorptance. For this reason, it is not necessary to measure the reference signal using the reference gas, and the measurement apparatus can be configured simply.

Abstract

This gas analysis method has a first step for varying the wavenumber of infrared light within a wavenumber range including at least one absorption line of a target gas included in a sample gas and obtaining a sample signal by measuring the variation in the intensity of the infrared light that passes through the sample gas, a second step for estimating a provisional reference signal from the sample signal in a section having a low absorption rate, a third step for calculating a provisional absorption rate distribution by dividing the sample signal by the provisional reference signal, a fourth step for determining a wavenumber section in which the provisional absorption rate is less than or equal to a prescribed value and reestimating a reference signal on the basis of the sample signal in the wavenumber section, and a fifth step for calculating an absorption rate distribution by dividing the sample signal by the reestimated reference signal.

Description

ガス分析方法およびガス測定装置Gas analysis method and gas measuring apparatus
 本発明の実施形態は、ガス分析方法およびガス測定装置に関する。 Embodiments described herein relate generally to a gas analysis method and a gas measurement device.
 ガスは、赤外線に対して固有の吸収スペクトルを有する。 Gas has a specific absorption spectrum for infrared rays.
 サンプルガスを透過した赤外線強度を測定することにより、ガスの吸収係数やガス濃度を算出できる。 The gas absorption coefficient and gas concentration can be calculated by measuring the infrared intensity transmitted through the sample gas.
 波長が3μm以上の赤外線は、量子カスケードレーザから放出可能である。但し、レーザ光は、出力変動や波長変動を生じる。基準信号を用いて毎回測定値を補正すると、特性変動による誤差を低減することができる。 Infrared rays having a wavelength of 3 μm or more can be emitted from the quantum cascade laser. However, the laser beam causes output fluctuations and wavelength fluctuations. If the measurement value is corrected each time using the reference signal, an error due to characteristic variation can be reduced.
 環境測定のように長期間にわたってガス分析を行う場合、測定の度に基準信号を測定することが困難なことがある。 When performing gas analysis over a long period of time, such as environmental measurement, it may be difficult to measure the reference signal every time it is measured.
特開2003-232732号公報JP 2003-232732 A
 赤外線吸収率を高い精度で測定可能なガス分析方法およびガス測定装置を提供する。 Provide a gas analysis method and gas measurement device that can measure infrared absorption with high accuracy.
 実施形態のガス分析方法は、サンプルガスに含まれる対象ガスの少なくとも1つの吸収線を含む波数帯域内で赤外線の波数を変化させ、前記サンプルガスを透過した前記赤外線の強度の変化を測定してサンプル信号とする第1ステップと、吸収率が低い区間のサンプル信号から暫定リファレンス信号を推定する第2ステップと、前記サンプル信号から前記暫定リファレンス信号を除算して暫定の吸収率の分布を算出する第3ステップと、前記暫定の吸収率が所定値以下となる波数区間を決定し、前記波数区間のサンプル信号に基づいてリファレンス信号を再推定する第4ステップと、前記サンプル信号から再推定された前記リファレンス信号を除算して吸収率の分布を算出する第5ステップと、を有する。 In the gas analysis method of the embodiment, the infrared wave number is changed within the wave number band including at least one absorption line of the target gas included in the sample gas, and the change in the intensity of the infrared light transmitted through the sample gas is measured. A first step of setting a sample signal, a second step of estimating a provisional reference signal from a sample signal in a section with a low absorption rate, and dividing the provisional reference signal from the sample signal to calculate a distribution of provisional absorption rate A third step, a fourth step of determining a wave number interval in which the temporary absorption rate is equal to or less than a predetermined value, and re-estimating a reference signal based on the sample signal of the wave number interval; and re-estimation from the sample signal A fifth step of dividing the reference signal to calculate the distribution of the absorption rate.
第1の実施形態にかかるガス分析方法に用いるガス測定装置を例示する模式図である。It is a schematic diagram which illustrates the gas measuring device used for the gas analysis method concerning 1st Embodiment. 図2(a)~図2(c)は赤外線の波数を吸収線にチューニングする作用を説明するグラフ図であり、図2(a)はQCLの動作電流の波形図、図2(b)は波長の変化を示すグラフ図、図2(c)は検出器出力を示すグラフ図、である。2 (a) to 2 (c) are graphs for explaining the effect of tuning the infrared wave number to the absorption line, FIG. 2 (a) is a waveform diagram of the operating current of the QCL, and FIG. 2 (b) is a graph. FIG. 2C is a graph showing a change in wavelength, and FIG. 2C is a graph showing a detector output. 第1の実施形態にかかるガス分析方法のフロー図である。It is a flowchart of the gas analysis method concerning a 1st embodiment. 図4(a)は1番目のサンプル信号の検出器出力、図4(b)は1番目の吸収率、図4(c)は1番目に決定された波数区間、図4(d)は1番目に決定されたリファレンス推定信号、を表すグラフ図である。4 (a) shows the detector output of the first sample signal, FIG. 4 (b) shows the first absorption rate, FIG. 4 (c) shows the first determined wave number interval, and FIG. It is a graph showing the reference estimated signal determined in the second. 比較例にかかるガス分析方法を説明するグラフ図である。It is a graph explaining the gas analysis method concerning a comparative example. 図6(a)~(c)は同位体比の測定原理を説明するグラフ図であり、図6(a)は時間に対する検出器出力依存性を表すグラフ図、図6(b)は波数に対する吸収係数依存性を表すグラフ図、図6(c)は波数に対するフィッティング後の吸収係数依存性を表すグラフ図、である。6 (a) to 6 (c) are graphs for explaining the measurement principle of isotope ratio, FIG. 6 (a) is a graph showing the detector output dependency with respect to time, and FIG. 6 (b) is a graph with respect to wave number. FIG. 6C is a graph showing the absorption coefficient dependency after fitting to the wave number. 図7(a)は圧力をパラメータとしたの波数に対する吸収係数依存性、図7(b)は温度をパラメータとした波数に対する吸収係数依存性、を表すグラフ図である。FIG. 7A is a graph showing the absorption coefficient dependency on the wave number with the pressure as a parameter, and FIG. 7B is a graph showing the absorption coefficient dependency on the wave number with the temperature as a parameter. フィッティング範囲の決定方法を説明するグラフ図である。It is a graph explaining the determination method of a fitting range. 第3の実施形態にかかるリファレンス信号推定方法を説明するグラフ図である。It is a graph explaining the reference signal estimation method concerning 3rd Embodiment. 第4の実施形態にかかるリファレンス信号推定方法を説明するグラフ図である。It is a graph explaining the reference signal estimation method concerning 4th Embodiment.
 以下に、本発明の各実施の形態について図面を参照しつつ説明する。
 図1は、第1の実施形態に係るガス分析方法に用いるガス測定装置を例示する模式図である。
 図1に表したように、ガス分析装置110は、セル部20と、光源部30と、検出部40と、制御部45と、を含む。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view illustrating a gas measurement device used in the gas analysis method according to the first embodiment.
As shown in FIG. 1, the gas analyzer 110 includes a cell unit 20, a light source unit 30, a detection unit 40, and a control unit 45.
 セル部20には、サンプルガス50が導入される。すなわち、セル部20に設けられる空間23sにサンプルガス50が導入される。サンプルガス50は、二酸化炭素(同位体を含む)、硫化水素、アセトン、アンモニウム、などを含む。 The sample gas 50 is introduced into the cell unit 20. That is, the sample gas 50 is introduced into the space 23 s provided in the cell unit 20. The sample gas 50 includes carbon dioxide (including isotopes), hydrogen sulfide, acetone, ammonium, and the like.
 光源部30は、空間23sに赤外線30Lを入射させる。また、光源部30は、駆動部30bにより赤外線30Lの波長を、変化させる。 The light source unit 30 causes the infrared rays 30L to enter the space 23s. Moreover, the light source part 30 changes the wavelength of the infrared rays 30L by the drive part 30b.
 この例では、光源部30は、QCL(Quantum Cascade Laser:量子カスケードレーザ)30aを含む。QCL30aとして、例えば、分布帰還(DFB:Distributed Feed-Back)型QCLが用いられる。QCL30aは、端面発光型でも、面発光型でもよい。 In this example, the light source unit 30 includes a QCL (Quantum Cascade Laser) 30a. For example, a distributed feedback (DFB) QCL is used as the QCL 30a. The QCL 30a may be an edge emitting type or a surface emitting type.
 検出部40は、例えば、空間23sにサンプル50が導入された状態において空間23sを通過した赤外線30Lを検出する。検出部40は、空間23sを通過した透過光の強度Iを検出する。検出部40には、赤外領域に感度を有する素子が用いられ、たとえば、サーモパイルまたは半導体センサ素子(例えばInAsSbなどとされる)。 The detection unit 40 detects, for example, the infrared ray 30L that has passed through the space 23s in a state where the sample 50 is introduced into the space 23s. The detection unit 40 detects the intensity I of the transmitted light that has passed through the space 23s. For the detection unit 40, an element having sensitivity in the infrared region is used. For example, a thermopile or a semiconductor sensor element (for example, InAsSb) is used.
 入射光の強度をI、吸光度をA、透過率をT、吸収係数(cm-1)をα、セル部20の光路長をLとするとき、吸光度Aは、式(1)で表される。 When the intensity of incident light is I 0 , the absorbance is A, the transmittance is T R , the absorption coefficient (cm −1 ) is α, and the optical path length of the cell unit 20 is L, the absorbance A is expressed by the equation (1). Is done.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 モル濃度をεとするとき、吸収係数(cm-1)は、式(2)で表される。 When the molar concentration is ε, the absorption coefficient (cm −1 ) is expressed by Equation (2).

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、サンプルガスのモル濃度cは、式(3)で表される。 Further, the molar concentration c of the sample gas is represented by the formula (3).

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 制御部45は、測定された透過光強度Iに基づいて、吸収係数α、吸収率B、モル濃度c、HITRANデータベースに基づいた吸収スペクトルの計算などを行う。 The control unit 45 calculates the absorption coefficient α, the absorption rate B, the molar concentration c, the absorption spectrum based on the HITRAN database, and the like based on the measured transmitted light intensity I.
 図2(a)~図2(c)は赤外線の波数を吸収線にチューニングする作用を説明するグラフ図である。すなわち、図2(a)はQCLの動作電流の波形図、図2(b)は波長の変化を示すグラフ図、図2(c)は検出器出力を示すグラフ図、である。
 図2(a)において、縦軸はQCL30aの電流J、横軸は時間t、を表す。図2(b)において、縦軸は波長、横軸は時間t、を表す。なお、波数は、波長の逆数である。図2(c)において、縦軸は検出器出力Sg、横軸は時間t、である。QCL30aに供給される電流Jは、時間tの増加とともに単調に変化する。図2(a)に表すように電流を三角波とすると、波長λは1周期内で時間とともに増加し(図2(b))時間t1で赤外線の波長はλ1となり、時間t2で赤外線の波長はλ2(>λ1)となる。なお、図2において、右半分は、対象ガスを含むサンプルガスをセルに導入した場合であり、左半分は、対象ガスを含まない基準ガスを導入した場合である。
2 (a) to 2 (c) are graphs for explaining the effect of tuning the infrared wave number to the absorption line. 2A is a waveform diagram of the operating current of the QCL, FIG. 2B is a graph showing the change in wavelength, and FIG. 2C is a graph showing the detector output.
In FIG. 2A, the vertical axis represents the current J of the QCL 30a, and the horizontal axis represents time t. In FIG. 2B, the vertical axis represents wavelength and the horizontal axis represents time t. The wave number is the reciprocal of the wavelength. In FIG. 2C, the vertical axis represents the detector output Sg, and the horizontal axis represents time t. The current J supplied to the QCL 30a changes monotonously as the time t increases. As shown in FIG. 2A, when the current is a triangular wave, the wavelength λ increases with time within one period (FIG. 2B), the infrared wavelength becomes λ1 at time t1, and the infrared wavelength at time t2 becomes λ2 (> λ1). In FIG. 2, the right half is when the sample gas containing the target gas is introduced into the cell, and the left half is when the reference gas not containing the target gas is introduced.
 たとえば、波長λ1が第1の吸収線に対応し、波長λ2が第2の吸収線に対応するものとする。それぞれの吸収線の近傍では、対象ガスを含むサンプルガスがセルに導入されている右半分では、赤外線がサンプルガス50に吸収されるので、サンプルガス50を透過した赤外線の検出器出力は対象ガスを含まない基準ガスがセルに導入されている左半分に比べて減少する。なお、1つのサンプルガス50に対して、三角波を繰り返し発生し、検出器出力の平均値を求めると、測定精度を高めることができる。 For example, it is assumed that the wavelength λ1 corresponds to the first absorption line and the wavelength λ2 corresponds to the second absorption line. In the vicinity of each absorption line, in the right half where the sample gas containing the target gas is introduced into the cell, the infrared light is absorbed by the sample gas 50, so that the infrared detector output transmitted through the sample gas 50 is the target gas. The reference gas that does not contain is reduced compared to the left half introduced into the cell. In addition, if a triangular wave is repeatedly generated for one sample gas 50 and an average value of detector outputs is obtained, measurement accuracy can be improved.
 光源部30において、波長λの変化は、短時間(例えば100ms程度以下)で行われる。例えば、赤外線の波長λの中心値を、4.345マイクロメートル以上4.384マイクロメータ以下とすると、二酸化炭素の吸収線を含む。この場合、波数帯域は、2281cm-1以上2301cm-1以下となる。 In the light source unit 30, the wavelength λ is changed in a short time (for example, about 100 ms or less). For example, when the center value of the wavelength λ of infrared rays is set to be not less than 4.345 micrometers and not more than 4.384 micrometers, carbon dioxide absorption lines are included. In this case, the wave number band is 2281 cm −1 or more and 2301 cm −1 or less.
 ガス分析の際には、式(1)に用いる(I/I)がこの吸収の有無における検出器出力の比に一致する。そのため、サンプルガスを透過した検出器出力である「サンプル信号」に対して、吸収が無い場合の「リファレンス信号」が必要である。従来技術ではこのリファレンス信号を上記の通り、対象ガスを含まない基準ガスの測定によって求めていたが、本発明ではサンプル信号から求めるため、基準ガスでの測定を不要にする。 In the gas analysis, (I / I 0 ) used in the equation (1) matches the ratio of the detector output with and without the absorption. Therefore, a “reference signal” when there is no absorption is required for the “sample signal” that is the detector output that has passed through the sample gas. In the prior art, as described above, this reference signal is obtained by measuring a reference gas that does not include the target gas. However, in the present invention, since it is obtained from the sample signal, measurement with the reference gas is not required.
 図3は、実施形態にかかるガス分析方法のフロー図である。
 また、図4(a)はサンプル信号の検出器出力、図4(b)は暫定の吸収率、図4(c)は決定された波数区間、図4(d)は決定されたリファレンス推定信号、を表すグラフ図である。
 図4(a)において、縦軸は検出器出力(V)、横軸は時間(s)、である。図4(b)において、縦軸は吸収率、横軸は時間(s)、である。図4(c)において、縦軸は吸収率、横軸は時間(s)、である。
FIG. 3 is a flowchart of the gas analysis method according to the embodiment.
4A shows the detector output of the sample signal, FIG. 4B shows the provisional absorption rate, FIG. 4C shows the determined wave number interval, and FIG. 4D shows the determined reference estimation signal. FIG.
In FIG. 4A, the vertical axis represents the detector output (V), and the horizontal axis represents time (s). In FIG. 4B, the vertical axis represents the absorption rate, and the horizontal axis represents time (s). In FIG.4 (c), a vertical axis | shaft is an absorptivity and a horizontal axis is time (s).
 サンプルガス50に含まれる少なくとも1つの対象ガスの吸収線を含む波数帯域内で赤外線の波数を変化させ、サンプルガス50を透過した赤外線の透過光強度Iの変化を測定してサンプル信号とする(第1ステップS100および図4(a))。 The wave number of infrared rays is changed within the wave number band including the absorption line of at least one target gas contained in the sample gas 50, and the change in the transmitted light intensity I of the infrared ray that has passed through the sample gas 50 is measured to obtain a sample signal ( First step S100 and FIG. 4 (a)).
 吸収率が常に低い複数の区間(レーザ光の波長変動を考慮しても吸収率が常に低くなる時間範囲、「低い」とは、たとえば5×10-5以下を意味するものとする)のサンプル信号のレベルの例えば2次曲線による内挿から暫定リファレンス信号を推定する(第2ステップS102)。 Samples in a plurality of sections where the absorptance is always low (a time range in which the absorptance is always low even when the wavelength variation of the laser light is taken into account, “low” means, for example, 5 × 10 −5 or less) A provisional reference signal is estimated from the interpolation of the signal level, for example, by a quadratic curve (second step S102).
 サンプル信号から暫定リファレンス信号を除算し、暫定吸収率を算出する(第3ステップS104および図4(b))。 The provisional reference signal is divided from the sample signal to calculate the provisional absorption rate (third step S104 and FIG. 4B).
 所定の吸収率(たとえば、5×10-5)以下の複数の波数区間を決定し、その波数区間のサンプル信号のレベルの例えば2次曲線による内挿からリファレンス信号を再推定する(第4ステップS106および図4(d))。 A plurality of wave number intervals of a predetermined absorption rate (for example, 5 × 10 −5 ) or less are determined, and the reference signal is re-estimated from interpolation of, for example, a quadratic curve of the level of the sample signal in the wave number interval (fourth step) S106 and FIG. 4 (d)).
 サンプル信号から再推定されたリファレンス信号を除算し、吸収率を算出する(第5ステップS108)。 The reference signal re-estimated from the sample signal is divided to calculate the absorption rate (fifth step S108).
 次に測定するサンプルガスがあれば第1ステップS100へ戻り、なければ終了する(第6ステップS110)。 If there is a sample gas to be measured next, the process returns to the first step S100, and if not, the process ends (sixth step S110).
 図5は、比較例にかかるガス分析方法を説明するグラフ図である。
 縦軸は検出器出力(V)、横軸は時間t、である。比較例では、リファレンス信号を内挿により推定する波数区間F11、F12などは、時間軸上で固定されている。他方、QCLの特性は、経時変化、ガスセル内外の環境(温度や圧力など)変化により、吸収のある範囲が時間軸上で、図5に表すように変動する。このため、波数帯域F11、F12を時間軸上の範囲で固定すると、サンプル信号A1ではリファレンス信号が正しく推定されるが、サンプル信号A2では、推定されたリファレンス信号が本来のリファレンス推定信号よりも過小となり吸収率B算出における誤差が増大する。
FIG. 5 is a graph for explaining a gas analysis method according to a comparative example.
The vertical axis represents the detector output (V), and the horizontal axis represents time t. In the comparative example, wave number intervals F11 and F12 for estimating the reference signal by interpolation are fixed on the time axis. On the other hand, the characteristics of QCL fluctuate as shown in FIG. 5 on the time axis due to changes over time and changes in the environment (temperature, pressure, etc.) inside and outside the gas cell. For this reason, when the wave number bands F11 and F12 are fixed in the range on the time axis, the reference signal is correctly estimated in the sample signal A1, but in the sample signal A2, the estimated reference signal is less than the original reference estimation signal. Thus, the error in calculating the absorption rate B increases.
 これに対して、第1の実施形態にかかるガス分析方法では、吸収率Bが所定の値(たとえば5×10-5以下)よりも低くなる波数区間を、内挿によりリファレンス信号を推定する波数区間としてサンプルガス毎に決定する。このため、内挿範囲に吸収率Bが高い波数区間が含まれないので、リファレンス信号の推定精度が損なわれず、吸収率Bの測定精度を高めることができる。 On the other hand, in the gas analysis method according to the first embodiment, the wave number for estimating the reference signal by interpolation in the wave number section where the absorption rate B is lower than a predetermined value (for example, 5 × 10 −5 or less). The interval is determined for each sample gas. For this reason, since the wave number section with a high absorption rate B is not included in the interpolation range, the estimation accuracy of the reference signal is not impaired, and the measurement accuracy of the absorption rate B can be increased.
 次に、波数区間内に同位体元素により生じる少なくとも2つの吸収線がある場合を考える。第2の実施形態にかかるガス分析方法は、双峰性の吸収スペクトル曲線をフィッティングにより2つのスペクトルに分離し、2つの同位体比を算出する。 Next, consider a case where there are at least two absorption lines generated by isotope elements in the wave number interval. In the gas analysis method according to the second embodiment, a bimodal absorption spectrum curve is separated into two spectra by fitting, and two isotope ratios are calculated.
 図6(a)~(c)は同位体比の測定原理を説明するグラフ図である。すなわち、図6(a)は時間に対する検出器出力依存性を表すグラフ図、図6(b)は波数に対する吸収係数依存性を表すグラフ図、図6(c)は波数に対するフィッティング後の吸収係数依存性を表すグラフ図、である。
 図6(a)において、縦軸は検出器出力、横軸は時間、である。図6(b)において、縦軸は吸収係数、横軸は波数(cm-1)、である。図6(c)において、縦軸は吸収係数、横軸は波数(cm-1)、である。
FIGS. 6A to 6C are graphs for explaining the measurement principle of the isotope ratio. 6A is a graph showing the detector output dependency with respect to time, FIG. 6B is a graph showing the absorption coefficient dependency with respect to the wave number, and FIG. 6C is an absorption coefficient after fitting with respect to the wave number. It is a graph showing a dependency.
In FIG. 6A, the vertical axis represents the detector output, and the horizontal axis represents time. In FIG. 6B, the vertical axis represents the absorption coefficient, and the horizontal axis represents the wave number (cm −1 ). In FIG. 6C, the vertical axis represents the absorption coefficient, and the horizontal axis represents the wave number (cm −1 ).
 なお、本図において、同位体は、13CO12COとする。図6(a)に表すように、第1の実施形態にかかるガス分析方法により、リファレンス推定信号を算出する。図6(b)に表すように、検出器出力の強度分布からリファレンス推定信号の強度分布を除算し、吸収係数分布を算出する。図6(c)に表すように、理論値とのフィッティングにより、13CO12COとの吸収係数スペクトルを分離する。 In this figure, the isotopes are 13 CO 2 and 12 CO 2 . As shown in FIG. 6A, the reference estimation signal is calculated by the gas analysis method according to the first embodiment. As shown in FIG. 6B, the absorption coefficient distribution is calculated by dividing the intensity distribution of the reference estimation signal from the intensity distribution of the detector output. As shown in FIG. 6C, the absorption coefficient spectra of 13 CO 2 and 12 CO 2 are separated by fitting with theoretical values.
 次に、吸収スペクトルのフィッティングを行うために、ガス吸収モデルについて説明する。ガス吸収モデルでは、HITRANデータベースの値を使用し、吸収スペクトルを計算する。また、計算は、各吸収線(3190本)ごとに、圧力依存性・温度依存性を考慮して行う。 Next, a gas absorption model will be described in order to perform absorption spectrum fitting. In the gas absorption model, the absorption spectrum is calculated using the value of the HITRAN database. The calculation is performed for each absorption line (3190 lines) in consideration of pressure dependency and temperature dependency.
 吸収係数αiは、式(4)により算出される。 The absorption coefficient αi is calculated by equation (4).

Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 それぞれの吸収線強度S(T)は、式(5)により算出される。 Each absorption line intensity S (T) is calculated by the equation (5).

Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 スペクトル形状関数f(ν、T、p)は、式(6)により算出される。 The spectrum shape function f (ν, T, p) is calculated by the equation (6).

Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図7(a)は圧力をパラメータとした波数に対する吸収係数依存性、図7(b)は温度をパラメータとした波数に対する吸収係数依存性、を表すグラフ図である。
 図7(a)、(b)において、縦軸は吸収係数(cm-1)、横軸は波数(cm-1)、である。
FIG. 7A is a graph showing the absorption coefficient dependence on the wave number with pressure as a parameter, and FIG. 7B is a graph showing the absorption coefficient dependence on the wave number with temperature as a parameter.
7A and 7B, the vertical axis represents the absorption coefficient (cm −1 ), and the horizontal axis represents the wave number (cm −1 ).
 図7(a)に表すよう、圧力を0.4atm、0.5atm、0.6atmと変化したとき吸収係数がピークとなる波数の変動は少ないが、吸収係数の極小値は変動する。また、図7(b)に表すように、温度を296K、300K、304Kと変化したとき吸収係数がピークとなる波数の変動は少ないが、吸収係数の極大値が変動する。このようなガス吸収モデルを用いて、測定値から求められた吸収スペクトルと、理論値とをフィッティングさせることにより、たとえば、2つの同位体の吸収スペクトルを分離して、同位体比の精度を高めることができる。 As shown in FIG. 7A, when the pressure is changed to 0.4 atm, 0.5 atm, and 0.6 atm, the wave number at which the absorption coefficient peaks is small, but the minimum value of the absorption coefficient varies. Further, as shown in FIG. 7B, when the temperature is changed to 296K, 300K, and 304K, the fluctuation of the wave number at which the absorption coefficient peaks is small, but the maximum value of the absorption coefficient varies. By using such a gas absorption model and fitting an absorption spectrum obtained from a measured value and a theoretical value, for example, the absorption spectra of two isotopes are separated to improve the accuracy of the isotope ratio. be able to.
 図8は、フィッティング範囲の決定方法の一例を説明するグラフ図である。
 吸収率Bのスペクトル曲線のフィッティング範囲は、13COの吸収線および12COの吸収線に対して、たとえば、それぞれのピーク強度の2分の1以上かつ信号対雑音比SNRが10以上となる領域とすることができる。
FIG. 8 is a graph illustrating an example of a method for determining the fitting range.
The spectrum curve fitting range of the absorption rate B is, for example, 13 or more of the absorption lines of 13 CO 2 and 12 CO 2 , and the signal intensity ratio SNR is 10 or more of each peak intensity. Can be a region.
 COの同位体比を(存在比=13CO12CO)を%で表すと、小数点以下の桁数が多くなる。このため。天然の同位体比からの乖離度をパーミル(‰)で表すデルタ記法を用いると都合がよい。天然の同位体比を、(13CO12CO)ref=1.12372%とする。 Expressed in the isotope ratio of CO 2 (the abundance ratio = 13 CO 2/12 CO 2 )%, becomes large number of decimal places. For this reason. It is convenient to use the delta notation in which the degree of deviation from the natural isotope ratio is expressed in permil (‰). The natural isotopic ratio, and (13 CO 2/12 CO 2 ) ref = 1.12372%.
 式(7)は、デルタ記法による表示式を表す。 Formula (7) represents a display formula using delta notation.

Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 たとえば、環境ガス分析を行う場合、13CO12COとの濃度比をδ13C(‰)で表すことができる。対流圏の自由大気のδ13Cは-8‰などであり、化石燃料の濃度比δ13Cは-28‰などであり、土壌のδ13Cは-25.7‰などとなるように、CO発生源による濃度比δ13Cが異なる。このため、濃度比δ13Cを測定することにより、COの発生源を特定することが可能である。 For example, when environmental gas analysis is performed, the concentration ratio between 13 CO 2 and 12 CO 2 can be represented by δ 13 C (‰). The tropospheric free air δ 13 C is −8 ‰, the fossil fuel concentration ratio δ 13 C is −28 ‰, and the soil δ 13 C is −25.7 ‰, etc. The concentration ratio δ 13 C by the two generation sources is different. For this reason, it is possible to specify the generation source of CO 2 by measuring the concentration ratio δ 13 C.
 同様に、火山活動レベルにより濃度比δ13Cの値が異なる。このため、火口近傍で濃度比δ13Cを測定することにより、噴火予知に活用できる。 Similarly, the value of the concentration ratio δ 13 C varies depending on the volcanic activity level. For this reason, it can utilize for an eruption prediction by measuring density | concentration ratio (delta) 13C in the vicinity of a crater.
 すなわち、第2の実施形態では、2つの同位体を含む吸収係数の測定値を理論スペクトルとフィッティングさせることにより、同位体比を高精度に求めることができる。 That is, in the second embodiment, the isotope ratio can be obtained with high accuracy by fitting the measured value of the absorption coefficient including two isotopes with the theoretical spectrum.
 図9は、第3の実施形態にかかるリファレンス信号推定方法を説明するグラフ図である。
 第3の実施形態では、図9に表すようにサンプル信号中に2つの同位体の吸収スペクトルがある場合に、それぞれの吸収波数におけるリファレンス信号を、それぞれの両側にある、低吸収区間から個別に内挿する。第1の実施形態では、サンプル信号中の低吸収区間全てから例えば2次曲線一本によるリファレンス推定を行っているため、それぞれの吸収波数においてリファレンス信号の誤差が大きくなるが、本実施形態ではその誤差を抑制することができる。
FIG. 9 is a graph for explaining the reference signal estimation method according to the third embodiment.
In the third embodiment, as shown in FIG. 9, when there are two isotope absorption spectra in the sample signal, the reference signals at the respective absorption wave numbers are individually received from the low absorption sections on both sides. Interpolate. In the first embodiment, since the reference estimation is performed by using, for example, one quadratic curve from all the low absorption sections in the sample signal, the error of the reference signal increases in each absorption wave number. Errors can be suppressed.
 図10は、第4の実施形態にかかるリファレンス信号推定方法を説明するグラフ図である。
 第4の実施形態では、図10に表すようにサンプル信号中に複数の対象ガスの吸収スペクトルがある場合に、そのピーク時間に波数を対応させて、例えばHITRANデータベース等から決定される理論上の低吸収な波数区間のみを細分化して、それらの内挿によりリファレンス信号を推定する。第1の実施形態では、内挿区間に理論上の低吸収ではない範囲が含まれているのに対して、本実施形態ではより低吸収な区間のみから内挿するため、リファレンス信号の推定精度が向上する。
FIG. 10 is a graph illustrating the reference signal estimation method according to the fourth embodiment.
In the fourth embodiment, as shown in FIG. 10, when there are absorption spectra of a plurality of target gases in the sample signal, the wave number is associated with the peak time, and the theoretical value determined from, for example, the HITRAN database or the like. Only the low-absorption wavenumber interval is subdivided, and the reference signal is estimated by interpolating them. In the first embodiment, a range that is not theoretically low absorption is included in the interpolation interval, whereas in this embodiment, since interpolation is performed only from the lower absorption interval, the estimation accuracy of the reference signal Will improve.
 本発明の実施形態によれば、 吸収率を高い精度で測定可能なガス分析方法が提供される。また、透過光強度の測定値を補正するリファレンス推定信号は、吸収率の強度分布に基づいてそれぞれのサンプルガス毎に推定される。このため、基準ガスを用いたリファレンス信号を測定する必要がなく、測定装置を簡素な構成とできる。 According to the embodiment of the present invention, a gas analysis method capable of measuring the soot absorption rate with high accuracy is provided. The reference estimation signal for correcting the measured value of the transmitted light intensity is estimated for each sample gas based on the intensity distribution of the absorptance. For this reason, it is not necessary to measure the reference signal using the reference gas, and the measurement apparatus can be configured simply.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (8)

  1.  サンプルガスに含まれる対象ガスの少なくとも1つの吸収線を含む波数帯域内で赤外線の波数を変化させ、前記サンプルガスを透過した前記赤外線の強度の変化を測定してサンプル信号とする第1ステップと、
     吸収率が低い区間のサンプル信号から暫定リファレンス信号を推定する第2ステップと、
     前記サンプル信号から前記暫定リファレンス信号を除算して暫定の吸収率の分布を算出する第3ステップと、
     前記暫定の吸収率が所定値以下となる波数区間を決定し、前記波数区間のサンプル信号に基づいてリファレンス信号を再推定する第4ステップと、
     前記サンプル信号から再推定された前記リファレンス信号を除算して吸収率の分布を算出する第5ステップと、
     を備えたガス分析方法。
    A first step of changing a wave number of infrared rays within a wave number band including at least one absorption line of a target gas contained in the sample gas, and measuring a change in the intensity of the infrared rays transmitted through the sample gas as a sample signal; ,
    A second step of estimating a provisional reference signal from a sample signal in a section having a low absorption rate;
    A third step of calculating a provisional absorption distribution by dividing the provisional reference signal from the sample signal;
    Determining a wave number interval in which the provisional absorption rate is equal to or less than a predetermined value, and re-estimating a reference signal based on a sample signal in the wave number interval; and
    A fifth step of calculating an absorptance distribution by dividing the reference signal re-estimated from the sample signal;
    A gas analysis method comprising:
  2.  時間とともに波数が単調に変化する、請求項1記載のガス分析方法。 The gas analysis method according to claim 1, wherein the wave number changes monotonously with time.
  3.  前記波数帯域内に同位体元素により生じる少なくとも2つの吸収線がある場合、前記吸収率をフィッティングにより少なくとも2つのスペクトルに分離する、請求項1記載のガス分析方法。 The gas analysis method according to claim 1, wherein when there are at least two absorption lines generated by an isotope element in the wave number band, the absorption rate is separated into at least two spectra by fitting.
  4.  前記波数帯域内に同位体元素により生じる少なくとも2つの吸収線がある場合、前記吸収率をフィッティングにより少なくとも2つのスペクトルに分離する、請求項2記載のガス分析方法。 The gas analysis method according to claim 2, wherein when there are at least two absorption lines generated by an isotope element in the wave number band, the absorption rate is separated into at least two spectra by fitting.
  5.  前記吸収率のスペクトル曲線のフィッティング範囲は、それそれの吸収線に対して、それぞれのピーク強度のおよそ2分の1以上かつ信号対雑音比が約10以上となるスペクトル強度領域とする請求項3記載のガス分析方法。 4. The fitting range of the spectrum curve of the absorptance is a spectral intensity region in which each peak intensity is about one-half or more of the respective absorption lines and the signal-to-noise ratio is about 10 or more. The gas analysis method as described.
  6.  前記吸収率のスペクトル曲線のフィッティング範囲は、それそれの吸収線に対して、それぞれのピーク強度のおよそ2分の1以上かつ信号対雑音比が約10以上となるスペクトル強度領域とする請求項4記載のガス分析方法。 5. The fitting range of the spectrum curve of the absorptance is a spectral intensity region in which each peak intensity is about one-half or more of the respective absorption lines and the signal-to-noise ratio is about 10 or more. The gas analysis method as described.
  7.  前記赤外線は、量子カスケードレーザから放出される、請求項1~6のいずれか1つに記載のガス分析方法。 The gas analysis method according to any one of claims 1 to 6, wherein the infrared rays are emitted from a quantum cascade laser.
  8.  量子カスケードレーザを有し、サンプルガスに含まれる対象ガスの少なくとも1つの吸収線を含む波長帯域内で赤外線の波数を変化させる光源部と、
     前記サンプルガスが導入されるセル部と、
     前記サンプルガスを透過した前記赤外線の強度を測定する検出部と、
     前記検出部により測定された前記赤外線の前記強度に基づいて、前記赤外線の吸収率の分布を算出する制御部であって、吸収率が低い区間のサンプル信号から暫定リファレンス信号を推定し、前記サンプル信号から前記暫定リファレンス信号を除算して暫定の吸収率の分布を算出し、前記暫定の吸収率が所定値以下となる波数区間を決定し、前記波数区間のサンプル信号に基づいてリファレンス信号を再推定し、前記サンプル信号から再推定された前記リファレンス信号を除算して吸収率の分布を算出する、制御部と、
     を備えたガス測定装置。
    A light source unit having a quantum cascade laser and changing the wave number of infrared rays within a wavelength band including at least one absorption line of a target gas contained in the sample gas;
    A cell part into which the sample gas is introduced;
    A detector for measuring the intensity of the infrared light transmitted through the sample gas;
    Based on the intensity of the infrared light measured by the detection unit, the control unit calculates a distribution of the infrared absorption rate, and estimates a temporary reference signal from a sample signal in a section with a low absorption rate, and the sample The provisional reference signal is divided from the signal to calculate the distribution of the provisional absorption rate, the wave number interval in which the provisional absorption rate is equal to or less than a predetermined value is determined, and the reference signal is regenerated based on the sample signal in the wave number interval. A controller that estimates and divides the reference signal re-estimated from the sample signal to calculate an absorptance distribution;
    A gas measuring device.
PCT/JP2016/075858 2016-03-24 2016-09-02 Gas analysis method and gas measurement device WO2017163452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-060397 2016-03-24
JP2016060397A JP6049930B1 (en) 2016-03-24 2016-03-24 Gas analysis method and gas measuring apparatus

Publications (1)

Publication Number Publication Date
WO2017163452A1 true WO2017163452A1 (en) 2017-09-28

Family

ID=57572466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075858 WO2017163452A1 (en) 2016-03-24 2016-09-02 Gas analysis method and gas measurement device

Country Status (2)

Country Link
JP (1) JP6049930B1 (en)
WO (1) WO2017163452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105118A1 (en) * 2018-11-20 2020-05-28 株式会社島津製作所 Gas measurement device and gas measurement method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334502B2 (en) * 2018-09-19 2023-08-29 富士電機株式会社 laser gas analyzer
WO2020059100A1 (en) * 2018-09-21 2020-03-26 大塚電子株式会社 Measuring device and measuring method
CN113167652A (en) 2018-11-21 2021-07-23 赛默飞世尔科技公司 System and method for fast and accurate trace gas measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059772A (en) * 1999-08-25 2001-03-06 Jasco Corp Method for correcting base line
JP2001343324A (en) * 2000-06-01 2001-12-14 Advantest Corp Method for correcting base line of infrared ray absorption spectrum, and program recording medium therefor
JP2003232732A (en) * 2002-02-06 2003-08-22 Shimadzu Corp Isotopic gas measuring instrument
JP2010060387A (en) * 2008-09-02 2010-03-18 Jasco Corp Method for setting baseline
JP2011013126A (en) * 2009-07-03 2011-01-20 Shimadzu Corp Gas concentration measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059772A (en) * 1999-08-25 2001-03-06 Jasco Corp Method for correcting base line
JP2001343324A (en) * 2000-06-01 2001-12-14 Advantest Corp Method for correcting base line of infrared ray absorption spectrum, and program recording medium therefor
JP2003232732A (en) * 2002-02-06 2003-08-22 Shimadzu Corp Isotopic gas measuring instrument
JP2010060387A (en) * 2008-09-02 2010-03-18 Jasco Corp Method for setting baseline
JP2011013126A (en) * 2009-07-03 2011-01-20 Shimadzu Corp Gas concentration measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105118A1 (en) * 2018-11-20 2020-05-28 株式会社島津製作所 Gas measurement device and gas measurement method
JPWO2020105118A1 (en) * 2018-11-20 2021-09-27 株式会社島津製作所 Gas measuring device and gas measuring method
JP7147870B2 (en) 2018-11-20 2022-10-05 株式会社島津製作所 Gas measuring device and gas measuring method

Also Published As

Publication number Publication date
JP6049930B1 (en) 2016-12-21
JP2017173162A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US9618391B2 (en) Collisional broadening compensation using real or near-real time validation in spectroscopic analyzers
WO2017163452A1 (en) Gas analysis method and gas measurement device
EP2597456B1 (en) Laser gas analyzer
Kluczynski et al. Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range
Phillips et al. Real-time trace gas sensing of fluorocarbons using a swept-wavelength external cavity quantum cascade laser
Tuzson et al. Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements
JP6293855B2 (en) Substance analysis method and analyzer
US10241038B2 (en) Spectrophotometer and spectrophotometry method
JP2016035385A (en) Laser gas analysis device
WO2018078384A1 (en) Infra red spectrometer
US20040263844A1 (en) Method and apparatus for measuring bandwidth of an optical spectrum output of a very small wavelength very narrow bandwidth high power laser
Tátrai et al. Dual-channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight intercomparison tests
TW202223365A (en) Gas analysis apparatus and gas analysis method
Song et al. A four-channel-based mid-infrared methane sensor system using novel optical/electrical dual-domain self-adaptive denoising algorithm
JP5170034B2 (en) Gas analyzer
JP6530669B2 (en) Gas concentration measuring device
CN112858206A (en) Tunable FPI-based intermediate infrared gas measurement method and device
Zhu et al. Improvement of measurement accuracy of infrared moisture meter by considering the impact of moisture inside optical components
JP6201551B2 (en) Gas analyzer
JP4150760B2 (en) Isotopomer abundance ratio measurement method
JP6571476B2 (en) Gas concentration measuring device
Bozóki Airborne application of a photoacoustic instrument
Pushkarsky et al. Performance characteristics of a compact widely tunable external cavity quantum cascade laser
JP6314605B2 (en) Gas analyzer
KR20230112058A (en) Gas analysis apparatus and gas analysis method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895476

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895476

Country of ref document: EP

Kind code of ref document: A1