JP6530669B2 - Gas concentration measuring device - Google Patents

Gas concentration measuring device Download PDF

Info

Publication number
JP6530669B2
JP6530669B2 JP2015149986A JP2015149986A JP6530669B2 JP 6530669 B2 JP6530669 B2 JP 6530669B2 JP 2015149986 A JP2015149986 A JP 2015149986A JP 2015149986 A JP2015149986 A JP 2015149986A JP 6530669 B2 JP6530669 B2 JP 6530669B2
Authority
JP
Japan
Prior art keywords
measurement
output
concentration
gas
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015149986A
Other languages
Japanese (ja)
Other versions
JP2017032317A (en
Inventor
祐司 合田
祐司 合田
圭一郎 桑田
圭一郎 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2015149986A priority Critical patent/JP6530669B2/en
Publication of JP2017032317A publication Critical patent/JP2017032317A/en
Application granted granted Critical
Publication of JP6530669B2 publication Critical patent/JP6530669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス濃度測定装置に関し、より詳細には、第1の濃度と第2の濃度との2濃度検査にて高精度なガス濃度測定が可能な算出式を用いたガス濃度測定装置に関する。   The present invention relates to a gas concentration measuring apparatus, and more particularly to a gas concentration measuring apparatus using a calculation formula capable of highly accurate gas concentration measurement in a two-concentration test of a first concentration and a second concentration. .

従来から大気中の測定対象ガスの濃度測定を行うガス濃度測定装置として、ガスの種類によって吸収される赤外線の波長が異なることを利用し、この吸収量を検出することによりそのガス濃度を測定する非分散赤外吸収型(Non−Dispersive Infrared)ガス濃度測定装置が知られている。この原理を用いたガス濃度測定装置としては、例えば、測定対象ガスが吸収特性を持つ波長に限定した赤外線を透過するフィルタ(透過部材)と赤外線センサを組み合わせ、赤外線の吸収量を測定することによってガスの濃度を測定するようにしたものが挙げられる。   Conventionally, as a gas concentration measuring device for measuring the concentration of a gas to be measured in the atmosphere, the gas concentration is measured by detecting the amount of absorption utilizing the fact that the wavelength of infrared rays absorbed differs depending on the type of gas. Non-dispersive infrared gas concentration measuring devices are known. As a gas concentration measuring apparatus using this principle, for example, a combination of a filter (transmissive member) transmitting an infrared ray limited to a wavelength at which the gas to be measured has absorption characteristics and an infrared sensor, and measuring the amount of absorption of infrared rays There is one that is adapted to measure the concentration of gas.

また、この原理の応用を用いたガス濃度測定装置として、例えば、特許文献1に記載のものは、測定対象ガスによる赤外線の吸収が生じない波長域の赤外線を選択的に透過する参照用フィルタと、測定対象ガスによる赤外線の吸収が生じる波長域の赤外線を選択的に透過する測定用フィルタをそれぞれ配置した赤外線検出素子を複数配置し、それぞれの赤外線検出素子からの出力信号に基づいて測定対象ガスの検出や濃度測定をしており、検出精度や出力の安定性を向上させた炭酸ガス濃度測定装置及び炭酸ガス検出方法である。   In addition, as a gas concentration measuring apparatus using an application of this principle, for example, the one described in Patent Document 1 is a reference filter that selectively transmits infrared light in a wavelength range in which absorption of infrared light by the gas to be measured does not occur. A plurality of infrared detection elements, each of which is provided with a measurement filter for selectively transmitting an infrared ray in a wavelength range in which absorption of infrared rays by the measurement target gas occurs, are measured based on output signals from the respective infrared detection elements These are a carbon dioxide gas concentration measuring device and a carbon dioxide gas detection method which perform detection and concentration measurement, and improve detection accuracy and stability of output.

以下、これらも含めて、ガス濃度測定装置及びガス濃度測定方法ともいう。その動作原理は、波長による吸収度合いの差異を、炭酸ガス検出に応用したものである。光源であるセラミックヒータから放射された赤外線において、波長4.3μm付近の赤外線は、気体容器内の炭酸ガスにより吸収されて、その放射強度が低下する。一方、波長3.9μmの赤外線は、炭酸ガスによる吸収はなく、その放射強度が低下することはない。   Hereinafter, including these, it is also referred to as a gas concentration measuring device and a gas concentration measuring method. The principle of operation is that the difference in the degree of absorption depending on the wavelength is applied to carbon dioxide gas detection. In the infrared rays emitted from the ceramic heater which is the light source, the infrared rays around a wavelength of 4.3 μm are absorbed by carbon dioxide gas in the gas container and the radiation intensity thereof is reduced. On the other hand, infrared rays with a wavelength of 3.9 μm are not absorbed by carbon dioxide gas, and their radiation intensity does not decrease.

そして、ガス測定装置の気体容器内を通過した異なる波長を含む赤外線から、波長4.3μmと波長3.9μmとの2波を、2波それぞれに対応した通過帯域を有する2種類の光学フィルタで濾波選別する。これら波長の異なる赤外線それぞれの放射強度に基づいて、気体容器内の炭酸ガスの濃度が算出される。セラミックヒータの放射強度分布は、炭酸ガスの赤外線吸収スペクトルを含み、2μm〜50μmの波長領域でブロードであるため、炭酸ガスの赤外線吸収スペクトル付近の波長領域で十分な放射強度を有する。したがって、光源にセラミックヒータを用いたガス測定装置の検出精度及び出力の安定性は向上する。   And, from infrared rays including different wavelengths that have passed through the gas container of the gas measuring device, two types of waves with a wavelength of 4.3 μm and a wavelength of 3.9 μm, two types of optical filters having passbands corresponding to the two types of waves. Filter and sort. The concentration of carbon dioxide gas in the gas container is calculated based on the radiation intensities of the infrared rays different in wavelength. Since the radiation intensity distribution of the ceramic heater includes the infrared absorption spectrum of carbon dioxide gas and is broad in the wavelength range of 2 μm to 50 μm, it has sufficient radiation intensity in the wavelength range near the infrared absorption spectrum of carbon dioxide gas. Therefore, the detection accuracy and the stability of the output of the gas measuring device using the ceramic heater as the light source are improved.

特開平9−33431号公報JP-A-9-33431

非分散赤外吸収型ガス濃度測定装置では、ランバートベール(Lambert−Beer_law)の法則に基づいて、例えば、下記式(1)に則った測定用赤外線検出部の出力が得られる。   In the non-dispersive infrared absorption type gas concentration measuring apparatus, for example, the output of the infrared detection unit for measurement according to the following equation (1) can be obtained based on the Lambert-Beer_law law.

Figure 0006530669
Figure 0006530669

式(1)中、Vは測定用赤外線検出部の出力、Gは測定用赤外線検出部が光信号を電気信号に変える際のゲイン、Iは測定対象ガスによる吸収がなかった場合に測定用赤外線検出部に入射する光信号、εは吸光度係数、l(エル)は光路長、cは測定対象ガスの濃度、αは測定用赤外線検出部の出力オフセット、である。出力オフセットαは、測定対象ガスによって吸収されない波長の光の測定用赤外線検出部への入射等によって生じる。 In equation (1), V is the output of the infrared detector for measurement, G is the gain when the infrared detector for measurement converts an optical signal into an electrical signal, and I 0 is for measurement when there is no absorption by the gas to be measured Is an absorbance coefficient, l (L) is an optical path length, c is a concentration of a gas to be measured, and α is an output offset of an infrared detection unit for measurement. The output offset α is generated, for example, by the incidence of light of a wavelength not absorbed by the gas to be measured to the infrared detection unit for measurement.

しかし、出力オフセットαやゲインG、吸収がなかった場合の出力Iは個体ごとにばらつきがあり、これらを定量化することは極めて困難である。そのため、2濃度検査を前提に測定対象ガスの濃度値を演算する場合、従来は、例えば、3つ中1つの係数が固定であり、2濃度の検査から残りの係数を求める、測定用赤外線検出部の出力を変数とし測定対象ガスの濃度を出力する2次関数を定義し、その2次関数用いて濃度演算を行っていた。この演算方法では、ゲインや出力オフセットのばらつきの影響を完全に除去できないため、演算精度は低いものであった。
本発明はこのような問題に鑑みてなされたもので、その目的とするところは、第1の濃度と第2の濃度との2濃度検査にて、高精度なガス濃度測定が可能なガス濃度測定装置を提供することにある。
However, the output offset α, the gain G, and the output I 0 when there is no absorption vary among individuals, and it is extremely difficult to quantify them. Therefore, when calculating the concentration value of the gas to be measured on the premise of the two concentration inspection, conventionally, for example, one of the three coefficients is fixed, and the remaining coefficient is determined from the two concentration inspection. The output of the unit was used as a variable to define a quadratic function that outputs the concentration of the gas to be measured, and the concentration operation was performed using the quadratic function. In this calculation method, the calculation accuracy is low because the influence of variations in gain and output offset can not be completely eliminated.
The present invention has been made in view of such problems, and an object of the present invention is to provide a gas concentration which can measure gas concentration with high accuracy in a two-concentration test of a first concentration and a second concentration. It is in providing a measuring device.

本発明者らは上記課題を解決するために鋭意検討した結果、以下の発明により上記課題を解決できることを見出し、本発明を完成させた。
本発明の様態は、光源と、前記光源からの光に応じた信号である測定出力を出力する測定用赤外線検出部と、前記測定用赤外線検出部からの出力が入力される演算部と、を備えたガス濃度測定装置であって、前記演算部は、第1の濃度の測定対象ガス中で前記測定用赤外線検出部が出力する第1の測定出力と、前記第1の濃度とは異なる第2の濃度の測定対象ガス中で前記測定用赤外線検出部が出力する第2の測定出力と、を有し、前記第2の測定出力と前記第1の測定出力との差分から得られる第1の補正値に対する、測定時の前記測定出力と前記第1の測定出力との差分から得られる第2の補正値の比を2次以上の項を有する基準濃度算出式の変数値に代入して測定対象ガスの濃度を演算するガス濃度測定装置である。
MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, the present inventors find out that the said subject can be solved by the following invention, and completed this invention.
According to an aspect of the present invention, there are provided a light source, an infrared detection unit for measurement which outputs a measurement output which is a signal corresponding to light from the light source, and an operation unit to which an output from the infrared detection unit for measurement is input. It is a gas concentration measurement device provided, wherein the calculation unit is configured to be different from a first measurement output outputted by the infrared detection unit for measurement in a gas to be measured of a first concentration, and the first concentration. A second measurement output outputted by the infrared detection unit for measurement in the gas whose concentration is to be measured, and a first obtained from the difference between the second measurement output and the first measurement output The ratio of the second correction value obtained from the difference between the measurement output at the time of measurement and the first measurement output with respect to the correction value of is substituted into the variable value of the reference concentration calculation formula having a quadratic or higher order term. It is a gas concentration measuring device which calculates the concentration of the gas to be measured.

本発明のガス濃度測定装置によれば、高精度なガス濃度測定が可能な算出式を用いたガス濃度測定装置を実現することが可能になる。   According to the gas concentration measuring apparatus of the present invention, it is possible to realize a gas concentration measuring apparatus using a calculation formula capable of highly accurate gas concentration measurement.

本発明に係るガス濃度測定装置の実施形態を説明するための構成図である。It is a block diagram for describing the embodiment of the gas concentration measuring device concerning the present invention. 実施例と比較例を対比した結果を示す図である。It is a figure which shows the result of having compared an Example and a comparative example.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかであろう。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではなく、実施形態で説明されている特徴的な構成の組み合わせの全てを含むものである。   In the following detailed description, numerous specific details are set forth to provide a thorough understanding of the embodiments of the present invention. However, it will be apparent that other embodiments can be practiced without being limited to such specific specific configurations. In addition, the following embodiments do not limit the invention according to the claims, and include all combinations of characteristic configurations described in the embodiments.

以下、図面を参照して本発明の実施形態について説明する。
[実施形態]
図1は、本発明に係るガス濃度測定装置の実施形態を説明するための構成図である。図中符号10はガスセル、11はガス導入口、12はガス導出口、20は光源、31は測定用赤外線検出部、40は演算部、100はガス濃度測定装置、Lは最短距離の光路長を示している。なおここでは参考のため、ガスセル10を明示しているが、本発明においてガスセルは必須の構成ではなく、ガスセルの無い形態でも試験容器内等にガス濃度測定装置を配置することで下記と同様の2濃度検査を行うことが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment]
FIG. 1 is a configuration diagram for explaining an embodiment of a gas concentration measurement device according to the present invention. In the figure, reference numeral 10 is a gas cell, 11 is a gas inlet, 12 is a gas outlet, 20 is a light source, 31 is an infrared detection unit for measurement, 40 is an operation unit, 100 is a gas concentration measuring device, L is an optical path length of the shortest distance Is shown. Although the gas cell 10 is clearly shown here for reference, the gas cell is not an essential component in the present invention, and even in a form without a gas cell, the gas concentration measuring device is disposed in the test container etc. It is possible to carry out two concentration tests.

本実施形態のガス濃度測定装置100は、光源20と、光源20からの光に応じた信号である測定出力を出力する測定用赤外線検出部31と、測定用赤外線検出部31からの出力が入力される演算部40と、を備えたガス濃度測定装置である。
演算部40は、第1の濃度の測定対象ガス中で測定用赤外線検出部31が出力する第1の測定出力と、第1の濃度とは異なる第2の濃度の測定対象ガス中で光測定用赤外線検出部31が出力する第2の測定出力と、を有し、第2の測定出力と第1の測定出力との差分から得られる第1の補正値に対する、測定時の測定出力と第1の測定出力との差分から得られる第2の補正値の比に基づいて測定対象ガスの濃度を演算するガス濃度測定装置である。
In the gas concentration measurement apparatus 100 of the present embodiment, the light source 20, the measurement infrared detection unit 31 that outputs a measurement output that is a signal according to the light from the light source 20, and the output from the measurement infrared detection unit 31 are input. And a calculation unit 40, and a gas concentration measurement device.
The calculation unit 40 performs light measurement in a measurement target gas having a second concentration different from the first measurement output from the measurement infrared detection unit 31 in the first concentration measurement target gas and the first concentration. Measurement output at the time of measurement with respect to a first correction value obtained from the difference between the second measurement output and the first measurement output, having a second measurement output output from the infrared detection unit 31 This is a gas concentration measuring device that calculates the concentration of the gas to be measured based on the ratio of the second correction value obtained from the difference with the measurement output of 1.

本実施形態による効果の一例を、式(1)を用いて説明する。
まず、第1の補正値を、第2の測定出力と第1の測定出力との差分とし、第2の補正値を測定時の測定用赤外線検出部31の出力と第1の測定出力との差分とすると、下記式が得られる。
An example of the effect by this embodiment is demonstrated using Formula (1).
First, the first correction value is the difference between the second measurement output and the first measurement output, and the second correction value is the difference between the output of the measurement infrared detector 31 at the time of measurement and the first measurement output. Assuming the difference, the following equation is obtained.

Figure 0006530669
Figure 0006530669

Figure 0006530669
Figure 0006530669

ここで、Aは第1の補正値、Aは第2の補正値、Vは測定時の測定用赤外線検出部31の出力、Vは測定対象ガスが第1の濃度である場合の測定用赤外線検出部31の出力、Vは定対象ガスが第2の濃度である場合の測定用赤外線検出部31の出力、cは測定対象ガスの第1の濃度、cは測定対象ガスの第2の濃度、cは測定時の測定対象ガスの濃度である。 Here, A 1 is a first correction value, A 2 is a second correction value, V m is an output of the measurement infrared detection unit 31 at the time of measurement, and V 1 is a case where the gas to be measured has a first concentration. Of the measurement infrared detector 31, V 2 is the output of the measurement infrared detector 31 when the constant target gas has the second concentration, c 1 is the first concentration of the measurement target gas, and c 2 is the measurement The second concentration of the target gas, cm, is the concentration of the measurement target gas at the time of measurement.

式(2)、式(3)より、第1の補正値および第2の補正値は、ばらつき成分であるオフセットαが含まれていないことが理解される。
また、第1の補正値に対する第2の補正値の比をとると、

Figure 0006530669
が得られる。
ここで、Rは第1の補正値に対する第2の補正値の比である。 From equations (2) and (3), it is understood that the first correction value and the second correction value do not include the offset component α which is a variation component.
Further, when the ratio of the second correction value to the first correction value is taken,
Figure 0006530669
Is obtained.
Here, R is the ratio of the second correction value to the first correction value.

式(4)より、第1の補正値に対する第2の補正値の比をとることで、ばらつき成分である、GやIが消去されていることがわかる。
以上より、本実施形態のガス濃度測定装置100は、第1の濃度の測定対象ガス中で測定用赤外線検出部31が出力する第1の測定出力と、第1の濃度とは異なる第2の濃度の測定対象ガス中で測定用赤外線検出部31が出力する第2の測定出力と、を有し、測定時の第2の測定出力と第1の測定出力との差分から得られる第1の補正値に対する、測定時の測定出力と第1の測定出力との差分から得られる第2の補正値の比に基づいて測定対象ガスの濃度を演算することにより、2つの異なる既知濃度における測定出力を予め取得することのみで、従来よりも高精度なガス濃度測定が可能になることが理解される。
From equation (4), it can be seen that G and I 0 which are variation components are eliminated by taking the ratio of the second correction value to the first correction value.
As described above, in the gas concentration measurement apparatus 100 according to the present embodiment, the first measurement output output from the measurement infrared detection unit 31 in the first concentration measurement target gas is different from the first concentration. A second measurement output output from the measurement infrared detection unit 31 in the concentration measurement target gas, and a first obtained from the difference between the second measurement output and the first measurement output at the time of measurement Measurement output at two different known concentrations by calculating the concentration of the gas to be measured based on the ratio of the second correction value obtained from the difference between the measurement output at measurement and the first measurement output to the correction value It is understood that the gas concentration can be measured with higher accuracy than in the prior art only by acquiring.

ここで、測定対象ガスの濃度を演算するための濃度算出式としては、種々の式を利用することができる。一例としては、式(5)のような式を用いてもよい。   Here, various formulas can be used as a concentration calculation formula for calculating the concentration of the gas to be measured. As an example, an equation such as equation (5) may be used.

Figure 0006530669
Figure 0006530669

ここで、cは測定対象ガスの濃度、aは濃度算出式の2次の係数、aは濃度算出式の1次の係数、aは濃度算出式の0次の係数である。aなどの濃度算出式の係数は、本実施形態のガス濃度測定装置100と近いガス濃度特性を示す、別個体のガス濃度測定装置における、Rとcの関係を表す2次近似式の係数である。 Here, c is the concentration of the gas to be measured, a 2 the secondary coefficient of the density calculating equation, a 1 is the first-order coefficient of the density calculating equation, a 0 is the zero-order coefficient of the density calculating equation. The coefficient of the concentration calculation equation such as a 2 is a coefficient of the quadratic approximation equation representing the relationship between R and c in a separate gas concentration measurement device that exhibits gas concentration characteristics close to those of the gas concentration measurement device 100 of this embodiment. It is.

いずれの濃度換算式を用いる場合においても、上述したように第1の補正値に対する第2の補正値の比に基づいて測定対象ガスの濃度を演算することで、各種のばらつき成分が消去され、精度の高い濃度演算が可能になることは明らかである。
また、本実施形態に係わるガス濃度測定装置100において、ガス濃度測定装置100は、測定用赤外線検出部31の近傍に配置され、前記光源からの光に応じた信号である参照出力を出力する参照用赤外線検出部(図示せず)をさらに備え、演算部は測定出力を参照出力に基づいて補正してもよい。
Even when any concentration conversion equation is used, various variation components are eliminated by calculating the concentration of the gas to be measured based on the ratio of the second correction value to the first correction value as described above. It is obvious that highly accurate concentration calculation is possible.
Further, in the gas concentration measurement apparatus 100 according to the present embodiment, the gas concentration measurement apparatus 100 is disposed in the vicinity of the measurement infrared detection unit 31 and outputs a reference output that is a signal corresponding to the light from the light source. An infrared detection unit (not shown) may be further provided, and the calculation unit may correct the measurement output based on the reference output.

測定出力を参照出力に基づいて補正することで、式(1)中のIが経時的に変化したとしても、その変化分を補正できるため、従来よりも高精度なガス濃度測定が可能になるという効果を奏する。
補正の具体例としては、式(6)などがある。
By correcting the measurement output based on the reference output, even if I 0 in equation (1) changes over time, the change can be corrected, so gas concentration measurement with higher accuracy than before is possible. The effect is
Formula (6) etc. are given as a specific example of the correction.

Figure 0006530669
Figure 0006530669

ここで、V’は参照出力で補正された測定出力、Vrefは参照出力である。
また、本実施形態に係わるガス濃度測定装置100において、演算部は測定出力を、光源20を消灯させた時の測定出力に基づいて補正してもよい。また、本実施形態に係わるガス濃度測定装置100において、演算部は参照出力を、光源20を消灯させた時の参照出力に基づいて補正してもよい。
補正の具体例としては、式(7)、式(8)のように、光源20を点灯させた時の測定出力および参照出力と、光源20を消灯させた時の測定出力および参照出力の差分をとるなどがある。
Here, V ′ is the measured output corrected at the reference output, and V ref is the reference output.
In the gas concentration measurement apparatus 100 according to the present embodiment, the calculation unit may correct the measurement output based on the measurement output when the light source 20 is turned off. Further, in the gas concentration measurement apparatus 100 according to the present embodiment, the calculation unit may correct the reference output based on the reference output when the light source 20 is turned off.
As a specific example of the correction, a difference between the measurement output and the reference output when the light source 20 is turned on and the measurement output and the reference output when the light source 20 is turned off as shown in the equations (7) and (8) Etc.

Figure 0006530669
Figure 0006530669

ここで、Dは測定出力を光源20を消灯させた時の測定出力で補正したもの、Drefは参照出力を光源20を消灯させた時の参照出力で補正したもの、Vonは光源20を点灯させた時の測定出力、Voffは光源20を消灯させた時の測定出力、Vref_onは光源20を点灯させた時の参照出力、Vref_offは光源20を消灯させた時の参照出力、である。 Here, D is the measurement output corrected by the measurement output when the light source 20 is turned off, D ref is the reference output corrected by the reference output when the light source 20 is turned off, V on is the light source 20 Measured output when lit, Voff : measured output when light source 20 is turned off, Vref_on : reference output when light source 20 is turned on, Vref_off : reference output when light source 20 is turned off, It is.

ここで、光源20を点灯させた状態とは、光源20が周囲環境から放射される赤外線量よりも多い赤外線を放射している状態をいう。
また、光源20を消灯させた状態とは、完全に消灯している状態でなくてもよい。
光源20に電力が供給されて光源20が赤外線を放射している状態であっても、放射する赤外線量が光源20点灯時に放射する赤外線量以下である場合、または周囲環境から放射される赤外線量以下である場合には、光源20は実質的に赤外線を放射しない状態であるため消灯状態と看做される。
Here, the state in which the light source 20 is turned on refers to a state in which the light source 20 emits more infrared light than the amount of infrared light emitted from the surrounding environment.
Further, the state in which the light source 20 is turned off may not be the state in which the light source 20 is completely turned off.
Even when power is supplied to the light source 20 and the light source 20 emits infrared light, if the amount of infrared light emitted is less than the amount of infrared light emitted when the light source 20 is lit, or the amount of infrared light emitted from the surrounding environment In the following cases, the light source 20 is considered to be in the unlit state because it is in a state not to emit substantially infrared light.

光源20を消灯させた時の測定出力や参照出力に基づいて、測定出力や参照出力を補正することで、測定出力や参照出力に含まれる回路的オフセットを補正できるため、従来よりも高精度なガス濃度測定が可能になるという効果を奏する。
ここで、回路的オフセットとは、例えば測定用赤外線検出や参照用赤外線検出部に内蔵されるオペアンプの出力オフセットなどである。
以下、本実施形態のガス濃度測定装置における各構成要件について説明する。各構成要件の具体例や技術的特徴は、本発明の技術思想を逸脱しない範囲で単独または組み合わせて適用可能である。
Since the circuit offset included in the measurement output or the reference output can be corrected by correcting the measurement output or the reference output based on the measurement output or the reference output when the light source 20 is turned off, the accuracy is higher than that in the related art. The effect of enabling gas concentration measurement is achieved.
Here, the circuit offset is, for example, an output offset of an operational amplifier built in the infrared detection unit for measurement or the infrared detection unit for reference.
Hereinafter, each component of the gas concentration measuring apparatus of the present embodiment will be described. Specific examples and technical features of each component can be applied singly or in combination without departing from the technical concept of the present invention.

(測定用赤外線検出部及び参照用赤外線検出部)
測定用赤外線検出部31、参照用赤外線検出部(図示せず)は、光源20が出力する赤外線に対する感度を有し、入射された赤外線に応じた信号を出力するものである。測定用赤外線検出部31は参照用赤外線検出部よりも、測定対象ガスによる赤外線吸収帯域に対する感度の赤外線吸収帯域以外の帯域に対する感度に対する比が大きいものであれば特に制限されない。測定用赤外線検出部31及び参照用赤外線検出部には、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile:熱電堆)、ボロメータ(Bolometer)等の熱型赤外線センサや、量子型赤外線センサ等が好適である。
(Infrared detector for measurement and infrared detector for reference)
The measuring infrared detection unit 31 and the reference infrared detection unit (not shown) have sensitivity to the infrared light output from the light source 20, and output a signal corresponding to the incident infrared light. The measurement infrared detection unit 31 is not particularly limited as long as the ratio of the sensitivity of the gas to be measured to the infrared absorption band to the band other than the infrared absorption band is larger than that of the reference infrared detection unit. For the infrared detection unit 31 for measurement and the infrared detection unit for reference, a thermal infrared sensor such as a pyroelectric sensor (Pyroelectric sensor), a thermopile (Thermopile), a bolometer (Bolometer), a quantum infrared sensor, etc. are suitable It is.

測定用赤外線検出部31、参照用赤外線検出部は、測定対象ガスに併せて所望の光学特性を有する光学フィルタをさらに備えていてもよい。例えば、測定対象ガスが炭酸ガスの場合、測定用赤外線検出部31には炭酸ガスによる赤外線吸収が多く生じる波長帯(代表的には4.3μm付近)の赤外線を濾波できるバンドパスフィルタを搭載し、参照用赤外線検出部には炭酸ガスによる赤外線吸収が生じない波長帯(代表的には3.9μm付近)の赤外線を濾波できるバンドパスフィルタを搭載する形態が例示される。   The measurement infrared detection unit 31 and the reference infrared detection unit may further include an optical filter having desired optical characteristics in addition to the measurement target gas. For example, when the gas to be measured is carbon dioxide gas, the measurement infrared detection unit 31 is equipped with a band pass filter capable of filtering out infrared rays in a wavelength range (typically around 4.3 μm) where much infrared absorption by carbon dioxide occurs. The form which mounts the band pass filter which can filter the infrared rays of the wavelength range (typically around 3.9 micrometers) which infrared absorption by carbon dioxide does not produce in a reference infrared detection part is illustrated.

(光源)
光源20は、測定用赤外線検出部31、参照用赤外線検出部が感度を有する赤外線帯域を出力できるものであれば特に制限されない。例えば、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒーターやLEDなどを用いることができる。
(light source)
The light source 20 is not particularly limited as long as the measurement infrared detection unit 31 and the reference infrared detection unit can output an infrared band having sensitivity. For example, an incandescent lamp, a ceramic heater, a MEMS (Micro Electro Mechanical Systems) heater, an LED, or the like can be used.

(演算部)
演算部40は、ガス濃度算出における演算が可能なものであれば特に制限されず、例えば、アナログIC、ディジタルIC及びCPU(Central Processing Unit)等が好適である。演算部40には、光源20を制御するための機能が含まれていても構わない。
(Operation unit)
The calculation unit 40 is not particularly limited as long as calculation in gas concentration calculation is possible, and for example, an analog IC, a digital IC, a CPU (Central Processing Unit), and the like are preferable. The calculation unit 40 may include a function for controlling the light source 20.

(ガスセル)
本実施形態のガス濃度測定装置100は、内部に測定対象ガスを流入可能であり、内部に光源20、測定用赤外線検出部31、参照用赤外線検出部、演算部40等を配置可能なガスセルをさらに備えても良い。ここで、流入可能とは光源20から出力された赤外線が前記測定対象ガスの存在する空間を通って、測定用赤外線検出部31に到達可能であることを示す。ガスセルをさらに備えることで、測定用赤外線検出部31及び参照用赤外線検出部の出力する信号のSN比を高めることができ、より高精度なガス濃度測定装置が実現する。赤外線検出部に入射される赤外線の効率化の観点から、ガスセル内部が赤外線を反射する材料で形成されていることが好ましい。具体的にはアルミニウムや銅などの金属材料が挙げられる。
次に、本実施形態のガス濃度測定装置の実施例について説明する。
(Gas cell)
The gas concentration measuring apparatus 100 according to the present embodiment is capable of introducing the gas to be measured inside, and capable of disposing the light source 20, the infrared detector for measurement 31, the infrared detector for reference, the arithmetic unit 40, etc. You may provide further. Here, “inflowable” indicates that the infrared light output from the light source 20 can reach the infrared detection unit 31 for measurement through the space where the gas to be measured is present. By further including a gas cell, the SN ratio of the signals output from the measuring infrared detection unit 31 and the reference infrared detection unit can be increased, and a more accurate gas concentration measuring device is realized. It is preferable that the inside of the gas cell be formed of a material that reflects infrared light from the viewpoint of the efficiency of the infrared light incident on the infrared detection unit. Specifically, metal materials such as aluminum and copper can be mentioned.
Next, an example of the gas concentration measuring apparatus of the present embodiment will be described.

タングステン光源、COによる赤外線吸収のある4.2μm〜4.4μmの波長帯を選択的に濾波選別する光学フィルタを搭載した測定用赤外線検出部31としての量子型赤外線センサ「IR1011」(旭化成エレクトロニクス株式会社製)、COによる赤外線吸収の無い3.7μm〜3.9μmの波長帯を選択的に濾波選別する光学フィルタを搭載した参照用赤外線検出部としての量子型赤外線センサ「IR1011」(旭化成エレクトロニクス株式会社製)、演算部40として記憶部と処理部を備えたICを、リン青銅に金メッキを施したガスセル中に、配置した炭酸ガス濃度測定装置を準備した。 Quantum type infrared sensor “IR1011” as an infrared detection unit 31 for measurement equipped with an optical filter for selectively filtering out a wavelength band of 4.2 μm to 4.4 μm having infrared absorption by CO 2 and tungsten light source Quantum type infrared sensor “IR1011” (Asahi Kasei Corporation) as an infrared detector for reference equipped with an optical filter that selectively filters out the 3.7 μm to 3.9 μm wavelength band without infrared absorption by CO 2 CO 2 A carbon dioxide gas concentration measuring device was prepared in which an IC provided with a storage unit and a processing unit as an operation unit 40 was placed in a gold-plated gas cell of phosphor bronze as an operation unit 40.

次いで、濃度0ppmの炭酸ガスをガスセル中に充填した時の、光源20が点灯および消灯している時の、それぞれアンプにより増幅された測定用赤外線検出部31と参照用赤外線検出部からの出力と、濃度986mの炭酸ガスをガスセル中に充填した時の、光源20が点灯および消灯している時の、それぞれアンプにより増幅された測定用赤外線検出部31と参照用赤外線検出部からの出力とを用いて、上述した実施形態の濃度演算を行った。   Next, when the gas cell is filled with carbon dioxide gas having a concentration of 0 ppm, and when the light source 20 is turned on and off, the outputs from the measuring infrared detection unit 31 and the reference infrared detection unit amplified by the amplifier are When the light cell 20 is turned on and off when carbon dioxide gas having a concentration of 986 m is filled in the gas cell, the outputs from the measuring infrared detection unit 31 and the reference infrared detection unit amplified by the amplifier are respectively The density calculation of the above-described embodiment was performed using this.

具体的な演算は下記の通りである。
以下、本実施例で述べる測定出力とは、光源20を点灯している時の測定出力と光源20を消灯している時の測定出力との差分であり、参照出力とは、光源20を点灯している時の参照出力と光源20を消灯している時の参照出力との差分である。
まず、測定時の参照出力に対する測定出力の比(D’)と、炭酸ガス濃度0ppm時の参照出力に対する測定出力の比(D’)の差分を演算した。また、炭酸ガス濃度986ppm時の参照出力に対する測定出力の比(D’)と、炭酸ガス濃度0ppm時の参照出力に対する測定出力の比(D’)の差分を演算した。次いで、これら2つの差分の比をとり、これを基準濃度算出式に代入し、炭酸ガス濃度を演算した。
The specific operation is as follows.
Hereinafter, the measurement output described in the present embodiment is the difference between the measurement output when the light source 20 is on and the measurement output when the light source 20 is off, and the reference output is the light source 20 This is the difference between the reference output when the light source 20 is turned off and the reference output when the light source 20 is turned off.
First, 'the ratio of the measurement output for the reference output during the carbon dioxide concentration 0 ppm (D 1 ratio of the measured output to the reference output during the measurement (D m)' was calculates the difference). Further, the difference between the ratio (D 2 ′) of the measured output to the reference output at the carbon dioxide concentration of 986 ppm and the ratio (D 1 ′) of the measured output to the reference output at the carbon dioxide concentration of 0 ppm was calculated. Next, the ratio of these two differences was taken, and this was substituted into the reference concentration calculation formula to calculate the carbon dioxide concentration.

基準濃度算出式とは、ここで用いているガス濃度測定装置と近いガス濃度特性を示す別個体のガス濃度測定装置(基準ガス濃度測定装置)の、上述した2つの差分の比と炭酸ガス濃度の関係を直接的あるいは近似的に表す数式である。ここでは、基準ガス濃度測定装置の0〜5000ppmの5点での濃度試験結果から、式(9)のような基準濃度算出式を導出した。   The reference concentration calculation formula is the ratio of the above two differences and the carbon dioxide gas concentration of the gas concentration measurement device (reference gas concentration measurement device) of a separate body that exhibits gas concentration characteristics close to the gas concentration measurement device used here Is a mathematical expression that directly or approximately expresses the relationship of Here, the reference concentration calculation formula like Formula (9) was derived | led-out from the density | concentration test result in 5 points | pieces of 0-5000 ppm of a reference | standard gas concentration measuring apparatus.

Figure 0006530669
ここで、f(x)は基準濃度算出式、xは基準濃度算出式の変数である。
上述した2つの差分の比は、ゲインと出力オフセットを含まない値のため、これを基準算出式に代入することで、精度良く炭酸ガス濃度を演算できることが理解される。
本実施例の演算を表す数式を式(10)に示す。
Figure 0006530669
Here, f (x) is a reference concentration calculation formula, and x is a variable of the reference concentration calculation formula.
It is understood that since the ratio of the two differences described above does not include the gain and the output offset, it is possible to calculate the carbon dioxide gas concentration with high accuracy by substituting this in the reference calculation formula.
An equation representing the operation of the present embodiment is shown in equation (10).

Figure 0006530669
ここで、D’は測定時の参照出力に対する測定出力の比、D’は炭酸ガス濃度0ppmである場合の参照出力に対する測定出力の比、D’は炭酸ガス濃度986ppmである場合の参照出力に対する測定出力の比である。
Figure 0006530669
Here, D m 'is the ratio of the measured output to the reference output at the time of measurement, D 1 ' is the ratio of the measured output to the reference output when the carbon dioxide concentration is 0 ppm, and D 2 'is the case where the carbon dioxide concentration is 986 ppm. It is the ratio of the measured output to the reference output.

[比較例]
以下、本比較例で述べる測定出力とは、光源20を点灯している時の測定出力と光源20を消灯している時の測定出力との差分であり、参照出力とは、光源20を点灯している時の参照出力と光源20を消灯している時の参照出力との差分である。
まず、式(11)のような、2次の係数が固定で、1次の係数(b)と0次の係数(b)が未定である濃度算出式を用意した。
[Comparative example]
Hereinafter, the measurement output described in this comparative example is the difference between the measurement output when the light source 20 is on and the measurement output when the light source 20 is off, and the reference output is the light source 20 This is the difference between the reference output when the light source 20 is turned off and the reference output when the light source 20 is turned off.
First, a concentration calculation equation such as equation (11) was prepared, in which the second-order coefficient is fixed and the first-order coefficient (b 1 ) and the zero-order coefficient (b 0 ) are undecided.

Figure 0006530669
ここで、g(D’)は比較例における濃度算出式、D’は測定時の参照出力に対する測定出力、bは濃度算出式の1次の係数、bは濃度算出式の0次の係数である。
Figure 0006530669
Here, g (D m ') is the concentration calculation formula in the comparative example, D m ' is the measurement output with respect to the reference output at the time of measurement, b 1 is the linear coefficient of the concentration calculation formula, and b 0 is 0 in the concentration calculation formula It is the next coefficient.

濃度算出式(式(11))の2次の係数は、ここで用いているガス濃度測定装置と近いガス濃度特性を示す別個体のガス濃度測定装置の、炭酸ガス濃度と参照出力に対する測定出力の比との関係を表す、2次の近似式の2次の係数である。ここでは、実施例で用いた基準ガス濃度測定装置の0〜5000ppmの5点での濃度試験結果から、炭酸ガス濃度と参照出力に対する測定出力の比との関係を表す2次近似式を求め、その2次関数の2次の係数を濃度算出式(式(11))中の2次の係数とした。   The second-order coefficient of the concentration calculation equation (Equation (11)) is the measurement output with respect to the carbon dioxide gas concentration and the reference output of a separate gas concentration measuring device showing a gas concentration characteristic close to that of the gas concentration measuring device used here It is a second-order coefficient of a second-order approximation expression that represents the relationship with the ratio of. Here, from the concentration test results at five points of 0 to 5000 ppm of the reference gas concentration measuring apparatus used in the example, a quadratic approximation formula representing the relationship between the carbon dioxide concentration and the ratio of the measurement output to the reference output is determined The second-order coefficient of the second-order function is taken as the second-order coefficient in the concentration calculation equation (Equation (11)).

次いで、式(11)の1次および0次の係数を、炭酸ガス濃度0ppm時の測定用赤外線検出部31の出力に対する参照用赤外線検出部の出力と、炭酸ガス濃度987ppm時の参照用赤外線検出部の出力に対する測定用赤外線検出部31の出力の比から求め、式(12)を得た。

Figure 0006530669
次いで、式(12)に測定時の参照出力に対する測定出力の比を代入し、炭酸ガス濃度を演算した。 Next, the output of the reference infrared detection unit with respect to the output of the infrared detection unit 31 for measurement when the carbon dioxide concentration is 0 ppm, and the infrared detection for reference when the carbon dioxide concentration is 987 ppm Formula (12) is obtained from the ratio of the output of the measurement infrared detection unit 31 to the output of the unit.
Figure 0006530669
Next, the ratio of the measurement output to the reference output at the time of measurement was substituted into equation (12) to calculate the carbon dioxide concentration.

図2は、上述した実施例と比較例を対比した結果を示す図である。
図2の結果より、実施例の演算によると最大で40ppmの誤差にとどまったが、比較例1の演算によると最大で326ppmの誤差が生じた。
以上の結果より、本実施形態のガス濃度演算装置によれば、従来の濃度算出式よりも高精度な濃度演算が可能であることが理解される。
FIG. 2 is a diagram showing the result of comparison between the above-described embodiment and the comparative example.
According to the results of FIG. 2, according to the calculation of the embodiment, the error was at most 40 ppm, but according to the calculation of the comparative example 1, a difference of 326 ppm was generated at the maximum.
From the above results, it is understood that according to the gas concentration calculation device of the present embodiment, concentration calculation with higher accuracy than the conventional concentration calculation formula is possible.

以上、本発明の実施形態について説明したが、本発明の技術的範囲は、上述した実施形態に記載の技術的範囲には限定されない。上述した実施形態に、多様な変更又は改良を加えることも可能であり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although embodiment of this invention was described, the technical scope of this invention is not limited to the technical scope as described in embodiment mentioned above. It is also possible to add various changes or improvements to the embodiment described above, and it is possible from the description of the claims that forms obtained by adding such changes or improvements can be included in the technical scope of the present invention. it is obvious.

本発明は、炭酸ガス等に代表される赤外線吸収を生じるガスのガス濃度測定装置として好適である。   The present invention is suitable as a gas concentration measuring device for a gas that produces infrared absorption represented by carbon dioxide gas and the like.

10 ガスセル
11 ガス導入口
12 ガス導出口
20 光源
31 測定用赤外線検出部
40 演算部
100 ガス濃度測定装置
Reference Signs List 10 gas cell 11 gas inlet 12 gas outlet 20 light source 31 infrared detection unit 40 for measurement calculation unit 100 gas concentration measuring device

Claims (4)

光源と、
前記光源からの光に応じた信号である測定出力を出力する測定用赤外線検出部と、
前記測定用赤外線検出部からの出力が入力される演算部と、
を備えたガス濃度測定装置であって、
前記演算部は、
第1の濃度の測定対象ガス中で前記測定用赤外線検出部が出力する第1の測定出力と、
前記第1の濃度とは異なる第2の濃度の測定対象ガス中で前記測定用赤外線検出部が出力する第2の測定出力と、
を有し、
前記第2の測定出力と前記第1の測定出力との差分から得られる第1の補正値に対する、測定時の前記測定出力と前記第1の測定出力との差分から得られる第2の補正値の比を2次以上の項を有する基準濃度算出式の変数値に代入して測定対象ガスの濃度を演算するガス濃度測定装置。
Light source,
An infrared detection unit for measurement that outputs a measurement output that is a signal corresponding to the light from the light source;
An operation unit to which an output from the measurement infrared detection unit is input;
A gas concentration measuring device comprising
The arithmetic unit is
A first measurement output that the infrared detection unit for measurement outputs in a gas whose first concentration is to be measured;
A second measurement output that the infrared detection unit for measurement outputs in a measurement target gas of a second concentration different from the first concentration;
Have
A second correction value obtained from the difference between the measurement output at the time of measurement and the first measurement output with respect to a first correction value obtained from the difference between the second measurement output and the first measurement output The gas concentration measuring device which calculates the concentration of the gas to be measured by substituting the ratio of the two into the variable value of the reference concentration calculation formula having a second or higher term .
前記測定用赤外線検出部の近傍に配置され、前記光源からの光に応じた信号である参照出力を出力する参照用赤外線検出部をさらに備え、
前記演算部は、
前記測定出力を前記参照出力に基づいて補正する請求項1に記載のガス濃度測定装置。
It further comprises a reference infrared detection unit disposed in the vicinity of the measurement infrared detection unit and outputting a reference output that is a signal according to the light from the light source,
The arithmetic unit is
The gas concentration measuring device according to claim 1 which amends said measurement output based on said reference output.
前記演算部は、
前記測定出力を前記光源を消灯させた時の前記測定出力に基づいて補正する請求項1または請求項2に記載のガス濃度測定装置。
The arithmetic unit is
The gas concentration measuring apparatus according to claim 1 or 2, wherein the measurement output is corrected based on the measurement output when the light source is turned off.
前記演算部は、
前記測定出力と前記参照出力の少なくとも一方を、前記光源を消灯させた時の前記測定出力と前記光源を消灯させた時の前記参照出力の少なくとも一方に基づいて補正する請求項2記載のガス濃度測定装置。
The arithmetic unit is
The gas concentration according to claim 2, wherein at least one of the measurement output and the reference output is corrected based on at least one of the measurement output when the light source is turned off and the reference output when the light source is turned off. measuring device.
JP2015149986A 2015-07-29 2015-07-29 Gas concentration measuring device Active JP6530669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149986A JP6530669B2 (en) 2015-07-29 2015-07-29 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149986A JP6530669B2 (en) 2015-07-29 2015-07-29 Gas concentration measuring device

Publications (2)

Publication Number Publication Date
JP2017032317A JP2017032317A (en) 2017-02-09
JP6530669B2 true JP6530669B2 (en) 2019-06-12

Family

ID=57989278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149986A Active JP6530669B2 (en) 2015-07-29 2015-07-29 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP6530669B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060667A (en) * 2018-09-30 2018-12-21 深圳益杉创新科技有限公司 A kind of carbon dioxide concentration detecting device and detection method
CN110632015A (en) * 2019-11-07 2019-12-31 成都千嘉科技有限公司 Variable light form gas sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928855B2 (en) * 1979-02-15 1984-07-16 マツダ株式会社 How to measure exhaust gas from internal combustion engines
JP2004053432A (en) * 2002-07-22 2004-02-19 Horiba Ltd Infrared gas analyzer
JP6035628B2 (en) * 2012-10-03 2016-11-30 株式会社チノー Gas sensor

Also Published As

Publication number Publication date
JP2017032317A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US9557261B2 (en) Spectroscopic analysis method and spectroscopic analyzer
JP5023507B2 (en) Wavelength calibration method and wavelength calibration apparatus
JP6677651B2 (en) Spectrometer and spectrometer
JP7135608B2 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
KR102231784B1 (en) Apparatus and method for measuring reference spectrum for analyzing sample, apparatus and method for analyzing sample
US8629397B2 (en) Spectrophotometer and method for calibrating the same
JP6863831B2 (en) Calculation method of calculation formula for output correction of photodetector and output correction method of photodetector
JP2016109432A (en) Spectrometric measurement device and spectrometric measurement method
JP2011149718A (en) Gas analyzer
JP6530669B2 (en) Gas concentration measuring device
WO2015119127A1 (en) Gas concentration detection device
WO2017163452A1 (en) Gas analysis method and gas measurement device
JP6293855B2 (en) Substance analysis method and analyzer
EP3179233B1 (en) Gas density detection device and gas density calculation method for gas density detection device
CN111442840A (en) Spectrum response measuring method and system of integrating sphere photometer
JP2019113568A (en) Spectrometric measurement device and spectrometric measurement method
JP6506124B2 (en) Gas concentration measuring device
US11879833B2 (en) Circular dichroism measurement device and circular dichroism measurement method
JP6571476B2 (en) Gas concentration measuring device
WO2021053804A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
JP2010066209A (en) Concentration measuring device
Wöllenstein et al. Miniaturized multi channel infrared optical gas sensor system
Ebert et al. Comparison of two variants of a novel setup for real time high resolution UV-LED absorption spectroscopy
JP2008292321A (en) Gas concentration measuring instrument
JP5994593B2 (en) Spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190517

R150 Certificate of patent or registration of utility model

Ref document number: 6530669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150