WO2017163314A1 - Substrate treatment apparatus, semiconductor device manufacturing method, and recording medium - Google Patents

Substrate treatment apparatus, semiconductor device manufacturing method, and recording medium Download PDF

Info

Publication number
WO2017163314A1
WO2017163314A1 PCT/JP2016/059003 JP2016059003W WO2017163314A1 WO 2017163314 A1 WO2017163314 A1 WO 2017163314A1 JP 2016059003 W JP2016059003 W JP 2016059003W WO 2017163314 A1 WO2017163314 A1 WO 2017163314A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
processing
processing chamber
film
Prior art date
Application number
PCT/JP2016/059003
Other languages
French (fr)
Japanese (ja)
Inventor
剛 竹田
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2016/059003 priority Critical patent/WO2017163314A1/en
Priority to CN201680083882.XA priority patent/CN108780743B/en
Priority to JP2018506658A priority patent/JP6640985B2/en
Publication of WO2017163314A1 publication Critical patent/WO2017163314A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride

Definitions

  • the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a recording medium.
  • a process of manufacturing a semiconductor device for example, a raw material containing silicon, a reactant such as a nitriding gas or an oxidizing gas is supplied to a substrate (wafer), and a nitride film, an oxide film, etc.
  • a substrate wafer
  • Substrate processing such as a step of forming a film or a step of removing a predetermined film by supplying an etching gas may be performed.
  • a heating device such as a resistance heater or a lamp heater needs to avoid the filming or etching of the heating device itself. In many cases, it is provided outside, and heat energy cannot be sufficiently transmitted to the substrate, which makes it difficult to perform uniform substrate processing.
  • An object of the present invention is to provide a substrate processing technique that enables uniform substrate processing.
  • a substrate holder that holds a substrate, a processing chamber that processes the substrate, a gas supply unit that is provided in the processing chamber and supplies a processing gas for processing the substrate, A heating device that radiates thermal energy for heating the processing chamber, and a radiation member that is provided in the processing chamber and absorbs the thermal energy radiated from the heating device and emits thermal energy having a wavelength different from that of the thermal energy.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a view showing a processing furnace part by a cross-sectional view taken along line AA of FIG. It is a figure which shows the example of installation of the radiation board used suitably by embodiment in this invention.
  • A It is a figure which shows the upper surface of the radiation board used suitably by embodiment in this invention.
  • B It is a front view of the radiation board used suitably by embodiment in this invention.
  • (C) It is a perspective view of the radiation board used suitably by embodiment in this invention. It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by embodiment in this invention, and is a figure which shows the control system of a controller with a block diagram. It is a figure which shows the flow of the substrate processing process in this invention. It is a figure which shows the modification of 1st Embodiment in this invention.
  • the processing furnace 202 includes a heater 207 as a heating device (heating mechanism).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • the heater 207 is a heating device that heats the wafer 200 by releasing thermal energy such as a resistance heater or a lamp heater, and absorbing the thermal energy into the wafer 200.
  • the heating device that radiates electromagnetic waves as energy. More specifically, the heating device emits infrared rays as electromagnetic waves, particularly infrared rays having a wavelength of 2 to 6 ⁇ m (preferably near infrared rays of 3 ⁇ m or less).
  • a reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material having good thermal energy permeability such as quartz (SiO 2 ), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 As the manifold 209 is supported by the heater base, the reaction tube 203 is installed vertically.
  • a processing vessel (reaction vessel) is mainly constituted by the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the cylindrical hollow portion of the processing container. The processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates. Note that the processing container is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing container.
  • the processing chamber 201 absorbs the thermal energy released from the heater 207, converts it into thermal energy of a different wavelength, and radiates the processing chamber 201 as a radiating member (wavelength conversion unit).
  • a radiation plate 101 is provided.
  • the infrared ray having a wavelength of 2 to 6 ⁇ m emitted from the heater 207 (preferably a near infrared ray having a wavelength shorter than 3 ⁇ m) is absorbed and at least a part of the infrared ray having a wavelength of 3 ⁇ m or more
  • a radiating plate 101 is preferably provided for converting into a far-infrared ray having a wavelength of 6 ⁇ m or more and radiating it into the processing chamber 201.
  • the radiation plate 101 is provided in the substrate arrangement region of the boat 217 along the inner wall of the reaction tube 203.
  • the radiation plate 101 includes a radiation plate 101a installed between the exhaust pipe and the temperature sensor 263, a radiation plate 101b installed between the exhaust pipe 231 and the nozzle 249b, and a nozzle 249a. , 249b, a plurality of types of radiation plates 101c are provided. Note that the radiation plates 101a, 101b, and 101c, including those described above, are collectively referred to as the radiation plate 101.
  • the radiation plate 101 is provided inside the reaction tube 203, and is placed and fixed on the upper surface of the manifold 209 by the radiation plate fixing member 301.
  • the radiation plate 101 is formed of a plate-like member curved in an arc shape.
  • the plate-like member has a notch cut out with a predetermined width.
  • a plurality of units 102 are provided.
  • the radiation plate 101 is made of a heat-resistant member having insulation properties such as heat-resistant ceramics such as SiC, SiN, AlO, and ZrO 2 , and is appropriately selected according to the type of film formed on the substrate. .
  • the radiation plate 101 may have a simple plate shape without the above-described cutout portion 102, but by having the cutout portion 102, the heat energy radiated from the heater 207 and the radiation plate 101 It becomes possible to control the balance with the thermal energy radiated by converting the wavelength. As a result, it is possible to effectively heat the wafer 200 that easily absorbs the thermal energy radiated from the heater 207 and the film formed on the surface of the wafer 200 that easily absorbs the thermal energy radiated from the radiation plate 101. Become. Therefore, it is preferable that the area of the side surface of the substrate placement area covered by the radiation plate 101 is covered at a ratio of 30% to 95%.
  • the wafer 200 can be heated by absorbing the thermal energy of the heater 207, and a predetermined film formed on the surface of the wafer 200 can be heated in a balanced manner. 200 can be processed. That is, when the wafer 200 is to be actively heated, the area covered by the radiation plate 101 is reduced. Conversely, when the predetermined film on the wafer 200 is positively heated, the area covered by the radiation plate 101 is increased. Good.
  • nozzles 249a and 249b are provided so as to penetrate the side wall of the manifold 209. Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
  • the processing container is provided with the two nozzles 249 a and 249 b and the two gas supply pipes 232 a and 232 b, and can supply a plurality of types of gases into the processing chamber 201. ing.
  • the nozzles 249 a and 249 b may be provided so as to penetrate the side wall of the reaction tube 203.
  • the gases supplied during the substrate processing step including source gas, reaction gas, inert gas and the like, which will be described later, are collectively referred to as processing gas.
  • the gas supply pipes 232a and 232b are respectively provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves in order from the upstream direction.
  • MFC mass flow controllers
  • Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively.
  • the gas supply pipes 232c and 232d are respectively provided with MFC rods 241c and 241d and valves 243c and 243d in order from the upstream direction.
  • the nozzles 249a and 249b rise in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200 and upward from the lower portion of the inner wall of the reaction tube 203 in the stacking direction of the wafer 200.
  • the nozzles 249 a and 249 b are respectively provided on the side of the end portion (periphery portion) of each wafer 200 carried into the processing chamber 201 and perpendicular to the surface (flat surface) of the wafer 200.
  • Gas supply holes 250a and 250b for supplying gas are provided on the side surfaces of the nozzles 249a and 249b, respectively.
  • the gas supply holes 250 a and 250 b are opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply holes 250 a and 250 b are provided from the lower part to the upper part of the reaction tube 203.
  • the inner wall of the side wall of the reaction tube 203 and the ends of the plurality of wafers 200 arranged in the reaction tube 203 are in an annular vertically long space in plan view. That is, the gas is conveyed through the nozzles 249a and 249b arranged in the cylindrical space. Then, gas is first ejected into the reaction tube 203 from the gas supply holes 250a and 250b opened in the nozzles 249a and 249b, respectively, in the vicinity of the wafer 200.
  • the main flow of gas in the reaction tube 203 is a direction parallel to the surface of the wafer 200, that is, a horizontal direction.
  • the gas flowing on the surface of the wafer 200 that is, the residual gas after the reaction, flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later.
  • the direction of the remaining gas flow is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
  • a raw material containing a predetermined element (first element) and a halogen element for example, a halosilane raw material gas containing silicon (Si) as a predetermined element and a halogen element passes through the MFC 241a, the valve 243a, and the nozzle 249a. And supplied into the processing chamber 201.
  • the halosilane raw material gas is a gaseous halosilane raw material, for example, a gas obtained by vaporizing a halosilane raw material in a liquid state at normal temperature and normal pressure, a halosilane raw material in a gaseous state at normal temperature and normal pressure, or the like.
  • the halosilane raw material is a silane raw material having a halogen group.
  • the halogen element includes at least one selected from the group consisting of chlorine (Cl), fluorine (F), bromine (Br), and iodine (I).
  • the halosilane raw material contains at least one halogen group selected from the group consisting of a chloro group, a fluoro group, a bromo group, and an iodo group. It can be said that the halosilane raw material is a kind of halide.
  • raw material when used in the present specification, it means “a liquid raw material in a liquid state”, “a raw material gas in a gaseous state”, or both of them.
  • halosilane source gas for example, a source gas containing Si and Cl, that is, a chlorosilane source gas can be used.
  • a chlorosilane source gas for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas can be used.
  • a nitrogen (N) -containing gas as a reaction gas as a reactant (reactant) containing an element different from the above-described predetermined element passes through the MFC 241b, the valve 243b, and the nozzle 249b. It is configured to be supplied into 201.
  • N-containing gas for example, a hydrogen nitride-based gas can be used.
  • the hydrogen nitride gas can be said to be a substance composed of only two elements of N and H, and acts as a nitriding gas, that is, an N source.
  • ammonia (NH 3 ) gas can be used as the hydrogen nitride-based gas.
  • nitrogen (N 2 ) gas is processed as an inert gas through the MFCs 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, and nozzles 249a and 249b, respectively. It is supplied into the chamber 201.
  • a raw material supply system as a first supply system is mainly configured by the gas supply pipe 232a, the MFC rod 241a, and the valve 243a.
  • the nozzle 249a may be included in the raw material supply system.
  • a reactant supply system (reactant supply system) as a second supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • the nozzle 249b may be included in the reactant supply system.
  • an inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d.
  • the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
  • the raw material supply system, the reactant supply system, and the inert gas supply system are also referred to as a gas supply system (gas supply unit).
  • a boat 217 as a substrate supporter supports a plurality of wafers 200, for example, 25 to 200 wafers 200 in a horizontal posture and aligned in the vertical direction with their centers aligned with each other in multiple stages. That is, it is configured to arrange with a predetermined interval.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages. This configuration makes it difficult for heat from the heater 207 to be transmitted to the seal cap 219 side described later.
  • the present embodiment is not limited to such a form.
  • a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) that detects the pressure in the processing chamber 201 and an APC (AUTO Pressure Controller) valve 244 as an exhaust valve (pressure adjustment unit).
  • a vacuum pump 246 as an evacuation device is connected.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated,
  • the valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • the exhaust part (exhaust system) is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • the exhaust pipe 231 is not limited to being provided in the reaction pipe 203, and may be provided in the manifold 209 similarly to the nozzles 249a and 249b.
  • a seal cap 219 is provided as a furnace port lid that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 that rotates the boat 217 is installed on the side of the seal cap 219 opposite to the processing chamber 201.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201. Further, below the manifold 209, a shutter (not shown) is provided as a furnace port lid that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
  • the shutter is made of a metal such as SUS and is formed in a disk shape.
  • the shutter opening / closing operation (elevating operation, rotating operation, etc.) is controlled by a shutter opening / closing mechanism.
  • a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203.
  • the temperature sensor 263 is configured in the same manner as the nozzles 249 a and 249 b and is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control device), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c is configured by, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes a film forming process procedure and conditions that will be described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in various processes (film forming processes) to be described later, and functions as a program.
  • process recipes, control programs, and the like are collectively referred to simply as programs.
  • the process recipe is also simply called a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d is connected to the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, rotation mechanism 267, boat elevator 115, and the like. .
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a controls the rotation mechanism 267, adjusts the flow rate of various gases by the MFC rods 241a to 241d, opens and closes the valves 243a to 243d, opens and closes the APC valve 244, and the pressure sensor 245 in accordance with the contents of the read recipe.
  • Pressure adjustment operation by the APC valve 244 based on, start and stop of the vacuum pump 246, temperature adjustment operation of the heater 207 based on the temperature sensor 263, forward / reverse rotation of the boat 217 by the rotation mechanism 267, rotation angle and rotation speed adjustment operation, boat elevator 115 is configured to control the lifting and lowering operation of the boat 217 by 115.
  • the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the step of supplying the DCS gas as the first element-containing gas and the step of supplying the NH 3 gas as the second element-containing gas are performed non-simultaneously, that is, by performing a predetermined number of times (one or more times) without synchronization.
  • a silicon nitride film Si 3 N 4 film, hereinafter referred to as a SiN film
  • a predetermined film may be formed on the wafer 200 in advance.
  • a predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface.
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
  • substrate is also synonymous with the term “wafer”.
  • Transportation step: S1 When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter is moved by the shutter opening / closing mechanism, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
  • the inside of the processing chamber 201 that is, the space where the wafer 200 exists is evacuated (reduced pressure) by the vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained.
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the vacuum pump 246 maintains a state in which it is always operated at least until the film forming step described later is completed.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature.
  • the radiation plate 101 absorbs at least part or all of infrared rays having a wavelength of 2 to 6 ⁇ m as thermal energy emitted from the heater 207 (preferably near infrared rays having a wavelength shorter than 3 ⁇ m), and has a wavelength of 3 ⁇ m or more.
  • Thermal energy that is converted into infrared rays preferably far infrared rays having a wavelength of 6 ⁇ m or more
  • a predetermined film formed on the surface of the wafer 200 is heated by the heat energy as the radiant heat.
  • the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • Heating of the processing chamber 201 by the heater 207 is continuously performed at least until a film forming step described later on the wafer 200 is completed.
  • the radiation plate 101 stops the supply of heat energy to be converted when the infrared rays radiated from the heater 207 are not supplied, and the heating by radiation stops.
  • the rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started.
  • the rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is continuously performed at least until the film forming step is completed.
  • step S ⁇ b> 3 DCS gas is supplied to the wafer 200 in the processing chamber 201.
  • the valve 243a is opened and DCS gas is caused to flow into the gas supply pipe 232a.
  • the flow rate of the DCS gas is adjusted by the MFC 241a, and the DCS gas is supplied from the gas supply hole 250a into the processing chamber 201 through the nozzle 249a and is exhausted from the exhaust pipe 231.
  • DCS gas is supplied to the wafer 200.
  • the valve 243c is opened and N 2 gas is allowed to flow into the gas supply pipe 232c.
  • the flow rate of the N 2 gas is adjusted by the MFC 241c, is supplied into the processing chamber 201 together with the DCS gas, and is exhausted from the exhaust pipe 231.
  • the supply flow rate of the DCS gas controlled by the MFC 241a is, for example, a flow rate in the range of 1 sccm to 5000 sccm.
  • the supply flow rate of the N 2 gas controlled by the MFCs 241c and 241d is set to a flow rate in the range of, for example, 100 sccm or more and 10000 sccm or less.
  • the pressure in the processing chamber 201 is set to a pressure lower than atmospheric pressure, for example, in a range of 0 Pa or more and 1000 Pa or less.
  • the time for exposing the wafer 200 to the DCS gas is, for example, a time within a range of 1 second or more and 120 seconds or less.
  • the processing temperature is such that the temperature of the wafer 200 is, for example, 100 ° C. or higher and 700 ° C. or lower, more preferably 100 ° C. or higher and 550 ° C. or lower, and further preferably 250 ° C. or higher and 450 ° C. or lower. Set.
  • the Si-containing layer may be a Si layer, a DCS adsorption layer, or both of them.
  • the Si layer is a generic name including a continuous layer composed of Si, a discontinuous layer, and a Si thin film formed by overlapping these layers.
  • Si constituting the Si layer includes those in which the bond with the Cl group is not completely broken, and those in which the bond with H is not completely broken.
  • the adsorption layer of DCS includes a discontinuous adsorption layer in addition to a continuous adsorption layer composed of DCS molecules.
  • the DCS molecules constituting the DCS adsorption layer include those in which the bond between Si and Cl is partially broken and those in which the bond between Si and H is partially broken. That is, the DCS adsorption layer may be a DCS physical adsorption layer, a DCS chemical adsorption layer, or both of them.
  • the layer having a thickness less than one atomic layer means a discontinuous atomic layer (molecular layer), and the thickness of one atomic layer (one molecular layer).
  • This layer means an atomic layer (molecular layer) formed continuously.
  • the Si-containing layer may include both a Si layer and a DCS adsorption layer.
  • expressions such as “one atomic layer” and “several atomic layer” are used for the Si-containing layer, and “atomic layer” is used synonymously with “molecular layer”.
  • step S4 After supplying the DCS gas, the valve 243a is closed and the supply of the DCS gas into the processing chamber 201 is stopped. At this time, the APC valve 244 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the DCS gas and the reaction by-product remaining in the processing chamber 201 are contributed to the formation of an unreacted or Si-containing film. Products and the like are excluded from the processing chamber 201 (S4). Further, the supply of N 2 gas into the processing chamber 201 is maintained while the valves 243c and 243d remain open. N 2 gas acts as a purge gas. Note that step S4 may be omitted and referred to as a source gas supply step.
  • 4DMAS tetrakisdimethylaminosilane
  • 3DMAS trisdimethylaminosilane
  • BDEAS bis-diethylamino silane
  • BTBAS Bistally butyl
  • DMAS dimethylaminosilane
  • DEAS diethylaminosilane
  • DPAS dipropylaminosilane
  • DIPAS diisopropylaminosilane
  • BAS butylaminosilane
  • HMDS hexamethyldisilazane
  • Various aminosilane source gases such as gas, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, tetrachlorosilane, that is, silicon tetrachloride (SiCl 4 , abbreviation: STC) gas
  • Inorganic halosilane source gases such as hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, monosilane (SiH 4 , abbreviation) : MS) gas, disilane (Si 2 H 6 , abbreviation: DS) gas, trisilane (Si 3 H 8 , abbreviation: TS) gas, and other inorganic group silane source gases not containing a
  • a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in step S3.
  • the flow rate of the NH 3 gas is adjusted by the MFC 241b, and the NH 3 gas is supplied into the processing chamber 201 from the gas supply hole 250b through the nozzle 249b.
  • the NH 3 gas supplied into the processing chamber 201 is supplied to the wafer 200 through the gas supply hole 250 b and is exhausted from the exhaust pipe 231. In this way, NH 3 gas is uniformly supplied to the wafer 200.
  • the supply flow rate of the NH 3 gas controlled by the MFC 241b is, for example, a flow rate in the range of 10 sccm to 10,000 sccm.
  • the pressure in the processing chamber 201 is, for example, a pressure in the range of 10 Pa to 3000 Pa.
  • the time for exposing the wafer to the NH 3 gas is, for example, within a range of 1 second to 120 seconds, and the processing temperature is, for example, a temperature of the wafer 200 of 100 ° C. to 700 ° C., more preferably 100 ° C.
  • the heater 207, the reactant supply system, and the exhaust system are controlled so that the temperature is 550 ° C. or lower, more preferably 250 ° C. or higher and 450 ° C. or lower.
  • step S6 After changing the Si-containing film to the SiN film, the valve 243b is closed and the supply of NH 3 gas is stopped. Then, NH 3 gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure and processing conditions as in step S4 (S6). At this time, the NH 3 gas and the like remaining in the processing chamber 201 do not have to be completely discharged, as in step S12. Note that step S6 may be omitted and referred to as a reaction gas supply step.
  • Nitriding agent i.e., the N-containing gas, other NH 3 gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2) gas, diazene (N 2 H 2) Gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, or the like may be used.
  • N-containing gas other NH 3 gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2) gas, diazene (N 2 H 2) Gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, or the like may be used.
  • inert gas for example, various rare gases exemplified in step S4 can be used in addition to the N 2 gas.
  • Predetermined number of times S7
  • Unloading step: S9 Thereafter, the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the manifold 209, and the processed wafer 200 is supported by the boat 217 from the lower end of the manifold 209 to the outside of the reaction tube 203.
  • Unload boat unload
  • the shutter is moved, and the lower end opening of the manifold 209 is sealed by the shutter via the O-ring (shutter close).
  • the processed wafer 200 is unloaded from the reaction tube 203 and then taken out from the boat 217 (wafer discharge). Note that an empty boat 217 may be carried into the processing chamber 201 after the wafer discharge.
  • the radiation plate can be provided in the processing chamber, it becomes possible to heat a predetermined film on the wafer surface from the vicinity of the wafer without using a configuration that can be a shielding object, and unnecessary heat energy consumption can be achieved. It can be avoided.
  • D By providing a notch in the radiation plate, it is possible to adjust the area covering the wafer side surface, and to easily control the balance between the thermal energy from the heating device and the thermal energy from the radiation plate. Become.
  • the apparatus is configured to perform substrate processing using plasma as a reactant activation means.
  • a first rod-shaped electrode 269 that is a first electrode having an elongated structure and a second rod-shaped electrode 270 that is a second electrode are stacked on the wafer 200 from the bottom to the top of the reaction tube 203. It is arranged in the buffer chamber 237 along the direction. Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is provided in parallel with the nozzle 249b. Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is protected by being covered with an electrode protection tube 275 that is a protection tube that protects each electrode from the top to the bottom.
  • first rod-shaped electrode 269 or the second rod-shaped electrode 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is connected to the ground as the reference potential.
  • plasma is generated in the plasma generation region 224 between the first rod-shaped electrode 269 and the second rod-shaped electrode 270.
  • the first rod-shaped electrode 269, the second rod-shaped electrode 270, the electrode protection tube 275, the matching unit 272, and the high-frequency power source 273 mainly constitute a plasma source as a plasma generator (plasma generating unit).
  • the plasma source functions as an activation mechanism that activates the reactive gas with plasma.
  • the electrode protection tube 275 has a structure in which each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere of the buffer chamber 237.
  • the inside of the electrode protection tube 275 has the same atmosphere as the outside air (atmosphere)
  • the first rod-shaped electrode 269 and the second rod-shaped electrode 270 inserted into the electrode protection tube 275 are oxidized by heat from the heater 207. Will be. Therefore, the inside of the electrode protection tube 275 is filled or purged with an inert gas such as nitrogen to suppress the oxygen concentration sufficiently low to prevent oxidation of the first rod-shaped electrode 269 or the second rod-shaped electrode 270.
  • An active gas purge mechanism is provided.
  • the substrate processing step in the first embodiment described above is performed using the plasma activation mechanism for the substrate processing.
  • the processing conditions of the substrate processing process in this modification are the same conditions as the substrate processing process in the first embodiment described above except for the reactive gas supply step S5.
  • the processing conditions in the reactive gas supply step S5 in this modification are as follows.
  • the supply flow rate of the NH 3 gas controlled by the MFC 241b is, for example, a flow rate in the range of 100 sccm or more and 10,000 sccm or less.
  • the high frequency power (RF power) applied between the rod-shaped electrodes 269 and 270 is, for example, power within a range of 50 W or more and 1000 W or less.
  • the pressure in the processing chamber 201 is, for example, 1 Pa or more and 500 Pa or less, preferably 1 or more and 100 Pa or less.
  • the NH 3 gas can be activated even when the pressure in the processing chamber 201 is set to such a relatively low pressure zone.
  • the time for supplying the active species obtained by plasma excitation of NH 3 gas to the wafer 200 is, for example, 1 second or more and 120 seconds or less, preferably 1 second or more, 60 The time is within a range of seconds or less.
  • the temperature of the heater 207 is such that the temperature of the wafer 200 is, for example, 100 ° C. or higher and 700 ° C. or lower, more preferably 100 ° C. or higher and 550 ° C. or lower, and further preferably 250 ° C. or higher and 450 ° C. or lower. Set.
  • the example in which the reactant is supplied after the raw material is supplied has been described.
  • the present invention is not limited to such an embodiment, and the supply order of the raw materials and reactants may be reversed. That is, the raw material may be supplied after the reactants are supplied. By changing the supply order, the film quality and composition ratio of the formed film can be changed.
  • the SiN film is formed on the wafer 200 in the above-described embodiment and the like.
  • the present invention is not limited to such an embodiment, and also when an Si-based oxide film such as a SiO film, a SiOC film, a SiOCN film, or a SiON film is formed on the wafer 200 using an oxidizing agent such as O 2 gas. , Can be suitably applied.
  • carbon (C) -containing gas such as propylene (C 3 H 6 ) gas
  • boron (B) -containing gas such as boron trichloride (BCl 3 ) gas
  • a SiO film, a SiON film, a SiOCN film, a SiOC film, a SiCN film, a SiBN film, a SiBCN film, a BCN film, or the like can be formed.
  • the order which flows each gas can be changed suitably. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
  • titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) is formed on the wafer 200. Even in the case of forming a metal-based oxide film or a metal-based nitride film containing a metal element such as the above, it can be suitably applied.
  • the present invention provides a Ti film, a TiO film, a TiOC film, a TiOCN film, a TiON film, a TiN film, a TiBN film, a TiBCN film, a ZrN film, a ZrO film, a ZrOCN film, a ZrON film, ZrN film, ZrBN film, ZrBCN film, HfO film, HfOC film, HfOCN film, HfON film, HfN film, HfBN film, HfBCN film, TaO film, TaOC film, TaOCN film, TaON film, TaN film, TaBN film NbO film, NbOC film, NbOCN film, NbON film, NbN film, NbBN film, NbBCN film, AlO film, AlOC film, AlOCN film, AlON film, AlN film, AlBN film, AlBCN film, MoO film, MoOC film, MoOCN Film, MoON film, MoN film, MoBN film, MoN film
  • TDMAT tetrakis (dimethylamino) titanium
  • TEMAH tetrakis (eth
  • the present invention can be suitably applied when forming a metalloid film containing a metalloid element or a metal film containing a metal element.
  • the processing procedure and processing conditions of these film forming processes can be the same processing procedures and processing conditions as the film forming processes shown in the above-described embodiments and modifications. In these cases, the same effects as those of the above-described embodiment can be obtained.
  • the recipe used for the film forming process is individually prepared according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123.
  • the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content.
  • the above-mentioned recipe is not limited to a case of newly creating, and for example, it may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • the present invention can provide a substrate processing technique that enables uniform substrate processing.
  • SYMBOLS 101 Radiation plate (radiation member, wavelength conversion part), 200 ... Wafer, 201 ... Processing chamber, 207 ... Heater (heating device), 217 ... Boat (substrate holder), 232a, 232b, 232c, 232d ... Gas supply pipe 249a, 249b ... nozzles, 250a, 250b ... gas supply holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is art having: a substrate holding tool for holding a substrate; a treatment chamber for treating the substrate; a gas supply unit, which is provided in the treatment chamber, and which supplies a treatment gas for treating the substrate; a heating apparatus that radiates thermal energy for heating the inside of the treatment chamber; and a radiation member, which is provided in the treatment chamber, and which absorbs the thermal energy radiated from the heating apparatus, and radiates thermal energy having a wavelength different from that of the thermal energy radiated from the heating apparatus.

Description

基板処理装置、半導体装置の製造方法および記録媒体Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
本発明は、基板処理装置、半導体装置の製造方法および記録媒体に関する。 The present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a recording medium.
半導体装置(デバイス)の製造工程の一工程として、基板(ウエハ)に対して、例えばシリコンを含む原料や、窒化ガスや酸化ガス等のリアクタントを供給し、基板上に窒化膜や酸化膜等の膜を形成する工程やエッチングガスを供給して所定の膜を除去する工程などの基板処理が行われることがある。 As a process of manufacturing a semiconductor device (device), for example, a raw material containing silicon, a reactant such as a nitriding gas or an oxidizing gas is supplied to a substrate (wafer), and a nitride film, an oxide film, etc. Substrate processing such as a step of forming a film or a step of removing a predetermined film by supplying an etching gas may be performed.
特開平8-139084号公報JP-A-8-139084
しかしながら、上述のような基板処理を行う場合、抵抗加熱ヒータやランプヒータ等の加熱装置は、加熱装置自身が成膜やエッチングされることを回避する必要があるなどの理由から、基板処理空間の外部に設けられることが多く、熱エネルギーを十分に基板に伝達することができずに均一な基板処理を行うことが困難となる場合があった。 However, when performing the substrate processing as described above, a heating device such as a resistance heater or a lamp heater needs to avoid the filming or etching of the heating device itself. In many cases, it is provided outside, and heat energy cannot be sufficiently transmitted to the substrate, which makes it difficult to perform uniform substrate processing.
本発明の目的は、均一な基板処理を可能とする基板処理技術を提供することにある。 An object of the present invention is to provide a substrate processing technique that enables uniform substrate processing.
本発明の一態様によれば、基板を保持する基板保持具と、前記基板を処理する処理室と、前記処理室内に設けられ、前記基板を処理する処理ガスを供給するガス供給部と、前記処理室内を加熱する熱エネルギーを放射する加熱装置と、前記処理室内に設けられ、前記加熱装置から放射された熱エネルギーを吸収して、前記熱エネルギーとは異なる波長の熱エネルギーを放射する輻射部材と、を有する技術が提供される。 According to one aspect of the present invention, a substrate holder that holds a substrate, a processing chamber that processes the substrate, a gas supply unit that is provided in the processing chamber and supplies a processing gas for processing the substrate, A heating device that radiates thermal energy for heating the processing chamber, and a radiation member that is provided in the processing chamber and absorbs the thermal energy radiated from the heating device and emits thermal energy having a wavelength different from that of the thermal energy. The technology which has these is provided.
本発明によれば、均一な基板処理を可能とする基板処理技術を提供することが可能となる。 According to the present invention, it is possible to provide a substrate processing technique that enables uniform substrate processing.
本発明における実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by embodiment in this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. 本発明における実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a view showing a processing furnace part by a cross-sectional view taken along line AA of FIG. 本発明における実施形態で好適に用いられる輻射板の設置例を示す図である。It is a figure which shows the example of installation of the radiation board used suitably by embodiment in this invention. (a)本発明における実施形態で好適に用いられる輻射板の上面を示す図である。(b)本発明における実施形態で好適に用いられる輻射板の正面図である。(c)本発明における実施形態で好適に用いられる輻射板の斜視図である。(A) It is a figure which shows the upper surface of the radiation board used suitably by embodiment in this invention. (B) It is a front view of the radiation board used suitably by embodiment in this invention. (C) It is a perspective view of the radiation board used suitably by embodiment in this invention. 本発明における実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by embodiment in this invention, and is a figure which shows the control system of a controller with a block diagram. 本発明における基板処理プロセスのフローを示す図である。It is a figure which shows the flow of the substrate processing process in this invention. 本発明における第1の実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment in this invention.
<本発明の第1の実施形態>
以下、本発明の第1の実施形態について図1から図6を参照しながら説明する。
(1)基板処理装置の構成
(加熱装置)
図1に示すように、処理炉202は加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。具体的には、ヒータ207は、抵抗加熱ヒータやランプ加熱ヒータ等の熱エネルギーを放出し、当該熱エネルギーをウエハ200に吸収させることでウエハ200を加熱する加熱装置であり、より詳しくは、熱エネルギーとしての電磁波を放射する加熱装置である。さらにより詳しくは、電磁波としての赤外線、特に2~6μmの波長を有する赤外線(好ましくは3μm以下の近赤外線)を放射する加熱装置である。
<First Embodiment of the Present Invention>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
(1) Configuration of substrate processing apparatus (heating device)
As shown in FIG. 1, the processing furnace 202 includes a heater 207 as a heating device (heating mechanism). The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate. As will be described later, the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat. Specifically, the heater 207 is a heating device that heats the wafer 200 by releasing thermal energy such as a resistance heater or a lamp heater, and absorbing the thermal energy into the wafer 200. It is a heating device that radiates electromagnetic waves as energy. More specifically, the heating device emits infrared rays as electromagnetic waves, particularly infrared rays having a wavelength of 2 to 6 μm (preferably near infrared rays of 3 μm or less).
(処理室)
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)等の熱エネルギー透過性のよい耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を、収容可能に構成されている。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器と称する場合もある。
(Processing room)
A reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material having good thermal energy permeability such as quartz (SiO 2 ), and is formed in a cylindrical shape with the upper end closed and the lower end opened. A manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203. The manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203. An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203. As the manifold 209 is supported by the heater base, the reaction tube 203 is installed vertically. A processing vessel (reaction vessel) is mainly constituted by the reaction tube 203 and the manifold 209. A processing chamber 201 is formed in the cylindrical hollow portion of the processing container. The processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates. Note that the processing container is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing container.
(輻射板)
図1に示すように、処理室201内にはヒータ207から放出された熱エネルギーを吸収し、異なる波長の熱エネルギーに変換して処理室201内に輻射する輻射部材(波長変換部)としての輻射板101が設けられている。具体的には、ヒータ207から放出された2~6μmの波長を有する赤外線(好ましくは3μmよりも短い波長を有する近赤外線)の少なくとも一部または全部を吸収し、3μm以上の波長を有する赤外線(好ましくは6μm以上の波長を有する遠赤外線)に変換して処理室201内に輻射する輻射板101が設けられる。
(Radiation plate)
As shown in FIG. 1, the processing chamber 201 absorbs the thermal energy released from the heater 207, converts it into thermal energy of a different wavelength, and radiates the processing chamber 201 as a radiating member (wavelength conversion unit). A radiation plate 101 is provided. Specifically, the infrared ray having a wavelength of 2 to 6 μm emitted from the heater 207 (preferably a near infrared ray having a wavelength shorter than 3 μm) is absorbed and at least a part of the infrared ray having a wavelength of 3 μm or more ( A radiating plate 101 is preferably provided for converting into a far-infrared ray having a wavelength of 6 μm or more and radiating it into the processing chamber 201.
図1および図2に示すように、輻射板101は、反応管203の内壁に沿うようにボート217の基板配列領域に設けられている。図2に示すように、輻射板101は、排気管と温度センサ263との間に設置された輻射板101aと、排気管231とノズル249bとの間に設置された輻射板101bと、ノズル249a,249bの間に設置された輻射板101cの複数種類が設けられている。なお、上述されたものも含め、輻射板101a,101b,101cを総称する場合には、単に輻射板101として説明を行う。 As shown in FIGS. 1 and 2, the radiation plate 101 is provided in the substrate arrangement region of the boat 217 along the inner wall of the reaction tube 203. 2, the radiation plate 101 includes a radiation plate 101a installed between the exhaust pipe and the temperature sensor 263, a radiation plate 101b installed between the exhaust pipe 231 and the nozzle 249b, and a nozzle 249a. , 249b, a plurality of types of radiation plates 101c are provided. Note that the radiation plates 101a, 101b, and 101c, including those described above, are collectively referred to as the radiation plate 101.
図3に示すように、輻射板101は反応管203の内側に設けられ、輻射板固定部材301によって、マニホールド209の上面に載置されて固定される。 As shown in FIG. 3, the radiation plate 101 is provided inside the reaction tube 203, and is placed and fixed on the upper surface of the manifold 209 by the radiation plate fixing member 301.
図4(a)~(c)にそれぞれ示すように、輻射板101は、円弧状に湾曲した板状部材で形成されており、板状部材には、所定の幅で切り欠かれた切欠き部102が複数設けられている。また、輻射板101は、例えばSiC、SiN、AlOやZrOといった耐熱性セラミックスなどの絶縁性を有する耐熱性部材で構成されており、基板に形成された膜の種類に応じて適宜選択される。 As shown in FIGS. 4A to 4C, the radiation plate 101 is formed of a plate-like member curved in an arc shape. The plate-like member has a notch cut out with a predetermined width. A plurality of units 102 are provided. The radiation plate 101 is made of a heat-resistant member having insulation properties such as heat-resistant ceramics such as SiC, SiN, AlO, and ZrO 2 , and is appropriately selected according to the type of film formed on the substrate. .
ここで、輻射板101は上述した切欠き部102を有さない単なる板状の形状としてもよいが、切欠き部102を有することによって、ヒータ207から放射される熱エネルギーと、輻射板101によって波長が変換されて輻射される熱エネルギーとのバランスを制御することが可能となる。これによってヒータ207から放射される熱エネルギーを吸収しやすいウエハ200と、輻射板101から輻射される熱エネルギーを吸収しやすいウエハ200表面に形成された膜とを効果的に加熱することが可能となる。
したがって、輻射板101によって覆われる基板載置領域側面の面積は、30%~95%の比率で覆うことが好ましい。このように構成することによって、ウエハ200がヒータ207の熱エネルギーを吸収して加熱されるとともに、ウエハ200の表面に形成された所定の膜とをバランスよく加熱することが可能となり、効率よくウエハ200を処理することが可能となる。すなわち、ウエハ200を積極的に加熱したい場合には、輻射板101によって覆う面積を小さくし、逆にウエハ200上の所定の膜を積極的に加熱したい場合には輻射板101によって覆う面積を大きくするとよい。
Here, the radiation plate 101 may have a simple plate shape without the above-described cutout portion 102, but by having the cutout portion 102, the heat energy radiated from the heater 207 and the radiation plate 101 It becomes possible to control the balance with the thermal energy radiated by converting the wavelength. As a result, it is possible to effectively heat the wafer 200 that easily absorbs the thermal energy radiated from the heater 207 and the film formed on the surface of the wafer 200 that easily absorbs the thermal energy radiated from the radiation plate 101. Become.
Therefore, it is preferable that the area of the side surface of the substrate placement area covered by the radiation plate 101 is covered at a ratio of 30% to 95%. With this configuration, the wafer 200 can be heated by absorbing the thermal energy of the heater 207, and a predetermined film formed on the surface of the wafer 200 can be heated in a balanced manner. 200 can be processed. That is, when the wafer 200 is to be actively heated, the area covered by the radiation plate 101 is reduced. Conversely, when the predetermined film on the wafer 200 is positively heated, the area covered by the radiation plate 101 is increased. Good.
(ガス供給部)
処理室201内には、ノズル249a,249bが、マニホールド209の側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bが、それぞれ接続されている。このように、処理容器には2本のノズル249a,249bと、2本のガス供給管232a,232bとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。なお、反応管203のみを処理容器とした場合、ノズル249a,249bは反応管203の側壁を貫通するように設けられていてもよい。ここで、後述する原料ガス、反応ガス、不活性ガスなどを含めて、基板処理工程時に供給されるガスを総称して処理ガスと称する。
(Gas supply part)
In the processing chamber 201, nozzles 249a and 249b are provided so as to penetrate the side wall of the manifold 209. Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively. As described above, the processing container is provided with the two nozzles 249 a and 249 b and the two gas supply pipes 232 a and 232 b, and can supply a plurality of types of gases into the processing chamber 201. ing. When only the reaction tube 203 is used as a processing container, the nozzles 249 a and 249 b may be provided so as to penetrate the side wall of the reaction tube 203. Here, the gases supplied during the substrate processing step, including source gas, reaction gas, inert gas and the like, which will be described later, are collectively referred to as processing gas.
ガス供給管232a,232bには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、上流方向から順に、MFC 241c,241dおよびバルブ243c,243dがそれぞれ設けられている。 The gas supply pipes 232a and 232b are respectively provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves in order from the upstream direction. Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively. The gas supply pipes 232c and 232d are respectively provided with MFC rods 241c and 241d and valves 243c and 243d in order from the upstream direction.
ノズル249a,249bは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直にそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250a,250bは、反応管203の中心を向くようにそれぞれ開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、それぞれ、反応管203の下部から上部にわたって複数設けられている。 The nozzles 249a and 249b rise in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200 and upward from the lower portion of the inner wall of the reaction tube 203 in the stacking direction of the wafer 200. Are provided respectively. In other words, the nozzles 249 a and 249 b are respectively provided on the side of the end portion (periphery portion) of each wafer 200 carried into the processing chamber 201 and perpendicular to the surface (flat surface) of the wafer 200. Gas supply holes 250a and 250b for supplying gas are provided on the side surfaces of the nozzles 249a and 249b, respectively. The gas supply holes 250 a and 250 b are opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250 a and 250 b are provided from the lower part to the upper part of the reaction tube 203.
このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部と、で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249a,249bを経由してガスを搬送している。そして、ノズル249a,249bにそれぞれ開口されたガス供給孔250a,250bから、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される膜の膜厚の均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。 As described above, in the present embodiment, the inner wall of the side wall of the reaction tube 203 and the ends of the plurality of wafers 200 arranged in the reaction tube 203 are in an annular vertically long space in plan view. That is, the gas is conveyed through the nozzles 249a and 249b arranged in the cylindrical space. Then, gas is first ejected into the reaction tube 203 from the gas supply holes 250a and 250b opened in the nozzles 249a and 249b, respectively, in the vicinity of the wafer 200. The main flow of gas in the reaction tube 203 is a direction parallel to the surface of the wafer 200, that is, a horizontal direction. By adopting such a configuration, it is possible to supply gas uniformly to each wafer 200, and it is possible to improve the uniformity of the film thickness formed on each wafer 200. The gas flowing on the surface of the wafer 200, that is, the residual gas after the reaction, flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later. However, the direction of the remaining gas flow is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
ガス供給管232aからは、所定元素(第1元素)およびハロゲン元素を含む原料として、例えば、所定元素としてのシリコン(Si)およびハロゲン元素を含むハロシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。 From the gas supply pipe 232a, as a raw material containing a predetermined element (first element) and a halogen element, for example, a halosilane raw material gas containing silicon (Si) as a predetermined element and a halogen element passes through the MFC 241a, the valve 243a, and the nozzle 249a. And supplied into the processing chamber 201.
ハロシラン原料ガスとは、気体状態のハロシラン原料、例えば、常温常圧下で液体状態であるハロシラン原料を気化することで得られるガスや、常温常圧下で気体状態であるハロシラン原料等のことである。ハロシラン原料とは、ハロゲン基を有するシラン原料のことである。ハロゲン元素は、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)からなる群より選択される少なくとも1つを含む。すなわち、ハロシラン原料は、クロロ基、フルオロ基、ブロモ基、ヨード基からなる群より選択される少なくとも1つのハロゲン基を含む。ハロシラン原料は、ハロゲン化物の一種ともいえる。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、それらの両方を意味する場合がある。  The halosilane raw material gas is a gaseous halosilane raw material, for example, a gas obtained by vaporizing a halosilane raw material in a liquid state at normal temperature and normal pressure, a halosilane raw material in a gaseous state at normal temperature and normal pressure, or the like. The halosilane raw material is a silane raw material having a halogen group. The halogen element includes at least one selected from the group consisting of chlorine (Cl), fluorine (F), bromine (Br), and iodine (I). That is, the halosilane raw material contains at least one halogen group selected from the group consisting of a chloro group, a fluoro group, a bromo group, and an iodo group. It can be said that the halosilane raw material is a kind of halide. When the term “raw material” is used in the present specification, it means “a liquid raw material in a liquid state”, “a raw material gas in a gaseous state”, or both of them. There is. *
ハロシラン原料ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン原料ガスを用いることができる。クロロシラン原料ガスとしては、例えば、ジクロロシラン(SiHCl、略称:DCS)ガスを用いることができる。 As the halosilane source gas, for example, a source gas containing Si and Cl, that is, a chlorosilane source gas can be used. As the chlorosilane source gas, for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas can be used.
ガス供給管232bからは、上述の所定元素とは異なる元素を含むリアクタント(反応体)として、例えば、反応ガスとしての窒素(N)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるように構成されている。N含有ガスとしては、例えば、窒化水素系ガスを用いることができる。窒化水素系ガスは、NおよびHの2元素のみで構成される物質ともいえ、窒化ガス、すなわち、Nソースとして作用する。窒化水素系ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。 From the gas supply pipe 232b, for example, a nitrogen (N) -containing gas as a reaction gas as a reactant (reactant) containing an element different from the above-described predetermined element passes through the MFC 241b, the valve 243b, and the nozzle 249b. It is configured to be supplied into 201. As the N-containing gas, for example, a hydrogen nitride-based gas can be used. The hydrogen nitride gas can be said to be a substance composed of only two elements of N and H, and acts as a nitriding gas, that is, an N source. As the hydrogen nitride-based gas, for example, ammonia (NH 3 ) gas can be used.
ガス供給管232c,232dからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC 241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。 From the gas supply pipes 232c and 232d, for example, nitrogen (N 2 ) gas is processed as an inert gas through the MFCs 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, and nozzles 249a and 249b, respectively. It is supplied into the chamber 201.
ガス供給管232aから上述の原料ガスを供給する場合、主に、ガス供給管232a、MFC 241a、バルブ243aにより、第1の供給系としての原料供給系が構成される。ノズル249aを原料供給系に含めて考えてもよい。 When supplying the above-described raw material gas from the gas supply pipe 232a, a raw material supply system as a first supply system is mainly configured by the gas supply pipe 232a, the MFC rod 241a, and the valve 243a. The nozzle 249a may be included in the raw material supply system.
また、ガス供給管232bから上述の反応体を供給する場合、主に、ガス供給管232b、MFC 241b、バルブ243bにより、第2の供給系としての反応体供給系(リアクタント供給系)が構成される。ノズル249bを反応体供給系に含めて考えてもよい。 Further, when the above-described reactant is supplied from the gas supply pipe 232b, a reactant supply system (reactant supply system) as a second supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The The nozzle 249b may be included in the reactant supply system.
また、主に、ガス供給管232c,232d、MFC 241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。不活性ガス供給系を、パージガス供給系、希釈ガス供給系、或いはキャリアガス供給系と称することもできる。
また、原料供給系、反応体供給系、不活性ガス供給系を含めてガス供給系(ガス供給部)とも称する。
Further, an inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d. The inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
Further, the raw material supply system, the reactant supply system, and the inert gas supply system are also referred to as a gas supply system (gas supply unit).
(基板支持具)
図1に示すように基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、所定の間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が多段に支持されている。この構成により、ヒータ207からの熱が後述するシールキャップ219側に伝わりにくくなっている。但し、本実施形態はこのような形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。
(Substrate support)
As shown in FIG. 1, a boat 217 as a substrate supporter supports a plurality of wafers 200, for example, 25 to 200 wafers 200 in a horizontal posture and aligned in the vertical direction with their centers aligned with each other in multiple stages. That is, it is configured to arrange with a predetermined interval. The boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages. This configuration makes it difficult for heat from the heater 207 to be transmitted to the seal cap 219 side described later. However, the present embodiment is not limited to such a form. For example, instead of providing the heat insulating plate 218 in the lower portion of the boat 217, a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
(排気部)
反応管203には、図1に示すように処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(AUTO Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気部(排気系)が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249a,249bと同様にマニホールド209に設けてもよい。
(Exhaust part)
As shown in FIG. 1, the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) that detects the pressure in the processing chamber 201 and an APC (AUTO Pressure Controller) valve 244 as an exhaust valve (pressure adjustment unit). A vacuum pump 246 as an evacuation device is connected. The APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated, The valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. The exhaust part (exhaust system) is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system. The exhaust pipe 231 is not limited to being provided in the reaction pipe 203, and may be provided in the manifold 209 similarly to the nozzles 249a and 249b.
(周辺装置)
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。
(Peripheral device)
Below the manifold 209, a seal cap 219 is provided as a furnace port lid that can airtightly close the lower end opening of the manifold 209. The seal cap 219 is configured to contact the lower end of the manifold 209 from the lower side in the vertical direction. The seal cap 219 is made of a metal such as SUS and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
シールキャップ219の処理室201と反対側には、ボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。 A rotation mechanism 267 that rotates the boat 217 is installed on the side of the seal cap 219 opposite to the processing chamber 201. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としての図示しないシャッタが設けられている。シャッタは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構により制御される。 The boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201. Further, below the manifold 209, a shutter (not shown) is provided as a furnace port lid that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115. The shutter is made of a metal such as SUS and is formed in a disk shape. The shutter opening / closing operation (elevating operation, rotating operation, etc.) is controlled by a shutter opening / closing mechanism.
図2に示すように反応管203の内部には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル249a,249bと同様に構成されており、反応管203の内壁に沿って設けられている。 As shown in FIG. 2, a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is configured in the same manner as the nozzles 249 a and 249 b and is provided along the inner wall of the reaction tube 203.
(制御装置)
次に制御装置について図5を用いて説明する。図5に示すように、制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
(Control device)
Next, the control device will be described with reference to FIG. As shown in FIG. 5, the controller 121, which is a control unit (control device), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各種処理(成膜処理)における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c is configured by, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes a film forming process procedure and conditions that will be described later, and the like are stored in a readable manner. The process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in various processes (film forming processes) to be described later, and functions as a program. Hereinafter, process recipes, control programs, and the like are collectively referred to simply as programs. The process recipe is also simply called a recipe. When the term “program” is used in this specification, it may include only a recipe, only a control program, or both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121d is connected to the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, rotation mechanism 267, boat elevator 115, and the like. .
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、回転機構267の制御、MFC 241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の正逆回転、回転角度および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。 The CPU 121a is configured to read and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. The CPU 121a controls the rotation mechanism 267, adjusts the flow rate of various gases by the MFC rods 241a to 241d, opens and closes the valves 243a to 243d, opens and closes the APC valve 244, and the pressure sensor 245 in accordance with the contents of the read recipe. Pressure adjustment operation by the APC valve 244 based on, start and stop of the vacuum pump 246, temperature adjustment operation of the heater 207 based on the temperature sensor 263, forward / reverse rotation of the boat 217 by the rotation mechanism 267, rotation angle and rotation speed adjustment operation, boat elevator 115 is configured to control the lifting and lowering operation of the boat 217 by 115.
コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリや等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer. Can be configured. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them. The program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)基板処理工程
次に、基板処理装置100を使用して、ウエハ200上に薄膜を形成する工程について、図6を参照しながら説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
(2) Substrate Processing Step Next, a step of forming a thin film on the wafer 200 using the substrate processing apparatus 100 will be described with reference to FIG. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
ここでは、第1元素含有ガスとしてDCSガスを供給するステップと、第2元素含有ガスとしてNHガスを供給するステップとを非同時に、すなわち同期させることなく所定回数(1回以上)行うことで、ウエハ200上に、SiおよびNを含む膜として、シリコン窒化膜(Si膜、以下、SiN膜と称する)を形成する例について説明する。また、例えば、ウエハ200上には、予め所定の膜が形成されていてもよい。また、ウエハ200または所定の膜には予め所定のパターンが形成されていてもよい。 Here, the step of supplying the DCS gas as the first element-containing gas and the step of supplying the NH 3 gas as the second element-containing gas are performed non-simultaneously, that is, by performing a predetermined number of times (one or more times) without synchronization. , on the wafer 200, as a film containing Si and N, a silicon nitride film (Si 3 N 4 film, hereinafter referred to as a SiN film) for example of forming a will be described. For example, a predetermined film may be formed on the wafer 200 in advance. A predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
本明細書では、図6に示す成膜処理のシーケンスを、便宜上、以下のように示すこともある。以下の変形例や他の実施形態の説明においても、同様の表記を用いることとする。 In this specification, the sequence of the film forming process shown in FIG. 6 may be shown as follows for convenience. The same notation is also used in the following modifications and other embodiments.
(DCS→NH)×n ⇒ SiN (DCS → NH 3 ) × n => SiN
本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。 In this specification, when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface. In addition, when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(または膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(または膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(または膜)を形成する」ことを意味する場合がある。 Therefore, in the present specification, the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
また、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 In this specification, the term “substrate” is also synonymous with the term “wafer”.
(搬入ステップ:S1)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構によりシャッタが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(Transportation step: S1)
When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter is moved by the shutter opening / closing mechanism, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
(圧力・温度調整ステップ:S2)
処理室201の内部、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくとも後述する成膜ステップが終了するまでの間は常時作動させた状態を維持する。
(Pressure / temperature adjustment step: S2)
The inside of the processing chamber 201, that is, the space where the wafer 200 exists is evacuated (reduced pressure) by the vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. The vacuum pump 246 maintains a state in which it is always operated at least until the film forming step described later is completed.
また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。ヒータ207より放射された熱エネルギーとしての2~6μmの波長を有する赤外線(好ましくは3μmよりも短い波長の近赤外線)の少なくとも一部または全部を輻射板101が吸収し、3μm以上の波長を有する赤外線(好ましくは6μm以上の波長を有する遠赤外線)に変換して輻射熱となる熱エネルギーを放射する。この輻射熱としての熱エネルギーによってウエハ200の表面に形成された所定の膜が加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する後述する成膜ステップが終了するまでの間は継続して行われる。輻射板101は、ヒータ207から放射される赤外線が供給されなくなることで変換する熱エネルギーの供給が停止し、自ずと輻射による加熱が停止する。また、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも成膜ステップが終了するまでの間は継続して行われる。 Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. The radiation plate 101 absorbs at least part or all of infrared rays having a wavelength of 2 to 6 μm as thermal energy emitted from the heater 207 (preferably near infrared rays having a wavelength shorter than 3 μm), and has a wavelength of 3 μm or more. Thermal energy that is converted into infrared rays (preferably far infrared rays having a wavelength of 6 μm or more) and becomes radiant heat is emitted. A predetermined film formed on the surface of the wafer 200 is heated by the heat energy as the radiant heat. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until a film forming step described later on the wafer 200 is completed. The radiation plate 101 stops the supply of heat energy to be converted when the infrared rays radiated from the heater 207 are not supplied, and the heating by radiation stops. Further, the rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started. The rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is continuously performed at least until the film forming step is completed.
(成膜ステップ:S3,S4,S5,S6)
その後、ステップS3,S4,S5,S6を順次実行することで成膜ステップを行う。
(Film formation step: S3, S4, S5, S6)
Thereafter, the film forming step is performed by sequentially executing steps S3, S4, S5, and S6.
(原料ガス供給ステップ:S3,S4)
ステップS3では、処理室201内のウエハ200に対してDCSガスを供給する。
(Raw gas supply step: S3, S4)
In step S <b> 3, DCS gas is supplied to the wafer 200 in the processing chamber 201.
バルブ243aを開き、ガス供給管232a内へDCSガスを流す。DCSガスは、MFC 241aにより流量調整され、ノズル249aを介して、ガス供給孔250aから処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対してDCSガスが供給されることとなる。このとき同時にバルブ243cを開き、ガス供給管232c内へNガスを流す。Nガスは、MFC 241cにより流量調整され、DCSガスと一緒に処理室201内へ供給され、排気管231から排気される。 The valve 243a is opened and DCS gas is caused to flow into the gas supply pipe 232a. The flow rate of the DCS gas is adjusted by the MFC 241a, and the DCS gas is supplied from the gas supply hole 250a into the processing chamber 201 through the nozzle 249a and is exhausted from the exhaust pipe 231. At this time, DCS gas is supplied to the wafer 200. At the same time, the valve 243c is opened and N 2 gas is allowed to flow into the gas supply pipe 232c. The flow rate of the N 2 gas is adjusted by the MFC 241c, is supplied into the processing chamber 201 together with the DCS gas, and is exhausted from the exhaust pipe 231.
また、ノズル249b内へのDCSガスの侵入を防止するため、バルブ243dを開き、ガス供給管232d内へNガスを流す。Nガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。 In order to prevent the penetration of the DCS gas into the nozzle 249 b, by opening the valve 243 d, flow the N 2 gas to the gas supply pipe 232 d. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust pipe 231.
MFC 241aで制御するDCSガスの供給流量は、例えば1sccm以上、5000sccm以下の範囲内の流量とする。MFC 241c,241dで制御するNガスの供給流量は、それぞれ例えば100sccm以上、10000sccm以下の範囲内の流量とする。処理室201内の圧力は大気圧未満、例えば0Pa以上、1000Pa以下の範囲内の圧力とする。DCSガスにウエハ200を晒す時間は、例えば1秒以上、120秒以下の範囲内の時間とする。 The supply flow rate of the DCS gas controlled by the MFC 241a is, for example, a flow rate in the range of 1 sccm to 5000 sccm. The supply flow rate of the N 2 gas controlled by the MFCs 241c and 241d is set to a flow rate in the range of, for example, 100 sccm or more and 10000 sccm or less. The pressure in the processing chamber 201 is set to a pressure lower than atmospheric pressure, for example, in a range of 0 Pa or more and 1000 Pa or less. The time for exposing the wafer 200 to the DCS gas is, for example, a time within a range of 1 second or more and 120 seconds or less.
処理温度は、ウエハ200の温度が例えば100℃以上、700℃以下、より好ましくは100℃以上、550℃以下、さらに好ましくは250℃以上、450℃以下の範囲内の温度となるような温度に設定する。 The processing temperature is such that the temperature of the wafer 200 is, for example, 100 ° C. or higher and 700 ° C. or lower, more preferably 100 ° C. or higher and 550 ° C. or lower, and further preferably 250 ° C. or higher and 450 ° C. or lower. Set.
 上述の条件下でウエハ200に対してDCSガスを供給することにより、ウエハ200(表面の下地膜)上に、例えば1原子層(1分子層)未満から数原子層(数分子層)程度の厚さのSi含有層が形成される。Si含有層はSi層であってもよいし、DCSの吸着層であってもよいし、それらの両方を含んでいてもよい。 By supplying DCS gas to the wafer 200 under the above-described conditions, for example, less than one atomic layer (one molecular layer) to several atomic layers (several molecular layers) are formed on the wafer 200 (surface underlayer film). A thick Si-containing layer is formed. The Si-containing layer may be a Si layer, a DCS adsorption layer, or both of them.
 Si層とは、Siにより構成される連続的な層の他、不連続な層や、これらが重なってできるSi薄膜をも含む総称である。Si層を構成するSiは、Cl基との結合が完全に切れていないものや、Hとの結合が完全に切れていないものも含む。 The Si layer is a generic name including a continuous layer composed of Si, a discontinuous layer, and a Si thin film formed by overlapping these layers. Si constituting the Si layer includes those in which the bond with the Cl group is not completely broken, and those in which the bond with H is not completely broken.
 DCSの吸着層は、DCS分子で構成される連続的な吸着層の他、不連続な吸着層をも含む。DCSの吸着層を構成するDCS分子は、SiとClとの結合が一部切れたものや、SiとHとの結合が一部切れたもの等も含む。すなわち、DCSの吸着層は、DCSの物理吸着層であってもよいし、DCSの化学吸着層であってもよいし、それらの両方を含んでいてもよい。 The adsorption layer of DCS includes a discontinuous adsorption layer in addition to a continuous adsorption layer composed of DCS molecules. The DCS molecules constituting the DCS adsorption layer include those in which the bond between Si and Cl is partially broken and those in which the bond between Si and H is partially broken. That is, the DCS adsorption layer may be a DCS physical adsorption layer, a DCS chemical adsorption layer, or both of them.
 ここで、1原子層(1分子層)未満の厚さの層とは不連続に形成される原子層(分子層)のことを意味しており、1原子層(1分子層)の厚さの層とは連続的に形成される原子層(分子層)のことを意味している。Si含有層は、Si層とDCSの吸着層との両方を含み得る。但し、上述の通り、Si含有層については「1原子層」、「数原子層」等の表現を用いることとし、「原子層」を「分子層」と同義で用いる。 Here, the layer having a thickness less than one atomic layer (one molecular layer) means a discontinuous atomic layer (molecular layer), and the thickness of one atomic layer (one molecular layer). This layer means an atomic layer (molecular layer) formed continuously. The Si-containing layer may include both a Si layer and a DCS adsorption layer. However, as described above, expressions such as “one atomic layer” and “several atomic layer” are used for the Si-containing layer, and “atomic layer” is used synonymously with “molecular layer”.
DCSガスを供給した後、バルブ243aを閉じ、処理室201内へのDCSガスの供給を停止する。このとき、APCバルブ244を開いたままとし、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはSi含有膜の形成に寄与した後のDCSガスや反応副生成物等を処理室201内から排除する(S4)。また、バルブ243c,243dは開いたままとして、処理室201内へのNガスの供給を維持する。Nガスはパージガスとして作用する。なお、このステップS4を省略して原料ガス供給ステップと称してもよい。 After supplying the DCS gas, the valve 243a is closed and the supply of the DCS gas into the processing chamber 201 is stopped. At this time, the APC valve 244 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the DCS gas and the reaction by-product remaining in the processing chamber 201 are contributed to the formation of an unreacted or Si-containing film. Products and the like are excluded from the processing chamber 201 (S4). Further, the supply of N 2 gas into the processing chamber 201 is maintained while the valves 243c and 243d remain open. N 2 gas acts as a purge gas. Note that step S4 may be omitted and referred to as a source gas supply step.
原料ガスとしては、DCSガスのほか、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスジメチルアミノシラン(Si[N(CH、略称:BDMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:BDEAS)ガス、ビスターシャリーブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス等を好適に用いることができる。このほか、原料ガスとしては、ジメチルアミノシラン(DMAS)ガス、ジエチルアミノシラン(DEAS)ガス、ジプロピルアミノシラン(DPAS)ガス、ジイソプロピルアミノシラン(DIPAS)ガス、ブチルアミノシラン(BAS)ガス、ヘキサメチルジシラザン(HMDS)ガス等の各種アミノシラン原料ガスや、モノクロロシラン(SiHCl、略称:MCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシランすなわちシリコンテトラクロライド(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機系ハロシラン原料ガスや、モノシラン(SiH、略称:MS)ガス、ジシラン(Si、略称:DS)ガス、トリシラン(Si、略称:TS)ガス等のハロゲン基非含有の無機系シラン原料ガスを好適に用いることができる。 As a source gas, in addition to DCS gas, tetrakisdimethylaminosilane (Si [N (CH 3 ) 2 ] 4 , abbreviation: 4DMAS) gas, trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, abbreviation: 3DMAS) ) gas, bis (dimethylamino) silane (Si [N (CH 3) 2] 2 H 2, abbreviation: BDMAS) gas, bis-diethylamino silane (Si [N (C 2 H 5) 2] 2 H 2, abbreviation: BDEAS) gas Bistally butylaminosilane (SiH 2 [NH (C 4 H 9 )] 2 , abbreviation: BTBAS) gas or the like can be preferably used. Other source gases include dimethylaminosilane (DMAS) gas, diethylaminosilane (DEAS) gas, dipropylaminosilane (DPAS) gas, diisopropylaminosilane (DIPAS) gas, butylaminosilane (BAS) gas, hexamethyldisilazane (HMDS). ) Various aminosilane source gases such as gas, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, tetrachlorosilane, that is, silicon tetrachloride (SiCl 4 , abbreviation: STC) gas Inorganic halosilane source gases such as hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, monosilane (SiH 4 , abbreviation) : MS) gas, disilane (Si 2 H 6 , abbreviation: DS) gas, trisilane (Si 3 H 8 , abbreviation: TS) gas, and other inorganic group silane source gases not containing a halogen group can be suitably used.
不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。 As the inert gas, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
(反応ガス供給ステップ:S5,S6)
成膜処理が終了した後、処理室201内のウエハ200に対して反応ガスとしてのNHガスを供給する(S5)。
(Reactive gas supply step: S5, S6)
After the film formation process is completed, NH 3 gas as a reaction gas is supplied to the wafer 200 in the process chamber 201 (S5).
このステップでは、バルブ243b~243dの開閉制御を、ステップS3におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。NHガスは、MFC 241bにより流量調整され、ノズル249bを介してガス供給孔250bから処理室201内へ供給される。処理室201内へ供給されたNHガスはガス供給孔250bを介してウエハ200に対して供給され、排気管231から排気される。このようにしてウエハ200に対して、NHガスが均一に供給されることとなる。 In this step, the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in step S3. The flow rate of the NH 3 gas is adjusted by the MFC 241b, and the NH 3 gas is supplied into the processing chamber 201 from the gas supply hole 250b through the nozzle 249b. The NH 3 gas supplied into the processing chamber 201 is supplied to the wafer 200 through the gas supply hole 250 b and is exhausted from the exhaust pipe 231. In this way, NH 3 gas is uniformly supplied to the wafer 200.
MFC 241bで制御するNHガスの供給流量は、例えば10sccm以上、10000sccm以下の範囲内の流量とする。処理室201内の圧力は、例えば10Pa以上、3000Pa以下の範囲内の圧力とする。なお、NHガスにウエハを晒す時間は、例えば1秒以上、120秒以下の範囲内の時間とし、処理温度は、ウエハ200の温度が例えば100℃以上、700℃以下、より好ましくは100℃以上、550℃以下、さらに好ましくは250℃以上、450℃以下の範囲の温度となるようにヒータ207、反応体供給系、排気系を制御する。このように反応ガスをウエハ200に供給することによって、原料ガス供給ステップで形成されたSi含有膜をSiN膜へと変化させる。 The supply flow rate of the NH 3 gas controlled by the MFC 241b is, for example, a flow rate in the range of 10 sccm to 10,000 sccm. The pressure in the processing chamber 201 is, for example, a pressure in the range of 10 Pa to 3000 Pa. The time for exposing the wafer to the NH 3 gas is, for example, within a range of 1 second to 120 seconds, and the processing temperature is, for example, a temperature of the wafer 200 of 100 ° C. to 700 ° C., more preferably 100 ° C. The heater 207, the reactant supply system, and the exhaust system are controlled so that the temperature is 550 ° C. or lower, more preferably 250 ° C. or higher and 450 ° C. or lower. By supplying the reaction gas to the wafer 200 in this way, the Si-containing film formed in the raw material gas supply step is changed to a SiN film.
Si含有膜をSiN膜へ変化させた後、バルブ243bを閉じ、NHガスの供給を停止する。そして、ステップS4と同様の処理手順、処理条件により、処理室201内に残留するNHガスや反応副生成物を処理室201内から排除する(S6)。このとき、処理室201内に残留するNHガス等を完全に排出しなくてもよい点は、ステップS12と同様である。なお、このステップS6を省略して反応ガス供給ステップと称してもよい。 After changing the Si-containing film to the SiN film, the valve 243b is closed and the supply of NH 3 gas is stopped. Then, NH 3 gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure and processing conditions as in step S4 (S6). At this time, the NH 3 gas and the like remaining in the processing chamber 201 do not have to be completely discharged, as in step S12. Note that step S6 may be omitted and referred to as a reaction gas supply step.
窒化剤、すなわち、N含有ガスとしては、NHガスの他、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等を用いてもよい。 Nitriding agent, i.e., the N-containing gas, other NH 3 gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2) gas, diazene (N 2 H 2) Gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, or the like may be used.
不活性ガスとしては、Nガスの他、例えば、ステップS4で例示した各種希ガスを用いることができる。 As the inert gas, for example, various rare gases exemplified in step S4 can be used in addition to the N 2 gas.
(所定回数実施:S7)
上述したS3,S4,S5,S6をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回)、すなわち、1回以上行うことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。
(Predetermined number of times: S7)
By performing the above-described S3, S4, S5, and S6 non-simultaneously along this order, that is, without synchronizing them as one cycle, by performing this cycle a predetermined number of times (n times), that is, once or more, An SiN film having a predetermined composition and a predetermined film thickness can be formed on the wafer 200.
(大気圧復帰ステップ:S8)
上述の成膜処理が完了したら、ガス供給管232c,232dのそれぞれから不活性ガスとしてのNガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するNHガス等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰:S8)。
(Atmospheric pressure return step: S8)
When the film forming process described above is completed, N 2 gas as an inert gas is supplied into the processing chamber 201 from each of the gas supply pipes 232c and 232d and exhausted from the exhaust pipe 231. Thereby, the inside of the processing chamber 201 is purged with the inert gas, and NH 3 gas remaining in the processing chamber 201 is removed from the inside of the processing chamber 201 (inert gas purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure: S8).
(搬出ステップ:S9)
その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタが移動させられ、マニホールド209の下端開口がOリングを介してシャッタによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。
(Unloading step: S9)
Thereafter, the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the manifold 209, and the processed wafer 200 is supported by the boat 217 from the lower end of the manifold 209 to the outside of the reaction tube 203. Unload (boat unload). After the boat unloading, the shutter is moved, and the lower end opening of the manifold 209 is sealed by the shutter via the O-ring (shutter close). The processed wafer 200 is unloaded from the reaction tube 203 and then taken out from the boat 217 (wafer discharge). Note that an empty boat 217 may be carried into the processing chamber 201 after the wafer discharge.
(3)本実施形態による効果
本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)熱エネルギーの波長を変換させることが可能な輻射板を設けることで、ウエハが吸収しやすい熱エネルギーと、ウエハ表面に形成された所定の膜が吸収しやすい熱エネルギーとを供給することが可能となり、ウエハとウエハ表面の所定の膜それぞれの加熱を個々に制御することが可能となる。
(b)ウエハとウエハ表面の所定の膜をそれぞれ加熱することが可能となることによって、ウエハの昇温や成膜処理の効率を向上させることが可能となり、スループットを向上させることが可能となる。
(c)輻射板を処理室内に設けることが可能となるため、遮蔽物となり得る構成を介することなくウエハ近傍からウエハ表面の所定の膜を加熱することが可能となり、不要な熱エネルギーの消費を回避することが可能となる。
(d)輻射板に切欠きを設けることによってウエハ側面を覆う面積を調整することが可能となり、加熱装置からの熱エネルギーと輻射板からの熱エネルギーとのバランスを簡単に制御することが可能となる。
(3) Effects according to this embodiment According to this embodiment, one or more of the following effects can be obtained.
(A) Providing a radiation plate capable of converting the wavelength of thermal energy to supply thermal energy that is easily absorbed by the wafer and thermal energy that is easily absorbed by a predetermined film formed on the wafer surface. It becomes possible to individually control the heating of the wafer and the predetermined film on the wafer surface.
(B) Since it becomes possible to heat the wafer and a predetermined film on the wafer surface, respectively, it becomes possible to improve the temperature of the wafer and the efficiency of the film formation process, thereby improving the throughput. .
(C) Since the radiation plate can be provided in the processing chamber, it becomes possible to heat a predetermined film on the wafer surface from the vicinity of the wafer without using a configuration that can be a shielding object, and unnecessary heat energy consumption can be achieved. It can be avoided.
(D) By providing a notch in the radiation plate, it is possible to adjust the area covering the wafer side surface, and to easily control the balance between the thermal energy from the heating device and the thermal energy from the radiation plate. Become.
(変形例)
次に図7を用いて本発明の変形例を説明する。本変形例は、反応体の活性化手段としてプラズマを用いて基板処理を行う装置構成としている。
(Modification)
Next, a modification of the present invention will be described with reference to FIG. In this modification, the apparatus is configured to perform substrate processing using plasma as a reactant activation means.
図7に示すように、細長い構造を有する第1の電極である第1の棒状電極269及び第2の電極である第2の棒状電極270が、反応管203の下部より上部にわたりウエハ200の積層方向に沿って、バッファ室237内に配設されている。第1の棒状電極269及び第2の棒状電極270のそれぞれは、ノズル249bと平行に設けられている。第1の棒状電極269及び第2の棒状電極270のそれぞれは、上部より下部にわたって各電極を保護する保護管である電極保護管275により覆われることで保護されている。この第1の棒状電極269又は第2の棒状電極270のいずれか一方は整合器272を介して高周波電源273に接続され、他方は基準電位であるアースに接続されている。この結果、第1の棒状電極269及び第2の棒状電極270間のプラズマ生成領域224にプラズマが生成される。主に、第1の棒状電極269、第2の棒状電極270、電極保護管275、整合器272、高周波電源273によりプラズマ発生器(プラズマ発生部)としてのプラズマ源が構成される。なお、プラズマ源は、反応ガスをプラズマで活性化させる活性化機構として機能する。 As shown in FIG. 7, a first rod-shaped electrode 269 that is a first electrode having an elongated structure and a second rod-shaped electrode 270 that is a second electrode are stacked on the wafer 200 from the bottom to the top of the reaction tube 203. It is arranged in the buffer chamber 237 along the direction. Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is provided in parallel with the nozzle 249b. Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is protected by being covered with an electrode protection tube 275 that is a protection tube that protects each electrode from the top to the bottom. Either the first rod-shaped electrode 269 or the second rod-shaped electrode 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is connected to the ground as the reference potential. As a result, plasma is generated in the plasma generation region 224 between the first rod-shaped electrode 269 and the second rod-shaped electrode 270. The first rod-shaped electrode 269, the second rod-shaped electrode 270, the electrode protection tube 275, the matching unit 272, and the high-frequency power source 273 mainly constitute a plasma source as a plasma generator (plasma generating unit). The plasma source functions as an activation mechanism that activates the reactive gas with plasma.
電極保護管275は、第1の棒状電極269及び第2の棒状電極270のそれぞれをバッファ室237の雰囲気と隔離した状態でバッファ室237内に挿入できる構造となっている。ここで、電極保護管275の内部は外気(大気)と同一雰囲気であると、電極保護管275にそれぞれ挿入された第1の棒状電極269及び第2の棒状電極270はヒータ207による熱で酸化されてしまう。そこで、電極保護管275の内部には窒素などの不活性ガスを充填あるいはパージし、酸素濃度を充分低く抑えて第1の棒状電極269又は第2の棒状電極270の酸化を防止するための不活性ガスパージ機構が設けられている。 The electrode protection tube 275 has a structure in which each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere of the buffer chamber 237. Here, if the inside of the electrode protection tube 275 has the same atmosphere as the outside air (atmosphere), the first rod-shaped electrode 269 and the second rod-shaped electrode 270 inserted into the electrode protection tube 275 are oxidized by heat from the heater 207. Will be. Therefore, the inside of the electrode protection tube 275 is filled or purged with an inert gas such as nitrogen to suppress the oxygen concentration sufficiently low to prevent oxidation of the first rod-shaped electrode 269 or the second rod-shaped electrode 270. An active gas purge mechanism is provided.
このように、基板処理にプラズマによる活性化機構を用いて、上述した第1の実施形態における基板処理工程を行う。本変形例における基板処理工程の処理条件は、反応ガス供給ステップS5以外は、上述した第1の実施形態における基板処理工程と同じ条件である。 As described above, the substrate processing step in the first embodiment described above is performed using the plasma activation mechanism for the substrate processing. The processing conditions of the substrate processing process in this modification are the same conditions as the substrate processing process in the first embodiment described above except for the reactive gas supply step S5.
本変形例における反応ガス供給ステップS5における処理条件は以下の通りである。例えば、MFC241bで制御するNHガスの供給流量は、例えば100sccm以上、10000sccm以下の範囲内の流量とする。棒状電極269,270間に印加する高周波電力(RF電力)は、例えば50W以上、1000W以下の範囲内の電力とする。処理室201内の圧力は、例えば1Pa以上、500Pa以下、好ましくは1以上、100Pa以下の範囲内の圧力とする。プラズマを用いることで、処理室201内の圧力をこのような比較的低い圧力帯としても、NHガスを活性化させることが可能となる。NHガスをプラズマ励起させることにより得られる活性種をウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1秒以上、120秒以下、好ましくは1秒以上、60秒以下の範囲内の時間とする。ヒータ207の温度はウエハ200の温度が例えば100℃以上、700℃以下、より好ましくは100℃以上、550℃以下、さらに好ましくは250℃以上、450℃以下の範囲の温度となるような温度に設定する。 The processing conditions in the reactive gas supply step S5 in this modification are as follows. For example, the supply flow rate of the NH 3 gas controlled by the MFC 241b is, for example, a flow rate in the range of 100 sccm or more and 10,000 sccm or less. The high frequency power (RF power) applied between the rod-shaped electrodes 269 and 270 is, for example, power within a range of 50 W or more and 1000 W or less. The pressure in the processing chamber 201 is, for example, 1 Pa or more and 500 Pa or less, preferably 1 or more and 100 Pa or less. By using plasma, the NH 3 gas can be activated even when the pressure in the processing chamber 201 is set to such a relatively low pressure zone. The time for supplying the active species obtained by plasma excitation of NH 3 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 1 second or more and 120 seconds or less, preferably 1 second or more, 60 The time is within a range of seconds or less. The temperature of the heater 207 is such that the temperature of the wafer 200 is, for example, 100 ° C. or higher and 700 ° C. or lower, more preferably 100 ° C. or higher and 550 ° C. or lower, and further preferably 250 ° C. or higher and 450 ° C. or lower. Set.
以上のように基板処理にプラズマによる活性化機構を用いて基板処理を行うことによって、第1の実施形態によって得られる効果に加え、低温条件下で基板処理を行うことが可能となり、サーマルバジェット等の悪影響をより抑制することが可能となる。 By performing the substrate processing using the plasma activation mechanism for the substrate processing as described above, it becomes possible to perform the substrate processing under a low temperature condition in addition to the effects obtained by the first embodiment, and the thermal budget etc. It is possible to further suppress the adverse effects of the above.
以上、本発明の実施形態について具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
例えば、上述の実施形態では、原料を供給した後に反応体を供給する例について説明した。本発明はこのような態様に限定されず、原料、反応体の供給順序は逆でもよい。すなわち、反応体を供給した後に原料を供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。 For example, in the above-described embodiment, the example in which the reactant is supplied after the raw material is supplied has been described. The present invention is not limited to such an embodiment, and the supply order of the raw materials and reactants may be reversed. That is, the raw material may be supplied after the reactants are supplied. By changing the supply order, the film quality and composition ratio of the formed film can be changed.
上述の実施形態等では、ウエハ200上にSiN膜を形成する例について説明した。本発明はこのような態様に限定されず、Oガスなどの酸化剤を用いてウエハ200上に、SiO膜、SiOC膜、SiOCN膜、SiON膜等のSi系酸化膜を形成する場合にも、好適に適用可能である。 In the above-described embodiment and the like, the example in which the SiN film is formed on the wafer 200 has been described. The present invention is not limited to such an embodiment, and also when an Si-based oxide film such as a SiO film, a SiOC film, a SiOCN film, or a SiON film is formed on the wafer 200 using an oxidizing agent such as O 2 gas. , Can be suitably applied.
例えば、上述したガスの他、もしくは、これらのガスに加え、プロピレン(C)ガス等の炭素(C)含有ガス、三塩化硼素(BCl)ガス等の硼素(B)含有ガス等を用い、例えば、SiO膜、SiON膜、SiOCN膜、SiOC膜、SiCN膜、SiBN膜、SiBCN膜、BCN膜等を形成することができる。なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。 For example, in addition to these gases, or in addition to these gases, carbon (C) -containing gas such as propylene (C 3 H 6 ) gas, boron (B) -containing gas such as boron trichloride (BCl 3 ) gas, etc. For example, a SiO film, a SiON film, a SiOCN film, a SiOC film, a SiCN film, a SiBN film, a SiBCN film, a BCN film, or the like can be formed. In addition, the order which flows each gas can be changed suitably. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
また、本発明は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む金属系酸化膜や金属系窒化膜を形成する場合においても、好適に適用可能である。すなわち、本発明は、ウエハ200上に、Ti膜、TiO膜、TiOC膜、TiOCN膜、TiON膜、TiN膜、TiBN膜、TiBCN膜、ZrN膜、ZrO膜、ZrOC膜、ZrOCN膜、ZrON膜、ZrN膜、ZrBN膜、ZrBCN膜、HfO膜、HfOC膜、HfOCN膜、HfON膜、HfN膜、HfBN膜、HfBCN膜、TaO膜、TaOC膜、TaOCN膜、TaON膜、TaN膜、TaBN膜、TaBCN膜、NbO膜、NbOC膜、NbOCN膜、NbON膜、NbN膜、NbBN膜、NbBCN膜、AlO膜、AlOC膜、AlOCN膜、AlON膜、AlN膜、AlBN膜、AlBCN膜、MoO膜、MoOC膜、MoOCN膜、MoON膜、MoN膜、MoBN膜、MoBCN膜、W膜、WO膜、WOC膜、WOCN膜、WON膜、WN膜、WBN膜、WBCN膜等を形成する場合にも、好適に適用することが可能となる。 In the present invention, titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) is formed on the wafer 200. Even in the case of forming a metal-based oxide film or a metal-based nitride film containing a metal element such as the above, it can be suitably applied. That is, the present invention provides a Ti film, a TiO film, a TiOC film, a TiOCN film, a TiON film, a TiN film, a TiBN film, a TiBCN film, a ZrN film, a ZrO film, a ZrOCN film, a ZrON film, ZrN film, ZrBN film, ZrBCN film, HfO film, HfOC film, HfOCN film, HfON film, HfN film, HfBN film, HfBCN film, TaO film, TaOC film, TaOCN film, TaON film, TaN film, TaBN film NbO film, NbOC film, NbOCN film, NbON film, NbN film, NbBN film, NbBCN film, AlO film, AlOC film, AlOCN film, AlON film, AlN film, AlBN film, AlBCN film, MoO film, MoOC film, MoOCN Film, MoON film, MoN film, MoBN film, MoBCN film, W film, WO film, WOC film WOCN film, WON film, WN film, WBN film, even in the case of forming the WBCN film or the like, it is possible to suitably apply.
これらの場合、例えば、原料ガスとして、テトラキス(ジメチルアミノ)チタン(Ti[N(CH、略称:TDMAT)ガス、テトラキス(エチルメチルアミノ)ハフニウム(Hf[N(C)(CH)]、略称:TEMAH)ガス、テトラキス(エチルメチルアミノ)ジルコニウム(Zr[N(C)(CH)]、略称:TEMAZ)ガス、トリメチルアルミニウム(Al(CH、略称:TMA)ガス、チタニウムテトラクロライド(TiCl)ガス、ハフニウムテトラクロライド(HfCl)ガス等を用いることができる。 In these cases, for example, tetrakis (dimethylamino) titanium (Ti [N (CH 3 ) 2 ] 4 , abbreviation: TDMAT) gas, tetrakis (ethylmethylamino) hafnium (Hf [N (C 2 H 5) ) (CH 3 )] 4 , abbreviation: TEMAH) gas, tetrakis (ethylmethylamino) zirconium (Zr [N (C 2 H 5 ) (CH 3 )] 4 , abbreviation: TEMAZ) gas, trimethylaluminum (Al (CH) 3 ) 3 , abbreviation: TMA) gas, titanium tetrachloride (TiCl 4 ) gas, hafnium tetrachloride (HfCl 4 ) gas, or the like can be used.
すなわち、本発明は、半金属元素を含む半金属系膜や金属元素を含む金属系膜を形成する場合に、好適に適用することができる。これらの成膜処理の処理手順、処理条件は、上述の実施形態や変形例に示す成膜処理と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の実施形態と同様の効果が得られる。 That is, the present invention can be suitably applied when forming a metalloid film containing a metalloid element or a metal film containing a metal element. The processing procedure and processing conditions of these film forming processes can be the same processing procedures and processing conditions as the film forming processes shown in the above-described embodiments and modifications. In these cases, the same effects as those of the above-described embodiment can be obtained.
 成膜処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。 It is preferable that the recipe used for the film forming process is individually prepared according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. When starting various processes, it is preferable that the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content. As a result, thin films having various film types, composition ratios, film qualities, and film thicknesses can be formed for general use and with good reproducibility using a single substrate processing apparatus. In addition, the burden on the operator can be reduced, and various processes can be started quickly while avoiding an operation error.
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。 The above-mentioned recipe is not limited to a case of newly creating, and for example, it may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus. When changing the recipe, the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded. Further, an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
以上述べたように、本発明は、均一な基板処理を可能とする基板処理技術を提供することができる。 As described above, the present invention can provide a substrate processing technique that enables uniform substrate processing.
101…輻射板(輻射部材、波長変換部)、200…ウエハ、201…処理室、207…ヒータ(加熱装置)、217…ボート(基板保持具)、232a、232b、232c、232d…ガス供給管、249a,249b…ノズル、250a、250b…ガス供給孔。

 
DESCRIPTION OF SYMBOLS 101 ... Radiation plate (radiation member, wavelength conversion part), 200 ... Wafer, 201 ... Processing chamber, 207 ... Heater (heating device), 217 ... Boat (substrate holder), 232a, 232b, 232c, 232d ... Gas supply pipe 249a, 249b ... nozzles, 250a, 250b ... gas supply holes.

Claims (8)

  1. 基板を保持する基板保持具と、
    前記基板を処理する処理室と、
    前記処理室内に設けられ、前記基板を処理する処理ガスを供給するガス供給部と、
    前記処理室外に設けられ、前記処理室内を加熱する熱エネルギーを放射する加熱装置と、
    前記処理室内に設けられ、前記加熱装置から放射された熱エネルギーを吸収して、少なくとも前記熱エネルギーとは異なる波長の熱エネルギーを放射する輻射部材と、
    を有する基板処理装置。
    A substrate holder for holding the substrate;
    A processing chamber for processing the substrate;
    A gas supply unit provided in the processing chamber for supplying a processing gas for processing the substrate;
    A heating device provided outside the processing chamber and radiating thermal energy for heating the processing chamber;
    A radiation member that is provided in the processing chamber and absorbs thermal energy emitted from the heating device and emits thermal energy having a wavelength different from at least the thermal energy;
    A substrate processing apparatus.
  2. 前記輻射部材は、前記基板保持具の基板載置領域の側面を覆うように前記処理室内に設けられる請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the radiation member is provided in the processing chamber so as to cover a side surface of a substrate placement region of the substrate holder.
  3. 前記輻射部材は、前記処理室内の内壁に沿うように円弧状に湾曲した板状部材で構成され、前記板状部材には、切欠きが形成されている請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the radiation member is configured by a plate-like member that is curved in an arc shape along an inner wall of the processing chamber, and the plate-like member has a notch.
  4. 前記加熱装置が放射する熱エネルギーは近赤外線を含み、前記輻射部材が放射する熱エネルギーは遠赤外線を含む請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the thermal energy emitted by the heating device includes near infrared rays, and the thermal energy emitted by the radiation member includes far infrared rays.
  5. 前記輻射部材が前記基板表面を所定の温度に加熱するよう前記加熱装置の出力を制御するよう構成される制御部をさらに有する請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, further comprising a control unit configured to control an output of the heating apparatus so that the radiation member heats the substrate surface to a predetermined temperature.
  6. 前記輻射部材は、前記基板載置領域の側面において30%以上95%以下の面積を覆うように構成する請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the radiation member is configured to cover an area of 30% to 95% on a side surface of the substrate placement region.
  7. 基板を保持する基板保持具と、前記基板を処理する処理室と、前記処理室内に設けられ、前記基板を処理する処理ガスを供給するガス供給部と、前記処理室内を加熱する熱エネルギーを放射する加熱装置と、前記処理室内に設けられ、前記加熱装置から放射された熱エネルギーを吸収して、前記熱エネルギーとは異なる波長の熱エネルギーを放射する輻射部材と、を有する基板処理装置の処理室内に前記基板を搬入する工程と、
    前記基板に前記処理ガスを供給する基板処理工程と、
    前記基板を前記処理室から搬出する工程と、
    を有する半導体装置の製造方法。
    A substrate holder for holding a substrate, a processing chamber for processing the substrate, a gas supply unit provided in the processing chamber for supplying a processing gas for processing the substrate, and radiating thermal energy for heating the processing chamber. A substrate processing apparatus comprising: a heating device that radiates heat energy having a wavelength different from that of the thermal energy that is provided in the processing chamber and absorbs thermal energy emitted from the heating device. Carrying the substrate into the room;
    A substrate processing step of supplying the processing gas to the substrate;
    Unloading the substrate from the processing chamber;
    A method for manufacturing a semiconductor device comprising:
  8. 基板を保持する基板保持具と、前記基板を処理する処理室と、前記処理室内に設けられ、前記基板を処理する処理ガスを供給するガス供給部と、前記処理室内を加熱する熱エネルギーを放射する加熱装置と、前記処理室内に設けられ、前記加熱装置から放射された熱エネルギーを吸収して、前記熱エネルギーとは異なる波長の熱エネルギーを放射する輻射部材と、を有する基板処理装置の処理室内に前記基板を搬入する手順と、
    前記基板に前記処理ガスを供給する基板処理手順と、
    前記基板を前記処理室から搬出する手順と、
    を前記基板処理装置に実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。

     
    A substrate holder for holding a substrate, a processing chamber for processing the substrate, a gas supply unit provided in the processing chamber for supplying a processing gas for processing the substrate, and radiating thermal energy for heating the processing chamber. A substrate processing apparatus comprising: a heating device that radiates heat energy having a wavelength different from that of the thermal energy that is provided in the processing chamber and absorbs thermal energy emitted from the heating device. A procedure for carrying the substrate into the room;
    A substrate processing procedure for supplying the processing gas to the substrate;
    A procedure for unloading the substrate from the processing chamber;
    A computer-readable recording medium on which a program for causing the substrate processing apparatus to execute is recorded.

PCT/JP2016/059003 2016-03-22 2016-03-22 Substrate treatment apparatus, semiconductor device manufacturing method, and recording medium WO2017163314A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/059003 WO2017163314A1 (en) 2016-03-22 2016-03-22 Substrate treatment apparatus, semiconductor device manufacturing method, and recording medium
CN201680083882.XA CN108780743B (en) 2016-03-22 2016-03-22 Substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
JP2018506658A JP6640985B2 (en) 2016-03-22 2016-03-22 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059003 WO2017163314A1 (en) 2016-03-22 2016-03-22 Substrate treatment apparatus, semiconductor device manufacturing method, and recording medium

Publications (1)

Publication Number Publication Date
WO2017163314A1 true WO2017163314A1 (en) 2017-09-28

Family

ID=59900073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059003 WO2017163314A1 (en) 2016-03-22 2016-03-22 Substrate treatment apparatus, semiconductor device manufacturing method, and recording medium

Country Status (3)

Country Link
JP (1) JP6640985B2 (en)
CN (1) CN108780743B (en)
WO (1) WO2017163314A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430268A (en) * 2019-01-10 2020-07-17 东京毅力科创株式会社 Processing apparatus
WO2021039270A1 (en) * 2019-08-30 2021-03-04 株式会社Kokusai Electric Device for producing and method for producing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194216B2 (en) * 2021-03-17 2022-12-21 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing method, program, and substrate processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129823A (en) * 1984-11-29 1986-06-17 Toshiba Mach Co Ltd Vapor growth apparatus
JPH0778830A (en) * 1993-09-07 1995-03-20 Hitachi Ltd Semiconductor manufacturing equipment
JP2002124483A (en) * 2000-10-18 2002-04-26 Matsushita Electric Ind Co Ltd Heat treatment device and method therefor using the same and film forming method
JP2005093911A (en) * 2003-09-19 2005-04-07 Hitachi Kokusai Electric Inc Substrate processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357786B2 (en) * 2001-03-16 2009-11-04 株式会社半導体エネルギー研究所 Heat treatment apparatus and heat treatment method
JP2011077502A (en) * 2009-09-04 2011-04-14 Hitachi Kokusai Electric Inc Thermal treatment apparatus
KR101310851B1 (en) * 2011-11-08 2013-09-25 가부시키가이샤 히다치 하이테크놀로지즈 Heat treatment apparatus
JP6009513B2 (en) * 2014-09-02 2016-10-19 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129823A (en) * 1984-11-29 1986-06-17 Toshiba Mach Co Ltd Vapor growth apparatus
JPH0778830A (en) * 1993-09-07 1995-03-20 Hitachi Ltd Semiconductor manufacturing equipment
JP2002124483A (en) * 2000-10-18 2002-04-26 Matsushita Electric Ind Co Ltd Heat treatment device and method therefor using the same and film forming method
JP2005093911A (en) * 2003-09-19 2005-04-07 Hitachi Kokusai Electric Inc Substrate processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430268A (en) * 2019-01-10 2020-07-17 东京毅力科创株式会社 Processing apparatus
CN111430268B (en) * 2019-01-10 2024-04-09 东京毅力科创株式会社 Processing device
WO2021039270A1 (en) * 2019-08-30 2021-03-04 株式会社Kokusai Electric Device for producing and method for producing semiconductor device
JPWO2021039270A1 (en) * 2019-08-30 2021-03-04

Also Published As

Publication number Publication date
JPWO2017163314A1 (en) 2019-05-16
CN108780743B (en) 2023-05-02
CN108780743A (en) 2018-11-09
JP6640985B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US11967490B2 (en) Plasma generating device, substrate processing apparatus, and method of manufacturing semiconductor device
JP6641025B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and electrode fixing unit
KR102387812B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and prograom
JP2020043221A (en) Substrate processing apparatus, manufacturing method of semiconductor device, and electrode of substrate processing apparatus
JP2017168788A (en) Method for manufacturing semiconductor device, substrate processing apparatus and program
JP6640985B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
JP2017183392A (en) Substrate processing device, method of manufacturing semiconductor device, and recording medium
JP2023165711A (en) Substrate processing device, plasma generation device, manufacturing method for semiconductor device, and program
WO2020053960A1 (en) Substrate-processing device, method for manufacturing semiconductor device, and program
JP6453727B2 (en) Substrate processing apparatus and semiconductor device manufacturing method using the same
JP6937894B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP6867548B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP7457818B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, program, auxiliary plate, and substrate holder
JP7454691B2 (en) Manufacturing method and program for substrate processing equipment, plasma light emitting equipment, and semiconductor devices
WO2021181450A1 (en) Substrate treatment device, production method for semiconductor device, and program
WO2022054855A1 (en) Substrate processing device, semiconductor device manufacturing method, and program
KR102559937B1 (en) Substrate processing apparatus, substrate retainer, method of manufacturing semiconductor device and program

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018506658

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16895350

Country of ref document: EP

Kind code of ref document: A1