WO2017162107A1 - 金属分类探测的标定方法、测试方法及其系统 - Google Patents

金属分类探测的标定方法、测试方法及其系统 Download PDF

Info

Publication number
WO2017162107A1
WO2017162107A1 PCT/CN2017/077105 CN2017077105W WO2017162107A1 WO 2017162107 A1 WO2017162107 A1 WO 2017162107A1 CN 2017077105 W CN2017077105 W CN 2017077105W WO 2017162107 A1 WO2017162107 A1 WO 2017162107A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
metal
phase characteristic
characteristic value
reference point
Prior art date
Application number
PCT/CN2017/077105
Other languages
English (en)
French (fr)
Inventor
陈英杰
王积东
王孝洪
Original Assignee
东莞市华盾电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56625082&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017162107(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 东莞市华盾电子科技有限公司 filed Critical 东莞市华盾电子科技有限公司
Publication of WO2017162107A1 publication Critical patent/WO2017162107A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils

Definitions

  • the invention relates to the field of metal classification, in particular to a calibration method and a test method for metal classification detection and a system thereof.
  • the task of the present invention is to overcome the problem that metal detectors have been unable to detect metal component information, and to provide a calibration method, test method and system for metal classification detection.
  • the patent adopts the following technical solutions:
  • a calibration method for metal classification detection is provided, which is characterized by comprising the following steps Step:
  • phase characteristic value T and the component information of the metal calibration are written into the calibration phase characteristic table in the alarm database.
  • the phase characteristic value T of the metal calibration is obtained by averaging a plurality of measurements.
  • the method further comprises the steps of: passing the reference point calibration object through the sensing region of the receiving coil of the metal detector, acquiring the phase characteristic value Z, and setting the phase characteristic value Z to the phase characteristic reference point 0.
  • the method further comprises the steps of: calculating TZ, obtaining a phase characteristic value t of the metal calibration based on the reference point calibration; writing the phase characteristic value t, the component information of the metal calibration to the calibration phase characteristic table in the alarm database .
  • the metal calibration is provided with M, and the mth metal calibration is expressed as tm based on the phase characteristic value of the reference point calibration, wherein M and m are natural numbers greater than 1, and M ⁇ m.
  • the metal calibration objects belong to the same category, and the minimum value to the maximum value of the phase characteristic value of the metal calibration based on the reference point calibration is set as the range of phase characteristic values of the metal calibration based on the reference point calibration.
  • the method further comprises the steps of: passing the first reference point calibration object through the sensing area of the receiving coil of the metal detector, acquiring the phase characteristic value S, and writing it to the calibration object phase characteristic table in the alarm database or And writing a difference ZS between the phase feature value of the reference point calibration and the phase characteristic value of the first reference point calibration into the calibration phase feature table in the alarm database.
  • the phase characteristic difference between the copper and the stainless steel is written as 34°.
  • the method further comprises the step of: according to the phase characteristic table of the calibration, the phase of the reference point calibration object The difference ZS between the bit feature value and the phase feature value of the first reference point calibration, the phase calibration value of the metal calibration based on the reference point calibration, and the calculated phase characteristic value of the metal calibration based on the first reference point calibration +ZS and write to the calibration phase feature table.
  • the method further includes a first receiving coil, passing the reference point calibration object through the sensing region of the first receiving coil, acquiring a phase characteristic value Y corresponding to the first receiving coil of the reference point calibration, and calculating that the first receiving coil corresponds to the The correction value YZ of the coil is received and written into the calibration phase characteristic table.
  • a first receiving coil is further included, and the phase shifter connected to the first receiving coil is adjusted to make the phase characteristic value detected by the metal calibration through the first receiving coil through the receiving coil and the metal calibration.
  • test method for metal classification detection comprises the following steps:
  • Finding the calibration object phase characteristic table of the alarm database determining whether the phase characteristic value R of the measured object meets the determination condition in the calibration phase characteristic table; if the determination condition in the calibration phase characteristic table is met, the suspect signal is sent to the alarm module .
  • the determining condition is that the difference between the phase characteristic value R of the measured object and the calibrated phase characteristic value T in the calibrated phase characteristic table is within a preset range.
  • the determining condition is that the measured object is based on the phase characteristic value RZ of the reference point calibration object, and the Z is the phase of the reference point calibration object in the range of the phase characteristic value of the reference metal calibration object based on the reference point calibration object.
  • Eigenvalues are the phase of the reference point calibration object in the range of the phase characteristic value of the reference metal calibration object based on the reference point calibration object.
  • the range of phase characteristic values of the metal-based calibration object to be tested based on the reference point calibration is previously input into the calibration phase characteristic table.
  • the suspect signal comprises component information of the metal calibration.
  • the method further comprises the following steps: after receiving the suspect signal, the alarm module prompts the staff to manually check.
  • a metal classification detecting system including a metal detector and a transmitting coil and a receiving coil disposed therein, and further comprising: a phase feature acquiring module and an alarm database; and the phase feature acquiring module is configured to acquire The phase characteristic value detected when the metal object passes through the sensing area of the receiving coil of the metal detector; the alarm database contains a calibration phase characteristic table, and the calibration phase characteristic table is used to record the phase characteristic value and the corresponding metal composition information.
  • a metal calibration is further included for passing the metal calibration through the sensing region of the receiving coil to obtain its phase characteristic value T.
  • the phase characteristic value table and the component information of the calibration object are recorded in the calibration phase characteristic table; and the phase characteristic value T is obtained by averaging the multiple measurements.
  • the reference point calibration object is further configured to pass the reference point calibration object through the sensing region of the receiving coil to obtain the phase characteristic value Z and set the phase characteristic reference point 0.
  • the method further includes a reference calculation module for calculating the TZ, and obtaining a phase characteristic value t of the metal calibration based on the reference point calibration; wherein the phase characteristic table of the calibration object in the alarm database has a phase characteristic value t, a metal The composition information of the calibration.
  • the metal calibration is provided with M, and the mth metal calibration is expressed as tm based on the phase characteristic value of the reference point calibration, wherein M and m are natural numbers greater than 1, and M ⁇ m.
  • the metal calibration objects belong to the same category, and the phase characteristic table of the calibration object is written with the phase characteristic value range of the metal calibration object based on the reference point calibration object, and the metal calibration object is based on the phase characteristic value of the reference point calibration object.
  • the range is the minimum to maximum value of the metal calibrator based on the phase eigenvalues of the reference point calibrator.
  • the first reference point calibration is further included, and the phase characteristic value S of the first reference point calibration or the phase characteristic value of the reference point calibration is written in the calibration phase characteristic table in the alarm database and the first The difference ZS of the phase characteristic values of the reference point calibration.
  • the phase characteristic difference between copper and stainless steel written in the calibration phase characteristic table is 34°.
  • the method further includes a reference calculation module, configured to determine, according to the phase characteristic table of the calibration object, a difference between the phase characteristic value of the reference point calibration object and the phase characteristic value of the first reference point calibration value, and the metal calibration object is based on the reference point calibration
  • the phase characteristic value of the object is t
  • the calculated metal calibration value is based on the phase characteristic value t+ZS of the first reference point calibration.
  • the first receiving coil is further included; the phase feature acquiring module is further configured to: pass the reference point calibration object through the sensing region of the first receiving coil, and obtain a phase characteristic value Y of the reference point calibration object corresponding to the first receiving coil; The reference calculation module is further configured to calculate a correction value YZ of the first receiving coil corresponding to the receiving coil.
  • the method further includes a first receiving coil and a phase shifter; and the phase shifter is configured to adjust a phase of the output signal of the first receiving coil to be detected when the metal calibration object passes through the first receiving coil through the receiving coil and the metal calibration object.
  • the phase feature values are the same.
  • the method further comprises: a judging module, configured to search the calibration object phase characteristic table of the alarm database, and determine whether the phase characteristic value R of the measured object meets the determination condition in the calibration object phase characteristic table, if it meets the calibration object phase characteristic table A condition is determined, a suspect signal is issued, and an alarm module is used to receive the suspect signal.
  • a judging module configured to search the calibration object phase characteristic table of the alarm database, and determine whether the phase characteristic value R of the measured object meets the determination condition in the calibration object phase characteristic table, if it meets the calibration object phase characteristic table A condition is determined, a suspect signal is issued, and an alarm module is used to receive the suspect signal.
  • the difference between the phase characteristic value R of the measured object and the calibrated phase characteristic value T in the calibrated phase characteristic table is within a preset range.
  • the determining condition is that the measured object is based on the phase characteristic value RZ of the reference point calibration object, and the Z is the phase of the reference point calibration object in the range of the phase characteristic value of the reference metal calibration object based on the reference point calibration object.
  • Eigenvalues are the phase of the reference point calibration object in the range of the phase characteristic value of the reference metal calibration object based on the reference point calibration object.
  • the range of phase characteristic values of the metal-based calibration object to be tested based on the reference point calibration is previously input into the calibration phase characteristic table.
  • the suspect signal comprises component information of the metal calibration.
  • the alarm module is further configured to remind the worker to manually check after receiving the suspect signal.
  • the calibration method, the test method and the metal classification detection system of the metal classification detection provided by the invention solve the problem that the metal can be classified and detected, and whether the tested person has a suspected calibration object, whether to carry a prohibited metal object or iron Weapons, such as guns and knives, shorten inspection time and improve detection efficiency.
  • 1 is a flow chart of a calibration method for metal classification detection of the present invention
  • FIG. 2 is a schematic view of an embodiment of a metal detector of the present invention
  • Figure 3 is a schematic view showing still another embodiment of the metal detector of the present invention.
  • Figure 4 is a block diagram showing a first embodiment of the metal classification detecting system of the present invention.
  • Figure 5 is a block diagram showing a second embodiment of the metal classification detecting system of the present invention.
  • FIG. 6 is a flow chart of a test method for metal classification detection of the present invention.
  • Figure 7 is a block diagram of a third embodiment of the metal classification detecting system of the present invention.
  • Figure 8 is a block diagram of a fourth embodiment of the metal classification detecting system of the present invention.
  • the metal detector of the present invention includes a pass detector 200 or a hand held detector 300.
  • FIG. 2 is a schematic illustration of an embodiment of a metal detector of the present invention.
  • the pass detector 200 includes a main body structure, a transmitting coil 201, a receiving coil 202, and a host (not shown).
  • the host is used for control to transmit an excitation signal to the transmitting coil 201, and the receiving coil 202 receives the signal of the transmitting coil 201.
  • the hand-held detector 300 includes a main body structure, a transmitting coil 301, a receiving coil 302, and a main body 303.
  • the host 303 is for controlling to transmit an excitation signal to the transmitting coil 301, and the receiving coil 302 receives the signal of the transmitting coil 301.
  • an excitation signal is transmitted from the transmitting coil 201, and the transmitting coil 202 has an induced current and an induced electromotive force.
  • the transmitting coil 202 has an induced current and an induced electromotive force.
  • a eddy current effect is generated, thereby affecting the induced current and the induced electromotive force generated by the receiving coil 202.
  • the calibration method for the metal classification detection includes the following steps:
  • step S101 the metal calibration is passed through the sensing area of the receiving coil 202 of the metal detector.
  • an automated method such as a robot can be used instead of the manual operation, and the metal calibration object can pass through the sensing area of the receiving coil 202 of the metal detector to achieve a fast and accurate effect.
  • the sensing area of the receiving coil 202 refers to a region in which the object to be measured can affect the induced electromotive force generated by the receiving coil 202.
  • the metal calibration is passed through the detector detecting channel.
  • the metal calibration is sensed through the receiving coil 302.
  • the metal calibration object can pass through the space enclosed by the broken line shown in FIG. 2 to obtain the maximum induced electromotive force variation, and this is recorded.
  • the metal calibrator corresponds to the phase eigenvalues of the two receiving coils 202 in the space.
  • the metal calibration material is composed of different components. According to the actual situation, the metal calibration object may be provided with M, and M is a natural number greater than 1.
  • Step S102 acquiring a phase characteristic value T of the metal calibration corresponding to the receiving coil 202.
  • the phase characteristic value T of the specific metal calibration is fixed based on the same hardware detection device and the excitation coil 201 of the same frequency, such as 5360 Hz, and the phase characteristic value T is fixed, but for different For the receiving coil 202, the phase characteristic value T of the measured metal calibration is different through different receiving coils 202 due to differences in their analog characteristics, but for the same receiving coil 202, the phases of two different metal calibrations The difference between the eigenvalues is fixed.
  • step S103 the phase feature value T and the component information of the metal calibration are written into the calibration phase feature table in the alarm database 205.
  • the phase characteristic value of the mth metal calibration is expressed as Tm
  • the phase characteristic value T and the composition information of the metal calibration are simultaneously recorded in the calibration phase characteristic table.
  • N receiving coils the number of the corresponding receiving coil 202 in the phase characteristic table, for example: N receiving coils, the data measured by the mth metal calibration through the nth receiving coil, can be recorded as Tmn.
  • the receiving coil 202 is connected to the phase feature acquiring module 204.
  • the phase feature acquiring module 204 analyzes the output waveform of the receiving coil 202, extracts the waveform phase, and obtains the phase characteristic value T. Due to the error of the test, the phase characteristic value T is obtained by averaging a plurality of measurements.
  • the phase feature acquisition module 204 after determining the phase feature value T, is sent to the alarm database 205 along with the component information of the metal calibration.
  • the reference point calibration is passed through the sensing region of the receiving coil 202 of the metal detector, the phase characteristic value Z corresponding to the receiving coil 202 is acquired, and the phase characteristic value Z is set to the phase characteristic reference point 0.
  • the reference calculation module 206 calculates T-Z to obtain a phase characteristic value t of the metal calibration based on the reference point calibration; and writes the phase characteristic value t and the component information of the metal calibration into the calibration phase characteristic table in the alarm database 205.
  • the fiducial point calibration can be a metal item.
  • the metal calibration is provided with M, and the mth metal calibration is expressed as tm based on the phase characteristic value of the reference point calibration, wherein M and m are natural numbers greater than 1, and M ⁇ m.
  • M and m are natural numbers greater than 1, and M ⁇ m.
  • the M metal calibrations belong to the same category, and the minimum value to the maximum value of the phase characteristic value of the metal calibration based on the reference point calibration is set as the range of phase characteristic values of the metal calibration based on the reference point calibration.
  • the calibration method further comprises the steps of: passing the first reference point calibration object through the sensing area of the receiving coil of the metal detector, acquiring the phase characteristic value S, and writing the phase characteristic value of the calibration object in the alarm database.
  • the table or / and the difference ZS of the phase characteristic value of the reference point calibration and the phase characteristic value of the first reference point calibration are written into the calibration phase characteristic table in the alarm database.
  • a copper calibration and a stainless steel calibration are provided, which are respectively passed through the sensing region of the receiving coil 202 of the metal detector to obtain phase characteristic values of the copper calibration and the stainless steel calibration, and the difference can also be obtained. For example, 34°, this data is written to the calibration phase feature table of the alarm database.
  • the manner in which the two are passed by the metal detector is the same, the frequency of the excitation signal of the transmitting coil 201, and the receiving coil 202 are the same as the phase characteristic acquiring module 204.
  • the phase characteristic value of the stainless steel calibration object can be judged to be -34° as long as the phase characteristic value of the copper calibration object is 0, and the above scheme increases the experimental data. Mobility.
  • the calibration method further comprises the step of: calibrating the phase characteristic value of the reference point calibration object and the phase characteristic value of the first reference point calibration value according to the phase characteristic table of the calibration object, and the metal calibration object is based on the reference point calibration
  • the phase characteristic value of the object is t
  • the calculated metal calibration is based on the phase characteristic value t+ZS of the first reference point calibration and written into the calibration phase characteristic table.
  • the above calculation function is completed by the reference calculation module 206, and the calculated result is stored in the calibration phase feature table.
  • the reference calculation module 206 calculates the iron based stainless steel calibration.
  • the phase characteristic value of the object is 44° to 114°.
  • the phase characteristic difference of any two reference point calibrators and the phase characteristic value of the test object based on one of the reference point calibrators can be used to infer that the measured object is based on the phase of the other reference point calibrator. Eigenvalues. Further, if the phase characteristic difference between the first reference point calibrator and the second reference point calibrator is known, the phase characteristic difference between the second reference point calibrator and the third reference point calibrator is also known. The value can be inferred from the phase characteristic difference between the first reference point calibrator and the third reference point calibrator. It should be understood that the manner in which the reference point calibration passes through the metal detector is the same, the excitation signal frequency of the transmitting coil 201, and the receiving coil 202 are the same as the phase feature acquiring module 204. Saved in tabular form and applied to each metal detector, you can save a lot of debugging and calibration time.
  • the method further includes a first receiving coil, passing the reference point calibration object through the sensing region of the first receiving coil, acquiring a phase characteristic value Y corresponding to the first receiving coil of the reference point calibration, and calculating that the first receiving coil corresponds to the The correction value YZ of the coil is received and written into the calibration phase characteristic table.
  • the correction value is used to correct the difference in phase feature detection between the two coil links, that is, after the YZ correction is performed on the test result of the first receiving coil, the first receiving coil can be regarded as having the receiving coil 202. The same phase feature detects the performance of the coil.
  • phase characteristic value obtained when the calibration object passes through the first receiving coil can be corrected by the correction value to obtain data consistent with the phase characteristic value obtained when the calibration object passes through the receiving coil 202, that is, unified.
  • Phase characteristic values corresponding to different receiving coils Uniform phase eigenvalues facilitate the unification and migration of the calibrated phase feature table.
  • the receiving coil 202 and the first receiving coil may belong to the same metal detector or belong to different metal detectors respectively.
  • Figure 5 is a block diagram of a second embodiment of the metal classification detection system of the present invention.
  • the first receiving coil 500 is further included, and the phase shifter 501 in the first receiving coil 500 is adjusted to pass the phase characteristic of the metal calibration through the receiving coil 202 and the metal calibration through the first receiving coil 500.
  • the values are the same.
  • Phase shifter 501 connects first receiving coil 500 and phase feature acquisition
  • the module 204 performs phase adjustment on the output signal of the first receiving coil 500. By controlling the magnitude of the phase shift of the phase shifter 501 while detecting the phase characteristic value of the metal calibration through the first receiving coil 500, the phase characteristic value is the same as when the metal calibration is passed through the receiving coil 202.
  • the phase shifter 501 is controlled by a control signal, which can be sent by the host, and the tester can further control the operation of the phase shifter 501 by adjusting the phase shift parameters on the host.
  • the magnitude of the phase shifter 501 of the phase shifter can also be adjusted manually to control the phase shifting size of the phase shifter 501 until the metal calibration passes through the receiving coil 202 and The phase characteristic values detected by the metal calibration when passing through the first receiving coil 500 are the same.
  • the first receiving coil 500 can be regarded as a coil having the same phase characteristic detecting performance as the receiving coil 202, which is advantageous for the compatibility and uniformity of the phase characteristic table data, and is convenient for different metal detectors.
  • the migration or solution of the same metal detector has multiple receiving coils with different analog characteristics, resulting in a problem that the phase characteristic values are not uniform.
  • FIG. 6 is a flow chart of a test method for metal classification detection according to the present invention.
  • step S601 the object to be tested is passed through the sensing area of the receiving coil 202 of the metal detector.
  • Step S602 acquiring a phase feature value R of the object to be tested.
  • the object to be tested passes through the sensing area of the receiving coil 202 of the metal detector in the same manner as the metal label passes. The same is true for calculating the phase eigenvalues.
  • the receiving coil 202 is connected to the phase feature acquiring module 204.
  • the phase feature acquiring module 204 analyzes the output waveform of the receiving coil 202, extracts the waveform phase, and calculates the phase feature value R.
  • Step S603 searching the calibration object phase characteristic table of the alarm database 205, determining whether the phase characteristic value R of the measured object meets the determination condition in the calibration phase characteristic table; if the determination condition in the calibration phase characteristic table is met, the suspect is issued The signal is sent to the alarm module 602.
  • the phase characteristic value T of the metal calibration object is stored in the calibration phase characteristic table, and the phase characteristic values R and T of the measured object are compared one by one. Judging the phase characteristic value R of the measured object and each calibration object The difference of the phase characteristic value T is within a preset range, and if it is within the preset range, the material composition of the metal calibration closest to the T value is considered to be the most similar to the measured object.
  • the object to be tested is listed as a suspected item.
  • the suspect signal contains component information of the metal calibration closest to the T value.
  • the preset range can be set according to the needs of the user during the actual use process, and the size of the preset range determines the tolerance of the test object. Through the above scheme, the suspected items can be first screened and further inspected to improve the efficiency of the inspection.
  • the determining condition is that the measured object is based on the phase characteristic value RZ of the reference point calibration object in the range of the phase characteristic value of the reference metal calibration object based on the reference point calibration, wherein Z is the reference point calibration object.
  • Phase feature value If the phase characteristic value of the object to be tested based on copper is 30°, it is known that the phase characteristic value of the iron-based copper-based calibration is 10° to 80°, and the determination conditions are considered to be met.
  • the suspected items can be first screened and further inspected to improve the efficiency of the inspection.
  • the range of phase characteristic values of the metal-based calibration object to be tested based on the reference point calibration is previously input into the calibration phase characteristic table.
  • the phase characteristic value of the iron-based copper-based calibration is 10° to 80°, which is input to the calibration phase characteristic table in advance, preferably, in the form of a file, and is directly called in different metal detectors.
  • the alarm module 602 reminds the staff to check manually.
  • the way of reminding is various.
  • the abnormal symbol is displayed on the display screen, and the metal calibration component information closest to the T value can be displayed at the same time, and a warning sound is emitted through the speaker, and the light flashes through the light.
  • Manual inspection can be done by X-ray machine or visual inspection.
  • the suspect signal includes component information of the metal calibration.
  • the metal detector is provided with more than one receiving coil 202, and the suspect signal further includes position information of the receiving coil 202, wherein the receiving coil 202 is a waveform of the induced voltage containing the determination in the table corresponding to the phase characteristic of the calibration object.
  • the phase characteristic value information of the condition, and the amount of change in the induced voltage is the largest.
  • Location information includes its specific location or number. It can also be set by the receiving coil 202 Nearby lighting equipment to remind them of their location. Through the above method, the security personnel can be told the specific location of the suspected item, which is convenient for further inspection. Specifically, when a measured object passes through the metal detector, some or all of the receiving coils 202 receive a change in the induced voltage.
  • the corresponding phase characteristic value of the receiving coil 202 is obtained, and the corresponding phase characteristic value is determined. Whether or not the determination condition in the phase characteristic table is met, and the receiving coil 202 corresponding to the phase characteristic value corresponding to the determination condition is compared with the magnitude of the induced voltage change received, and the corresponding receiving coil having the largest amount of induced voltage change is obtained.
  • the 202 information is included in the suspect information and sent to the alert module 602.
  • FIG. 4 there is shown a block diagram of a first embodiment of the metal classification detection system of the present invention.
  • the invention also includes a metal classification detection system comprising a metal detector and a transmitting coil and a receiving coil disposed therein, further comprising a phase feature acquiring module 204 for acquiring a metal calibration object through the metal detector The corresponding phase feature T of the receiving area of the receiving coil 202; the alarm database 205, wherein the alarm database 205 stores a calibration phase characteristic table for writing the phase characteristic value T and the component information of the metal calibration.
  • the metal classification detecting system further comprises a metal calibration device for obtaining a phase characteristic value T of the metal calibration object through the sensing region of the receiving coil.
  • the pass detector 200 is taken as an example below.
  • the metal calibration is passed through the sensing area of the receiving coil 202 of the metal detector.
  • an automated method such as a robot can be used instead of the manual operation, and the metal calibration object can pass through the sensing area of the receiving coil 202 of the through detector to achieve a fast and accurate effect.
  • the sensing area of the receiving coil 202 refers to a region in which the object to be measured can affect the induced electromotive force generated by the receiving coil 202.
  • the metal calibration is passed through the detector detecting channel.
  • the metal calibration is brought close to the sensing area of the receiving coil 302.
  • the metal calibration corresponds to the two receiving coils 202 of the second coil group 203
  • the metal calibration can be passed through the space enclosed by the dashed line shown in Fig. 2 to obtain the maximum amount of induced electromotive force change, and the metal calibrator at this time corresponds to the phase characteristic value T of the two receiving coils 202 in the space.
  • the metal calibration can be provided with M, and M is a natural number greater than 1.
  • the acquisition of the metal calibration corresponds to the phase characteristic value T of the receiving coil 202.
  • the phase characteristic value T is related to the material composition of the measured object, and therefore, the phase characteristic value T of the specific metal calibration is fixed, but for different
  • the phase characteristic value T of the measured metal calibration is different through different receiving coils 202 due to differences in their analog characteristics, but for the same receiving coil 202, the phases of two different metal calibrations The difference between the eigenvalues is fixed.
  • the phase characteristic value T and the component information of the metal calibration are written into the calibration phase characteristic table in the alarm database 205.
  • the phase characteristic value of the mth metal calibration is expressed as Tm
  • the phase characteristic value T and the composition information of the metal calibration are simultaneously recorded in the calibration phase characteristic table.
  • N receiving coils the number of the corresponding receiving coil 202 in the phase characteristic table, for example: N receiving coils, the data measured by the mth metal calibration through the nth receiving coil, can be recorded as Tmn.
  • the receiving coil 202 is connected to the phase feature acquiring module 204.
  • the phase feature acquiring module 204 analyzes the waveform of the receiving coil 202, extracts the waveform phase, and obtains the phase characteristic value T. Due to the error of the test, the phase characteristic value T is obtained by averaging a plurality of measurements.
  • the phase feature acquisition module 204 after determining the phase feature value T, is sent to the alarm database 205 along with the component information of the metal calibration.
  • Figure 8 is a block diagram of a third embodiment of the metal classification detection system of the present invention.
  • the metal classification detection system further comprises a reference point calibration for passing the reference point calibration through the metal exploration
  • the sensing region of the receiving coil 202 of the detector acquires a phase characteristic value Z corresponding to the receiving coil 202, and sets the phase characteristic value Z to a phase characteristic reference point 0.
  • the fiducial point calibration can be a metal item.
  • the metal classification detection system further includes a reference calculation module 206 for calculating TZ, and obtaining a phase characteristic value t of the metal calibration based on the reference point calibration; and a calibration phase characteristic table in the alarm database 205 is stored Phase characteristic value t, component information of the metal calibration.
  • the metal calibration is provided with M, and the mth metal calibration is expressed as tm based on the phase characteristic value of the reference point calibration, wherein M and m are natural numbers greater than 1, and M ⁇ m.
  • the metal calibration objects belong to the same category, and the minimum value to the maximum value of the phase characteristic value of the metal calibration based on the reference point calibration is set as the range of phase characteristic values of the metal calibration based on the reference point calibration.
  • the metal classification detecting system further includes a first reference point calibration object, and the phase characteristic value S of the first reference point calibration object or the phase characteristic of the reference point calibration object is written in the calibration object phase characteristic table in the alarm database.
  • the difference ZS between the value and the phase characteristic value of the first reference point calibration Specifically, for example, a copper calibrator and a stainless steel calibrator are provided, and respectively pass through the sensing region of the receiving coil 202 of the metal detector to obtain a phase characteristic value of the copper calibrator and the stainless steel calibrator, and the difference can also be obtained. , for example, 34°. Write this data to the calibration phase feature table of the alarm database.
  • the manner in which the two are passed by the metal detector is the same, the frequency of the excitation signal of the transmitting coil 201, and the receiving coil 202 are the same as the phase characteristic acquiring module 204.
  • the phase characteristic value of the stainless steel calibration object can be determined to be -34° as long as the phase characteristic value of the copper calibration object is zero. The above scheme increases the mobility of experimental data.
  • the method further includes a reference calculation module 206, configured to determine, according to the phase characteristic table of the calibration object, a difference between the phase characteristic value of the reference point calibration object and the phase characteristic value of the first reference point calibration value, the metal calibration object based on the reference point
  • the phase characteristic value of the calibration is t
  • the calculated metal calibration is based on the phase characteristic value t+ZS of the first reference point calibration.
  • the calculation function is completed by the reference calculation module 206, and the calculated result is stored. In the calibrator phase feature table.
  • phase characteristic difference between the copper calibration material and the stainless steel calibration object is 34°
  • the phase characteristic value of the iron calibration object based on the copper calibration is 10° to 80°
  • the reference calculation module 206 calculates the iron-based stainless steel calibration.
  • the phase characteristic value of the object is 44° to 114°.
  • phase characteristic difference between the first reference point calibrator and the second reference point calibrator is known
  • phase characteristic difference between the second reference point calibrator and the third reference point calibrator is also known. The value can be inferred from the phase characteristic difference between the first reference point calibrator and the third reference point calibrator.
  • the manner in which the two are passed by the metal detector is the same, the frequency of the excitation signal of the transmitting coil 201, and the receiving coil 202 are the same as the phase characteristic acquiring module 204. Saved in tabular form and applied to each metal detector, you can save a lot of debugging and calibration time.
  • the metal classification detecting system further includes a first receiving coil
  • the reference point calibration object passes through the sensing area of the first receiving coil
  • the phase feature acquiring module 204 is further configured to pass the reference point calibration object through the first receiving coil.
  • the reference point calibration object corresponds to the phase characteristic value Y of the first receiving coil
  • the reference calculation module 206 is further configured to calculate the correction value YZ of the first receiving coil corresponding to the receiving coil.
  • the correction value is used to correct the difference in phase feature detection between the two coil links, that is, after the YZ correction is performed on the test result of the first receiving coil, the first receiving coil can be regarded as having the same as the receiving coil.
  • the phase features detect the performance of the coil.
  • the phase characteristic value obtained when the calibration object passes through the first receiving coil can be corrected by the correction value to obtain data which is consistent with the phase characteristic value obtained when the calibration object passes through the receiving coil, that is, unified.
  • the phase characteristic values of different coils correspond to the phase characteristic values of different coils. Uniform phase eigenvalues facilitate the unification and migration of the calibrated phase feature table. It should be understood that the receiving coil and the first receiving coil may belong to the same metal detector or belong to the respective Different metal detectors.
  • Figure 5 is a block diagram of a second embodiment of the metal classification detection system of the present invention.
  • the metal classification detecting system further includes a first receiving coil 500 and a phase shifter 501, wherein the phase shifter 501 is configured to adjust a phase of the output signal of the first receiving coil 500, so that the metal calibration object passes through the receiving coil 202 and the metal.
  • the phase characteristic values detected when the calibrator passes through the first receiving coil 500 are the same.
  • the phase shifter 501 is connected to the first receiving coil 500 and the phase feature acquiring module 204 to perform phase adjustment on the output signal of the first receiving coil 500. By controlling the magnitude of the phase shift of the phase shifter 501 while detecting the phase characteristic value of the metal calibration through the first receiving coil 500, the phase characteristic value is the same as when the metal calibration is passed through the receiving coil 202.
  • the phase shifter 501 is controlled by a control signal, which can be sent by the host, and the tester can further control the operation of the phase shifter 501 by adjusting the phase shift parameters on the host.
  • the magnitude of the phase shifter 501 of the phase shifter can also be adjusted manually to control the phase shifting size of the phase shifter 501 until the metal calibration passes through the receiving coil 202 and The phase characteristic values detected by the metal calibration when passing through the first receiving coil 500 are the same.
  • the first receiving coil 500 can be regarded as a coil having the same phase characteristic detecting performance as the receiving coil 202, which is advantageous for the compatibility and uniformity of the phase characteristic table data, and is convenient for different metal detectors.
  • the migration or solution of the same metal detector has multiple receiving coils with different analog characteristics, resulting in a problem that the phase characteristic values are not uniform.
  • Figure 7 is a block diagram of a third embodiment of the metal classification detection system of the present invention.
  • the metal classification detection system of the present invention further includes a determination module 701 for searching the calibration object phase characteristic table of the alarm database 205, and determining whether the phase characteristic value R of the measured object meets the determination condition in the calibration phase characteristic table, if The determination condition in the calibrator phase characteristic table issues a suspect signal; the alarm module 702 is configured to receive the suspect signal.
  • the determining condition is: a phase characteristic value R of the measured object and a phase characteristic table of the calibration object
  • the difference in the phase characteristic value T of the calibrator is within a preset range.
  • the phase characteristic value T of the metal calibration object is stored in the calibration phase characteristic table, and the phase characteristic values R and T of the measured object are compared one by one. Determining the difference between the phase characteristic value R of the measured object and the phase characteristic value T of each of the calibration objects within a preset range, and if it meets the preset range, the material of the metal calibration material that is considered to be closest to the T value
  • the composition is most similar to the analyte.
  • the object to be tested is listed as a suspected item. In particular, the suspect signal contains component information of the metal calibration closest to the T value.
  • the preset range can be set according to the needs of the user during the actual use process, and the size of the preset range determines the tolerance of the test object. Through the above scheme, the suspected items can be first screened and further inspected to improve the efficiency of the inspection.
  • the determining condition is that the measured object is based on the phase characteristic value RZ of the reference point calibration object in the range of the phase characteristic value of the reference metal calibration object based on the reference point calibration, wherein Z is the reference point calibration object.
  • Phase feature value For example, if the phase characteristic value of the object to be tested based on copper is 30°, and the phase characteristic value of the iron-based copper-based calibration is known to be 10° to 80°, the determination condition is considered to be met.
  • the suspected items can be first screened and further inspected to improve the efficiency of the inspection.
  • the range of phase characteristic values of the metal-based calibration object to be tested based on the reference point calibration is previously input into the calibration phase characteristic table.
  • the phase characteristic value of the iron-based copper-based calibration is 10° to 80°, which is input to the calibration phase characteristic table in advance, preferably, in the form of a file, and is directly called in different metal detectors.
  • the alarm module 602 is further configured to prompt the worker to manually check after receiving the suspect signal.
  • the way of reminding is various.
  • the abnormal symbol is displayed on the display screen, and the metal calibration component information closest to the T value can be displayed at the same time, and a warning sound is emitted through the speaker, and the light flashes through the light.
  • Manual inspection can be done by X-ray machine or visual inspection.
  • the metal detector is provided with more than one receiving coil 202, and the suspected signal further includes
  • the position information of the receiving coil 202 is such that the waveform of the induced voltage of the receiving coil 202 contains phase characteristic value information in accordance with the determination condition in the calibrated phase characteristic table, and the amount of change in the induced voltage is the largest.
  • Location information includes its specific location or number. It is also possible to prompt the specific location by a light device disposed near the receiving coil 202. Through the above method, the security personnel can be told the specific location of the suspected item, which is convenient for further inspection. Specifically, when a measured object passes through the metal detector, some or all of the receiving coils 202 receive a change in the induced voltage.
  • the corresponding phase characteristic value of the receiving coil 202 is obtained, and the corresponding phase characteristic value is determined. Whether or not the determination condition in the phase characteristic table is met, and the receiving coil 202 corresponding to the phase characteristic value corresponding to the determination condition is compared with the magnitude of the induced voltage change received, and the corresponding receiving coil having the largest amount of induced voltage change is obtained.
  • the 202 information is included in the suspect information and sent to the alert module 602.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Electromagnetism (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)

Abstract

一种金属分类探测的标定方法、测试方法及其系统,其标定方法包括:将金属标定物通过金属探测器的接收线圈的感应区域(S101);获取金属标定物对应于所述接收线圈的相位特征值T(S102);将相位特征值T、金属标定物的成分信息写入报警数据库中的标定物相位特征表(S103)。测试方法包括:将被测物通过金属探测器的接收线圈(202)的感应区域;获取被测物的相位特征值R;查找报警数据库的标定物相位特征表,判断被测物的相位特征值R是否符合标定物相位特征表中的判定条件;若符合标定物相位特征表中的判定条件,则发出疑似信号到报警模块。利用金属分类探测的标定方法、测试方法及其系统可对金属分类探测,缩短检查时间,提高检测效率。

Description

金属分类探测的标定方法、测试方法及其系统 技术领域
本发明涉及金属分类领域,具体而言涉及金属分类探测的标定方法和测试方法及其系统。
背景技术
在原材料冶炼厂、金属加工厂等企业中,为防止工作人员违规将厂内产品或原料携带外出,通常情况下都会安装普通金属探测门。普通金属探测门在实际使用中,也会对皮带扣,钥匙,衣服上的金属物件产生感应,工作人员携带这些日常物品通过金属探测门都会引起报警,因其无法区分被检测人员携带的是产品原料还是普通的金属材料,所以工作人员必须将身上所有私人金属物件脱下通过金属探测门,这样的方式检测效率低下,检测精确度低。站在企业的角度,希望能够检测出工作人员是否携带了某一种或几种禁止携带的金属物品外出即可。另外,在公共安防场合,也需要能够排除日常携带物件,对疑似铁制武器,如枪支、刀具进行报警,金属探测器一直无法对金属成分信息进行检测。对检查工作带来不便之处。特别无法满足大客流情况下快速安检的目的,因此,需要一种新的检测方法和装置来解决这个问题。
发明内容
本发明的任务是为了克服金属探测器一直无法对金属成分信息进行检测,提供一种金属分类探测的标定方法、测试方法及其系统。为实现上述目的,本专利采用如下技术方案:
第一方面,提供一种金属分类探测的标定方法,其特征在于:包括以下步 骤:
将金属标定物通过金属探测器的接收线圈的感应区域;
获取金属标定物的相位特征值T;
将相位特征值T、金属标定物的成分信息写入报警数据库中的标定物相位特征表。
优选的,所述金属标定物的相位特征值T是多次测量取平均值得到的。
优选的,还包括以下步骤:将基准点标定物通过所述金属探测器的接收线圈的感应区域,获取相位特征值Z,将相位特征值Z设置为相位特征基准点0。
优选的,还包括以下步骤:计算T-Z,得出金属标定物基于基准点标定物的相位特征值t;将相位特征值t、金属标定物的成分信息写入报警数据库中的标定物相位特征表。
优选的,所述金属标定物设有M个,第m金属标定物基于基准点标定物的相位特征值表示为tm,其中M、m是大于1的自然数,M≥m。
优选的,所述金属标定物属于同一类,将金属标定物基于基准点标定物的相位特征值的最小值到最大值设定为该类金属标定物基于基准点标定物的相位特征值范围。
优选的,还包括以下步骤:将第一基准点标定物通过所述金属探测器的接收线圈的感应区域,获取相位特征值S,并将其写入报警数据库中的标定物相位特征表或/和将基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S写入报警数据库中的标定物相位特征表。
优选的,在标定物相位特征表中,写入:紫铜与不锈钢的相位特征差值是34°。
优选的,还包括以下步骤:根据标定物相位特征表中,基准点标定物的相 位特征值与第一基准点标定物的相位特征值的差值Z-S、金属标定物基于基准点标定物的相位特征值为t,计算金属标定物基于第一基准点标定物的相位特征值t+Z-S并写入标定物相位特征表。
优选的,还包括第一接收线圈,将基准点标定物通过第一接收线圈的感应区域,获取基准点标定物对应于第一接收线圈的相位特征值Y,计算第一接收线圈对应于所述接收线圈的修正值Y-Z并写入标定物相位特征表。
优选的,还包括第一接收线圈,调整与第一接收线圈连接的移相器,使金属标定物通过所述接收线圈和金属标定物通过第一接收线圈时候检测到的相位特征值相同。
第二方面,提供一种金属分类探测的测试方法,其特征在于:包括以下步骤:
将被测物通过金属探测器的接收线圈的感应区域;
获取被测物的相位特征值R;
查找报警数据库的标定物相位特征表,判断被测物的相位特征值R是否符合标定物相位特征表中的判定条件;若符合标定物相位特征表中的判定条件,则发出疑似信号到报警模块。
优选的,所述判定条件是:被测物的相位特征值R与标定物相位特征表中标定物相位特征值T的差值在预设的范围之内。
优选的,所述判定条件是:被测物基于基准点标定物的相位特征值R-Z在被测物类金属标定物基于基准点标定物的相位特征值范围内,Z是基准点标定物的相位特征值。
优选的,所述被测物类金属标定物基于基准点标定物的相位特征值范围是预先输入标定物相位特征表中。
优选的,所述疑似信号包括金属标定物的成分信息。
优选的,还包括以下步骤:报警模块收到疑似信号后,提醒工作人员以人工方式检查。
第三方面,提供一种金属分类探测系统,包括金属探测器和设置在其内部的发射线圈和接收线圈,其特征在于:还包括相位特征获取模块及报警数据库;相位特征获取模块用于获取将金属被测物通过金属探测器的接收线圈的感应区域时检测到的相位特征值;报警数据库中存有标定物相位特征表,标定物相位特征表用于记录相位特征值和对应的金属成分信息。
优选的,还包括金属标定物,用于将金属标定物通过所述接收线圈的感应区域,获取其相位特征值T。
优选的,所述标定物相位特征表中记录有相位特征值T、标定物的成分信息;相位特征值T是多次测量取平均值得到的。
优选的,还包括基准点标定物,用于将基准点标定物通过所述接收线圈的感应区域,获取其相位特征值Z并设为相位特征基准点0。
优选的,还包括基准计算模块,用于计算T-Z,得出金属标定物基于基准点标定物的相位特征值t;所述报警数据库中的标定物相位特征表中存有相位特征值t、金属标定物的成分信息。
优选的,所述金属标定物设有M个,第m金属标定物基于基准点标定物的相位特征值表示为tm,其中M、m是大于1的自然数,M≥m。
优选的,所述金属标定物属于同一类,标定物相位特征表中写有该类金属标定物基于基准点标定物的相位特征值范围,该类金属标定物基于基准点标定物的相位特征值范围为金属标定物基于基准点标定物的相位特征值的最小值到最大值。
优选的,还包括第一基准点标定物,报警数据库中的标定物相位特征表中写入有第一基准点标定物的相位特征值S或/和基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S。
优选的,在标定物相位特征表中写有紫铜与不锈钢的相位特征差值是34°。
优选的,还包括基准计算模块,用于根据标定物相位特征表中,基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S、金属标定物基于基准点标定物的相位特征值为t,计算金属标定物基于第一基准点标定物的相位特征值t+Z-S。
优选的,还包括第一接收线圈;所述相位特征获取模块还用于将基准点标定物通过第一接收线圈的感应区域,获取基准点标定物对应于第一接收线圈的相位特征值Y;基准计算模块还用于计算第一接收线圈对应于接收线圈的修正值Y-Z。
优选的,还包括第一接收线圈、移相器;移相器用于调整第一接收线圈输出信号的相位,使金属标定物通过所述接收线圈和金属标定物通过第一接收线圈时候检测到的相位特征值相同。
优选的,还包括判断模块,用于查找报警数据库的标定物相位特征表,判断被测物的相位特征值R是否符合标定物相位特征表中的判定条件,若符合标定物相位特征表中的判定条件,发出疑似信号;报警模块,用于接收疑似信号。
优选的,被测物的相位特征值R与标定物相位特征表中标定物相位特征值T的差值在预设的范围之内。
优选的,所述判定条件是:被测物基于基准点标定物的相位特征值R-Z在被测物类金属标定物基于基准点标定物的相位特征值范围内,Z是基准点标定物的相位特征值。
优选的,所述被测物类金属标定物基于基准点标定物的相位特征值范围是预先输入标定物相位特征表中。
优选的,所述疑似信号包括金属标定物的成分信息。
优选的,所述报警模块还用于在收到疑似信号后,提醒工作人员以人工方式检查。
使用本发明提供的金属分类探测的标定方法、测试方法和金属分类探测系统,解决了可以对金属进行分类探测,检测被测人员身上是否带有疑似标定物物,是否携带禁止的金属物件或者铁制武器,如枪支、刀具等,缩短检查时间,提高检测效率。
附图说明
图1是本发明金属分类探测的标定方法流程图;
图2是本发明金属探测器的一实施例示意图;
图3是本发明金属探测器的又一实施例示意图;
图4是本发明金属分类探测系统的第一实施例框图;
图5是本发明金属分类探测系统的第二实施例框图;
图6是本发明金属分类探测的测试方法流程图;
图7是本发明金属分类探测系统的第三实施例框图;
图8是本发明金属分类探测系统的第四实施例框图。
具体实施方式
下面结合附图和实施方式对本发明作进一步说明,但是本发明的保护范围并不局限于实施方式表述的范围。
本发明所述的金属探测器包括通过式探测器200或者手持式探测器300。
参考图2,图2是本发明金属探测器的一实施例示意图。通过式探测器200包括主体结构,发射线圈201,接收线圈202,主机(未示出)。主机用于控制,发送激励信号到发射线圈201,接收线圈202接收发射线圈201的信号。
参考图3,图3是本发明金属探测器的又一实施例示意图。手持式探测器300包括主体结构,发射线圈301,接收线圈302,主机303。主机303用于控制,发送激励信号到发射线圈301,接收线圈302接收发射线圈301的信号。
根据麦克斯韦电磁场理论,从发射线圈201发射激励信号,经过空中的传播,接收线圈202会有感应电流和感应电动势。特别的,当有其他金属部件在发射线圈201或者接收线圈202附近会产生涡流效应,从而影响接收线圈202产生的感应电流和感应电动势。
参考图1,图1是本发明金属分类探测的标定方法流程图。所述金属分类探测的标定方法,包括以下步骤:
步骤S101,将金属标定物通过金属探测器的接收线圈202的感应区域。特别的,金属标定物标定的过程中,可以使用机械手等自动化的方式代替人工操作,将金属标定物通过金属探测器的接收线圈202的感应区域,可以起到快速,准确的效果。接收线圈202的感应区域是指被测物能够影响接收线圈202产生的感应电动势的区域,在通过式探测器200中,将金属标定物通过探测器检测通道。在手持式探测器300中,将金属标定物通过接收线圈302感应区域。
具体的,当标定金属标定物对应第二线圈组203的两个接收线圈202时,可将金属标定物通过图2所示的虚线围成的空间,以获得最大的感应电动势变化量,记录此时金属标定物对应于该空间中两个接收线圈202的相位特征值。
所述金属标定物是由不同成分组成,根据实际情况的需要,金属标定物可以设有M个,M为大于1的自然数。
步骤S102,获取金属标定物对应于所述接收线圈202的相位特征值T。基于同一的硬件检测设备和相同频率的发射线圈201激励信号如5360Hz,相位特征值T与被测物的材料成分相关,因此,特定金属标定物的相位特征值T是固定的,但对于不同的接收线圈202来说,由于其模拟特性上的不同,通过不同接收线圈202,测定的金属标定物的相位特征值T是不同的,但对于同一接收线圈202,两个不同的金属标定物的相位特征值之差是固定的。
步骤S103,将相位特征值T、金属标定物的成分信息写入报警数据库205中的标定物相位特征表。例如,所述金属标定物设有M个,那么,第m金属标定物相位特征值表示为Tm,标定物相位特征表中同时记录有相位特征值T、金属标定物的成分信息。特别的,考虑多个接收线圈202的情况,由于接收线圈202以及其模拟电路的差异性,需要对每个接收线圈记录数据,在相位特征表中记录对应的接收线圈202的编号,例如:有N个接收线圈,第m金属标定物通过第n个接收线圈所测得的数据,可以记录为Tmn。
参考图4,图4是本发明金属分类探测系统的第一实施例框图。具体的,接收线圈202与相位特征获取模块204连接,相位特征获取模块204经过分析接收线圈202的输出波形,提取波形相位,得出相位特征值T。由于测试的误差,相位特征值T经多次测量取平均值得到的。相位特征获取模块204在确定相位特征值T后,连同金属标定物的成分信息发送至报警数据库205。
优选的,将基准点标定物通过金属探测器的接收线圈202的感应区域,获取对应于接收线圈202的相位特征值Z,将相位特征值Z设置为相位特征基准点0。基准计算模块206计算T-Z,得出金属标定物基于基准点标定物的相位特征值t;将相位特征值t、金属标定物的成分信息写入报警数据库205中的标定物相位特征表。基准点标定物可以是金属物品。
优选的,所述金属标定物设有M个,第m金属标定物基于基准点标定物的相位特征值表示为tm,其中M、m是大于1的自然数,M≥m。所述M个金属标定物属于同一类,将金属标定物基于基准点标定物的相位特征值的最小值到最大值设定为该类金属标定物基于基准点标定物的相位特征值范围。
优选的,上述标定方法还包括以下步骤:将第一基准点标定物通过所述金属探测器的接收线圈的感应区域,获取相位特征值S,并将其写入报警数据库中的标定物相位特征表或/和将基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S写入报警数据库中的标定物相位特征表。具体的,例如,设有紫铜标定物和不锈钢标定物,将其分别通过金属探测器的接收线圈202的感应区域,得出紫铜标定物与不锈钢标定物相位特征值,还可得出其差值,例如是34°,将此数据写入报警数据库的标定物相位特征表。应该理解,两者通过的金属探测器的方式一致,发射线圈201的激励信号频率、接收线圈202与相位特征获取模块204相同。通过上述标定方式,可以推知在其他接收线圈202进行检测时,只要以紫铜标定物的相位特征值为0,就能判断不锈钢标定物的相位特征值为-34°,上述方案增加了实验数据的可迁移性。
优选的,上述标定方法还包括以下步骤:根据标定物相位特征表中,基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S、金属标定物基于基准点标定物的相位特征值为t,计算金属标定物基于第一基准点标定物的相位特征值t+Z-S并写入标定物相位特征表。上述的计算功能由基准计算模块206完成,计算后的结果存储在标定物相位特征表中。
具体的,假如,已知紫铜标定物与不锈钢标定物的相位特征差值是34°,铁类基于紫铜标定物的相位特征值是10°至80°,基准计算模块206计算铁类基于不锈钢标定物的相位特征值44°至114°。
通过上述方式,可以通过已知的任意两个基准点标定物的相位特征差值和被测物基于其中一个基准点标定物的相位特征值,推知被测物基于另一个基准点标定物的相位特征值。进一步的,假如,已知第一个基准点标定物与第二个基准点标定物的相位特征差值,同时也知道第二个基准点标定物与第三个基准点标定物的相位特征差值,可推知第一个基准点标定物与第三个基准点标定物的相位特征差值。应该理解,上述基准点标定物通过的金属探测器的方式一致,发射线圈201的激励信号频率、接收线圈202与相位特征获取模块204相同。通过表格形式保存,并应用到每一金属探测器,可以大大节省调试和标定时间。
优选的,还包括第一接收线圈,将基准点标定物通过第一接收线圈的感应区域,获取基准点标定物对应于第一接收线圈的相位特征值Y,计算第一接收线圈对应于所述接收线圈的修正值Y-Z并写入标定物相位特征表。一方面,修正值用于修正两个线圈链路之间相位特征检测的差异,即通过对第一接收线圈的测试结果进行Y-Z的修正后,可以将第一接收线圈看做具有与接收线圈202相同的相位特征检测性能的线圈。另一方面,对于将标定物通过第一接收线圈时所获得的相位特征值,可以通过修正值进行修正,得出与标定物通过接收线圈202时所获得的相位特征值一致的数据,即统一了对应不同接收线圈的相位特征值。统一的相位特征值有利于标定物相位特征表的统一与迁移。应当理解,所述接收线圈202与第一接收线圈可以属于同一金属探测器或者分别属于不同的金属探测器。
进一步参考图5,图5是本发明金属分类探测系统的第二实施例框图。
优选的,还包括第一接收线圈500,调整第一接收线圈500中的移相器501,使金属标定物通过所述接收线圈202和金属标定物通过第一接收线圈500时候检测到的相位特征值相同。移相器501连接第一接收线圈500和相位特征获取 模块204,对第一接收线圈500的输出信号进行相位调整。通过控制移相器501移相的大小,同时检测金属标定物通过第一接收线圈500时候的相位特征值,使相位特征值与该金属标定物通过接收线圈202时候相同。移相器501受控制信号控制,该信号可由主机发出,测试人员可通过调整主机上移相参数进一步控制移相器501工作。另外,关于调整移相器501移相大小的方式,也可以通过手工方式,调节移相器的电位器501的大小从而控制移相器501的移相大小,直至金属标定物通过接收线圈202和金属标定物通过第一接收线圈500时候检测到的相位特征值相同。通过上述移相器修正方式,可以将第一接收线圈500看做具有与接收线圈202相同的相位特征检测性能的线圈,有利于相位特征表数据的兼容性和统一性,便于在不同金属探测器中迁移或者解决同一金属探测器有多个模拟特性不同的接收线圈导致相位特征值不统一的问题。
进一步参考图6,图6是本发明金属分类探测的测试方法流程图。
步骤S601,将被测物通过金属探测器的接收线圈202的感应区域。
步骤S602,获取被测物的相位特征值R。被测物通过金属探测器的接收线圈202的感应区域的方式与金属标定物通过的方式一样。计算相位特征值的方式也一样。具体的,接收线圈202与相位特征获取模块204连接,相位特征获取模块204经过分析接收线圈202的输出波形,提取波形相位,计算出相位特征值R。
步骤S603,查找报警数据库205的标定物相位特征表,判断被测物的相位特征值R是否符合标定物相位特征表中的判定条件;若符合标定物相位特征表中的判定条件,则发出疑似信号到报警模块602。
具体的,标定物相位特征表中存有金属标定物的相位特征值T,将被测物的相位特征值R与T进行逐一对比。判断被测物的相位特征值R与每一个标定物 相位特征值T的差值在预设的范围之内,如果符合在预设的范围内,则认为最接近T值的金属标定物的材料成分与被测物最相似。将被测物列为疑似物品。特别的,所述疑似信号中存有最接近T值的金属标定物的成分信息。预设的范围可以根据用户在实际使用过程的需要进行设定,预设范围的大小决定测试被测物时的容差程度。通过上述方案,可以首先筛选疑似物品,再进一步检查,提高检查的效率。
优选的,所述判定条件是:被测物基于基准点标定物的相位特征值R-Z在被测物类金属标定物基于基准点标定物的相位特征值范围内,其中Z是基准点标定物的相位特征值。假如,被测物基于紫铜的相位特征值是30°,已知铁类基于紫铜标定物的相位特征值是10°至80°,则认为判定条件得到符合。通过上述方案,可以首先筛选疑似物品,再进一步检查,提高检查的效率。
优选的,所述被测物类金属标定物基于基准点标定物的相位特征值范围是预先输入标定物相位特征表中。具体的,例如,铁类基于紫铜标定物的相位特征值是10°至80°是预先输入到标定物相位特征表中,优选的,以文件的形式保存,在不同金属探测器中直接调用。
优选的,报警模块602收到疑似信号后,提醒工作人员以人工方式检查。提醒的方式是多样的,通过显示屏显示异常符号,可同时显示最接近T值的金属标定物成分信息,通过扬声器发出警告声音,通过灯光闪烁。人工方式检查可采用X光机或者肉眼检查方式。所述疑似信号包括金属标定物的成分信息。
优选的,金属探测器设有多于一个的接收线圈202,所述疑似信号还包括接收线圈202的位置信息,其中,接收线圈202是其感应电压的波形含有符合标定物相位特征表中的判定条件的相位特征值信息,且其感应电压的变化量是最大的。位置信息包括其具体的位置或者编号。还可以通过设置在接收线圈202 附近的灯光设备来提示其具体位置。通过上述方式可以告诉安检人员疑似物品的具体位置,方便其进行进一步检查。具体的,当一个被测物通过金属探测器的时候,部分或者所有接收线圈202会接收到的感应电压有变化,通过提取分析感应电压的波形会得到接收线圈202的对应相位特征值,判断其是否符合相位特征表中的判定条件,针对符合判定条件的相位特征值所对应的接收线圈202,并对其接收的感应电压变化量进行大小比较,将感应电压变化量最大的所对应的接收线圈202信息包含在疑似信息中并发送至报警模块602。
参考图4,图4是本发明金属分类探测系统的第一实施例框图。
本发明还包括一种金属分类探测系统,包括金属探测器和设置在其内部的发射线圈和接收线圈,其特征在于:还包括相位特征获取模块204,用于获取将金属标定物通过金属探测器的接收线圈202的感应区域时对应的相位特征T;报警数据库205,其中报警数据库205中存有标定物相位特征表,用于写入相位特征值T、金属标定物的成分信息。
优选的,所述的金属分类探测系统还包括金属标定物,用于将金属标定物通过所述接收线圈的感应区域,获取其相位特征值T。
下面以通过式探测器200作为例子。
将金属标定物通过金属探测器的接收线圈202的感应区域。特别的,金属标定物标定的过程中,可以使用机械手等自动化的方式代替人工操作,将金属标定物通过通过式探测器的接收线圈202的感应区域,可以起到快速,准确的效果。接收线圈202的感应区域是指被测物能够影响接收线圈202产生的感应电动势的区域,在通过式探测器200中,将金属标定物通过探测器检测通道。在手持式探测器300中,将金属标定物靠近接收线圈302感应区域。
具体的,当标定金属标定物对应第二线圈组203的两个接收线圈202时, 可将金属标定物通过图2所示的虚线围成的空间,以获得最大的感应电动势变化量,记录此时金属标定物对应于该空间中两个接收线圈202的相位特征值T。
根据实际情况的需要,金属标定物可以设有M个,M为大于1的自然数。
获取金属标定物对应于所述接收线圈202的相位特征值T。基于相同的硬件检测设备和相同频率的发射线圈201激励信号如5360Hz,相位特征值T与被测物的材料成分相关,因此,特定金属标定物的相位特征值T是固定的,但对于不同的接收线圈202来说,由于其模拟特性上的不同,通过不同接收线圈202,测定的金属标定物的相位特征值T是不同的,但对于同一接收线圈202,两个不同的金属标定物的相位特征值之差是固定的。
将相位特征值T、金属标定物的成分信息写入报警数据库205中的标定物相位特征表。例如,所述金属标定物设有M个,那么,第m金属标定物相位特征值表示为Tm,标定物相位特征表中同时记录有相位特征值T、金属标定物的成分信息。特别的,考虑多个接收线圈202的情况,由于接收线圈202以及其模拟电路的差异性,需要对每个接收线圈记录数据,在相位特征表中记录对应的接收线圈202的编号,例如:有N个接收线圈,第m金属标定物通过第n个接收线圈所测得的数据,可以记录为Tmn。
参考图4,具体的,接收线圈202与相位特征获取模块204连接,相位特征获取模块204经过分析接收线圈202的波形,提取波形相位,得出相位特征值T。由于测试的误差,相位特征值T经多次测量取平均值得到的。相位特征获取模块204在确定相位特征值T后,连同金属标定物的成分信息发送至报警数据库205。
进一步参考图8,图8是本发明金属分类探测系统的第三实施例框图。优选的,金属分类探测系统还包括基准点标定物,用于将基准点标定物通过金属探 测器的所述接收线圈202的感应区域,获取对应于接收线圈202的相位特征值Z,将相位特征值Z设置为相位特征基准点0。基准点标定物可以是金属物品。
优选的,金属分类探测系统还包括基准计算模块206,用于计算T-Z,得出金属标定物基于基准点标定物的相位特征值t;所述报警数据库205中的标定物相位特征表中存有相位特征值t、金属标定物的成分信息。
优选的,所述金属标定物设有M个,第m金属标定物基于基准点标定物的相位特征值表示为tm,其中M、m是大于1的自然数,M≥m。所述金属标定物属于同一类,将金属标定物基于基准点标定物的相位特征值的最小值到最大值设定为该类金属标定物基于基准点标定物的相位特征值范围。
优选的,所述金属分类探测系统还包括第一基准点标定物,报警数据库中的标定物相位特征表中写入有第一基准点标定物的相位特征值S或者基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S。具体的,例如,设有紫铜标定物和不锈钢标定物,将其分别通过金属探测器的接收线圈202的感应区域,得出紫铜标定物与不锈钢标定物相位特征值,还可以得出其差值,例如是34°。将此数据写入报警数据库的标定物相位特征表。应该理解,两者通过的金属探测器的方式一致,发射线圈201的激励信号频率、接收线圈202与相位特征获取模块204相同。通过上述标定方式,可以推知在其他接收线圈202进行检测时,只要以紫铜标定物的相位特征值为0,就能判断不锈钢标定物的相位特征值为-34°。上述方案增加了实验数据的可迁移性。
优选的,还包括基准计算模块206,用于根据标定物相位特征表中,基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S、金属标定物基于基准点标定物的相位特征值为t,计算金属标定物基于第一基准点标定物的相位特征值t+Z-S。所述计算功能由基准计算模块206完成,计算后的结果存储 在标定物相位特征表中。
具体的,已知紫铜标定物与不锈钢标定物的相位特征差值是34°,铁类标定物基于紫铜标定物的相位特征值是10°至80°,基准计算模块206计算铁类基于不锈钢标定物的相位特征值44°至114°。
通过上述方式,可以通过已知的任意两个基准点标定物的相位特征差值和被测物基于其中一个基准点标定物的相位特征值,推知被测物基于另一个基准点标准误的相位特征值。进一步的,假如,已知第一个基准点标定物与第二个基准点标定物的相位特征差值,同时也知道第二个基准点标定物与第三个基准点标定物的相位特征差值,可推知第一个基准点标定物与第三个基准点标定物的相位特征差值。应该理解,两者通过的金属探测器的方式一致,发射线圈201的激励信号频率、接收线圈202与相位特征获取模块204相同。通过表格形式保存,并应用到每一金属探测器,可以大大节省调试和标定时间。
优选的,上述金属分类探测系统还包括第一接收线圈,将基准点标定物通过第一接收线圈的感应区域,所述相位特征获取模块204还用于将基准点标定物通过第一接收线圈的感应区域,获取基准点标定物对应于第一接收线圈的相位特征值Y;基准计算模块206还用于计算第一接收线圈对应于接收线圈的修正值Y-Z。一方面,修正值用于修正两个线圈链路之间相位特征检测的差异,即通过对第一接收线圈的测试结果进行Y-Z的修正后,可以将第一接收线圈看做具有与接收线圈相同的相位特征检测性能的线圈。另一方面,对于将标定物通过第一接收线圈时所获得的相位特征值,可以通过修正值进行修正,得出与标定物通过接收线圈时所获得的相位特征值一致的数据,即统一了对应不同线圈的相位特征值。统一的相位特征值有利于标定物相位特征表的统一与迁移。应当理解,所述接收线圈与第一接收线圈可以属于同一金属探测器或者分别属于 不同的金属探测器。
进一步参考图5,图5是本发明金属分类探测系统的第二实施例框图。
优选的,上述金属分类探测系统还包括第一接收线圈500和移相器501,移相器501用于调整第一接收线圈500输出信号的相位,使金属标定物通过所述接收线圈202和金属标定物通过第一接收线圈500时候检测到的相位特征值相同。移相器501连接第一接收线圈500和相位特征获取模块204,对第一接收线圈500的输出信号进行相位调整。通过控制移相器501移相的大小,同时检测金属标定物通过第一接收线圈500时候的相位特征值,使相位特征值与该金属标定物通过接收线圈202时候相同。移相器501受控制信号控制,该信号可由主机发出,测试人员可通过调整主机上移相参数进一步控制移相器501工作。另外,关于调整移相器501移相大小的方式,也可以通过手工方式,调节移相器的电位器501的大小从而控制移相器501的移相大小,直至金属标定物通过接收线圈202和金属标定物通过第一接收线圈500时候检测到的相位特征值相同。通过上述移相器修正方式,可以将第一接收线圈500看做具有与接收线圈202相同的相位特征检测性能的线圈,有利于相位特征表数据的兼容性和统一性,便于在不同金属探测器中迁移或者解决同一金属探测器有多个模拟特性不同的接收线圈导致相位特征值不统一的问题。
进一步参考图7,图7是本发明金属分类探测系统的第三实施例框图。
本发明所述金属分类探测系统还包括判断模块701,用于查找报警数据库205的标定物相位特征表,判断被测物的相位特征值R是否符合标定物相位特征表中的判定条件,若符合标定物相位特征表中的判定条件,发出疑似信号;报警模块702用于接收疑似信号。
优选的,所述判定条件是:被测物的相位特征值R与标定物相位特征表中 标定物相位特征值T的差值在预设的范围之内。具体的,标定物相位特征表中存有金属标定物的相位特征值T,将被测物的相位特征值R与T进行逐一对比。判断被测物的相位特征值R与每一个标定物相位特征值T的差值在预设的范围之内,如果符合在预设的范围内,则认为最接近T值的金属标定物的材料成分与被测物最相似。将被测物列为疑似物品。特别的,所述疑似信号中存有最接近T值的金属标定物的成分信息。
预设的范围可以根据用户在实际使用过程的需要进行设定,预设范围的大小决定测试被测物时的容差程度。通过上述方案,可以首先筛选疑似物品,再进一步检查,提高检查的效率。
优选的,所述判定条件是:被测物基于基准点标定物的相位特征值R-Z在被测物类金属标定物基于基准点标定物的相位特征值范围内,其中Z是基准点标定物的相位特征值。例如,假如,被测物基于紫铜的相位特征值是30°,已知铁类基于紫铜标定物的相位特征值是10°至80°,则认为判定条件得到符合。通过上述方案,可以首先筛选疑似物品,再进一步检查,提高检查的效率。
优选的,所述被测物类金属标定物基于基准点标定物的相位特征值范围是预先输入标定物相位特征表中。具体的,例如,铁类基于紫铜标定物的相位特征值是10°至80°是预先输入到标定物相位特征表中,优选的,以文件的形式保存,在不同金属探测器中直接调用。
优选的,报警模块602还用于收到疑似信号后,提醒工作人员以人工方式检查。提醒的方式是多样的,通过显示屏显示异常符号,可同时显示最接近T值的金属标定物成分信息,通过扬声器发出警告声音,通过灯光闪烁。人工方式检查可采用X光机或者肉眼检查方式。
优选的,金属探测器设有多于一个的接收线圈202,所述疑似信号还包括接 收线圈202的位置信息,其中,接收线圈202是其感应电压的波形含有符合标定物相位特征表中的判定条件的相位特征值信息,且其感应电压的变化量是最大的。位置信息包括其具体的位置或者编号。还可以通过设置在接收线圈202附近的灯光设备来提示其具体位置。通过上述方式可以告诉安检人员疑似物品的具体位置,方便其进行进一步检查。具体的,当一个被测物通过金属探测器的时候,部分或者所有接收线圈202会接收到的感应电压有变化,通过提取分析感应电压的波形会得到接收线圈202的对应相位特征值,判断其是否符合相位特征表中的判定条件,针对符合判定条件的相位特征值所对应的接收线圈202,并对其接收的感应电压变化量进行大小比较,将感应电压变化量最大的所对应的接收线圈202信息包含在疑似信息中并发送至报警模块602。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (35)

  1. 一种金属分类探测的标定方法,其特征在于:包括以下步骤:
    (A)将金属标定物通过金属探测器的接收线圈的感应区域;
    (B)获取金属标定物的相位特征值T;
    (C)将相位特征值T、金属标定物的成分信息写入报警数据库中的标定物相位特征表。
  2. 根据权利要求1所述的金属分类探测的标定方法,其特征在于:所述金属标定物的相位特征值T是多次测量取平均值得到的。
  3. 根据权利要求2所述的金属分类探测的标定方法,其特征在于:还包括以下步骤:将基准点标定物通过所述金属探测器的接收线圈的感应区域,获取相位特征值Z,将相位特征值Z设置为相位特征基准点0。
  4. 根据权利要求3所述的金属分类探测的标定方法,其特征在于:还包括以下步骤:计算T-Z,得出金属标定物基于基准点标定物的相位特征值t;将相位特征值t、金属标定物的成分信息写入报警数据库中的标定物相位特征表。
  5. 根据权利要求4所述的金属分类探测的标定方法,其特征在于:所述金属标定物设有M个,第m金属标定物基于基准点标定物的相位特征值表示为tm,其中M、m是大于1的自然数,M≥m。
  6. 根据权利要求5所述的金属分类探测的标定方法,其特征在于:所述金属标定物属于同一类,将金属标定物基于基准点标定物的相位特征值的最小值到最大值设定为该类金属标定物基于基准点标定物的相位特征值范围。
  7. 根据权利要求4所述的金属分类探测的标定方法,其特征在于:还包括以下步骤:将第一基准点标定物通过所述金属探测器的接收线圈的感应区域,获取相位特征值S,并将其写入报警数据库中的标定物相位特征表或/和将 基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S写入报警数据库中的标定物相位特征表。
  8. 根据权利要求7所述的金属分类探测的标定方法,其特征在于:在标定物相位特征表中,写入:紫铜与不锈钢的相位特征差值是34°。
  9. 根据权利要求7所述的金属分类探测的标定方法,其特征在于:还包括以下步骤:根据标定物相位特征表中,基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S、金属标定物基于基准点标定物的相位特征值为t,计算金属标定物基于第一基准点标定物的相位特征值t+Z-S并写入标定物相位特征表。
  10. 根据权利要求3-9中任一权利要求的金属分类探测的标定方法,其特征在于:还包括第一接收线圈,将基准点标定物通过第一接收线圈的感应区域,获取基准点标定物对应于第一接收线圈的相位特征值Y,计算第一接收线圈对应于所述接收线圈的修正值Y-Z并写入标定物相位特征表。
  11. 根据权利要求3-9中任一权利要求的金属分类探测的标定方法,其特征在于:还包括第一接收线圈,调整与第一接收线圈连接的移相器,使金属标定物通过所述接收线圈和金属标定物通过第一接收线圈时候检测到的相位特征值相同。
  12. 一种金属分类探测的测试方法,其特征在于:包括以下步骤:
    (D)将被测物通过金属探测器的接收线圈的感应区域;
    (E)获取被测物的相位特征值R;
    (F)查找报警数据库的标定物相位特征表,判断被测物的相位特征值R是否符合标定物相位特征表中的判定条件;若符合标定物相位特征表中的判定条件,则发出疑似信号到报警模块。
  13. 根据权利要求12所述的金属分类探测的测试方法,其特征在于:所述判定条件是:被测物的相位特征值R与标定物相位特征表中标定物相位特征值T的差值在预设的范围之内。
  14. 根据权利要求12所述的金属分类探测的测试方法,其特征在于:所述判定条件是:被测物基于基准点标定物的相位特征值R-Z在被测物类金属标定物基于基准点标定物的相位特征值范围内,Z是基准点标定物的相位特征值。
  15. 根据权利要求14所述的金属分类探测的测试方法,其特征在于:所述被测物类金属标定物基于基准点标定物的相位特征值范围是预先输入标定物相位特征表中。
  16. 根据权利要求12-14中任一权利要求的金属分类探测的测试方法,其特征在于:所述疑似信号包括金属标定物的成分信息。
  17. 根据权利要求16所述的金属分类探测的测试方法,其特征在于:还包括以下步骤:报警模块收到疑似信号后,提醒工作人员以人工方式检查。
  18. 一种金属分类探测系统,包括金属探测器和设置在其内部的发射线圈和接收线圈,其特征在于:还包括相位特征获取模块及报警数据库;相位特征获取模块用于获取将金属被测物通过金属探测器的接收线圈的感应区域时检测到的相位特征值;报警数据库中存有标定物相位特征表,标定物相位特征表用于记录相位特征值和对应的金属成分信息。
  19. 根据权利要求18所述的金属分类探测系统,其特征在于:还包括金属标定物,用于将金属标定物通过所述接收线圈的感应区域,获取其相位特征值T。
  20. 根据权利要求19所述的金属分类探测系统,其特征在于:所述标定 物相位特征表中记录有相位特征值T、标定物的成分信息;相位特征值T是多次测量取平均值得到的。
  21. 根据权利要求20所述的金属分类探测系统,其特征在于:还包括基准点标定物,用于将基准点标定物通过所述接收线圈的感应区域,获取其相位特征值Z并设为相位特征基准点0。
  22. 根据权利要求21所述的金属分类探测系统,其特征在于:还包括基准计算模块,用于计算T-Z,得出金属标定物基于基准点标定物的相位特征值t;所述报警数据库中的标定物相位特征表中存有相位特征值t、金属标定物的成分信息。
  23. 根据权利要求22所述的金属分类探测系统,其特征在于:所述金属标定物设有M个,第m金属标定物基于基准点标定物的相位特征值表示为tm,其中M、m是大于1的自然数,M≥m。
  24. 根据权利要求23所述的金属分类探测系统,其特征在于:所述金属标定物属于同一类,标定物相位特征表中写有该类金属标定物基于基准点标定物的相位特征值范围,该类金属标定物基于基准点标定物的相位特征值范围为金属标定物基于基准点标定物的相位特征值的最小值到最大值。
  25. 根据权利要求22所述的金属分类探测系统,其特征在于:还包括第一基准点标定物,报警数据库中的标定物相位特征表中写入有第一基准点标定物的相位特征值S或/和基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S。
  26. 根据权利要求25所述的金属分类探测系统,其特征在于:在标定物相位特征表中写有紫铜与不锈钢的相位特征差值是34°。
  27. 根据权利要求25所述的金属分类探测系统,其特征在于:还包括基 准计算模块,用于根据标定物相位特征表中,基准点标定物的相位特征值与第一基准点标定物的相位特征值的差值Z-S、金属标定物基于基准点标定物的相位特征值为t,计算金属标定物基于第一基准点标定物的相位特征值t+Z-S。
  28. 根据权利要求21-27中任一权利要求的金属分类探测系统,其特征在于:还包括第一接收线圈;所述相位特征获取模块还用于将基准点标定物通过第一接收线圈的感应区域,获取基准点标定物对应于第一接收线圈的相位特征值Y;基准计算模块还用于计算第一接收线圈对应于接收线圈的修正值Y-Z。
  29. 根据权利要求21-27中任一权利要求的金属分类探测系统,其特征在于:还包括第一接收线圈、移相器;移相器用于调整第一接收线圈输出信号的相位,使金属标定物通过所述接收线圈和金属标定物通过第一接收线圈时候检测到的相位特征值相同。
  30. 根据权利要求18所述的金属分类探测系统,其特征在于:还包括判断模块,用于查找报警数据库的标定物相位特征表,判断被测物的相位特征值R是否符合标定物相位特征表中的判定条件,若符合标定物相位特征表中的判定条件,发出疑似信号;报警模块,用于接收疑似信号。
  31. 根据权利要求30所述的金属分类探测系统,其特征在于:所述判定条件是:被测物的相位特征值R与标定物相位特征表中标定物相位特征值T的差值在预设的范围之内。
  32. 根据权利要求30所述的金属分类探测系统,其特征在于:所述判定条件是:被测物基于基准点标定物的相位特征值R-Z在被测物类金属标定物基于基准点标定物的相位特征值范围内,Z是基准点标定物的相位特征值。
  33. 根据权利要求32所述的金属分类探测系统,其特征在于:所述被测物类金属标定物基于基准点标定物的相位特征值范围是预先输入标定物相位 特征表中。
  34. 根据权利要求30-32中任一权利要求的金属分类探测系统,其特征在于:所述疑似信号包括金属标定物的成分信息。
  35. 根据权利要求34所述的金属分类探测的测试系统,其特征在于:所述报警模块还用于在收到疑似信号后,提醒工作人员以人工方式检查。
PCT/CN2017/077105 2016-03-25 2017-03-17 金属分类探测的标定方法、测试方法及其系统 WO2017162107A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610184184.0A CN105866176B (zh) 2016-03-25 2016-03-25 金属分类探测的标定方法、测试方法及其系统
CN201610184184.0 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017162107A1 true WO2017162107A1 (zh) 2017-09-28

Family

ID=56625082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077105 WO2017162107A1 (zh) 2016-03-25 2017-03-17 金属分类探测的标定方法、测试方法及其系统

Country Status (2)

Country Link
CN (1) CN105866176B (zh)
WO (1) WO2017162107A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318075A (zh) * 2018-02-09 2018-07-24 李法利 安检装置的控制电路
CN109557167A (zh) * 2018-10-26 2019-04-02 东莞市华盾电子科技有限公司 一种金属分类探测的标定方法及系统
CN113537343A (zh) * 2021-07-14 2021-10-22 厦门熵基科技有限公司 一种金属分类方法、装置、设备及存储介质
CN113792675A (zh) * 2021-09-17 2021-12-14 上海兰宝传感科技股份有限公司 一种金属材质分析方法及其装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866176B (zh) * 2016-03-25 2019-02-05 东莞市华盾电子科技有限公司 金属分类探测的标定方法、测试方法及其系统
CN108398724A (zh) * 2018-02-09 2018-08-14 李法利 波形探测电路
CN108345038A (zh) * 2018-02-09 2018-07-31 李法利 基于金属探测的波形处理方法
CN108415085A (zh) * 2018-02-09 2018-08-17 李法利 用于检测金属制品的检测方法
CN108415084A (zh) * 2018-02-09 2018-08-17 李法利 报警方法
CN109799536A (zh) * 2019-04-01 2019-05-24 中控智慧科技股份有限公司 一种基于差值判断的智能分析安检装置
CN111190232B (zh) * 2020-03-05 2023-10-31 大同市快安科技有限公司 一种金属违禁物品检测装置及其多参数综合判定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314590A (zh) * 2001-04-30 2001-09-26 宝山钢铁股份有限公司 双检测线圈金属探测方法和装置
US20040178789A1 (en) * 2003-03-14 2004-09-16 Candelore Dominick A. Hands-free metal detector
CN101556253A (zh) * 2008-04-09 2009-10-14 中国电子科技集团公司第五十研究所 一种隐藏金属物品的探测装置和方法
CN105866176A (zh) * 2016-03-25 2016-08-17 东莞市华盾电子科技有限公司 金属分类探测的标定方法、测试方法及其系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2694270Y (zh) * 2004-03-31 2005-04-20 中国电子科技集团公司第五十研究所 手持式可分辨金属探测器电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314590A (zh) * 2001-04-30 2001-09-26 宝山钢铁股份有限公司 双检测线圈金属探测方法和装置
US20040178789A1 (en) * 2003-03-14 2004-09-16 Candelore Dominick A. Hands-free metal detector
CN101556253A (zh) * 2008-04-09 2009-10-14 中国电子科技集团公司第五十研究所 一种隐藏金属物品的探测装置和方法
CN105866176A (zh) * 2016-03-25 2016-08-17 东莞市华盾电子科技有限公司 金属分类探测的标定方法、测试方法及其系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318075A (zh) * 2018-02-09 2018-07-24 李法利 安检装置的控制电路
CN109557167A (zh) * 2018-10-26 2019-04-02 东莞市华盾电子科技有限公司 一种金属分类探测的标定方法及系统
CN113537343A (zh) * 2021-07-14 2021-10-22 厦门熵基科技有限公司 一种金属分类方法、装置、设备及存储介质
CN113792675A (zh) * 2021-09-17 2021-12-14 上海兰宝传感科技股份有限公司 一种金属材质分析方法及其装置

Also Published As

Publication number Publication date
CN105866176A (zh) 2016-08-17
CN105866176B (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2017162107A1 (zh) 金属分类探测的标定方法、测试方法及其系统
CA2405141C (en) Detecting errors in the determination of magnetic location or orientation
US11195081B2 (en) Diagnostic device using both a physical model and mathematical model for anomaly detection
EP2108120B1 (en) Method and apparatus for non-destructive testing using eddy currents
JP5483268B2 (ja) 表面特性検査方法
KR100218653B1 (ko) 전자유도형 검사장치
CN106441632B (zh) 一种温度计的检测方法及温度计的检测装置
KR20030069120A (ko) 냄새측정장치
KR20180030989A (ko) 가스 검출 장치 및 방법
US10690581B2 (en) Infrared thermographic porosity quantification in composite structures
CN109425894A (zh) 一种地震异常道检测方法及装置
US7505859B2 (en) Method and algorithms for inspection of longitudinal defects in an eddy current inspection system
EP3109631B1 (en) Surface property inspection and sorting apparatus, system and method
CN104569886B (zh) 基于时频参数标准仪器方式的信号检测设备校准方法
JP6731710B2 (ja) ガス分析システム、及び、ガス分析方法
US3582772A (en) Method of calibrating eddy current flaw detection equipment utilizing attachable slugs to simulate flaws
GB2527835A (en) Apparatus and circuit
JP2008258737A (ja) 電波発信装置の個体識別装置
CN111190232B (zh) 一种金属违禁物品检测装置及其多参数综合判定方法
JP2002350406A (ja) 渦流探傷装置
US9116186B2 (en) Detection of signals
CN207512465U (zh) 领袖长度监测装置
KR20060134764A (ko) 와전류 센서의 금속 모재선별 방법 및 장치
US6163267A (en) Device for measuring noise
CN109557167A (zh) 一种金属分类探测的标定方法及系统

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769384

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769384

Country of ref document: EP

Kind code of ref document: A1