WO2017161911A1 - 具有冷凝液滴自驱离功能纳米层的换热器 - Google Patents

具有冷凝液滴自驱离功能纳米层的换热器 Download PDF

Info

Publication number
WO2017161911A1
WO2017161911A1 PCT/CN2016/108320 CN2016108320W WO2017161911A1 WO 2017161911 A1 WO2017161911 A1 WO 2017161911A1 CN 2016108320 W CN2016108320 W CN 2016108320W WO 2017161911 A1 WO2017161911 A1 WO 2017161911A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
titanium material
titanium
exchanger according
electrolyte
Prior art date
Application number
PCT/CN2016/108320
Other languages
English (en)
French (fr)
Inventor
赖跃坤
张松楠
黄剑莹
王涛
何志成
Original Assignee
苏州蓝锐纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州蓝锐纳米科技有限公司 filed Critical 苏州蓝锐纳米科技有限公司
Publication of WO2017161911A1 publication Critical patent/WO2017161911A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the invention relates to a heat exchanger with a condensed droplet self-driving function nano layer, belonging to the field of heat exchange equipment application.
  • a heat exchanger is an energy-saving device that transfers heat between materials at two or more fluids at different temperatures. It transfers heat from a higher temperature fluid to a lower temperature fluid, allowing the fluid temperature to reach the flow.
  • the specified indicators meet the needs of process conditions and are also one of the main equipment for improving energy efficiency.
  • the heat exchanger industry involves nearly 30 kinds of industries such as HVAC, pressure vessels, water treatment equipment, chemicals, and petroleum, forming an industrial chain.
  • the data shows that the market size of China's heat exchanger industry in 2010 is about 50 billion yuan, mainly concentrated in the fields of petroleum, chemical, metallurgy, electric power, shipbuilding, central heating, refrigeration and air conditioning, machinery, food, and pharmaceuticals.
  • the petrochemical industry is still the largest market in the heat exchanger industry, with a market size of 15 billion yuan; the market for heat exchangers in the power metallurgy sector is about 8 billion yuan; and the market for heat exchangers in the shipbuilding industry is over 4 billion yuan;
  • the market size of the heat exchangers in the machinery industry is about 4 billion yuan; the market for heat exchangers in the central heating industry is over 3 billion yuan, and the food industry has a market of nearly 3 billion yuan.
  • spacecraft, semiconductor devices, nuclear power island nuclear islands, wind turbines, solar photovoltaic power generation, polysilicon production and other fields require a large number of professional heat exchangers, these markets are about 13 billion yuan.
  • heat exchangers on the market have used titanium as the material of the heat exchanger body. But only the basic properties of titanium materials, such as light weight, high strength and corrosion protection. It does not solve the above problem of frosting and icing.
  • Chinese Patent No. 201220351956.2 discloses an air-conditioning water heater with a titanium tube copper tube heat exchanger.
  • the heat exchanger adopts the structure of a titanium tube copper tube, and the main purpose is to prevent corrosion.
  • the object of the present invention is to provide a heat exchanger having a condensed droplet self-driving function nano layer,
  • the heat exchanger itself is not easy to freeze and freeze.
  • a heat exchanger having a condensed droplet self-driving functional nanolayer comprising a heat exchanger body made of titanium material, the titanium material being made by: taking an anode composed of a cathode and a titanium material at a mass fraction of An oxidation system is formed in 0.03-0.5% of the normal temperature electrolyte, and a constant voltage of 20V-60V is applied between the cathode and the anode for more than 20 minutes to form a nanostructure on the surface of the titanium material, and then the surface of the titanium material is modified to have a low surface energy. substance.
  • the mass fraction of the above electrolyte may be 0.04%, 0.1%, 0.2%, 0.3%, 0.5% or the like.
  • the above voltage may be 20V, 30V, 45V, 50V, 60V or the like.
  • the above reaction time may be 20 min, 40 min, 60 min, 1 h, 2 h, and the like.
  • the invention adopts the anodizing method to prepare the self-driving function surface of the condensed droplets on the surface of the titanium material, thereby solving the problem that the heat exchanger itself is easy to freeze and freeze. Moreover, the above method for preparing the condensed droplets from the self-driving functional surface is simple and easy, can be realized at room temperature, has low cost, and is excellent in the performance of the formed functional surface.
  • the cathode is a platinum electrode, a graphite electrode, a nickel electrode or a titanium electrode.
  • the electrolyte is a hydrofluoric acid electrolyte or an ammonium fluoride electrolyte.
  • the nanostructure includes at least one of the following structures: regular nanotubes, irregular nanotubes, and nanoparticle hierarchical structures.
  • the nanostructure comprises any one of a regular nanotube, an irregular nanotube, and a nanometer hierarchical structure in which the array is distributed on the surface of the titanium material.
  • the low surface energy substance includes fluorosilane, siloxane, polytetrafluoroethylene, a silane coupling agent or a higher fatty acid.
  • the method for modifying the low surface energy substance includes a soaking method or an evaporation method.
  • the beneficial effects due to the formation of condensed droplets from the self-driving functional surface, on the one hand, the effective bubble nucleation point is increased to cause a large number of rapid generation of condensed droplets, thereby increasing the probability of condensation droplet fusion; on the other hand, reducing droplets and The adhesion of the bottom surface of the titanium material causes the fused droplets to rapidly dislodge, preventing the interface from freezing and freezing due to further decrease in temperature. It effectively extends the service life of the heat exchanger and improves the heat exchange efficiency.
  • Figure 1 is a plan view showing the hierarchical structure of nano-particles on the surface of a titanium material of the present invention
  • Example 2 is a comparison diagram of the surface of the ordinary smooth titanium material (a) and the surface of the self-driving performance of the condensed droplets obtained in Example 1 of the present invention (b);
  • FIG. 3 is a schematic view of a conventional smooth titanium surface (a) and a condensed droplet self-driving performance structure surface (b) droplet bounce obtained in Embodiment 1 of the present invention
  • Figure 4 is a diagram showing the self-driving phenomenon of the surface of the conventional smooth titanium material (a-c) and the surface of the self-driving performance of the condensed droplets (d-f) obtained by the first embodiment of the present invention
  • Example 5 is a view showing a droplet size distribution of a surface of a condensed droplet self-driving performance structure obtained in Example 1 of the present invention
  • Figure 6 is a schematic view showing the droplet bounce of the heat exchanger of the present invention when applied
  • one aspect of the present invention is to provide a self-driving functional surface with condensed droplets which is simple in process, low in cost, and can be manufactured over a large area.
  • the preparation method and the method are used to prepare a heat exchanger. It is mainly based on constant pressure electrochemical oxidation.
  • the titanium material of the present invention may be pure titanium or a titanium alloy, and may be a titanium tube, a titanium plate or the like.
  • the present invention can prepare various nanostructures (such as regular nanotubes, irregular nanotubes, nanoparticle hierarchical structures, etc.) on titanium by anodization, and modify low surface energy on the surface of the substrate having nanostructures.
  • the substance thereby obtaining micro-droplets self-driving away from the surface, which surface can effectively fuse the surface condensation droplets.
  • the above titanium material is applied to the heat exchanger to solve the problem that the heat exchanger is easy to freeze and freeze, thereby realizing the purpose of prolonging the service life of the heat exchanger and improving the heat exchange efficiency.
  • Step 1 Wash and remove the organic grease and inorganic impurities on the surface of the titanium material.
  • Step 2 The electrolyte is a 0.01 M/L ammonium fluoride solution, the reaction temperature is 25 ° C, and the voltage is a constant pressure.
  • the titanium material is oxidized at a constant temperature (for example, 25 ° C) in a constant pressure (50 V).
  • the reaction current system is relatively small (about 0.01-0.05 A), and the reaction time in this step is 60 min. .
  • Step 3 Place the magnetic rotor in the centrifuge tube, add 48ml of methanol, add 0.5ml of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, add 1.5ml of deionized water, stir in a magnetic stirrer. 30 min, let stand for 2 h.
  • Step 4 After the end of the reaction in step 2, the impurities on the surface of the obtained titanium material are removed by washing and dried.
  • the surface of the obtained titanium material was immersed in the fluorosilane solution obtained in the step 3 for 1 hour, taken out and baked in an oven at 140 ° C for 1 hour to obtain a nanoparticle hierarchical structure surface having a self-dislodging function of condensed droplets.
  • Step 5 The obtained titanium material is made into a heat exchanger.
  • FIG. 1 there is shown a top view of a typical titanium material surface nanoparticle hierarchical structure in the present invention. It can be seen that the structural features are like pine-shaped protrusions, and the convex surface is covered with titanium dioxide nanoparticles.
  • FIG. 3 a schematic diagram of droplet bounce of a nanoparticle hierarchical structure surface and a blank titanium material (ordinary smooth titanium material) is shown. It can be seen that on the surface of the nanometer hierarchical structure, the droplet ejection phenomenon can be effectively occurred, and the droplets on the ordinary smooth titanium material do not bounce off after falling;
  • the high-humidity relative humidity 80%, ambient temperature 25 ° C
  • wall temperature 2 ° C conditions the surface of the nanoparticle structure
  • the blank titanium (normal smooth titanium) condensate droplets self-displacement Comparison chart It can be seen that on the surface of the nano-particle hierarchical structure, the condensed droplet fusion self-driving phenomenon can be effectively performed, and the droplets on the ordinary smooth titanium material are continuously fused and become large without detachment of the condensed droplets.
  • FIG. 5 the size distribution map of the condensed droplets on the surface of the nanoparticle fractionation structure under the conditions of high humidity (relative humidity 80%, ambient temperature 25 ° C) and wall temperature 2 ° C is shown. It can be seen that the highest vertical bar in FIG. 5 represents condensed droplets below 10 ⁇ m. On the surface of the nano-particle hierarchical structure, condensed droplets below 10 ⁇ m account for more than 80%, which can effectively cause self-driving of condensed droplets. .
  • Step 1 Wash and remove the organic grease and inorganic impurities on the surface of the titanium material.
  • Step 2 The electrolyte is 0.5 wt.% ammonium fluoride solution, the solvent is 98 vol.% ethylene glycol and 2 vol.% water, the reaction temperature is 25 ° C, and the voltage is constant pressure. Electrolysis of titanium at room temperature (eg 25 ° C) In the liquid, oxidation begins at a constant pressure (50 V). During the reaction, the system of the reaction current is relatively small (about 0.01-0.05 A), and the reaction time of this step is 120 min.
  • Step 3 Place the magnetic rotor in the centrifuge tube, add 48ml of methanol, add 0.5ml of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, add 1.5ml of deionized water, stir in a magnetic stirrer. 30 min, let stand for 2 h.
  • Step 4 After the end of the reaction in step 2, the impurities on the surface of the obtained titanium material are removed by washing and dried.
  • the surface of the obtained titanium material was immersed in the fluorosilane solution obtained in the step 3 for 1 hour, taken out and baked in an oven at 140 ° C for 1 hour to obtain an irregular nanotube structure surface having a self-dislodging function of condensed droplets.
  • Step 5 The obtained titanium material is made into a heat exchanger.
  • Step 1 Wash and remove the organic grease and inorganic impurities on the surface of the titanium material.
  • Step 2 The electrolyte is a 0.5 wt.% hydrofluoric acid solution, the reaction temperature is 25 ° C, and the voltage is a constant pressure.
  • the titanium material is oxidized at a constant temperature (for example, 25 ° C) in a constant pressure (20 V).
  • the reaction current system is relatively small (about 0.01-0.05 A), and the reaction time is 20 min.
  • Step 3 Place the magnetic rotor in the centrifuge tube, add 48ml of methanol, add 0.5ml of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, add 1.5ml of deionized water, stir in a magnetic stirrer. 30 min, let stand for 2 h.
  • Step 4 After the end of the reaction in step 2, the impurities on the surface of the obtained titanium material are removed by washing and dried.
  • the surface of the obtained titanium material was immersed in the fluorosilane solution obtained in the step 3 for 1 hour, taken out and baked in an oven at 140 ° C for 1 hour to obtain a nanotube structure surface having a self-dislodging function of condensed droplets.
  • Step 5 The obtained titanium material is made into a heat exchanger.
  • the present invention discloses a preparation method for self-driving functional surface of condensed droplets, which has mild reaction conditions, can be realized at room temperature, has a simple and easy process, and has a good application prospect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种具有冷凝液滴自驱离功能纳米层的换热器,主要包括:由钛材制成的换热器本体,钛材由以下方式制成:取阴极和钛材构成的阳极置于质量分数为0.03-0.5%的常温电解液中形成氧化体系,并在阴极和阳极之间施加恒电压20V-60V,反应20min以上,以此在钛材表面形成纳米结构,然后将钛材表面修饰低表面能物质,以此解决换热器本身容易结霜结冰的问题。

Description

具有冷凝液滴自驱离功能纳米层的换热器 技术领域
本发明涉及一种具有冷凝液滴自驱离功能纳米层的换热器,属于换热设备应用领域。
背景技术
换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。换热器行业涉及暖通、压力容器、中水处理设备,化工,石油等近30多种产业,相互形成产业链条。
数据显示2010年中国换热器产业市场规模在500亿元左右,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场,其市场规模为150亿元;电力冶金领域换热器市场规模在80亿元左右;船舶工业换热器市场规模在40亿元以上;机械工业换热器市场规模约为40亿元;集中供暖行业换热器市场规模超过30亿元,食品工业也有近30亿元的市场。另外,航天飞行器、半导体器件、核电常规岛核岛、风力发电机组、太阳能光伏发电、多晶硅生产等领域都需要大量的专业换热器,这些市场约有130亿元的规模。
众所周知,换热器表面在低温潮湿环境下很容易凝露结霜并导致结冰,这一问题会导致材料的耗损加速、能源的浪费。因此,解决这一行业难题并研制出更节能更有效的换热器是非常有意义的。
目前,市面上的换热器已经使用钛这种材料作为换热器本体的材料。但仅仅是利用钛材料的基本性能,比如轻便、强度高、防腐。并没有解决上述结霜结冰的问题。
例如中国专利201220351956.2公开了一种带钛管套铜管换热器的冷气热水器。其换热器采用钛管套铜管的结构,主要目的是为了防腐。
发明内容
本发明目的是:提供一种具有冷凝液滴自驱离功能纳米层的换热器,使 得换热器本身不容易结霜结冰。
为实现上述发明目的,本发明的技术方案是:
具有冷凝液滴自驱离功能纳米层的换热器,包括由钛材制成的换热器本体,所述钛材由以下方式制成:取阴极和钛材构成的阳极置于质量分数为0.03-0.5%的常温电解液中形成氧化体系,并在阴极和阳极之间施加恒电压20V-60V,反应20min以上,以此在钛材表面形成纳米结构,然后将钛材表面修饰低表面能物质。上述电解液的质量分数可以是0.04%、0.1%、0.2%、0.3%、0.5%等。上述电压可以是20V、30V、45V、50V、60V等。上述反应时间可以是20min,40min,60min,1h,2h等。
本发明采用阳极氧化法在钛材表面制备冷凝液滴自驱离功能表面,以此解决换热器本身容易结霜结冰的问题。并且,上述制备冷凝液滴自驱离功能表面的方法简单易行,在室温下可实现,成本低,所形成的功能表面的性能优异。
进一步的是:所述阴极是铂电极、石墨电极、镍电极或钛电极。
进一步的是:所述电解液为氢氟酸电解液或氟化铵电解液。
进一步的是:所述纳米结构至少包括以下结构中的一种:规则纳米管,不规则纳米管,纳米颗粒分级结构。
进一步的是:所述纳米结构包括阵列分布于钛材表面的规则纳米管、不规则纳米管、纳米颗粒分级结构中的任一种。
进一步的是:所述低表面能物质包括氟硅烷、硅氧烷、聚四氟乙烯、硅烷偶联剂或高级脂肪酸。
进一步的是:用以修饰低表面能物质的方法包括浸泡法或蒸镀法。
有益效果:由于形成冷凝液滴自驱离功能表面,一方面,增加了有效气泡成核点使冷凝液滴大量快速的产生,从而提高冷凝液滴融合的几率;另一方面,降低液滴与钛材底表面的粘附性使融合的液滴迅速自驱离,阻止界面因温度进一步降低产生结霜结冰的现象。有效延长了换热器的使用寿命,并提高了换热效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发 明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中,
图1为本发明钛材表面纳米颗粒分级结构的俯视图;
图2为普通光滑钛材表面(a)和本发明实施例1所获冷凝液滴自驱离性能结构表面(b)液滴粘附性能的对比图;
图3为普通光滑钛材表面(a)和本发明实施例1所获冷凝液滴自驱离性能结构表面(b)液滴弹跳示意图;
图4为普通光滑钛材表面(a-c)和本发明实施例1所获冷凝液滴自驱离性能结构表面(d-f)液滴自驱离现象图;
图5为本发明实施例1所获冷凝液滴自驱离性能结构表面液滴尺寸分布图;
图6为本发明的换热器在应用时的液滴弹跳示意图;
具体实施方式
如前所述,鉴于钛材工业应用领域广泛以及现有技术的诸多缺陷,本发明一方面旨在提供一种工艺简单,成本低廉,且能大面积制造的具有冷凝液滴自驱离功能表面的制备方法,并将该方法用于制备换热器。其主要是基于恒压电化学氧化而实现的。
本发明的钛材可以是纯钛、也可以是钛合金,可以是钛管、钛板等。
具体而言,本发明可以通过阳极氧化法在钛材上制备各种纳米结构(如规则纳米管,不规则纳米管,纳米颗粒分级结构等),并在具有纳米结构的基底表面修饰低表面能物质,从而得到微液滴自驱离表面,这种表面能够有效的使表面冷凝液滴融合弹离。再将上述钛材应用到换热器上,以解决换热器容易结霜结冰的问题,实现延长换热器使用寿命并提高换热效率的目的。
在为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合较为优选的实施例对本发明的技术方案作进一步的解释说明。
实施例1
步骤1:清洗去除钛材表面的有机油脂和无机杂质。
步骤2:电解液为0.01M/L的氟化铵溶液,反应温度25℃,电压为恒压。将钛材在常温(如25℃)的电解液中,在恒压下(50V)开始氧化,反应过程中,反应电流的体系相对较小(约0.01-0.05A),此步反应时间为60min。
步骤3:在离心管内放入磁力转子,再加入48ml甲醇,再加入0.5ml1H,1H,2H,2H-全氟辛基三乙氧基硅烷,再加入1.5ml去离子水,在磁力搅拌器搅拌30min,静置2h。
步骤4:步骤2反应结束后,清洗去除所得钛材表面的杂质,并烘干。将所得钛材表面浸入在步骤3所得的氟硅烷溶液内1小时,取出并在140℃烘箱中烘1h,即可得到具有冷凝液滴自驱离功能的纳米颗粒分级结构表面。
步骤5:将制得的钛材制成换热器。
参阅图1所示系本发明中一种典型的钛材表面纳米颗粒分级结构的俯视图,可以看到其结构特征为类似松果形的凸起,凸起表面布满二氧化钛纳米颗粒。
参阅图2所示系纳米颗粒分级结构表面和空白钛材(普通光滑钛材)的液滴粘附力对比图。可以看到,所述纳米颗粒分级结构表面上,粘附力极低,为7.5μN左右,而普通光滑钛材粘附力较大,为210μN。粘附力越低,性能越好。
参阅图3所示系纳米颗粒分级结构表面和空白钛材(普通光滑钛材)的液滴弹跳示意图。可以看到,所述纳米颗粒分级结构表面上,可以有效的发生液滴弹离现象,而普通光滑钛材上液滴下落以后并没有弹离;
参阅图4所示系在高湿度(相对湿度80%,环境温度25℃),壁面温度2℃的条件下纳米颗粒分级结构表面和空白钛材(普通光滑钛材)的冷凝液滴自驱离对比图。可以看到,所述纳米颗粒分级结构表面上,可以有效的发生冷凝液滴融合自驱离现象,而普通光滑钛材上液滴不断融合变大并未发生冷凝液滴自驱离现象。
参阅图5所示系在高湿度(相对湿度80%,环境温度25℃),壁面温度2℃的条件下纳米颗粒分级结构表面冷凝液滴尺寸分布图。可以看到,图5中最高的竖条表示10μm以下的冷凝液滴,所述纳米颗粒分级结构表面上,10μm以下的冷凝液滴占80%以上,可以有效的发生冷凝液滴自驱离现象。
实施例2
步骤1:清洗去除钛材表面的有机油脂和无机杂质。
步骤2:电解液为0.5wt.%的氟化铵溶液,溶剂为98vol.%的乙二醇和2vol.%水,反应温度25℃,电压为恒压。将钛材在常温(如25℃)的电解 液中,在恒压下(50V)开始氧化,反应过程中,反应电流的体系相对较小(约0.01-0.05A),此步反应时间120min。
步骤3:在离心管内放入磁力转子,再加入48ml甲醇,再加入0.5ml1H,1H,2H,2H-全氟辛基三乙氧基硅烷,再加入1.5ml去离子水,在磁力搅拌器搅拌30min,静置2h。
步骤4:步骤2反应结束后,清洗去除所得钛材表面的杂质,并烘干。将所得钛材表面浸入在步骤3所得的氟硅烷溶液内1小时,取出并在140℃烘箱中烘1h,即可得到具有冷凝液滴自驱离功能的不规则纳米管结构表面。
步骤5:将制得的钛材制成换热器。
实施例3
步骤1:清洗去除钛材表面的有机油脂和无机杂质。
步骤2:电解液为0.5wt.%的氢氟酸溶液,反应温度25℃,电压为恒压。将钛材在常温(如25℃)的电解液中,在恒压下(20V)开始氧化,反应过程中,反应电流的体系相对较小(约0.01-0.05A),此步反应时间20min。
步骤3:在离心管内放入磁力转子,再加入48ml甲醇,再加入0.5ml1H,1H,2H,2H-全氟辛基三乙氧基硅烷,再加入1.5ml去离子水,在磁力搅拌器搅拌30min,静置2h。
步骤4:步骤2反应结束后,清洗去除所得钛材表面的杂质,并烘干。将所得钛材表面浸入在步骤3所得的氟硅烷溶液内1小时,取出并在140℃烘箱中烘1h,即可得到具有冷凝液滴自驱离功能的纳米管结构表面。
步骤5:将制得的钛材制成换热器。
当参照实施例1的方法,对实施例1-3所获纳米结构表面进行冷凝测试时,可以获得类似的测试效果,其性能远远优于普通光滑钛材。其制得的换热器的性能也远远高于普通钛材的换热器。
综上所述,本发明公开了一种具有冷凝液滴自驱离功能表面的制备方法,其反应条件温和,在室温下即可实现,工艺简便易操作,具有良好的应用前景。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

  1. 具有冷凝液滴自驱离功能纳米层的换热器,包括由钛材制成的换热器本体,其特征在于:所述钛材由以下方式制成:取阴极和钛材构成的阳极置于质量分数为0.03-0.5%的常温电解液中形成氧化体系,并在阴极和阳极之间施加恒电压20V-60V,反应20min以上,以此在钛材表面形成纳米结构,然后将钛材表面修饰低表面能物质。
  2. 根据权利要求1所述的换热器,其特征在于:所述阴极是铂电极、石墨电极、镍电极或钛电极。
  3. 根据权利要求1所述的换热器,其特征在于:所述电解液为氢氟酸电解液或氟化铵电解液。
  4. 根据权利要求1所述的换热器,其特征在于:所述纳米结构至少包括以下结构中的一种:规则纳米管,不规则纳米管,纳米颗粒分级结构。
  5. 根据权利要求1所述的换热器,其特征在于:所述纳米结构包括阵列分布于钛材表面的规则纳米管、不规则纳米管、纳米颗粒分级结构中的任一种。
  6. 根据权利要求1所述的换热器,其特征在于:所述低表面能物质包括氟硅烷、硅氧烷、聚四氟乙烯、硅烷偶联剂或高级脂肪酸。
  7. 根据权利要求1所述的换热器,其特征在于:用以修饰低表面能物质的方法包括浸泡法或蒸镀法。
PCT/CN2016/108320 2016-03-22 2016-12-02 具有冷凝液滴自驱离功能纳米层的换热器 WO2017161911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610164176.X 2016-03-22
CN201610164176.XA CN105696056A (zh) 2016-03-22 2016-03-22 具有冷凝液滴自驱离功能纳米层的换热器

Publications (1)

Publication Number Publication Date
WO2017161911A1 true WO2017161911A1 (zh) 2017-09-28

Family

ID=56232316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108320 WO2017161911A1 (zh) 2016-03-22 2016-12-02 具有冷凝液滴自驱离功能纳米层的换热器

Country Status (2)

Country Link
CN (1) CN105696056A (zh)
WO (1) WO2017161911A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696056A (zh) * 2016-03-22 2016-06-22 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的换热器
CN105836103A (zh) * 2016-03-22 2016-08-10 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的飞机机翼
CN108486627B (zh) * 2018-04-08 2020-07-10 广东工业大学 一种抗结霜的表面处理方法
CN110565145B (zh) * 2019-09-05 2021-04-16 华南理工大学 一种纯钛表面超疏水性阳极氧化着色膜及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021628A (zh) * 2009-09-11 2011-04-20 中国科学院兰州化学物理研究所 一种金属钛或钛合金超疏油表面的制备方法
US20120090825A1 (en) * 2009-06-01 2012-04-19 The Board Of Trustees Of The University Of Illinois Nanofiber covered micro components and methods for micro component cooling
CN102618905A (zh) * 2012-03-22 2012-08-01 河北工业大学 强化钛传热元件的制造方法和装置
CN102994793A (zh) * 2012-11-12 2013-03-27 华南理工大学 一种纳米多孔强化沸腾金属表面结构及其制备方法
CN103668390A (zh) * 2014-01-02 2014-03-26 四川大学 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法
CN103702928A (zh) * 2011-07-21 2014-04-02 浦项工科大学校产学协力团 加工极疏水性表面的方法及具有极疏水性表面的蒸发器
CN104342734A (zh) * 2013-08-06 2015-02-11 中国科学院苏州纳米技术与纳米仿生研究所 具有强化泡核沸腾传热功能的铝材及其制备方法
CN105582852A (zh) * 2016-03-28 2016-05-18 四川大学 一种湿法滚动造粒的方法
CN105696056A (zh) * 2016-03-22 2016-06-22 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的换热器
CN105836103A (zh) * 2016-03-22 2016-08-10 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的飞机机翼

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760113A (zh) * 2005-11-16 2006-04-19 厦门大学 超双亲性和超疏水性的二氧化钛纳米管阵列膜的制备方法
GB0922308D0 (en) * 2009-12-22 2010-02-03 Rolls Royce Plc Hydrophobic surface
CN204268777U (zh) * 2014-09-18 2015-04-15 合肥华凌股份有限公司 冰箱
CN104748603A (zh) * 2015-03-23 2015-07-01 徐翔 提高以蒸汽为热源的换热器换热效果的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120090825A1 (en) * 2009-06-01 2012-04-19 The Board Of Trustees Of The University Of Illinois Nanofiber covered micro components and methods for micro component cooling
CN102021628A (zh) * 2009-09-11 2011-04-20 中国科学院兰州化学物理研究所 一种金属钛或钛合金超疏油表面的制备方法
CN103702928A (zh) * 2011-07-21 2014-04-02 浦项工科大学校产学协力团 加工极疏水性表面的方法及具有极疏水性表面的蒸发器
CN102618905A (zh) * 2012-03-22 2012-08-01 河北工业大学 强化钛传热元件的制造方法和装置
CN102994793A (zh) * 2012-11-12 2013-03-27 华南理工大学 一种纳米多孔强化沸腾金属表面结构及其制备方法
CN104342734A (zh) * 2013-08-06 2015-02-11 中国科学院苏州纳米技术与纳米仿生研究所 具有强化泡核沸腾传热功能的铝材及其制备方法
CN103668390A (zh) * 2014-01-02 2014-03-26 四川大学 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法
CN105696056A (zh) * 2016-03-22 2016-06-22 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的换热器
CN105836103A (zh) * 2016-03-22 2016-08-10 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的飞机机翼
CN105582852A (zh) * 2016-03-28 2016-05-18 四川大学 一种湿法滚动造粒的方法

Also Published As

Publication number Publication date
CN105696056A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2017161911A1 (zh) 具有冷凝液滴自驱离功能纳米层的换热器
Gong et al. Recent progress in bionic condensate microdrop self‐propelling surfaces
Zhang et al. Understanding the role of dynamic wettability for condensate microdrop self‐propelling based on designed superhydrophobic TiO2 nanostructures
Miljkovic et al. Condensation heat transfer on superhydrophobic surfaces
Hou et al. Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons
Attinger et al. Surface engineering for phase change heat transfer: A review
Chu et al. Superamphiphobic surfaces
Zhao et al. Condensate microdrop self-propelling aluminum surfaces based on controllable fabrication of alumina rod-capped nanopores
CN101748461B (zh) 一种超双疏表面制备技术
CN102383164B (zh) 二氧化钛纳米蜂窝嵌套纳米线阵列薄膜及制备方法
Gao et al. The effects of bio-inspired micro/nano scale structures on anti-icing properties
Li et al. Facile fabrication of anodic alumina rod-capped nanopore films with condensate microdrop self-propelling function
Liang et al. Facile fabrication of a flower-like CuO/Cu (OH) 2 nanorod film with tunable wetting transition and excellent stability
WO2018039990A1 (zh) 耐水压冲击的长效超疏水涂层及其制备方法
Wang et al. A novel flexible micro-ratchet/ZnO nano-rods surface with rapid recovery icephobic performance
Wang et al. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling
CN103962294A (zh) 抗冷凝水防结冰表面,其制备方法及应用
CN107376948B (zh) 一种二维硒化钼功能材料电解水制氢催化剂的制备方法
WO2017161920A1 (zh) 具有冷凝液滴自驱离功能纳米层的飞机机翼
US10503063B2 (en) Super water repellent polymer hierarchical structure, heat exchanger having super water repellency, and manufacturing method therefor
CN100443851C (zh) 热交换器用铝箔、其制造方法及使用其的热交换器和空调
JP2010174269A (ja) アルミニウム部材の製造方法
CN101934268B (zh) 一种镁合金表面超疏水耐腐蚀功能膜的制备方法
CN103135224A (zh) 一种光控可逆润湿涂层的制备方法
Li et al. Superhydrophobic coating with a micro-and nano-sized MnO 2/PDMS composite structure for passive anti-icing/active de-icing and photothermal applications

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895256

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895256

Country of ref document: EP

Kind code of ref document: A1