WO2017161786A1 - 基于光储系统运行优化的混合储能配比计算方法 - Google Patents

基于光储系统运行优化的混合储能配比计算方法 Download PDF

Info

Publication number
WO2017161786A1
WO2017161786A1 PCT/CN2016/091835 CN2016091835W WO2017161786A1 WO 2017161786 A1 WO2017161786 A1 WO 2017161786A1 CN 2016091835 W CN2016091835 W CN 2016091835W WO 2017161786 A1 WO2017161786 A1 WO 2017161786A1
Authority
WO
WIPO (PCT)
Prior art keywords
vrla
particle
energy storage
capacity
max
Prior art date
Application number
PCT/CN2016/091835
Other languages
English (en)
French (fr)
Inventor
杨立滨
张峰
张海宁
李春来
贾昆
杨军
李正曦
孟可风
赵世昌
Original Assignee
严利容
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 严利容 filed Critical 严利容
Publication of WO2017161786A1 publication Critical patent/WO2017161786A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention relates to the field of hybrid energy storage technology, in particular to a hybrid energy storage ratio calculation method based on operation optimization of an optical storage system.
  • the energy storage device is configured for the photovoltaic system and the capacity of the photovoltaic system and the energy storage system is optimized.
  • the method for determining the energy storage capacity of micro-grid islands during operation is studied. According to the probability density curve of the cumulative value of charge and discharge at different times of the energy storage system, a probabilistic optimal energy storage capacity optimization method is proposed, which has certain enlightening significance.
  • the object of the present invention is to provide a hybrid energy storage ratio calculation method based on operation optimization of an optical storage system.
  • a hybrid energy storage ratio calculation method based on operation optimization of an optical storage system comprising:
  • the C n and C n-1 ratios are the particle fitness values calculated by the current and previous cycles, n is the current cycle number; c 1 and c 2 are the particle weight coefficients; w is the inertia weight; r 1 , r 2 The random number is uniformly distributed in (0, 1); x i and v i are the position and velocity of the i-th particle; g is the constraint factor.
  • the optical storage system includes an energy storage device VRLA and a power storage device UC.
  • step S1 is specifically:
  • P(t) is decomposed into high frequency component P h (t) and trend component P l (t) by wavelet transform, and satisfies:
  • step S1 further includes:
  • the dichotomous wavelet is used to discretize the scale parameters, and the decomposition filter coefficients Hn, Gn, and the reconstruction filter coefficients Hn' and Gn' are decomposed into P h (t) and P by wavelet transform coefficients. l (t), and meet:
  • the charging and discharging strategy in the step S3 includes:
  • the charging and discharging process model for reducing the UC capacity in the step S3 is:
  • k is the power reduction factor and is a positive number of the interval (0, 1).
  • P d/c.UC , P d /c.VRLA indicates the charging or discharging power of UC and VRLA, respectively.
  • each cost parameter in the step S4 is performed by the following formula:
  • ⁇ VRLA and ⁇ Uc are the unit construction cost of VRLA and UC respectively; T is the time window length of the extracted operational data; ⁇ is the abandoned light cost per unit capacity; ⁇ is the unit penalty cost that does not reach the capacity of the target V VRLA (t-1), V UC (t-1) is the value corresponding to the previous time capacity; ⁇ t is the sampling interval; P c.VRLA.max and P c.UC.max are the maximum charging of the corresponding medium respectively. Power; V VRLA.min and V UC.min are respectively the lowest discharge capacity of the corresponding medium, corresponding to the SOC value; P d.VRLA.max and P d.UC.max are divided into corresponding maximum discharge power.
  • the constraints in the step S4 include:
  • P c.max and P d.max are respectively the maximum charge and discharge power corresponding to the corresponding medium
  • the change of the capacity V(t) should be limited between the maximum capacity V max and the minimum capacity V min of each medium.
  • the invention constructs a hybrid energy storage power station by using a typical power storage VRLA and an energy storage UC, and constructs a complementary charging and discharging process model by using their respective characteristics to realize coordinated organic operation between the mixed energy storage systems;
  • the operation planning and minimum construction cost are the minimum to establish a capacity planning model, and the charging and discharging power constraints and capacity comparison constraints of the two energy storage media are considered, and the optimal configuration is realized.
  • the invention can effectively reduce the number of VRLA charge and discharge, reduce the capacity proportion of UC, stabilize the power offset, and reduce the overall cost input, and has important reference value for the capacity planning of the hybrid energy storage power station.
  • FIG. 1 is a schematic flow chart of a hybrid energy storage ratio calculation method based on operation optimization of an optical storage system according to the present invention.
  • FIG. 2 is a schematic diagram of extracting high and low frequency components by using wavelet transform in the present invention.
  • FIG. 3 is a schematic diagram of the decomposition target in an embodiment of the present invention, wherein FIGS. 3a, 3b, and 3c are schematic diagrams of the offsets P, P ⁇ H , and P ⁇ L , respectively.
  • FIG. 4 is a schematic diagram of a smoothing effect according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of decomposition target charging and discharging power according to an embodiment of the present invention.
  • the invention constructs a hybrid energy storage power station with typical power type and energy type medium, and establishes a complementary energy storage and discharge model according to their respective advantages.
  • PSO particle swarm optimization
  • a capacity planning model was established to achieve cost optimization.
  • the verification and analysis of the actual photovoltaic electric field operation data show that the method can effectively reduce the charge and discharge times of lead-acid batteries (VRLA), reduce the capacity proportion of super capacitor (UC), and effectively improve the performance while further reducing the overall cost investment.
  • VRLA lead-acid batteries
  • UC capacity proportion of super capacitor
  • a hybrid energy storage ratio calculation method based on operation optimization of an optical storage system includes:
  • the C n and C n-1 ratios are the particle fitness values calculated by the current and previous cycles, n is the current cycle number; c 1 and c 2 are the particle weight coefficients; w is the inertia weight; r 1 , r 2 The random number is uniformly distributed in (0, 1); x i and v i are the position and velocity of the i-th particle; g is the constraint factor.
  • UC is a power-type energy storage device, which has the advantages of frequent charge-discharge switching response capability, high charge-discharge frequency, and the like, and is suitable for fluctuation suppression of random components exhibiting frequent fast-changing characteristics
  • VRLA belongs to energy-type energy storage device, energy The density is large and the energy storage time is long.
  • there are shortcomings such as small output power variation range, slow speed and few charge and discharge times, which can be used to compensate for the trend component of smooth fluctuation and high energy in optical power.
  • the cost of UC is much more expensive than that of VRLA.
  • hybrid energy storage power station should play the role of UC frequent charging and discharging, so that it can play a role in the small energy charging and discharging interval and limit its capacity; it should be effectively avoided for VRLA.
  • the state of charge and discharge is frequently switched, and its relative capacity is appropriately increased to operate in a charge and discharge interval of large-value energy. Therefore, a hybrid energy storage power station with complementary advantages is constructed to realize the coordination of energy-type and power-type energy storage devices, and is in an optimized storage state.
  • the wavelet transform is used to decompose P(t) into a high frequency component P h (t) and a trend component P l (t), wherein the present invention uses a binary wavelet pair.
  • the scale parameters are discretized, which greatly reduces the computational complexity compared with continuous wavelet transform.
  • the translation parameters still maintain continuous variation and still have time-shift covariance, which is the biggest advantage of discrete wavelet transform.
  • the quadratic spline binary wavelet is selected, which decomposes the filter coefficients Hn, Gn, and reconstructs the filter coefficients Hn' and Gn'.
  • P(t) can be decomposed into P h (t) and P l (t) by wavelet transform coefficients, and it satisfies:
  • f(t-1) ⁇ f(t) ⁇ 0 means that P ⁇ L (t) changes with zero value; ⁇ t f is f for the current state duration; ⁇ t thr is the duration threshold; P d.VRLA
  • the discharge power and the charge and discharge and float state correspond to the values 1, 1, and 0, respectively.
  • P c.VRLA represents the charging power and the charging and discharging states are corresponding to the values 1, 1, 0, and S bat .
  • VRLA is the charging and discharging state flag.
  • the normal discharge state is changed to the state of charge, and the change rule of S bat.VRLA is determined in conjunction with the threshold.
  • the UC reduces the power charging and discharging and the VRLA doubles the power charging and discharging; when the charging and discharging states are different, the UC still reduces the power operation, and the VRLA coordinates the charging and discharging power accordingly;
  • the SOC VRLA approaches the threshold, the UC recovers the charge and discharge power.
  • the charge and discharge model when S bat.VRLA is 1 or -1 and S bat.UC is 1 or -1 is discussed separately:
  • the VRLA and UC charging and discharging models are:
  • Equation (3) shows that UC reduces power charging and discharging, while VRLA takes the subordinate coordination role to assume the repetitive task of remaining overall goals.
  • the capacity optimization model of the energy storage power station constructs the optimization objective function with the minimum of the construction cost and the running cost.
  • the construction cost is proportional to the mixed capacity, while the running cost decreases in the case of the mixed capacity increase. Therefore, the objective function is to obtain the objective function.
  • the optimal capacity under the trade-off between construction costs and operating costs.
  • the operating cost includes the cost of abandoning light and the cost of expected output.
  • the cost of abandoning light and the cost of expected output are both composed of two parts. One is the capacity factor, which is caused by insufficient capacity to cause full charge or discharge. Suppressing fluctuations; the second is the power factor.
  • the respective targets have been eliminated, the influence of this factor has been eliminated.
  • the actual suppression of fluctuations still has insufficient charging and discharging power, resulting in insufficient light and insufficient power. may.
  • the corresponding calculation is as shown in equation (4):
  • ⁇ VRLA and ⁇ Uc are the VRLA and UC unit capacity construction costs respectively; T is the time window length of the extracted operational data; ⁇ is the abandoned light cost per unit capacity; ⁇ is the unit penalty that does not reach the deficiencies of the target Cost; V VRLA (t-1), V UC (t-1) is the value corresponding to the previous time capacity; ⁇ t is the sampling interval; P c.VRLA.max and P c.UC.max are the maximum of the corresponding medium respectively. Charging power; V VRLA.min and V UC.min are respectively the lowest discharge capacity of the corresponding medium, corresponding to the SOC value; P d.VRLA.max and P d.UC.max are divided into corresponding maximum discharge power.
  • Constraints mainly include charge and discharge power constraints and capacity constraints.
  • P c.max and P d.max are respectively the maximum charge and discharge power corresponding to the corresponding medium, and generally relate to the battery capacity.
  • the life of the battery is related to the depth of charge and discharge. Overshoot and overdischarge will increase the battery life loss, so the charge and discharge capacity is constrained:
  • the change in the capacity V(t) should be limited between the maximum capacity V max and the minimum capacity V min of each medium.
  • the invention adopts a particle swarm optimization algorithm (PSO) with high computational efficiency and good convergence characteristics to solve and calculate, and the specific algorithm and steps are as follows:
  • the actual operation data verification of the on-site photovoltaic electric field is performed, and the hybrid energy storage capacity is calculated according to the capacity planning method of the hybrid energy storage power plant of the present invention.
  • the installed capacity of the photovoltaic power station is 30 MW, the sampling frequency is 5 minutes, and the capacity is adopted. Effective value, the UC capacity is equivalent to the capacity based on VRLA, and the equivalent total capacity is calculated as follows:
  • the desired output smoothing target and the decomposition target are adaptively determined based on the minimum variance of the power offset, as shown in Figures 3a to 3c.
  • the optimal energy storage capacity configuration is calculated according to the solving algorithm and the steps.
  • the calculation results are shown in Table 1, wherein the capacity ratio calculation result of the VRLA and UC of the present invention is 4.3:1:
  • the power offset variance in the table is used to measure the degree of offset between the output power and the desired output after squaring; N is the number of VRLA charge and discharge state transitions.
  • the optimal equivalent capacity of the hybrid energy storage system of the present invention is reduced by 17.8% and the objective function value is reduced by 3.1% compared to the optimal capacity of a single UC system. It can be seen that from the economic point of view, the selected capacity of the hybrid energy storage system of the present invention is lower than that of the single medium, and the optimal value of the total cost as the objective function is relatively small, indicating that the performance is improved while the energy storage is mixed. The economics of the system have been further optimized.
  • the power offset variance of the hybrid energy storage system is reduced by 27.9% compared with the single medium system.
  • the reason is that the offset of the single energy storage medium is mainly caused by the limit of the charge and discharge power, and in the hybrid system. Because of the decomposition of the target, the charge and discharge power of the respective media are relatively reduced, and the overall mitigation result shows a downward trend.
  • the hybrid energy storage system has the ability to significantly reduce N. The decrease is 64.8%.
  • the reason is that the charging and discharging strategy of the hybrid energy storage system gives priority to the short-term charge-discharge conversion of VRLA, and the UC-assisted stabilization method is adopted for this situation.
  • the smoothing effect of the cross section of a certain time is extracted, as shown in FIG. 4, the charging and discharging power of the smoothing process is as shown in FIG. 5.
  • the hybrid capacity calculation method of the present invention can realize the optimal configuration of energy storage of different media under the guidance of the charging and discharging strategy of the constructed hybrid energy storage system, and under the premise of ensuring the fluctuation suppression effect.
  • the energy storage level and the VRLA charge and discharge times have obvious optimization and improvement effects, and the overall cost is slightly reduced.
  • the invention constructs a hybrid energy storage power station with a typical power storage VRLA and an energy storage UC, Using their respective characteristics to construct a complementary charge and discharge process model to achieve coordinated organic operation between the various energy storage systems; to establish a capacity planning model with the minimum operating cost and construction cost of the energy storage power plant, and consider the two energy storage media Charge and discharge power constraints and capacity comparison constraints enable optimal configuration.
  • the invention can effectively reduce the number of VRLA charge and discharge, reduce the capacity proportion of UC, stabilize the power offset, and reduce the overall cost input, and has important reference value for the capacity planning of the hybrid energy storage power station.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于光储系统运行优化的混合储能配比计算方法,包括:S1、提取光伏电场运行数据时间窗口长度T,平抑目标分解并确定各自目标PΔL和PΔH;S2、设置粒子群维数D,最大迭代次数Mmax,收敛精度σthresh,初始化粒子群位置x和速度v,并给定初始VOpt.VRLA、VOpt.UC数值;S3、判断是否满足充放电过程模型,并采取对应充放电策略;S4、计算各成本参量,并计算各粒子适应度值;S5、将各粒子适应度值与自身粒子极值及全局例子极值比较,若适应度值较小,则更新各粒子个体极值ebest及全局例子适应度极值gbest;S6、若满足收敛条件,若是则提取当前VOpt.VRLA、VOpt.UC即为最优容量数值。本发明可减少VRLA充放电次数并降低成本。

Description

基于光储系统运行优化的混合储能配比计算方法 技术领域
本发明涉及混合储能技术领域,特别是涉及一种基于光储系统运行优化的混合储能配比计算方法。
背景技术
随着可再生能源渗透率的提升,其波动性给电网的安全可靠运行带来了巨大挑战。储能电站,因其对能量的充放特性,使其成为平滑可再生能源功率,克服其波动性的重要方式。光伏电站配置储能的关键问题之一在于,面对平滑效果与投入成本间的制约关系,如何协调确定储能容量,使有限容量同时满足储能系统运行的有效性和经济性。可见,储能电站的容量优化是光伏电站储能配置规划的重要内容。
现有技术中关于混合储能系统公开了以下技术方案:
建立基于光伏能量预测的微电网智能能量管理系统并提出了一种对微电网的储能容量进行合理配置的经济性优化方法;
分析光伏出力和负荷短期预测误差的随机性,并提出根据区间估计来进行分布式配置和集中式配置储能装置容量的方法;
通过建立概率密度函数来预测光伏出力间歇性,以减少线路损耗和最小化光伏出力波动为主要考虑因素,为光伏系统配置储能装置并对光伏系统和储能系统进行容量优化;
通过计算不同采样点的储能充放电功率对所对应的概率来优化储能容量;
研究微电网孤岛运行时储能容量的确定方法,根据储能系统不同时刻充放电量累计值的概率密度曲线,提出一种概率性最优的储能容量优化方法,具有一定启发意义。
上述现有技术对于推进可再生能源的储能配置及运行研究具有重要意义,但随着研究的推进,但现有技术中尚未发现特性突出、综合能力显著的储能介质提出优势特性互补的混合储能对于提升储能系统的适应能力和运行可靠性具有重要作用,是未来平滑可再生能源波动性的重要发展方向。国家电网风光储示范工程同样采取了混合储能电站的设计思路,来有效实现储能电站的高效控制。但目前对于混合储能电站的研究更多的集中在能量管理、运行控制等方面,而光伏发电站中混合储能配比计算方法的研究并不多见。
发明内容
为克服现有技术的不足,本发明的目的在于提供一种基于光储系统运行优化的混合储能配比计算方法。
为了实现上述目的,本发明实施例提供的技术方案如下:
一种基于光储系统运行优化的混合储能配比计算方法,所述方法包括:
S1、提取光伏电场运行数据时间窗口长度T,平抑目标分解并确定各自目标PΔL和PΔH
S2、设置粒子群维数D,最大迭代次数Mmax,收敛精度σthresh,同时初始化粒子群位置x和速度v,并给定初始VOpt.VRLA、VOpt.UC数值;
S3、判断是否满足充放电过程模型,并采取对应充放电策略;
S4、计算各成本参量,并计算各粒子适应度值;
S5、将各粒子适应度值与自身粒子极值及全局例子极值比较,若适应度值 较小,则更新各粒子个体极值ebest及全局例子适应度极值gbest
S6、判断当前计算是否满足收敛条件|Cn-Cn-1|<σthresh,若是则提取当前VOpt.VRLA、VOpt.UC即为最优容量数值;若否则更新各粒子位置x及速度v,并重复步骤S3~S5,
Figure PCTCN2016091835-appb-000001
Figure PCTCN2016091835-appb-000002
其中,Cn、Cn-1分比为当前和前一次循环计算的粒子适应度值,n为当前循环次数;c1、c2为粒子权重系数;w为惯性权重;r1、r2为(0,1)内均匀分布随机数;xi、vi为第i维粒子的位置与速度;g为约束因子。
作为本发明的进一步改进,所述光储系统包括能量型储能装置VRLA和功率型储能装置UC。
作为本发明的进一步改进,所述步骤S1具体为:
计算t时刻光伏发电机组输出功率PW(t)与时段参考输出功率Pref(t)的差值P(t)为:
P(t)=PW(t)-Pref(t);
利用小波变换将P(t)分解为高频分量Ph(t)和趋势分量Pl(t),且满足:
P(t)=PΔH(t)+PΔL(t)。
作为本发明的进一步改进,所述步骤S1还包括:
采用二进小波对尺度参量进行离散化,将分解滤波器系数Hn、Gn,重构滤波器系数Hn’、Gn’,通过对小波变换系数将P(t)分解为Ph(t)和Pl(t),且满足:
P(t)=PΔH(t)+PΔL(t)。
作为本发明的进一步改进,所述步骤S3中的充放电策略包括:
降低VRLA充放电次数;
及,减小UC容量。
作为本发明的进一步改进,所述步骤S3中减小UC容量的充放电过程模型为:
Pd/c.UC=PΔH·k,
Pd/c.VRLA=PΔL+PΔH·(1-k),
其中,k为功率缩减系数,为区间(0,1]的正数,为保证UC处于持续的充-放-充的循环平衡状态,需保证k>0;Pd/c.UC、Pd/c.VRLA分别表示UC、VRLA的充或放电功率。
作为本发明的进一步改进,所述步骤S4中计算各成本参量通过以下公式进行:
Figure PCTCN2016091835-appb-000003
其中,ρVRLA、ρUc分别为VRLA和UC单位容量建设成本;T为所提取运行数据的时窗长度;β为单位容量的弃光成本;α为未达到平抑目标所缺容量的单位惩罚成本;VVRLA(t-1),VUC(t-1)为对应前一时刻容量取值;Δt为采样间隔;Pc.VRLA.max、Pc.UC.max分别为相应介质的最大充电功率;VVRLA.min、VUC.min分别为对应介质的最低放电容量,与SOC数值对应;Pd.VRLA.max、Pd.UC.max分为为对应最大放电功率。
作为本发明的进一步改进,所述步骤S4中的约束条件包括:
充放电功率约束:
-Pd.max<P(t)<Pc.max
其中,Pc.max,Pd.max分别为相应介质对应的最大充放电功率;
充放电容量约束:
Figure PCTCN2016091835-appb-000004
其中,容量V(t)的变化应限制在各介质最大容量Vmax和最小容量Vmin之间。
本发明具有以下有益效果:
本发明以典型功率型储能VRLA和能量型储能UC构建混合储能电站,利用其各自特性构建优势互补的充放电过程模型,实现混合储能系统各介质间协调有机运行;以储能电站运行成本和建设成本最小为目标建立容量规划模型,并考虑两种储能介质的充放电功率约束和容量对比约束,实现了最优化配置。
本发明可有效减少VRLA充放电次数,降低UC的容量比重,平抑功率偏移,降低总体成本投入,对混合储能电站容量规划有很重要的参考价值。
附图说明
图1为本发明基于光储系统运行优化的混合储能配比计算方法的流程示意图。
图2为本发明中采用小波变换提取高低频分量的原理图。
图3为本发明一具体实施例中平抑目标分解示意图,其中,图3a、3b、3c分别为偏移量P、PΔH、PΔL的曲线示意图。
图4为本发明一具体实施例中平抑效果示意图。
图5为本发明一具体实施例中分解目标充放电功率示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本 发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明以典型功率型和能量型介质构建混合储能电站,并依据各自优势,建立了优势互补的储能充放电模型。在此基础上,考虑两种储能介质的充放电功率约束和容量对比约束,通过粒子群算法(PSO)算法研究了不同储能介质的最优容量配置;以运行成本和建设成本最小为目标建立容量规划模型,实现了成本最优化。以实际光伏电场运行数据进行验证分析,表明该方法可以有效减少铅酸蓄电池(VRLA)的充放电次数,降低超级电容(UC)的容量比重,性能有效提高的同时进一步降低了总体成本投入,验证了该方法对混合储能电站容量规划的有效性和合理性。
参图1所示,本发明的一种基于光储系统运行优化的混合储能配比计算方法,包括:
S1、提取光伏电场运行数据时间窗口长度T,平抑目标分解并确定各自目标PΔL和PΔH
S2、设置粒子群维数D,最大迭代次数Mmax,收敛精度σthresh,同时初始化粒子群位置x和速度v,并给定初始VOpt.VRLA、VOpt.UC数值;
S3、判断是否满足充放电过程模型,并采取对应充放电策略;
S4、计算各成本参量,并计算各粒子适应度值;
S5、将各粒子适应度值与自身粒子极值及全局例子极值比较,若适应度值较小,则更新各粒子个体极值ebest及全局例子适应度极值gbest
S6、判断当前计算是否满足收敛条件|Cn-Cn-1|<σthresh,若是则提取当前VOpt.VRLA、 VOpt.UC即为最优容量数值;若否则更新各粒子位置x及速度v,并重复步骤S3~S5,
Figure PCTCN2016091835-appb-000005
Figure PCTCN2016091835-appb-000006
其中,Cn、Cn-1分比为当前和前一次循环计算的粒子适应度值,n为当前循环次数;c1、c2为粒子权重系数;w为惯性权重;r1、r2为(0,1)内均匀分布随机数;xi、vi为第i维粒子的位置与速度;g为约束因子。
本发明对典型功率型和能量型介质构成的混合储能进行研究,并对其特性的互补优化进行分析。具体而言,UC属于功率型储能装置,具备频繁充放电切换响应能力、可充放电次数高等优势,适用于呈现频繁快速变化特性的随机分量的波动平抑;VRLA属于能量型储能装置,能量密度大、储能时间长,同时存在输出功率变化范围小,速度慢且充放电次数少等缺点,可用来补偿光功率中波动平缓、能量较大的趋势分量。目前UC成本要比VRLA昂贵的多,由此可见,混合储能电站的运行应发挥UC频繁充放特性,使其在小幅能量充放区间中发挥作用,同时限制其容量;对于VRLA应有效避免充放电状态频繁转换,并适当提升其相对容量,使其在大幅值能量的充放电区间中工作。由此来构建优势互补的混合储能电站,实现能量型和功率型储能设备协调,处于优化储能的工作状态。
t时刻光伏发电机组输出功率PW(t)与时段参考输出功率Pref(t)的差值P(t)为:
P(t)=PW(t)-Pref(t)        (1)
同时为了进一步发挥混合介质特性,如图2所示,利用小波变换将P(t)分解为高频分量Ph(t)和趋势分量Pl(t),其中,本发明采用二进小波对尺度参量进行了离散化,与连续小波变换相比大大降低了计算量;而平移参数仍保持连续变化,仍然具有时移共变性,这也是它与离散小波变换相比所具有的最大优点。 选用二次样条二进小波,其分解滤波器系数Hn、Gn,重构滤波器系数Hn’、Gn’。通过对小波变换系数可将P(t)分解为Ph(t)和Pl(t),且满足:
P(t)=PΔH(t)+PΔL(t)    (2)
若PΔH(t)>0,则t时刻储能电站UC处于充电状态;反之,则处于放电状态;同理,若PΔL(t)>0,则t时刻储能电站VRLA处于充电状态;反之,则处于放电状态。本发明充放电过程模型从运行目标分为如下情形:
(1)降低VRLA充放电次数
引入当前时刻未来30分钟的超短期光功率预测数值,该数值用于充放电状态的判定。对于以下情形VRLA的充放电状态将保持不变,此时平抑任务主要由UC完成。设f(t)为PΔL(t)与零值的关系标志位,且f(t)的正负号与PΔL(t)相同,当满足f(t-1)·f(t)<0时:
如果f(t)>0且Δtf<Δtthr,此时Sbat.VRLA=-1,Pd.VRLA=0;
式中f(t-1)·f(t)<0表示PΔL(t)与零值关系发生改变;Δtf为f保持当前状态持续时间;Δtthr为持续时间阈值;Pd.VRLA表示放电功率且充放及浮充状态分别对应数值1,-1,0。
这种情况为:当前f(t)>0对应为充电状态,错误!未找到引用源。f(t+1)<0对应为放电状态,即由常规充电状态变为放电状态。为减少VRLA充放电次数,此时引入判断f(t)>0持续时间,若大于阈值Δt则Sbat.VRLA发生改变;否则Sbat.VRLA拒绝变化,等效Pd.VRLA为零值;
如果f(t)<0且Δtf<Δtthr,此时Sbat.VRLA=1,Pc.VRLA=0。
式中,Pc.VRLA表示充电功率且充放及浮充状态分别对应数值1,-1,0;Sbat.VRLA为充放电状态标志。对应f(t)由常规放电状态变为充电状态,结合阈值判断Sbat.VRLA的变化规则。
(2)充分减小UC容量
为减小UC容量,当VRLA与UC同为充放状态时,UC减功率充放而VRLA倍功率充放;充放状态互异时,UC仍减功率运行,而VRLA相应协调充放功率;当SOCVRLA临近阈值时,UC恢复充放电功率。具体而言,分别讨论Sbat.VRLA为1或-1,Sbat.UC为1或-1时充放电模型:
上述四种情况下,为减小UC容量,VRLA与UC充放模型为:
Pd/c.UC=PΔH·k
Pd/c.VRLA=PΔL+PΔH·(1-k)      (3)
式中,k为功率缩减系数,为区间(0,1]的正数,为保证UC处于持续的充-放-充的循环平衡状态,需保证k>0;Pd/c.UC、Pd/c.VRLA分别表示UC、VRLA的充或放电功率。式(3)表明,UC减功率充放,而VRLA则以从属协调角色承担剩余总体目标的平抑任务。
储能电站容量优化模型以建设成本和运行成本总和最小构建优化目标函数,建设成本与混合容量成正比关系,而运行成本则在混合容量增大情况下呈下降趋势,因此本目标函数在于求取建设成本与运行成本权衡下的最佳容量。运行成本包含弃光成本和期望输出惩罚成本,其中弃光成本和期望输出惩罚成本均由两部分构成,其一为容量因素,因容量不足而造成满充弃光或者放电下行越限而无法有效平抑波动;其二为功率因素,虽各自平抑目标确实时已消除该因素影响,但因协调互补的充放电策略导致实际平抑波动过程中,仍有充放功率不足导致弃光和平抑功率不足的可能。相应计算如式(4)所示:
Figure PCTCN2016091835-appb-000007
式中,ρVRLA、ρUc分别为VRLA和UC单位容量建设成本;T为所提取运行数 据的时窗长度;β为单位容量的弃光成本;α为未达到平抑目标所缺容量的单位惩罚成本;VVRLA(t-1),VUC(t-1)为对应前一时刻容量取值;Δt为采样间隔;Pc.VRLA.max、Pc.UC.max分别为相应介质的最大充电功率;VVRLA.min、VUC.min分别为对应介质的最低放电容量,与SOC数值对应;Pd.VRLA.max、Pd.UC.max分为为对应最大放电功率。
约束条件主要包括充放电功率约束和容量约束。
充放电功率约束:
-Pd.max<P(t)<Pc.max       (5)
式中,Pc.max,Pd.max分别为相应介质对应的最大充放电功率,一般与电池容量有关。
电池的寿命与充放电深度相关,过冲过放都会增加电池寿命损耗,所以对充放电容量进行约束:
Figure PCTCN2016091835-appb-000008
式中,容量V(t)的变化应限制在各介质最大容量Vmax和最小容量Vmin之间。
本发明采用计算效率较高、收敛特性较好的粒子群优化算法(PSO)进行求解计算,具体算法及步骤如下:
1)提取光伏电场运行数据时间窗口长度T及其对应数据,平抑目标分解并确定各自目标PΔL和PΔH
2)设置粒子群维数D,最大迭代次数Mmax,收敛精度σthresh,同时初始化粒子群位置x和速度v,并给定初始VOpt.VRLA、VOpt.UC数值;
3)判断是否满足充放电过程模型,并采取对应充放电策略;
4)按式(4)计算各成本参量,并计算各粒子适应度值;
5)将各粒子适应度值与自身粒子极值及全局例子极值比较,若适应度值较小,则更新各粒子个体极值ebest及全局例子适应度极值gbest
6)判断当前计算是否满足收敛条件,若是则提取当前VOpt.VRLA、VOpt.UC即为最优容量数值;若否则依据式5、6约束,按式(2)所示规则更新各粒子位置x及速度v,并重复步骤3-5,
Figure PCTCN2016091835-appb-000009
Figure PCTCN2016091835-appb-000010
其中n为当前循环次数;c1、c2为粒子权重系数;w为惯性权重;r1、r2为(0,1)内均匀分布随机数;xi、vi为第i维粒子的位置与速度;g为约束因子。
本发明一具体实施例中以现场光伏电场实际运行数据验证进行,依据本发明混合储能电站容量规划方法计算混合储能容量,该光伏电站装机容量为30MW,采样频率为5分钟,容量采用等效值,将UC容量等效为以VRLA为基准的容量,按下式计算等效总容量:
Figure PCTCN2016091835-appb-000011
对年度运行数据,基于功率偏移量方差最小为目标自适应确定期望输出平抑目标及分解目标,如图3a~3c所示。
基于此,结合充放电策略和容量优化方法,依据求解算法和步骤计算最佳储能容量配置,计算结果如表1所示,其中本发明VRLA与UC的容量配比计算结果为4.3:1:
表1计算结果
Figure PCTCN2016091835-appb-000012
Figure PCTCN2016091835-appb-000013
表格中功率偏移方差用来衡量平抑后输出功率与期望输出间的偏移程度;N为VRLA的充放电状态转换次数。依据本发明的计算方法,相比单一UC系统的最优容量,本发明混合储能系统最优等效容量降低了17.8%,目标函数值减少了3.1%。可以看出,从经济性角度,本发明混合储能系统所选择容量相比单一介质容量较低,且以总成本为目标函数的最优数值也相对较小,表明性能提升的同时混合储能系统的经济性得到了进一步的优化。
平抑效果方面,相比单一介质系统,混合储能系统功率偏移方差χ下降27.9%,其原因在于单一储能介质中其偏移量主要由其充放电功率越限而导致,而在混合系统中由于平抑目标的分解,其各自介质承担限值充放电功率相对降低,由此起总体平抑结果的χ呈现下降趋势;而在VRLA的充放电次数方面,混合储能系统具备显著降低N的能力,其降幅达64.8%,其原因在于混合储能系统的充放电策略优先考虑VRLA的短时充放电转换情况,对该情况采取UC辅助平抑的方法。为利于显示,提取一定时间截面的平抑效果,如图4所示,该平抑过程的充放电功率如图5所示。
由图4可以看出,所选定时间截面的平抑效果显著;由图5得该区间界面内充放电功率并未越限。综合上述仿真验证可得,本发明所提混合容量计算方法,在所构建的混合储能系统的充放电策略引导下,可实现不同介质储能的优化配置,并在保证波动平抑效果的前提下,储能平抑功率偏移量及VRLA充放电次数等方面具有明显的优化提升作用,同时总体成本有小幅降低。
由以上技术方案可以看出,本发明具有以下有益效果:
本发明以典型功率型储能VRLA和能量型储能UC构建混合储能电站,利 用其各自特性构建优势互补的充放电过程模型,实现混合储能系统各介质间协调有机运行;以储能电站运行成本和建设成本最小为目标建立容量规划模型,并考虑两种储能介质的充放电功率约束和容量对比约束,实现了最优化配置。
本发明可有效减少VRLA充放电次数,降低UC的容量比重,平抑功率偏移,降低总体成本投入,对混合储能电站容量规划有很重要的参考价值。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (8)

  1. 一种基于光储系统运行优化的混合储能配比计算方法,其中,所述方法包括:
    S1、提取光伏电场运行数据时间窗口长度T,平抑目标分解并确定各自目标PΔL和PΔH
    S2、设置粒子群维数D,最大迭代次数Mmax,收敛精度σthresh,同时初始化粒子群位置x和速度v,并给定初始VOpt.VRLA、VOpt.UC数值;
    S3、判断是否满足充放电过程模型,并采取对应充放电策略;
    S4、计算各成本参量,并计算各粒子适应度值;
    S5、将各粒子适应度值与自身粒子极值及全局例子极值比较,若适应度值较小,则更新各粒子个体极值ebest及全局例子适应度极值gbest
    S6、判断当前计算是否满足收敛条件|Cn-Cn-1|<σthresh,若是则提取当前VOpt.VRLA、VOpt.UC即为最优容量数值;若否则更新各粒子位置x及速度v,并重复步骤S3~S5,
    Figure PCTCN2016091835-appb-100001
    Figure PCTCN2016091835-appb-100002
    其中,Cn、Cn-1分比为当前和前一次循环计算的粒子适应度值,n为当前循环次数;c1、c2为粒子权重系数;w为惯性权重;r1、r2为(0,1)内均匀分布随机数;xi、vi为第i维粒子的位置与速度;g为约束因子。
  2. 根据权利要求1所述的基于光储系统运行优化的混合储能配比计算方法,其中,所述光储系统包括能量型储能装置VRLA和功率型储能装置UC。
  3. 根据权利要求1所述的基于光储系统运行优化的混合储能配比计算方法,其中,所述步骤S1具体为:
    计算t时刻光伏发电机组输出功率PW(t)与时段参考输出功率Pref(t)的差值P(t) 为:
    P(t)=PW(t)-Pref(t);
    利用小波变换将P(t)分解为高频分量Ph(t)和趋势分量Pl(t),且满足:
    P(t)=PΔH(t)+PΔL(t)。
  4. 根据权利要求3所述的基于光储系统运行优化的混合储能配比计算方法,其中,所述步骤S1还包括:
    采用二进小波对尺度参量进行离散化,将分解滤波器系数Hn、Gn,重构滤波器系数Hn’、Gn’,通过对小波变换系数将P(t)分解为Ph(t)和Pl(t),且满足:
    P(t)=PΔH(t)+PΔL(t)。
  5. 根据权利要求4所述的基于光储系统运行优化的混合储能配比计算方法,其中,所述步骤S3中的充放电策略包括:
    降低VRLA充放电次数;
    及,减小UC容量。
  6. 根据权利要求5所述的基于光储系统运行优化的混合储能配比计算方法,其中,所述步骤S3中减小UC容量的充放电过程模型为:
    Pd/c.UC=PΔH·k,
    Pd/c.VRLA=PΔL+PΔH·(1-k),
    其中,k为功率缩减系数,为区间(0,1]的正数,为保证UC处于持续的充-放-充的循环平衡状态,需保证k>0;Pd/c.UC、Pd/c.VRLA分别表示UC、VRLA的充或放电功率。
  7. 根据权利要求2所述的基于光储系统运行优化的混合储能配比计算方法,其中,所述步骤S4中计算各成本参量通过以下公式进行:
    Figure PCTCN2016091835-appb-100003
    其中,ρVRLA、ρUc分别为VRLA和UC单位容量建设成本;T为所提取运行数据的时窗长度;β为单位容量的弃光成本;α为未达到平抑目标所缺容量的单位惩罚成本;VVRLA(t-1),VUC(t-1)为对应前一时刻容量取值;Δt为采样间隔;Pc.VRLA.max、Pc.UC.max分别为相应介质的最大充电功率;VVRLA.min、VUC.min分别为对应介质的最低放电容量,与SOC数值对应;Pd.VRLA.max、Pd.UC.max分为为对应最大放电功率。
  8. 根据权利要求7所述的基于光储系统运行优化的混合储能配比计算方法,其中,所述步骤S4中的约束条件包括:
    充放电功率约束:
    -Pd.max<P(t)<Pc.max
    其中,Pc.max,Pd.max分别为相应介质对应的最大充放电功率;
    充放电容量约束:
    Figure PCTCN2016091835-appb-100004
    其中,容量V(t)的变化应限制在各介质最大容量Vmax和最小容量Vmin之间。
PCT/CN2016/091835 2016-03-23 2016-07-27 基于光储系统运行优化的混合储能配比计算方法 WO2017161786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610169986.4A CN107229987A (zh) 2016-03-23 2016-03-23 基于光储系统运行优化的混合储能配比计算方法
CN201610169986.4 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017161786A1 true WO2017161786A1 (zh) 2017-09-28

Family

ID=59899167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091835 WO2017161786A1 (zh) 2016-03-23 2016-07-27 基于光储系统运行优化的混合储能配比计算方法

Country Status (2)

Country Link
CN (1) CN107229987A (zh)
WO (1) WO2017161786A1 (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109359310A (zh) * 2018-07-27 2019-02-19 武汉理工大学 一种船舶动力系统中动力电池容量配比的优化方法
CN109754108A (zh) * 2017-11-08 2019-05-14 上海明华电力技术工程有限公司 基于变加速度系数混沌粒子群的机组经济负荷分配方法
CN110414733A (zh) * 2019-07-26 2019-11-05 国网辽宁省电力有限公司沈阳供电公司 储能装置的优化设计方法及其装置、存储介质及终端
CN111416388A (zh) * 2020-04-26 2020-07-14 中国电力工程顾问集团西北电力设计院有限公司 一种高比例新能源系统储能需求和储能时长确定方法
CN112186756A (zh) * 2020-09-27 2021-01-05 国网辽宁省电力有限公司经济技术研究院 一种面向虚拟电厂的储能容量配置方法
CN112290596A (zh) * 2020-11-12 2021-01-29 合肥工业大学 基于Haar小波的风电场混合储能配置自适应双层优化方法
CN112383074A (zh) * 2020-10-28 2021-02-19 国网四川省电力公司经济技术研究院 一种能量型与功率型混合储能系统及储能方法
CN112434374A (zh) * 2020-11-30 2021-03-02 中国科学技术大学 一种纯电动汽车复合电源系统的容量配比方法及系统
CN112491041A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种储能混合微电网混合线性经济性规划方法
CN112949936A (zh) * 2021-03-29 2021-06-11 福州大学 基于相似日小波变换和多层感知机的短期光伏功率预测方法
CN112949898A (zh) * 2021-01-04 2021-06-11 国网上海市电力公司 一种多站融合选址规划的优化方法
CN113036806A (zh) * 2021-04-02 2021-06-25 西安建筑科技大学 一种基于随机规划模型的风光互补系统容量配比方法
CN113162016A (zh) * 2021-02-04 2021-07-23 河北建投新能源有限公司 能源调度方法、装置和处理器
CN113346526A (zh) * 2021-05-24 2021-09-03 国网综合能源服务集团有限公司 一种基于离散-连续混合法的多节点储能系统配置方法
CN113555901A (zh) * 2021-07-26 2021-10-26 南京工程学院 基于改进s型函数粒子群优化算法的混合储能容量优化方法
CN113690941A (zh) * 2021-03-24 2021-11-23 清华大学 配置光储充微网容量的方法、装置、设备及存储介质
CN113705919A (zh) * 2021-09-02 2021-11-26 贵州大学 一种基于电-热-氢综合能源系统规划方法及系统
CN113869679A (zh) * 2021-09-16 2021-12-31 华中科技大学 适用于可再生能源的混合热电站系统优化配置方法和系统
CN113962092A (zh) * 2021-10-25 2022-01-21 上海电力大学 一种基于温度流量数据的分层混合储能模型参数辨识方法
CN114142584A (zh) * 2021-12-03 2022-03-04 国网河北省电力有限公司平山县供电分公司 一种基于电池蓄能和电能直供的交流柔性配电系统
CN114336693A (zh) * 2021-11-29 2022-04-12 中国华能集团清洁能源技术研究院有限公司 风光火储一体化系统的优化配置方法和系统
CN114825392A (zh) * 2022-06-02 2022-07-29 中国电建集团福建省电力勘测设计院有限公司 考虑装机规模约束的风光储多能互补容量优化方法
CN114912848A (zh) * 2022-06-27 2022-08-16 南通大学 一种基于自适应滤波的全生命周期混合储能容量配置方法
CN115395547A (zh) * 2022-08-31 2022-11-25 国网河南省电力公司南阳供电公司 基于整县光伏推进下的灵活储能系统优化配置方法
CN115441488A (zh) * 2022-08-18 2022-12-06 上海联元智能科技有限公司 一种电储能优选配置方法
CN116937632A (zh) * 2023-09-18 2023-10-24 广东德九新能源有限公司 一种光储一体的储能方法、装置、系统和介质
CN118472981A (zh) * 2024-07-15 2024-08-09 南通国轩新能源科技有限公司 用于储能ems系统的运行策略优化方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107844991A (zh) * 2017-10-31 2018-03-27 清华大学 一种基于网络支付可得性计算的在线支付推广方法及系统
CN108551176B (zh) * 2018-02-13 2021-09-03 华东理工大学 一种结合储能均衡技术的储能电池系统容量配置方法
CN109358291B (zh) * 2018-11-01 2019-11-05 中国海洋大学 储能系统电池工况的简化方法
CN109615193B (zh) * 2018-11-27 2023-06-16 国网四川省电力公司经济技术研究院 一种考虑光伏与混合储能的综合能源系统规划方法
CN110994653A (zh) * 2019-10-16 2020-04-10 国网浙江省电力有限公司嘉兴供电公司 一种平滑光伏功率波动的储能系统充放电控制方法
CN112101704B (zh) * 2020-07-29 2024-09-10 中国电力科学研究院有限公司 一种可再生能源资源间互补性评价方法及系统
CN114114909B (zh) * 2021-11-11 2024-03-22 海南师范大学 基于粒子群算法优化的间歇过程2d输出反馈预测控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366314A (zh) * 2013-07-18 2013-10-23 山东大学 考虑目标分解及其互补平抑的风电场复合储能容量规划方法
CN103927588A (zh) * 2014-02-24 2014-07-16 国家电网公司 用于平抑风电功率波动的混合储能电站容量确定方法
CN105098807A (zh) * 2015-07-20 2015-11-25 安阳师范学院 储能系统中多个混合储能装置间的互补优化控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366314A (zh) * 2013-07-18 2013-10-23 山东大学 考虑目标分解及其互补平抑的风电场复合储能容量规划方法
CN103927588A (zh) * 2014-02-24 2014-07-16 国家电网公司 用于平抑风电功率波动的混合储能电站容量确定方法
CN105098807A (zh) * 2015-07-20 2015-11-25 安阳师范学院 储能系统中多个混合储能装置间的互补优化控制方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754108A (zh) * 2017-11-08 2019-05-14 上海明华电力技术工程有限公司 基于变加速度系数混沌粒子群的机组经济负荷分配方法
CN109754108B (zh) * 2017-11-08 2023-07-14 上海明华电力技术工程有限公司 基于变加速度系数混沌粒子群的机组经济负荷分配方法
CN109359310A (zh) * 2018-07-27 2019-02-19 武汉理工大学 一种船舶动力系统中动力电池容量配比的优化方法
CN110414733A (zh) * 2019-07-26 2019-11-05 国网辽宁省电力有限公司沈阳供电公司 储能装置的优化设计方法及其装置、存储介质及终端
CN110414733B (zh) * 2019-07-26 2023-05-30 国网辽宁省电力有限公司沈阳供电公司 储能装置的优化设计方法及其装置、存储介质及终端
CN111416388A (zh) * 2020-04-26 2020-07-14 中国电力工程顾问集团西北电力设计院有限公司 一种高比例新能源系统储能需求和储能时长确定方法
CN111416388B (zh) * 2020-04-26 2022-04-01 中国电力工程顾问集团西北电力设计院有限公司 一种高比例新能源系统储能需求和储能时长确定方法
CN112186756A (zh) * 2020-09-27 2021-01-05 国网辽宁省电力有限公司经济技术研究院 一种面向虚拟电厂的储能容量配置方法
CN112186756B (zh) * 2020-09-27 2024-03-19 国网辽宁省电力有限公司经济技术研究院 一种面向虚拟电厂的储能容量配置方法
CN112383074A (zh) * 2020-10-28 2021-02-19 国网四川省电力公司经济技术研究院 一种能量型与功率型混合储能系统及储能方法
CN112290596A (zh) * 2020-11-12 2021-01-29 合肥工业大学 基于Haar小波的风电场混合储能配置自适应双层优化方法
CN112290596B (zh) * 2020-11-12 2022-08-09 合肥工业大学 基于Haar小波的风电场混合储能配置自适应双层优化方法
CN112491041A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种储能混合微电网混合线性经济性规划方法
CN112491041B (zh) * 2020-11-20 2023-02-07 西安热工研究院有限公司 一种储能混合微电网混合线性经济性规划方法
CN112434374B (zh) * 2020-11-30 2024-04-02 中国科学技术大学 一种纯电动汽车复合电源系统的容量配比方法及系统
CN112434374A (zh) * 2020-11-30 2021-03-02 中国科学技术大学 一种纯电动汽车复合电源系统的容量配比方法及系统
CN112949898A (zh) * 2021-01-04 2021-06-11 国网上海市电力公司 一种多站融合选址规划的优化方法
CN113162016A (zh) * 2021-02-04 2021-07-23 河北建投新能源有限公司 能源调度方法、装置和处理器
CN113690941A (zh) * 2021-03-24 2021-11-23 清华大学 配置光储充微网容量的方法、装置、设备及存储介质
CN112949936A (zh) * 2021-03-29 2021-06-11 福州大学 基于相似日小波变换和多层感知机的短期光伏功率预测方法
CN113036806A (zh) * 2021-04-02 2021-06-25 西安建筑科技大学 一种基于随机规划模型的风光互补系统容量配比方法
CN113036806B (zh) * 2021-04-02 2023-06-23 云南国电电力富民风电开发有限公司 一种基于随机规划模型的风光互补系统容量配比方法
CN113346526B (zh) * 2021-05-24 2022-05-20 国网综合能源服务集团有限公司 一种基于离散-连续混合法的多节点储能系统配置方法
CN113346526A (zh) * 2021-05-24 2021-09-03 国网综合能源服务集团有限公司 一种基于离散-连续混合法的多节点储能系统配置方法
CN113555901A (zh) * 2021-07-26 2021-10-26 南京工程学院 基于改进s型函数粒子群优化算法的混合储能容量优化方法
CN113705919A (zh) * 2021-09-02 2021-11-26 贵州大学 一种基于电-热-氢综合能源系统规划方法及系统
CN113869679A (zh) * 2021-09-16 2021-12-31 华中科技大学 适用于可再生能源的混合热电站系统优化配置方法和系统
CN113962092A (zh) * 2021-10-25 2022-01-21 上海电力大学 一种基于温度流量数据的分层混合储能模型参数辨识方法
CN114336693B (zh) * 2021-11-29 2023-10-03 中国华能集团清洁能源技术研究院有限公司 风光火储一体化系统的优化配置方法和系统
CN114336693A (zh) * 2021-11-29 2022-04-12 中国华能集团清洁能源技术研究院有限公司 风光火储一体化系统的优化配置方法和系统
CN114142584A (zh) * 2021-12-03 2022-03-04 国网河北省电力有限公司平山县供电分公司 一种基于电池蓄能和电能直供的交流柔性配电系统
CN114825392A (zh) * 2022-06-02 2022-07-29 中国电建集团福建省电力勘测设计院有限公司 考虑装机规模约束的风光储多能互补容量优化方法
CN114912848A (zh) * 2022-06-27 2022-08-16 南通大学 一种基于自适应滤波的全生命周期混合储能容量配置方法
CN115441488A (zh) * 2022-08-18 2022-12-06 上海联元智能科技有限公司 一种电储能优选配置方法
CN115441488B (zh) * 2022-08-18 2023-11-21 上海联元智能科技有限公司 一种电储能优选配置方法
CN115395547A (zh) * 2022-08-31 2022-11-25 国网河南省电力公司南阳供电公司 基于整县光伏推进下的灵活储能系统优化配置方法
CN115395547B (zh) * 2022-08-31 2024-05-07 国网河南省电力公司南阳供电公司 基于整县光伏推进下的灵活储能系统优化配置方法
CN116937632A (zh) * 2023-09-18 2023-10-24 广东德九新能源有限公司 一种光储一体的储能方法、装置、系统和介质
CN116937632B (zh) * 2023-09-18 2023-11-28 广东德九新能源有限公司 一种光储一体的储能方法、装置、系统和介质
CN118472981A (zh) * 2024-07-15 2024-08-09 南通国轩新能源科技有限公司 用于储能ems系统的运行策略优化方法

Also Published As

Publication number Publication date
CN107229987A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2017161786A1 (zh) 基于光储系统运行优化的混合储能配比计算方法
CN103337001B (zh) 考虑最佳期望输出与荷电状态的风电场储能容量优化方法
CN111353652B (zh) 一种风电出力短期区间预测方法
CN105680474B (zh) 一种储能抑制光伏电站快速功率变化的控制方法
WO2017161787A1 (zh) 基于未来信息的光伏功率波动的动态平抑方法
CN106532764A (zh) 一种就地消纳光伏发电的电动汽车充电负荷调控方法
CN105243516A (zh) 基于主动配电网的分布式光伏发电最大消纳能力计算系统
CN112103980A (zh) 一种联合火电机组agc调频的混合储能系统能量管理方法
CN106253294A (zh) 智能电网的储能调度方法和装置
CN112238781A (zh) 一种基于分层架构的电动汽车有序充电控制方法
CN112072643A (zh) 一种基于深度确定性梯度策略的光-蓄系统在线调度方法
CN105720578A (zh) 含节点注入功率不确定性的有源配电网量测优化配置方法
CN114154790A (zh) 基于需量管理和柔性负荷的工业园区光储容量配置方法
CN105160440A (zh) 考虑电网经济调度的储能平抑波动功率的容量规划方法
CN118381095B (zh) 新能源微电网储能充放电智能控制方法及装置
CN116581792A (zh) 一种基于数据模型驱动的风光储系统容量规划方法
Liu et al. Wind power short-term forecasting based on LSTM neural network with dragonfly algorithm
CN115423153A (zh) 基于概率预测的光伏储能系统能量管理方法
Yu et al. Dynamic grouping control of electric vehicles based on improved k-means algorithm for wind power fluctuations suppression
CN117937516A (zh) 计及调频信号不确定域辨识的风储系统双重调频方法
CN103679284A (zh) 一种消纳风电接入的定区间滚动调度方法
CN118432039A (zh) 一种考虑分布式共享储能的新能源就地消纳能力评估方法
CN116683434A (zh) 考虑光伏电站并网要求及储能荷电状态的储能调用方法
CN105207255B (zh) 一种适用于风电出力的电力系统调峰计算方法
CN114757548B (zh) 一种采用场景构建的风电储能设备调节性能评估方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895136

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16895136

Country of ref document: EP

Kind code of ref document: A1