WO2017160007A1 - Device for partially re-liquefying boil-off gas of liquefied natural gas for ship - Google Patents

Device for partially re-liquefying boil-off gas of liquefied natural gas for ship Download PDF

Info

Publication number
WO2017160007A1
WO2017160007A1 PCT/KR2017/001973 KR2017001973W WO2017160007A1 WO 2017160007 A1 WO2017160007 A1 WO 2017160007A1 KR 2017001973 W KR2017001973 W KR 2017001973W WO 2017160007 A1 WO2017160007 A1 WO 2017160007A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
boil
pressure
bog
Prior art date
Application number
PCT/KR2017/001973
Other languages
French (fr)
Korean (ko)
Inventor
김남국
강희자
Original Assignee
김남국
강희자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김남국, 강희자 filed Critical 김남국
Publication of WO2017160007A1 publication Critical patent/WO2017160007A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels

Definitions

  • the present invention relates to a boil-off gas (BOG) partial reliquefaction apparatus generated in a storage tank of a carrier transporting cryogenic liquefied natural gas (LNG), in particular a BOG portion mounted on a vessel It relates to a reliquefaction apparatus.
  • BOG boil-off gas
  • LNG is evaporated by heat inflow during transportation in a tank of a LNG carrier, or vaporized from an LNG storage tank such as a vaporized gas of a bunkering vessel of an offshore LNG vessel, and a vessel operating natural gas as a fuel.
  • the compression unit for compressing the low-temperature evaporated gas discharged from the storage tank;
  • a precooling unit branching the compressed gas into a high-pressure compressed gas stream and cooling a portion of the compressed gas by using a general refrigerating device;
  • a first cooling unit and a second cooling unit which reduce the temperature by separating the cooled gas from the BOG evaporation gas and the flash gas;
  • a pressure reducing expansion valve for lowering the pressure after the cooled compressed gas is coalesced; It consists of a liquid separator that separates cryogenic liquids and gases produced after expansion.
  • the flash gas obtained after passing through the reduced pressure expansion valve provides a low temperature in the second cooling heat exchanger, and is sucked or discharged to the compressor 130.
  • the general refrigeration unit is composed of a compressor 130, a condenser, expansion valve, evaporator.
  • the liquefaction process using the boil-off gas partial liquefaction apparatus is a method of partial liquefaction of a larger amount of BOG to significantly reduce the cost of the reliquefaction apparatus, and to configure an effective partial liquefaction apparatus that reduces energy waste. Can provide.
  • LNG is typically transported over long distances in a liquefied state. Since LNG is liquefied at very low temperatures, that is, around -163 ° C at atmospheric pressure, LNG in storage tanks is continuously vaporized due to external heat transfer from LNG carriers.When the pressure in the storage tanks exceeds the set safety pressure, BOG Is discharged to the outside through safety valves or used as boiler fuel for ships. Or, it is liquefied using a reliquefaction unit and returned to the storage tank. As such, the recent trend is attempting to increase the liquid transport volume by partially reliquefying it.
  • LNG liquefied natural gas
  • LNG is used as fuel for ships such as cafes and coastal ships, and transportation for use of this LNG fuel, fuel tank filling and storage system for ships are being promoted.
  • ME-GI engine which is a mixed gas of natural gas and light oil, has been developed to efficiently use evaporated BOG, and this engine compresses the vaporized BOG to a high pressure of 250 to 300 bar and uses it as a fuel for ships.
  • cryogenic gases such as natural gas
  • the engine is already equipped with a high-pressure compressor to be able to apply the BOG reliquefaction process.
  • the high-pressure natural gas ME-GI engine is also used, thereby enabling the reliquefaction of BOG using this compressor.
  • 1 and 2 is a view schematically showing an embodiment of a conventional partial reliquefaction apparatus (PRS) of the LNG transport vessel.
  • PRS partial reliquefaction apparatus
  • the BOG of -100 to -130 °C generated in the storage tank is supplied to the compressor through a heat exchanger through the discharge pipe is compressed to 250 to 300 bar, the compressed evaporated gas is returned to the heat exchanger- After cooling about 90 to -115 ° C, the enthalpy expansion process is reduced to atmospheric pressure through the expansion valve, and theoretically, about 35% to 45% of the BOG is liquefied and returned to the storage tank.
  • the partial reliquefaction system of Figure 1 is to apply the triple heat exchanger in using the cold heat of the BOG and flash gas, the re-liquefaction yield is largely influenced by the heat exchange efficiency, and effective according to the load fluctuation It is difficult to obtain heat exchange, and there is a disadvantage that the price of the cryogenic heat exchanger is high.
  • the maximum theoretical reliquefaction rate is around 45% based on the use of BOG and flash gas temperature up to 10 ° C. If the heat exchange efficiency is 90%, the liquefaction rate drops sharply to 29%. I can't.
  • the above methods all reduce the actual yield of BOG reliquefaction by about 10 to 15% due to a decrease in heat exchanger efficiency and external heat inflow, so there is a need for continuous improvement of technology to increase the amount of reliquefaction. .
  • Figure 3 is a view schematically showing the BOG complete reliquefaction apparatus of the conventional LNG transport vessel.
  • the reliquefaction apparatus shown in FIG. 3 includes Hamworthy's reliquefaction apparatus and TGE reliquefaction apparatus using a multi-stage refrigeration cycle as a method of completely reliquefying all the BOGs generated.
  • This process consists of a cryogenic nitrogen refrigeration cycle, which includes a storage tank in which nitrogen gas is stored, a nitrogen gas compressor-expander that expands and cools the nitrogen gas supplied from the tank, and a nitrogen gas supplied from the compander. And a cold box heat exchanger for liquefying BOG boil-off gas supplied from the compressor. Since the refrigeration system is composed of a cryogenic nitrogen refrigeration cycle, the size of the installation is large, so the installation area is large, and the apparatus cost is large.
  • the present invention is designed to improve the problems of the BOG partial reliquefaction process and the complete reliquefaction process, by precooling the compressed boil-off gas using a refrigerating device to further lower the temperature before expansion, the nozzle and the expansion device
  • the present invention relates to a configuration of a partial reliquefaction apparatus that applies an expansion valve to improve reliquefaction rate.
  • the present invention is designed to ameliorate the problems of these BOG partial reliquefaction processes.
  • the present invention significantly improves heat exchange efficiency by branching the compressed BOG gas stream by separating the cold heat of the BOG and the cold heat of the flash gas, and precooling the branched compressed boil-off gas with a freezer to further lower the temperature before expansion. It is a technique that greatly expands the reliquefaction rate to 55% to 60% or more by expanding with a reduced pressure expansion valve.
  • the present invention was created to improve the prior art as described above, in the process of re-liquefying the BOG evaporated from the storage tank of the LNG transport vessel, LNG filled bunkering vessel, LNG fuel propulsion vessel, the use of cold heat separation and pre-cooling
  • it provides a configuration that greatly improves the reliquefaction rate of BOG to around 60%, thereby effectively treating ships' BOG to provide saving of natural gas and securing safety.
  • the present invention is to compress the low-temperature evaporated gas BOG discharged from the LNG storage tank to branch the high-pressure compressed gas flow to increase the heat exchange efficiency by separating the cold heat of the BOG and the cold heat of flash gas, general R134a, ammonia freezer It relates to a configuration of a partial reliquefaction apparatus characterized by improving the BOG reliquefaction rate by pre-cooling using such.
  • the cooling heat exchanger provided with two or more high-pressure BOG of 250 to 300 bar by the cooling process of the BOG boil-off gas and flash gas retained, and pre-cooled branched high-pressure BOG with a freezer Through the process, the amount of reliquefaction is greatly increased by increasing the supercooling rate.
  • the refrigerating device may be ammonia freezer having a large latent heat, or one or more freezing devices such as R508 and R23 having a lower temperature may be applied to the configuration of the device.
  • the cooling heat exchanger may be composed of one or more according to the capacity, the flow of the branched flow path of the compressed gas may be composed of two or more branched flows.
  • An apparatus for partial liquefaction of boil-off liquefied natural gas comprising: a storage tank (100) storing LNG; A first heat exchanger (170) for exchanging heat by using cold heat of a low temperature -130 ° C BOG boil-off gas discharged from the storage tank (100); A compressor (130) for compressing the evaporated gas introduced through the first heat exchanger (170) into a high pressure gas of 250 to 300 bar; Branching portion consisting of a second flow path 200 for transferring the high pressure gas discharged to the compressor 130 to the first heat exchanger 170, and a first flow path 190 for transferring to the precooler 120 ( 210; A precooler (120) for cooling the high pressure gas discharged to the first flow passage (190) to -25 to -30 ° C at 300
  • a valve 140 The vaporized gas decompressed by the reduced pressure expansion valve 140 is separated into a saturated liquid and a saturated gas, a flash gas is transferred to the second heat exchanger 180, and a saturated liquid is a liquid to be transferred to the storage tank 100. It provides a configuration of the partial reliquefaction apparatus of the boil-off liquefied natural gas for ships configured to include a separator (160).
  • the first heat exchanger 170 cools the compressed high pressure compressed gas introduced through the second flow passage 200 by using the cold heat of the evaporated gas of ⁇ 130 ° C. discharged from the storage tank 100. It is characterized by.
  • the precooler 120 cools the high-pressure compressed gas discharged through the compressor 130 to ⁇ 25 to ⁇ 30 ° C.
  • the freezer 110 may be any one of an ammonia freezer, an R134a freezer, and an R508 freezer. It is characterized in that one is used selectively.
  • the second heat exchanger 180 is introduced through the precooler 120 through the first passage 190 by using a flash gas of -162 °C discharged from the liquid separator 160. It is characterized in that the compressed gas is cooled through a heat exchange process.
  • the compressor 130 by branching the flow of gas compressed at high pressure to separate the cold heat of the BOG and the cold heat of the flash gas, ammonia freezer
  • the present invention relates to an apparatus for improving the BOG reliquefaction rate by 10% to 20% over conventional partial reliquefaction systems by precooling using.
  • this is to provide a configuration of a reliquefaction apparatus that can more effectively process the BOG of ships to secure the safety of natural gas, energy saving and minimize the cost of the partial reliquefaction apparatus.
  • FIG. 1 is a view showing a partial reliquefaction apparatus of BOG which is LNG boil-off gas according to the prior art.
  • FIG. 2 is a view showing another embodiment of a partial reliquefaction apparatus of BOG which is LNG boil-off gas according to the prior art.
  • FIG. 3 is a view showing an embodiment of a complete reliquefaction apparatus of BOG which is LNG boil-off gas according to the prior art.
  • FIG. 4 is a block diagram of a partial boil-off gas liquefaction apparatus of liquefied natural gas for ship according to an embodiment of the present invention.
  • the present invention has been made in order to solve the above problems, in the reliquefaction of the BOG vaporized in the LNG storage tank 100 of the LNG transport vessel or a vessel operated by LNG fuel is compressed at high pressure in the compressor 130 of the vessel BOG gas is branched to separate and suck BOG cold heat and flash gas cold heat, and a part of the compressed discharge gas is precooled using a general refrigerating device, and a combination of a reduced pressure expansion valve 140 and the like is used to improve the reliquefaction rate. It relates to the configuration of a partial reliquefaction apparatus.
  • Figure 4 is a block diagram of the partial liquefaction apparatus of the boil-off gas of liquefied natural gas for a representative road according to an embodiment of the present invention.
  • An apparatus for partial liquefaction of a boil-off liquefied natural gas for ship comprising: a storage tank (100) storing LNG; A first heat exchanger 170 for exchanging heat by using cold heat of a low temperature boil-off gas discharged from the storage tank 100; A compressor (130) for compressing the evaporated gas introduced through the first heat exchanger (170) into a high pressure gas of 250 to 300 bar; Branching portion consisting of a second flow path 200 for transferring the high pressure gas discharged to the compressor 130 to the first heat exchanger 170, and a first flow path 190 for transferring to the precooler 120 ( 210; A precooler (120) for cooling the high pressure gas discharged to the first flow passage (190) to -25 to -30 ° C at 300 bar
  • Pressure reducing expansion valve 140 to be made;
  • the evaporated gas decompressed by the pressure reducing expansion valve 140 is separated into a saturated liquid and a saturated gas, and the flash gas is transferred to the second heat exchanger 180, and the saturated liquid is transferred to the storage tank 100.
  • It provides a configuration of the partial liquefaction apparatus of the boil-off liquefied natural gas for ships comprising a liquid separator (160).
  • the first heat exchanger 170 the compressed high-pressure compressed gas flowing through the second passage 200 by using the cold heat of -130 °C BOG boil-off gas discharged from the storage tank 100 It is characterized by cooling.
  • the precooler 120 cools the high pressure compressed gas discharged through the compressor 130 to ⁇ 25 to ⁇ 30 ° C.
  • the freezer 110 used may include an ammonia freezer, an R134a freezer, and an R508 freezer. It is possible to selectively use any one of the commonly used refrigerators.
  • the second heat exchanger 180 by using the flash gas of -162 °C discharged from the liquid separator 160, characterized in that for cooling the compressed gas flowing through the first flow passage (190). do.
  • the BOG partial reliquefaction apparatus includes an LNG storage tank 100, a refrigerator 110, a precooler 120, a compressor 130, and a reduced pressure expansion valve of a vessel in which LNG is stored. 140, the liquid separator 160, the first heat exchanger 170, the second heat exchanger 180 is provided.
  • the BOG gas discharged from the storage tank 100 passes through one point in a state of about ⁇ 130 ° C. 1 atm. After being introduced into the first heat exchanger 170, while passing through the compressor 130, it is compressed and discharged into a high pressure gas of 300 bar of approximately 30 °C.
  • the high pressure gas discharged to the compressor 130 is branched to the first flow passage 190 and the second flow passage 200 in the branch 210 and transferred.
  • the ratio of the high pressure gas branched from the branch 210 to the first passage 190 and the second passage 200 is generally divided into a ratio of 6: 4, but according to the adjustment of the system configuration. At the level of those skilled in the art, the ratio is an adjustable part.
  • the second flow path 200 is introduced into the first heat exchanger 170, the high-pressure gas is introduced through the heat exchange with BOG gas of -130 °C in the first heat exchanger 170, -124.5 °C Pass 300 "at 300 bar.
  • the gas branched into the first flow passage 190 flows into the precooler 120, and the high pressure gas that has undergone the precooling process in the precooler 120 is identified as 300 bar at ⁇ 25 ° C. at the 5 ′ point. do.
  • the refrigerator 110 constituting the precooler 120 is generally applied to the configuration of a general freezer used in the market, as an embodiment that any one of the ammonia freezer, R134a freezer and R508 freezer is selectively used. It is possible.
  • the pre-cooled high pressure gas in a state of 300 bar at -25 ° C in the precooler 120 flows into the second heat exchanger 180.
  • the high-pressure gas that is secondarily cooled in the second heat exchanger 180 passes through the 6 'point at about -66 ° C and 300 bar.
  • the high pressure gas cooled in each of the first flow passage 190 and the second flow passage 200 is joined again at six points and flows into the decompression expansion valve 140.
  • the reduced pressure expansion valve 140 to the atmospheric pressure expansion through the reduced pressure, 1 bar -161.7 °C state of the liquid and gas in the mixed state is passed through 7 points.
  • the liquid LNG passes through the seven points and the liquid gas is separated from the liquid separator 160 to be transferred to the storage tank 100 side, and the flash gas is transferred to the second heat exchanger 180. After transported to the side and used in the second cooling process, it is used as fuel of the boiler.
  • the high pressure BOG gas (methane gas 90%, nitrogen gas 3%) of 250 to 300 bar discharged from the compressor 130 is separated into two flow paths.
  • the high pressure gas flow of the first flow passage 190 is pre-cooled to -25 to 30 °C by the precooler 120 which is the evaporator of the refrigerating device.
  • the refrigerating apparatus that can be applied to the precooler 120, all the refrigerating apparatuses used in general land such as ammonia, R134a, and R508 freezers may be applied.
  • the pre-cooled high-pressure evaporated gas is further cooled by a flash gas of -162 °C which is a saturated gas discharged from the liquid separator 160 in the second heat exchanger (180).
  • the high pressure gas of the second flow path 200 is cooled after heat exchange in the second heat exchanger 170 and BOG of -130 °C vaporized from the storage tank 100 and the high pressure gas of the first flow passage 190 and To join.
  • the cooled gas is expanded to atmospheric pressure in the reduced pressure expansion valve 140 to obtain a saturated liquid and a saturated gas, respectively.
  • the liquid and gas are separated in the liquid separator 160, the liquefied LNG is injected into the tank 100 and stored again, and the separated flash gas is separated to the second heat exchanger 180 side. It is used to provide cooling heat.
  • the liquid and gas composition of the liquid separator 160 the liquid is 100% pure methane, the flash gas is a portion of the methane gas and the total amount of nitrogen that is not liquefied.
  • the flash gas having a high nitrogen content which is not liquefied is coalesced with BOG, it causes a lower liquefaction rate. Therefore, the flash gas is used to remove the condensation heat of the condenser (not shown) of the refrigerator 110 after undergoing a heat exchange process using the retained cooling heat, or discharged outside the process to be used as a boiler fuel or a compressor as necessary. Can flow into the 130.
  • the condensation temperature is significantly lowered, thereby reducing the power consumption of the compressor 130 of the refrigerating device.
  • the precooler 120 may be composed of one or a plurality of refrigerators 110, heat exchangers, depending on the capacity, and formed by forming a plurality of branches of more than two flow paths in order to maximize the low temperature by process. It is possible to do
  • the compressed gas is branched.
  • the use of cold heat greatly improves the heat exchange efficiency, and the reliquefaction rate of BOG generated by the application of refrigeration precooling equipment can be expected to increase significantly from 55 to 60% from the existing 40 to 50% level.

Abstract

The present invention relates to a device for partially re-liquefying boil-off gas of liquefied natural gas for a ship, wherein the device compresses boil-off gas (BOG) generated in an LNG storage tank (100) for a ship, re-liquefies the compressed boil-off gas, and stores the re-liquefied boil-off gas. The present invention provides the configuration of a device for partially re-liquefying boil-off gas of liquefied natural gas for a ship, the device comprising: a storage tank (100) for storing LNG; a first heat exchanger (170) for exchanging heat using low-temperature heat of the low-temperature BOG boil-off gas discharged from the storage tank (100); a compressor (130) for compressing boil-off gas introduced through the first heat exchanger (170) into high-pressure gas at 250-300 bar; a branch portion (210) comprising a second channel (200) for transferring the high-pressure gas discharged from the compressor (130) to the first heat exchanger (170) and a first channel (190) for transferring the same to a precooler (120); a precooler (120) for cooling the high-pressure gas discharged through the first channel (190) to a state of -25 to 30ºC and 300 bar; a second heat exchanger (180) for additionally cooling the high-pressure gas discharged through the precooler (120) using flash gas at -162ºC; a pressure-reducing/expanding valve (140) for merging compressed gases cooled through the second heat exchanger (180) of the first channel (190) and the first heat exchanger (170) of the second channel (200) and pressure-reducing the same to an atmospheric state, thereby expanding the same; and a liquid/gas separator (160) for separating the boil-off gas that has been pressure-reduced by the pressure-reducing/expanding valve (140) into a saturated liquid and a saturated gas, transferring the flash gas to the second heat exchanger (180), and transferring the saturated liquid to the storage tank (100). The liquefaction process using the partial re-liquefaction device according to an embodiment of the present invention is a method for re-liquefying a larger amount of BOG, and the method substantially reduces the cost of the partial re-liquefaction device and provides an efficient system that reduces energy consumption.

Description

선박용 액화천연가스의 증발가스 부분재액화장치Evaporative gas partial reliquefaction apparatus of liquefied natural gas for ship
본 발명은 극저온의 액화 천연가스(LNG, Liquefied Natural Gas)를 운송하는 운반선의 저장탱크에서 발생하는 증발가스(BOG, boil-off gas) 부분재액화장치에 관한 것으로서, 특히 선박에 장착되는 BOG 부분재액화장치에 관한 것이다.The present invention relates to a boil-off gas (BOG) partial reliquefaction apparatus generated in a storage tank of a carrier transporting cryogenic liquefied natural gas (LNG), in particular a BOG portion mounted on a vessel It relates to a reliquefaction apparatus.
본 발명은 액화천연가스(LNG) 운송선박의 탱크에서 운송 중 열유입으로 LNG가 증발하거나, 연안 LNG선박의 벙커링 선박의 증발가스, 그리고 천연가스를 연료로 운항하는 선박 등의 LNG저장탱크로부터 기화되어 지속적으로 발생하는 기체 증발가스(Boil-off-gas)를 부분재액화시키는 장치의 구성에 있어서, 보다 상세하게는 상기 저장탱크로 부터 배출되는 저온의 증발가스를 압축하는 압축부; 압축된 가스를 고압의 압축된 가스 흐름을 분지하여 그 의 일부를 일반 냉동장치를 이용하여 온도를 냉각시키는 예냉부; 냉각된 가스를 BOG 증발가스와 플래시 가스를 분리 이용하여 온도를 저하시키는 제1 냉각과 제2 냉각부; 상기 냉각된 압축된 기체가 합체된 후 압력을 강하시키는 감압팽창밸브; 팽창 후 생성되는 극저온의 액체와 기체를 분리하는 액기 분리장치로 구성된다. 그리고 여기서 상기 감압팽창밸브를 거친후 얻어진 플래시 가스는 제2 냉각 열교환기에서 저온을 제공하고, 압축기(130)에 흡입 혹은 방출된다. 또한, 일반 냉동장치는 압축기(130), 응축기, 팽창밸브, 증발기로 구성된다.In the present invention, LNG is evaporated by heat inflow during transportation in a tank of a LNG carrier, or vaporized from an LNG storage tank such as a vaporized gas of a bunkering vessel of an offshore LNG vessel, and a vessel operating natural gas as a fuel. In the configuration of the partial reliquefaction of the gas boil-off-gas (Boil-off-gas) that is continuously generated, More specifically, the compression unit for compressing the low-temperature evaporated gas discharged from the storage tank; A precooling unit branching the compressed gas into a high-pressure compressed gas stream and cooling a portion of the compressed gas by using a general refrigerating device; A first cooling unit and a second cooling unit which reduce the temperature by separating the cooled gas from the BOG evaporation gas and the flash gas; A pressure reducing expansion valve for lowering the pressure after the cooled compressed gas is coalesced; It consists of a liquid separator that separates cryogenic liquids and gases produced after expansion. Here, the flash gas obtained after passing through the reduced pressure expansion valve provides a low temperature in the second cooling heat exchanger, and is sucked or discharged to the compressor 130. In addition, the general refrigeration unit is composed of a compressor 130, a condenser, expansion valve, evaporator.
본 발명의 실시 예에 따른 증발가스 부분재액화장치를 이용한 액화공정은 보다 많은 양의 BOG를 부분재액화시키는 방법으로 재액화장치 비용을 크게 절감시키고, 에너지 낭비를 줄이는 효과적인 부분재액화장치의 구성을 제공할 수 있다.The liquefaction process using the boil-off gas partial liquefaction apparatus according to an embodiment of the present invention is a method of partial liquefaction of a larger amount of BOG to significantly reduce the cost of the reliquefaction apparatus, and to configure an effective partial liquefaction apparatus that reduces energy waste. Can provide.
LNG는 통상적으로 액화상태로 원거리에 걸쳐 수송된다. LNG가 초저온, 즉 상압 -163℃ 근처의 온도에서 액화되므로, LNG 운반선의 저장탱크가 외부의 열전달을 받음으로 인하여 저장탱크의 LNG는 지속적으로 기화하는데 저장탱크의 압력이 설정된 안전압력 이상이 되면 BOG는 안전밸브를 통하여 외부로 배출되거나, 선박의 보일러 연료로 사용된다. 또는 재액화장치를 사용하여 액화 후 저장탱크로 반송되어 진다. 이와같이, 최근 추세는 이를 부분재액화하여 액체 운송량의 증가를 시도하고 있다.LNG is typically transported over long distances in a liquefied state. Since LNG is liquefied at very low temperatures, that is, around -163 ° C at atmospheric pressure, LNG in storage tanks is continuously vaporized due to external heat transfer from LNG carriers.When the pressure in the storage tanks exceeds the set safety pressure, BOG Is discharged to the outside through safety valves or used as boiler fuel for ships. Or, it is liquefied using a reliquefaction unit and returned to the storage tank. As such, the recent trend is attempting to increase the liquid transport volume by partially reliquefying it.
근래 청정에너지원인 천연가스는 전세계적으로 사용량이 증가하고 있으며, 이의 교역을 위하여 천연가스를 -162℃로 액화시킨 액화천연가스(이하 "LNG")를 운반선박으로 운송하고 있다. 또한, 항구의 환경 오염을 방지하기 위하여 LNG가 연안을 운항하는 카페리 등 선박들의 연료로 사용되고 있고, 이 LNG연료 사용을 위한 운송, 선박내 연료탱크 충전 및 저장 체계의 구축이 추진되고 있다.Recently, natural gas, a clean energy source, is increasing in use worldwide, and for its trade, liquefied natural gas (“LNG”), which has liquefied natural gas at -162 ° C, is transported by carrier. In addition, in order to prevent pollution of the port, LNG is used as fuel for ships such as cafes and coastal ships, and transportation for use of this LNG fuel, fuel tank filling and storage system for ships are being promoted.
LNG를 운송하는 선박이나 벙커링 선박의 저장탱크는 단열이 적절히 되어 있음에도 외부 열유입으로 일 0.15%의 LNG가 기화되면서 -100℃ 내지 -130℃ 정도의 증발천연가스 BOG(Boil-off-gas)가 지속적으로 발생하고, 충전 과정 중에는 특히 많은 량의 BOG가 발생하게 된다. 장거리 LNG 운송선박의 경우 20만m3급은 시간당 5 내지 6Ton의 BOG가 발생하여 평균 운항기간인 20여일 동안 4 내지 5천톤의 LNG가 기화된다.Even though the tanks for transporting LNG or bunkering vessels are properly insulated, 0.15% of LNG is vaporized daily by external heat inflow, and thus boil-off-gas (BOG) of -100 ℃ to -130 ℃ is produced. It occurs continuously, and especially during the filling process, a large amount of BOG is generated. For long-distance LNG transport ship 20 man m is the 3-level of 4 to 5000 tons LNG is vaporized during the 20 days the average flight period of the BOG generation of 5 to 6Ton per hour.
최근 증발하는 BOG를 효율적으로 사용하기 위하여 천연가스와 경유의 혼소엔진인 ME-GI엔진이 개발되었으며, 이 엔진은 기화되는 BOG를 250 내지 300bar의 고압으로 압축하여 선박의 연료로 사용하고 있다. 통상 천연가스와 같은 극저온 기체의 액화공정은 Linde 사이클인 압축-냉각-팽창과정으로 이루어지며, 압력이 높을수록 재액화 수율이 향상된다. 상기 엔진은 고압의 압축기를 이미 장착하고 있어 BOG의 재액화 공정 적용이 가능하게 되는 것이다. 또한, 연안 LNG연료 추진선박의 경우도 고압의 천연가스 ME-GI엔진을 사용하므로, 이 압축기를 이용하여 BOG의 재액화 공정이 가능하게 된다.Recently, ME-GI engine, which is a mixed gas of natural gas and light oil, has been developed to efficiently use evaporated BOG, and this engine compresses the vaporized BOG to a high pressure of 250 to 300 bar and uses it as a fuel for ships. Typically, the liquefaction of cryogenic gases, such as natural gas, consists of Linde cycle compression-cooling-expansion, and the higher the pressure, the higher the reliquefaction yield. The engine is already equipped with a high-pressure compressor to be able to apply the BOG reliquefaction process. In the case of offshore LNG fuel propulsion vessels, the high-pressure natural gas ME-GI engine is also used, thereby enabling the reliquefaction of BOG using this compressor.
이 ME-GI엔진 압축기를 활용한 재액화 공정으로 증발된 BOG를 압축한 후 냉각시키고 감압팽창시켜 일부만이 재액화되는 부분재액화시스템(PRS, Partial reliquefaction system)과 완전 재액화시스템이 있다.In the reliquefaction process using the ME-GI engine compressor, there are a partial reliquefaction system (PRS) and a complete reliquefaction system in which the BOG evaporated is cooled, expanded under reduced pressure, and only partially reliquefied.
도 1과 2는, 종래 LNG운송선박의 부분재액화장치(PRS)의 일 실시 예를 개략적으로 도시한 도면이다.1 and 2 is a view schematically showing an embodiment of a conventional partial reliquefaction apparatus (PRS) of the LNG transport vessel.
종래 기술의 일 실시 예에 따르면, 저장탱크에서 발생한 -100 내지 -130℃의 BOG는 배출배관을 통하여 열교환기를 거쳐 압축기로 공급되어 250 내지 300bar로 압축되고, 압축된 증발가스는 열교환기로 돌아와 최대 -90 내지 -115℃ 정도로 냉각 후 팽창밸브를 통하여 대기압으로 감압되는 등엔탈피 팽창과정으로 이론적으로 약 35% 내지 45%의 BOG가 재액화되어 저장탱크로 반송되는 공정이다.According to one embodiment of the prior art, the BOG of -100 to -130 ℃ generated in the storage tank is supplied to the compressor through a heat exchanger through the discharge pipe is compressed to 250 to 300 bar, the compressed evaporated gas is returned to the heat exchanger- After cooling about 90 to -115 ° C, the enthalpy expansion process is reduced to atmospheric pressure through the expansion valve, and theoretically, about 35% to 45% of the BOG is liquefied and returned to the storage tank.
관련 특허를 보면, 대한민국 특허공개 제 10-2013-0127270호, 10-2013-0131946, 10-2013-0147915, 10-2014-0033792 등의 특허들이 존재한다. 그러나 이러한 방법들은 모두 BOG가 재액화되는 실제 수율은 열교환기 효율저하 및 외부 열유입 등으로 약 20 내지 30% 정도로 감소하게 되므로 재액화량을 증가시키기 위한 지속적인 기술 개선이 요구되고 있다.In related patents, there are patents such as Korean Patent Publication Nos. 10-2013-0127270, 10-2013-0131946, 10-2013-0147915, 10-2014-0033792, and the like. However, in all these methods, the actual yield of BOG reliquefaction is reduced by about 20 to 30% due to deterioration of heat exchanger efficiency and external heat inflow, and thus, continuous technical improvement is required to increase reliquefaction amount.
도 1과 2의 문제점을 보면, 도1의 부분재액화시스템은 BOG와 플래시 가스의 냉열을 이용함에 있어 3중열교환기를 적용하는 것으로 열교환 효율에 재액화 수율이 크게 좌우되고, 부하변동에 따른 효과적 열교환을 얻기 어려우며, 초저온 열교환기의 가격이 높다는 단점이 있다. 이 공정은 BOG와 플래시가스 이용 온도를 10℃까지 이용하는 것으로 기준하면 최대 이론 재액화율은 45% 내외가 되며, 열교환 효율이 90%이면 액화율이 29%로 급감하고, 열교환 효율 80%에서는 액체를 얻지 못하게 된다.1 and 2, the partial reliquefaction system of Figure 1 is to apply the triple heat exchanger in using the cold heat of the BOG and flash gas, the re-liquefaction yield is largely influenced by the heat exchange efficiency, and effective according to the load fluctuation It is difficult to obtain heat exchange, and there is a disadvantage that the price of the cryogenic heat exchanger is high. In this process, the maximum theoretical reliquefaction rate is around 45% based on the use of BOG and flash gas temperature up to 10 ° C. If the heat exchange efficiency is 90%, the liquefaction rate drops sharply to 29%. I can't.
도 2는 기화된 플래시 가스가 탱크에서 발생되는 BOG와 합체되는 공정으로, 운전시간의 증가와 함께 플래시 가스의 성분 중 액화가 되지 않는 질소가스의 농도가 증가하여 액화율이 크게 감소하게 되는 단점이 있다. 이 공정의 이론 최대 재액화율은 40%가 된다.2 is a process in which the vaporized flash gas is coalesced with the BOG generated in the tank, and the liquefaction rate is greatly reduced by increasing the concentration of nitrogen gas which is not liquefied among the components of the flash gas with an increase in operating time. . The theoretical maximum reliquefaction rate of this process is 40%.
즉, 상기 방법들은 모두 BOG가 재액화되는 실제 수율은 열교환기 효율저하 및 외부 열유입 등으로 약 10 내지 15% 이상 감소하게 되므로 재액화량을 증가시키기 위한 지속적인 기술의 개선의 필요성이 대두되고 있다.That is, the above methods all reduce the actual yield of BOG reliquefaction by about 10 to 15% due to a decrease in heat exchanger efficiency and external heat inflow, so there is a need for continuous improvement of technology to increase the amount of reliquefaction. .
반면, 도 3은 종래 LNG운송선박의 BOG 완전 재액화 장치를 개략적으로 도시한 도면이다.On the other hand, Figure 3 is a view schematically showing the BOG complete reliquefaction apparatus of the conventional LNG transport vessel.
도 3에 도시된 재액화장치는 발생되는 BOG 전부를 완전 재액화하는 방법으로 Hamworthy의 재액화기, 다단 냉동사이클을 적용하는 TGE재액화기 등이 있다. 이 공정은 초저온 질소냉동사이클로 구성된 것으로, 질소가스가 저장되는 저장탱크와, 이 탱크에서 공급되는 질소가스를 팽창시켜 냉각시키는 질소가스 압축-팽창기(Compander)와, 컴팬더에서 공급되는 질소가스에 의해 압축기에서 공급되는 BOG 증발가스를 액화시키는 콜드박스 열교환기를 포함한다. 이 냉동시스템은 초저온 질소 냉동사이클이 구성되므로 설비의 규모가 커서 설치면적이 크게 요구되고, 장치비용이 큰 단점이 있다.The reliquefaction apparatus shown in FIG. 3 includes Hamworthy's reliquefaction apparatus and TGE reliquefaction apparatus using a multi-stage refrigeration cycle as a method of completely reliquefying all the BOGs generated. This process consists of a cryogenic nitrogen refrigeration cycle, which includes a storage tank in which nitrogen gas is stored, a nitrogen gas compressor-expander that expands and cools the nitrogen gas supplied from the tank, and a nitrogen gas supplied from the compander. And a cold box heat exchanger for liquefying BOG boil-off gas supplied from the compressor. Since the refrigeration system is composed of a cryogenic nitrogen refrigeration cycle, the size of the installation is large, so the installation area is large, and the apparatus cost is large.
이들의 관련 특허로는 국제특허공개 WO 2009/136793호, WO 2011/078669호, US2014/0102133(2014,4,17), 한국특허공개 제2001-0089142호 등이 있다.These related patents include WO 2009/136793, WO 2011/078669, US2014 / 0102133 (2014, 4,17), and Korean Patent Publication No. 2001-0089142.
따라서, 본 발명은 이러한 BOG 부분재액화 공정 및 완전 재액화 공정들의 문제들을 개선하고자 고안된 것으로써, 압축된 증발가스를 냉동장치를 이용하여 예냉시켜 팽창전의 온도를 보다 저하시키고, 팽창장치로 노즐과 팽창밸브를 적용하여 재액화율을 향상시키는 부분재액화장치의 구성에 관한 것이다.Therefore, the present invention is designed to improve the problems of the BOG partial reliquefaction process and the complete reliquefaction process, by precooling the compressed boil-off gas using a refrigerating device to further lower the temperature before expansion, the nozzle and the expansion device The present invention relates to a configuration of a partial reliquefaction apparatus that applies an expansion valve to improve reliquefaction rate.
따라서, 본 발명은 이러한 BOG 부분재액화 공정들의 문제들을 개선하고자 고안되어 진 것이다. 본 발명은 압축된 BOG가스 흐름을 분지하여 BOG의 보유 냉열과 플래시 가스의 냉열을 분리 사용함으로써 열교환 효율을 크게 향상시키고, 분지된 일부의 압축 증발가스를 냉동장치로 예냉시켜 팽창 전의 온도를 보다 저하시키고, 감압팽창밸브로 팽창시켜서 재액화율을 55% 내지 60%이상으로 크게 향상시키는 기술이다.Accordingly, the present invention is designed to ameliorate the problems of these BOG partial reliquefaction processes. The present invention significantly improves heat exchange efficiency by branching the compressed BOG gas stream by separating the cold heat of the BOG and the cold heat of the flash gas, and precooling the branched compressed boil-off gas with a freezer to further lower the temperature before expansion. It is a technique that greatly expands the reliquefaction rate to 55% to 60% or more by expanding with a reduced pressure expansion valve.
본 발명은 상기한 바와 같은 종래 기술을 개선하고자 창출된 것으로, LNG운송선박, LNG의 충전 벙커링 선박, LNG연료 추진 선박의 저장탱크에서 증발한 BOG를 재액화하는 공정에 있어서, 냉열분리 이용과 예냉 방식을 적용함으로써 BOG의 재액화율을 60% 내외로 크게 향상시키는 구성을 제공함으로써 선박들의 BOG를 효과적으로 처리하여 천연가스의 절약과 안전성 확보를 제공하는 데 있다.The present invention was created to improve the prior art as described above, in the process of re-liquefying the BOG evaporated from the storage tank of the LNG transport vessel, LNG filled bunkering vessel, LNG fuel propulsion vessel, the use of cold heat separation and pre-cooling By applying the method, it provides a configuration that greatly improves the reliquefaction rate of BOG to around 60%, thereby effectively treating ships' BOG to provide saving of natural gas and securing safety.
본 발명은 LNG 저장탱크로부터 배출되는 저온의 증발가스 BOG를 압축하여 고압의 압축된 가스 흐름을 분지하여 BOG의 보유 냉열과 플래시 가스의 냉열을 분리 사용하여 열교환 효율을 증가시키고, 일반 R134a, 암모니아 냉동기 등을 이용하여 예냉함으로써 BOG 재액화율을 향상시키는 것을 특징으로 한 부분재액화장치의 구성에 관한 것이다.The present invention is to compress the low-temperature evaporated gas BOG discharged from the LNG storage tank to branch the high-pressure compressed gas flow to increase the heat exchange efficiency by separating the cold heat of the BOG and the cold heat of flash gas, general R134a, ammonia freezer It relates to a configuration of a partial reliquefaction apparatus characterized by improving the BOG reliquefaction rate by pre-cooling using such.
본 발명의 일 측면에 따르면, 250 내지 300bar의 고압 BOG를 2개소 이상에 구비된 냉각 열교환기에서 BOG 증발가스와 플래시 가스가 보유한 냉열에 의한 냉각과정과, 분지된 일부 고압BOG를 냉동기로 예냉하는 과정을 거치면서 과냉각율을 크게 하여 재액화량이 크게 증가시키는 것이다.According to an aspect of the present invention, in the cooling heat exchanger provided with two or more high-pressure BOG of 250 to 300 bar by the cooling process of the BOG boil-off gas and flash gas retained, and pre-cooled branched high-pressure BOG with a freezer Through the process, the amount of reliquefaction is greatly increased by increasing the supercooling rate.
또한, 냉동장치는 잠열이 큰 암모니아 냉동기이거나 온도가 보다 낮은 R508, R23 등의 냉동장치가 하나 혹은 그 이상이 장치의 구성에 적용될 수 있다.In addition, the refrigerating device may be ammonia freezer having a large latent heat, or one or more freezing devices such as R508 and R23 having a lower temperature may be applied to the configuration of the device.
상기 냉각 열교환기는 용량에 따라 하나 이상으로 구성될 수 있으며, 압축가스의 분지된 유로의 흐름은 2개 혹은 그 이상의 분지 흐름으로 구성될 수 있다.The cooling heat exchanger may be composed of one or more according to the capacity, the flow of the branched flow path of the compressed gas may be composed of two or more branched flows.
본 발명의 실시 예에 따른 선박용 LNG 저장탱크(100)에서 발생하는 증발가스(BOG:boil-off-gas)를 압축하고, 상기 압축한 증발가스를 재액화하고, 상기 재액화된 증발가스를 저장시키는 선박용 액화천연가스의 증발가스 부분재액화장치에 있어서, LNG가 저장되는 저장탱크(100)와; 상기 저장탱크(100)에서 배출되는 저온의 -130℃ BOG 증발가스의 냉열을 이용하여 열교환하는 제1열교환기(170)와; 상기 제1열교환기(170)를 통해서 유입된 증발가스를 250 내지 300bar의 고압가스로 압축하는 압축기(130)와; 상기 압축기(130)에 토출된 고압가스를 상기 제1열교환기(170)로 이송하는 제2유로(200)와, 예냉기(120)로 이송하는 제1유로(190)로 구성되는 분기부(210)와; 상기 제1유로(190)로 토출되는 고압가스를 -25 내지 -30℃, 300bar 상태로 냉각시키는 예냉기(120)와; 상기 예냉기(120)를 통해 토출된 고압가스를 -162℃의 플래시 가스를 이용하여 추가 냉각시키는 제2열교환기(180)와; 상기 제1유로(190)의 상기 제2열교환기(180)와, 상기 제2유로(200)의 상기 제1열교환기(170)를 통해서 냉각된 압축가스를 대기압 상태로 감압하여 팽창시키는 감압팽창밸브(140)와; 상기 감압팽창밸브(140)에서 감압된 증발가스를 포화액체와 포화기체로 분리하여, 플래시 가스는 상기 제2열교환기(180)로 이송하고, 포화액체는 상기 저장탱크(100)로 이송시키는 액기분리기(160);를 포함하여 구성되는 선박용 액화천연가스의 증발가스 부분재액화장치의 구성을 제공한다.Compresses boil-off-gas (BOG) generated in a marine LNG storage tank 100 according to an embodiment of the present invention, reliquefies the compressed boil-off gas, and stores the re-liquefied boil-off gas. An apparatus for partial liquefaction of boil-off liquefied natural gas, comprising: a storage tank (100) storing LNG; A first heat exchanger (170) for exchanging heat by using cold heat of a low temperature -130 ° C BOG boil-off gas discharged from the storage tank (100); A compressor (130) for compressing the evaporated gas introduced through the first heat exchanger (170) into a high pressure gas of 250 to 300 bar; Branching portion consisting of a second flow path 200 for transferring the high pressure gas discharged to the compressor 130 to the first heat exchanger 170, and a first flow path 190 for transferring to the precooler 120 ( 210; A precooler (120) for cooling the high pressure gas discharged to the first flow passage (190) to -25 to -30 ° C at 300 bar; A second heat exchanger 180 for further cooling the high pressure gas discharged through the precooler 120 using a flash gas of −162 ° C .; Pressure-expanding expansion for decompressing and expanding the compressed gas cooled through the second heat exchanger 180 of the first flow passage 190 and the first heat exchanger 170 of the second flow passage 200 at atmospheric pressure. A valve 140; The vaporized gas decompressed by the reduced pressure expansion valve 140 is separated into a saturated liquid and a saturated gas, a flash gas is transferred to the second heat exchanger 180, and a saturated liquid is a liquid to be transferred to the storage tank 100. It provides a configuration of the partial reliquefaction apparatus of the boil-off liquefied natural gas for ships configured to include a separator (160).
한편, 상기 제1열교환기(170)는, 상기 저장탱크(100)에서 토출되는 -130℃의 증발가스의 냉열을 이용하여 상기 제2유로(200)로 통해서 유입되는 압축된 고압압축가스를 냉각시키는 것을 특징으로 한다.Meanwhile, the first heat exchanger 170 cools the compressed high pressure compressed gas introduced through the second flow passage 200 by using the cold heat of the evaporated gas of −130 ° C. discharged from the storage tank 100. It is characterized by.
그리고, 상기 예냉기(120)는, 상기 압축기(130)를 통해서 토출되는 고압압축가스를 -25 내지 -30℃로 냉각시키고, 사용되는 냉동기(110)로는 암모니아 냉동기, R134a 냉동기 그리고 R508 냉동기중 어느 하나가 선택적으로 사용되는 것을 특징으로 한다.The precooler 120 cools the high-pressure compressed gas discharged through the compressor 130 to −25 to −30 ° C., and the freezer 110 may be any one of an ammonia freezer, an R134a freezer, and an R508 freezer. It is characterized in that one is used selectively.
한편, 상기 제2열교환기(180)는, 상기 액기분리기(160)에서 토출되는 -162℃의 플래시 가스를 이용하여, 상기 제1유로(190)를 통해서 예냉기(120)를 통과하여 유입되는 압축가스를 열교환과정을 통해서 냉각시키는 것을 특징으로 한다.On the other hand, the second heat exchanger 180 is introduced through the precooler 120 through the first passage 190 by using a flash gas of -162 ℃ discharged from the liquid separator 160. It is characterized in that the compressed gas is cooled through a heat exchange process.
또한, 상기 감압팽창밸브(140)을 통해서, 300bar 상태의 고압압축가스를 대기압상태의 포화액체상태와, 포화기체상태로 감압시킨 후, 상기 액기분리기(160)를 통해서 액체상태의 가스는 상기 저장탱크(100)로, 기체 상태의 플래시 가스는 상기 제2열교환기(180) 측으로 분리하여 이송하는 것을 특징으로 한다.In addition, the pressure of the high pressure compressed gas of 300 bar state through the pressure-expansion expansion valve 140 to the saturated liquid state and the saturated gas state of the atmospheric pressure state, and then the liquid gas through the liquid separator 160 is stored in the storage To the tank 100, the flash gas in the gas state is characterized in that separated and transported to the second heat exchanger (180) side.
본 발명의 선박용 액화천연가스의 증발가스 부분재액화장치에 의할 때, 압축기(130)에서 고압으로 압축된 가스의 흐름을 분지하여 BOG의 보유 냉열과 플래시 가스의 냉열을 분리 사용하며, 암모니아 냉동기를 이용하여 예냉함으로써 BOG 재액화율을 종래의 부분재액화 시스템들보다 10% 내지 20% 향상시키는 것을 특징으로 한 장치에 관한 것이다.According to the partial reliquefaction apparatus of the boil-off liquefied natural gas of the present invention, the compressor 130, by branching the flow of gas compressed at high pressure to separate the cold heat of the BOG and the cold heat of the flash gas, ammonia freezer The present invention relates to an apparatus for improving the BOG reliquefaction rate by 10% to 20% over conventional partial reliquefaction systems by precooling using.
또한, 이는 선박들의 BOG를 보다 효과적으로 처리할 수 있어 천연가스의 안전성 확보와 에너지절약 그리고 부분재액화장치의 비용을 최소화할 수 있는 재액화 장치의 구성을 제공하는 데 있다.In addition, this is to provide a configuration of a reliquefaction apparatus that can more effectively process the BOG of ships to secure the safety of natural gas, energy saving and minimize the cost of the partial reliquefaction apparatus.
도 1은 종래 기술에 따른 LNG 증발가스인 BOG의 부분재액화 장치를 도시한 도면이다.1 is a view showing a partial reliquefaction apparatus of BOG which is LNG boil-off gas according to the prior art.
도 2는 종래 기술에 따른 LNG 증발가스인 BOG의 부분재액화 장치의 다른 실시 예를 도시한 도면이다.2 is a view showing another embodiment of a partial reliquefaction apparatus of BOG which is LNG boil-off gas according to the prior art.
도 3은 종래 기술에 따른 LNG 증발가스인 BOG의 완전재액화 장치의 실시 예를 도시한 도면이다.3 is a view showing an embodiment of a complete reliquefaction apparatus of BOG which is LNG boil-off gas according to the prior art.
도 4는 본 발명의 일 실시 예에 따른 선박용 액화천연가스의 증발가스 부분재액화장치의 구성도이다.4 is a block diagram of a partial boil-off gas liquefaction apparatus of liquefied natural gas for ship according to an embodiment of the present invention.
[부호의 설명][Description of the code]
100. 저장탱크 110. 냉동기100. Storage Tank 110. Freezer
120: 예냉기 130. 압축기120: precooler 130. compressor
140. 감압팽창밸브 160. 액기분리기140. Pressure reducing valve 160. Liquid separator
170. 제1열교환기 180. 제2열교환기170. First heat exchanger 180. Second heat exchanger
190. 제1유로 200. 제2유로190. The first euro 200. The second euro
210. 분기부       210. Branch
본 발명은 상기 과제를 해결하기 위하여 이루어진 것으로서, LNG 운송선박이나 LNG를 연료로 운항되는 선박의 LNG저장탱크(100)에서 기화되는 BOG를 재액화함에 있어 선박의 압축기(130)에서 고압으로 압축된 BOG가스를 분지하여 BOG냉열과 플래시 가스의 냉열을 분리 흡입하고, 압축된 토출가스의 일부를 일반 냉동장치를 이용하여 예냉시키고, 감압팽창밸브(140) 등을 조합하여 구성함으로써 재액화율을 향상시키는 부분재액화장치의 구성에 관한 것이다.The present invention has been made in order to solve the above problems, in the reliquefaction of the BOG vaporized in the LNG storage tank 100 of the LNG transport vessel or a vessel operated by LNG fuel is compressed at high pressure in the compressor 130 of the vessel BOG gas is branched to separate and suck BOG cold heat and flash gas cold heat, and a part of the compressed discharge gas is precooled using a general refrigerating device, and a combination of a reduced pressure expansion valve 140 and the like is used to improve the reliquefaction rate. It relates to the configuration of a partial reliquefaction apparatus.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 대하여 구체적으로 설명하도록 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 4는 본 발명의 일 실시 예에 따른 대표도로 선박용 액화천연가스의 증발가스 부분재액화장치의 구성도이다.Figure 4 is a block diagram of the partial liquefaction apparatus of the boil-off gas of liquefied natural gas for a representative road according to an embodiment of the present invention.
살펴보면, 본 발명의 실시 예에 따른 선박용 LNG 저장탱크(100)에서 발생하는 증발증기(BOG:boil-off-gas)를 압축하고, 상기 압축한 증발가스를 재액화하고, 상기 재액화된 증발가스를 저장시키는 선박용 액화천연가스의 증발가스 부분재액화장치에 있어서, LNG가 저장되는 저장탱크(100)와; 상기 저장탱크(100)에서 배출되는 저온의 증발가스의 냉열을 이용하여 열교환하는 제1열교환기(170)와; 상기 제1열교환기(170)를 통해서 유입된 증발가스를 250 내지 300bar의 고압가스로 압축하는 압축기(130)와; 상기 압축기(130)에 토출된 고압가스를 상기 제1열교환기(170)로 이송하는 제2유로(200)와, 예냉기(120)로 이송하는 제1유로(190)로 구성되는 분기부(210)와; 상기 제1유로(190)로 토출되는 고압가스를 -25 내지 -30℃, 300bar 상태로 냉각시키는 예냉기(120)와; 상기 예냉기(120)를 통해 토출된 고압가스를 -162℃의 플래시 가스를 이용하여 추가 냉각시키는 제2열교환기(180)와; 상기 제1유로(190)의 상기 제2열교환기(180)와, 상기 제2유로(200)의 상기 제1열교환기(170)를 통해서 냉각된 압축가스를 합체한 후 대기압 상태로 감압하여 팽창시키는 감압팽창밸브(140)와; 상기 감압팽창밸브(140)에서 감압된 증발가스를 포화액체와 포화기체로 분리하여, 상기 플래시 가스는 상기 제2열교환기(180)로 이송하고, 포화액체는 상기 저장탱크(100)로 이송시키는 액기분리기(160);를 포함하여 구성되는 선박용 액화천연가스의 증발가스 부분재액화장치의 구성을 제공한다.Looking at, compressing the boil-off-gas (BOG: boil-off-gas) generated in the marine LNG storage tank 100 according to an embodiment of the present invention, re-liquefied the compressed boil-off gas, the re-liquefied boil-off gas An apparatus for partial liquefaction of a boil-off liquefied natural gas for ship, comprising: a storage tank (100) storing LNG; A first heat exchanger 170 for exchanging heat by using cold heat of a low temperature boil-off gas discharged from the storage tank 100; A compressor (130) for compressing the evaporated gas introduced through the first heat exchanger (170) into a high pressure gas of 250 to 300 bar; Branching portion consisting of a second flow path 200 for transferring the high pressure gas discharged to the compressor 130 to the first heat exchanger 170, and a first flow path 190 for transferring to the precooler 120 ( 210; A precooler (120) for cooling the high pressure gas discharged to the first flow passage (190) to -25 to -30 ° C at 300 bar; A second heat exchanger 180 for further cooling the high pressure gas discharged through the precooler 120 using a flash gas of −162 ° C .; After coalescing the compressed gas cooled through the second heat exchanger 180 of the first flow passage 190 and the first heat exchanger 170 of the second flow passage 200, it expands by depressurizing to atmospheric pressure. Pressure reducing expansion valve 140 to be made; The evaporated gas decompressed by the pressure reducing expansion valve 140 is separated into a saturated liquid and a saturated gas, and the flash gas is transferred to the second heat exchanger 180, and the saturated liquid is transferred to the storage tank 100. It provides a configuration of the partial liquefaction apparatus of the boil-off liquefied natural gas for ships comprising a liquid separator (160).
한편, 상기 제1열교환기(170)는, 상기 저장탱크(100)에서 토출되는 -130℃의 BOG 증발가스의 냉열을 이용하여 상기 제2유로(200)로 통해서 유입되는 압축된 고압압축가스를 냉각시키는 것을 특징으로 한다.On the other hand, the first heat exchanger 170, the compressed high-pressure compressed gas flowing through the second passage 200 by using the cold heat of -130 ℃ BOG boil-off gas discharged from the storage tank 100 It is characterized by cooling.
그리고, 상기 예냉기(120)는, 상기 압축기(130)를 통해서 토출되는 고압압축가스를 -25 내지 -30℃로 냉각시키고, 사용되는 냉동기(110)로는 암모니아 냉동기, R134a 냉동기 그리고 R508 냉동기 등과 같은 일반적으로 사용되는 냉동기 중 어느 하나가 선택적으로 사용하는 것이 가능하다.The precooler 120 cools the high pressure compressed gas discharged through the compressor 130 to −25 to −30 ° C., and the freezer 110 used may include an ammonia freezer, an R134a freezer, and an R508 freezer. It is possible to selectively use any one of the commonly used refrigerators.
한편, 상기 제2열교환기(180)는, 상기 액기분리기(160)에서 토출되는 -162℃의 플래시 가스를 이용하여, 상기 제1유로(190)를 통해서 유입되는 압축가스를 냉각시키는 것을 특징으로 한다.On the other hand, the second heat exchanger 180, by using the flash gas of -162 ℃ discharged from the liquid separator 160, characterized in that for cooling the compressed gas flowing through the first flow passage (190). do.
또한, 상기 감압팽창밸브(140)을 통해서, 300bar 상태의 고압압축가스를 대기압상태의 포화액체상태와, 포화기체상태로 감압시킨 후, 상기 액기분리기(160)를 통해서 액체상태의 가스는 상기 저장탱크(100)로, 기체 상태의 플래시 가스는 상기 제2열교환기(180) 측으로 분리하여 이송하는 것을 특징으로 한다.In addition, the pressure of the high pressure compressed gas of 300 bar state through the pressure-expansion expansion valve 140 to the saturated liquid state and the saturated gas state of the atmospheric pressure state, and then the liquid gas through the liquid separator 160 is stored in the storage To the tank 100, the flash gas in the gas state is characterized in that separated and transported to the second heat exchanger (180) side.
상세히, 도 4에 도시된 바와 같이 본 BOG 부분재액화장치는, LNG가 저장되는 선박의 LNG저장탱크(100), 냉동기(110), 예냉기(120), 압축기(130), 감압팽창밸브(140), 액기분리기(160), 제1열교환기(170), 제2열교환기(180)를 포함하여 구비된다.In detail, as shown in FIG. 4, the BOG partial reliquefaction apparatus includes an LNG storage tank 100, a refrigerator 110, a precooler 120, a compressor 130, and a reduced pressure expansion valve of a vessel in which LNG is stored. 140, the liquid separator 160, the first heat exchanger 170, the second heat exchanger 180 is provided.
우선, 도 4을 참조하여 본 발명의 실시 예에 따른 BOG 부분재액화 공정을 보면, 상기 저장탱크(100)에서 토출된 BOG가스는 대략 -130℃ 1기압의 상태로 1지점을 통과하여 상기 제1열교환기(170)로 유입된 후 상기 압축기(130)를 통과하면서 대략 30℃의 300bar 의 고압가스로 압축되어 토출되게 된다.First, referring to FIG. 4, the BOG partial reliquefaction process according to an exemplary embodiment of the present invention, the BOG gas discharged from the storage tank 100 passes through one point in a state of about −130 ° C. 1 atm. After being introduced into the first heat exchanger 170, while passing through the compressor 130, it is compressed and discharged into a high pressure gas of 300 bar of approximately 30 ℃.
이때, 상기 압축기(130)에 토출된 고압가스는 분기부(210)에서 제1유로(190)와, 제2유로(200)로 각각 분지되어 이송된다. 이때, 상기 분기부(210)에서 제1유로(190)와, 제2유로(200)로 분지되는 고압가스의 비율은 일반적으로 6:4의 비율로 나뉘는 것이 바람직하나, 시스템 구성의 조정에 따라서 당업자의 수준에서 그 비율은 조정이 가능한 부분이다.At this time, the high pressure gas discharged to the compressor 130 is branched to the first flow passage 190 and the second flow passage 200 in the branch 210 and transferred. At this time, the ratio of the high pressure gas branched from the branch 210 to the first passage 190 and the second passage 200 is generally divided into a ratio of 6: 4, but according to the adjustment of the system configuration. At the level of those skilled in the art, the ratio is an adjustable part.
이때, 제2유로(200)는 상기 제1열교환기(170)측으로 유입되고, 유입된 고압가스는 상기 제1열교환기(170)에서 -130℃의 BOG가스와 열교환을 통해서, -124.5℃의 300bar 상태로 5"지점을 통과하게 된다.At this time, the second flow path 200 is introduced into the first heat exchanger 170, the high-pressure gas is introduced through the heat exchange with BOG gas of -130 ℃ in the first heat exchanger 170, -124.5 ℃ Pass 300 "at 300 bar.
한편, 제1유로(190)로 분지되는 가스는 상기 예냉기(120) 측으로 유입되고, 상기 예냉기(120)에서 예냉과정을 거친 고압가스는 5'지점에서 -25℃의 300bar의 상태로 확인된다. 이때, 상기 예냉기(120)를 구성하는 냉동기(110)는 일반적으로 시중에서 사용되고 있는 일반 냉동기의 구성이 적용되고, 실시 예로써 암모니아 냉동기, R134a 냉동기 그리고 R508 냉동기 중 어느 하나가 선택적으로 사용하는 것이 가능하다.Meanwhile, the gas branched into the first flow passage 190 flows into the precooler 120, and the high pressure gas that has undergone the precooling process in the precooler 120 is identified as 300 bar at −25 ° C. at the 5 ′ point. do. At this time, the refrigerator 110 constituting the precooler 120 is generally applied to the configuration of a general freezer used in the market, as an embodiment that any one of the ammonia freezer, R134a freezer and R508 freezer is selectively used. It is possible.
다음으로, 상기 예냉기(120)에서 -25℃의 300bar의 상태로 1차 냉각된 고압가스는, 제2열교환기(180)측으로 유입된다. 이때, 상기 제2열교환기(180)에서 2차로 냉각되는 상기 고압가스는 대략 -66℃, 300bar의 상태로 6'지점을 통과하게 된다.Next, the pre-cooled high pressure gas in a state of 300 bar at -25 ° C in the precooler 120 flows into the second heat exchanger 180. At this time, the high-pressure gas that is secondarily cooled in the second heat exchanger 180 passes through the 6 'point at about -66 ° C and 300 bar.
상기 제1유로(190)와 제2유로(200)에서 각각 냉각된 고압가스는, 6지점에서 다시 합류하게 되고, 상기 감압팽창밸브(140)로 유입되게 된다. 상기 감압팽창밸브(140)을 통해서 대기압상태로 감압팽창을 통해서, 1bar의 -161.7℃ 상태의 액체와 기체가 혼합된 상태로 7지점을 통과하게 된다.The high pressure gas cooled in each of the first flow passage 190 and the second flow passage 200 is joined again at six points and flows into the decompression expansion valve 140. Through the reduced pressure expansion valve 140 to the atmospheric pressure expansion through the reduced pressure, 1 bar -161.7 ℃ state of the liquid and gas in the mixed state is passed through 7 points.
상기 7지점을 통과한 액체와 기체 혼합상태의 가스를 상기 액기분리기(160)에서 액체상태의 LNG는 다시 상기 저장탱크(100)측으로 분리하여 이송하고, 플래시 가스는 상기 제2열교환기(180)측으로 이송하여 제2냉각 공정에 이용한 후, 보일러의 연료 등으로 이용되게 된다.The liquid LNG passes through the seven points and the liquid gas is separated from the liquid separator 160 to be transferred to the storage tank 100 side, and the flash gas is transferred to the second heat exchanger 180. After transported to the side and used in the second cooling process, it is used as fuel of the boiler.
상기와 같은 공정을 통해서, 본 발명의 실시예에 따른 선박용 액화천연가스의 증발가스 부분재액화장치에 의할 때, BOG가스의 재액화하는 효율이 55 내지 60%에 이르는 높을 효율을 구축하는 시스템을 구축할 수 있게 된다.Through the above process, when the liquefied gas partial reliquefaction apparatus of liquefied natural gas for ships according to an embodiment of the present invention, the system for building a high efficiency of the re-liquefaction of BOG gas up to 55 to 60% You can build
한편, 상기 압축기(130)에서 토출되는 250 내지 300bar의 고압BOG 가스(메탄가스 90%, 질소가스 3%)는 2개의 유로로 분리된다. 상기 제1유로(190)의 고압가스 흐름은 냉동장치의 증발기인 상기 예냉기(120)에 의하여 -25 내지 30℃로 예냉작업이 수행된다.Meanwhile, the high pressure BOG gas (methane gas 90%, nitrogen gas 3%) of 250 to 300 bar discharged from the compressor 130 is separated into two flow paths. The high pressure gas flow of the first flow passage 190 is pre-cooled to -25 to 30 ℃ by the precooler 120 which is the evaporator of the refrigerating device.
이때, 상기 예냉기(120)에 적용될 수 있는 냉동장치로는 암모니아, R134a, R508 냉동기 등 일반 육상에서 사용되고 있는 모든 냉동장치가 적용될 수 있다. 한편, 예냉된 고압 증발가스는 제2열교환기(180)에서 액기분리기(160)에서 배출되는 포화 기체인 -162℃의 플래시 가스에 의하여 추가 냉각된다.In this case, as the refrigerating apparatus that can be applied to the precooler 120, all the refrigerating apparatuses used in general land such as ammonia, R134a, and R508 freezers may be applied. On the other hand, the pre-cooled high-pressure evaporated gas is further cooled by a flash gas of -162 ℃ which is a saturated gas discharged from the liquid separator 160 in the second heat exchanger (180).
한편, 제2유로(200)의 고압가스는 저장탱크(100)로부터 기화되는 -130℃의 BOG와 제2 열교환기(170)에서 열교환 후 냉각되어 제1유로(190)의 냉각된 고압가스와 합류된다. 이렇게 냉각된 기체는 상기 감압팽창밸브(140)에서 대기압으로 팽창하면서 포화액체와, 포화기체가 각각 얻어진다.On the other hand, the high pressure gas of the second flow path 200 is cooled after heat exchange in the second heat exchanger 170 and BOG of -130 ℃ vaporized from the storage tank 100 and the high pressure gas of the first flow passage 190 and To join. The cooled gas is expanded to atmospheric pressure in the reduced pressure expansion valve 140 to obtain a saturated liquid and a saturated gas, respectively.
이 액체와 기체는 액기분리기(160)에서 분리되어, 재액화된 LNG는 다시 상기 탱크(100)로 주입되어 저장되고, 분리된 플래시 가스(Flash gas)는 제2열교환기(180) 측으로 분리되어, 냉각열을 제공하는 데 이용된다. 이때 액기분리기(160)의 액체와 기체의 조성을 보면, 액체는 순수 메탄 100%가 되고 플래시 가스는 액화되지 않은 메탄가스 일부와 질소 전량이 된다.The liquid and gas are separated in the liquid separator 160, the liquefied LNG is injected into the tank 100 and stored again, and the separated flash gas is separated to the second heat exchanger 180 side. It is used to provide cooling heat. At this time, the liquid and gas composition of the liquid separator 160, the liquid is 100% pure methane, the flash gas is a portion of the methane gas and the total amount of nitrogen that is not liquefied.
한편, 상기 액화되지 않는 질소 성분이 높은 상기 플래시 가스는 BOG와 합체될 경우 액화율을 저하시키는 원인이 된다. 따라서, 상기 플래시 가스는 보유 냉열을 이용하여 열교환 공정을 거친 후 잔여 냉열을 냉동기(110)의 응축기(미도시)의 응축열 제거에 사용되거나, 공정 외부로 배출되어 보일러 연료로 사용 혹은 필요에 따라 압축기(130)로 유입될 수 있다.On the other hand, when the flash gas having a high nitrogen content which is not liquefied is coalesced with BOG, it causes a lower liquefaction rate. Therefore, the flash gas is used to remove the condensation heat of the condenser (not shown) of the refrigerator 110 after undergoing a heat exchange process using the retained cooling heat, or discharged outside the process to be used as a boiler fuel or a compressor as necessary. Can flow into the 130.
이때, 상기 플래시 가스의 저온을 상기 냉동기(110)의 응축열 제거에 사용하면, 응축온도가 크게 낮아져 냉동장치의 압축기(130) 소요동력이 절감되는 효과를 얻게 된다.At this time, if the low temperature of the flash gas is used to remove the heat of condensation of the refrigerator 110, the condensation temperature is significantly lowered, thereby reducing the power consumption of the compressor 130 of the refrigerating device.
상기 예냉기(120)는 용량에 따라 한 개 또는 다수 개의 냉동기(110), 열교환기들로 구성될 수 있으며, 과정별 저온을 최대한 활용하기 위하여 유로를 2개 이상으로 많은 다수개의 분지를 형성하여 구비하는 것이 가능하다. The precooler 120 may be composed of one or a plurality of refrigerators 110, heat exchangers, depending on the capacity, and formed by forming a plurality of branches of more than two flow paths in order to maximize the low temperature by process. It is possible to do
이는 대형 장거리 LNG운송선박의 BOG를 재액화하는 장치나, 연안의 LNG 벙커링 선박, LNG를 연료로 추진되는 선박의 BOG를 재액화할 때 적용되어 질 수 있다.This can be applied when reliquefying the BOG of large long-haul LNG carriers, LNG bunkering offshore or vessels fueled by LNG.
이상에서 살펴본 바와 같이 본 실시 예에서는 종래의 재액화수율이 낮은 부분재액화공정 대신에, 압축가스 분지하여 냉열을 이용함으로써 열교환 효율을 크게 향상시키고, 냉동 예냉설비의 적용함으로써 으로 발생한 BOG의 재액화율이 기존의 40내지 50%정도의 수준에서 55 내지 60% 정도로 크게 증가하는 효과를 기대할 수 있다.As described above, in the present embodiment, instead of the conventional partial reliquefaction process having a low reliquefaction yield, the compressed gas is branched. The use of cold heat greatly improves the heat exchange efficiency, and the reliquefaction rate of BOG generated by the application of refrigeration precooling equipment can be expected to increase significantly from 55 to 60% from the existing 40 to 50% level.
이상, 본 발명의 실시 예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다. 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As mentioned above, although embodiment of this invention was described, the person of ordinary skill in the pertinent art can add, change, delete or add a component within the range which does not deviate from the idea of this invention described in a claim. The present invention may be modified and changed in various ways. This will also be included within the scope of the invention.

Claims (4)

  1. 선박용 LNG 저장탱크(100)에서 발생하는 증발증기(BOG:boil-off-gas)를 압축하고, 상기 압축한 증발가스를 재액화하고, 상기 재액화된 증발가스를 저장시키는 선박용 액화천연가스의 증발가스 부분재액화장치에 있어서,Evaporation of boil-off-gas (BOG) generated in the LNG storage tank 100 for ships, reliquefaction of the compressed boil-off gas and storage of the re-liquefied boil-off gas In the gas partial reliquefaction apparatus,
    LNG가 저장되는 저장탱크(100)와;A storage tank 100 in which LNG is stored;
    상기 저장탱크(100)에서 배출되는 저온의 BOG 증발가스의 냉열을 이용하여 열교환하는 제1열교환기(170)와;A first heat exchanger 170 for exchanging heat by using cold heat of a low temperature BOG boil-off gas discharged from the storage tank 100;
    상기 제1열교환기(170)를 통해서 유입된 증발가스를 250 내지 300bar의 고압가스로 압축하는 압축기(130)와;A compressor (130) for compressing the evaporated gas introduced through the first heat exchanger (170) into a high pressure gas of 250 to 300 bar;
    상기 압축기(130)에 토출된 고압가스를 상기 제1열교환기(170)로 이송하는 제2유로(200)와, 예냉기(120)로 이송하는 제1유로(190)로 구성되는 분기부(210)와;Branching portion consisting of a second flow path 200 for transferring the high pressure gas discharged to the compressor 130 to the first heat exchanger 170, and a first flow path 190 for transferring to the precooler 120 ( 210;
    상기 제1유로(190)로 토출되는 고압가스를 -25 내지 -30℃, 300bar 상태로 냉각시키는 예냉기(120)와;A precooler (120) for cooling the high pressure gas discharged to the first flow passage (190) to -25 to -30 ° C at 300 bar;
    상기 예냉기(120)를 통해 토출된 고압가스를 -162℃의 플래시 가스를 이용하여 추가 냉각시키는 제2열교환기(180)와;A second heat exchanger 180 for further cooling the high pressure gas discharged through the precooler 120 using a flash gas of −162 ° C .;
    상기 제1유로(190)의 상기 제2열교환기(180)와, 상기 제2유로(200)의 상기 제1열교환기(170)를 통해서 냉각된 압축가스를 합체한 후 대기압 상태로 감압하여 팽창시키는 감압팽창밸브(140)와;After coalescing the compressed gas cooled through the second heat exchanger 180 of the first flow passage 190 and the first heat exchanger 170 of the second flow passage 200, it expands by depressurizing to atmospheric pressure. Pressure reducing expansion valve 140 to be made;
    상기 감압팽창밸브(140)에서 감압된 증발가스를 포화액체와 포화기체로 분리하여, 상기 플래시 가스는 상기 제2열교환기(180)로 이송하고, 포화액체는 상기 저장탱크(100)로 이송시키는 액기분리기(160);를 포함하여 구성되는 선박용 액화천연가스의 증발가스 부분재액화장치.The evaporated gas decompressed by the pressure reducing expansion valve 140 is separated into a saturated liquid and a saturated gas, and the flash gas is transferred to the second heat exchanger 180, and the saturated liquid is transferred to the storage tank 100. Evaporation gas partial reliquefaction apparatus of the liquefied natural gas for ships comprising a liquid separator (160).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1열교환기(170)는,The first heat exchanger 170,
    상기 저장탱크(100)에서 토출되는 -130℃의 BOG가스의 냉열을 이용하여 상기 제2유로(200)로 통해서 유입되는 압축된 고압압축가스를 냉각시키고,Cooling the compressed high pressure compressed gas introduced through the second flow passage 200 by using the cold heat of the -130 ℃ BOG gas discharged from the storage tank 100,
    상기 제2열교환기(180)는,The second heat exchanger 180,
    상기 액기분리기(160)에서 토출되는 -162℃의 플래시 가스를 이용하여, 상기 제1유로(190)를 통해서 유입되는 압축가스를 냉각시키는 것을 특징으로 하는 선박용 액화천연가스의 증발가스 부분재액화장치.Evaporative gas partial reliquefaction apparatus of liquefied natural gas for ships, characterized in that for cooling the compressed gas flowing through the first passage 190 by using a flash gas of -162 ℃ discharged from the liquid separator 160 .
  3. 제 1 항에 있어서,The method of claim 1,
    상기 예냉기(120)는,The precooler 120,
    상기 압축기(130)를 통해서 토출되는 고압압축가스를 -25 내지 -30℃로 냉각시키고, 사용되는 냉동기(110)로는 암모니아 냉동기, R134a 냉동기 그리고 R508 냉동기중 어느 하나가 선택적으로 사용되는 것을 특징으로 하는 선박용 액화천연가스의 증발가스 부분재액화장치.The high pressure compressed gas discharged through the compressor 130 is cooled to −25 to −30 ° C., and the refrigerant 110 used may be any one of an ammonia freezer, an R134a freezer, and an R508 freezer. Evaporative gas partial reliquefaction apparatus of liquefied natural gas for ships.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 감압팽창밸브(140)을 통해서, 300bar 상태의 고압압축가스를 대기압상태의 포화액체상태와, 포화기체상태로 감압시킨 후, 상기 액기분리기(160)를 통해서 액체상태의 가스는 상기 저장탱크(100)로, 기체 상태의 플래시 가스는 상기 제2열교환기(180) 측으로 분리하여 이송하는 것을 특징으로 하는 선박용 액화천연가스의 증발가스 부분재액화장치.After depressurizing the high-pressure compressed gas of 300 bar state to the saturated liquid state and the saturated gas state of the atmospheric pressure state through the reduced pressure expansion valve 140, and the liquid gas through the liquid separator 160 is the storage tank ( 100), the gaseous flash gas is part of the liquefied natural gas for ship boil-off gas reliquefaction apparatus, characterized in that separated and transported to the second heat exchanger (180) side.
PCT/KR2017/001973 2016-03-15 2017-02-23 Device for partially re-liquefying boil-off gas of liquefied natural gas for ship WO2017160007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160031004A KR101854977B1 (en) 2016-03-15 2016-03-15 Partial reliquefaction system of Boil-Off-Gas for a ship
KR10-2016-0031004 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017160007A1 true WO2017160007A1 (en) 2017-09-21

Family

ID=59852210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001973 WO2017160007A1 (en) 2016-03-15 2017-02-23 Device for partially re-liquefying boil-off gas of liquefied natural gas for ship

Country Status (2)

Country Link
KR (1) KR101854977B1 (en)
WO (1) WO2017160007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030151A (en) * 2021-02-08 2021-06-25 上海司氢科技有限公司 Device and method for testing liquefaction rate of low-temperature gas liquefaction device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212367A1 (en) * 2017-05-16 2018-11-22 강희자 Liquefied natural gas boil-off gas partial re-liquefaction device for ship
KR102209603B1 (en) * 2019-07-16 2021-01-29 하이에어코리아 주식회사 Re-Liquefaction system of part of evaporation gas marine engine LNG equipped with multi-stage compression precooler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187532B1 (en) * 2009-03-03 2012-10-02 에스티엑스조선해양 주식회사 boil-off gas management apparatus of electric propulsion LNG carrier having reliquefaction function
KR101224906B1 (en) * 2010-11-01 2013-01-22 삼성중공업 주식회사 Vessel and LNG Reliquefaction apparatus
KR20140075579A (en) * 2012-12-11 2014-06-19 대우조선해양 주식회사 System for treating a liquefied gas
KR101496577B1 (en) * 2013-10-31 2015-02-26 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR101599412B1 (en) * 2015-02-11 2016-03-03 대우조선해양 주식회사 Vessel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046998B2 (en) * 2008-02-26 2012-10-10 三菱重工業株式会社 Liquefied gas storage facility and ship or marine structure using the same
KR101431419B1 (en) * 2014-02-20 2014-08-19 현대중공업 주식회사 A Treatment System of Liquefied Gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187532B1 (en) * 2009-03-03 2012-10-02 에스티엑스조선해양 주식회사 boil-off gas management apparatus of electric propulsion LNG carrier having reliquefaction function
KR101224906B1 (en) * 2010-11-01 2013-01-22 삼성중공업 주식회사 Vessel and LNG Reliquefaction apparatus
KR20140075579A (en) * 2012-12-11 2014-06-19 대우조선해양 주식회사 System for treating a liquefied gas
KR101496577B1 (en) * 2013-10-31 2015-02-26 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR101599412B1 (en) * 2015-02-11 2016-03-03 대우조선해양 주식회사 Vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030151A (en) * 2021-02-08 2021-06-25 上海司氢科技有限公司 Device and method for testing liquefaction rate of low-temperature gas liquefaction device
CN113030151B (en) * 2021-02-08 2022-08-19 河南中科清能科技有限公司 Device and method for testing liquefaction rate of low-temperature gas liquefaction device

Also Published As

Publication number Publication date
KR20170107265A (en) 2017-09-25
KR101854977B1 (en) 2018-05-04

Similar Documents

Publication Publication Date Title
WO2017007168A1 (en) Ship comprising engine
US5755114A (en) Use of a turboexpander cycle in liquefied natural gas process
CN108369060B (en) Expander-based LNG production process enhanced with liquid nitrogen
WO2015130122A1 (en) Boil-off gas treatment system
WO2017082552A1 (en) Vessel
KR100747232B1 (en) Apparatus and method for reliquefying boil-off gas, and lng carrier with the apparatus
KR20140075594A (en) Reliquefaction System And Method For Boil Off Gas
WO2017160007A1 (en) Device for partially re-liquefying boil-off gas of liquefied natural gas for ship
MX2010011500A (en) Dual nitrogen expansion process.
WO2019132608A1 (en) Device and method for processing boil-off gas in liquefied gas regasification system
KR101167148B1 (en) Boil-off gas reliquefying apparatus
WO2017099317A1 (en) Vessel comprising engine
KR101593970B1 (en) BOG Multi-Step Reliquefaction System And Method For Boiled Off Gas
KR20160126955A (en) Reliquefaction System And Method For Boil Off Gas
KR20090025514A (en) A bog re-liquefaction system for lng carrier
KR102034477B1 (en) Apparatus and process for liquefying natural gas, and natural gas station including the apparatus for liquefying natural gas
KR101675879B1 (en) Device and method for re-liquefying BOG
KR101788753B1 (en) Boil Off Gas Treatment System And Method Of Ship
WO2023043030A1 (en) Boil-off gas re-liquefying system and ship comprising same
WO2018212367A1 (en) Liquefied natural gas boil-off gas partial re-liquefaction device for ship
KR101675878B1 (en) Device and method for re-liquefying BOG
KR20170030508A (en) Reliquefaction System And Method For Boil Off Gas
WO2020204218A1 (en) Cooling system
KR102034476B1 (en) Apparatus and process for liquefying natural gas containing nitrogen, and natural gas station including the apparatus for liquefying natural gas
KR20210085635A (en) Boil-off Gas Reliquefaction System and Method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766908

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766908

Country of ref document: EP

Kind code of ref document: A1