WO2017159878A1 - 試料積載プレート及びその製造方法 - Google Patents

試料積載プレート及びその製造方法 Download PDF

Info

Publication number
WO2017159878A1
WO2017159878A1 PCT/JP2017/011064 JP2017011064W WO2017159878A1 WO 2017159878 A1 WO2017159878 A1 WO 2017159878A1 JP 2017011064 W JP2017011064 W JP 2017011064W WO 2017159878 A1 WO2017159878 A1 WO 2017159878A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
sample
sample loading
hydrophilic
substrate
Prior art date
Application number
PCT/JP2017/011064
Other languages
English (en)
French (fr)
Inventor
鳥海 和宏
智規 倉富
Original Assignee
シチズンファインデバイス株式会社
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンファインデバイス株式会社, シチズン時計株式会社 filed Critical シチズンファインデバイス株式会社
Priority to JP2018506057A priority Critical patent/JP6549308B2/ja
Priority to EP17766873.8A priority patent/EP3418731B1/en
Publication of WO2017159878A1 publication Critical patent/WO2017159878A1/ja
Priority to US16/132,868 priority patent/US10796892B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]

Definitions

  • the present invention relates to a sample loading plate for loading a sample and a method for manufacturing the same.
  • MALDI Matrix Assisted Laser Desorption / Ionization
  • a sample is mixed in advance with a substance (matrix) that easily absorbs laser light and easily ionizes in order to analyze an analyte that is difficult to absorb laser light or easily damaged by laser light.
  • a substance matrix that easily absorbs laser light and easily ionizes in order to analyze an analyte that is difficult to absorb laser light or easily damaged by laser light.
  • sample loading plate a target plate on which a sample is loaded is placed in the apparatus, and laser light is applied to the sample loaded on the sample loading plate.
  • sample is desorbed and ionized by irradiation for a predetermined time. At this time, a voltage is applied to the metal sample loading plate, and an electric field is applied to the desorbed and ionized sample, so that the desorbed and ionized sample can easily fly toward the acceleration electrode.
  • the sample loading plate has a plurality of sample loading areas (hereinafter referred to as “sample loading spots”) for loading samples, and a plurality of samples to be measured are dropped onto a predetermined sample loading spot for drying (crystallization). ) Are placed in the mass spectrometer in a state of being moved, and a plurality of samples are irradiated with laser by moving the sample loading plate.
  • Patent Document 1 discloses that a sample loading spot has a margin (periphery) consisting of a central portion having an electrically conductive surface and a hydrophobic mask.
  • the sample dropped on the sample loading spot is crystallized and deposited in a ring shape on the hydrophobic margin due to the halo effect. Ionization is performed by efficiently irradiating the crystal ring formed in the margin portion with laser light.
  • Patent Document 2 is a groove in which a conductive interference layer is provided on an insulating substrate so as to exhibit a color different from that of the substrate, a hydrophobic film is formed on the surface, and a sample loading spot is further formed. Is provided to expose the substrate, and the dropped sample is retained in the sample loading spot (hereinafter referred to as “anchor effect”) for crystallization and ionization.
  • Patent Document 1 performs efficient measurement by irradiating a laser beam to a crystal ring of a sample formed in a margin portion of a sample loading spot, it has a center having electric conductivity. Since the margin portion is an insulating film with respect to the portion, the conductivity is not sufficient, and there is a problem that the sample is charged up and proper ionization is prevented. That is, it can be said that it is not desirable that the sample exudes to the margin portion.
  • Patent Document 2 has an anchor effect that keeps the sample in the spot due to the effect of the groove, and although the sample has good visibility due to the substrate color being different from the sample, the dropped sample is the sample. It is difficult to spread over the entire area of the loading spot, and it easily wets in a donut shape along the groove of the spot. As a result, the density of the sample at the center of the sample loading spot used for the analysis may be lowered, leading to a decrease in analysis sensitivity.
  • the present invention has been made in view of the above points, and in a sample loading plate used for MALDI mass spectrometry, a sample is uniformly spread and spread in the sample loading spot when the sample is loaded on the sample loading spot.
  • the purpose is to be able to.
  • a sample loading plate is used for mass spectrometry of the MALDI method, and is a sample loading plate provided with at least one sample loading spot for loading a sample on the substrate.
  • the first hydrophilic film may be a metal film.
  • the first hydrophilic film may be an optical multilayer film.
  • the second hydrophilic film or the hydrophilic member may be the substrate.
  • the second hydrophilic film or the hydrophilic member may be a film formed between the substrate and the first hydrophilic film.
  • the second hydrophilic film or the hydrophilic member may be a metal film.
  • a connecting portion that electrically connects an inner region and an outer region defined by the boundary portion may be formed at the boundary portion.
  • the material of the substrate is preferably ceramics.
  • the sample loading plate manufacturing method of the present invention is a method for manufacturing a sample loading plate that is used for MALDI mass spectrometry and includes at least one sample loading spot for loading a sample on a substrate.
  • the first hydrophilic film is formed on a substrate having a second hydrophilic film having a higher hydrophilicity than the first hydrophilic film or a surface having a higher hydrophilicity than the first hydrophilic film.
  • a step of forming a hydrophobic film on the first hydrophilic film a step of removing the hydrophobic film in a region in the sample loading spot to expose the first hydrophilic film, and the first Removing the hydrophobic film and the first hydrophilic film at the boundary between a region where one hydrophilic film is exposed and a region where the first hydrophilic film is not exposed, and removing the second hydrophilic film or the first hydrophilic film Surface of the substrate that is more hydrophilic than the membrane Those comprising a step of exposed.
  • Another method for producing a sample loading plate according to the present invention is a method for producing a sample loading plate that is used for mass spectrometry of a MALDI method and includes at least one sample loading spot for loading a sample on a substrate.
  • a second hydrophilic film having a higher hydrophilicity than the first hydrophilic film is formed on the surface, or the first hydrophilic film is formed on a substrate having a surface having a higher hydrophilicity than the first hydrophilic film.
  • a second step of forming a hydrophobic film on the first hydrophilic film in a region excluding the region in the sample loading spot, a region for forming the hydrophobic film, and the hydrophobic film Removing the first hydrophilic film at the boundary with the region where no film is formed, and exposing the surface of the substrate having higher hydrophilicity than the second hydrophilic film or the first hydrophilic film; It is to be prepared.
  • the sample in the sample loading plate, the sample can be uniformly spread and spread in the sample loading spot when the sample is loaded on the sample loading spot.
  • a sample loading plate having such an effect can be manufactured.
  • FIG. 3 is a cross-sectional view taken along line II in FIG. 2.
  • FIG. 4 is an enlarged view of a portion indicated by a symbol H in FIG. 3.
  • It is a top view which shows one Embodiment of the sample loading plate of this invention.
  • It is a figure which shows the structural example of the 1st metal film and optical multilayer film which are laminated
  • It is a figure which shows another structural example of the 1st metal film and optical multilayer film which are laminated
  • It is a fragmentary sectional view for demonstrating the state which loaded the sample on the sample loading spot in this invention.
  • It is a schematic diagram for demonstrating operation
  • the sample loading plate is mounted on a mass analyzer (see FIG. 7 described later) by the MALDI method, and is used for loading a sample on a sample loading spot and analyzing the mass.
  • the form for carrying out the invention shown below exemplifies a sample loading plate and a manufacturing method thereof for embodying the idea of the present invention, and the present invention is specified by the method and configuration described below. It is not a thing.
  • the manufacturing method and the shape, material, relative arrangement, etc. of the members described in the embodiments do not limit the scope of the present invention unless otherwise specified.
  • the size, shape, positional relationship, and film layers to be formed shown in each drawing may be exaggerated for easy understanding.
  • FIG. 3 is a plan view of the sample loading plate as viewed from the side on which the sample is loaded.
  • the substrate 1 of the sample loading plate 100 is an insulative and substantially rectangular flat plate having an outer shape of about 50 mm ⁇ 40 mm.
  • the sample loading plate 100 is made of a material such as Al 2 O 3 (alumina), for example. Can be made. For example, a notch is provided on the lower side for positioning or the like. Further, the flatness of the sample loading plate 100 has an accuracy of 30 ⁇ m or less.
  • the outer shape, thickness, etc. are not particularly limited as long as they meet the specifications of the mass spectrometer.
  • the sample loading plate may be finished by a lapping process or a polishing process in order to ensure flatness.
  • a plurality of substantially circular sample loading spots 10 are formed on the sample loading plate 100.
  • a total of 96 pieces of 8 vertical ⁇ 12 horizontal are provided.
  • the number of the sample loading spots 10 is not limited to this and is determined so as to meet the specifications of the mass spectrometer.
  • FIG. 2 shows an enlarged view of a portion H of the sample loading spot 10.
  • a groove 3 formed in a ring shape around the spot is formed as an exposed portion where the substrate is exposed on the surface.
  • the groove 3 is not a continuous closed curve, but is formed with a connecting portion 5 for electrically connecting the island 21 which is an inner region surrounded by the groove 3 to the edge portion 20 of the sample loading plate.
  • the sample loading spot 10 is a region including the groove 3, the island 21, and the connection portion 5, and is defined as a region including the outer peripheral portion 22 (a region sandwiched between the alternate long and short dash line 9 and the groove 3).
  • the outer peripheral portion 22 is sufficiently separated from the outer peripheral portion of the adjacent sample loading spot so that the loaded samples do not mix and contaminate each other.
  • the surface of the island 21 has a structure in which the first hydrophilic film is on the surface and the surface of the outer peripheral portion 22 is formed with a hydrophobic film.
  • the groove 3 forms a boundary portion at the boundary between the hydrophilic island 21 and the hydrophobic outer peripheral portion 22. Since the connection part 5 is formed, the metal film in the first metal film 2M and the optical multilayer film is a film in which the island 21, the outer peripheral part 22 and the edge part 20 of the sample loading plate are continuous. Thus, electrical conductivity is ensured.
  • the sample loading plate 100 has a column address mark 30 (for example, 1 to 9, X to Z) indicating the position of each sample loading spot 10, a row address mark 40 (for example, A to H), and a serial for managing the sample loading plate.
  • Number 50, barcode 60, etc. can be formed.
  • These address marks, serial numbers, barcodes and the like are not limited to these, and may be added or deleted as necessary.
  • the shape of the groove 3 and the connecting portion 5 forming the sample loading spot 10 is set to four at every 90 degrees. However, the shape is not limited to this, and the shape may be formed by one or a plurality of connecting portions.
  • the method for forming the sample loading spot, address mark, serial number, and barcode is not particularly limited, but a processing method using laser marking is preferable.
  • FIG. 1 is a sectional view taken along a cutting line II passing through the center of the sample loading spot 10 shown in FIG.
  • first metal film 2M is first formed on one surface of substrate 1.
  • the optical multilayer film 2A is formed by being laminated on the first metal film 2M.
  • the optical multilayer film 2A is made of a dielectric film or a second metal film, and the kind and number of layers of the film are not particularly limited.
  • the optical multilayer film 2A is formed in the order of 2d, 2c, 2b, and 2a.
  • a hydrophobic film 12 is formed on the optical multilayer film.
  • the first metal film 2M and the optical multilayer film 2A are formed by a film forming method such as vacuum evaporation or sputtering.
  • the hydrophobic film 12 is similarly formed by a film forming method such as vacuum deposition or sputtering.
  • a method such as dip coating in which the film is formed by dipping it in a liquid and slowly pulling it up is also possible.
  • the groove 3 penetrates the hydrophobic film 12, the first metal film 2M, and the optical multilayer film 2A to expose the surface of the substrate 1.
  • the substrate 1 exposed by the groove 3 uses a material having high hydrophilicity such as Al 2 O 3 to form a hydrophilic member and drop a liquid sample onto the sample loading spot 10.
  • the anchor effect of retaining the inside of the spot can be enhanced (see FIG. 6 described later).
  • the first metal film 2 ⁇ / b> M and the optical multilayer film 2 ⁇ / b> A are connected without cutting the island 21 and the outer peripheral portion 22. As a result, the island 21 and the outer peripheral portion 22 are electrically connected.
  • the groove 3 is formed so as to expose the surface of the substrate 1, but is not limited thereto, and the groove 3 penetrates only the optical multilayer film 2A and exposes the surface of the metal film 2M. It is also possible to form it. Furthermore, it is possible to expose intermediate layers of the optical multilayer film, and those exposed surfaces should be the most hydrophilic among the surfaces exposed on the loading surface on which the sample of the sample loading plate 100 is loaded. That's fine. That is, it is sufficient that the hydrophilicity is higher than the surface of the optical multilayer film 2A that is the first hydrophilic film constituting the island 21. In this case, the exposed surface corresponds to the second hydrophilic film.
  • the method of forming the groove serving as the boundary portion may be a method using laser marking, and furthermore, when forming a groove leaving a part of the optical multilayer film or the first metal film, a method using etching using photolithography may also be used. It is preferred and the method is not limited thereto.
  • FIG. 4A shows Example 1 of the cross-sectional configuration of the sample loading plate 100.
  • the cross-sectional configuration shown in FIG. 4A uses Al 2 O 3 for the substrate 1.
  • Al 2 O 3 is used for the first layer 2d constituting the optical multilayer film 2A, and the film thickness is about 80 nm.
  • the second layer 2c uses Ti and has a film thickness of about 10 nm.
  • the third layer 2b uses SiO 2 and has a thickness of 90 nm.
  • the fourth layer 2a uses Ti and has a film thickness of about 10 nm.
  • the surface of the sample stacking plate 100 can be dark blue in the visible light wavelength region.
  • a hydrophobic film 12 made of C (carbon), F (fluorine), Si (silicon), or the like is formed on the optical multilayer film 2A.
  • the thickness of the hydrophobic film 12 is, for example, 2 to Since it is as thin as about 3 nm, there is little influence on the conductivity and color of the inner surface of the sample loading spot 10.
  • FIG. 4B shows a second embodiment of the cross-sectional configuration of the sample stacking plate 100.
  • the cross-sectional configuration shown in FIG. 4B uses Al 2 O 3 for the substrate 1.
  • the first metal film 2M laminated on the substrate 1 uses Al as the material and has a thickness of about 300 nm.
  • Al 2 O 3 is used for the first layer 2d constituting the optical multilayer film 2A, and the film thickness is about 60 nm.
  • the second layer 2c uses TiO 2 and has a thickness of about 30 nm.
  • the third layer 2b uses SiO 2 and has a film thickness of 60 nm.
  • the fourth layer 2a uses Ti and has a film thickness of about 10 nm. With such a film configuration, the surface of the sample loading plate 100 can be blue in the visible light wavelength region.
  • a hydrophobic film 12 is formed as in the first embodiment.
  • any reflection characteristic (coloring) using optical interference can be obtained by suitably combining the first metal film laminated on the substrate 1 and the optical multilayer film 2A. can get.
  • the optical multilayer film 2A may be mixed with not only a dielectric film but also a metal film as shown in FIGS. 4A and 4B.
  • the portion exposed by the groove 3 is the first metal film on the substrate, the first metal film is a gray close to white, so that the sample loading spot 10 is contrasted with the optical multilayer film 2A. The visibility is good.
  • the substrate 1 when the substrate 1 is exposed by the surface color of the sample loading plate and the groove 3 by using a white material for the substrate 1, the exposed substrate color becomes white and the contrast with the optical multilayer film 2A becomes more conspicuous. The visibility of the sample loading spot 10 is improved. Furthermore, since the crystal of the sample is white, the surface of the sample stacking plate can be distinguished from the color of the optical multilayer film 2A, and it is possible to confirm the presence or absence of the stack after crystallization.
  • the groove 3 which is a boundary part has the highest hydrophilicity
  • the surface of the island 21 has the next highest hydrophilicity
  • the substrate 1 is made of alumina and the substrate 1 is exposed to the groove 3 so that the hydrophilicity of the surface exposed to the groove 3 is higher than the hydrophilicity of the island 21. If the fourth layer 2a of the multilayer film 2A is exposed, the above condition can be achieved.
  • FIG. 5 is a schematic diagram for explaining the interference of light when an optical multilayer film is formed on a substrate.
  • the substrate 1 is formed by laminating dielectric films 2a, 2b, 2c, and 2d as an optical multilayer film for the purpose of explanation.
  • Arbitrary reflection characteristics can be obtained by adjusting the material (refractive index), thickness, and number of layers of each layer, but here, only a basic explanation will be given using schematic diagrams.
  • a dielectric film having a high refractive index and a dielectric film having a low refractive index are alternately stacked with a thickness of 1 ⁇ 4 wavelength as a pair, so that the reflected wave from the interface of each layer is generated by the interference of light.
  • a highly efficient reflection function can be obtained by overlapping.
  • the incident light P incident on the optical multilayer film from the air layer 90 first generates a reflected wave 2aR at the interface between the air and the dielectric film 2a.
  • the reflected waves 2bR, 2cR, 2dR, and 1R are generated at the interface of each layer. Reflections from the interfaces are added to form a reflected wave R.
  • the reflected wave R can obtain arbitrary reflection characteristics (coloring) by changing the material (refractive index), film thickness, and number of film layers of each layer.
  • Various reflection characteristics can be obtained by providing a metal film in the dielectric film. In the first embodiment, the metal film is used for the intermediate layer 2c and the uppermost layer 2a. In the second embodiment, the metal film is used for the uppermost layer 2a.
  • the reflection characteristic of the sample loading plate 100 in Example 1 is the wavelength region W of visible light (about 380 nm to about 780 nm).
  • the reflectivity is low as a whole, but the side where the wavelength is small, that is, the peak of the dark blue light is reflected more and the surface of the plate appears dark blue.
  • the reflection characteristics of the sample loading plate 100 in Example 2 also show characteristics similar to Example 1, but there is a slight difference and the color appears to be blue.
  • FIGS. 6 and 7 show a state where the sample 200 is loaded on the sample loading plate 100 described above
  • FIG. 7 is a schematic diagram showing a state where the sample loading plate loaded with the sample 200 is loaded on the MALDI mass spectrometer 300. .
  • FIG. 6 is a cross-sectional view showing a sample 200 in which an analyte and a matrix are mixed and liquefied with a solvent are dropped onto a sample loading spot, the solvent is evaporated, and the sample is dried.
  • a predetermined amount of the sample 200 is dropped onto the island portion 21 (see FIGS. 1 and 3) of the sample loading spot 10 by a tool (not shown).
  • the dropped sample 200 tends to spread radially due to gravity and surface tension.
  • the sample 200 enters the groove 3 while spreading radially and reaches the surface (exposed surface) of the substrate 1. Since the substrate 1 made of ceramics is highly hydrophilic, the reached sample 200 is wetted and retained on the surface of the substrate 1 (anchor effect).
  • each sample 200 is dried in that state.
  • the sample loading spot 10 on the sample loading plate 100 has a high anchoring effect for retaining the sample 200 in the spot, it is difficult to move even if it vibrates and can be stably held during dropping, thus facilitating the operation. .
  • FIG. 7 is a schematic diagram of the MALDI mass spectrometer 300, in which the sample loading plate 100 on which the sample 200 is loaded is placed on the MALDI mass spectrometer 300 and fixed by a fixing unit (not shown).
  • the sample 200 loaded in a plurality of spots has a mechanism that can move in the X and Y directions and stop each sample at a predetermined position. Will be described.
  • the sample stacking plate 100 is placed on the left side, and is detachably fixed by a clamp unit (not shown).
  • the sample application plate 100 can conduct electricity from a voltage application unit (not shown).
  • a laser light source 220 that irradiates the sample 200 with the laser light 220a, an ion acceleration unit 230 that accelerates the analyte (200a, 200b, 200c) that is released from the sample 200 and ionized with the laser light irradiation,
  • An ion trap unit 231 that traps ions
  • a mass separation unit 232 that forms a flight space of ions and performs mass separation of each ion
  • an ion detection unit 240 that detects each ion that has been mass-separated and arrived in time series are provided. ing.
  • the polarity of ions of the analyte is positive (plus charge).
  • the laser light 220a is irradiated from the laser light source 220 to the sample 200 to be measured for a predetermined time.
  • a positive voltage V1 from a voltage application unit (not shown) is the first metal film 2M of the sample stacking plate 100 and the metal film in the optical multilayer film (2a and 2c in Example 1, and 2a in Example 2).
  • a positive voltage is effectively applied to the sample 200 with respect to the sample 200.
  • a negative voltage V ⁇ b> 2 is applied to the first grid of the ion trap unit 231.
  • the matrix contained in the sample 200 is vaporized with the analyte, and the analyte is desorbed and ionized. Then, since a positive voltage V1 is applied to the analyte, and a downward gradient electric field is generated toward the ion trap unit 231 to which the negative voltage V2 is applied, the desorbed and ionized analyte is converted into an ion acceleration unit. At 230, acceleration is performed toward the ion trap unit 231.
  • the desorbed and ionized analyte is sent from the ion trap unit 231 to the mass separation unit (flight space) 232, and is separated due to the difference in mass during the flight, resulting in a time difference between 200c, 200b, and 200a.
  • Data detected by the ion detector 240 is analyzed by an analysis device (not shown), and mass analysis is performed on the analyte. As a result, the sample is identified at high speed and with high accuracy.
  • the following effects can be obtained.
  • the sample is loaded on the sample loading spot 10
  • the sample is attracted by the groove 3 having the highest hydrophilicity
  • the sample 200 is wetted along the groove 3, and in the vicinity of the inner center surrounded by the groove 3, that is, Since the island 21 has a hydrophilic surface, the island 21 gets wet toward the island 21, and as a result, the sample can be reliably trapped in the groove 3 of the sample loading spot 10 and the hydrophilic surface of the island 21.
  • the sample is loaded on the sample loading spot 10
  • the sample is wet along the groove 3 which is the most hydrophilic portion on the surface of the sample loading plate 100. Subsequently, since the sample is wetted and crystallized in the center of the hydrophilic sample loading spot, the analysis in the MALDI analysis method can be reliably performed.
  • the sample when loading a sample on the sample loading spot, first, the sample is attracted by the boundary portion having the highest hydrophilicity among the surfaces exposed on the substrate surface, and the sample gets wet along the boundary portion, Since the vicinity of the inner center surrounded by the boundary is a hydrophilic surface, it gets wet toward the vicinity of the inner center of the sample loading spot, and as a result, is located at the boundary of the sample loading spot and inside the boundary.
  • the sample can be reliably trapped on the hydrophilic surface.
  • the sample when the sample is loaded on the sample loading spot, even if the sample is not dropped at the center of the sample loading spot, the sample is first aligned along the boundary having the highest hydrophilicity among the surfaces exposed on the substrate surface. Since the sample wets and subsequently crystallizes by wetting to the center of the highly hydrophilic hydrophilic sample loading spot, the analysis in the MALDI analysis method can be performed reliably.
  • the metal film as the first hydrophilic film and the metal film as the second hydrophilic film are electrically connected in the inner area and the outer area divided by the boundary portion of the sample loading spot. Since it is not cut, the voltage applied through the edge portion of the sample loading plate in the mass analysis of the MALDI method causes the metal film as the first hydrophilic film or the metal film as the second hydrophilic film to enter the sample loading spot. It is possible to reliably conduct electricity to the sample in
  • the voltage applied through the edge portion of the sample loading plate in the mass analysis of the MALDI method is caused by the metal film that is the first hydrophilic film or the metal film that is the second hydrophilic film.
  • the sample in the sample loading spot can be reliably conducted.
  • a highly hydrophilic material such as ceramic for the substrate can enhance the anchor effect of the sample at the sample loading spot. As a result, the accuracy of the dropping position of the sample and the efficiency of the dropping work can be improved. Further, since the flatness of the substrate is high, there is little variation in the distance at which the ionized sample is accelerated by the electric field, and mass spectrometry with high measurement accuracy is possible.
  • any color can be created by the first metal film 2M and the optical multilayer film 2A laminated on the substrate.
  • the visibility of the loaded sample can be improved, and the efficiency of the sample dropping operation is improved.
  • the visibility of the sample loading spot can be further enhanced by the sample loading spot to be formed and the groove inside the sample loading spot, so that the work management of the sample becomes easy.
  • the first hydrophilic film is an optical multilayer film
  • the reflectance of light can be adjusted, so that a difference from the color of the boundary can be made.
  • it can be realized.
  • the crystal of the sample is white, it is possible to distinguish the color from the surface of the sample loading plate, and it is possible to confirm the presence or absence of loading after crystallization.
  • the first metal film 2M, the optical multilayer film 2A, and the hydrophobic film 12 are formed on the substrate 1.
  • another hydrophilic film or the like may be formed on the surface of the substrate 1.
  • the metal film and the optical multilayer film are formed only on one surface of the substrate.
  • a metal film and an optical multilayer film may be formed on both side surfaces of the substrate, and either the metal film or the optical multilayer film is formed on the surface on which the sample is not loaded, You may form partially.
  • FIG. 8 is a process diagram showing a method for manufacturing the sample stacking plate 100.
  • FIG. 8 the main steps 310 to 370 of the method for manufacturing the sample stacking plate 100 are illustrated and described. In addition, unless there is a specific description in each process, it is a matter of course that general operations necessary for each process, such as transfer, inspection, cleaning, drying, annealing, and the like are performed, and the description thereof is omitted.
  • Substrate receiving step: 310 First, in the substrate receiving process 310, the flatness and surface roughness of the substrate 1 are inspected to confirm that the substrate 1 has a predetermined flatness and surface roughness.
  • the substrate 1 is subjected to lapping processing or polishing processing, and finished to a predetermined substrate thickness, surface roughness, and flatness.
  • the main inspection items in this process are the surface roughness and flatness of the substrate.
  • the first metal film 2M is formed.
  • a film forming method such as vacuum deposition or sputtering is used, and for example, Ni is formed to a thickness of 300 nm.
  • the irradiation direction of the film-forming particles is preferably a vertical direction (see the broken line arrow 2M).
  • optical multilayer film forming step 340 the optical multilayer film 2A is laminated.
  • the 2d layer, 2c layer, 2b layer, and 2a layer shown in FIG. 4A or 4B are sequentially formed by a film forming method such as vacuum evaporation or sputtering.
  • the hydrophobic film 12 is laminated on the surface of the optical multilayer film 2A formed in the previous step.
  • a water repellent material containing, for example, C (carbon), F (fluorine), or Si (silicon) or a composite water repellent material thereof is formed to a thickness of, for example, 2 nm by a film forming method such as vacuum deposition. Form.
  • the groove forming step 360 the groove 3 for forming the sample loading spot 10 is formed.
  • each film layer is peeled by a processing method such as a laser marking method until the surface of the substrate 1 is exposed through the hydrophobic film 12, the optical multilayer film 2A, and the first metal film 2M. It is also desirable to process other address marks, bar codes, etc. at the same time.
  • the hydrophobic film 12 formed on the island 21 of the sample loading spot 10 is peeled off.
  • a mask 15 (detailed description is omitted) is formed outside the sample loading spot 10 by a processing method such as plasma etching, and the hydrophobic film 12 is peeled off.
  • the mask 15 has a function of opening an area inside the outer diameter of the groove 3 including the island 21 and protecting the other outside from the plasma.
  • a mask having a size covering the region inside the outer diameter of the groove 3 including the island 21 of the sample loading spot from the top at the position of the sample loading spot 10 is covered. It is also possible to carry out the hydrophobic film forming step 350, in which case the hydrophobic film removing step 370 becomes unnecessary.
  • the mask is preferably a stencil mask in which masking portions for each sample loading spot are connected to each other by a thin bridge.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

MALDI法の質量分析に使用され、基板(1)上に試料を積載する試料積載スポット(10)を少なくとも一つ以上備える試料積載プレート(100)において、基板(1)上の、試料積載スポット(10)を設ける面の、試料積載スポット(10)内に、第1の親水膜(2A)による親水性表面が形成され、その親水性表面の外側に疎水膜(12)による疎水性表面が形成され、上記親水性表面と上記疎水性表面の境界に、上記第1の親水膜(2A)よりも高い親水性を持つ第2の親水膜(2M)あるいは親水部材(1)が露出した境界部を形成したものである。

Description

試料積載プレート及びその製造方法
 本発明は、試料を積載する試料積載プレート及びその製造方法に関する。
 病原菌や細菌を迅速かつ正確に診断することが可能な質量分析のイオン化法の一つとして、マトリックス支援レーザ脱離イオン化(MALDI=Matrix Assisted Lazer Desorption/Ionization)法が知られている。
 MALDI法は、レーザ光を吸収しにくい、またはレーザ光で損傷を受けやすい分析対象物を分析するために、レーザ光を吸収しやすくかつイオン化しやすい物質(マトリックス)に試料をあらかじめ混合しておき、これにレーザ光を照射することで試料をイオン化する方法である。
 MALDI法による質量分析装置では、一般に、被分析物とマトリックスをあらかじめ混合し、溶媒により液状化したもの(以下「試料」と呼び、滴下時は液状であるが、それを乾燥し結晶化したものも「試料」と呼ぶ)を積載するターゲットプレートと呼ばれる金属製のプレート(以下、「試料積載プレート」と呼ぶ)を装置内に配置し、試料積載プレート上に積載した試料に対してレーザ光を所定時間照射して試料を脱離イオン化する。このとき、金属製の試料積載プレートには電圧が印加され、脱離イオン化した試料に電界が与えられることによって脱離イオン化した試料を加速用の電極に向けて飛行しやすくしている。
 試料積載プレートは、試料を積載するための試料積載領域(以下、「試料積載スポット」と呼ぶ)を複数備えており、測定する複数の試料を所定の試料積載スポットに滴下させ乾燥化(結晶化)させた状態で質量分析装置内に配置し、試料積載プレートを移動させることにより複数の試料にレーザを照射するようになっている。
 MALDI分析法ではこのような結晶が試料積載スポット内にできるだけ均一に堆積し、被分析物が適切に脱離イオン化し、また試料積載プレートに印加する電圧から試料に有効に電界が与えられ適切に加速することが重要であり、これらの分析技術に関する多くの提案がなされている。
 試料積載スポットにおける試料の結晶化または被分析物のイオン化の改良に関して、例えば特許文献1に示す提案は、試料積載スポットは電気伝導性の表面を有する中央部分と疎水性のマスクからなるマージン(周囲)部分とを備えており、試料積載スポット上に滴下した試料はハロー効果により疎水性のマージン部分にリング状に結晶化し堆積するようにしている。マージン部分に形成された結晶リングにレーザ光を効率的に照射しイオン化を行うようにしている。
 また、特許文献2に示す提案は、絶縁性を有する基板上に導電干渉層を設けて基板とは異なる色を呈するようにし、また表面に疎水膜を形成し、さらに試料積載スポットを形成する溝を設けて基板を露出し、滴下した試料を試料積載スポット内に留めて(以下、「アンカー効果」と呼ぶ)結晶化させイオン化を行うようにしている。
特表2006-525525号公報 国際公開第2015/019861号
 しかしながら、特許文献1に示す従来技術は、試料積載スポットのマージン部分に形成される試料の結晶リングにレーザ光を照射して効率的な測定を行うようにしているものの、電気伝導性を有する中央部分に対してマージン部分は絶縁膜であるため導電性が充分とは言えず試料がチャージアップし、適正なイオン化が妨げられるという問題がある。すなわち、マージン部分まで試料が染み出すことは望ましくないと言える。
 また、特許文献2に示す従来技術は、溝の効果により試料をスポット内に留めるアンカー効果があり、また基板の色が試料とは異なることによる試料の視認性が良いものの、滴下した試料が試料積載スポット内の全域に濡れ広がりにくく、スポットの溝に沿ってドーナツ状に濡れやすい。結果として分析に使用される試料積載スポット中心部の試料の密度が低くなることで分析感度の低下を招く虞がある。
 本発明は、上記の点に鑑みてなされたものであり、MALDI法の質量分析に使用される試料積載プレートにおいて、試料積載スポットへの試料積載時に、試料積載スポット内に試料が均一に塗れ広がることができるようにすることを目的とする。
 上記の課題を解決するため、この発明の試料積載プレートは、MALDI法の質量分析に使用され、基板上に試料を積載する試料積載スポットを少なくとも一つ以上備える試料積載プレートにおいて、上記基板上の、上記試料積載スポットを設ける面の、上記試料積載スポット内に、第1の親水膜による親水性表面を形成し、上記親水性表面の外側に疎水膜による疎水性表面を形成し、上記親水性表面と上記疎水性表面の境界に、上記第1の親水膜よりも高い親水性を持つ第2の親水膜あるいは親水部材による境界部を形成したものである。
 上記の試料積載プレートにおいて、上記第1の親水膜が、金属膜であるとよい。
 あるいは、上記第1の親水膜が、光学多層膜であるとよい。
 また、上記の各試料積載プレートにおいて、上記第2の親水膜あるいは親水部材が、上記基板であるとよい。
 あるいは、上記第2の親水膜あるいは親水部材が、上記基板と上記第1の親水膜との間に形成された膜であるとよい。
 あるいは、上記第2の親水膜あるいは親水部材が、金属膜であるとよい。
 また、上記の各試料積載プレートにおいて、上記境界部に、上記境界部により区画された内側領域と外側領域を電気的に接続する接続部を形成するとよい。
 さらに、上記基板の材質が、セラミックスであるとよい。
 また、この発明の試料積載プレートの製造方法は、MALDI法の質量分析に使用され、基板上に試料を積載する試料積載スポットを少なくとも一つ以上備える試料積載プレートの製造方法であって、第1の親水膜よりも親水性が高い第2の親水膜が表面に形成されているか又は上記第1の親水膜よりも親水性が高い表面を持つ基板の上に、上記第1の親水膜を形成する工程と、上記第1の親水膜の上に疎水膜を形成する工程と、上記試料積載スポット内の領域の上記疎水膜を除去して上記第1の親水膜を露出させる工程と、上記第1の親水膜を露出させる領域と上記第1の親水膜を露出させない領域との境界部の上記疎水膜及び上記第1親水膜を除去して、上記第2の親水膜あるいは上記第1の親水膜よりも親水性が高い上記基板の表面を露出させる工程とを備えるものである。
 また、この発明の試料積載プレートの別の製造方法は、MALDI法の質量分析に使用され、基板上に試料を積載する試料積載スポットを少なくとも一つ以上備える試料積載プレートの製造方法であって、第1の親水膜よりも親水性が高い第2の親水膜が表面に形成されているか又は上記第1の親水膜よりも親水性が高い表面を持つ基板の上に、上記第1の親水膜を形成する第1工程と、上記第1の親水膜の上の、上記試料積載スポット内の領域を除く領域に疎水膜を形成する第2工程と、上記疎水膜を形成する領域と上記疎水膜を形成しない領域との境界部の上記第1親水膜を除去して、上記第2の親水膜あるいは上記第1の親水膜よりも親水性が高い上記基板の表面を露出させる第4工程とを備えるものである。
 以上のようなこの発明の構成によれば、試料積載プレートにおいて、試試料積載スポットへの試料積載時に、試料積載スポット内に試料が均一に塗れ広がるようにすることができる。また、このような効果を持つ試料積載プレートを製造することができる。
図2のI-I線における断面図である。 図3に符号Hで示す部分の拡大図である。 本発明の試料積載プレートの一実施形態を示す平面図である。 本発明の試料積載プレートにおいて積層される第1の金属膜と光学多層膜の構成例を示す図である。 本発明の試料積載プレートにおいて積層される第1の金属膜と光学多層膜の別の構成例を示す図である。 光学多層膜の干渉による着色原理を説明するための模式的な断面図である。 本発明における試料積載スポットに試料を積載した状態を説明するための部分断面図である。 質量分析装置の動作を説明するための模式図である。 本発明の実施形態の試料積載プレートに係る製造方法を説明するための工程図である。
 以下、本発明の実施の形態を図1~図8を用いて説明する。
 試料積載プレートは、MALDI法による質量分析装置(後述する図7参照)に載置されるもので、試料積載スポットに試料を積載して質量を分析するために使用される。以下に示す発明を実施するための形態は、本発明の思想を具体化するための試料積載プレートおよびその製造方法を例示するものであって、本発明は以下に説明する方法および構成に特定するものではない。特に実施の形態に記載されている製造方法および部材の形状、材質、その相対的配置等は特定的な記載がない限りは本発明の範囲をそれのみに限定するものではない。また、各図面が示す部材の大きさや形状、位置関係、形成する膜層については説明をわかりやすくするために誇張していることがある。
 [実施形態の試料積載プレートの説明:図1~図4B]
 はじめに、本発明に係る実施形態である試料積載プレートの構成について図3を用いて説明する。
 図3は、試料積載プレートを試料を積載する面側から見た平面図である。
 試料積載プレート100の基板1は絶縁性であって外形約50mm×40mm程度の略長方形の平板であり、試料積載プレート100は、例えば、基板にAl(アルミナ)などの材料を用いて作ることができる。また、例えば位置決め用などとして下辺のように切り欠き部が設けられている。また、試料積載プレート100の平面度は30μm以下の精度を有している。尚、外形形状、厚さ等は特に限定されるものではなく、質量分析装置の仕様に合うものであればよい。試料積載プレートは、平面度を確保するため、ラッピング工程やポリシング工程による面仕上げを行ってもよい。
 試料積載プレート100には略円形の試料積載スポット10が複数形成されている。本実施例では縦8個×横12個で合計96個設けられている。ここで試料積載スポット10の個数はこれに限定されず質量分析装置の仕様に合うように決められる。
 次に、図2に試料積載スポット10のH部拡大図を示す。試料積載スポット10は、そのスポット周辺部にリング状に形成される溝3が、表面に基板が露出する露出部として形成されている。さらに溝3は、連続した閉曲線ではなく、溝3で囲まれた内側領域であるアイランド21を試料積載プレートの辺縁部20へ電気的に接続する接続部5が形成されている。以上のごとく、試料積載スポット10は、溝3、アイランド21、接続部5を含む領域であり、外側周辺部22(一点鎖線9と溝3で挟まれた領域)を含む領域として定義される。外側周辺部22は、隣接する試料積載スポットの外側周辺部とは、積載された試料同士がお互いに混合、汚染しないために十分に離れている。そしてアイランド21の表面は、第1の親水膜が表面にあり外側周辺部22の表面は、疎水膜が形成された構造となっている。溝3は、親水性のアイランド21と疎水性の外側周辺部22の境界にある境界部を構成している。接続部5が形成されているので、第1の金属膜2Mや光学多層膜の中にある金属膜が、アイランド21と外側周辺部22さらには、試料積載プレートの辺縁部20へ連続した膜となり、電気的に導電性を確保されている。
 尚、試料積載プレート100には各試料積載スポット10の位置を示す列アドレスマーク30(例えば1~9、X~Z)、行アドレスマーク40(例えばA~H)および試料積載プレートを管理するシリアルナンバー50、バーコード60などを形成することができる。これらのアドレスマーク、シリアルナンバー、バーコード等はこれに限定するものではなく必要に応じて追加、削除してもよい。また、試料積載スポット10を形成する溝3と接続部5の形状を90度毎4カ所としたがこれに限定されず、1又は複数の接続部によって形成してもよい。ここで、試料積載スポット、アドレスマーク、シリアルナンバー、バーコードの形成方法としては特に限定はしないがレーザマーキングによる加工法が好適である。
 次に、試料積載プレート100の断面構成について図1を用いて説明する。図1は、図2に示す試料積載スポット10の中心を通過する切断線I-Iにおける断面図である。ここで、基板1の片側表面には最初に第1の金属膜2Mが形成されている。次に、第1の金属膜2Mに積層して光学多層膜2Aが形成されている。光学多層膜2Aは、誘電体膜または第2の金属膜からなり膜の種類、層数は特に限定されず、例えば、2d、2c、2b、2aの順に形成されている。さらに光学多層膜の上に疎水膜12が形成される。第1の金属膜2Mや光学多層膜2Aは、真空蒸着やスパッタリング等の成膜方法により形成される。疎水膜12も同様に真空蒸着やスパッタリング等の成膜方法により形成されるが、液体に浸漬させてゆっくりと引き上げて膜を形成するディップコーティング等の方法でも可能である。
 また、試料積載スポット10は前述のように溝3が疎水膜12と第1の金属膜2Mと光学多層膜2Aを貫通して基板1の表面を露出している。ここで、溝3によって露出された基板1は、例えばAlのような親水性が高い材料を用いることによって、親水部材を構成し液状の試料を試料積載スポット10に滴下したときに試料をスポットの内部に留めるアンカー効果を高めることができる(後述する図6参照)。また、接続部5の部分の断面は、第1の金属膜2Mや光学多層膜2Aがアイランド21と外側周辺部22を切断することなく、連結されている。このことによって、アイランド21と外側周辺部22は、電気的に導通している。
 本実施の形態では溝3は、基板1の表面を露出するように形成したが、それに限定されるものではなく、溝3が光学多層膜2Aのみを貫通して金属膜2Mの表面を露出するように形成することも可能である。さらには、光学多層膜の途中の層を露出させることも可能であり、それら露出させた表面が試料積載プレート100の試料を積載する積載面に露出している面の中で最も親水性であればよい。すなわち、アイランド21を構成する第1の親水膜である光学多層膜2Aの表面よりも親水性が高ければよい。この場合、その露出させた表面が第2の親水膜に該当する。境界部となる溝の形成方法は、レーザマーキングによる方法でもよいし、さらには光学多層膜の一部や第1の金属膜を残して溝を形成するときには、フォトリソグラフィを使ったエッチングによる方法も好適であるし、また方法をそれらに限定するものでもない。
 次に、試料積載プレート100の膜および基板断面構成の2つの実施例について図4A及び図4Bを用いて説明する。
 図4Aは、試料積載プレート100の断面構成の実施例1を示している。図4Aに示す断面構成は、基板1にAlを用いている。基板1に積層される第1の金属膜2Mは、材料にNiを使用し膜厚は約300nmである(1nm=0.000001mm)。次に光学多層膜2Aを構成する第1層目2dはAlを使用し膜厚は約80nmである。第2層目2cはTiを使用し膜厚は約10nmである。第3層目2bはSiOを使用し膜厚は90nmである。第4層目2aは、Tiを使用し膜厚は約10nmである。このような構成とすることによって可視光の波長領域において、試料積載プレート100の表面は濃紺色とすることができる。光学多層膜2Aの上には、C(炭素)、F(フッ素)、Si(シリコン)などで構成された疎水膜12が形成されているが、疎水膜12の膜厚は、例えば、2~3nm程度と薄いので試料積載スポット10の内側表面の導電性や色への影響は少ない。
 図4Bは、試料積載プレート100の断面構成の実施例2を示している。図4Bに示す断面構成は、基板1にAlを用いている。基板1に積層される第1の金属膜2Mは材質にAlを使用し膜厚は約300nmである。次に光学多層膜2Aを構成する第1層目2dはAlを使用し膜厚は約60nmである。第2層目2cはTiOを使用し膜厚は約30nmである。第3層目2bはSiOを使用し膜厚は60nmである。第4層目2aは、Tiを使用し膜厚は約10nmである。このような膜構成とすることで可視光の波長領域において、試料積載プレート100の表面は青色とすることができる。光学多層膜2Aの上には、実施例1と同様に疎水膜12が形成されている。
 実施例1と実施例2に示したように、基板1に積層形成する第1の金属膜と光学多層膜2Aとを好適に組合せることにより光学干渉を利用した任意の反射特性(着色)が得られる。尚、光学多層膜2Aは図4Aおよび図4Bに示したように誘電体膜のみならず金属膜を混合してもよい。
 また、溝3によって露出する部分が基板の上にある第1の金属膜である場合も、第1の金属膜が白に近いグレーであるので、光学多層膜2Aとのコントラストにより試料積載スポット10の視認性が良い。
 さらに、基板1に白色の材料を用いることで試料積載プレートの表面色と溝3によって基板1を露出する場合、露出した基板色が白色になり、光学多層膜2Aとのコントラストがよりいっそう際立って試料積載スポット10の視認性がより良くなる。さらに、試料の結晶は、白色を呈するので試料積載プレート表面が光学多層膜2Aと色の識別ができ、積載の有無を結晶化後に確認することが可能となる。
 親水性については、境界部である溝3が最も親水性が高く、アイランド21の表面が次に親水性が高く、外側周辺部22が疎水性の面をもつように各部分に表出する面を選択して構成する。つまりは、溝3に表出する面の親水性がアイランド21の親水性よりも高くなるように、例えば、基板1をアルミナを材料とし、溝3に基板1を表出して、アイランド21に光学多層膜2Aの第4層目2aを表出すれば、上記の条件を達成できる。
 [試料積載プレートの着色および視認性に関する説明:図5]
 次に、試料積載プレートの着色に関して図5を用いて説明する。図5は、基板に光学多層膜形成した場合の光の干渉を説明する模式図である。
 図5において、基板1は、説明のために、例えば、光学多層膜として誘電体膜2a、2b、2c、2dが積層形成されている。各層の材質(屈折率)、厚さ、層数を調整することによって任意の反射特性(着色)が得られるが、ここでは、模式的な図を用いて原理的な説明にとどめる。(一般的には屈折率の高い誘電体膜と低い屈折率の誘電体膜をペアとして1/4波長の厚みで交互に積層することによって光の干渉作用により各層の界面からの反射波が相加的に重なって高効率の反射機能を得られるとされている。)
 空気層90から光学多層膜に入射する入射光Pは、まず空気と誘電体膜2aとの界面で反射波2aRが発生する。同様に各層の界面でそれぞれの反射波2bR、2cR、2dR、1Rが発生する。各界面からの反射が足し合わされて反射波Rとなる。反射波Rは、各層の材質(屈折率)、膜厚、膜層数を変えることで任意の反射特性(着色)を得られる。尚、誘電体膜中に金属膜を設けることにより多様な反射特性を得られる。前述した実施例1では中間層の2cと最上層の2aに金属膜を用いた構成としており、実施例2では、最上層の2aに金属膜を用いた構成としている。
 この原理に基づいて図4Aに示したように具体的な膜質および膜厚を選定した結果、実施例1における試料積載プレート100の反射特性は、可視光の波長領域W(約380nm~約780nm)では全体として反射率は低めであるが波長が小さい側すなわち濃紺系の光が多めに反射するピークを有しプレートの表面は濃紺色に着色して見える。
 実施例2における試料積載プレート100の反射特性も、実施例1と類似した特性を示すが、若干の差異があり青色に着色して見える。
 [質量分析装置による分析動作の説明:図6、図7]
 次に、試料の質量分析を行う動作について図6、図7を用いて説明する。ここでは主に試料積載プレートおよび試料のイオン化に係る部分を説明し、他は原理的な説明にとどめ詳細は省略する。図6は、前述した試料積載プレート100に試料200を積載した状態を示し、図7は、MALDI質量分析装置300に試料200が積載された試料積載プレートを載置した状態を示す模式図である。
 図6は、被分析物とマトリックスを混合し溶媒で液状化した試料200を試料積載スポットに滴下し溶媒を蒸発させ、乾燥化した状態を断面図にて示している。試料200は図示しない器具によって試料積載スポット10のアイランド部21(図1、図3参照)に所定量が滴下される。滴下された試料200は重力および表面張力によって放射状に広がろうとする。試料200は放射状に広がりながら溝3に入り込み基板1の表面(露出面)に到達する。セラミックスからなる基板1は高い親水性であるので到達した試料200は基板1の表面に濡れて留まり保持される(アンカー効果)。
 そして、分析される試料200の積載が終了した後、各試料200はその状態で乾燥化させる。このとき、試料積載プレート100上の試料積載スポット10は試料200をスポット内に留めるアンカー効果が高いので振動しても移動しにくく安定して滴下時の保持ができ作業を容易にすることができる。
 次に、図7は、MALDI質量分析装置300の模式図を示し、試料200を積載した試料積載プレート100がMALDI質量分析装置300に載置され図示しない固定部によって固定されている。実際には、複数のスポットに積載された試料200は、X、Y方向に移動して各試料が所定の位置に停止できる機構になっているが、ここでは簡単のため、1つの試料積載スポットについて説明する。
 図7に示すMALDI質量分析装置300は、左側に試料積載プレート100が載置され、図示しないクランプ部によって着脱可能に固定されている。また、図示しない電圧印加部から試料積載プレート100に導電できるようになっている。また、試料200にレーザ光220aを照射するレーザ光源220と、レーザ光の照射に伴って試料200から離脱しイオン化した被分析物(200a、200b、200c、)を加速するイオン加速部230と、イオンをトラップするイオントラップ部231と、イオンの飛行空間を形成し各イオンの質量分離を行う質量分離部232と、質量分離され到達した各イオンを時系列に検出するイオン検出部240とを備えている。
 ここで、被分析物のイオンの極性は正(プラス電荷)であるものとする。質量分析が開始すると、レーザ光源220から測定対象の試料200にレーザ光220aが所定時間照射される。それと同時に図示しない電圧印加部からプラスの電圧V1が試料積載プレート100の第1の金属膜2Mおよび光学多層膜中の金属膜(実施例1では2a、2cであり、実施例2では2aである)に印加され、試料200に対しプラスの電圧が試料に有効に与えられる。同時に、イオントラップ部231の最初のグリッドにマイナスの電圧V2が印加される。
 このとき、試料200に含まれるマトリクスが被分析物を伴って気化し被分析物が脱離しイオン化される。そして、プラスの電圧V1が被分析物に与えられ、マイナスの電圧V2が与えられたイオントラップ部231に向けて下り勾配の電界が発生するため、脱離しイオン化した被分析物は、イオン加速部230ではイオントラップ部231に向けて加速される。このようにして、脱離しイオン化した被分析物は、イオントラップ部231から質量分離部(飛行空間)232へ送りこまれ、飛行する間に質量の違いにより分離され時間差がついて200c、200b、200aの順にイオン検出部へ到達する。そして、イオン検出部240にて検出されたデータは図示しない解析装置により解析され被分析物に関する質量分析が行われる。この結果、試料の同定が高速かつ高精度に行われる。
 [実施形態の効果]
 以上説明したように、実施形態によれば次に示す効果を得られる。
 試料積載スポット10に試料を積載する際に、まず、最も親水性の高い溝3によって試料が引きつけられて溝3に沿って試料200が濡れていき、溝3で囲まれている内側中心近傍すなわちアイランド21が親水性表面になっているので、アイランド21に向かって濡れていき、その結果、試料積載スポット10の溝3およびアイランド21の親水性表面に試料を確実にトラップすることができる。さらに試料積載スポット10に試料を積載する際に、さらに試料が試料積載スポットの中心に滴下されない場合にも、試料積載プレート100の表面で最も親水性の高い部分である溝3に沿って濡れていき、続いて親水性の試料積載スポットの中心へ試料が濡れていって結晶化するので、MALDI分析法における分析が確実に実施できる。
 すなわち、試料積載スポットに試料を積載する際に、まず、基板表面に露出している面のうち最も高い親水性を持つ境界部によって試料が引きつけられて境界部に沿って試料が濡れていき、境界部で囲まれている内側中心近傍が親水性表面になっているので、試料積載スポットの内側中心近傍に向かって濡れていき、その結果、試料積載スポットの境界部および境界部の内側にある親水性表面に試料を確実にトラップすることができる。さらに試料積載スポットに試料を積載する際に、試料が試料積載スポットの中心に滴下されない場合にも、まず基板表面に露出している面のうち最も高い親水性を持つ境界部に沿って試料が濡れていき、それに続いて親水性の高い親水性の試料積載スポットの中心へ試料が濡れていって結晶化するので、MALDI分析法における分析が確実に実施できる。
 さらに、接続部が設けられていることにより、第1親水膜である金属膜や第2の親水膜である金属膜が試料積載スポットの境界部で区画された内側領域と外側領域で電気的に切断されることがないので、MALDI法の質量分析において試料積載プレートの辺縁部を通して印加される電圧が第1親水膜である金属膜や第2の親水膜である金属膜により試料積載スポット内にある試料に確実に導電することができる。
 すなわち、接続部が設けられていることにより、MALDI法の質量分析において試料積載プレートの辺縁部を通して印加される電圧が第1親水膜である金属膜や第2の親水膜である金属膜により試料積載スポット内にある試料に確実に導電することができる。
 基板にセラミックスなどの親水性の高い材料を用いることは試料積載スポットにおける試料のアンカー効果を高めることができる。この結果、試料の滴下位置の精度向上、滴下作業の効率向上が可能になる。また、基板の平面性が高いのでイオン化された試料が電界で加速される距離にばらつきが少なく、測定精度の高い質量分析が可能となる。
 また、基板に積層される第1の金属膜2Mと光学多層膜2Aによって任意の色を作ることができる。この結果、積載する試料の視認性を高めることができ試料の滴下作業の効率が向上する。また、形成する試料積載スポットや試料積載スポット内側の溝により、試料積載スポットの視認性をさらに高めることができるので試料の作業管理が容易になる。また、多様な色の試料積載プレートを作り色分けすることで試料の保管と管理が容易になる。
 すなわち、第1の親水膜を光学多層膜とした場合は、光の反射率を調整することができるので、境界部の色との差をつけることができるので、視認性が良いことを上記効果と同時に実現することが可能となる。さらに、試料の結晶は、白色を呈するので試料積載プレート表面と色の識別ができ、積載の有無を結晶化後に確認することが可能となる。
 尚、実施例では基板にセラミックスのAlを用いた例を説明したがこれに限定されず他のセラミックス材料、磁器とセラミックスの複合材料、ガラス、Si、プラスチックなどを用いてもよい。また、第1の金属膜2Mや光学多層膜2Aの金属膜としてNi、Ti、Alを用いた例を説明したがこれに限定されずクロム、金など他の金属を用いてもよい。また、誘電体膜の材料としてAl、SiO、TiOを用いた例を説明したがこれに限定されずMgO、MgF、ZrOなど他の誘電体材料を用いてもよい。
 本実施の形態では、基板1の上に第1の金属膜2Mと光学多層膜2Aと疎水膜12を形成したが、ほかにたとえば基板1の表面に他の親水性膜等を形成してもよく、視認性等の効果を増大させることが期待される。
 また、本実施例では、基板の片側表面にのみ、金属膜および光学多層膜を形成したが、膜形成の方法によっては、基板の両側表面に金属膜や光学多層膜を形成するほうが都合がよい場合もあり、基板の両側表面に金属膜および光学多層膜を形成してもよいし、試料を積載しない側の表面には、金属膜や光学多層膜のどちらか一方、さらには、平面的に部分的に形成しても構わない。
 [試料積載プレート100の製造方法の説明:図8]
 次に、本実施形態の試料積載プレート100の製造方法について図8を用いて説明する。図8は、試料積載プレート100の製造方法を示す工程図である。
 [製造方法の説明:図8]
 図8において、試料積載プレート100の製造方法について310~370の主要な工程を図示し説明する。尚、各工程において特定の記載がない限りそれぞれの工程に必要な一般的な例えば、移送、検査、洗浄、乾燥、アニール等の作業を行うことは当然のこととし、それらの説明は省略する。
 [基板受け入れ工程:310]
 まず、基板受け入れ工程310では、基板1の平面度および表面粗さの検査を行い、所定の平面度、表面粗さであることを確認する。
 [基板表面加工工程(拡大図):320]
 次に、基板表面加工工程320では、基板1にラッピング加工やポリッシング加工を施し、所定の基板厚や表面粗さ、平面度に仕上げる。尚、本工程での主要な検査項目は基板の表面粗さおよび平面度である。
 [第1の金属膜形成工程(拡大図):330]
 次に、第1の金属膜形成工程330では、第1の金属膜2Mを形成する。例えば、真空蒸着やスパッタリング等の成膜方法を用い、例えば、Niを厚さ300nmに形成する。このとき、できるだけ均一な膜とするために成膜粒子の照射方向は垂直方向が望ましい(破線矢印2M参照)。
 [光学多層膜形成工程(拡大図):340]
 次に、光学多層膜形成工程340では光学多層膜2Aを積層形成する。例えば、真空蒸着やスパッタリング等の成膜方法によって、図4A又は図4Bにある2d層、2c層、2b層、2a層を順番に形成する。
 [疎水膜形成工程:350]
 次に、疎水膜形成工程350では、前工程で形成された光学多層膜2Aの表面に疎水膜12を積層形成する。例えば、真空蒸着等の成膜方法によって、例えば、C(炭素)またはF(フッ素)またはSi(シリコン)を含む撥水材またはそれらの複合された撥水材を、例えば、2nmの厚さに形成する。
 [溝形成工程:360]
 次に、溝形成工程360では、試料積載スポット10を形成する溝3を形成する。例えば、レーザマーキング法等の加工方法によって疎水膜12、光学多層膜2A、第1の金属膜2Mを貫通し基板1の表面が露出するまで各膜層を剥離加工する。また、他のアドレスマーク、バーコードなども同時に加工することが望ましい。
 [疎水膜除去工程:370]
 最後に、疎水膜除去工程370では、試料積載スポット10のアイランド21に形成された疎水膜12を剥離する。例えば、プラズマエッチング等の加工方法により、試料積載スポット10の外側にはマスク15(詳しい説明は省略する)を形成し疎水膜12を剥離する。マスク15は、アイランド21を含む、溝3の外径よりも内側の領域開口し、それ以外の外側をプラズマから保護する働きがある。
 以上説明した製造方法により、基板の表面に光学多層膜による所望の反射色を有する試料積載プレートの製造方法を提供することができる。また、試料の視認性がよくかつ滴下する試料のアンカー効果の高い試料積載プレートの製造方法を提供することができる。
 別法として、疎水膜形成工程350において、試料積載スポット10の位置に上から試料積載スポットのアイランド21を含む、溝3の外径よりも内側の領域を覆う大きさのマスクをかぶせた状態で、疎水膜形成工程350を実施することも可能であり、その場合、疎水膜除去工程370は不要となる。マスクは、試料積載スポット毎にあるマスキング部分を互いに細いブリッジによって連結した、ステンシルマスクが好適である。
 以上、試料積載プレートの各種実施形態とその製造方法について詳細に説明したが、本発明は、このような実施形態と製造方法に限定されるものではなく、細部の構成、素材、数量において、本発明の思想を逸脱しない範囲で、任意に変更、追加、削除することができる。即ち、上述した試料積載プレートおよび製造方法の特許請求の各請求項に記載した内容の範囲で変更や省略をすることができる。例えば、溝形成工程360と疎水膜除去工程370の順序を入れ替えてもよい。
  1  基板
  2A  光学多層膜
  2M  第1の金属膜(第1の金属膜の露出部)
  2a、2b、2c、2d  誘電体膜または第2の金属膜
  3、 溝(境界部)
  5 接続部
  10  試料積載スポット
  12 疎水膜
  15 マスク
  20 試料積載プレートの辺縁部
  21 (試料積載スポットの)アイランド
  22 (試料積載スポットの)外側周辺部
  30  列アドレスマーク
  40  行アドレスマーク
  50  シリアルナンバー
  60  バーコード
  100 試料積載プレート
  200  試料
  200a、200b、200c  イオン化した試料
  220  レーザ光源
  220a  レーザ光
  230  イオン加速部
  231  イオントラップ部
  232  質量分離部(飛行空間)
  240  イオン検出部
  300  MALDI質量分析装置

Claims (10)

  1.  MALDI法の質量分析に使用され、基板上に試料を積載する試料積載スポットを少なくとも一つ以上備える試料積載プレートであって、
     前記基板上の、前記試料積載スポットを設ける面の、前記試料積載スポット内に、第1の親水膜による親水性表面が形成され、前記親水性表面の外側に疎水膜による疎水性表面が形成され、前記親水性表面と前記疎水性表面の境界に、前記第1の親水膜よりも高い親水性を持つ第2の親水膜あるいは親水部材による境界部が形成されていることを特徴とする試料積載プレート。
  2.  前記第1の親水膜は、金属膜であることを特徴とする請求項1に記載の試料積載プレート。
  3.  前記第1の親水膜は、光学多層膜であることを特徴とする請求項1に記載の試料積載プレート。
  4.  前記第2の親水膜あるいは親水部材は、前記基板であることを特徴とする請求項1乃至3のいずれか1項に記載の試料積載プレート。
  5.  前記第2の親水膜あるいは親水部材は、前記基板と前記第1の親水膜との間に形成された膜であることを特徴とする請求項1乃至3のいずれか1項に記載の試料積載プレート。
  6.  前記第2の親水膜あるいは親水部材は、金属膜であることを特徴とする請求項5に記載の試料積載プレート。
  7.  前記境界部には、前記境界部により区画された内側領域と外側領域を電気的に接続する接続部が形成されていることを特徴とする請求項1乃至6のいずれか1項に記載の試料積載プレート。
  8.  前記基板の材質は、セラミックスであることを特徴とする請求項1乃至7のいずれか1項に記載の試料積載プレート。
  9.  MALDI法の質量分析に使用され、基板上に試料を積載する試料積載スポットを少なくとも一つ以上備える試料積載プレートの製造方法であって、
     第1の親水膜よりも親水性が高い第2の親水膜が表面に形成されているか又は前記第1の親水膜よりも親水性が高い表面を持つ基板の上に、前記第1の親水膜を形成する工程と、
     前記第1の親水膜の上に疎水膜を形成する工程と、
     前記試料積載スポット内の領域の前記疎水膜を除去して前記第1の親水膜を露出させる工程と、
     前記第1の親水膜を露出させる領域と前記第1の親水膜を露出させない領域との境界部の前記疎水膜及び前記第1親水膜を除去して、前記第2の親水膜あるいは前記第1の親水膜よりも親水性が高い前記基板の表面を露出させる工程とを備える、試料積載プレートの製造方法。
  10.  MALDI法の質量分析に使用され、基板上に試料を積載する試料積載スポットを少なくとも一つ以上備える試料積載プレートの製造方法であって、
     第1の親水膜よりも親水性が高い第2の親水膜が表面に形成されているか又は前記第1の親水膜よりも親水性が高い表面を持つ基板の上に、前記第1の親水膜を形成する第1工程と、
     前記第1の親水膜の上の、前記試料積載スポット内の領域を除く領域に疎水膜を形成する第2工程と、
     前記疎水膜を形成する領域と前記疎水膜を形成しない領域との境界部の前記第1親水膜を除去して、前記第2の親水膜あるいは前記第1の親水膜よりも親水性が高い前記基板の表面を露出させる第4工程とを備える、試料積載プレートの製造方法。
     
PCT/JP2017/011064 2016-03-18 2017-03-17 試料積載プレート及びその製造方法 WO2017159878A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018506057A JP6549308B2 (ja) 2016-03-18 2017-03-17 試料積載プレート及びその製造方法
EP17766873.8A EP3418731B1 (en) 2016-03-18 2017-03-17 Sample mounting plate and method for manufacturing the same
US16/132,868 US10796892B2 (en) 2016-03-18 2018-09-17 Sample mounting plate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055784 2016-03-18
JP2016-055784 2016-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/132,868 Continuation US10796892B2 (en) 2016-03-18 2018-09-17 Sample mounting plate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017159878A1 true WO2017159878A1 (ja) 2017-09-21

Family

ID=59851974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011064 WO2017159878A1 (ja) 2016-03-18 2017-03-17 試料積載プレート及びその製造方法

Country Status (4)

Country Link
US (1) US10796892B2 (ja)
EP (1) EP3418731B1 (ja)
JP (1) JP6549308B2 (ja)
WO (1) WO2017159878A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155967A1 (ja) * 2018-02-09 2019-08-15 浜松ホトニクス株式会社 イオン化方法及び試料支持体
EP3751270A4 (en) * 2018-02-09 2021-11-10 Hamamatsu Photonics K.K. SAMPLE CARRIERS, MANUFACTURING METHODS FOR A SAMPLE CARRIERS AND METHOD FOR SAMPLE IONIZATION
US11404256B2 (en) 2018-02-09 2022-08-02 Hamamatsu Photonics K.K. Sample support, ionization method, and mass spectrometry method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525525A (ja) * 2003-04-30 2006-11-09 パーキンエルマー・エルエーエス・インコーポレーテッド マトリックス支援レーザ脱離およびイオン化質量分光分析法のためのサンプルプレート
JP2007309860A (ja) * 2006-05-22 2007-11-29 Shimadzu Corp Maldi用サンプル調製方法及び質量分析装置
WO2015019861A1 (ja) * 2013-08-07 2015-02-12 シチズンファインテックミヨタ株式会社 試料積載プレート

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043042C2 (de) * 2000-09-01 2003-04-17 Bruker Daltonik Gmbh Verfahren zum Belegen eines Probenträgers mit Biomolekülen für die massenspektrometrische Analyse
JP6205299B2 (ja) * 2014-03-31 2017-09-27 シチズンファインデバイス株式会社 試料積載プレート
JP6591160B2 (ja) * 2014-12-25 2019-10-16 シチズンファインデバイス株式会社 試料積載プレート
JP6363527B2 (ja) * 2015-02-06 2018-07-25 シチズンファインデバイス株式会社 試料積載プレート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525525A (ja) * 2003-04-30 2006-11-09 パーキンエルマー・エルエーエス・インコーポレーテッド マトリックス支援レーザ脱離およびイオン化質量分光分析法のためのサンプルプレート
JP2007309860A (ja) * 2006-05-22 2007-11-29 Shimadzu Corp Maldi用サンプル調製方法及び質量分析装置
WO2015019861A1 (ja) * 2013-08-07 2015-02-12 シチズンファインテックミヨタ株式会社 試料積載プレート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418731A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155967A1 (ja) * 2018-02-09 2019-08-15 浜松ホトニクス株式会社 イオン化方法及び試料支持体
JP2019138759A (ja) * 2018-02-09 2019-08-22 浜松ホトニクス株式会社 イオン化方法及び試料支持体
EP3751270A4 (en) * 2018-02-09 2021-11-10 Hamamatsu Photonics K.K. SAMPLE CARRIERS, MANUFACTURING METHODS FOR A SAMPLE CARRIERS AND METHOD FOR SAMPLE IONIZATION
US11404256B2 (en) 2018-02-09 2022-08-02 Hamamatsu Photonics K.K. Sample support, ionization method, and mass spectrometry method
US11442039B2 (en) 2018-02-09 2022-09-13 Hamamatsu Photonics K.K. Sample support body, production method for sample support body, and sample ionization method

Also Published As

Publication number Publication date
US20190019661A1 (en) 2019-01-17
JP6549308B2 (ja) 2019-07-24
JPWO2017159878A1 (ja) 2019-01-24
EP3418731A1 (en) 2018-12-26
EP3418731B1 (en) 2023-05-03
US10796892B2 (en) 2020-10-06
EP3418731A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6591160B2 (ja) 試料積載プレート
US7619215B2 (en) Sample plate for MALDI mass spectrometry and process for manufacture of the same
JP6336984B2 (ja) 試料積載プレート
WO2017159878A1 (ja) 試料積載プレート及びその製造方法
EP1995765A2 (en) Mass spectroscopy device and mass spectroscopy system
JP2019194604A (ja) 試料支持体
JPWO2019058784A1 (ja) レーザ脱離イオン化法及び質量分析方法
JP6205299B2 (ja) 試料積載プレート
WO2019058783A1 (ja) 試料支持体
JP6549309B2 (ja) 試料積載プレート及びその製造方法
CN111684273A (zh) 试样支撑体、电离法以及质量分析方法
WO2006083151A1 (en) Sample plate for maldi mass spectrometry and process for manufacture of the same
JP6363527B2 (ja) 試料積載プレート
JP6787682B2 (ja) 試料積載プレート及びその製造方法
JPWO2019155835A1 (ja) 試料支持体、イオン化法及び質量分析方法
JP6727881B2 (ja) 試料積載プレート
WO2022130764A1 (ja) 試料支持体、イオン化法及び質量分析方法
JP6757693B2 (ja) 試料積載プレートの製造方法
WO2020188917A1 (ja) 試料支持体、イオン化方法、及び質量分析方法
JP7496300B2 (ja) 試料支持体、イオン化法及び質量分析方法
WO2023119738A1 (ja) 試料支持体ユニット、及び試料のイオン化方法
KR100655581B1 (ko) 투과 전자현미경 분석용 시편의 코팅 장치 및 이를 이용한시편 코팅 방법
JP2023079464A (ja) 試料積載プレート及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506057

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2017766873

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017766873

Country of ref document: EP

Effective date: 20180918

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766873

Country of ref document: EP

Kind code of ref document: A1