WO2017159768A1 - Optical measurement device, optical measurement method, and rotary machine - Google Patents

Optical measurement device, optical measurement method, and rotary machine Download PDF

Info

Publication number
WO2017159768A1
WO2017159768A1 PCT/JP2017/010572 JP2017010572W WO2017159768A1 WO 2017159768 A1 WO2017159768 A1 WO 2017159768A1 JP 2017010572 W JP2017010572 W JP 2017010572W WO 2017159768 A1 WO2017159768 A1 WO 2017159768A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
fiber
optical sensor
measuring device
Prior art date
Application number
PCT/JP2017/010572
Other languages
French (fr)
Japanese (ja)
Inventor
貴洋 宮本
明生 近藤
大西 智之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2017159768A1 publication Critical patent/WO2017159768A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Definitions

  • the present invention relates to an optical measurement device, an optical measurement method, and a rotating machine.
  • an optical fiber type optical sensor 60 as shown in FIG.
  • This optical sensor 60 has a pair of optical fiber groups 61 and 62 arranged so as to be inclined so as to form two sides of a triangle in triangulation (see FIG. 9 described later).
  • the optical fiber group 61 includes one light-emitting fiber 61a that emits light and a plurality of light-receiving fibers 61b that receive light, with one light-emitting fiber 61a as the center.
  • a plurality of light receiving fibers 61b are arranged around the periphery (Patent Document 1).
  • the optical fiber group 62 also includes a light emitting fiber 62a and a light receiving fiber 62b, and has the same configuration as the optical fiber group 61.
  • the measurement principle of the optical sensor 60 will be described with reference to FIGS.
  • the tip portion of the blade 71 serving as a reflection target is measured.
  • light is emitted from the light emitting fiber 61a of the optical fiber group 61 and the light emitting fiber 62a of the optical fiber group 62, respectively.
  • the rotating blade 71 passes the position C
  • the light receiving fiber 61b of the optical fiber group 61 receives the light reflected from the blade 71 at time t1.
  • the light receiving fiber 62b of the optical fiber group 62 receives the light reflected from the blade 71 at time t2.
  • the distance from the tip of the optical sensor 60 to the tip of the blade 71 that is, the clearance is d.
  • an angle formed by two lights emitted from the pair of light emitting fibers 61a and 62a is ⁇ .
  • L the distance at the tip of the pair of light emitting fibers 61a and 62a, that is, the distance AB.
  • the interval CD is 2 ⁇ R ⁇ ⁇ ⁇ ⁇ t / T
  • the clearance d is expressed by the following equation 1 It can ask for. That is, the clearance d can be measured by the time difference ⁇ t between the two waveforms obtained by the pair of light receiving fibers 61b and 62b.
  • a transparent protective window 64 on the surface of the optical sensor 60 as shown in FIG.
  • the protective window 64 when the protective window 64 is attached, when the light T1 from the light source 65 is irradiated from the light emitting fiber 61a, a part of the light T2 passes through the protective window 64 and is irradiated to the blade 71.
  • the light T3 is reflected by the protective window 64 and received by the light receiving fiber 61b.
  • the light applied to the blade 71 is reflected as light R1, a part of the light R2 is reflected by the protective window 64, and a part of the light R3 passes through the protective window 64 and is received by the light receiving fiber 61b.
  • the light receiving fiber 61b receives not only the light R3 from the blade 71 but also the light T3 reflected by the protective window 64, and the light receiving element 66 measures the light R3 and T3. Therefore, as shown in the graph of FIG. 12, the waveform described above is buried in the intensity of the reflected light from the protective window 64, the SN ratio (signal noise ratio) becomes small, and the measurement accuracy is lowered.
  • the diameter of these fibers is about 200 ⁇ m, and it is difficult to produce a plurality of protective windows having such a size.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an optical measurement device, an optical measurement method, and a rotating machine that protect an optical sensor and prevent a decrease in SN ratio.
  • An optical measurement device for solving the above-described problems is as follows.
  • An optical measuring device including an optical sensor having a protective window, A light source that outputs first light; Provided on the outer peripheral surface of the rotating body, when the first light output from the light source is irradiated, the first light is absorbed and second light having a wavelength different from the first light is emitted.
  • the optical sensor has a light emitting fiber that irradiates the rotating body with the first light output from the light source through the protective window,
  • the light emitter is made of a phosphor.
  • An optical measurement apparatus for solving the above-described problem is In the optical measurement apparatus according to the second invention, A filter provided between the light receiving fiber and the light receiving element and transmitting only the second light is provided.
  • An optical measurement device for solving the above-described problem is
  • the light source is disposed independently of the optical sensor,
  • the luminous body is made of a phosphor.
  • An optical measurement device for solving the above-described problem is
  • a plurality of the light sources are arranged such that the first light from the light source has a band shape along the rotation direction of the rotating body, or the light source has a band shape.
  • An optical measurement apparatus for solving the above-described problem is In the optical measurement device according to any one of the first to fifth inventions, A protective film is provided on the surface of the light emitter.
  • a rotating machine according to a seventh invention for solving the above-described problem is The optical measuring device according to any one of the first to sixth inventions is provided.
  • An optical measurement method for solving the above-described problems is as follows.
  • An optical measurement method using an optical sensor having a protective window Outputting the first light from the light source;
  • the first light is absorbed by a light emitter provided on the outer peripheral surface of the rotating body, and a second light having a wavelength different from the first light is absorbed.
  • the light of The second light emitted from the light emitter is received through the protective window by a light receiving fiber provided in the optical sensor,
  • the intensity of the second light received by the light receiving fiber is detected by a light receiving element.
  • the irradiated first light is converted back to the second light by the light emitter, and therefore, the influence of the first light reflected inside the protective window. As a result, it is possible to prevent the SN ratio from being lowered and the measurement accuracy from being lowered.
  • FIG. 1 It is a figure which shows an example (Example 1) of embodiment of the optical measuring device and rotary machine which concern on this invention, (a) is the schematic of a rotary machine, (b) is the schematic of the optical sensor part. It is a graph which shows the change of the intensity
  • FIGS. 1-10 embodiments of an optical measurement device, an optical measurement method, and a rotating machine according to the present invention will be described with reference to FIGS.
  • the rotor is illustrated here as a rotary body of a rotary machine, a shaft, a turbine, etc. can be used as a rotary body in this invention.
  • the optical measurement device includes a light emitter 13, an optical sensor 20, an optical signal processing unit 25, and an optical signal calculation unit 30.
  • the rotating machine 10 includes a casing 11 that is a stationary portion, and a rotor 12 (rotating body) that is a rotating portion that is rotatably supported inside the casing 11.
  • the optical sensor 20 is attached to the casing 11 and arranged so as to look at the outer peripheral surface 12a of the rotor 12.
  • the light emitter 13 replaces the above-described reflection target, and is disposed and fixed on the outer peripheral surface 12a of the rotor 12.
  • the light emitter 13 is made of a phosphor that is a light emitter that does not require a power source. This light absorber 13 absorbs light (first light) incident from the optical sensor 20 and modulates (wavelength-converts) light (second light). Light). If the material used for the light emitter 13 is an inorganic material, there is no problem of heat resistance.
  • the phosphor forming the light emitter 13 absorbs the irradiated energy in the same manner as the phosphor forming the light emitter 15 described later, whereby the electrons are excited and the excited electrons return to the ground state. It is a light emitter that emits excess energy (photoluminescence).
  • the light emitter 13 is formed using a phosphor having a relatively short light emission lifetime among such light emitters.
  • the optical sensor 20 basically has the same configuration as the optical sensor 60 described above. Specifically, it has a pair of optical fiber groups arranged so as to be inclined so as to form two sides of a triangle in triangulation, and each of the fiber groups emits light, and receives the light. And a plurality of light receiving fibers arranged around the light emitting fiber.
  • FIG. 1B one optical fiber group 21 of the pair of optical fiber groups is illustrated, one light-emitting fiber is denoted by reference numeral 21a, and a plurality of light-receiving fibers are denoted by reference numeral 21b. Yes.
  • a protective window 24 is attached to the surface of the optical sensor 20 as a countermeasure against optical fiber degradation.
  • the protective window 24 is made of, for example, sapphire, quartz, diamond or the like.
  • the optical signal processing unit 25 includes a light source 26, a filter 27, and a light receiving element 28.
  • the light source 26 is, for example, a laser and is connected to the light emitting fiber 21a.
  • the light receiving fiber 21 b is connected to the light receiving element 28 via the filter 27.
  • the filter 27 transmits only light having a wavelength converted by the light emitter 13.
  • the light receiving element 28 has a high light receiving sensitivity with respect to the wavelength of the wavelength-converted light.
  • the optical signal calculation unit 30 obtains, for example, the time difference ⁇ t described in FIG. 10 based on the change in the intensity of the light detected using the light receiving element 28 (see FIG. 2 described later), Based on Equation 1, the above-described clearance d can be obtained.
  • the light T1 output from the light source 26 is output through the light emitting fiber 21a, but a part of the light T2 passes through the protective window 24 and is directed toward the outer peripheral surface 12a of the rotor 12. Part of the light T3 is reflected by the protective window 24 and received by the light receiving fiber 21b.
  • the first light described above is represented by light T1 to T3
  • the second light described above is represented by light M1 to M3.
  • the light emitter 13 converts the wavelength of the incident light T2 and emits light as the light M1.
  • a part of the light M2 emitted from the light emitter 13 is reflected by the protective window 24, and a part of the light M3 passes through the protective window 24 and is received by the light receiving fiber 21b.
  • the light T3 and the light M3 received by the light receiving fiber 21b are input to the filter 27, but the filter 27 transmits only the light having the wavelength of the wavelength-converted light M3, so that the light T3 is removed.
  • the light receiving element 28 receives only the light M3 and detects its intensity.
  • the change in the intensity of the light M3 detected by the light receiving element 28 has a clear waveform and an increased S / N ratio as shown in the graph of FIG. That is, even in the configuration having the protective window 24, the wavelength of the light T3 reflected from the protective window 24 and the wavelength of the light M3 from the light emitter 13 are different. Therefore, only the light M3 from the light emitter 13 is received by the light receiving element 28. As a result, the SN ratio can be prevented from being lowered and the measurement accuracy can be prevented from being lowered.
  • the light emitter 13, the light source 26, the filter 27, and the light receiving element 28 can be appropriately changed according to the wavelength of light.
  • a phosphor made of CaS: Eu (calcium sulfide: europium) is used as the material of the light emitter 13, and a material that outputs laser light having a wavelength of 460 nm (blue) is used as the light source 26.
  • the light emitter 13 converts the laser light having a wavelength of 460 nm to emit light having a wavelength of 650 nm (red).
  • a filter that transmits only light having a wavelength of 650 nm is used as the filter 27, even if light having a wavelength of 460 nm and light having a wavelength of 650 nm is received by the light receiving fiber 21 b, the light having a wavelength of 460 nm is removed by the filter 27.
  • the element 28 detects only light having a wavelength of 650 nm, that is, only the wavelength of light emitted from the light emitter 13.
  • Example 2 The optical measurement device of the present embodiment is based on the optical measurement device shown in the first embodiment. Therefore, here, the same reference numerals are given to the same components as those of the optical measurement device according to the first embodiment shown in FIG. 1, and the description of the overlapping components is omitted.
  • the optical measuring device of this embodiment further has a weather-resistant protective film 14 for protecting the light emitter 13 as shown in FIG.
  • the protective film 14 is formed of a glassy material and is provided so as to cover the surface of the light emitting body 13.
  • the protective film 14 is provided on the surface of the light-emitting body 13, it is possible to prevent the phosphor forming the light-emitting body 13 from being deteriorated by a high-temperature, high-pressure fluid (for example, vapor). Further, it is possible to prevent the light emitter 13 itself from being separated from the outer peripheral surface 12 a of the rotor 12 by the flow of high-temperature and high-pressure fluid.
  • a high-temperature, high-pressure fluid for example, vapor
  • the optical measurement device includes a light emitter 15, an optical sensor 40, an optical signal processing unit 45, and an optical signal calculation unit 50.
  • the optical sensor 40 is attached to the casing 11 and arranged so as to look at the outer peripheral surface 12a of the rotor 12.
  • the rotary machine 10 it is set as the structure equivalent to what was demonstrated in Example 1, and the overlapping description is abbreviate
  • the light emitter 15 is also a substitute for the above-described reflection target, and is disposed and fixed on the outer peripheral surface 12a of the rotor 12.
  • the light emitter 15 is made of a phosphor (or phosphorescent material) that is a light emitter that does not require a power source, and this absorbs light (first light) incident from the optical sensor 40 and modulates (wavelength conversion). It emits light (second light). If the material used for the light emitter 15 is an inorganic material, there is no problem of heat resistance.
  • the phosphor which forms the light emitter 15 absorbs the irradiated energy in the same manner as the phosphor which forms the light emitter 13 described above, so that the electrons are excited and the excited electrons return to the ground state. It is a light emitter that emits excess energy (photoluminescence).
  • the phosphor 15 is formed using a phosphor having a relatively long emission lifetime among such phosphors. That is, the phosphor 15 made of a phosphor has a phosphorescent property and has a relatively long emission time (afterglow time) after energy irradiation. The light emission time may be 30 seconds or longer in consideration of measurement from the rotational speed of the rotor 12 of 2 rpm.
  • the optical sensor 40 has a configuration shown in FIG. 4B in consideration of the luminous property of the light emitter 15. Specifically, it has a pair of optical fiber groups 41 and 42 that are inclined to form two sides of a triangle in triangulation, and each of the optical fiber groups 41 and 42 It is comprised only with the some light receiving fiber which light-receives. That is, the optical fiber groups 41 and 42 do not have a light emitting fiber.
  • a light source 48 is attached to the casing 11 independently of the optical sensor 40, and the light source 48 is arranged so as to look at the outer peripheral surface 12a of the rotor 12.
  • the light source 48 may also be a laser, for example. Further, the light source 48 is arranged at a position closer to the front side than the optical sensor 40 in the rotation direction of the rotor 12, and the distance between them is a distance at which the light from the light source 48 does not enter the optical sensor 40 due to reflection.
  • an optical fiber connected to the light source 48 is attached to the casing 11 independently of the optical sensor 40, and this optical fiber is disposed so as to look at the outer peripheral surface 12 a of the rotor 12. You may do it.
  • a protective window 44 is attached to the surface of the optical sensor 40 as a countermeasure against optical fiber degradation.
  • the protective window 44 is also formed of sapphire, quartz, diamond, or the like, for example.
  • the optical signal processing unit 45 includes light receiving elements 46 and 47.
  • the optical fiber group 41 is connected to the light receiving element 46, and the optical fiber group 42 is connected to the light receiving element 47.
  • the light receiving elements 46 and 47 have high light receiving sensitivity with respect to the wavelength of light from the light source 48.
  • the optical signal calculation unit 50 obtains, for example, the time difference ⁇ t described in FIG. 10 based on the change in the intensity of the light detected using the light receiving elements 46 and 47 (see FIG. 2 described above), and this time difference ⁇ t And the above-mentioned clearance d can be obtained based on the above-mentioned formula 1.
  • the distance d between the light emitter 15 and the optical sensor 40 is arranged close to within 2 mm, whereby the influence of attenuation of light emitted from the light emitter 15 can be suppressed.
  • the light source 48 arranged away from the light sensor 40 emits the light. It will be incident on.
  • the protection window 44 does not reflect light from the light emitting fiber.
  • the light source 48 is arranged away from the optical sensor 40, the light from the light source 48 does not enter the optical sensor 40 due to reflection.
  • the light incident from the light source 48 is absorbed by the phosphor of the light emitter 15, and then the modulated (wavelength converted) light M1 emits light for a predetermined time.
  • the light M1 emitted from the light emitter 15 is then detected by the optical sensor 40 as the rotor 12 rotates. At this time, a part of the light M1 emitted from the light emitter 15 is reflected by the protective window 44, and a part of the light M3 is transmitted through the protective window 44 and received by the optical fiber groups 41 and 42. Is done.
  • the second light described above is represented by light M1 to M3.
  • the light M3 received by the optical fiber groups 41 and 42 is received by the light receiving elements 46 and 47, and the intensity thereof is detected.
  • the change in the intensity of the light M3 detected by the light receiving elements 46 and 47 becomes clear as shown in the graph of FIG. 2, and the SN ratio increases. That is, even in the configuration having the protective window 44, the light emitting fiber is eliminated from the pair of optical fibers 41 and 42 of the optical sensor 40, so that the light from the light source 48 is received by the light receiving elements 46 and 47. Thus, only the light M3 from the light emitter 15 is received by the light receiving elements 46 and 47. In other words, the light path in the protective window 44 is only the light path from the light emitter 15, and the reflection of light inside the protective window 44 is eliminated by making the light path one-pass. As a result, the SN ratio can be prevented from being lowered and the measurement accuracy can be prevented from being lowered. Further, since the optical sensor 40 does not have a light emitting fiber, the structure becomes simple.
  • a filter is provided in front of the light receiving elements 46 and 47 as in the first embodiment, even if light from the light source 48 interferes with the light, the filter uses light having the wavelength of the wavelength-converted light M3. Therefore, the light from the light source 48 can be removed.
  • Example 4 The optical measurement device of the present embodiment is based on the optical measurement device shown in the third embodiment. Therefore, here, the same reference numerals are given to the same components as those of the optical measurement apparatus according to the third embodiment illustrated in FIG. 4, and the description of the overlapping components is omitted.
  • the optical measuring device of the present embodiment further includes a weather-resistant protective film 16 that protects the light emitter 15.
  • the protective film 16 is made of a glassy material and is provided so as to cover the surface of the light emitter 15.
  • the protective film 16 is provided on the surface of the light emitter 15, it is possible to prevent the phosphor forming the light emitter 15 from being deteriorated by a high-temperature, high-pressure fluid (for example, vapor). Further, it is possible to prevent the light emitter 15 itself from being separated from the outer peripheral surface 12a of the rotor 12 by the flow of high-temperature and high-pressure fluid.
  • a high-temperature, high-pressure fluid for example, vapor
  • Example 5 The optical measurement device of the present embodiment is based on the optical measurement device shown in the third embodiment. Therefore, here, the same reference numerals are given to the same components as those of the optical measurement apparatus according to the third embodiment illustrated in FIG. 4, and the description of the overlapping components is omitted. Note that the optical measuring device shown in the fourth embodiment shown in FIG. 5 may be assumed.
  • the optical measurement device of this example is different from the above example 3 in the configuration of the light source. Specifically, as shown in FIG. 6, a plurality of light sources 48 are continuously arranged along the rotation direction of the rotor 12 so that the irradiated light has a long band shape along the rotation direction of the rotor 12. Further, as shown in FIG. 7, a light source 49 having a long strip shape is provided along the rotation direction of the rotor 12.
  • the irradiation time of the phosphor 15 with respect to the phosphor can be increased, and the phosphor 15 The amount of light emitted from the phosphor and the time can be increased.
  • the present invention is suitable for measurement of a rotating body of a rotating machine (for example, a turbo machine such as a steam turbine, a gas turbine, or a compressor).
  • a rotating machine for example, a turbo machine such as a steam turbine, a gas turbine, or a compressor.
  • a rotating machine for example, a turbo machine such as a steam turbine, a gas turbine, or a compressor.
  • a steam turbine it can be applied to blade vibration measurement and clearance measurement for reducing internal leak and avoiding rubbing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Provided is an optical measurement device, an optical measurement method, and a rotary machine, wherein protection is provided for optical sensors and degradation of S/N ratio is prevented. Thus, this optical measurement device equipped with an optical sensor (20) having a protection window (24) is provided with: a light source (26) which outputs light (T1); a light-emitting fiber (21a) which irradiates a rotor (12) via the protection window (24) with the light (T1) outputted from the light source (26); a luminous body (13) which is disposed on the outer peripheral surface (12a) of the rotor (12), and which, when irradiated with the light (T1) outputted from the light source (26), absorbs the light (T1) and emits light (M1) having a wavelength different from that of the absorbed light (T1); a light-receiving fiber (21b) which receives, via the protection window (24), light (M3) emitted from the luminous body (13); a light-receiving element (28) which detects the intensity of the light (M3) received by the light-receiving fiber (21b); and a filter (27) which is disposed between the light-receiving fiber (21b) and the light-receiving element (28), and which transmits only the light (M3).

Description

光計測装置、光計測方法及び回転機械Optical measuring device, optical measuring method and rotating machine
 本発明は、光計測装置、光計測方法及び回転機械に関する。 The present invention relates to an optical measurement device, an optical measurement method, and a rotating machine.
 蒸気タービンなどの回転機械の性能向上のためには、回転部(例えば、ブレード)と静止部(例えば、ケーシング)との間に設けられた隙間(チップクリアランス)を小さくする必要がある。そのクリアランスを計測するための技術が検討されているが、高温高圧蒸気環境下でクリアランスを計測するには、解決すべき課題が多い。例えば、静電容量式のクリアランスセンサは、蒸気環境下では劣化による絶縁不良や誘電率変化の影響を受けるため使用できない。 In order to improve the performance of a rotating machine such as a steam turbine, it is necessary to reduce a gap (chip clearance) provided between a rotating part (for example, a blade) and a stationary part (for example, a casing). Techniques for measuring the clearance have been studied, but there are many problems to be solved in order to measure the clearance in a high-temperature and high-pressure steam environment. For example, a capacitance-type clearance sensor cannot be used in a steam environment because it is affected by insulation failure and dielectric constant change due to deterioration.
 そこで、図8(a)に示すような光ファイバ式の光センサ60が注目されている。この光センサ60は、三角測量における三角形の二辺を形成するように傾斜して配置された1対の光ファイバ群61、62を有している(後述の図9参照)。この光ファイバ群61は、図8(b)に示すように、光を照射する1つの発光ファイバ61aと、光を受光する複数の受光ファイバ61bとからなり、1つの発光ファイバ61aを中央とし、その周囲に複数の受光ファイバ61bを配置した構成としている(特許文献1)。また、光ファイバ群62も、発光ファイバ62aと受光ファイバ62bとからなり、光ファイバ群61と同等の構成である。 Therefore, an optical fiber type optical sensor 60 as shown in FIG. This optical sensor 60 has a pair of optical fiber groups 61 and 62 arranged so as to be inclined so as to form two sides of a triangle in triangulation (see FIG. 9 described later). As shown in FIG. 8B, the optical fiber group 61 includes one light-emitting fiber 61a that emits light and a plurality of light-receiving fibers 61b that receive light, with one light-emitting fiber 61a as the center. A plurality of light receiving fibers 61b are arranged around the periphery (Patent Document 1). The optical fiber group 62 also includes a light emitting fiber 62a and a light receiving fiber 62b, and has the same configuration as the optical fiber group 61.
 上記光センサ60の計測原理について、図9及び図10を参照して説明する。ここでは、反射ターゲットとなるブレード71の先端部分を計測するものとする。この計測時においては、光ファイバ群61の発光ファイバ61a及び光ファイバ群62の発光ファイバ62aから各々光を照射している。そして、回転するブレード71が位置Cを通過すると、時間t1において、光ファイバ群61の受光ファイバ61bがブレード71から反射した光を受光することになる。その後、回転するブレード71が位置Dを通過すると、時間t2において、光ファイバ群62の受光ファイバ62bがブレード71から反射した光を受光することになる。 The measurement principle of the optical sensor 60 will be described with reference to FIGS. Here, it is assumed that the tip portion of the blade 71 serving as a reflection target is measured. During this measurement, light is emitted from the light emitting fiber 61a of the optical fiber group 61 and the light emitting fiber 62a of the optical fiber group 62, respectively. When the rotating blade 71 passes the position C, the light receiving fiber 61b of the optical fiber group 61 receives the light reflected from the blade 71 at time t1. Thereafter, when the rotating blade 71 passes the position D, the light receiving fiber 62b of the optical fiber group 62 receives the light reflected from the blade 71 at time t2.
 このようにして、1対の発光ファイバ61a、62aからの2つの光の間をブレード71が通過すると、図10のグラフに示すように、時間差Δtずれた波形(反射光の強度の変化)が観測され、これにより、時間差Δtを求めることができる。 Thus, when the blade 71 passes between the two lights from the pair of light emitting fibers 61a and 62a, as shown in the graph of FIG. 10, a waveform shifted in time difference Δt (change in the intensity of the reflected light) is generated. As a result, the time difference Δt can be obtained.
 ここで、図9において、光センサ60の先端からブレード71の先端までの距離、即ち、クリアランスをdとする。また、1対の発光ファイバ61a及び62aから出た2つの光の成す角度をαとする。また、1対の発光ファイバ61a及び62a同士の先端での距離、即ち、間隔ABをLとする。そして、ブレード71の回転半径をRとし、ブレード71が1周するのにかかる時間をTとすると、間隔CDは、2×R×π×Δt/Tであり、クリアランスdは、以下の式1により求めることができる。つまり、1対の受光ファイバ61b及び62bで得られた2つの波形の時間差Δtにより、クリアランスdを計測することができる。 Here, in FIG. 9, the distance from the tip of the optical sensor 60 to the tip of the blade 71, that is, the clearance is d. In addition, an angle formed by two lights emitted from the pair of light emitting fibers 61a and 62a is α. Also, let L be the distance at the tip of the pair of light emitting fibers 61a and 62a, that is, the distance AB. Then, assuming that the radius of rotation of the blade 71 is R and the time taken for the blade 71 to make one revolution is T, the interval CD is 2 × R × π × Δt / T, and the clearance d is expressed by the following equation 1 It can ask for. That is, the clearance d can be measured by the time difference Δt between the two waveforms obtained by the pair of light receiving fibers 61b and 62b.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
特許第4429705号公報Japanese Patent No. 4429705
 上述した光センサ60を用いた計測では、クリアランスdの定性的な変化は捉えられているが、定量的な計測はできていない。その原因の1つが光ファイバの劣化である。 In the measurement using the optical sensor 60 described above, a qualitative change in the clearance d is captured, but quantitative measurement cannot be performed. One of the causes is the deterioration of the optical fiber.
 上述した光ファイバの劣化対策として、図11に示すように、光センサ60の表面に透明な保護窓64を取り付けることが考えられる。しかしながら、保護窓64を取り付けると、光源65からの光T1を発光ファイバ61aから照射したとき、その一部の光T2は保護窓64を透過して、ブレード71に照射されるが、その一部の光T3は保護窓64で反射し、受光ファイバ61bで受光されてしまう。ブレード71に照射された光は、光R1として反射され、その一部の光R2は保護窓64で反射し、その一部の光R3は保護窓64を透過して、受光ファイバ61bで受光される。 As a countermeasure against the deterioration of the optical fiber described above, it is conceivable to install a transparent protective window 64 on the surface of the optical sensor 60 as shown in FIG. However, when the protective window 64 is attached, when the light T1 from the light source 65 is irradiated from the light emitting fiber 61a, a part of the light T2 passes through the protective window 64 and is irradiated to the blade 71. The light T3 is reflected by the protective window 64 and received by the light receiving fiber 61b. The light applied to the blade 71 is reflected as light R1, a part of the light R2 is reflected by the protective window 64, and a part of the light R3 passes through the protective window 64 and is received by the light receiving fiber 61b. The
 このように、受光ファイバ61bが、ブレード71からの光R3だけではなく、保護窓64で反射した光T3も受光して、それらの光R3、T3を受光素子66が計測してしまう。そのため、図12のグラフに示すように、上述した波形が保護窓64からの反射光の強度に埋もれて、SN比(信号雑音比)が小さくなってしまい、計測精度の低下を招いてしまう。 As described above, the light receiving fiber 61b receives not only the light R3 from the blade 71 but also the light T3 reflected by the protective window 64, and the light receiving element 66 measures the light R3 and T3. Therefore, as shown in the graph of FIG. 12, the waveform described above is buried in the intensity of the reflected light from the protective window 64, the SN ratio (signal noise ratio) becomes small, and the measurement accuracy is lowered.
 発光ファイバ61aと受光ファイバ61bに別々の保護窓を取り付けることも考えられるが、これらのファイバ径は200μm程度であり、このような大きさの保護窓を複数取り付けることは作製上難しい。 Although it is conceivable to attach separate protective windows to the light emitting fiber 61a and the light receiving fiber 61b, the diameter of these fibers is about 200 μm, and it is difficult to produce a plurality of protective windows having such a size.
 本発明は上記課題に鑑みなされたもので、光センサを保護すると共にSN比の低下を防止する光計測装置、光計測方法及び回転機械を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an optical measurement device, an optical measurement method, and a rotating machine that protect an optical sensor and prevent a decrease in SN ratio.
 上記課題を解決する第1の発明に係る光計測装置は、
 保護窓を有する光センサを備えた光計測装置であって、
 第1の光を出力する光源と、
 回転体の外周面に設けられ、前記光源から出力された前記第1の光が照射されると、前記第1の光を吸収して、前記第1とは異なる波長の第2の光を発光する発光体と、
 前記光センサに設けられ、前記発光体から発光された前記第2の光を、前記保護窓を介して受光する受光ファイバと、
 前記受光ファイバで受光した前記第2の光の強度を検出する受光素子とを有する
ことを特徴とする。
An optical measurement device according to the first invention for solving the above-described problems is as follows.
An optical measuring device including an optical sensor having a protective window,
A light source that outputs first light;
Provided on the outer peripheral surface of the rotating body, when the first light output from the light source is irradiated, the first light is absorbed and second light having a wavelength different from the first light is emitted. A luminous body,
A light receiving fiber that is provided in the optical sensor and receives the second light emitted from the light emitter through the protective window;
And a light receiving element that detects the intensity of the second light received by the light receiving fiber.
 上記課題を解決する第2の発明に係る光計測装置は、
 上記第1の発明に記載の光計測装置において、
 前記光センサは、前記光源から出力された前記第1の光を、前記保護窓を介して前記回転体に照射する発光ファイバを有し、
 前記発光体は、蛍光体からなる
ことを特徴とする。
An optical measurement apparatus according to a second invention for solving the above-described problem is
In the optical measurement device according to the first invention,
The optical sensor has a light emitting fiber that irradiates the rotating body with the first light output from the light source through the protective window,
The light emitter is made of a phosphor.
 上記課題を解決する第3の発明に係る光計測装置は、
 上記第2の発明に記載の光計測装置において、
 前記受光ファイバと前記受光素子との間に設けられ、前記第2の光のみを透過するフィルタを設けた
ことを特徴とする。
An optical measurement apparatus according to a third invention for solving the above-described problem is
In the optical measurement apparatus according to the second invention,
A filter provided between the light receiving fiber and the light receiving element and transmitting only the second light is provided.
 上記課題を解決する第4の発明に係る光計測装置は、
 上記第1の発明に記載の光計測装置において、
 前記光源は、前記光センサとは独立して配置されると共に、
 前記発光体は、燐光体からなる
ことを特徴とする。
An optical measurement device according to a fourth invention for solving the above-described problem is
In the optical measurement device according to the first invention,
The light source is disposed independently of the optical sensor,
The luminous body is made of a phosphor.
 上記課題を解決する第5の発明に係る光計測装置は、
 上記第4の発明に記載の光計測装置において、
 前記光源からの前記第1の光が、前記回転体の回転方向に沿う帯状になるように、前記光源を複数配置するか、又は、前記光源を帯状の形状とした
ことを特徴とする。
An optical measurement device according to a fifth invention for solving the above-described problem is
In the optical measurement apparatus according to the fourth invention,
A plurality of the light sources are arranged such that the first light from the light source has a band shape along the rotation direction of the rotating body, or the light source has a band shape.
 上記課題を解決する第6の発明に係る光計測装置は、
 上記第1~第5のいずれか1つの発明に記載の光計測装置において、
 前記発光体の表面に保護膜を設けた
ことを特徴とする。
An optical measurement apparatus according to a sixth invention for solving the above-described problem is
In the optical measurement device according to any one of the first to fifth inventions,
A protective film is provided on the surface of the light emitter.
 上記課題を解決する第7の発明に係る回転機械は、
 上記第1~第6のいずれか1つの発明に記載の光計測装置を備えた
ことを特徴とする。
A rotating machine according to a seventh invention for solving the above-described problem is
The optical measuring device according to any one of the first to sixth inventions is provided.
 上記課題を解決する第8の発明に係る光計測方法は、
 保護窓を有する光センサを用いた光計測方法であって、
 光源から第1の光を出力し、
 前記光源から出力された前記第1の光が照射されると、回転体の外周面に設けられた発光体により、前記第1の光を吸収して、前記第1とは異なる波長の第2の光を発光し、
 前記光センサに設けられた受光ファイバにより、前記発光体から発光された前記第2の光を、前記保護窓を介して受光し、
 前記受光ファイバで受光した前記第2の光の強度を受光素子により検出する
ことを特徴とする。
An optical measurement method according to an eighth invention for solving the above-described problems is as follows.
An optical measurement method using an optical sensor having a protective window,
Outputting the first light from the light source;
When the first light output from the light source is irradiated, the first light is absorbed by a light emitter provided on the outer peripheral surface of the rotating body, and a second light having a wavelength different from the first light is absorbed. The light of
The second light emitted from the light emitter is received through the protective window by a light receiving fiber provided in the optical sensor,
The intensity of the second light received by the light receiving fiber is detected by a light receiving element.
 本発明によれば、保護窓を有する構成であっても、照射された第1の光を発光体により第2の光に変換して返すので、保護窓内部で反射する第1の光の影響を除去することができ、その結果、SN比の低下を防止して、計測精度の低下を防止することができる。 According to the present invention, even in the configuration having the protective window, the irradiated first light is converted back to the second light by the light emitter, and therefore, the influence of the first light reflected inside the protective window. As a result, it is possible to prevent the SN ratio from being lowered and the measurement accuracy from being lowered.
本発明に係る光計測装置及び回転機械の実施形態の一例(実施例1)を示す図であり、(a)は回転機械の概略図、(b)は光センサ部分の概略図である。It is a figure which shows an example (Example 1) of embodiment of the optical measuring device and rotary machine which concern on this invention, (a) is the schematic of a rotary machine, (b) is the schematic of the optical sensor part. 図1に示した光計測装置で計測した光の強度の変化を示すグラフである。It is a graph which shows the change of the intensity | strength of the light measured with the optical measuring device shown in FIG. 本発明に係る光計測装置及び回転機械の実施形態の他の一例(実施例2)を示す図であり、光センサ部分の概略図である。It is a figure which shows another example (Example 2) of embodiment of the optical measuring device and rotary machine which concern on this invention, and is the schematic of an optical sensor part. 本発明に係る光計測装置及び回転機械の実施形態の他の一例(実施例3)を示す図であり、(a)は回転機械の概略図、(b)は光センサ部分の概略図である。It is a figure which shows another example (Example 3) of embodiment of the optical measuring device and rotary machine which concern on this invention, (a) is the schematic of a rotary machine, (b) is the schematic of the optical sensor part. . 本発明に係る光計測装置及び回転機械の実施形態の他の一例(実施例4)を示す図であり、光センサ部分の概略図である。It is a figure which shows other examples (Example 4) of embodiment of the optical measuring device and rotary machine which concern on this invention, and is the schematic of an optical sensor part. 本発明に係る光計測装置及び回転機械の実施形態の他の一例(実施例5)を示す図であり、回転機械の概略図である。It is a figure which shows the other example (Example 5) of embodiment of the optical measuring device which concerns on this invention, and a rotary machine, and is the schematic of a rotary machine. 図6に示した光計測装置及び回転機械の変形例を示す図であり、回転機械の概略図である。It is a figure which shows the modification of the optical measuring device shown in FIG. 6, and a rotary machine, and is a schematic diagram of a rotary machine. 従来の光ファイバ式の光センサを示す図であり、(a)は、その先端部の斜視図、(b)は、その光ファイバ群の拡大図である。It is a figure which shows the conventional optical fiber type optical sensor, (a) is a perspective view of the front-end | tip part, (b) is an enlarged view of the optical fiber group. 図8に示した光センサの計測原理を説明する図である。It is a figure explaining the measurement principle of the optical sensor shown in FIG. 図8に示した光センサで計測した反射光の強度の変化を示すグラフである。It is a graph which shows the change of the intensity | strength of the reflected light measured with the optical sensor shown in FIG. 図8に示した光センサに保護窓を取り付けた場合の問題点を説明する図である。It is a figure explaining the problem at the time of attaching a protective window to the optical sensor shown in FIG. 図11に示した保護窓付きの光センサで計測した反射光の強度の変化を示すグラフである。It is a graph which shows the change of the intensity | strength of the reflected light measured with the optical sensor with a protective window shown in FIG.
 以下、図1~図7を参照して、本発明に係る光計測装置、光計測方法及び回転機械の実施形態を説明する。なお、ここでは、回転機械の回転体として、ロータを例示しているが、本発明は、回転体として、シャフトやタービンなども使用可能である。 Hereinafter, embodiments of an optical measurement device, an optical measurement method, and a rotating machine according to the present invention will be described with reference to FIGS. In addition, although the rotor is illustrated here as a rotary body of a rotary machine, a shaft, a turbine, etc. can be used as a rotary body in this invention.
[実施例1]
 本実施例の光計測装置は、図1(a)に示すように、発光体13、光センサ20、光信号処理部25、光信号演算部30を有している。また、回転機械10は、静止部であるケーシング11と、ケーシング11の内部に回転可能に支持された、回転部であるロータ12(回転体)とを有している。光センサ20は、ケーシング11に取り付けられ、ロータ12の外周面12aを望むように配置されている。
[Example 1]
As shown in FIG. 1A, the optical measurement device according to the present embodiment includes a light emitter 13, an optical sensor 20, an optical signal processing unit 25, and an optical signal calculation unit 30. The rotating machine 10 includes a casing 11 that is a stationary portion, and a rotor 12 (rotating body) that is a rotating portion that is rotatably supported inside the casing 11. The optical sensor 20 is attached to the casing 11 and arranged so as to look at the outer peripheral surface 12a of the rotor 12.
 発光体13は、上述した反射ターゲットの代わりになるものであり、ロータ12の外周面12a上に配置され、固定されている。この発光体13は、電源不要な発光体である蛍光体からなり、これは、光センサ20から入射された光(第1の光)を吸収し、変調(波長変換)した光(第2の光)を発光するものである。発光体13に使用する材料は、無機系のものであれば耐熱性の問題はない。 The light emitter 13 replaces the above-described reflection target, and is disposed and fixed on the outer peripheral surface 12a of the rotor 12. The light emitter 13 is made of a phosphor that is a light emitter that does not require a power source. This light absorber 13 absorbs light (first light) incident from the optical sensor 20 and modulates (wavelength-converts) light (second light). Light). If the material used for the light emitter 13 is an inorganic material, there is no problem of heat resistance.
 なお、発光体13を形成する蛍光体は、後述する発光体15形成する燐光体と同様に、照射されたエネルギを吸収することで、電子が励起され、励起された電子が基底状態に戻る際に余分なエネルギを発光(フォトルミネセンス)する発光体である。本実施例では、そのような発光体の中でも、発光寿命が比較的短い蛍光体を用いて発光体13を形成している。 In addition, the phosphor forming the light emitter 13 absorbs the irradiated energy in the same manner as the phosphor forming the light emitter 15 described later, whereby the electrons are excited and the excited electrons return to the ground state. It is a light emitter that emits excess energy (photoluminescence). In this embodiment, the light emitter 13 is formed using a phosphor having a relatively short light emission lifetime among such light emitters.
 光センサ20は、基本的には、上述した光センサ60と同等の構成を有している。具体的には、三角測量における三角形の二辺を形成するように傾斜して配置された1対の光ファイバ群を有し、各ファイバ群が光を照射する1つの発光ファイバと、光を受光する複数の受光ファイバとからなり、1つの発光ファイバを中央とし、その周囲に複数の受光ファイバを配置した構成としている。なお、図1(b)においては、1対の光ファイバ群のうちの一方の光ファイバ群21を図示すると共に、1つの発光ファイバを符号21aで示し、複数の受光ファイバを符号21bで示している。 The optical sensor 20 basically has the same configuration as the optical sensor 60 described above. Specifically, it has a pair of optical fiber groups arranged so as to be inclined so as to form two sides of a triangle in triangulation, and each of the fiber groups emits light, and receives the light. And a plurality of light receiving fibers arranged around the light emitting fiber. In FIG. 1B, one optical fiber group 21 of the pair of optical fiber groups is illustrated, one light-emitting fiber is denoted by reference numeral 21a, and a plurality of light-receiving fibers are denoted by reference numeral 21b. Yes.
 この光センサ20においても、上述した光センサ60と同様に、光ファイバの劣化対策として、光センサ20の表面に保護窓24を取り付けている。この保護窓24は、例えば、サファイア、石英、ダイヤモンドなどから形成されている。 Also in this optical sensor 20, as with the optical sensor 60 described above, a protective window 24 is attached to the surface of the optical sensor 20 as a countermeasure against optical fiber degradation. The protective window 24 is made of, for example, sapphire, quartz, diamond or the like.
 また、光信号処理部25は、光源26とフィルタ27と受光素子28を有している。光源26は、例えば、レーザなどであり、発光ファイバ21aに接続されている。また、受光ファイバ21bは、フィルタ27を介して、受光素子28に接続されている。このフィルタ27は、発光体13で波長変換された光の波長の光のみを透過するものである。また、受光素子28は、波長変換された光の波長に対して受光感度が高いものである。 The optical signal processing unit 25 includes a light source 26, a filter 27, and a light receiving element 28. The light source 26 is, for example, a laser and is connected to the light emitting fiber 21a. The light receiving fiber 21 b is connected to the light receiving element 28 via the filter 27. The filter 27 transmits only light having a wavelength converted by the light emitter 13. The light receiving element 28 has a high light receiving sensitivity with respect to the wavelength of the wavelength-converted light.
 また、光信号演算部30は、受光素子28を用いて検出した光の強度の変化(後述の図2参照)に基づいて、例えば、図10で説明した時間差Δtを求め、この時間差Δtと上記式1に基づいて、上述したクリアランスdを求めることができる。 Further, the optical signal calculation unit 30 obtains, for example, the time difference Δt described in FIG. 10 based on the change in the intensity of the light detected using the light receiving element 28 (see FIG. 2 described later), Based on Equation 1, the above-described clearance d can be obtained.
 このような構成において、光源26から出力された光T1は、発光ファイバ21aを介して出力されるが、その一部の光T2は保護窓24を透過して、ロータ12の外周面12aに向けて照射され、その一部の光T3は保護窓24で反射し、受光ファイバ21bで受光される。なお、図1(b)においては、上述した第1の光を光T1~T3で表し、上述した第2の光を光M1~M3で表している。 In such a configuration, the light T1 output from the light source 26 is output through the light emitting fiber 21a, but a part of the light T2 passes through the protective window 24 and is directed toward the outer peripheral surface 12a of the rotor 12. Part of the light T3 is reflected by the protective window 24 and received by the light receiving fiber 21b. In FIG. 1B, the first light described above is represented by light T1 to T3, and the second light described above is represented by light M1 to M3.
 そして、光T2が発光体13に入射されたとき、上述したように、発光体13は、入射された光T2の波長を変換して、光M1として発光する。発光体13から発光された光M1は、その一部の光M2は保護窓24で反射し、その一部の光M3は保護窓24を透過して、受光ファイバ21bで受光される。 Then, when the light T2 is incident on the light emitter 13, as described above, the light emitter 13 converts the wavelength of the incident light T2 and emits light as the light M1. A part of the light M2 emitted from the light emitter 13 is reflected by the protective window 24, and a part of the light M3 passes through the protective window 24 and is received by the light receiving fiber 21b.
 受光ファイバ21bで受光された光T3、光M3は、フィルタ27に入力されるが、フィルタ27は、波長変換された光M3の波長の光のみを透過するので、光T3を除去することになり、受光素子28は、光M3のみを受光して、その強度を検出することになる。 The light T3 and the light M3 received by the light receiving fiber 21b are input to the filter 27, but the filter 27 transmits only the light having the wavelength of the wavelength-converted light M3, so that the light T3 is removed. The light receiving element 28 receives only the light M3 and detects its intensity.
 上述した構成により、受光素子28で検出した光M3の強度の変化は、図2のグラフに示すように、波形が明瞭となり、SN比が大きくなる。つまり、保護窓24を有する構成であっても、保護窓24から反射された光T3と発光体13からの光M3の波長が異なるので、雑音となる保護窓24からの光T3をフィルタ27で除去することができ、発光体13からの光M3のみを受光素子28で受光することになる。この結果、SN比の低下を防止して、計測精度の低下を防止することができる。 With the configuration described above, the change in the intensity of the light M3 detected by the light receiving element 28 has a clear waveform and an increased S / N ratio as shown in the graph of FIG. That is, even in the configuration having the protective window 24, the wavelength of the light T3 reflected from the protective window 24 and the wavelength of the light M3 from the light emitter 13 are different. Therefore, only the light M3 from the light emitter 13 is received by the light receiving element 28. As a result, the SN ratio can be prevented from being lowered and the measurement accuracy can be prevented from being lowered.
 ここで、具体的な構成例を説明するが、発光体13、光源26、フィルタ27、受光素子28は、光の波長に応じて適宜に変更可能である。 Here, a specific configuration example will be described, but the light emitter 13, the light source 26, the filter 27, and the light receiving element 28 can be appropriately changed according to the wavelength of light.
 発光体13の材料として、例えば、CaS:Eu(カルシウム・スルファイド:ユロピウム)からなる蛍光体を使用し、光源26として、波長460nm(青色)のレーザ光を出力するものを用いる。そして、波長460nmのレーザ光を励起光として発光体13に入射すると、発光体13は、波長460nmのレーザ光を波長変換して、波長650nmの光(赤色)を発光する。フィルタ27として、波長650nmの光のみを透過するものを用いれば、受光ファイバ21bで波長460nmの光と波長650nmの光を受光しても、フィルタ27により、波長460nmの光を除去して、受光素子28が波長650nmの光のみ、つまり、発光体13から発光した光の波長のみを検出することになる。 For example, a phosphor made of CaS: Eu (calcium sulfide: europium) is used as the material of the light emitter 13, and a material that outputs laser light having a wavelength of 460 nm (blue) is used as the light source 26. When the laser light having a wavelength of 460 nm is incident on the light emitter 13 as excitation light, the light emitter 13 converts the laser light having a wavelength of 460 nm to emit light having a wavelength of 650 nm (red). If a filter that transmits only light having a wavelength of 650 nm is used as the filter 27, even if light having a wavelength of 460 nm and light having a wavelength of 650 nm is received by the light receiving fiber 21 b, the light having a wavelength of 460 nm is removed by the filter 27. The element 28 detects only light having a wavelength of 650 nm, that is, only the wavelength of light emitted from the light emitter 13.
[実施例2]
 本実施例の光計測装置は、上記実施例1に示した光計測装置を前提としている。そのため、ここでは、図1に示した実施例1の光計測装置と同等の構成には、同じ符号を付し、重複する構成については、その説明を省略する。
[Example 2]
The optical measurement device of the present embodiment is based on the optical measurement device shown in the first embodiment. Therefore, here, the same reference numerals are given to the same components as those of the optical measurement device according to the first embodiment shown in FIG. 1, and the description of the overlapping components is omitted.
 本実施例の光計測装置は、図3に示すように、更に、発光体13を保護する耐候性の保護膜14を有している。保護膜14は、ガラス質の材料から形成され、発光体13の表面を覆うように設けられている。 The optical measuring device of this embodiment further has a weather-resistant protective film 14 for protecting the light emitter 13 as shown in FIG. The protective film 14 is formed of a glassy material and is provided so as to cover the surface of the light emitting body 13.
 このように、発光体13の表面に保護膜14を設けたので、高温、高圧の流体(例えば、蒸気)で発光体13を形成する蛍光体が劣化することを防止することができる。また、高温、高圧の流体の流れで発光体13自体がロータ12の外周面12aから剥離することを防止することもできる。 As described above, since the protective film 14 is provided on the surface of the light-emitting body 13, it is possible to prevent the phosphor forming the light-emitting body 13 from being deteriorated by a high-temperature, high-pressure fluid (for example, vapor). Further, it is possible to prevent the light emitter 13 itself from being separated from the outer peripheral surface 12 a of the rotor 12 by the flow of high-temperature and high-pressure fluid.
[実施例3]
 本実施例の光計測装置は、図4(a)に示すように、発光体15、光センサ40、光信号処理部45、光信号演算部50を有している。そして、光センサ40は、ケーシング11に取り付けられ、ロータ12の外周面12aを望むように配置されている。なお、回転機械10については、実施例1で説明したものと同等の構成とし、ここでは、重複する説明を省略する。
[Example 3]
As shown in FIG. 4A, the optical measurement device according to this embodiment includes a light emitter 15, an optical sensor 40, an optical signal processing unit 45, and an optical signal calculation unit 50. The optical sensor 40 is attached to the casing 11 and arranged so as to look at the outer peripheral surface 12a of the rotor 12. In addition, about the rotary machine 10, it is set as the structure equivalent to what was demonstrated in Example 1, and the overlapping description is abbreviate | omitted here.
 発光体15も、上述した反射ターゲットの代わりになるものであり、ロータ12の外周面12a上に配置され、固定されている。この発光体15は、電源不要な発光体である燐光体(又は蓄光体)からなり、これは、光センサ40から入射された光(第1の光)を吸収し、変調(波長変換)した光(第2の光)を発光するものである。発光体15に使用する材料は、無機系のものであれば耐熱性の問題はない。 The light emitter 15 is also a substitute for the above-described reflection target, and is disposed and fixed on the outer peripheral surface 12a of the rotor 12. The light emitter 15 is made of a phosphor (or phosphorescent material) that is a light emitter that does not require a power source, and this absorbs light (first light) incident from the optical sensor 40 and modulates (wavelength conversion). It emits light (second light). If the material used for the light emitter 15 is an inorganic material, there is no problem of heat resistance.
 なお、発光体15形成する燐光体は、上述した発光体13を形成する蛍光体と同様に、照射されたエネルギを吸収することで、電子が励起され、励起された電子が基底状態に戻る際に余分なエネルギを発光(フォトルミネセンス)する発光体である。本実施例では、そのような発光体の中でも、発光寿命が比較的長い燐光体を用いて発光体15を形成している。つまり、燐光体からなる発光体15には蓄光性があり、エネルギの照射後、比較的長い発光時間(残光時間)がある。この発光時間としては、ロータ12の回転数2rpmから計測することを考えると、30秒以上あれば良い。 In addition, the phosphor which forms the light emitter 15 absorbs the irradiated energy in the same manner as the phosphor which forms the light emitter 13 described above, so that the electrons are excited and the excited electrons return to the ground state. It is a light emitter that emits excess energy (photoluminescence). In this embodiment, the phosphor 15 is formed using a phosphor having a relatively long emission lifetime among such phosphors. That is, the phosphor 15 made of a phosphor has a phosphorescent property and has a relatively long emission time (afterglow time) after energy irradiation. The light emission time may be 30 seconds or longer in consideration of measurement from the rotational speed of the rotor 12 of 2 rpm.
 光センサ40は、発光体15の蓄光性を考慮して、本実施例では、図4(b)に示す構成としている。具体的には、三角測量における三角形の二辺を形成するように傾斜して配置された1対の光ファイバ群41、42を有しているが、光ファイバ群41、42の各々は、光を受光する複数の受光ファイバのみで構成されている。つまり、光ファイバ群41、42は発光ファイバを有していない。 In the present embodiment, the optical sensor 40 has a configuration shown in FIG. 4B in consideration of the luminous property of the light emitter 15. Specifically, it has a pair of optical fiber groups 41 and 42 that are inclined to form two sides of a triangle in triangulation, and each of the optical fiber groups 41 and 42 It is comprised only with the some light receiving fiber which light-receives. That is, the optical fiber groups 41 and 42 do not have a light emitting fiber.
 そして、この発光ファイバの代わりに、光源48を光センサ40とは独立してケーシング11に取り付け、この光源48をロータ12の外周面12aを望むように配置している。この光源48も、例えば、レーザなどで良い。また、光源48は、ロータ12の回転方向において、光センサ40より手前側に離して配置し、それらの間の距離は、光源48からの光が反射により光センサ40に入射することがない距離とする。なお、光源48をケーシング11に直接取り付けるのではなく、光源48に接続した光ファイバを光センサ40とは独立してケーシング11に取り付け、この光ファイバをロータ12の外周面12aを望むように配置しても良い。 In place of the light emitting fiber, a light source 48 is attached to the casing 11 independently of the optical sensor 40, and the light source 48 is arranged so as to look at the outer peripheral surface 12a of the rotor 12. The light source 48 may also be a laser, for example. Further, the light source 48 is arranged at a position closer to the front side than the optical sensor 40 in the rotation direction of the rotor 12, and the distance between them is a distance at which the light from the light source 48 does not enter the optical sensor 40 due to reflection. And Instead of directly attaching the light source 48 to the casing 11, an optical fiber connected to the light source 48 is attached to the casing 11 independently of the optical sensor 40, and this optical fiber is disposed so as to look at the outer peripheral surface 12 a of the rotor 12. You may do it.
 この光センサ40においても、上述した光センサ20、60と同様に、光ファイバの劣化対策として、光センサ40の表面に保護窓44を取り付けている。この保護窓44も、例えば、サファイア、石英、ダイヤモンドなどから形成されている。 Also in this optical sensor 40, similarly to the optical sensors 20 and 60 described above, a protective window 44 is attached to the surface of the optical sensor 40 as a countermeasure against optical fiber degradation. The protective window 44 is also formed of sapphire, quartz, diamond, or the like, for example.
 また、光信号処理部45は、受光素子46、47を有している。光ファイバ群41は、受光素子46に接続され、光ファイバ群42は、受光素子47に接続されている。また、受光素子46、47は、光源48からの光の波長に対して受光感度が高いものである。 In addition, the optical signal processing unit 45 includes light receiving elements 46 and 47. The optical fiber group 41 is connected to the light receiving element 46, and the optical fiber group 42 is connected to the light receiving element 47. The light receiving elements 46 and 47 have high light receiving sensitivity with respect to the wavelength of light from the light source 48.
 また、光信号演算部50は、受光素子46、47を用いて検出した光の強度の変化(前述した図2参照)に基づいて、例えば、図10で説明した時間差Δtを求め、この時間差Δtと上記式1に基づいて、上述したクリアランスdを求めることができる。 Further, the optical signal calculation unit 50 obtains, for example, the time difference Δt described in FIG. 10 based on the change in the intensity of the light detected using the light receiving elements 46 and 47 (see FIG. 2 described above), and this time difference Δt And the above-mentioned clearance d can be obtained based on the above-mentioned formula 1.
 なお、発光体15と光センサ40との間隔dは、2mm以内に近づけて配置しており、これにより、発光体15から発光する光の減衰の影響を抑えることができる。 It should be noted that the distance d between the light emitter 15 and the optical sensor 40 is arranged close to within 2 mm, whereby the influence of attenuation of light emitted from the light emitter 15 can be suppressed.
 このような構成において、光センサ40から離れて配置された光源48は、光源48から出力された光(第1の光)の照射範囲を発光体15が通過するとき、その光が発光体15に入射されることになる。上述したように、光センサ40には発光ファイバがないので、保護窓44において、発光ファイバからの光の反射は無くなる。また、光源48が光センサ40から離れて配置されているので、光源48からの光が反射により光センサ40に入射することもない。 In such a configuration, when the light emitter 15 passes through the irradiation range of the light (first light) output from the light source 48, the light source 48 arranged away from the light sensor 40 emits the light. It will be incident on. As described above, since the optical sensor 40 does not have a light emitting fiber, the protection window 44 does not reflect light from the light emitting fiber. Further, since the light source 48 is arranged away from the optical sensor 40, the light from the light source 48 does not enter the optical sensor 40 due to reflection.
 そして、光源48から入射された光は、発光体15の燐光体に吸収され、その後、変調(波長変換)された光M1が所定時間の間発光する。発光体15から発光した光M1は、ロータ12の回転により、その後、光センサ40で検出されることになる。このとき、発光体15から発光した光M1は、その一部の光M2は保護窓44で反射し、その一部の光M3は保護窓44を透過して、光ファイバ群41、42で受光される。なお、図4(b)においては、上述した第2の光を光M1~M3で表している。 The light incident from the light source 48 is absorbed by the phosphor of the light emitter 15, and then the modulated (wavelength converted) light M1 emits light for a predetermined time. The light M1 emitted from the light emitter 15 is then detected by the optical sensor 40 as the rotor 12 rotates. At this time, a part of the light M1 emitted from the light emitter 15 is reflected by the protective window 44, and a part of the light M3 is transmitted through the protective window 44 and received by the optical fiber groups 41 and 42. Is done. In FIG. 4B, the second light described above is represented by light M1 to M3.
 光ファイバ群41、42で受光された光M3は、受光素子46、47で各々受光されて、その強度が検出されることになる。 The light M3 received by the optical fiber groups 41 and 42 is received by the light receiving elements 46 and 47, and the intensity thereof is detected.
 上述した構成により、受光素子46、47で検出した光M3の強度の変化は、前述した図2のグラフのように、波形が明瞭となり、SN比が大きくなる。つまり、保護窓44を有する構成であっても、光センサ40の1対の光ファイバ群41、42から発光ファイバをなくしているので、光源48からの光が受光素子46、47で受光されることがなくなり、発光体15からの光M3のみを受光素子46、47で受光することになる。つまり、保護窓44での光の経路は、発光体15からの光の経路のみであり、光の経路をワンパスとすることにより、保護窓44の内部での反射をなくしている。この結果、SN比の低下を防止して、計測精度の低下を防止することができる。また、光センサ40には発光ファイバがないので、その構造がシンプルになる。 With the above-described configuration, the change in the intensity of the light M3 detected by the light receiving elements 46 and 47 becomes clear as shown in the graph of FIG. 2, and the SN ratio increases. That is, even in the configuration having the protective window 44, the light emitting fiber is eliminated from the pair of optical fibers 41 and 42 of the optical sensor 40, so that the light from the light source 48 is received by the light receiving elements 46 and 47. Thus, only the light M3 from the light emitter 15 is received by the light receiving elements 46 and 47. In other words, the light path in the protective window 44 is only the light path from the light emitter 15, and the reflection of light inside the protective window 44 is eliminated by making the light path one-pass. As a result, the SN ratio can be prevented from being lowered and the measurement accuracy can be prevented from being lowered. Further, since the optical sensor 40 does not have a light emitting fiber, the structure becomes simple.
 なお、実施例1のように、受光素子46、47の手前にフィルタを設ければ、もし、光源48からの光が混信したとしても、このフィルタが、波長変換された光M3の波長の光のみを透過するので、光源48からの光を除去することができる。 If a filter is provided in front of the light receiving elements 46 and 47 as in the first embodiment, even if light from the light source 48 interferes with the light, the filter uses light having the wavelength of the wavelength-converted light M3. Therefore, the light from the light source 48 can be removed.
[実施例4]
 本実施例の光計測装置は、上記実施例3に示した光計測装置を前提としている。そのため、ここでは、図4に示した実施例3の光計測装置と同等の構成には、同じ符号を付し、重複する構成については、その説明を省略する。
[Example 4]
The optical measurement device of the present embodiment is based on the optical measurement device shown in the third embodiment. Therefore, here, the same reference numerals are given to the same components as those of the optical measurement apparatus according to the third embodiment illustrated in FIG. 4, and the description of the overlapping components is omitted.
 本実施例の光計測装置は、図5に示すように、更に、発光体15を保護する耐候性の保護膜16を有している。保護膜16は、ガラス質の材料から形成され、発光体15の表面を覆うように設けられている。 As shown in FIG. 5, the optical measuring device of the present embodiment further includes a weather-resistant protective film 16 that protects the light emitter 15. The protective film 16 is made of a glassy material and is provided so as to cover the surface of the light emitter 15.
 このように、発光体15の表面に保護膜16を設けたので、高温、高圧の流体(例えば、蒸気)で発光体15を形成する燐光体が劣化することを防止することができる。また、高温、高圧の流体の流れで発光体15自体がロータ12の外周面12aから剥離することを防止することもできる。 As described above, since the protective film 16 is provided on the surface of the light emitter 15, it is possible to prevent the phosphor forming the light emitter 15 from being deteriorated by a high-temperature, high-pressure fluid (for example, vapor). Further, it is possible to prevent the light emitter 15 itself from being separated from the outer peripheral surface 12a of the rotor 12 by the flow of high-temperature and high-pressure fluid.
[実施例5]
 本実施例の光計測装置は、上記実施例3に示した光計測装置を前提としている。そのため、ここでは、図4に示した実施例3の光計測装置と同等の構成には、同じ符号を付し、重複する構成については、その説明を省略する。なお、図5に示した上記実施例4に示した光計測装置を前提としても良い。
[Example 5]
The optical measurement device of the present embodiment is based on the optical measurement device shown in the third embodiment. Therefore, here, the same reference numerals are given to the same components as those of the optical measurement apparatus according to the third embodiment illustrated in FIG. 4, and the description of the overlapping components is omitted. Note that the optical measuring device shown in the fourth embodiment shown in FIG. 5 may be assumed.
 本実施例の光計測装置は、上記実施例3とは、光源の構成に相違がある。具体的には、照射する光がロータ12の回転方向に沿って長い帯状になるように、図6に示すように、ロータ12の回転方向に沿って、複数の光源48を連続して並べたり、また、図7に示すように、ロータ12の回転方向に沿って長い帯状の形状の光源49を設けたりしている。 The optical measurement device of this example is different from the above example 3 in the configuration of the light source. Specifically, as shown in FIG. 6, a plurality of light sources 48 are continuously arranged along the rotation direction of the rotor 12 so that the irradiated light has a long band shape along the rotation direction of the rotor 12. Further, as shown in FIG. 7, a light source 49 having a long strip shape is provided along the rotation direction of the rotor 12.
 このように、複数の光源48又は帯状の光源49からの光がロータ12の回転方向に沿って長い帯状になるので、発光体15の燐光体に対する照射時間を長くすることができ、発光体15の燐光体から発光する光の光量や時間を増やすことができる。 Thus, since the light from the plurality of light sources 48 or the strip-shaped light sources 49 becomes a long strip shape along the rotation direction of the rotor 12, the irradiation time of the phosphor 15 with respect to the phosphor can be increased, and the phosphor 15 The amount of light emitted from the phosphor and the time can be increased.
 本発明は、回転機械(例えば、蒸気タービン、ガスタービン、圧縮機などのターボ機械など)の回転体を対象とする計測に好適なものである。例えば、蒸気タービンにおいては、内部リーク低減やラビング回避のための翼振動計測やクリアランス計測などに適用可能である。 The present invention is suitable for measurement of a rotating body of a rotating machine (for example, a turbo machine such as a steam turbine, a gas turbine, or a compressor). For example, in a steam turbine, it can be applied to blade vibration measurement and clearance measurement for reducing internal leak and avoiding rubbing.
 10 回転機械
 12 ロータ
 13、15 発光体
 14、16 保護膜
 20 光センサ
 21 光ファイバ群
 21a 発光ファイバ
 21b 受光ファイバ
 24 保護窓
 25 光信号処理部
 26 光源
 27 フィルタ
 28 受光素子
 30 光信号演算部
 40 光センサ
 41、42 光ファイバ群
 44 保護窓
 45 光信号処理部
 46、47 受光素子
 48、49 光源
 50 光信号演算部
DESCRIPTION OF SYMBOLS 10 Rotating machine 12 Rotor 13, 15 Light emitter 14, 16 Protective film 20 Optical sensor 21 Optical fiber group 21a Light emitting fiber 21b Light receiving fiber 24 Protective window 25 Optical signal processing part 26 Light source 27 Filter 28 Light receiving element 30 Light signal calculating part 40 Light Sensors 41 and 42 Optical fiber group 44 Protective window 45 Optical signal processing unit 46 and 47 Light receiving element 48 and 49 Light source 50 Optical signal calculation unit

Claims (8)

  1.  保護窓を有する光センサを備えた光計測装置であって、
     第1の光を出力する光源と、
     回転体の外周面に設けられ、前記光源から出力された前記第1の光が照射されると、前記第1の光を吸収して、前記第1とは異なる波長の第2の光を発光する発光体と、
     前記光センサに設けられ、前記発光体から発光された前記第2の光を、前記保護窓を介して受光する受光ファイバと、
     前記受光ファイバで受光した前記第2の光の強度を検出する受光素子とを有する
    ことを特徴とする光計測装置。
    An optical measuring device including an optical sensor having a protective window,
    A light source that outputs first light;
    Provided on the outer peripheral surface of the rotating body, when the first light output from the light source is irradiated, the first light is absorbed and second light having a wavelength different from the first light is emitted. A luminous body,
    A light receiving fiber that is provided in the optical sensor and receives the second light emitted from the light emitter through the protective window;
    And a light receiving element that detects the intensity of the second light received by the light receiving fiber.
  2.  請求項1に記載の光計測装置において、
     前記光センサは、前記光源から出力された前記第1の光を、前記保護窓を介して前記回転体に照射する発光ファイバを有し、
     前記発光体は、蛍光体からなる
    ことを特徴とする光計測装置。
    In the optical measuring device according to claim 1,
    The optical sensor has a light emitting fiber that irradiates the rotating body with the first light output from the light source through the protective window,
    The light emitter is made of a fluorescent material.
  3.  請求項2に記載の光計測装置において、
     前記受光ファイバと前記受光素子との間に設けられ、前記第2の光のみを透過するフィルタを設けた
    ことを特徴とする光計測装置。
    In the optical measuring device according to claim 2,
    An optical measurement device comprising a filter provided between the light receiving fiber and the light receiving element and transmitting only the second light.
  4.  請求項1に記載の光計測装置において、
     前記光源は、前記光センサとは独立して配置されると共に、
     前記発光体は、燐光体からなる
    ことを特徴とする光計測装置。
    In the optical measuring device according to claim 1,
    The light source is disposed independently of the optical sensor,
    The optical measuring device is characterized in that the luminous body is made of a phosphor.
  5.  請求項4に記載の光計測装置において、
     前記光源からの前記第1の光が、前記回転体の回転方向に沿う帯状になるように、前記光源を複数配置するか、又は、前記光源を帯状の形状とした
    ことを特徴とする光計測装置。
    In the optical measuring device according to claim 4,
    A plurality of the light sources are arranged so that the first light from the light source has a belt shape along the rotation direction of the rotating body, or the light source has a belt shape. apparatus.
  6.  請求項1から請求項5のいずれか1つに記載の光計測装置において、
     前記発光体の表面に保護膜を設けた
    ことを特徴とする光計測装置。
    In the optical measuring device according to any one of claims 1 to 5,
    An optical measuring device, wherein a protective film is provided on a surface of the light emitter.
  7.  請求項1から請求項6のいずれか1つに記載の光計測装置を備えた
    ことを特徴とする回転機械。
    A rotary machine comprising the optical measuring device according to any one of claims 1 to 6.
  8.  保護窓を有する光センサを用いた光計測方法であって、
     光源から第1の光を出力し、
     前記光源から出力された前記第1の光が照射されると、回転体の外周面に設けられた発光体により、前記第1の光を吸収して、前記第1とは異なる波長の第2の光を発光し、
     前記光センサに設けられた受光ファイバにより、前記発光体から発光された前記第2の光を、前記保護窓を介して受光し、
     前記受光ファイバで受光した前記第2の光の強度を受光素子により検出する
    ことを特徴とする光計測方法。
    An optical measurement method using an optical sensor having a protective window,
    Outputting the first light from the light source;
    When the first light output from the light source is irradiated, the first light is absorbed by a light emitter provided on the outer peripheral surface of the rotating body, and a second light having a wavelength different from the first light is absorbed. The light of
    The second light emitted from the light emitter is received through the protective window by a light receiving fiber provided in the optical sensor,
    An optical measurement method, wherein the intensity of the second light received by the light receiving fiber is detected by a light receiving element.
PCT/JP2017/010572 2016-03-18 2017-03-16 Optical measurement device, optical measurement method, and rotary machine WO2017159768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016054850A JP2017167078A (en) 2016-03-18 2016-03-18 Optical measurement device, optical measuring method and rotary machine
JP2016-054850 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159768A1 true WO2017159768A1 (en) 2017-09-21

Family

ID=59851348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010572 WO2017159768A1 (en) 2016-03-18 2017-03-16 Optical measurement device, optical measurement method, and rotary machine

Country Status (2)

Country Link
JP (1) JP2017167078A (en)
WO (1) WO2017159768A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445496B2 (en) * 2020-03-31 2024-03-07 三菱重工業株式会社 Fin tip position measurement method, fin tip position measurement system, and fin tip position measurement jig

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233521A (en) * 1995-02-28 1996-09-13 Toho Technol Kk Distance measuring method, rotary-angle measuring method, moving-distance measuring device, position measuring device, size measuring device, rotary-angle measuring device and rotary-position measuring device
JP2000258138A (en) * 1999-03-11 2000-09-22 Toyo Glass Co Ltd Method for measuring shape of food container
JP2002250608A (en) * 2001-02-23 2002-09-06 Olympus Optical Co Ltd Monitoring device for optical film thickness
JP2002261059A (en) * 2001-03-01 2002-09-13 Omron Corp Grinding state detector
US20100080500A1 (en) * 2008-09-30 2010-04-01 General Electric Company Fiberoptic clearance detection system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233521A (en) * 1995-02-28 1996-09-13 Toho Technol Kk Distance measuring method, rotary-angle measuring method, moving-distance measuring device, position measuring device, size measuring device, rotary-angle measuring device and rotary-position measuring device
JP2000258138A (en) * 1999-03-11 2000-09-22 Toyo Glass Co Ltd Method for measuring shape of food container
JP2002250608A (en) * 2001-02-23 2002-09-06 Olympus Optical Co Ltd Monitoring device for optical film thickness
JP2002261059A (en) * 2001-03-01 2002-09-13 Omron Corp Grinding state detector
US20100080500A1 (en) * 2008-09-30 2010-04-01 General Electric Company Fiberoptic clearance detection system and method

Also Published As

Publication number Publication date
JP2017167078A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US9696217B2 (en) Phosphor thermometer with two waveguides
CN102165292B (en) Method and apparatus for monitoring blade vibration with an imaging fiber optic ribbon probe
US10017102B2 (en) Lighting device with primary light source and phosphor volume with an evaluation unit
JP6532061B2 (en) Optical measurement apparatus, optical measurement method and rotary machine
JP4889633B2 (en) Method for detecting gap size of radial gap in fluid machine, device used in the method, and fluid machine using the device
JP6596399B2 (en) Clearance measuring device and clearance control system
CN107345642A (en) Luminaire and the headlamp with such luminaire
US8009939B2 (en) Fiberoptic clearance detection system and method
KR970075868A (en) Oil detector
ATE390628T1 (en) GAS SENSOR
WO2017159768A1 (en) Optical measurement device, optical measurement method, and rotary machine
US20160124213A1 (en) Color wheel assembly and related light source system thereof
EP2537046A1 (en) Target detection apparatus and method
JP2016136122A (en) Device for measuring concentration of dissolved substance in liquid
CA2806175C (en) Fluid detection in turbine engine components
US11073378B2 (en) Clearance measurement device, clearance measurement sensor, and clearance measurement method
JP2636098B2 (en) Infrared detection method and infrared detector
SE1850080A1 (en) Sensor device for measuring fluid concentration and use of the sensor device
JP2017083321A (en) Gas concentration measurement device
JP2013058410A (en) Lighting device
JP2023057258A (en) Fluorescence detection device
CN115655319A (en) Transmission-type optical rotary encoder, calibration method and system
US20190310075A1 (en) Optical sensor
WO2017078083A1 (en) Stress sensor
JP2008311302A (en) Wafer direction detecting device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766764

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766764

Country of ref document: EP

Kind code of ref document: A1