JP2016136122A - Device for measuring concentration of dissolved substance in liquid - Google Patents

Device for measuring concentration of dissolved substance in liquid Download PDF

Info

Publication number
JP2016136122A
JP2016136122A JP2015011682A JP2015011682A JP2016136122A JP 2016136122 A JP2016136122 A JP 2016136122A JP 2015011682 A JP2015011682 A JP 2015011682A JP 2015011682 A JP2015011682 A JP 2015011682A JP 2016136122 A JP2016136122 A JP 2016136122A
Authority
JP
Japan
Prior art keywords
light
light source
light receiving
liquid
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015011682A
Other languages
Japanese (ja)
Other versions
JP6516484B2 (en
Inventor
南 功治
Koji Minami
功治 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015011682A priority Critical patent/JP6516484B2/en
Publication of JP2016136122A publication Critical patent/JP2016136122A/en
Application granted granted Critical
Publication of JP6516484B2 publication Critical patent/JP6516484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately measure concentration of a dissolved ultraviolet absorbing material having ultraviolet light absorption characteristics in liquid.SOLUTION: A device for measuring concentration of dissolved substance in liquid (1A) includes: a light source (2); a quartz tube (4) for allowing liquid containing a dissolved substance of a measuring object to pass through; an optical member (5) which converts ultraviolet light emitted from the light source (2) and passing through the quartz tube (4) into light having a wavelength of a visible light band or higher; and a light receiving element (3) which detects the light passing through the optical member (5).SELECTED DRAWING: Figure 1

Description

本発明は、液中溶存物濃度測定装置に関する。   The present invention relates to a dissolved substance concentration measuring apparatus in a liquid.

紫外線を吸収する液中溶存物は、工業的及び商業的な応用例が多い。このような液中溶存物の代表的な例として、オゾンが挙げられる。液中のオゾンの濃度測定方法として、深紫外線を用いた濃度検知法以外にも、隔膜ポーラログラフ法、電解電位差または酸化還元電位を測定する方法等、各種の測定方法が提案されている。市販されているオゾン水中の溶存オゾン濃度測定方法では、紫外線の吸光法が主流をなしている。   The dissolved matter in liquid that absorbs ultraviolet rays has many industrial and commercial applications. A typical example of such a dissolved substance in liquid is ozone. As a method for measuring the concentration of ozone in a liquid, various measuring methods such as a diaphragm polarographic method, a method of measuring an electrolytic potential difference or an oxidation-reduction potential have been proposed in addition to a concentration detection method using deep ultraviolet rays. In a commercially available method for measuring the dissolved ozone concentration in ozone water, an ultraviolet absorption method is mainly used.

特許文献1には、基本的なオゾン濃度検知方法が開示されている。特許文献1に記載のオゾン濃度検知方法では、オゾンが溶存していない原水が測定セルを通過する際の紫外光の受光素子への到達光量と、オゾンが溶存するオゾン水が測定セルを通過する際の紫外光の受光素子への到達光量との差を測定し、オゾン水中のオゾンによる紫外線の吸光量を算出している。そして、特許文献1に記載のオゾン濃度検知方法では、この紫外線の吸光量からオゾン濃度を換算する吸光度測定方法を採用している。   Patent Document 1 discloses a basic ozone concentration detection method. In the ozone concentration detection method described in Patent Document 1, the amount of ultraviolet light reaching the light receiving element when raw water in which ozone is not dissolved passes through the measurement cell and the ozone water in which ozone is dissolved pass through the measurement cell. The difference between the amount of ultraviolet light reaching the light receiving element during the measurement is measured, and the amount of ultraviolet light absorbed by ozone in the ozone water is calculated. And in the ozone concentration detection method of patent document 1, the light absorbency measuring method which converts ozone concentration from the light absorbency of this ultraviolet-ray is employ | adopted.

さらに、特許文献1には、上記吸光度測定方法によるオゾン濃度測定技術の改良技術が開示されている。この改良技術では、測定光学系に、光学集光フィルターを介在させ、この該光学集光フィルターを通過する光をオゾン濃度測定のための検知光として使用している。上記光学集光フィルターは、発光素子から発する連続波長の紫外光に対して、特定の単一波長の紫外光を取出す波長選択機能と、該単一波長の紫外光を集光する集光機能との両方を持つ光学部品である。   Furthermore, Patent Document 1 discloses a technique for improving the ozone concentration measurement technique based on the absorbance measurement method. In this improved technique, an optical condensing filter is interposed in the measurement optical system, and light passing through the optical condensing filter is used as detection light for ozone concentration measurement. The optical condensing filter includes a wavelength selection function for extracting a specific single wavelength ultraviolet light with respect to a continuous wavelength ultraviolet light emitted from the light emitting element, and a condensing function for condensing the single wavelength ultraviolet light. Are both optical components.

特許文献2には、測定セルを通過する際の紫外線の吸光度によりオゾンの溶存濃度を測定する理論、及びその理論に基づく技術が開示されている。   Patent Document 2 discloses a theory for measuring the dissolved concentration of ozone by the absorbance of ultraviolet rays when passing through a measurement cell, and a technique based on the theory.

特許文献2の技術では、オゾン濃度測定のための検知光を発光する光源として紫外線ランプ等を用いている。そして、検知光である紫外光が通過する測定セル内に、2つの光路が設けている。これら2つの光路は、その中を液体または気体が通過する部分の断面積が互いに異なっている。一方の光路について検知される受光量の変化分と他方の光路について検知される受光量の変化分との間の差分検出法を用いて、オゾン濃度を測定している。特許文献2記載の装置では、測定セルを通過する通過光を検出する検出部は、測定セルの外部に配置されている。紫外線ランプからの光が測定セル内の所望の場所を所定の距離通過した後、検出部にて受光されるように、アパーチャーや反射板が配置されている。このような装置構成によって、光路長の異なる2つの光路の光について、受光量の差を明確に判別することが可能になる。   In the technique of Patent Document 2, an ultraviolet lamp or the like is used as a light source that emits detection light for measuring ozone concentration. Two optical paths are provided in the measurement cell through which the ultraviolet light that is the detection light passes. These two optical paths differ from each other in the cross-sectional area of the portion through which the liquid or gas passes. The ozone concentration is measured using a difference detection method between the change in the amount of received light detected for one optical path and the change in the amount of received light detected for the other optical path. In the apparatus described in Patent Literature 2, the detection unit that detects the passing light passing through the measurement cell is arranged outside the measurement cell. An aperture and a reflector are arranged so that the light from the ultraviolet lamp passes through a desired location in the measurement cell and is received by the detection unit. With such an apparatus configuration, it is possible to clearly discriminate the difference in the amount of received light with respect to light of two optical paths having different optical path lengths.

特許第5239000号明細書(2013年 7月17日発行)Patent No. 5239000 (issued July 17, 2013) 特開平6−003266号公報(1994年 1月11日公開)JP-A-6-003266 (published on January 11, 1994)

特許文献1に開示されている技術では、従来からある受光素子が使用されている。すなわち、特許文献1に開示されている装置では、光源の出射光に対する受光感度を有する受光素子が一様に配置されている。しかし、光源の出射光の波長が深紫外光域になる場合、最も一般的に入手可能な、Si系、GaP系、またはGaAs系の受光素子では、受光する光の波長が短波長側になるほど、受光感度が極端に低くなる。このため、オゾン溶存濃度が低い状態の溶液について、オゾン溶存濃度の測定を行う場合等には、検知光の減光が少ない状態となり、検知誤差がより大きくなる。この結果、特許文献1に開示されている装置をオゾン水生成器に組み込んで使用した場合、オゾン溶存濃度の管理を、濃度検知誤差が大きい状態で行うという問題がある。   In the technique disclosed in Patent Document 1, a conventional light receiving element is used. That is, in the apparatus disclosed in Patent Document 1, the light receiving elements having light receiving sensitivity with respect to the emitted light of the light source are uniformly arranged. However, when the wavelength of the light emitted from the light source is in the deep ultraviolet region, in the most commonly available Si-based, GaP-based, or GaAs-based light receiving element, the wavelength of the received light becomes shorter. The light receiving sensitivity will be extremely low. For this reason, when the ozone dissolved concentration is measured for a solution in a state where the ozone dissolved concentration is low, the detection light becomes less dimmed and the detection error becomes larger. As a result, when the apparatus disclosed in Patent Document 1 is incorporated in an ozone water generator and used, there is a problem that the ozone dissolved concentration is managed with a large concentration detection error.

特許文献2に開示されている技術では、光源の指向性に無関係に光源を選択して使用している。このため、減光量を測定するための2光路を設定するに際し、アパーチャーを用いて光源の出射光範囲を制限している。しかし、光源の出射光の波長が深紫外光域になる場合、前述したように、一般的な受光素子は受光感度が低くなるので、特許文献2に開示されている技術は、このような受光感度が低い受光素子に対し、光源の出射光量(使用光量)を損失させる構造を敢えて採用していることになる。それゆえ、検知精度に見合う受光量を確保するために、不必要にエネルギーが大きい光源を採用する必要がある。   In the technique disclosed in Patent Document 2, a light source is selected and used regardless of the directivity of the light source. For this reason, when setting two optical paths for measuring the amount of light reduction, the range of light emitted from the light source is limited using an aperture. However, when the wavelength of the light emitted from the light source is in the deep ultraviolet region, as described above, the light receiving sensitivity of a general light receiving element is low. For the light receiving element having low sensitivity, a structure for losing the emitted light amount (used light amount) of the light source is intentionally adopted. Therefore, it is necessary to employ a light source having an unnecessarily large energy in order to secure a received light amount that matches the detection accuracy.

また、アパーチャーによる光源の出射光範囲の制限について、特許文献2に開示されている技術では、光源の性質上、異なる放射方向に開口制限する構成になる。このため、光源自体の部分劣化が始まった際に照射強度のばらつきが生じたとき、照射強度のばらつきによる影響を受光素子側で受けやすくなる。その結果、検知誤差が大きくなる。   In addition, regarding the restriction of the emission light range of the light source by the aperture, the technique disclosed in Patent Document 2 is configured to restrict the opening in different radiation directions due to the nature of the light source. For this reason, when a variation in irradiation intensity occurs when the partial deterioration of the light source itself begins, it becomes easier for the light receiving element to be affected by the variation in irradiation intensity. As a result, the detection error increases.

そこで、溶存物濃度が低い溶液に対しても、濃度測定が可能な液中溶存物濃度測定装置が必要となる。   Therefore, a solution concentration measuring apparatus in liquid that can measure the concentration of a solution having a low concentration of dissolved substances is required.

本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、紫外線の吸光特性を有する紫外吸光材料の液中溶存濃度を精度良く測定できる液中溶存物濃度測定装置を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide an apparatus for measuring the concentration of dissolved matter in liquid that can accurately measure the dissolved concentration in liquid of an ultraviolet light-absorbing material having ultraviolet light absorption characteristics. There is to do.

上記の課題を解決するために、本発明の一態様に係る液中溶存物濃度測定装置は、紫外光を出射する光源と、紫外光吸収特性を有する、測定対象の溶存物を含む液体を通過させるための導管部と、上記光源から出射し、上記導管部を通過する紫外光を可視光帯以上の波長の光に変換する光学部材と、上記光学部材を通過した光を検知する受光素子と、を備えたことを特徴としている。   In order to solve the above-described problem, an apparatus for measuring a concentration of dissolved matter in liquid according to one embodiment of the present invention passes through a liquid including a light source that emits ultraviolet light and a dissolved object to be measured having ultraviolet light absorption characteristics. An optical member that converts the ultraviolet light that is emitted from the light source and passes through the conduit portion into light having a wavelength equal to or greater than the visible light band, and a light receiving element that detects the light that has passed through the optical member. It is characterized by having.

本発明の一態様によれば、紫外線の吸光特性を有する紫外吸光材料の液中溶存濃度を精度良く測定できるという効果を奏する。   According to one aspect of the present invention, there is an effect that the dissolved concentration in a liquid of an ultraviolet light absorbing material having ultraviolet light absorption characteristics can be accurately measured.

(a)及び(b)は、本発明の実施形態1に係る液中溶存物濃度測定装置の概略構成を示す断面図である。(A) And (b) is sectional drawing which shows schematic structure of the submerged dissolved substance concentration measuring apparatus which concerns on Embodiment 1 of this invention. 図1の(a)及び(b)に示す装置構成によって、既知のオゾン濃度のオゾン水に対する深紫外光の減光率を測定した結果を示すグラフである。It is a graph which shows the result of having measured the attenuation | decrease rate of the deep ultraviolet light with respect to the ozone water of a known ozone concentration with the apparatus structure shown to (a) and (b) of FIG. 石英管の断面形状が円環状である場合に光源から受光素子まで到達する光を模式的に示した断面図である。It is sectional drawing which showed typically the light which reaches | attains from a light source to a light receiving element, when the cross-sectional shape of a quartz tube is circular. (a)及び(b)は、本発明の実施形態2に係る液中溶存物濃度測定装置の概略構成を示す断面図であり、(c)は、本発明の実施形態2に係る液中溶存物濃度測定装置に搭載される信号回路の一例を示す図である。(A) And (b) is sectional drawing which shows schematic structure of the dissolved substance density | concentration measuring apparatus in liquid which concerns on Embodiment 2 of this invention, (c) is dissolved in liquid which concerns on Embodiment 2 of this invention. It is a figure which shows an example of the signal circuit mounted in a physical concentration measuring apparatus. (a)及び(b)は、本発明の実施形態3に係る液中溶存物濃度測定装置の概略構成を示す断面図である。(A) And (b) is sectional drawing which shows schematic structure of the submerged dissolved substance concentration measuring apparatus which concerns on Embodiment 3 of this invention. (a)及び(b)は、本発明の実施形態4に係る液中溶存物濃度測定装置の概略構成を示す断面図である。(A) And (b) is sectional drawing which shows schematic structure of the submerged dissolved substance concentration measuring apparatus which concerns on Embodiment 4 of this invention.

〔実施形態1〕
以下、本発明の実施の一形態について、詳細に説明する。図1の(a)及び(b)は、本実施形態に係る液中溶存物濃度測定装置1Aの概略構成を示す断面図である。
Embodiment 1
Hereinafter, an embodiment of the present invention will be described in detail. FIGS. 1A and 1B are cross-sectional views showing a schematic configuration of the in-liquid dissolved matter concentration measuring apparatus 1A according to the present embodiment.

図1の(a)及び(b)に示されるように、本実施形態に係る液中溶存物濃度測定装置1Aは、紫外光を発する光源2と、受光素子3と、石英管4と、光学部材5と、受光素子6と、反射素子7と、Oリング8a及び8bと、遮光部材9と、筐体10と、を備えている。   As shown in FIGS. 1A and 1B, a dissolved substance concentration measuring apparatus 1A in the liquid according to the present embodiment includes a light source 2 that emits ultraviolet light, a light receiving element 3, a quartz tube 4, and an optical device. A member 5, a light receiving element 6, a reflecting element 7, O-rings 8 a and 8 b, a light shielding member 9, and a housing 10 are provided.

ここで、光源2の中心と受光素子3の中心を通る仮想軸をy軸とし、石英管4の中心軸をx軸とし、x軸及びy軸の両方に垂直な軸をz軸とする。図1の(a)は、光源2及び受光素子3を通過するxy平面における液中溶存物濃度測定装置1Aの断面を示し、図1の(b)は、光源2、受光素子6及び反射素子7を通過するyz平面における液中溶存物濃度測定装置1Aの断面を示す。   Here, an imaginary axis passing through the center of the light source 2 and the center of the light receiving element 3 is defined as the y axis, the central axis of the quartz tube 4 is defined as the x axis, and an axis perpendicular to both the x axis and the y axis is defined as the z axis. 1A shows a cross section of the dissolved substance concentration measuring apparatus 1A in the xy plane passing through the light source 2 and the light receiving element 3, and FIG. 1B shows the light source 2, the light receiving element 6 and the reflecting element. 7 shows a cross-section of the dissolved substance concentration measuring apparatus 1A in the liquid on the yz plane passing through 7;

光源2及び受光素子3は、石英管4を挟んで、互いに対向するように配置されている。光学部材5は、石英管4と受光素子3との間に配置されている。光源2の出射光は、石英管4、及び光学部材5を通過して受光素子3に到達する(図1の(a)に示された光路A)。光学部材5は、石英管4を通過した光源2の出射光(紫外光)を入射し、可視光帯以上の波長の光に変換して受光素子3へ出射する波長変換部材である。受光素子3は、光学部材5によって波長変換された光を検知する。石英管4は、濃度測定対象物が溶存している液体Sを通過させる経路を兼ねた管である。   The light source 2 and the light receiving element 3 are arranged so as to face each other with the quartz tube 4 interposed therebetween. The optical member 5 is disposed between the quartz tube 4 and the light receiving element 3. The light emitted from the light source 2 passes through the quartz tube 4 and the optical member 5 and reaches the light receiving element 3 (optical path A shown in FIG. 1A). The optical member 5 is a wavelength conversion member that receives the emitted light (ultraviolet light) of the light source 2 that has passed through the quartz tube 4, converts the light into light having a wavelength longer than the visible light band, and emits the light to the light receiving element 3. The light receiving element 3 detects the light whose wavelength has been converted by the optical member 5. The quartz tube 4 is a tube that also serves as a path through which the liquid S in which the concentration measurement object is dissolved passes.

液中溶存物濃度測定装置1Aでは、光源2に対し出射光の出射範囲が開口制限されておらず、受光素子3が、光源2が有する出射光の放射特性に合うように配置されている。具体的には、光源2の放射パターンの強度ピーク近傍の光が受光素子3に到達するような配置となっている。さらに、濃度測定対象物が溶存している液体Sを通過させる経路を兼ねた管として石英管4を採用している理由は、石英管4が紫外光の吸収がなく、溶存濃度測定精度に対する影響がほとんどないからである。   In the dissolved substance concentration measurement apparatus 1A in the liquid, the emission range of the emitted light is not limited with respect to the light source 2, and the light receiving element 3 is arranged so as to match the emission characteristics of the emitted light that the light source 2 has. Specifically, the arrangement is such that light in the vicinity of the intensity peak of the radiation pattern of the light source 2 reaches the light receiving element 3. Furthermore, the reason why the quartz tube 4 is used as a tube that also serves as a path for passing the liquid S in which the concentration measurement object is dissolved is that the quartz tube 4 does not absorb ultraviolet light and has an influence on the dissolved concentration measurement accuracy. Because there is almost no.

また、液中溶存物濃度測定装置1Aでは、図1の(b)に示されるように、石英管4における光源2側に、受光素子6及び反射素子7が配置されている。この受光素子6は、光源2近傍に配置されており、光源2の発光時点の光量をモニタリングするために設けられている。反射素子7は、光源2の出射光を受光素子6へ導くために設けられている。反射素子7は、光源2の出射光(紫外光)を、可視光帯以上の波長の光に変換して受光素子6へ反射する波長変換機能を有している。液中溶存物濃度測定装置1Aでは、図1の(b)に示されるような位置に受光素子6を設定しておき、反射素子7を配置する。光源2から出射される紫外光の一部は、まず反射素子7に入射する。そして、反射素子7にて可視光帯以上の光に変換した後、反射素子7における光源2と反対側の面で反射して、受光素子6にて受光される。このように、光源2から出射される紫外光の一部を可視光帯以上の光に変換し受光素子6にて受光することによって、光源2の発光時点の光量をモニタリングすることができる。そして、光源2の発光時点の光量をモニタリングすることによって、測定時における光源2の出射光量低下の影響を防ぐことができる。なお、図1の(b)に示された構成では、石英管4の断面形状が円環状になっている。しかし、石英管4の断面形状は、円環状に限定されず、四角環状であってもよい。   In the dissolved substance concentration measuring apparatus 1A in the liquid, as shown in FIG. 1B, the light receiving element 6 and the reflecting element 7 are arranged on the light source 2 side in the quartz tube 4. The light receiving element 6 is disposed in the vicinity of the light source 2 and is provided for monitoring the light amount when the light source 2 emits light. The reflection element 7 is provided to guide the light emitted from the light source 2 to the light receiving element 6. The reflection element 7 has a wavelength conversion function of converting the emitted light (ultraviolet light) of the light source 2 into light having a wavelength longer than the visible light band and reflecting the light to the light receiving element 6. In the dissolved substance concentration measuring apparatus 1A in the liquid, the light receiving element 6 is set at a position as shown in FIG. 1B, and the reflecting element 7 is arranged. Part of the ultraviolet light emitted from the light source 2 first enters the reflective element 7. Then, the light is converted into light having a visible light band or higher by the reflection element 7, then reflected by the surface of the reflection element 7 opposite to the light source 2 and received by the light receiving element 6. In this way, by converting a part of the ultraviolet light emitted from the light source 2 into light of the visible light band or higher and receiving the light by the light receiving element 6, the light quantity at the time of light emission of the light source 2 can be monitored. And by monitoring the light quantity at the time of the light emission of the light source 2, the influence of the fall of the emitted light quantity of the light source 2 at the time of a measurement can be prevented. In the configuration shown in FIG. 1B, the cross-sectional shape of the quartz tube 4 is annular. However, the cross-sectional shape of the quartz tube 4 is not limited to an annular shape, and may be a rectangular shape.

筐体10は、光源2、受光素子3、及び光学部材5を保持するためのものであり、開口部11a及び11bを有している。開口部11a及び11b内に光源2、受光素子3、及び光学部材5が配置されている。そして、これによって、光源2と光学部材5とは、石英管4を挟んで対向配置される構成となる。さらに、溶存物を含む液体Sが石英管4の内部を流れることによって、石英管4と液体Sとの間の屈折率差が小さくなる。このため、光源2から光学部材5までの光量損失は、石英管4の表面での反射がほぼ支配的な原因となる。   The housing 10 is for holding the light source 2, the light receiving element 3, and the optical member 5, and has openings 11a and 11b. The light source 2, the light receiving element 3, and the optical member 5 are disposed in the openings 11a and 11b. As a result, the light source 2 and the optical member 5 are arranged to face each other with the quartz tube 4 interposed therebetween. Further, the liquid S containing the dissolved matter flows through the quartz tube 4, so that the refractive index difference between the quartz tube 4 and the liquid S becomes small. For this reason, the light loss from the light source 2 to the optical member 5 is caused mainly by the reflection on the surface of the quartz tube 4.

また、液中溶存物濃度測定装置1Aでは、受光素子3へ不要光が到達することを防止することが、溶存濃度の検知精度を向上させる上で有効である。このような不要光が受光素子3へ到達するのを防止するために、図1の(a)及び(b)に示されるように、遮光部材9が設けられている。遮光部材9は、筐体10と独立して設けられても、筐体10と一体化されていてもよい。また、遮光部材9は、光源2の出射光を開口制限するためのものではない。   Further, in the dissolved substance concentration measuring apparatus 1A in the liquid, preventing unnecessary light from reaching the light receiving element 3 is effective in improving the detection accuracy of the dissolved concentration. In order to prevent such unnecessary light from reaching the light receiving element 3, as shown in FIGS. 1A and 1B, a light shielding member 9 is provided. The light shielding member 9 may be provided independently of the housing 10 or may be integrated with the housing 10. Further, the light shielding member 9 is not for limiting the opening of the light emitted from the light source 2.

光源2の波長は、測定対象となる溶存物の吸収波長に応じて適宜変更可能である。オゾン水の溶存オゾン濃度を測定する場合、溶存オゾンの吸収ピークが波長260nm〜270nmの範囲にあるとされるので、光源2として波長270nmの深紫外LED光源が採用される。   The wavelength of the light source 2 can be appropriately changed according to the absorption wavelength of the dissolved substance to be measured. When measuring the dissolved ozone concentration of ozone water, since the absorption peak of dissolved ozone is in the range of wavelength 260 nm to 270 nm, a deep ultraviolet LED light source having a wavelength of 270 nm is adopted as the light source 2.

また、受光素子3としては、例えばSiフォトダイオードが挙げられる。Siフォトダイオードは、その感度ピークが最も一般的な感度ピーク波長域であり、700nm〜1000nmの範囲にある。また、受光素子3として、フォトICダイオードを用いることができる。フォトICダイオードは、受光感度ピークが視感度帯に合わせて540nm付近になるように光学フィルターなどによって調整されている。また、フォトICダイオードは、内部に増幅回路を有しており、光学フィルターなどによる感度調整分の光量低下を補っているものが一般的である。   Further, as the light receiving element 3, for example, a Si photodiode can be cited. The sensitivity peak of the Si photodiode is the most general sensitivity peak wavelength region, and is in the range of 700 nm to 1000 nm. Further, a photo IC diode can be used as the light receiving element 3. The photo IC diode is adjusted by an optical filter or the like so that the light receiving sensitivity peak is around 540 nm in accordance with the visibility band. In general, the photo IC diode has an amplifier circuit in the inside thereof, and compensates for a decrease in the amount of light for sensitivity adjustment by an optical filter or the like.

上述したフォトダイオードは、紫外線波長域(波長400nm以下)では受光感度が低下している。また、深紫外LED光源の出射光の波長270nmに対して受光感度帯があるSiフォトダイオードであっても、受光感度は、そのピーク値0.36A/Wの3分の1以下の0.1A/W程度にまで低下する。   The photodiode described above has low light receiving sensitivity in the ultraviolet wavelength region (wavelength of 400 nm or less). Even in the case of a Si photodiode having a light receiving sensitivity band with respect to the wavelength 270 nm of the emitted light of the deep ultraviolet LED light source, the light receiving sensitivity is 0.1 A which is not more than one third of the peak value 0.36 A / W. Reduced to about / W.

液中溶存物濃度測定装置1Aでは、光学部材5は、深紫外光の波長域(波長200nm〜400nm)に励起波長域を有し、その励起によって波長540nm近傍の光を発光する。   In the dissolved substance concentration measuring apparatus 1A in the liquid, the optical member 5 has an excitation wavelength region in the wavelength region of deep ultraviolet light (wavelength 200 nm to 400 nm), and emits light in the vicinity of a wavelength of 540 nm by the excitation.

このような光学部材5を用いることによって、受光素子3としてのフォトダイオードの受光感度は、0.3A/Wまで改善し、波長270nmに対して受光感度帯があるSiフォトダイオードと比較して3倍程度になる。受光素子3について、光源2の光量を上げたときと同等の受光感度を実現することができ、不必要にエネルギーが大きい光源を採用する必要がない。したがって、オゾン溶存濃度が低い溶液についてオゾン溶存濃度の測定を行う場合であっても、濃度測定に必要な受光素子3の受光量を確保することが容易になる。   By using such an optical member 5, the light receiving sensitivity of the photodiode as the light receiving element 3 is improved to 0.3 A / W, which is 3 as compared with a Si photodiode having a light receiving sensitivity band with respect to a wavelength of 270 nm. Doubled. With respect to the light receiving element 3, it is possible to realize light receiving sensitivity equivalent to that when the light amount of the light source 2 is increased, and it is not necessary to employ a light source with unnecessarily large energy. Therefore, even when the ozone dissolved concentration is measured for a solution having a low ozone dissolved concentration, it is easy to secure the amount of light received by the light receiving element 3 necessary for the concentration measurement.

上述した、深紫外光を入射させ波長変換する光学部材5としては、次の2つのタイプのガラス部材を用いることができる。なお、液中溶存物濃度測定装置1Aでは、光学部材5として、深紫外光の入射面のサイズが5mm角の平板状ガラス部材を用いている。   The following two types of glass members can be used as the optical member 5 that converts the wavelength by making the deep ultraviolet light incident as described above. In the in-liquid dissolved matter concentration measuring apparatus 1A, a flat glass member with a 5 mm square incident surface size for deep ultraviolet light is used as the optical member 5.

(i) 深紫外の波長域に励起波長があり、可視光の波長域に発光波長がある発光体等を含有する平板状のガラス部材。  (i) A plate-like glass member containing a light emitter having an excitation wavelength in the deep ultraviolet wavelength region and an emission wavelength in the visible light wavelength region.

(ii) 深紫外の波長域に励起波長があり、可視光の波長域に発光波長があるリン光体を表面に塗布、固着させた平板状のガラス部材。ただし、リン光体を塗布する面は光源2から出射された深紫外光の入射面側に設定する。  (ii) A flat glass member in which a phosphor having an excitation wavelength in the deep ultraviolet wavelength region and an emission wavelength in the visible light wavelength region is coated and fixed on the surface. However, the surface on which the phosphor is applied is set on the incident surface side of the deep ultraviolet light emitted from the light source 2.

また、光学部材5の材質がガラスであることのメリットは、ガラスが、深紫外光が励起される可視光の波長域に透過波長帯を有し、かつ深紫外光によって劣化しない点にある。さらに、光学部材5として上記 (ii) のタイプのガラス部材を用いる場合、ガラス部材に対するリン光体の固着剤として、SOG(Spin on Glass)、または低融点ガラスを用いることができる。このような固着剤を用いることによって、リン光体の固着方法として高温加熱(200℃以上)による焼成等といった方法を採用することができ、リン光体固着後の光学部材5の性能安定性を増すことができる。すなわち、溶存物濃度の測定精度を、長期間、安定化させることができる。   The merit that the material of the optical member 5 is glass is that the glass has a transmission wavelength band in the wavelength range of visible light where the deep ultraviolet light is excited, and is not deteriorated by the deep ultraviolet light. Further, when the glass member of the above type (ii) is used as the optical member 5, SOG (Spin on Glass) or low-melting glass can be used as a phosphor fixing agent to the glass member. By using such a fixing agent, a method such as firing by high-temperature heating (200 ° C. or higher) can be adopted as a method for fixing the phosphor, and the stability of the performance of the optical member 5 after fixing the phosphor can be improved. Can be increased. That is, the measurement accuracy of the dissolved substance concentration can be stabilized for a long time.

また、上述した反射素子7には、Alで構成された反射膜面が形成された透光性基板を使用することができる。この場合、透光性基板における反射膜面と反対側の面に、深紫外の波長域に励起波長があり、可視光の波長域に発光波長があるリン光体を塗布することによって、光源2から出射される紫外光の一部を可視光帯以上の光に変換して反射することができる。なお、透光性基板の材料としては、例えば石英材が挙げられる。また、上記リン光体としては、例えば、SiAlON(サイアロン)系材の蛍光体が挙げられる。   Moreover, the translucent board | substrate with which the reflective film surface comprised with Al was formed can be used for the reflective element 7 mentioned above. In this case, the light source 2 is applied to the surface of the translucent substrate opposite to the reflective film surface by applying a phosphor having an excitation wavelength in the deep ultraviolet wavelength region and an emission wavelength in the visible light wavelength region. A part of the ultraviolet light emitted from the light can be converted into light in the visible light band and reflected. In addition, as a material of a translucent substrate, quartz material is mentioned, for example. Examples of the phosphor include SiAlON-based phosphors.

また、液中溶存物濃度測定装置1Aの測定用光学系は、測定対象の溶存物(オゾンなど)を含む液体Sについて、流れがある場合及び流れがない場合の双方に対応することが可能である。液体Sに流れがない場合、石英管4の2つの開口のうち一方の開口を閉塞する構造にして、そこに液体Sを入れることによって、溶存物濃度を測定することができる。   In addition, the measurement optical system of the in-liquid dissolved matter concentration measuring apparatus 1A can cope with both the case where there is a flow and the case where there is no flow with respect to the liquid S containing the dissolved matter (such as ozone) to be measured. is there. When there is no flow in the liquid S, the dissolved substance concentration can be measured by making one of the two openings of the quartz tube 4 closed and putting the liquid S therein.

液体Sに流れがある場合、液中溶存物濃度測定装置1Aが、液体Sを流すための外部配管に接続された構成となる。図1の(a)に示されるように、液中溶存物濃度測定装置1Aは、筐体10が配管接続部12aと配管接続部12bとの間に連結されることによって、外部配管に接続している。筐体10が配管接続部12aと配管接続部12bとを介して外部配管と接続すると、筐体10内に保持された石英管4中に濃度測定対象の液体Sが流れ続けた状態になる。それゆえ、液体S中の溶存物の濃度を連続的に測定することができる。   When there is a flow in the liquid S, the in-liquid dissolved matter concentration measuring apparatus 1A is connected to an external pipe for flowing the liquid S. As shown in FIG. 1A, the dissolved substance concentration measuring apparatus 1A is connected to an external pipe by connecting the casing 10 between the pipe connecting part 12a and the pipe connecting part 12b. ing. When the casing 10 is connected to an external pipe via the pipe connecting portion 12a and the pipe connecting portion 12b, the concentration measurement target liquid S continues to flow into the quartz tube 4 held in the casing 10. Therefore, the concentration of dissolved matter in the liquid S can be continuously measured.

液中溶存物濃度測定装置1Aの測定対象である液体Sは、紫外光吸収材料を含有する液体であれば特に限定されず、例えば、上述したオゾン水の他に、次亜塩素酸水であってもよい。すなわち、液中溶存物濃度測定装置1Aでは、オゾンだけでなく、次亜塩素酸等の他の紫外光吸収材料について、水などの液体中の溶存濃度を精度良く測定することができる。   The liquid S that is a measurement target of the dissolved substance concentration measuring apparatus 1A in the liquid is not particularly limited as long as it is a liquid containing an ultraviolet light absorbing material. For example, in addition to the ozone water described above, the liquid S is hypochlorous acid water. May be. That is, the dissolved substance concentration measuring apparatus 1A in liquid can accurately measure the dissolved concentration in liquid such as water not only for ozone but also for other ultraviolet light absorbing materials such as hypochlorous acid.

なお、石英管4と配管接続部12a及び12bの流路13a及び13bとを連結するため、配管接続部12a及び12bと筐体10との接続部には、漏水防止用にOリング8a及び8bが設けられている。   In addition, in order to connect the quartz tube 4 and the flow paths 13a and 13b of the pipe connection portions 12a and 12b, the connection portions between the pipe connection portions 12a and 12b and the housing 10 are provided with O-rings 8a and 8b for preventing water leakage. Is provided.

最後に、図1の(a)及び(b)に示す装置構成によって、既知のオゾン濃度のオゾン水に対する深紫外光の減光率を測定した結果を図2に示す。図2は、既知のオゾン濃度と受光素子3での受光量の減衰率(減光率)との関係を示すグラフである。なお、測定時の装置構成では、光源2として波長270nmの深紫外LED光源を用い、受光素子3として波長540nm付近に感度ピークがあるフォトICダイオードを用いている。   Finally, FIG. 2 shows the result of measuring the extinction rate of deep ultraviolet light with respect to ozone water having a known ozone concentration by the apparatus configuration shown in FIGS. FIG. 2 is a graph showing the relationship between the known ozone concentration and the attenuation rate (darkening rate) of the amount of light received by the light receiving element 3. In the apparatus configuration at the time of measurement, a deep ultraviolet LED light source having a wavelength of 270 nm is used as the light source 2, and a photo IC diode having a sensitivity peak in the vicinity of a wavelength of 540 nm is used as the light receiving element 3.

図2に示されるように、石英管4に通水した既知濃度のオゾン水に対する減光率のlog値(減光率のlog10値を−1倍した値)と溶存オゾン濃度(単位mg/L)とは比例関係である。このことから、液中溶存物濃度測定装置1Aにおいて、溶存オゾンの紫外光吸収による減光現象は、光源2から出射した紫外光を、光学部材5により可視光帯以上の励起光に変換して、間接的に受光素子3にて受光量を測定しても、検出可能であることがわかる。その結果、液中溶存物濃度測定装置1Aの構成は、液中のオゾン濃度の測定用の光学系として問題ないことがわかる。すなわち、図2から、光学部材5での波長変換時の励起反応のばらつきによってオゾン濃度の測定性能が左右されず、図1の(a)及び(b)に示す装置構成によって、測定のための深紫外光の減光量を可視光帯の光の減光量として測定できることがわかる。なお、図2に示す実験結果は、濃度換算演算回路への入力値になる信号を取り出して測定している。 As shown in FIG. 2, the log value of the light extinction rate (a value obtained by multiplying the log 10 value of the light extinction rate by −1) and the dissolved ozone concentration (unit: mg / kg) with respect to ozone water having a known concentration passed through the quartz tube 4. L) is proportional. From this, in the dissolved substance concentration measuring apparatus 1A in the liquid, the attenuation phenomenon due to the absorption of ultraviolet light of dissolved ozone is caused by converting the ultraviolet light emitted from the light source 2 into excitation light above the visible light band by the optical member 5. It can be seen that even if the amount of received light is indirectly measured by the light receiving element 3, it can be detected. As a result, it can be seen that the configuration of the dissolved substance concentration measuring apparatus 1A in the liquid has no problem as an optical system for measuring the ozone concentration in the liquid. That is, from FIG. 2, the measurement performance of the ozone concentration is not affected by the variation in the excitation reaction at the time of wavelength conversion in the optical member 5, and the device configuration shown in (a) and (b) of FIG. It can be seen that the reduced amount of deep ultraviolet light can be measured as the reduced amount of light in the visible light band. Note that the experimental results shown in FIG. 2 are measured by extracting a signal that becomes an input value to the concentration conversion arithmetic circuit.

<石英管4の形状の効果>
石英管4の断面形状は、液中溶存物濃度測定装置1Aの構造的な要因によって大きな制約を受けるものではなく、円環状であっても、四角環状であってもよい。しかし、石英管4の断面形状は、円環状であることが好ましい。以下、この理由について、図3を参照して説明する。図3は、石英管4の断面形状が円環状である場合に光源2から受光素子3まで到達する光を模式的に示した断面図である。
<Effect of the shape of the quartz tube 4>
The cross-sectional shape of the quartz tube 4 is not greatly restricted by the structural factors of the dissolved substance concentration measuring apparatus 1A in the liquid, and may be an annular shape or a rectangular shape. However, the cross-sectional shape of the quartz tube 4 is preferably an annular shape. Hereinafter, this reason will be described with reference to FIG. FIG. 3 is a cross-sectional view schematically showing light reaching the light receiving element 3 from the light source 2 when the quartz tube 4 has an annular cross-sectional shape.

図3の(a)に示されるように,石英管4に液体Sが流れない場合、光源2から放射される光のうち、光源2から受光素子3の受光面までの距離と受光素子3の受光範囲とによって決定される照射範囲内にある光成分が受光素子3に到達するだけである。上記照射範囲は、例えば受光素子3の受光領域が四角形状である場合、図3の(a)中矢印を投影面とする四角錐の範囲である。つまり、上記照射範囲は、光源2の中心を頂点とし受光素子3の受光領域を底面とする錐体の範囲内である。   As shown in FIG. 3A, when the liquid S does not flow through the quartz tube 4, among the light emitted from the light source 2, the distance from the light source 2 to the light receiving surface of the light receiving element 3 and the light receiving element 3 The light component within the irradiation range determined by the light receiving range only reaches the light receiving element 3. For example, when the light receiving region of the light receiving element 3 has a quadrangular shape, the irradiation range is a range of a quadrangular pyramid with the arrow in FIG. That is, the irradiation range is within a cone range having the center of the light source 2 as the apex and the light receiving region of the light receiving element 3 as the bottom surface.

これに対して、図3の(b)に示されるように、石英管4内部に液体Sが流れ石英管4が液体Sによって満たされた場合、光源2から放射される光と石英管4及び液体Sとの屈折光効果によって、光源2から放射される光のうち、受光素子3まで到達する光成分の割合が高くなり、光源2において受光素子3まで到達する光の放射範囲が広がることになる。それゆえ、光路長の変動を小さい範囲に維持しつつ、光源2から受光素子3へ到達する光の量を増加させることができる。この結果、溶存物濃度測定において重要な溶存物の吸光による受光素子3での受光量差(減光量)を大きくして検出することができる。なお、減光量とは、測定対象の溶存物がない液体Sを通過した場合の光源2から受光素子3へ到達する光の量と、測定対象の溶存物がある液体Sを通過した場合の光源2から受光素子3へ到達する光の量との差を意味する。例えば、液体Sがオゾン水であれば、オゾンがない水を通過した場合の光源2から受光素子3へ到達する光の量と、オゾン水を通過した場合の光源2から受光素子3へ到達する光の量との差が減光量となる。   On the other hand, as shown in FIG. 3B, when the liquid S flows into the quartz tube 4 and the quartz tube 4 is filled with the liquid S, the light emitted from the light source 2 and the quartz tube 4 and Due to the refracted light effect with the liquid S, the ratio of the light component reaching the light receiving element 3 out of the light emitted from the light source 2 is increased, and the radiation range of the light reaching the light receiving element 3 in the light source 2 is widened. Become. Therefore, it is possible to increase the amount of light reaching the light receiving element 3 from the light source 2 while maintaining the fluctuation of the optical path length in a small range. As a result, it is possible to detect by increasing the difference in received light amount (reduced light amount) at the light receiving element 3 due to the absorption of the dissolved matter that is important in the dissolved matter concentration measurement. Note that the amount of light reduction refers to the amount of light reaching the light receiving element 3 from the light source 2 when passing through the liquid S having no measurement target dissolved matter, and the light source when passing through the liquid S with the measurement target dissolved matter. 2 represents the difference from the amount of light reaching the light receiving element 3 from 2. For example, if the liquid S is ozone water, the amount of light reaching the light receiving element 3 from the light source 2 when passing through water without ozone, and the light receiving element 3 reaching from the light source 2 when passing through ozone water. The difference from the amount of light is the amount of light reduction.

さらに、石英管4と液体Sとの屈折率差が0.1よりも小さい場合、液体Sと石英管4との境界部分での光の反射が大きく低減される。それゆえ、光源2から受光素子3へ到達する光の量を増加させる効果がさらに向上する。   Furthermore, when the refractive index difference between the quartz tube 4 and the liquid S is smaller than 0.1, the reflection of light at the boundary between the liquid S and the quartz tube 4 is greatly reduced. Therefore, the effect of increasing the amount of light reaching the light receiving element 3 from the light source 2 is further improved.

以上より、石英管4の断面形状が円環状であることによって、液体S中の溶存物の溶存濃度の測定精度を高めることができる。なお、図2に示す実験結果は、石英管4として断面形状が円環状のものを使用して実験した結果である。図2の実験結果からも、上述のように濃度測定に必要な受光量差の測定への影響が小さいことが証明され得る。   As described above, the measurement accuracy of the dissolved concentration of the dissolved matter in the liquid S can be improved by the cross-sectional shape of the quartz tube 4 being annular. The experimental results shown in FIG. 2 are the results of experiments using a quartz tube 4 having an annular cross-sectional shape. From the experimental results of FIG. 2, it can be proved that the influence on the measurement of the difference in the amount of received light necessary for the concentration measurement is small as described above.

〔実施形態2〕
本発明の他の実施形態について、図4に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図4は、本実施形態に係る液中溶存物濃度測定装置1Bの概略構成を示す断面図である。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted. FIG. 4 is a cross-sectional view showing a schematic configuration of the in-liquid dissolved matter concentration measuring apparatus 1B according to the present embodiment.

本実施形態に係る液中溶存物濃度測定装置1Bは、光源22が複数の発光源から構成されている点で、実施形態1と異なる。図4に示されるように、光源22は、複数の発光源22a、22b、及び22cから構成されている。発光源22a、22b、及び22cは、受光素子3側から見て、光源22の中心から所定の範囲に配置されている。光源22は、複数の発光源を有する光源として機能する。   The in-liquid dissolved matter concentration measuring apparatus 1B according to the present embodiment is different from the first embodiment in that the light source 22 includes a plurality of light emitting sources. As shown in FIG. 4, the light source 22 includes a plurality of light emitting sources 22a, 22b, and 22c. The light emitting sources 22a, 22b, and 22c are arranged in a predetermined range from the center of the light source 22 when viewed from the light receiving element 3 side. The light source 22 functions as a light source having a plurality of light emitting sources.

発光源22a、22b、及び22cは、図4に示されるように、受光素子3側から見た光源22の発光中心から半径Rの円内に配置されている。また、発光源22a、22b、及び22cは、互いの間隔が半径Rとなっている。半径Rは、光源22の発光範囲の中心と受光素子3との最短距離を距離Lとし、光源22の発光範囲の中心を通過する受光素子3の受光面の法線と、該法線と光源22の発光範囲の縁部とを結ぶ線とのなす角度をθとしたとき、下記式(1)によって示される。   As shown in FIG. 4, the light emitting sources 22a, 22b, and 22c are arranged in a circle having a radius R from the light emitting center of the light source 22 viewed from the light receiving element 3 side. The light sources 22a, 22b, and 22c have a radius R between each other. The radius R is defined as the distance L between the shortest distance between the center of the light emission range of the light source 22 and the light receiving element 3, the normal line of the light receiving surface of the light receiving element 3 passing through the center of the light emission range of the light source 22, and the normal line and the light source. When the angle formed by the line connecting the edges of the light emission range 22 is θ, it is expressed by the following formula (1).

R=Ltanθ(θ≦10°) 式1
液中溶存物濃度測定装置1Bでは、例えば、距離Lは、20mmに設定されており、半径Rは3.5mmに設定されている。
R = Ltanθ (θ ≦ 10 °) Equation 1
In the in-liquid dissolved matter concentration measuring apparatus 1B, for example, the distance L is set to 20 mm, and the radius R is set to 3.5 mm.

液中溶存物濃度測定装置1Bの構成によれば、発光源22a、22b、及び22cから受光素子3までの光路長は、互いに、約2%相違する。このような光路長の相違は、溶存物の紫外光吸収による光量変化を検知するときに影響する要素としては小さいと見做すことができる。それゆえ、発光範囲が上記式(1)によって示される半径Rの円内である光源22であれば、受光素子3での受光量の変化を濃度に換算したとき、光路長の違いに起因する誤差を低減することができる。また、発光源22a、22b、及び22cという複数の発光源も1つの光源22として機能すると見做すことができる。   According to the configuration of the in-liquid dissolved matter concentration measuring apparatus 1B, the optical path lengths from the light emitting sources 22a, 22b, and 22c to the light receiving element 3 are different from each other by about 2%. Such a difference in optical path length can be considered to be small as an influential factor when detecting a change in the amount of light due to absorption of ultraviolet light by a dissolved material. Therefore, if the light emission range is within the circle having the radius R shown by the above formula (1), the change in the amount of light received by the light receiving element 3 is converted into the density, resulting in a difference in optical path length. The error can be reduced. In addition, it can be considered that a plurality of light sources such as the light sources 22 a, 22 b, and 22 c function as one light source 22.

また、光源22は、発光範囲が半径Rの円領域全体である面光源であってもよい。また、液中溶存物濃度測定装置1Bでは、半径Rの円内に存在する発光源の数が装置の性能面での制約となることはない。   Further, the light source 22 may be a surface light source whose entire light emission range is a circular area having a radius R. Further, in the in-liquid dissolved matter concentration measuring apparatus 1B, the number of light emitting sources present in a circle having a radius R does not become a restriction on the performance of the apparatus.

〔実施形態3〕
本発明のさらに他の実施形態について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図5の(a)及び(b)は、本実施形態に係る液中溶存物濃度測定装置1Cの概略構成を示す断面図である。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted. (A) and (b) of FIG. 5 is sectional drawing which shows schematic structure of 1 C of dissolved substance concentration measuring apparatuses in liquid which concern on this embodiment.

図5の(a)及び(b)に示されるように、本実施形態に係る液中溶存物濃度測定装置1Cは、紫外光を発する光源32と、受光素子33a及び33bと、石英管34と、光学部材35a及び35bと、受光素子36と、反射素子37と、Oリング8a及び8bと、遮光部材39と、筐体40と、を備えている。なお、石英管34は、実施形態1に係る液中溶存物濃度測定装置1Aの石英管4よりも全長が長くなっている。また、光源32は、例えば、波長270nmの深紫外LED光源である。光学部材35a及び35bは、例えば、上述のリン光体が塗布されたガラス部材によって構成されている。また、受光素子33a及び33bは、例えば、上述のフォトICダイオードである。   As shown in FIGS. 5A and 5B, the dissolved matter concentration measuring apparatus 1C according to this embodiment includes a light source 32 that emits ultraviolet light, light receiving elements 33a and 33b, a quartz tube 34, and the like. , Optical members 35a and 35b, a light receiving element 36, a reflecting element 37, O-rings 8a and 8b, a light shielding member 39, and a housing 40. The quartz tube 34 is longer in length than the quartz tube 4 of the dissolved substance concentration measurement apparatus 1A according to the first embodiment. The light source 32 is, for example, a deep ultraviolet LED light source having a wavelength of 270 nm. The optical members 35a and 35b are made of, for example, a glass member coated with the above-described phosphor. The light receiving elements 33a and 33b are, for example, the above-described photo IC diodes.

ここで、図5の(a)は、光源32、受光素子33a及び33bを通過するxy平面における液中溶存物濃度測定装置1Cの断面を示し、図5の(b)は、光源32、受光素子36及び反射素子37を通過するyz平面における液中溶存物濃度測定装置1Cの断面を示す。   Here, (a) of FIG. 5 shows a cross section of the dissolved substance concentration measuring apparatus 1C in the xy plane passing through the light source 32 and the light receiving elements 33a and 33b, and (b) of FIG. The cross section of 1 C of dissolved substance concentration measuring apparatuses in the liquid in the yz plane which passes the element 36 and the reflective element 37 is shown.

図5の(a)及び(b)に示されるように、本実施形態に係る液中溶存物濃度測定装置1Cは、特に、2つの受光素子33a及び33b、並びに2つ光学部材35a及び35bを備えた点で、上記実施形態1及び2と異なる。以下、本実施形態に係る液中溶存物濃度測定装置1Cの構成について、説明する。   As shown in FIGS. 5A and 5B, the in-liquid dissolved matter concentration measuring apparatus 1C according to the present embodiment particularly includes two light receiving elements 33a and 33b and two optical members 35a and 35b. It differs from the said Embodiment 1 and 2 by the point provided. Hereinafter, the configuration of the in-liquid dissolved matter concentration measuring apparatus 1C according to the present embodiment will be described.

受光素子33a及び33bは、光源32の光の出射範囲を開口制限せず、光源32の放射特性に基づき配置されている。より具体的には、光源32の指向特性を放射パターンの片側45°程度に設定した上で、受光素子33a及び33bの双方に達する光量が最大となるように、受光素子33a及び33bが配置されている。   The light receiving elements 33 a and 33 b are arranged based on the radiation characteristics of the light source 32 without limiting the opening of the light emission range of the light source 32. More specifically, the light receiving elements 33a and 33b are arranged so that the amount of light reaching both the light receiving elements 33a and 33b is maximized after setting the directivity of the light source 32 to about 45 ° on one side of the radiation pattern. ing.

液中溶存物濃度測定装置1Cでは、光源32と受光素子33a及び33bとの間にそれぞれ、2つの光路A及びBが形成されている。つまり、受光素子33a及び33bにて検出される減光量は、光源32の出射光が、石英管34内にある液体S中の異なる2か所を通過した際に溶存物によって吸光された結果に基づくものである。それゆえ、受光素子33a及び33bにて検出される減光量は、光路A及び光路Bの光路長差によって、互いに異なる値になる。   In the in-liquid dissolved matter concentration measuring apparatus 1C, two optical paths A and B are formed between the light source 32 and the light receiving elements 33a and 33b, respectively. That is, the amount of light reduction detected by the light receiving elements 33a and 33b is a result of the light emitted from the light source 32 being absorbed by the dissolved matter when passing through two different locations in the liquid S in the quartz tube 34. Is based. Therefore, the light reduction amounts detected by the light receiving elements 33a and 33b have different values depending on the optical path length difference between the optical path A and the optical path B.

ここで、オゾン水や次亜塩素酸水といった液体Sによる吸光が発生する場合、光源32から受光素子33a及び33bまでの2つの光路A及びBの光路差によって生じる減光量の比信号から、溶存濃度の測定のための換算演算が可能であることが知られている。具体的には、受光素子33a及び33bの受光量をそれぞれ、I1、I2としたとき、測定対象の溶存物濃度Cは、下記式2
C ∝ log10(I1/I2) 式2
に基づき換算演算することができる。
Here, when light absorption by the liquid S such as ozone water or hypochlorous acid water occurs, the light is dissolved from the ratio signal of the light reduction caused by the optical path difference between the two optical paths A and B from the light source 32 to the light receiving elements 33a and 33b. It is known that a conversion operation for measuring the concentration is possible. Specifically, when the amounts of light received by the light receiving elements 33a and 33b are I1 and I2, respectively, the dissolved substance concentration C to be measured is expressed by the following formula 2.
C ∝ log 10 (I1 / I2) Equation 2
Conversion calculation can be performed based on the above.

この換算演算は、液体S中に溶存物がない状態での、光源32の出射光が受光素子33a及び33bへ到達する光量(実施形態1に係る液中溶存物濃度測定装置1Aにおける基準となる光量に相当)が変動しても、溶存物による吸光量の比(光路A及びBの光路差によって生じる比)は変化しないことを意味している。それゆえ、溶存濃度の測定のための換算演算が安定して行えることになる。   This conversion calculation is the amount of light that the light emitted from the light source 32 reaches the light receiving elements 33a and 33b in a state where there is no dissolved matter in the liquid S (the reference in the liquid dissolved matter concentration measuring apparatus 1A according to the first embodiment). This means that the ratio of the amount of light absorbed by the dissolved substance (the ratio caused by the optical path difference between the optical paths A and B) does not change even if the amount of light) is changed. Therefore, the conversion calculation for measuring the dissolved concentration can be performed stably.

この結果、液中溶存物濃度測定装置1Cの構成によれば、例えば、水中に溶存するオゾンや次亜塩素酸といった溶存物の濃度測定精度が向上する。   As a result, according to the configuration of the in-liquid dissolved matter concentration measuring apparatus 1C, for example, the concentration measurement accuracy of dissolved matters such as ozone and hypochlorous acid dissolved in water is improved.

さらに、液中溶存物濃度測定装置1Cは、図4の(c)に示されるように、受光素子33a及び33bの受光量I1、I2の比を受光信号として回路処理する測定回路33cが搭載されている。測定回路33cは、例えば、I1、I2の信号を入力してlog10(I1/I2)が出力信号として得られるログアンプICである。このような測定回路33cに用いることによって、濃度測定のための回路の信号処理精度も向上する。その結果、溶存物濃度の測定値の信頼性も高まる。 Further, as shown in FIG. 4C, the solution concentration measuring apparatus 1C in the liquid is equipped with a measuring circuit 33c that performs circuit processing using the ratio of the received light amounts I1 and I2 of the light receiving elements 33a and 33b as a light reception signal. ing. The measurement circuit 33c is, for example, a log amplifier IC that receives signals I1 and I2 and obtains log 10 (I1 / I2) as an output signal. By using such a measurement circuit 33c, the signal processing accuracy of the circuit for concentration measurement is also improved. As a result, the reliability of the measured value of the dissolved substance concentration is also increased.

また、液中溶存物濃度測定装置1Cでは、図5の(a)に示されるように、石英管34における光源32側に、受光素子36及び反射素子37が配置されている。この受光素子36は、光源32近傍に配置されており、光源32の発光時点の光量をモニタリングするために設けられている。反射素子37は、光源32の出射光を受光素子36へ導くために設けられている。なお、受光素子36及び反射素子37の位置関係は、図1の(b)に示された受光素子6及び反射素子7の位置関係と異なる。反射素子37は、光源2の出射光(紫外光)を、可視光帯以上の波長の光に変換して受光素子36へ反射する波長変換機能を有している。反射素子37は、光源32の出射光を受光素子36へ導くことによって、光源32から出射される紫外光の一部は可視光帯以上の光に変換し受光素子36にて受光する。それゆえ、液中溶存物濃度測定装置1Cの構成によれば、光源32の発光時点の光量をモニタリングすることができる。   Further, in the in-liquid dissolved matter concentration measuring apparatus 1 </ b> C, as shown in FIG. 5A, the light receiving element 36 and the reflecting element 37 are arranged on the light source 32 side in the quartz tube 34. The light receiving element 36 is disposed in the vicinity of the light source 32 and is provided for monitoring the amount of light when the light source 32 emits light. The reflection element 37 is provided to guide the light emitted from the light source 32 to the light receiving element 36. The positional relationship between the light receiving element 36 and the reflecting element 37 is different from the positional relationship between the light receiving element 6 and the reflecting element 7 shown in FIG. The reflection element 37 has a wavelength conversion function of converting the light emitted from the light source 2 (ultraviolet light) into light having a wavelength longer than the visible light band and reflecting the light to the light receiving element 36. The reflection element 37 guides the light emitted from the light source 32 to the light receiving element 36, whereby a part of the ultraviolet light emitted from the light source 32 is converted into light having a visible band or higher and is received by the light receiving element 36. Therefore, according to the configuration of the dissolved substance concentration measurement apparatus 1C in the liquid, the light amount at the time of light emission of the light source 32 can be monitored.

筐体40は、光源32、受光素子33a及び33b、並びに光学部材35a及び35bを保持するためのものであり、開口部41a、41b、及び41cを有している。開口部41a、41b、及び41c内に光源32、受光素子33a及び33b、並びに光学部材35a及び35bが配置されている。そして、これによって、光源32と光学部材35a及び35bとは、石英管34を挟んで対向配置される構成となる。これにより、光源32の出射光の光量損失を低減することができる。   The housing 40 is for holding the light source 32, the light receiving elements 33a and 33b, and the optical members 35a and 35b, and has openings 41a, 41b, and 41c. The light source 32, the light receiving elements 33a and 33b, and the optical members 35a and 35b are disposed in the openings 41a, 41b, and 41c. As a result, the light source 32 and the optical members 35a and 35b are arranged to face each other with the quartz tube 34 interposed therebetween. Thereby, the light quantity loss of the emitted light of the light source 32 can be reduced.

また、液中溶存物濃度測定装置1Cでは、受光素子33a及び33bへ不要光が到達することを防止することが、溶存濃度の検知精度を向上させる上で有効である。このような不要光が受光素子33a及び33bへ到達するのを防止するために、図5の(a)及び(b)に示されるように、遮光部材39が設けられている。遮光部材39は、筐体40と独立して設けられても、筐体40と一体化されていてもよい。また、遮光部材39は、光源32の出射光を開口制限するためのものではなく、不要光を遮光するものである。遮光部材39の材料は、光学部材35a及び35bによって波長変換された可視光帯以上の光を吸収できるものであればよい。   Further, in the dissolved substance concentration measuring apparatus 1C in the liquid, it is effective to prevent the unnecessary light from reaching the light receiving elements 33a and 33b in order to improve the detection accuracy of the dissolved concentration. In order to prevent such unnecessary light from reaching the light receiving elements 33a and 33b, as shown in FIGS. 5A and 5B, a light shielding member 39 is provided. The light shielding member 39 may be provided independently of the housing 40 or may be integrated with the housing 40. The light shielding member 39 is not for limiting the opening of the light emitted from the light source 32, but for shielding unnecessary light. The material of the light blocking member 39 may be any material that can absorb light in the visible light band or higher wavelength-converted by the optical members 35a and 35b.

〔実施形態4〕
本発明のさらに他の実施形態について、図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図6の(a)及び(b)は、本実施形態に係る液中溶存物濃度測定装置1Dの概略構成を示す断面図である。
[Embodiment 4]
The following will describe still another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted. 6A and 6B are cross-sectional views showing a schematic configuration of the in-liquid dissolved matter concentration measuring apparatus 1D according to the present embodiment.

図6の(a)及び(b)に示されるように、本実施形態に係る液中溶存物濃度測定装置1Dは、紫外光を発する光源32と、受光素子33a及び33bと、石英管34と、光学膜45a及び45bと、受光素子36と、反射素子37と、Oリング8a及び8bと、遮光部材39と、筐体40と、を備えている。なお、石英管34は、実施形態1に係る液中溶存物濃度測定装置1Aの石英管4よりも全長が長くなっている。また、光源32は、例えば、波長270nmの深紫外LED光源である。また、受光素子33a及び33bは、例えば、上述のフォトICダイオードである。   As shown in FIGS. 6A and 6B, the dissolved substance concentration measuring apparatus 1D in this embodiment includes a light source 32 that emits ultraviolet light, light receiving elements 33a and 33b, a quartz tube 34, and the like. , Optical films 45a and 45b, a light receiving element 36, a reflective element 37, O-rings 8a and 8b, a light shielding member 39, and a housing 40. The quartz tube 34 is longer in length than the quartz tube 4 of the dissolved substance concentration measurement apparatus 1A according to the first embodiment. The light source 32 is, for example, a deep ultraviolet LED light source having a wavelength of 270 nm. The light receiving elements 33a and 33b are, for example, the above-described photo IC diodes.

本実施形態に係る液中溶存物濃度測定装置1Dにおいて、光学膜45a及び45bは、石英管34に塗布された塗布膜である。   In the in-liquid dissolved matter concentration measuring apparatus 1D according to the present embodiment, the optical films 45a and 45b are coating films applied to the quartz tube 34.

ここで、図6の(a)は、光源32、受光素子33a及び33bを通過するxy平面における液中溶存物濃度測定装置1Dの断面を示し、図6の(b)は、光源32、受光素子36及び反射素子37を通過するyz平面における液中溶存物濃度測定装置1Dの断面を示す。   Here, FIG. 6A shows a cross-section of the dissolved substance concentration measuring apparatus 1D in the xy plane passing through the light source 32 and the light receiving elements 33a and 33b, and FIG. 6B shows the light source 32 and the light receiving element. The cross section of the dissolved substance concentration measuring apparatus 1D in the liquid in the yz plane which passes the element 36 and the reflective element 37 is shown.

図6の(a)及び(b)に示されるように、本実施形態に係る液中溶存物濃度測定装置1Dは、特に、光源32の出射光を可視光帯以上の光に変換する光学部材が石英管34に塗布された光学膜45a及び45bである点で、上記実施形態1〜3と異なる。以下、本実施形態に係る液中溶存物濃度測定装置1Dの構成について、説明する。   As shown in FIGS. 6A and 6B, the in-liquid dissolved matter concentration measurement apparatus 1D according to the present embodiment is particularly an optical member that converts the emitted light of the light source 32 into light in the visible light band or higher. Is the optical films 45a and 45b applied to the quartz tube 34, which is different from the first to third embodiments. Hereinafter, the configuration of the in-liquid dissolved matter concentration measuring apparatus 1D according to the present embodiment will be described.

光学膜45a及び45bには、深紫外の波長域に励起波長があり、可視光の波長域に発光波長がある発光体、または深紫外の波長域に励起波長があり、可視光の波長域に発光波長があるリン光体が含まれている。   The optical films 45a and 45b have an excitation wavelength in the deep ultraviolet wavelength region and an illuminant having an emission wavelength in the visible light wavelength region, or an excitation wavelength in the deep ultraviolet wavelength region, and in the visible light wavelength region. A phosphor having an emission wavelength is included.

このように、光源32の出射光を可視光帯以上の光に変換する光学部材が石英管34に塗布された光学膜45a及び45bとして設けられているので、液中溶存物濃度測定装置1Dにおける波長変換機能は、石英管34の一部の表面が代替することになる。すなわち、光学膜45a及び45bは、石英管34の表面に沿って設けられることになる。このため、光学膜45a及び45bの入射面及び出射面にて発生する反射による光量減少を低減することができる。   As described above, since the optical members that convert the light emitted from the light source 32 into light in the visible light band or higher are provided as the optical films 45a and 45b applied to the quartz tube 34, in the in-liquid dissolved matter concentration measuring apparatus 1D. A part of the surface of the quartz tube 34 is substituted for the wavelength conversion function. That is, the optical films 45 a and 45 b are provided along the surface of the quartz tube 34. For this reason, the light quantity reduction by the reflection which generate | occur | produces in the entrance plane and exit surface of optical film 45a and 45b can be reduced.

光学膜45a及び45bは、例えば、固着剤中に上記リン光体を予め分散して石英管34の表面に塗布し、焼成などにより固着することによって形成することができる。また、石英管34における光学膜45a及び45bの形成領域は、図6の(a)及び(b)に示されるように、石英管34における受光素子33a及び33bと対向する面に設定される。   The optical films 45a and 45b can be formed, for example, by dispersing the phosphor in advance in a fixing agent, applying the phosphor on the surface of the quartz tube 34, and fixing the phosphor by baking or the like. In addition, the formation regions of the optical films 45a and 45b in the quartz tube 34 are set on the surface of the quartz tube 34 facing the light receiving elements 33a and 33b, as shown in FIGS. 6 (a) and 6 (b).

図6の(a)及び(b)に示された構成とすることによって、石英管34と光学膜45a及び45bとは、実機能上、分離することがなく一体化していることになる。   By adopting the configuration shown in FIGS. 6A and 6B, the quartz tube 34 and the optical films 45a and 45b are integrated with each other without being separated in actual function.

また、リン光体を石英管34に固着させる方法は、リン光体の固着剤として、例えば、SOG(Spin on Glass)、または低融点ガラスを用いて、高温加熱(200℃以上)による焼成する方法を採用することができる。この場合、リン光体を石英管34に固着させるための治具構造は、平面用ではなく曲面用である。   The phosphor is fixed to the quartz tube 34 by using, for example, SOG (Spin on Glass) or low-melting glass as the phosphor fixing agent, and firing by high-temperature heating (200 ° C. or higher). The method can be adopted. In this case, the jig structure for fixing the phosphor to the quartz tube 34 is not for the plane but for the curved surface.

石英管34と光学膜45a及び45bとの一体化の範疇には、上述のような、石英管34表面に光学膜45a及び45bに直接固着すること以外の一体化が含まれる。   The category of integration of the quartz tube 34 and the optical films 45a and 45b includes integration other than that directly adhering to the optical films 45a and 45b on the surface of the quartz tube 34 as described above.

例えば、光学膜45a及び45bとして上記リン光体が塗布されたリン光体塗布ガラスを使用し、石英管34とリン光体塗布ガラスとを樹脂材料によって接着する、あるいはガラス系材料によって溶着することにより、一体化することも含まれる。この場合、樹脂材料及びガラス系材料は、石英管34及びリン光体塗布ガラスそれぞれとの間の屈折率差が大きくないような材料である。このように一体化した構成であっても、リン光体塗布ガラスの入射面及び出射面にて発生する反射による光量減少を低減することができる。   For example, the phosphor-coated glass coated with the phosphor is used as the optical films 45a and 45b, and the quartz tube 34 and the phosphor-coated glass are bonded with a resin material or welded with a glass-based material. Thus, integration is also included. In this case, the resin material and the glass-based material are materials that do not have a large refractive index difference between the quartz tube 34 and the phosphor-coated glass. Even with such an integrated configuration, it is possible to reduce a light amount decrease due to reflection generated on the entrance surface and the exit surface of the phosphor-coated glass.

〔まとめ〕
本発明の態様1に係る液中溶存物濃度測定装置1Aは、紫外光を出射する光源2と、紫外光吸収特性を有する、測定対象の溶存物を含む液体Sを通過させるための導管部(石英管4)と、上記光源2から出射し、上記導管部を通過する紫外光を可視光帯以上の波長の光に変換する光学部材5と、上記光学部材5を通過した光を検知する受光素子3と、を備えたことを特徴としている。
[Summary]
1A of dissolved substance density | concentration measuring apparatuses which concern on aspect 1 of this invention are the light source 2 which radiate | emits ultraviolet light, and the conduit | pipe part for allowing the liquid S which has the ultraviolet light absorption characteristic and contains the dissolved substance of a measuring object to pass ( A quartz tube 4), an optical member 5 that emits light from the light source 2 and passes through the conduit portion, and converts the ultraviolet light into a light having a wavelength longer than or equal to the visible light band; and light reception that detects the light that has passed through the optical member 5. An element 3 is provided.

上記の構成によれば、光源2から出射された紫外光は、導管部(石英管4)内の液体S中に含まれる溶存物により一部が吸収され、光学部材5に入射し、光学部材5にて可視光帯以上の波長の光に変換されて、受光素子3にて受光する。このように、受光素子3として、受光感度が極めて高い、可視光帯以上の波長の光を受光するものを使用することができる。つまり、紫外光を出射する光源2に対して、受光感度が極めて低い紫外線波長域の受光素子を使用する必要がない。それゆえ、上記の構成によれば、光源2として、不必要にエネルギーが大きい光源を採用する必要がなく、さらに、溶存物の濃度が低い溶液に対して溶存物の濃度測定を行う場合であっても、濃度測定に必要な受光素子3の受光量を確保することが容易になる。   According to the above configuration, part of the ultraviolet light emitted from the light source 2 is absorbed by the dissolved matter contained in the liquid S in the conduit portion (quartz tube 4), enters the optical member 5, and the optical member In 5, the light is converted into light having a wavelength longer than the visible light band and received by the light receiving element 3. As described above, the light receiving element 3 can be used that receives light having a wavelength higher than the visible light band and having extremely high light receiving sensitivity. That is, it is not necessary to use a light receiving element in the ultraviolet wavelength region with extremely low light receiving sensitivity for the light source 2 that emits ultraviolet light. Therefore, according to the above configuration, it is not necessary to employ a light source having an unnecessarily large energy as the light source 2, and furthermore, when the concentration of dissolved matter is measured with respect to a solution having a low concentration of dissolved matter. However, it becomes easy to secure the amount of light received by the light receiving element 3 necessary for density measurement.

したがって、上記の構成によれば、紫外線の吸光特性を有する紫外吸光材料の液中溶存濃度を精度良く測定できる。   Therefore, according to said structure, the dissolved concentration in a liquid of the ultraviolet light absorption material which has the light absorption characteristic of an ultraviolet-ray can be measured with a sufficient precision.

本発明の態様2に係る液中溶存物濃度測定装置1Bは、上記態様1において、上記光源2の上記受光素子3側から見た発光範囲は、上記光源2の発光中心を中心とした半径Rの円領域内の範囲であり、上記半径Rは、上記光源の発光中心と上記受光素子との最短距離を距離Lとし、光源22の発光範囲の中心を通過する受光素子3の受光面の法線と、該法線と光源22の発光範囲の縁部とを結ぶ線とのなす角度をθとしたとき、下記式(1)
R=Ltanθ (θ≦10°) 式1
によって示される構成であってもよい。
The dissolved substance concentration measuring apparatus 1B according to aspect 2 of the present invention is the above-described aspect 1, wherein the light emission range viewed from the light receiving element 3 side of the light source 2 has a radius R centered on the light emission center of the light source 2. The radius R is a method of the light receiving surface of the light receiving element 3 that passes through the center of the light emitting range of the light source 22 with the shortest distance between the light emitting center of the light source and the light receiving element as the distance L. When the angle between the line and the line connecting the normal and the edge of the light emission range of the light source 22 is θ, the following formula (1)
R = Ltanθ (θ ≦ 10 °) Equation 1
The structure shown by may be sufficient.

上記の構成によれば、受光素子3での受光量の変化を濃度に換算したとき、光路長の違いに起因する誤差を低減することができる。   According to said structure, when the change of the light reception amount in the light receiving element 3 is converted into a density | concentration, the error resulting from the difference in optical path length can be reduced.

本発明の態様3に係る液中溶存物濃度測定装置1Cは、上記態様1または2において、2つの受光素子33a及び33bを備え、これら2つの受光素子33a及び33bは、上記光源32から上記受光素子33a及び33bへ到達する光路A及びBが、上記導管部(石英管34)に対して互いに異なった角度で交差するように、配置されている構成であってもよい。   The liquid dissolved matter concentration measuring apparatus 1C according to the third aspect of the present invention includes the two light receiving elements 33a and 33b in the first or second aspect, and the two light receiving elements 33a and 33b receive the light reception from the light source 32. The optical paths A and B reaching the elements 33a and 33b may be arranged so as to intersect at different angles with respect to the conduit portion (quartz tube 34).

上記の構成によれば、受光素子33a及び33bにて受光する受光量I1、I2の比に基づいて、溶存物の溶存濃度を換算演算することができる。すなわち、溶存物の溶存濃度の換算演算のために、液体S中に溶存物がない状態での、光源32の出射光が受光素子33a及び33bへ到達する光量は必要ない。それゆえ、上記の構成によれば、溶存濃度の測定のための換算演算が安定して行える。   According to the above configuration, the dissolved concentration of the dissolved substance can be converted and calculated based on the ratio of the received light amounts I1 and I2 received by the light receiving elements 33a and 33b. That is, for the conversion calculation of the dissolved concentration of the dissolved matter, there is no need for the amount of light that the light emitted from the light source 32 reaches the light receiving elements 33a and 33b when there is no dissolved matter in the liquid S. Therefore, according to the above configuration, the conversion calculation for measuring the dissolved concentration can be performed stably.

本発明の態様4に係る液中溶存物濃度測定装置1Cは、上記態様3において、上記2つの受光素子33a及び33bの受光量を信号として入力し、上記2つの受光素子33a及び33bの受光量の比の対数値を信号として出力する測定回路33cが搭載されていることが好ましい。   The liquid dissolved matter concentration measuring apparatus 1C according to the fourth aspect of the present invention receives the received light amounts of the two light receiving elements 33a and 33b as signals in the third aspect, and receives the received light amounts of the two light receiving elements 33a and 33b. It is preferable that a measurement circuit 33c that outputs a logarithmic value of the ratio as a signal is mounted.

このような測定回路33cに用いることによって、濃度測定のための回路の信号処理精度も向上する。その結果、上記の構成によれば、溶存物濃度の測定値の信頼性も高まる。   By using such a measurement circuit 33c, the signal processing accuracy of the circuit for concentration measurement is also improved. As a result, according to said structure, the reliability of the measured value of dissolved substance concentration also increases.

本発明の態様5に係る液中溶存物濃度測定装置1Aは、上記態様1〜4において、上記導管部(石英管4)は、その断面形状が円環形状であり、かつ、上記液体Sとの屈折率差が0.1未満であることが好ましい。   1A of dissolved substance density | concentration measuring apparatuses which concern on aspect 5 of this invention are the said liquid S and said liquid part in said aspect 1-4 whose cross-sectional shape is an annular | circular shape. The refractive index difference is preferably less than 0.1.

上記の構成によれば、上記導管部(石英管4)の断面形状が円環形状であるので、上記導管部内部に液体Sが流れ上記導管部が液体Sによって満たされた場合、光源2から放射される光と上記導管部及び液体Sとの屈折光効果によって、光源2から放射される光のうち、受光素子3まで到達する光成分の割合が高くなり、光源2において受光素子3まで到達する光の放射範囲が広がることになる。それゆえ、上記の構成によれば、光路長の変動を小さい範囲に維持しつつ、光源2から受光素子3へ到達する光の量を増加させることができる。この結果、溶存物濃度測定において重要な溶存物の吸光による受光素子3での受光量差を大きくして検出することができる。   According to said structure, since the cross-sectional shape of the said conduit part (quartz tube 4) is an annular shape, when the liquid S flows into the said conduit part and the said conduit part is satisfy | filled with the liquid S, from the light source 2, Due to the refracted light effect of the emitted light and the conduit section and the liquid S, the ratio of the light component reaching the light receiving element 3 out of the light emitted from the light source 2 is increased, and the light source 2 reaches the light receiving element 3. The radiation range of the light to be spread will be expanded. Therefore, according to the above configuration, it is possible to increase the amount of light reaching the light receiving element 3 from the light source 2 while maintaining the variation in the optical path length within a small range. As a result, the difference in the amount of light received by the light receiving element 3 due to the absorption of the dissolved matter, which is important in the dissolved matter concentration measurement, can be detected by increasing it.

さらに、上記の構成によれば、上記液体Sとの屈折率差が0.1未満であるので、液体Sと上記導管部との境界部分での光の反射が大きく低減される。それゆえ、光源2から受光素子3へ到達する光の量を増加させる効果がさらに向上する。   Further, according to the above configuration, since the difference in refractive index with the liquid S is less than 0.1, the reflection of light at the boundary between the liquid S and the conduit portion is greatly reduced. Therefore, the effect of increasing the amount of light reaching the light receiving element 3 from the light source 2 is further improved.

本発明の態様6に係る液中溶存物濃度測定装置1Aは、上記態様1〜5において、上記可視光帯以上の波長の光を透過する透過部材と、深紫外の波長域に励起波長があり、可視光の波長域に発光波長がある蛍光材料と、を含み、上記蛍光材料は、上記透過部材中に含まれるか、あるいは上記透過部材の表面に形成されていてもよい。   1A of dissolved substance density | concentration measuring apparatuses which concern on aspect 6 of this invention are the transmission member which permeate | transmits the light of the wavelength beyond the said visible light band in the said aspects 1-5, and an excitation wavelength in the deep ultraviolet wavelength range. A fluorescent material having an emission wavelength in the visible light wavelength range, and the fluorescent material may be included in the transmissive member or formed on the surface of the transmissive member.

これにより、溶存物濃度の測定精度を、長期間、安定化させることができる。   Thereby, the measurement precision of a dissolved substance density | concentration can be stabilized for a long period of time.

本発明の態様7に係る液中溶存物濃度測定装置1Dは、上記態様1〜6において、上記光学部材(光学膜45a及び45b)は、上記導管部(石英管34)の表面に一体化して設けられていることが好ましい。   The dissolved substance concentration measurement apparatus 1D according to Aspect 7 of the present invention is the Aspect 1-6, wherein the optical member (optical films 45a and 45b) is integrated with the surface of the conduit portion (quartz tube 34). It is preferable to be provided.

上記の構成によれば、上記光学部材の入射面及び出射面にて発生する反射による光量減少を低減することができる。   According to said structure, the light quantity reduction by the reflection which generate | occur | produces in the entrance plane and exit surface of the said optical member can be reduced.

本発明の態様8に係る液中溶存物濃度測定装置1Aは、上記態様1〜7において、上記導管部(石英管4)における上記光源2側に、上記光源2の発光時点の光量をモニタリングするための受光素子6と、光源2の出射光を受光素子6へ導く反射素子7とが配置されており、上記反射素子7は、光源2の出射光を、可視光帯以上の波長の光に変換して受光素子6へ反射する構成であってもよい。   1A of dissolved substance concentration measuring apparatuses which concern on aspect 8 of this invention monitor the light quantity at the time of the light emission of the said light source 2 in the said light source 2 side in the said conduit | pipe part (quartz tube 4) in the said aspects 1-7. And a reflection element 7 for guiding the light emitted from the light source 2 to the light reception element 6. The reflection element 7 converts the light emitted from the light source 2 into light having a wavelength longer than the visible light band. The structure which converts and reflects to the light receiving element 6 may be sufficient.

上記の構成によれば、光源2から出射される紫外光の一部は、まず反射素子7に入射する。そして、反射素子7にて可視光帯以上の光に変換した後反射して、受光素子6にて受光される。このように、光源2から出射される紫外光の一部を可視光帯以上の光に変換し受光素子6にて受光することによって、光源2の発光時点の光量をモニタリングすることができる。そして、光源2の発光時点の光量をモニタリングすることによって、測定時における光源2の出射光量低下の影響を防ぐことができる。   According to the above configuration, part of the ultraviolet light emitted from the light source 2 first enters the reflective element 7. Then, the light is converted into light having a visible band or higher by the reflecting element 7 and then reflected and received by the light receiving element 6. In this way, by converting a part of the ultraviolet light emitted from the light source 2 into light in the visible light band or more and receiving it by the light receiving element 6, the light quantity at the time of light emission of the light source 2 can be monitored. And by monitoring the light quantity at the time of the light emission of the light source 2, the influence of the fall of the emitted light quantity of the light source 2 at the time of a measurement can be prevented.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

本発明は、液中の紫外光吸収材料の溶存濃度、例えばオゾン水中のオゾン濃度を測定する測定機器に利用することができる。   The present invention can be used for a measuring instrument that measures the dissolved concentration of an ultraviolet light absorbing material in a liquid, for example, the ozone concentration in ozone water.

1A、1B、1C、1D 液中溶存物濃度測定装置
2、22、32 光源
3、33a、33b、 受光素子
4、34 石英管(導管部)
5、35a、35b 光学部材
45a、45b 光学膜
1A, 1B, 1C, 1D Dissolved substance concentration measuring device 2, 22, 32 Light source 3, 33a, 33b, Light receiving element 4, 34 Quartz tube (conduit portion)
5, 35a, 35b Optical member 45a, 45b Optical film

Claims (7)

紫外光を出射する光源と、
紫外光吸収特性を有する、測定対象の溶存物を含む液体を通過させるための導管部と、
上記光源から出射し、上記導管部を通過する紫外光を可視光帯以上の波長の光に変換する光学部材と、
上記光学部材を通過した光を検知する受光素子と、を備えたことを特徴とする液中溶存物濃度測定装置。
A light source that emits ultraviolet light;
A conduit portion for passing a liquid containing dissolved substances to be measured, having ultraviolet light absorption characteristics;
An optical member that emits from the light source and converts ultraviolet light that passes through the conduit portion into light having a wavelength longer than or equal to the visible light band;
And a light receiving element for detecting light that has passed through the optical member.
上記光源の上記受光素子側から見た発光範囲は、上記光源の発光中心を中心とした半径Rの円領域内の範囲であり、上記半径Rは、上記光源の発光中心と上記受光素子との最短距離を距離Lとし、上記光源の発光範囲の中心を通過する上記受光素子の受光面の法線と、該法線と上記光源の発光範囲の縁部とを結ぶ線とのなす角度をθとしたとき、下記式(1)
R=Ltanθ (θ≦10°) 式1
によって示されることを特徴とする請求項1に記載の液中溶存物濃度測定装置。
The light emission range viewed from the light receiving element side of the light source is a range within a circular region having a radius R centered on the light emission center of the light source, and the radius R is a distance between the light emission center of the light source and the light receiving element. An angle formed by a normal line of the light receiving surface of the light receiving element passing through the center of the light emission range of the light source and a line connecting the normal line and the edge of the light emission range of the light source is defined as θ. The following formula (1)
R = Ltanθ (θ ≦ 10 °) Equation 1
The dissolved substance concentration measuring apparatus in liquid according to claim 1, characterized by:
2つの受光素子を備え、
これら2つの受光素子は、上記光源から上記受光素子へ到達する光路が、上記導管部に対して互いに異なった角度で交差するように、配置されていることを特徴とする請求項1または2に記載の液中溶存物濃度測定装置。
With two light receiving elements,
The two light receiving elements are arranged such that optical paths reaching the light receiving element from the light source intersect at different angles with respect to the conduit portion. The dissolved substance concentration measuring apparatus of description.
上記2つの受光素子の受光量を信号として入力し、上記2つの受光素子の受光量の比の対数値を信号として出力する測定回路が搭載されていることを特徴とする請求項3に記載の液中溶存物濃度測定装置。   4. The measurement circuit according to claim 3, further comprising: a measurement circuit that inputs light reception amounts of the two light receiving elements as signals and outputs a logarithmic value of a ratio of light reception amounts of the two light receiving elements as signals. 5. Dissolved substance concentration measuring device in liquid. 上記導管部は、その断面形状が円環形状であり、かつ、上記液体との屈折率差が0.1未満であることを特徴とする請求項1〜4の何れか1項に記載の液中溶存物濃度測定装置。   The liquid according to any one of claims 1 to 4, wherein the conduit portion has an annular shape in cross section, and a difference in refractive index from the liquid is less than 0.1. Middle dissolved substance concentration measuring device. 上記光学部材は、上記可視光帯以上の波長の光を透過する透過部材と、深紫外の波長域に励起波長があり、可視光の波長域に発光波長がある蛍光材料と、を含み、
上記蛍光材料は、上記透過部材中に含まれるか、あるいは上記透過部材の表面に形成されていることを特徴とする請求項1〜5の何れか1項に記載の液中溶存物濃度測定装置。
The optical member includes a transmission member that transmits light having a wavelength longer than or equal to the visible light band, and a fluorescent material having an excitation wavelength in the deep ultraviolet wavelength region and an emission wavelength in the visible light wavelength region,
The said fluorescent material is contained in the said permeable member, or is formed in the surface of the said transmissive member, The dissolved substance concentration measuring apparatus in any one of Claims 1-5 characterized by the above-mentioned. .
上記光学部材は、上記導管部の表面に一体化して設けられていることを特徴とする請求項1〜6の何れか1項に記載の液中溶存物濃度測定装置。   The said optical member is integrally provided in the surface of the said conduit | pipe part, The dissolved substance concentration measuring apparatus in any one of Claims 1-6 characterized by the above-mentioned.
JP2015011682A 2015-01-23 2015-01-23 Dissolved matter concentration measuring device Active JP6516484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015011682A JP6516484B2 (en) 2015-01-23 2015-01-23 Dissolved matter concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015011682A JP6516484B2 (en) 2015-01-23 2015-01-23 Dissolved matter concentration measuring device

Publications (2)

Publication Number Publication Date
JP2016136122A true JP2016136122A (en) 2016-07-28
JP6516484B2 JP6516484B2 (en) 2019-05-22

Family

ID=56512974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015011682A Active JP6516484B2 (en) 2015-01-23 2015-01-23 Dissolved matter concentration measuring device

Country Status (1)

Country Link
JP (1) JP6516484B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010043A1 (en) * 2015-07-10 2017-01-19 パナソニックIpマネジメント株式会社 Functional water concentration sensor
JP2018105795A (en) * 2016-12-27 2018-07-05 パナソニックIpマネジメント株式会社 Functional water concentration sensor
JP2018109582A (en) * 2017-01-05 2018-07-12 パナソニックIpマネジメント株式会社 Functional water concentration sensor
US11199493B2 (en) 2017-08-28 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Functional water concentration sensor, and calculation method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921749U (en) * 1982-08-02 1984-02-09 富士電機株式会社 Optical UV absorbance analyzer
JPH063266A (en) * 1992-06-24 1994-01-11 Seki Electron Kk Method for measuring ozone concentration, and light absorbing type ozone concentration meter
JPH06123698A (en) * 1992-10-09 1994-05-06 Japan Energy Corp Transparent hollow tube cell for device measuring quantity of light
JPH08122253A (en) * 1994-08-31 1996-05-17 Shimadzu Corp Sample analyzer
JPH09257705A (en) * 1996-03-18 1997-10-03 Ricoh Co Ltd Fluid sample concentration measuring device
JP2001059813A (en) * 1999-08-20 2001-03-06 Mitsubishi Heavy Ind Ltd Method and apparatus for inspecting fluid
JP2006017539A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Mixing ratio detector, control method for mixing ratio detector, and fuel cell system mounted with mixing ratio detector
JP2008026046A (en) * 2006-07-19 2008-02-07 Ntn Corp Deterioration detector of lubricant and bearing with deterioration detector
JP2009281911A (en) * 2008-05-23 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Analyzing apparatus
US20100007888A1 (en) * 2006-07-07 2010-01-14 002134761 Ontario Ltd. Multiple path length transmittance measuring device
JP2010127856A (en) * 2008-11-28 2010-06-10 National Institute Of Advanced Industrial Science & Technology Method for detection and analysis using protein array
JP2012013573A (en) * 2010-07-01 2012-01-19 Ibaraki Univ Ozone concentration meter and ozone concentration monitoring kit with the ozone concentration meter
US20140264055A1 (en) * 2013-03-15 2014-09-18 Advantage Controls, Llc System and process for detecting phosphonate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921749U (en) * 1982-08-02 1984-02-09 富士電機株式会社 Optical UV absorbance analyzer
JPH063266A (en) * 1992-06-24 1994-01-11 Seki Electron Kk Method for measuring ozone concentration, and light absorbing type ozone concentration meter
JPH06123698A (en) * 1992-10-09 1994-05-06 Japan Energy Corp Transparent hollow tube cell for device measuring quantity of light
JPH08122253A (en) * 1994-08-31 1996-05-17 Shimadzu Corp Sample analyzer
JPH09257705A (en) * 1996-03-18 1997-10-03 Ricoh Co Ltd Fluid sample concentration measuring device
JP2001059813A (en) * 1999-08-20 2001-03-06 Mitsubishi Heavy Ind Ltd Method and apparatus for inspecting fluid
JP2006017539A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Mixing ratio detector, control method for mixing ratio detector, and fuel cell system mounted with mixing ratio detector
US20100007888A1 (en) * 2006-07-07 2010-01-14 002134761 Ontario Ltd. Multiple path length transmittance measuring device
JP2008026046A (en) * 2006-07-19 2008-02-07 Ntn Corp Deterioration detector of lubricant and bearing with deterioration detector
JP2009281911A (en) * 2008-05-23 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Analyzing apparatus
JP2010127856A (en) * 2008-11-28 2010-06-10 National Institute Of Advanced Industrial Science & Technology Method for detection and analysis using protein array
JP2012013573A (en) * 2010-07-01 2012-01-19 Ibaraki Univ Ozone concentration meter and ozone concentration monitoring kit with the ozone concentration meter
US20140264055A1 (en) * 2013-03-15 2014-09-18 Advantage Controls, Llc System and process for detecting phosphonate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010043A1 (en) * 2015-07-10 2017-01-19 パナソニックIpマネジメント株式会社 Functional water concentration sensor
JPWO2017010043A1 (en) * 2015-07-10 2017-12-21 パナソニックIpマネジメント株式会社 Functional water concentration sensor
US10180395B2 (en) 2015-07-10 2019-01-15 Panasonic Intellectual Property Management Co., Ltd. Functional water concentration sensor
JP2018105795A (en) * 2016-12-27 2018-07-05 パナソニックIpマネジメント株式会社 Functional water concentration sensor
JP2018109582A (en) * 2017-01-05 2018-07-12 パナソニックIpマネジメント株式会社 Functional water concentration sensor
US11199493B2 (en) 2017-08-28 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Functional water concentration sensor, and calculation method

Also Published As

Publication number Publication date
JP6516484B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
US9625372B2 (en) Ultraviolet-based ozone sensor
KR101088360B1 (en) Optical wave guide having multiple independent optical path and ndir gas sensor using that
JP2016136122A (en) Device for measuring concentration of dissolved substance in liquid
CA2964020C (en) Optical gas sensor comprising an led emitter for the emission of light of a narrow bandwidth
KR102644216B1 (en) Apparatus for sensing particle
JP2017138223A (en) Minute object detector
US10180395B2 (en) Functional water concentration sensor
US10215684B2 (en) Fine particle detection device
JP2016121926A (en) Optical analyzer
US9791366B2 (en) Gas detector, gas detection method and optical component
US20170160194A1 (en) Sensor arrangement for determining turbidity
KR100781968B1 (en) Variable light-path gas density sensor
WO2011136158A1 (en) Automatic analyzer
CN109001168A (en) A kind of light-conducting capillaries photometer
KR102223821B1 (en) Multi gas sensing apparatus
JP5805259B2 (en) Automatic analyzer
JP2019045149A (en) Functional water concentration sensor
JP2018141651A (en) Functional water concentration sensor
CN211122535U (en) Fluorescence detector
CN219142649U (en) Gas detection device capable of increasing optical path and inhibiting scattering interference
US11874161B2 (en) Optical concentration measurement device comprising light receiving unit with a rectangular light receiving surface
JP2018109582A (en) Functional water concentration sensor
JP2018017635A (en) Functional water concentration sensor
JP2018105795A (en) Functional water concentration sensor
JP6664771B2 (en) Optical system structure, optical measuring device and optical measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6516484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150