WO2017159694A1 - Metal-containing particle, connecting material, connected structure, and method for producing connected structure - Google Patents

Metal-containing particle, connecting material, connected structure, and method for producing connected structure Download PDF

Info

Publication number
WO2017159694A1
WO2017159694A1 PCT/JP2017/010251 JP2017010251W WO2017159694A1 WO 2017159694 A1 WO2017159694 A1 WO 2017159694A1 JP 2017010251 W JP2017010251 W JP 2017010251W WO 2017159694 A1 WO2017159694 A1 WO 2017159694A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
particles
protrusion
particle
protrusions
Prior art date
Application number
PCT/JP2017/010251
Other languages
French (fr)
Japanese (ja)
Inventor
昌男 笹平
悠人 土橋
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020187010189A priority Critical patent/KR20180120667A/en
Priority to KR1020217040390A priority patent/KR20210154865A/en
Priority to CN201780003651.8A priority patent/CN108140450B/en
Priority to JP2017516171A priority patent/JP7131908B2/en
Publication of WO2017159694A1 publication Critical patent/WO2017159694A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to a metal-containing particle comprising a base particle and a metal part disposed on the surface of the base particle, the metal part having a protrusion on the outer surface.
  • the present invention also relates to a connection material, a connection structure, and a method for manufacturing the connection structure using the metal-containing particles.
  • connection material containing metal particles may be used to form a connection part that connects two connection target members.
  • connection material for performing such connection is disclosed in, for example, Patent Document 1 below.
  • the connection material described in Patent Document 1 includes nano-sized composite silver particles, nano-sized silver particles, and a resin.
  • the composite silver particle is a particle in which an organic coating layer is formed around a silver nucleus that is an aggregate of silver atoms.
  • the organic coating layer comprises at least one alcohol molecule residue having 10 or 12 carbon atoms, an alcohol molecule derivative (wherein the alcohol molecule derivative is limited to carboxylic acid and / or aldehyde) and / or alcohol molecules. It is formed by the alcohol component.
  • Patent Document 2 discloses a connection material including nano-sized metal-containing particles and conductive particles.
  • Metal particles such as nano-sized silver particles are melt-bonded by heat treatment at the time of connection to form a bulk.
  • the melting point becomes high, so that there is a problem that the heating temperature becomes high.
  • a gap is generated between the nano-sized particles. As a result, connection reliability is lowered.
  • Patent Document 1 since the composite silver particles have an alcohol component on the surface, voids are likely to be generated in the connection portion due to the alcohol component. As a result, connection reliability is lowered.
  • the method includes a base particle and a metal part disposed on a surface of the base particle, the metal part having a plurality of protrusions on an outer surface, and the metal part
  • the tip of the protrusion is provided with metal-containing particles that can be melted at 400 ° C. or lower.
  • the metal portion has a plurality of convex portions on the outer surface, and the metal portion has the protrusions on the outer surface of the convex portion.
  • the ratio of the average height of the protrusions to the average height of the protrusions is 5 or more and 1000 or less.
  • the average diameter of the base portion of the convex portion is 3 nm or more and 5000 nm or less.
  • the surface area of the portion having the convex portion is 10% or more in the total surface area of 100% of the outer surface of the metal portion.
  • the shape of the convex portion is a needle shape or a partial shape of a sphere.
  • the average apex angle of the protrusion is 10 ° or more and 60 ° or less.
  • the average height of the protrusions is 3 nm or more and 5000 nm or less.
  • the average diameter of the base of the protrusion is 3 nm or more and 1000 nm or less.
  • the ratio of the average height of the protrusion to the average diameter of the base of the protrusion is 0.5 or more and 10 or less.
  • the shape of the protrusion is a needle shape or a partial shape of a sphere.
  • the material of the protrusion includes silver, copper, gold, palladium, tin, indium, or zinc.
  • the material of the metal part is not solder.
  • the material of the metal part is silver, copper, gold, palladium, tin, indium, zinc, nickel, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium. , Iridium, phosphorus or boron.
  • the tip of the protrusion of the metal part is preferably meltable at 350 ° C. or lower, more preferably 300 ° C. or lower, and further preferably It can be melted at 250 ° C. or lower, particularly preferably 200 ° C. or lower.
  • the base material particle is a silicone particle.
  • connection material including the metal-containing particles described above and a resin.
  • the material of the connection portion is the metal-containing particles described above or a connection material including the metal-containing particles and a resin.
  • the metal-containing particles described above are arranged between the first connection target member and the second connection target member, or the connection includes the metal-containing particles and the resin. Arranging the material, heating the metal-containing particles, melting the tips of the protrusions of the metal part, solidifying after melting, and using the metal-containing particles or the connection material, the first connection target member And a step of forming a connection part connecting the second connection target member.
  • a method for manufacturing a connection structure is provided.
  • the metal-containing particle according to the present invention includes a base particle and a metal part disposed on the surface of the base particle, the metal part has a plurality of protrusions on the outer surface, Since the tip of the projection can be melted at 400 ° C. or lower, the tip of the projection of the metal part of the metal-containing particle is melted at a relatively low temperature, solidified after melting, and joined to other particles or other members. Connection reliability can be improved.
  • FIG. 1 is a cross-sectional view schematically showing metal-containing particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing metal-containing particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing metal-containing particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing metal-containing particles according to the fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing metal-containing particles according to the fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing metal-containing particles according to the sixth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing metal-containing particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing metal-containing particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing
  • FIG. 7 is a cross-sectional view schematically showing metal-containing particles according to the seventh embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing metal-containing particles according to the eighth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a connection structure using metal-containing particles according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a modified example of the connection structure using the metal-containing particles according to the first embodiment of the present invention.
  • FIG. 11 is a diagram showing an image of the produced metal-containing particles.
  • FIG. 12 is a diagram showing an image of the produced metal-containing particles.
  • FIG. 13 is a diagram showing an image of the produced metal-containing particles.
  • FIG. 14 is a diagram showing an image of the produced metal-containing particles.
  • FIG. 15 is a diagram showing an image of particles that are solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles.
  • FIG. 16 is a diagram showing an image of particles that are solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles.
  • FIG. 17 is a diagram showing an image of particles that are solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles.
  • FIG. 18 is a diagram showing an image of particles that have been solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles.
  • 19A and 19B are a plan view and a cross-sectional view showing an example of a continuity test member.
  • 20A to 20C are diagrams schematically showing a state in which the electrical characteristics of the electronic circuit device are inspected by the continuity inspection member.
  • the metal-containing particle according to the present invention includes a base particle and a metal part.
  • the said metal part is arrange
  • the metal part has a plurality of protrusions on the outer surface.
  • the tips of the protrusions of the metal part can be melted at 400 ° C. or lower.
  • the tip of the protrusion of the metal part can be melted at a relatively low temperature. For this reason, the tips of the protrusions of the metal part in the metal-containing particles can be melted at a relatively low temperature, solidified after melting, and bonded to other particles or other members.
  • a plurality of metal-containing particles can be melt bonded.
  • the metal-containing particles can be melt bonded to the connection target member. Still further, the metal-containing particles can be melt bonded to the electrode.
  • the particle size of metal particles is reduced to a size of 100 nm or less and the number of constituent atoms is reduced, the surface area ratio to the volume of the particles increases rapidly, and the melting point or sintering temperature decreases significantly compared to the bulk state. It has been known.
  • the present inventors can lower the melting temperature of the tip of the protrusion of the metal part, as in the case of using nano-sized metal particles. I found.
  • the protrusion may have a tapered needle shape.
  • a plurality of small protrusions may be formed on the outer surface of the metal part in order to lower the melting temperature of the tip of the protrusion of the metal part.
  • the metal part in order to reduce the melting temperature of the tip of the protrusion of the metal part, has a plurality of protrusions (first protrusions) on the outer surface, and the metal It is preferable that the portion has the protrusion (second protrusion) on the outer surface of the convex portion.
  • the convex portion is preferably larger than the protrusion.
  • the presence of the protrusions larger than the protrusions further increases connection reliability.
  • the protrusion and the protrusion may be integrated, or the protrusion may be attached on the protrusion.
  • the protrusion may be composed of particles.
  • a protrusion portion where the protrusion is formed on the outer surface is referred to as a convex portion in distinction from the protrusion.
  • the tip of the convex part may not be meltable at 400 ° C. or lower.
  • the melting temperature can be lowered by reducing the tip diameter of the protrusion.
  • the material of the metal part can be selected. It is preferable to select the shape of the protrusion and the material of the metal part so that the melting temperature at the tip of the protrusion of the metal part is 400 ° C. or lower.
  • the melting temperature at the tip of the protrusion of the metal part is evaluated as follows.
  • the melting temperature at the tip of the protrusion of the metal part can be measured using a differential scanning calorimeter (“DSC-6300” manufactured by Yamato Scientific Co., Ltd.). The above measurement was performed using 15 g of metal-containing particles, with a temperature increase range of 30 ° C. to 500 ° C., a temperature increase rate of 5 ° C./min. , Nitrogen purge amount 5 ml / min.
  • the measurement conditions are as follows.
  • the tip of the protrusion of the metal part is melted at the melting temperature obtained by the above measurement.
  • 1 g of metal-containing particles is placed in a container and placed in an electric furnace.
  • the same temperature as the melting temperature obtained by the above measurement is set in an electric furnace and heated in a nitrogen atmosphere for 10 minutes. Thereafter, the heated metal-containing particles are taken out from the electric furnace, and the molten state (or solidified state after melting) of the tip of the protrusion is confirmed using a scanning electron microscope.
  • the shape of the protrusion is preferably a tapered needle shape.
  • the shape of the protrusion on the outer surface of the metal portion is different from the conventional shape, and a new effect is exhibited due to the needle shape having a tapered protrusion shape.
  • the metal-containing particles according to the present invention can be used to connect two connection target members because the tips of the protrusions of the metal part can be melt-bonded at a relatively low temperature.
  • a connection part that exhibits a strong connection can be formed, and connection reliability can be improved.
  • the metal-containing particles according to the present invention may be used for conductive connection. Furthermore, the metal-containing particles according to the present invention can also be used as a gap control material (spacer).
  • the average apex angle (a) of the plurality of protrusions is preferably 10 ° or more, more preferably 20 ° or more, preferably 60 ° or less, more preferably 45 ° or less. If the average (a) of the apex angles is equal to or greater than the above lower limit, the protrusions are not easily broken. When the average (a) of the apex angles is not more than the above upper limit, the melting temperature is further lowered. Note that the broken protrusion may increase the connection resistance between the electrodes at the time of conductive connection.
  • the average (a) of the apex angles of the protrusions can be obtained by averaging the apex angles of the protrusions included in one metal-containing particle.
  • the average height (b) of the plurality of protrusions is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 50 nm or more, preferably 5000 nm or less, more preferably 1000 nm or less, still more preferably 800 nm or less. .
  • the melting temperature is further lowered.
  • the average height (b) of the protrusions is not more than the above upper limit, the protrusions are not easily broken.
  • the average height (b) of the protrusions is the average height of protrusions included in one metal-containing particle.
  • the height of the protrusion is on the line connecting the center of the metal-containing particle and the tip of the protrusion (broken line L1 shown in FIG. 1).
  • the height of the protrusion has no protrusion.
  • the distance from the imaginary line of the metal part (convex part) to the tip of the protrusion is assumed.
  • the protrusion may be an aggregate of a plurality of granular materials.
  • the protrusion may be formed of a plurality of particles constituting the protrusion.
  • the height of the protrusion is the height of the protrusion when the aggregate of a plurality of granular materials or continuous particles are viewed as a whole.
  • the heights of the protrusions 1Ba and 3Ba indicate the distance from the imaginary line of the metal part to the tip of the protrusion when it is assumed that there is no protrusion.
  • the average diameter (c) of the bases of the plurality of protrusions is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less.
  • the average diameter (c) is equal to or more than the lower limit, the protrusions are not easily broken.
  • connection reliability is further enhanced.
  • the average diameter (c) of the base of the protrusion is an average of the diameter of the base of the protrusion included in one metal-containing particle.
  • the diameter of the base is the maximum diameter of each of the bases in the protrusion.
  • the ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the bases of the plurality of protrusions is preferably 0.5 or more. More preferably, it is 1.5 or more, preferably 10 or less, more preferably 5 or less. When the ratio (average height (b) / average diameter (c)) is not less than the lower limit, the connection reliability is further increased. When the ratio (average height (b) / average diameter (c)) is not more than the above upper limit, the protrusions are not easily broken.
  • the ratio (average diameter (d) / average diameter (c)) of the average diameter (d) at the center of the height of the plurality of protrusions to the average diameter (c) of the bases of the plurality of protrusions is preferably It is 1/5 or more, more preferably 1/4 or more, still more preferably 1/3 or more, preferably 4/5 or less, more preferably 3/4 or less, still more preferably 2/3 or less.
  • the ratio (average diameter (d) / average diameter (c)) is not less than the lower limit, the protrusions are not easily broken.
  • the ratio (average diameter (d) / average diameter (c)) is not more than the above upper limit, the connection reliability is further enhanced.
  • the average diameter (d) at the center position of the protrusion height is the average diameter at the center position of the protrusion height included in one metal-containing particle.
  • the diameter at the central position of the height of the protrusion is the maximum diameter of each central position of the height of the protrusion.
  • the shape of the plurality of protrusions is a needle shape or a partial shape of a sphere.
  • the acicular shape is preferably a pyramid shape, a conical shape, or a paraboloidal shape, more preferably a conical shape or a parabolic shape, and still more preferably a conical shape.
  • the shape of the protrusion may be a pyramid shape, a cone shape, or a paraboloid. In the present invention, a rotating paraboloid is also included in the tapered needle shape.
  • the paraboloidal protrusion is tapered from the base to the tip.
  • the number of protrusions on the outer surface of the metal part per one metal-containing particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited.
  • the upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the metal-containing particles. Note that the protrusions included in the metal-containing particles do not have to be tapered, and it is not necessary that all the protrusions included in the metal-containing particles have a tapered needle shape.
  • the ratio of the number of protrusions that are tapered in the number of protrusions contained per metal-containing particle is preferably 30% or more, more preferably 50% or more, and still more preferably 60% or more. Particularly preferred is 70% or more, and most preferred is 80% or more. As the ratio of the number of needle-like protrusions increases, the effect of the needle-like protrusions can be obtained more effectively.
  • the ratio (x) of the surface area of the portion with protrusions is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, preferably 90 % Or less, more preferably 80% or less, and still more preferably 70% or less.
  • the ratio of the surface area of the portion having the needle-like protrusion is preferably 10% or more, more preferably 20% or more, out of 100% of the entire surface area of the outer surface of the metal part. More preferably, it is 30% or more, preferably 90% or less, more preferably 80% or less, and still more preferably 70% or less. As the ratio of the surface area of the portion having the needle-like protrusion is larger, the effect of the protrusion is more effectively obtained.
  • the average (A) of the apex angles of the plurality of convex portions is preferably 10 ° or more, more preferably 20 ° or more, preferably 60 ° or less, more preferably 45 ° or less. If the average (A) of the apex angles is equal to or greater than the lower limit, the convex portion is not easily broken. When the average (A) of the apex angles is not more than the above upper limit, the melting temperature is further lowered. In addition, the broken convex part may raise the connection resistance between electrodes at the time of conductive connection.
  • the average (A) of the apex angles of the convex portions can be obtained by averaging the apex angles of the convex portions included in one metal-containing particle.
  • the average height (B) of the plurality of convex portions is preferably 5 nm or more, more preferably 50 nm or more, preferably 5000 nm or less, more preferably 1000 nm or less, and still more preferably 800 nm or less.
  • the melting temperature is further lowered.
  • the average height (B) of the convex portions is equal to or less than the upper limit, the convex portions are not easily broken.
  • the average height (B) of the convex portions is the average height of the convex portions included in one metal-containing particle.
  • the height of the convex part is an imaginary line of the metal part on the line connecting the center of the metal-containing particle and the tip of the convex part (broken line L1 shown in FIG. 8) assuming no convex part (FIG. 8).
  • the distance from the broken line L2) (on the outer surface of the spherical metal-containing particle when it is assumed that there is no projection) to the tip of the projection is shown. That is, in FIG. 8, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the convex portion is shown.
  • the average diameter (C) of the base portions of the plurality of convex portions is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 50 nm or more, preferably 5000 nm or less, more preferably 1000 nm or less, still more preferably 800 nm or less. It is. When the average diameter (C) is equal to or greater than the lower limit, the convex portion is not easily broken. When the average diameter (C) is not more than the upper limit, the connection reliability is further increased.
  • the average diameter (C) of the base of the convex part is an average of the diameters of the bases of the convex parts included in one metal-containing particle.
  • the diameter of the base is the maximum diameter of each of the bases in the convex part.
  • the portion is the base of the convex portion, and the distance between the ends of the imaginary line portion (the distance connecting the ends with a straight line) is the diameter of the base.
  • the ratio (average diameter (D) / average diameter (C)) of the average diameter (D) at the center position of the height of the plurality of convex portions to the average diameter (C) of the base portions of the plurality of convex portions is: Preferably it is 1/5 or more, More preferably, it is 1/4 or more, More preferably, it is 1/3 or more, Preferably it is 4/5 or less, More preferably, it is 3/4 or less, More preferably, it is 2/3 or less.
  • the ratio (average diameter (D) / average diameter (C)) is equal to or greater than the lower limit, the convex portion is not easily broken.
  • the ratio (average diameter (D) / average diameter (C)) is not more than the above upper limit, the connection reliability is further enhanced.
  • the average diameter (D) at the central position of the height of the convex portion is an average of the diameters at the central position of the height of the convex portion included in one metal-containing particle.
  • the diameter at the central position of the height of the convex portion is the maximum diameter of each central position of the height of the convex portion.
  • the shape of the plurality of convex portions is a needle shape or a partial shape of a sphere.
  • the acicular shape is preferably a pyramid shape, a conical shape, or a paraboloidal shape, more preferably a conical shape or a parabolic shape, and still more preferably a conical shape.
  • the shape of the convex portion may be a pyramid shape, a cone shape, or a paraboloid.
  • a rotating paraboloid is also included in the tapered needle shape.
  • the parabolic convex portion is tapered from the base to the tip.
  • the number of protrusions on the outer surface of the metal part per metal-containing particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of the convex portions is not particularly limited. The upper limit of the number of convex portions can be appropriately selected in consideration of the particle diameter of the metal-containing particles.
  • grain does not need to be a tapering needle shape, and all the convex parts contained in the said metal containing particle
  • the ratio of the number of convex portions that are tapered in the number of convex portions included in one metal-containing particle is preferably 30% or more, more preferably 50% or more, and still more preferably 60%. Above, especially preferably 70% or more, most preferably 80% or more. As the ratio of the number of needle-like convex portions increases, the effect of the needle-like convex portions can be obtained more effectively.
  • the ratio (X) of the surface area of the part having the convex part is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, preferably It is 90% or less, more preferably 80% or less, still more preferably 70% or less. As the ratio of the surface area of the portion having the convex portion is increased, the effect of the protrusion on the convex portion is more effectively obtained.
  • the ratio of the surface area of the portion having the needle-like convex portion is preferably 10% or more, more preferably 20% or more, out of the entire surface area of the outer surface of the metal portion Further, it is preferably 30% or more, preferably 90% or less, more preferably 80% or less, still more preferably 70% or less. As the ratio of the surface area of the portion having the needle-like convex portion is larger, the effect of the protrusion on the convex portion is more effectively obtained.
  • the ratio (average height (B) / average height (b)) of the average height (B) of the plurality of protrusions to the average height (b) of the plurality of protrusions is preferably 5 or more. Preferably it is 10 or more, preferably 1000 or less, more preferably 800 or less. When the ratio (average height (B) / average height (b)) is equal to or higher than the lower limit, the connection reliability is further increased. When the ratio (average height (B) / average height (b)) is not more than the above upper limit, the convex portion is not easily broken.
  • the metal part having a plurality of the protrusions is formed by a crystal orientation of a metal or an alloy.
  • the metal part is formed by the crystal orientation of the metal or alloy.
  • the compression elastic modulus (10% K value) when the metal-containing particles are compressed by 10% is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more. preferably 25000N / mm 2 or less, more preferably 10000 N / mm 2 or less, and more preferably not more than 8000 N / mm 2.
  • the compression elastic modulus (10% K value) of the metal-containing particles can be measured as follows.
  • the metal-containing particles are compressed under the conditions of a cylindrical indenter (diameter: 100 ⁇ m, made of diamond) and a smooth indenter at 25 ° C., a compression speed of 0.3 mN / sec, and a maximum test load of 20 mN.
  • the load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the ratio of the (111) plane in the X-ray diffraction of the protrusion is preferably 50% or more.
  • FIG. 1 is a cross-sectional view schematically showing metal-containing particles according to the first embodiment of the present invention.
  • the metal-containing particle 1 includes a base particle 2 and a metal part 3.
  • the metal part 3 is disposed on the surface of the base particle 2.
  • the metal-containing particle 1 is a coated particle in which the surface of the base particle 2 is coated with the metal part 3.
  • the metal part 3 is a continuous film.
  • the metal-containing particle 1 has a plurality of protrusions 1 a on the outer surface of the metal part 3.
  • the metal part 3 has a plurality of protrusions 3a on the outer surface.
  • the shape of the plurality of protrusions 1a and 3a is a tapered needle shape, and is a conical shape in the present embodiment. In the present embodiment, the tips of the protrusions 1a and 3a can be melted at 400 ° C. or lower.
  • the metal part 3 has a first part and a second part that is thicker than the first part. A portion excluding the plurality of protrusions 1 a and 3 a is the first portion of the metal portion 3.
  • the plurality of protrusions 1a and 3a are the second part where the metal part 3 is thick.
  • FIG. 2 is a cross-sectional view schematically showing metal-containing particles according to the second embodiment of the present invention.
  • the metal-containing particle 1 ⁇ / b> A includes a base particle 2 and a metal part 3 ⁇ / b> A.
  • the metal part 3 ⁇ / b> A is disposed on the surface of the base particle 2.
  • the metal-containing particle 1A has a plurality of protrusions 1Aa on the outer surface of the metal portion 3A.
  • the metal portion 3A has a plurality of protrusions 3Aa on the outer surface.
  • the shape of the plurality of protrusions 1Aa and 3Aa is a tapered needle shape, and is a paraboloid in this embodiment. In the present embodiment, the tips of the protrusions 1Aa and 3Aa can be melted at 400 ° C. or lower.
  • the shape of the plurality of protrusions in the metal part is preferably a tapered needle shape, may be a conical shape, or may be a paraboloidal shape. Good.
  • FIG. 3 is a cross-sectional view schematically showing metal-containing particles according to the third embodiment of the present invention.
  • the metal-containing particle 1B includes a base particle 2 and a metal part 3B.
  • the metal part 3B is disposed on the surface of the base particle 2.
  • the metal-containing particle 1B has a plurality of protrusions 1Ba on the outer surface of the metal portion 3B.
  • the metal part 3B has a plurality of protrusions 3Ba on the outer surface.
  • the shape of the plurality of protrusions 1Ba and 3Ba is a partial shape of a sphere.
  • the metal part 3B has metal particles 3BX embedded so as to be partially exposed on the outer surface.
  • the exposed portions of the metal particles 3BX constitute the protrusions 1Ba and 3Ba.
  • the tips of the protrusions 1Ba and 3Ba can be melted at 400 ° C. or lower.
  • the shape of the protrusion may not be a tapered needle shape, and may be, for example, a shape of a part of a sphere.
  • FIG. 4 is a cross-sectional view schematically showing metal-containing particles according to the fourth embodiment of the present invention.
  • the metal-containing particle 1 ⁇ / b> C includes a base particle 2 and a metal part 3 ⁇ / b> C.
  • the metal-containing particle 1 and the metal-containing particle 1C are different only in the metal part. That is, in the metal-containing particle 1, the metal part 3 having a single layer structure is formed, whereas in the metal-containing particle 1C, the metal part 3C having a two-layer structure is formed.
  • the metal part 3C has a first metal part 3CA and a second metal part 3CB.
  • the first and second metal parts 3CA and 3CB are arranged on the surface of the base particle 2. 1st metal part 3CA is arrange
  • the outer shape of the first metal part 3CA is spherical.
  • the metal-containing particle 1C has a plurality of protrusions 1Ca on the outer surface of the metal portion 3C.
  • the metal portion 3C has a plurality of protrusions 3Ca on the outer surface.
  • Second metal portion 3CB has a plurality of protrusions on the outer surface.
  • the shape of the plurality of protrusions 1Ca and 3Ca is a tapered needle shape, and is a conical shape in the present embodiment. In the present embodiment, the tips of the protrusions 1Ca and 3Ca can be melted at 400 ° C. or lower.
  • the inner first metal part may have a plurality of protrusions on the outer surface.
  • FIG. 5 is a cross-sectional view schematically showing metal-containing particles according to the fifth embodiment of the present invention.
  • the metal-containing particle 1D includes a base particle 2 and a metal part 3D.
  • the metal part 3D is disposed on the surface of the base particle 2.
  • the metal-containing particle 1D has a plurality of protrusions 1Da on the outer surface of the metal portion 3D.
  • the metal-containing particle 1D has a plurality of convex portions (first protrusions) 3Da on the outer surface of the metal portion 3D.
  • the metal portion 3D has a plurality of convex portions (first protrusions) 3Da on the outer surface.
  • the metal part 3D has a protrusion 3Db (second protrusion) smaller than the protrusion (first protrusion) 3Da on the outer surface of the protrusion (first protrusion) 3Da.
  • the protrusion (first protrusion) 3Da and the protrusion 3Db (second protrusion) are integrated and connected.
  • the tip diameter of the protrusion 3Db (second protrusion) is small, and the tip of the protrusion 3Db (second protrusion) can be melted at 400 ° C. or lower.
  • FIG. 6 is a cross-sectional view schematically showing metal-containing particles according to the sixth embodiment of the present invention.
  • the metal-containing particle 1E includes a base particle 2, a metal part 3E, and a core substance 4E.
  • the metal part 3E is disposed on the surface of the base particle 2.
  • the metal-containing particle 1E has a plurality of protrusions 1Ea on the outer surface of the metal portion 3E.
  • the metal-containing particle 1E has a plurality of convex portions (first protrusions) 3Ea on the outer surface of the metal portion 3E.
  • the metal portion 3E has a plurality of convex portions (first protrusions) 3Ea on the outer surface.
  • the metal part 3E has a protrusion 3Eb (second protrusion) smaller than the protrusion (first protrusion) 3Ea on the outer surface of the protrusion (first protrusion) 3Ea.
  • the protrusion (first protrusion) 3Ea and the protrusion 3Eb (second protrusion) are integrated and connected.
  • the tip diameter of the protrusion 3Eb (second protrusion) is small, and the tip of the protrusion 3Eb (second protrusion) can be melted at 400 ° C. or less.
  • a plurality of core substances 4E are arranged on the outer surface of the base particle 2. Several core substance 4E is arrange
  • the metal-containing particle may include a plurality of core substances that protrude the outer surface of the metal part.
  • FIG. 7 is a cross-sectional view schematically showing metal-containing particles according to the seventh embodiment of the present invention.
  • the metal-containing particle 1 ⁇ / b> F includes a base particle 2 and a metal part 3 ⁇ / b> F.
  • the metal part 3F is disposed on the surface of the base particle 2.
  • the metal-containing particle 1F has a plurality of protrusions 1Fa on the outer surface of the metal portion 3F.
  • the metal part 3F has a protrusion 3Fb (second protrusion) smaller than the protrusion (first protrusion) 3Fa on the outer surface of the protrusion (first protrusion) 3Fa.
  • the protrusion (first protrusion) 3Fa and the protrusion 3Fb (second protrusion) are not integrated.
  • the tip diameter of the protrusion 3Fb (second protrusion) is small, and the tip of the protrusion 3Fb (second protrusion) can be melted at 400 ° C. or lower.
  • FIG. 8 is a cross-sectional view schematically showing metal-containing particles according to the eighth embodiment of the present invention.
  • the metal-containing particle 1G includes a base particle 2 and a metal portion 3G.
  • the metal part 3G has a first metal part 3GA and a second metal part 3GB.
  • the first and second metal parts 3GA and 3GB are arranged on the surface of the base particle 2.
  • a first metal part 3GA is arranged between the base particle 2 and the second metal part 3GB. Accordingly, the first metal part 3GA is arranged on the surface of the base particle 2, and the second metal part 3GB is arranged on the outer surface of the first metal part 3GA.
  • the metal part 3G is disposed on the surface of the base particle 2.
  • the metal-containing particle 1G has a plurality of protrusions 1Ga on the outer surface of the metal portion 3G.
  • the metal-containing particle 1G has a plurality of convex portions (first protrusions) 3Ga on the outer surface of the metal portion 3G.
  • the metal part 3G has a protrusion 3Gb (second protrusion) smaller than the protrusion (first protrusion) 3Ga on the outer surface of the protrusion (first protrusion) 3Ga.
  • An interface exists between the protrusion (first protrusion) 3Ga and the protrusion 3Gb (second protrusion).
  • the tip diameter of the protrusion 3Gb (second protrusion) is small, and the tip of the protrusion 3Gb (second protrusion) can be melted at 400 ° C. or lower.
  • FIGS. 11 to 14 show images of actually produced metal-containing particles.
  • the metal-containing particles shown in FIGS. 11 to 14 have a plurality of protrusions on the outer surface of the metal portion, and the tips of the plurality of protrusions can be melted at 400 ° C. or less.
  • the metal part has a plurality of protrusions on the outer surface, and has protrusions smaller than the protrusions on the outer surface of the protrusions.
  • FIG. 18 is a particle solidified after melting the tip of the protrusion of the metal part of the metal-containing particle shown in FIG.
  • (meth) acryl means one or both of “acryl” and “methacryl”
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”. means.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the base particle may have a core and a shell disposed on the surface of the core, or may be a core-shell particle.
  • the substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base material particles are more preferably resin particles or organic-inorganic hybrid particles, and may be resin particles or organic-inorganic hybrid particles. By using these preferable base particles, metal-containing particles suitable for the connection application of two connection target members can be obtained.
  • the substrate particles are resin particles or organic / inorganic hybrid particles
  • the metal-containing particles are easily deformed, and the flexibility of the metal-containing particles is increased. For this reason, shock absorption becomes high after the connection.
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Tons, polyethersulfone, and polymers such as obtained by a variety of polymerizable monomer having an ethylene
  • the resin particles having the physical properties at the time of compression suitable for the connection application of the two connection target members can be designed and synthesized, and the hardness of the base particles can be easily controlled within a suitable range
  • the resin particles The resin for forming is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.
  • the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, as the polymerizable monomer having an ethylenically unsaturated group, a non-crosslinkable monomer and And a crosslinkable monomer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc.
  • Oxygen atom-containing (meth) acrylate compounds Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate Vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene Etc.
  • Nitrile-containing monomers such as (meth) acrylonitrile
  • Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether
  • Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stea
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) sia Silane-
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles
  • examples of the inorganic material for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed by the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the substrate particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • Examples of the material for forming the inorganic shell include inorganic substances for forming the above-described base material particles.
  • the material for forming the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of a silane alkoxide.
  • the particle size of the core is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 20 ⁇ m or less, and most preferably 10 ⁇ m or less. It is.
  • the particle diameter of the core is not less than the above lower limit and not more than the above upper limit, it can be suitably used for the connection application of two connection target members.
  • the particle diameter of the core is not less than the lower limit and not more than the upper limit, when two connection target members are connected using the metal-containing particles, the contact area between the metal-containing particles and the connection target member is sufficient. And the agglomerated metal-containing particles are hardly formed when the metal part is formed.
  • the interval between the two connection target members connected via the metal-containing particles does not become too large, and the metal portion is difficult to peel off from the surface of the substrate particles.
  • the particle diameter of the core means a diameter when the core is a true sphere, and means a maximum diameter when the core is a shape other than a true sphere.
  • the particle size of a core means the average particle size which measured the core with the arbitrary particle size measuring apparatus.
  • a particle size distribution measuring machine using principles such as laser light scattering, electrical resistance value change, and image analysis after imaging can be used.
  • the thickness of the shell is preferably 100 nm or more, more preferably 200 nm or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the shell can be suitably used for connecting two connection target members.
  • the thickness of the shell is an average thickness per base particle.
  • the thickness of the shell can be controlled by controlling the sol-gel method.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the substrate particles are preferably not metal particles.
  • the particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more, still more preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 1000 ⁇ m. Below, more preferably 500 ⁇ m or less, still more preferably 400 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less. When the particle diameter of the substrate particles is not less than the above lower limit, the connection reliability is further enhanced.
  • the metal-containing particles are easily compressed, and the connection reliability is further enhanced.
  • the particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
  • the substrate particles are particles containing silicone resin (silicone Particles).
  • the material of the substrate particles preferably contains a silicone resin.
  • the material of the silicone particles is preferably a silane compound having a radical polymerizable group and a silane compound having a hydrophobic group having 5 or more carbon atoms, or having a radical polymerizable group and a hydrophobic group having 5 or more carbon atoms. It is preferably a silane compound having a radical polymerizable group or a silane compound having both radically polymerizable groups. When these materials are reacted, a siloxane bond is formed. In the resulting silicone particles, radically polymerizable groups and hydrophobic groups having 5 or more carbon atoms generally remain.
  • silicone particles having a primary particle size of 0.1 ⁇ m or more and 500 ⁇ m or less can be easily obtained, and the chemical resistance of the silicone particles is increased and the moisture permeability is decreased. be able to.
  • the radical polymerizable group is preferably directly bonded to a silicon atom.
  • the silane compound which has the said radical polymerizable group only 1 type may be used and 2 or more types may be used together.
  • the silane compound having a radical polymerizable group is preferably an alkoxysilane compound.
  • examples of the silane compound having a radical polymerizable group include vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, divinylmethoxyvinylsilane, divinylethoxyvinylsilane, divinyldimethoxysilane, divinyldiethoxysilane, and 1 , 3-divinyltetramethyldisiloxane and the like.
  • the hydrophobic group having 5 or more carbon atoms is preferably directly bonded to a silicon atom. Only 1 type may be used for the said silane compound which has a C5 or more hydrophobic group, and 2 or more types may be used together.
  • the silane compound having a hydrophobic group having 5 or more carbon atoms is preferably an alkoxysilane compound.
  • Examples of the silane compound having a hydrophobic group having 5 or more carbon atoms include phenyltrimethoxysilane, dimethoxymethylphenylsilane, diethoxymethylphenylsilane, dimethylmethoxyphenylsilane, dimethylethoxyphenylsilane, hexaphenyldisiloxane, 1,3, 3,5-tetramethyl-1,1,5,5-tetraphenyltrisiloxane, 1,1,3,5,5-pentaphenyl-1,3,5-trimethyltrisiloxane, hexaphenylcyclotrisiloxane, phenyl Examples include tris (trimethylsiloxy) silane and octaphenylcyclotetrasiloxane.
  • the radical polymerizable group is preferably directly bonded to a silicon atom, and the hydrophobic group having 5 or more carbon atoms is bonded to a silicon atom. Direct bonding is preferred.
  • the silane compound having a radical polymerizable group and having a hydrophobic group having 5 or more carbon atoms only one kind may be used, or two or more kinds may be used in combination.
  • silane compound having a radical polymerizable group and a hydrophobic group having 5 or more carbon atoms examples include phenylvinyldimethoxysilane, phenylvinyldiethoxysilane, phenylmethylvinylmethoxysilane, phenylmethylvinylethoxysilane, and diphenylvinylmethoxysilane. , Diphenylvinylethoxysilane, phenyldivinylmethoxysilane, phenyldivinylethoxysilane, 1,1,3,3-tetraphenyl-1,3-divinyldisiloxane, and the like.
  • the silane compound having the radical polymerizable group and the silane compound having a hydrophobic group having 5 or more carbon atoms are preferably used in a weight ratio of 1: 1 to 1:20, more preferably 1: 5 to 1:15.
  • the number of radical polymerizable groups and the number of hydrophobic groups having 5 or more carbon atoms are preferably 1: 0.5 to 1:20, and 1: 1 to More preferably, it is 1:15.
  • the silicone particles have two methyl groups bonded to one silicon atom.
  • the material of the silicone particle contains a silane compound in which two methyl groups are bonded to one silicon atom.
  • the silicone particles described above can be obtained by using a radical polymerization initiator. It is preferable to react to form a siloxane bond. In general, it is difficult to obtain silicone particles having a primary particle size of 0.1 ⁇ m or more and 500 ⁇ m or less using a radical polymerization initiator, and it is particularly preferable to obtain silicone particles having a primary particle size of 100 ⁇ m or less. Have difficulty. In contrast, even when a radical polymerization initiator is used, silicone particles having a primary particle diameter of 0.1 ⁇ m or more and 500 ⁇ m or less can be obtained by using the silane compound, and primary particles of 100 ⁇ m or less. Silicone particles having a diameter can also be obtained.
  • the silane compound can be polymerized using a radical polymerization initiator without using a metal catalyst.
  • the metal particles can be prevented from being contained in the silicone particles, the content of the metal catalyst in the silicone particles can be reduced, the chemical resistance is effectively increased, and the moisture permeability is effectively increased.
  • the 10% K value can be controlled within a suitable range.
  • the method for producing the silicone particles include a method of producing a silicone particle by performing a polymerization reaction of a silane compound by a suspension polymerization method, a dispersion polymerization method, a miniemulsion polymerization method, an emulsion polymerization method, or the like. After the polymerization of the silane compound proceeds to obtain an oligomer, a polymerization reaction of the silane compound that is a polymer (such as an oligomer) is performed by a suspension polymerization method, a dispersion polymerization method, a miniemulsion polymerization method, or an emulsion polymerization method, Silicone particles may be produced.
  • a silane compound having a vinyl group bonded to a silicon atom at the terminal may be obtained by polymerizing a silane compound having a vinyl group.
  • a silane compound having a phenyl group may be polymerized to obtain a silane compound having a phenyl group bonded to a silicon atom in the side chain as a polymer (such as an oligomer).
  • a silane compound having a vinyl group and a silane compound having a phenyl group are polymerized to form a polymer (such as an oligomer) having a vinyl group bonded to a silicon atom at a terminal and a phenyl group bonded to a silicon atom in a side chain You may obtain the silane compound which has this.
  • the silicone particles may have a plurality of particles on the outer surface.
  • the silicone particle may include a silicone particle main body and a plurality of particles arranged on the surface of the silicone particle main body.
  • the plurality of particles include silicone particles and spherical silica. The presence of the plurality of particles can suppress aggregation of the silicone particles.
  • the tip of the protrusion of the metal part can be melted at 400 ° C. or lower. From the viewpoint of suppressing the energy consumption during heating by lowering the melting temperature and further suppressing the thermal deterioration of the connection target member, the tip of the protrusion of the metal part can be melted at 350 ° C. or lower. It is more preferable that it can be melted at 300 ° C. or less, it is more preferable that it can be melted at 250 ° C. or less, and it is particularly preferable that it can be melted at 200 ° C. or less.
  • the melting temperature at the tip of the protrusion can be controlled by the type of metal at the tip of the protrusion and the shape of the tip of the protrusion.
  • the melting point of the base of the convex part, the center position of the height of the protrusion, the base part of the protrusion, and the center position of the height of the protrusion may exceed 200 ° C or exceed 250 ° C. Or may exceed 300 ° C, may exceed 350 ° C, or may exceed 400 ° C.
  • the metal part, the convex part, and the protrusion may have a part exceeding 200 ° C., may have a part exceeding 250 ° C., and may have a part exceeding 300 ° C. , May have a portion exceeding 350 ° C., or may have a portion exceeding 400 ° C.
  • the material for the metal part is not particularly limited.
  • the material of the metal part preferably contains a metal.
  • the metal include gold, silver, palladium, rhodium, iridium, lithium, copper, platinum, zinc, iron, tin, lead, ruthenium, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, and thallium. , Germanium, cadmium, silicon, and alloys thereof.
  • the metal include tin-doped indium oxide (ITO).
  • the material of the metal part is selected so that the tip of the protrusion of the metal part can be melted at 400 ° C. or less.
  • the material of the protrusion preferably contains silver, copper, gold, palladium, tin, indium or zinc.
  • the material of the protrusion may not contain tin.
  • the material of the metal part is not solder. It can suppress that the whole metal part melt
  • the material of the metal part may not contain tin.
  • the material of the metal part is silver, copper, gold, palladium, tin, indium, zinc, nickel, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium , Phosphorus or boron is preferable, silver, copper, gold, palladium, tin, indium or zinc is more preferable, and silver is further preferable.
  • these preferable materials only 1 type may be used and 2 or more types may be used together.
  • the silver may be contained as a single silver or silver oxide. Examples of silver oxide include Ag 2 O and AgO.
  • the content of silver is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less, % By weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight or less may be used.
  • the silver content is not less than the above lower limit and not more than the above upper limit, the bonding strength is increased and the connection reliability is further enhanced.
  • the copper may be contained as a simple copper or copper oxide.
  • the content of copper is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less, % By weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight or less may be used.
  • the copper content is not less than the above lower limit and not more than the above upper limit, the bonding strength is increased and the connection reliability is further enhanced.
  • the metal part may be formed of one layer.
  • the metal part may be formed of a plurality of layers.
  • the outer surface of the metal part may be rust-proofed.
  • the metal-containing particles may have a rust preventive film on the outer surface of the metal part.
  • Examples of the rust prevention treatment include a method of arranging a rust inhibitor on the outer surface of the metal part, a method of alloying the outer surface of the metal part to improve corrosion resistance, a method of coating a high corrosion resistant metal film on the outer surface of the metal part, etc. Can be mentioned.
  • the rust preventive include nitrogen-containing heterocyclic compounds such as benzotriazole compounds and imidazole compounds; sulfur-containing compounds such as mercaptan compounds, thiazole compounds and organic disulfide compounds; and phosphorus-containing compounds such as organic phosphate compounds.
  • sulfur-resistant agents, rust inhibitors and discoloration inhibitors include nitrogen-containing heterocyclic compounds such as benzotriazole compounds and imidazole compounds; sulfur-containing compounds such as mercaptan compounds, thiazole compounds and organic disulfide compounds; and organic phosphate compounds. Examples thereof include phosphorus-containing compounds.
  • the outer surface of the metal part is preferably rust-proofed with a compound having an alkyl group having 6 to 22 carbon atoms.
  • the surface of the metal part may be rust-proofed with a compound not containing phosphorus, or may be rust-proofed with a compound having an alkyl group having 6 to 22 carbon atoms and not containing phosphorus.
  • the outer surface of the metal part is preferably rust-proofed with an alkyl phosphate compound or an alkyl thiol.
  • the rust preventive film is preferably formed of a compound having an alkyl group having 6 to 22 carbon atoms (hereinafter also referred to as compound A).
  • the outer surface of the metal part is preferably surface-treated with the compound A.
  • the carbon number of the alkyl group is 6 or more, rust is more unlikely to occur in the entire metal part.
  • the carbon number of the alkyl group is 22 or less, the conductivity of the metal-containing particles is increased.
  • the alkyl group in the compound A preferably has 16 or less carbon atoms.
  • the alkyl group may have a linear structure or a branched structure.
  • the alkyl group preferably has a linear structure.
  • the compound A is not particularly limited as long as it has an alkyl group having 6 to 22 carbon atoms.
  • the compound A has a phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, a phosphite ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, and an alkyl group having 6 to 22 carbon atoms.
  • An alkoxysilane, an alkylthiol having an alkyl group having 6 to 22 carbon atoms, or a dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms is preferable.
  • the compound A having an alkyl group having 6 to 22 carbon atoms is preferably a phosphate ester or a salt thereof, a phosphite ester or a salt thereof, an alkoxysilane, an alkylthiol, or a dialkyl disulfide.
  • the compound A is preferably the phosphate ester or salt thereof, phosphite ester or salt thereof, or alkylthiol, and the phosphate ester or salt thereof, Or it is more preferable that it is a phosphite or its salt.
  • the said compound A only 1 type may be used and 2 or more types may be used together.
  • the compound A preferably has a reactive functional group capable of reacting with the outer surface of the metal part.
  • the metal-containing particles include an insulating substance disposed on the outer surface of the metal part
  • the compound A preferably has a reactive functional group capable of reacting with the insulating substance.
  • the rust preventive film is preferably chemically bonded to the metal part.
  • the rust preventive film is preferably chemically bonded to the insulating material. More preferably, the rust preventive film is chemically bonded to both the metal part and the insulating material. Due to the presence of the reactive functional group and due to the chemical bond, the rust preventive film is less likely to be peeled off. As a result, the rust is less likely to be generated in the metal part, and the insulating material is exposed from the surface of the metal-containing particles. However, it becomes more difficult to detach unintentionally.
  • Examples of the phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof include, for example, hexyl phosphate, heptyl phosphate, monooctyl phosphate, monononyl phosphate, monodecyl phosphate, Monoundecyl phosphate, monododecyl phosphate, monotridecyl phosphate, monotetradecyl phosphate, monopentadecyl phosphate, monohexyl phosphate monosodium salt, monoheptyl phosphate monosodium Salt, monooctyl phosphate monosodium salt, monononyl phosphate monosodium salt, monodecyl phosphate monosodium salt, monoundecyl phosphate monosodium salt, monododecyl phosphate monosodium salt Phosphoric acid mono-tridecyl ester monosodium salt,
  • Examples of the phosphite having a C 6-22 alkyl group or a salt thereof include, for example, hexyl phosphite, heptyl phosphite, monooctyl phosphite, monononyl phosphite, phosphite Phosphoric acid monodecyl ester, phosphorous acid monoundecyl ester, phosphorous acid monododecyl ester, phosphorous acid monotridecyl ester, phosphorous acid monotetradecyl ester, phosphorous acid monopentadecyl ester, phosphorous acid monohexyl Ester monosodium salt, phosphorous acid monoheptyl ester monosodium salt, phosphorous acid monooctyl ester monosodium salt, phosphorous acid monononyl ester monosodium salt, phosphorous acid monodecyl ester monosodium salt, phospho
  • alkoxysilane having an alkyl group having 6 to 22 carbon atoms examples include hexyltrimethoxysilane, hexyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, nonyltri Methoxysilane, nonyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, undecyltrimethoxysilane, undecyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tridecyltrimethoxysilane, tridecyltriethoxy Examples include silane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane
  • alkyl thiol having an alkyl group having 6 to 22 carbon atoms examples include hexyl thiol, heptyl thiol, octyl thiol, nonyl thiol, decyl thiol, undecyl thiol, dodecyl thiol, tridecyl thiol, tetradecyl thiol, pentadecyl. Examples include thiol and hexadecyl thiol.
  • the alkyl thiol preferably has a thiol group at the end of the alkyl chain.
  • dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms examples include dihexyl disulfide, diheptyl disulfide, dioctyl disulfide, dinonyl disulfide, didecyl disulfide, diundecyl disulfide, didodecyl disulfide, ditridecyl disulfide, ditetradecyl disulfide. Examples include decyl disulfide, dipentadecyl disulfide, and dihexadecyl disulfide.
  • the outer surface of the metal part is made of any layer of a sulfur-containing compound, a benzotriazole compound, or a polyoxyethylene ether surfactant mainly composed of a sulfide compound or a thiol compound. It is preferable that the sulfidation treatment is performed. A rust preventive film can be formed on the outer surface of the metal part by the anti-sulfurization treatment.
  • Examples of the sulfide compound include about 6 to 40 carbon atoms (preferably carbon number) such as dihexyl sulfide, diheptyl sulfide, dioctyl sulfide, didecyl sulfide, didodecyl sulfide, ditetradecyl sulfide, dihexadecyl sulfide, and dioctadecyl sulfide.
  • dialkyl sulfide alkyl sulfide
  • aromatic having about 12 to 30 carbon atoms such as diphenyl sulfide, phenyl-p-tolyl sulfide, 4,4-thiobisbenzenethiol, etc.
  • Sulfides; thiodicarboxylic acids such as 3,3′-thiodipropionic acid and 4,4′-thiodibutanoic acid.
  • the sulfide compound is particularly preferably a dialkyl sulfide.
  • thiol compound examples include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2-methyl-2-propanethiol, octadecylthiol, and the like, and about 4 to 40 carbon atoms (more preferably 6 to 20). Degree) linear or branched alkylthiol and the like. Moreover, the compound etc. with which the hydrogen atom couple
  • benzotriazole compounds include benzotriazole, benzotriazole salts, methylbenzotriazole, carboxybenzotriazole, and benzotriazole derivatives.
  • anti-discoloring agent examples include trade names “AC-20”, “AC-70” and “AC-80” manufactured by Kitaike Sangyo Co., Ltd., trade names “ENTEC CU-56” manufactured by Meltex, and Daiwa Kasei.
  • the method for forming the metal part on the surface of the substrate particle is not particularly limited.
  • a method for forming a metal part for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc. Since formation of a metal part is simple, the method by electroless plating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • a method by electroless high-purity nickel plating using hydrazine as a reducing agent, a method by electroless palladium-nickel alloy using hydrazine as a reducing agent, an electroless CoNiP alloy plating method using a hypophosphite compound as a reducing agent examples thereof include a method by electroless silver plating using hydrazine as a reducing agent, and a method by electroless copper-nickel-phosphorus alloy plating using a hypophosphite compound as a reducing agent.
  • a catalytic step and an electroless plating step are performed.
  • an example of a method of forming an alloy plating layer containing copper and nickel and a needle-like protrusion tapered on the outer surface of the metal part on the surface of the resin particle by electroless plating will be described.
  • a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
  • the surface of the resin particles is activated with an acid solution or an alkali solution
  • a phosphorus-containing reducing agent is used as the reducing agent.
  • the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
  • a hypophosphite compound is included as a reducing agent. It is preferable to use a copper-nickel-phosphorus alloy plating solution containing a nickel-containing compound as a reaction initiation metal catalyst and containing a nonionic surfactant.
  • a copper-nickel-phosphorus alloy By immersing resin particles in a copper-nickel-phosphorus alloy plating bath, a copper-nickel-phosphorus alloy can be deposited on the surface of the resin particles on which the catalyst is formed. A metal part can be formed.
  • Examples of the copper-containing compound include copper sulfate, cupric chloride, and copper nitrate.
  • the copper-containing compound is preferably copper sulfate.
  • nickel-containing compound examples include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate.
  • the nickel-containing compound is preferably nickel sulfate.
  • Examples of the phosphorus-containing reducing agent include hypophosphorous acid and sodium hypophosphite.
  • a boron-containing reducing agent may be used.
  • Examples of the boron-containing reducing agent include dimethylamine borane, sodium borohydride, and potassium borohydride.
  • the complexing agents include monocarboxylic acid complexing agents such as sodium acetate and sodium propionate, dicarboxylic acid complexing agents such as disodium malonate, tricarboxylic acid complexing agents such as disodium succinate, lactic acid, DL-apple Hydroxy acid complexing agents such as acid, Rochelle salt, sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, organic acid complexing agents such as maleic acid, or These salts are preferred. Only 1 type may be used for these preferable complexing agents, and 2 or more types may be used together.
  • the surfactant examples include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant, and a nonionic surfactant is particularly preferable.
  • Preferred nonionic surfactants are polyethers containing ether oxygen atoms.
  • Preferred nonionic surfactants include polyoxyethylene lauryl ether, polyethylene glycol, polypropylene glycol, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene nonylphenyl ether, polyoxyethylene polyoxypropylene alkylamine, And polyoxyalkylene adducts of ethylenediamine and the like.
  • polyoxyethylene monoalkyl ethers such as polyoxyethylene monobutyl ether, polyoxypropylene monobutyl ether, polyoxyethylene polyoxypropylene glycol monobutyl ether, polyethylene glycol or phenol ethoxylate.
  • the said surfactant only 1 type may be used and 2 or more types may be used together.
  • Polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less) is particularly preferable.
  • the amount of the copper compound used is preferably 2 to 100 times in molar ratio to the nickel compound.
  • a protrusion having a needle shape can be obtained without using the above-described nonionic surfactant or the like.
  • a nonionic surfactant it is preferable to use a nonionic surfactant, and it is particularly preferable to use polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less). preferable.
  • the ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath.
  • the plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
  • a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
  • the surface of the resin particles is activated with an acid solution or an alkali solution
  • a phosphorus-containing reducing agent is used as the reducing agent.
  • the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
  • a silver plating solution containing hydrazine, a nonionic surfactant and a sulfur-containing organic compound as a reducing agent Is preferably used.
  • silver By immersing the resin particles in the silver plating bath, silver can be deposited on the surface of the resin particles on which the catalyst is formed, and a metal part containing silver can be formed.
  • silver-containing compound potassium silver cyanide, silver nitrate, silver thiosulfate sodium, silver gluconate, silver-cysteine complex, and silver methanesulfonate are preferable.
  • reducing agent examples include hydrazine, sodium hypophosphite, dimethylamine borane, sodium borohydride and potassium borohydride, formalin, glucose and the like.
  • reducing agent for forming the protrusion having a needle shape hydrazine monohydrate, hydrazine hydrochloride, and hydrazine sulfate are preferable.
  • the complexing agent is a monocarboxylic acid complexing agent such as sodium acetate or sodium propionate, a dicarboxylic acid complexing agent such as disodium malonate, a tricarboxylic acid complexing agent such as disodium succinate, lactic acid, DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic acids such as maleic acid
  • a complexing agent or a salt thereof is preferable. Only 1 type may be used for these preferable complexing agents, and 2 or more types may be used together.
  • the surfactant examples include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant, and a nonionic surfactant is particularly preferable.
  • Preferred nonionic surfactants are polyethers containing ether oxygen atoms.
  • Preferred nonionic surfactants include polyoxyethylene lauryl ether, polyethylene glycol, polypropylene glycol, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene nonylphenyl ether, polyoxyethylene polyoxypropylene alkylamine, And polyoxyalkylene adducts of ethylenediamine and the like.
  • polyoxyethylene monoalkyl ethers such as polyoxyethylene monobutyl ether, polyoxypropylene monobutyl ether, polyoxyethylene polyoxypropylene glycol monobutyl ether, polyethylene glycol or phenol ethoxylate.
  • the said surfactant only 1 type may be used and 2 or more types may be used together.
  • Polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less) is particularly preferable.
  • a protrusion having a needle shape can be obtained without using the above-described nonionic surfactant or the like.
  • a nonionic surfactant it is preferable to use a nonionic surfactant, and it is particularly preferable to use polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less). preferable.
  • Examples of the sulfur-containing organic compound include organic compounds having a sulfide or sulfonic acid group, thiourea compounds, and benzothiazole compounds.
  • Examples of the organic compound having a sulfide or sulfonic acid group include N, N-dimethyl-dithiocarbamic acid- (3-sulfopropyl) ester, 3-mercapto-propylsulfonic acid- (3-sulfopropyl) ester, 3-mercapto- Propylsulfonic acid sodium salt, 3-mercapto-1-propanesulfonic acid potassium salt, carbonic acid-dithio-o-ethyl ester, bissulfopropyl disulfide, bis- (3-sulfopropyl) -disulfide disodium salt, 3- ( Benzothiazolyl-s-thio) propylsulfonic acid sodium salt, pyridiniumpropylsulfobetaine, 1-s
  • a protrusion having a needle shape can be obtained without using the above-described sulfur-containing organic compound.
  • a sulfur-containing organic compound is preferably used, and thiourea is particularly preferably used.
  • the ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath.
  • the plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
  • a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
  • the surface of the resin particles is activated with an acid solution or an alkali solution
  • a phosphorus-containing reducing agent is used as the reducing agent.
  • the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
  • a high purity nickel plating solution containing hydrazine as a reducing agent is suitably used in an electroless high purity nickel plating method using a plating solution containing a nickel-containing compound, a complexing agent and a reducing agent.
  • high-purity nickel plating By immersing resin particles in a high-purity nickel plating bath, high-purity nickel plating can be deposited on the surface of the resin particles on which the catalyst is formed, and a metal portion of high-purity nickel can be formed.
  • nickel-containing compound examples include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate.
  • the nickel-containing compound is preferably nickel chloride.
  • reducing agent examples include hydrazine monohydrate, hydrazine hydrochloride, and hydrazine sulfate.
  • the reducing agent is preferably hydrazine monohydrate.
  • the complexing agent examples include monocarboxylic acid complexing agents such as sodium acetate and sodium propionate, dicarboxylic acid complexing agents such as disodium malonate, tricarboxylic acid complexing agents such as disodium succinate, and lactic acid.
  • monocarboxylic acid complexing agents such as sodium acetate and sodium propionate
  • dicarboxylic acid complexing agents such as disodium malonate
  • tricarboxylic acid complexing agents such as disodium succinate
  • lactic acid DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic such as maleic acid
  • amino acid complexing agents such as glycine and EDTA
  • amine complexing agents such
  • the pH of the plating solution In order to form a needle-like protrusion tapering on the outer surface of the metal part, it is preferable to adjust the pH of the plating solution to 8.0 or more.
  • An electroless plating solution using hydrazine as a reducing agent is accompanied by a sharp drop in pH when nickel is reduced by an oxidation reaction of hydrazine.
  • a buffering agent such as phosphoric acid, boric acid or carbonic acid.
  • the buffering agent is preferably boric acid having a buffering effect at pH 8.0 or higher.
  • the ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath.
  • the plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
  • a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
  • the surface of the resin particles is activated with an acid solution or an alkali solution
  • a phosphorus-containing reducing agent is used as the reducing agent.
  • the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
  • a palladium-nickel alloy plating containing hydrazine as a reducing agent.
  • a liquid is preferably used.
  • palladium-nickel alloy plating By immersing resin particles in a palladium-nickel alloy plating bath, palladium-nickel alloy plating can be deposited on the surface of the resin particles on which the catalyst is formed, and a metal part of palladium-nickel can be formed. .
  • nickel-containing compound examples include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate.
  • the nickel-containing compound is preferably nickel sulfate.
  • the palladium-containing compound examples include dichloroethylenediamine palladium (II), palladium chloride, dichlorodiammine palladium (II), dinitrodiammine palladium (II), tetraammine palladium (II) nitrate, tetraammine palladium (II) sulfate, oxalato diammine. Palladium (II), tetraammine palladium (II) oxalate, tetraammine palladium (II) chloride, etc. are mentioned.
  • the palladium-containing compound is preferably palladium chloride.
  • the stabilizer includes a lead compound, a bismuth compound, a thallium compound, and the like. Specific examples of these compounds include sulfates, carbonates, acetates, nitrates, and hydrochlorides of metals (lead, bismuth, thallium) constituting the compounds. In consideration of the influence on the environment, a bismuth compound or a thallium compound is preferable. As for these preferable stabilizers, only 1 type may be used and 2 or more types may be used together.
  • reducing agent examples include hydrazine monohydrate, hydrazine hydrochloride, and hydrazine sulfate.
  • the reducing agent is preferably hydrazine monohydrate.
  • the complexing agent examples include monocarboxylic acid complexing agents such as sodium acetate and sodium propionate, dicarboxylic acid complexing agents such as disodium malonate, tricarboxylic acid complexing agents such as disodium succinate, and lactic acid.
  • monocarboxylic acid complexing agents such as sodium acetate and sodium propionate
  • dicarboxylic acid complexing agents such as disodium malonate
  • tricarboxylic acid complexing agents such as disodium succinate
  • lactic acid DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic such as maleic acid Examples include acid complexing agents.
  • the complexing agent is preferably ethylenediamine which is an amino acid complexing agent.
  • the pH of the plating solution In order to form a needle-like protrusion tapering on the outer surface of the metal part, it is preferable to adjust the pH of the plating solution from 8.0 to 10.0. When the pH is 7.5 or lower, the stability of the plating solution is lowered and bath decomposition is caused. Therefore, the pH is preferably 8.0 or higher.
  • the ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath.
  • the plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
  • a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
  • the surface of the resin particles is activated with an acid solution or an alkali solution
  • a phosphorus-containing reducing agent is used as the reducing agent.
  • the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
  • a hypophosphite compound is included as a reducing agent.
  • a cobalt-nickel-phosphorus alloy plating solution containing a cobalt-containing compound is preferably used as a reaction initiation metal catalyst for the reducing agent.
  • the cobalt-nickel-phosphorus alloy By immersing the resin particles in the cobalt-nickel-phosphorus alloy plating bath, the cobalt-nickel-phosphorus alloy can be deposited on the surface of the resin particles on which the catalyst is formed.
  • the metal part containing can be formed.
  • the cobalt-containing compound is preferably cobalt sulfate, cobalt chloride, cobalt nitrate, cobalt acetate, or cobalt carbonate.
  • the cobalt-containing compound is more preferably cobalt sulfate.
  • nickel-containing compound examples include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate.
  • the nickel-containing compound is preferably nickel sulfate.
  • Examples of the phosphorus-containing reducing agent include hypophosphorous acid and sodium hypophosphite.
  • a boron-containing reducing agent may be used.
  • Examples of the boron-containing reducing agent include dimethylamine borane, sodium borohydride, and potassium borohydride.
  • the complexing agent is a monocarboxylic acid complexing agent such as sodium acetate or sodium propionate, a dicarboxylic acid complexing agent such as disodium malonate, a tricarboxylic acid complexing agent such as disodium succinate, lactic acid, DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic acids such as maleic acid
  • a complexing agent or a salt thereof is preferable. Only 1 type may be used for these preferable complexing agents, and 2 or more types may be used together.
  • the inorganic additive is preferably ammonium sulfate, ammonium chloride, or boric acid. As for these preferable inorganic additives, only 1 type may be used and 2 or more types may be used together. The inorganic additive is considered to act to promote precipitation of the electroless cobalt plating layer.
  • the amount of the cobalt compound used is preferably 2 to 100 times in molar ratio to the nickel compound.
  • a protrusion having a needle shape can be obtained without using the above-mentioned inorganic additive.
  • an inorganic additive it is preferable to use an inorganic additive, and it is particularly preferable to use ammonium sulfate.
  • the ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath.
  • the plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
  • the thickness of the entire metal part in the portion where there is no protrusion is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, Preferably it is 500 nm or less, Especially preferably, it is 400 nm or less.
  • the thickness of the entire metal part in the portion without the convex part is preferably 5 nm or more, more preferably 10 nm or more, further preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, More preferably, it is 500 nm or less, Most preferably, it is 400 nm or less.
  • the thickness of the entire metal part is equal to or more than the above lower limit, peeling of the metal part is suppressed. If the thickness of the entire metal part is less than or equal to the above upper limit, the difference in coefficient of thermal expansion between the base particle and the metal part becomes small, and the metal part becomes difficult to peel from the base particle.
  • the thickness of the metal part is the total thickness of the metal part (the total of the first and second metal parts). Thickness).
  • the thickness of the metal part in the portion of the outermost layer without the protrusion is preferably 1 nm or more, more preferably 10 nm or more, preferably 500 nm or less, more preferably 100 nm. It is as follows.
  • the thickness of the metal part in the portion of the outermost layer without the convex part is preferably 1 nm or more, more preferably 10 nm or more, preferably 500 nm or less, more preferably 100 nm or less.
  • the coating with the metal part of the outermost layer can be made uniform, the corrosion resistance is sufficiently high, and the connection resistance between the electrodes is sufficiently high Lower. Further, when the outermost layer is more expensive than the metal part of the inner layer, the thinner the outermost layer, the lower the cost.
  • the thickness of the metal part can be measured by observing the cross section of the metal-containing particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the metal-containing particles include a plurality of core substances that protrude the surface of the metal part, and the metal part is formed so as to form the plurality of protrusions or the plurality of protrusions in the metal part. It is more preferable to provide a plurality of core materials that are raised on the surface. Since the core substance is embedded in the metal part, it is easy for the metal part to have a plurality of protrusions or protrusions on the outer surface. However, in order to form convex portions or protrusions on the outer surfaces of the metal-containing particles and the metal portion, the core substance is not necessarily used.
  • metal nuclei are generated by electroless plating, and metal nuclei are attached to the surface of the substrate particles or metal parts, and further electroless Examples include a method of forming a metal part by plating.
  • a method of forming a metal part by electroless plating after attaching a core substance to the surface of the base particle, and a metal part by electroless plating on the surface of the base particle a method of forming a metal part by electroless plating after the core material is attached.
  • the core substance is added to the dispersion of the base particle, and the core substance is applied to the surface of the base particle, for example, van der Waals force.
  • the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
  • the metal part it is easy for the metal part to have a plurality of protrusions or a plurality of protrusions on the outer surface by embedding the core substance in the metal part.
  • the core substance is not necessarily used.
  • a method of forming a metal part by electroless plating after attaching a core substance to the surface of the base particle a method of forming a metal part by electroless plating on the surface of the base particle.
  • the method include forming a metal part by electroless plating after the core material has been formed, and adding a core substance in the middle of forming the metal part by electroless plating on the surface of the substrate particles. It is done.
  • the material of the core substance includes a conductive substance and a non-conductive substance.
  • the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers.
  • the conductive polymer include polyacetylene.
  • the non-conductive substance include silica, alumina, barium titanate, zirconia, and the like. Among them, metal is preferable because conductivity can be increased and connection resistance can be effectively reduced.
  • the core substance is preferably metal particles. As the metal that is the material of the core substance, the metals mentioned as the material of the conductive material can be used as appropriate.
  • the core material include barium titanate (Mohs hardness 4.5), nickel (Mohs hardness 5), silica (silicon dioxide, Mohs hardness 6-7), titanium oxide (Mohs hardness 7), zirconia. (Mohs hardness 8-9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10), and the like.
  • the inorganic particles are preferably nickel, silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, more preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, titanium oxide, zirconia.
  • Alumina, tungsten carbide or diamond is more preferable, and zirconia, alumina, tungsten carbide or diamond is particularly preferable.
  • the Mohs hardness of the core material is preferably 5 or more, more preferably 6 or more, still more preferably 7 or more, and particularly preferably 7.5 or more.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the average diameter (average particle diameter) of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes is effectively reduced.
  • the “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter).
  • the average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
  • the metal-containing particle according to the present invention includes an insulating substance disposed on the outer surface of the metal part.
  • an insulating substance disposed on the outer surface of the metal part.
  • the metal-containing particles when used for connection between the electrodes, a short circuit between adjacent electrodes can be prevented.
  • an insulating substance is present between the plurality of electrodes, so that a short circuit between electrodes adjacent in the lateral direction can be prevented instead of between the upper and lower electrodes.
  • the insulating substance between the metal part of a metal containing particle and an electrode can be easily excluded by pressurizing a metal containing particle with two electrodes in the case of the connection between electrodes.
  • the metal part Since the metal part has a plurality of protrusions on the outer surface, the insulating substance between the metal part of the metal-containing particles and the electrode can be easily excluded. Moreover, when a metal part has a some convex part on an outer surface, the insulating substance between the metal part of a metal containing particle and an electrode can be excluded easily.
  • the insulating substance is preferably an insulating particle because the insulating substance can be more easily removed during crimping between the electrodes.
  • Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid ester copolymer.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, etc.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
  • a method of disposing an insulating material on the surface of the metal part there are a chemical method, a physical or mechanical method, and the like.
  • the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. Especially, since the insulating substance is difficult to be detached, a method of arranging the insulating substance on the surface of the metal part through a chemical bond is preferable.
  • the outer surface of the metal part and the surface of an insulating substance may each be coated with a compound having a reactive functional group.
  • the outer surface of the metal part and the surface of the insulating substance may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the surface of the insulating substance via a polymer electrolyte such as polyethyleneimine.
  • the average diameter (average particle diameter) of the insulating material can be appropriately selected depending on the particle diameter of the metal-containing particles and the use of the metal-containing particles.
  • the average diameter (average particle diameter) of the insulating substance is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the average diameter of the insulating material is equal to or more than the above lower limit, when the metal-containing particles are dispersed in the binder resin, the metal parts in the plurality of metal-containing particles are difficult to contact each other.
  • the average diameter of the insulating material is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating material between the electrode and the metal-containing particles at the time of connection between the electrodes. There is no need for heating.
  • the “average diameter (average particle diameter)” of the insulating material indicates a number average diameter (number average particle diameter).
  • the average diameter of the insulating material is determined using a particle size distribution measuring device or the like.
  • the metal-containing particles according to the present invention can form a particle-connected body as shown in FIG. 15 by melting the protrusions of the metal part and then solidifying.
  • grain coupling body is useful as a novel material which can improve connection reliability higher than the conventional metal containing particle
  • a particle connected body in which a plurality of metal-containing particles also referred to as a metal-containing particle main body as distinguished from the metal-containing particles according to the present invention
  • a metal-containing particle main body as distinguished from the metal-containing particles according to the present invention
  • the metal-containing particles and the columnar connecting portions constituting the particle-linked body are formed by melting and solidifying the protrusions of the metal-containing particles according to the present invention. Particle connected body.
  • the particle linked body of the present invention can be produced by the method described above, but the production method is not limited to the method described above.
  • the metal-containing particles and the columnar bodies may be manufactured separately, and the metal-containing particles may be connected by the columnar bodies to form the columnar connecting portions.
  • the columnar connecting portion may be a columnar connecting portion or a polygonal columnar connecting portion, and the central portion of the column may be thicker or thinner.
  • the diameter (d) of the circumscribed circle of the connection surface with the metal-containing particles is preferably 3 nm or more, more preferably 100 nm or more, preferably 10,000 nm or less, more preferably 1000 nm or less.
  • the length (l) of the columnar connecting portion is preferably 3 nm or more, more preferably 100 nm or more, preferably 10,000 nm or less, more preferably 1000 nm or less.
  • the ratio ((d) / (l)) of the length (l) of the columnar connecting portion to the diameter (d) of the circumscribed circle of the connection surface with the metal-containing particles is preferably 0.001. As mentioned above, More preferably, it is 0.1 or more, Preferably it is 100 or less, More preferably, it is 10 or less.
  • the particle linked body of the present invention may be a linked body of two metal-containing particles as shown in FIG. 15 or a linked body of three or more metal-containing particles.
  • connection material The connection material according to the present invention is suitably used for forming a connection portion that connects two connection target members.
  • the connection material includes the metal-containing particles described above and a resin. It is preferable that the connection material is used for forming the connection portion by melting the tips of the protrusions of the metal portion of the plurality of metal-containing particles and then solidifying.
  • the resin is not particularly limited.
  • the resin is a binder that disperses the metal-containing particles.
  • the resin preferably includes a thermoplastic resin or a curable resin, and more preferably includes a curable resin.
  • the curable resin include a photocurable resin and a thermosetting resin.
  • the photocurable resin preferably contains a photocurable resin and a photopolymerization initiator.
  • the thermosetting resin preferably contains a thermosetting resin and a thermosetting agent.
  • the resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said resin, only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • a reducing agent is used when the protrusion of the metal part contains a metal oxide.
  • the reducing agent include alcohol compounds (compounds having an alcoholic hydroxyl group), carboxylic acid compounds (compounds having a carboxy group), amine compounds (compounds having an amino group), and the like.
  • the said reducing agent only 1 type may be used and 2 or more types may be used together.
  • the alcohol compound examples include alkyl alcohols. Specific examples of the alcohol compound include, for example, ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol. , Pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol and icosyl alcohol.
  • the alcohol compound is not limited to a primary alcohol type compound, but a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol, and an alcohol compound having a cyclic structure can also be used. Furthermore, as the alcohol compound, a compound having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used. Moreover, you may use compounds, such as a citric acid, ascorbic acid, and glucose, as said alcohol compound.
  • Examples of the carboxylic acid compound include alkyl carboxylic acids.
  • Specific examples of the carboxylic acid compound include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid.
  • Examples include acids, octadecanoic acid, nonadecanoic acid and icosanoic acid.
  • the carboxylic acid compound is not limited to a primary carboxylic acid type compound, and a secondary carboxylic acid type compound, a tertiary carboxylic acid type compound, a dicarboxylic acid, and a carboxyl compound having a cyclic structure can also be used.
  • Examples of the amine compound include alkylamines. Specific examples of the amine compound include butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, Examples include heptadecylamine, octadecylamine, nonadecylamine and icodecylamine.
  • the amine compound may have a branched structure.
  • Examples of the amine compound having a branched structure include 2-ethylhexylamine and 1,5-dimethylhexylamine.
  • the amine compound is not limited to a primary amine type compound, and a secondary amine type compound, a tertiary amine type compound, and an amine compound having a cyclic structure can also be used.
  • the reducing agent may be an organic substance having an aldehyde group, an ester group, a sulfonyl group, or a ketone group, or an organic substance such as a carboxylic acid metal salt. While the carboxylic acid metal salt is used as a precursor of metal particles, it also contains an organic substance, so that it is also used as a reducing agent for metal oxide particles.
  • connection material is, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • various additives such as ultraviolet absorbers, lubricants, antistatic agents and flame retardants may be contained.
  • connection material is preferably used for conductive connection, and is preferably a conductive connection material.
  • the connection material is preferably used for anisotropic conductive connection, and is preferably an anisotropic conductive connection material.
  • the connecting material can be used as a paste and a film. When the connection material is a film, a film containing no metal-containing particles may be laminated on a film containing metal-containing particles.
  • the paste is preferably a conductive paste, and more preferably an anisotropic conductive paste.
  • the film is preferably a conductive film, and more preferably an anisotropic conductive film.
  • the content of the resin is preferably 1% by weight or more, more preferably 5% by weight or more, 10% by weight or more, or 30% by weight or more. It may be 70% by weight or more, preferably 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the resin is not less than the above lower limit and not more than the above upper limit, connection reliability is further enhanced.
  • the content of the metal-containing particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 99% by weight or less, more preferably 95% by weight.
  • it may be 80% by weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight or less. Good.
  • connection reliability is further enhanced.
  • the metal-containing particles when the content of the metal-containing particles is not less than the lower limit and not more than the upper limit, the metal-containing particles can be sufficiently present between the first and second connection target members, It can further suppress that the space
  • connection material may contain metal atom-containing particles that do not have base material particles separately from the metal-containing particles.
  • the metal atom-containing particles include metal particles and metal compound particles.
  • the metal compound particle includes a metal atom and an atom other than the metal atom.
  • Specific examples of the metal compound particles include metal oxide particles, metal carbonate particles, metal carboxylate particles, and metal complex particles.
  • the metal compound particles are preferably metal oxide particles.
  • the metal oxide particles are sintered after becoming metal particles by heating at the time of connection in the presence of a reducing agent.
  • the metal oxide particles are metal particle precursors.
  • the metal carboxylate particles include metal acetate particles.
  • the metal constituting the metal particles and the metal oxide particles examples include silver, copper, nickel, and gold. Silver or copper is preferred, and silver is particularly preferred. Therefore, the metal particles are preferably silver particles or copper particles, and more preferably silver particles.
  • the metal oxide particles are preferably silver oxide particles or copper oxide particles, and more preferably silver oxide particles. When silver particles and silver oxide particles are used, there are few residues after connection and the volume reduction rate is very small. Examples of the silver oxide in the silver oxide particles include Ag 2 O and AgO.
  • the metal atom-containing particles are preferably sintered by heating at less than 400 ° C.
  • the temperature at which the metal atom-containing particles are sintered (sintering temperature) is more preferably 350 ° C. or lower, and preferably 300 ° C. or higher.
  • sintering temperature is more preferably 350 ° C. or lower, and preferably 300 ° C. or higher.
  • connection material containing the metal atom-containing particles is a connection material containing metal particles having an average particle diameter of 1 nm or more and 100 nm or less, or reduced with metal oxide particles having an average particle diameter of 1 nm or more and 50 ⁇ m or less. It is preferable that it is a connection material containing an agent. When such a connection material is used, the metal atom-containing particles can be satisfactorily sintered by heating during connection.
  • the average particle diameter of the metal oxide particles is preferably 5 ⁇ m or less.
  • the particle diameter of the metal atom-containing particles indicates the diameter when the metal atom-containing particles are spherical, and indicates the maximum diameter when the metal atom-containing particles are not true spherical.
  • the content of the metal atom-containing particles is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and 100% by weight or less, preferably 99%. % By weight or less, more preferably 90% by weight or less.
  • the total amount of the connecting material may be the metal atom-containing particles.
  • a reducing agent is used when the metal atom-containing particles are metal oxide particles.
  • the reducing agent include alcohol compounds (compounds having an alcoholic hydroxyl group), carboxylic acid compounds (compounds having a carboxy group), amine compounds (compounds having an amino group), and the like.
  • the said reducing agent only 1 type may be used and 2 or more types may be used together.
  • the alcohol compound examples include alkyl alcohols. Specific examples of the alcohol compound include, for example, ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol. , Pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol and icosyl alcohol.
  • the alcohol compound is not limited to a primary alcohol type compound, but a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol, and an alcohol compound having a cyclic structure can also be used. Furthermore, as the alcohol compound, a compound having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used. Moreover, you may use compounds, such as a citric acid, ascorbic acid, and glucose, as said alcohol compound.
  • Examples of the carboxylic acid compound include alkyl carboxylic acids.
  • Specific examples of the carboxylic acid compound include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid.
  • Examples include acids, octadecanoic acid, nonadecanoic acid and icosanoic acid.
  • the carboxylic acid compound is not limited to a primary carboxylic acid type compound, and a secondary carboxylic acid type compound, a tertiary carboxylic acid type compound, a dicarboxylic acid, and a carboxyl compound having a cyclic structure can also be used.
  • Examples of the amine compound include alkylamines. Specific examples of the amine compound include butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, Examples include heptadecylamine, octadecylamine, nonadecylamine and icodecylamine.
  • the amine compound may have a branched structure.
  • Examples of the amine compound having a branched structure include 2-ethylhexylamine and 1,5-dimethylhexylamine.
  • the amine compound is not limited to a primary amine type compound, and a secondary amine type compound, a tertiary amine type compound, and an amine compound having a cyclic structure can also be used.
  • the reducing agent may be an organic substance having an aldehyde group, an ester group, a sulfonyl group or a ketone group, or an organic substance such as a carboxylic acid metal salt. While the carboxylic acid metal salt is used as a precursor of metal particles, it also contains an organic substance, so that it is also used as a reducing agent for metal oxide particles.
  • the reducing agent tends to aggregate at the time of joining and voids are likely to occur at the joint.
  • the carboxylic acid metal salt By using the carboxylic acid metal salt, the carboxylic acid metal salt is not melted by heating at the time of joining, so that the generation of voids can be suppressed.
  • a metal compound containing an organic substance may be used as the reducing agent.
  • the content of the reducing agent in 100% by weight of the connecting material is preferably 1% by weight or more, more preferably 10% by weight or more, and preferably 90% by weight or less. More preferably, it is 70 weight% or less, More preferably, it is 50 weight% or less.
  • the content of the reducing agent is not less than the above lower limit, the metal atom-containing particles can be sintered more densely. As a result, heat dissipation and heat resistance at the joint are also increased.
  • the content of the metal oxide particles is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 60% by weight or more, and preferably 99.99% by weight or less. More preferably, it is 99.9% by weight or less, still more preferably 99.5% by weight or less, still more preferably 99% by weight or less, particularly preferably 90% by weight or less, and most preferably 80% by weight or less.
  • the binder used for the paste is not particularly limited.
  • the binder preferably disappears when the metal atom-containing particles are sintered.
  • the said binder only 1 type may be used and 2 or more types may be used together.
  • binder examples include aliphatic solvents, ketone solvents, aromatic solvents, ester solvents, ether solvents, alcohol solvents, paraffin solvents, petroleum solvents, and the like.
  • Examples of the aliphatic solvent include cyclohexane, methylcyclohexane, and ethylcyclohexane.
  • Examples of the ketone solvent include acetone and methyl ethyl ketone.
  • Examples of the aromatic solvent include toluene and xylene.
  • Examples of the ester solvent include ethyl acetate, butyl acetate and isopropyl acetate.
  • Examples of the ether solvent include tetrahydrofuran (THF) and dioxane.
  • Examples of the alcohol solvent include ethanol and butanol.
  • Examples of the paraffinic solvent include paraffin oil and naphthenic oil.
  • Examples of the petroleum solvent include mineral terpenes and naphtha.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members.
  • connection portion is formed of the metal-containing particles or the connection material.
  • the material of the connection part is the metal-containing particle or the connection material.
  • the method for manufacturing a connection structure includes the step of arranging the metal-containing particles or the connection material between the first connection target member and the second connection target member.
  • the metal-containing particles are heated to melt the tips of the protrusions of the metal part, solidify after melting, and the first connection target member and the second connection are formed by the metal-containing particles or the connection material. Forming a connection portion connecting the target member.
  • FIG. 9 is a cross-sectional view schematically showing a connection structure using metal-containing particles according to the first embodiment of the present invention.
  • a connection structure 51 shown in FIG. 9 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53.
  • Connection portion 54 includes metal-containing particles 1 and a resin (such as a cured resin).
  • the connection part 54 is formed of a connection material including the metal-containing particles 1.
  • the material of the connection part 54 is the connection material.
  • the connection portion 54 is preferably formed by curing a connection material.
  • grains 1 is solidified after fuse
  • the connection part 54 includes a joined body of a plurality of metal-containing particles 1. In the connection structure 51, the metal-containing particles 1 and the first connection target member 51 are joined, and the metal-containing particles 1 and the second connection target member 53 are joined.
  • metal-containing particles 1A, 1B, 1C, 1D, 1E, 1F, and 1G may be used.
  • the first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface).
  • the first electrode 52 a and the second electrode 53 a are electrically connected by one or more metal-containing particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the metal-containing particles 1.
  • the metal-containing particle 1 and the first electrode 52a are joined, and the metal-containing particle 1 and the second electrode 53a are joined.
  • connection material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components that are circuit boards such as printed boards, flexible printed boards, glass epoxy boards, and glass boards.
  • the connection target member is preferably an electronic component.
  • the metal-containing particles are preferably used for electrical connection of electrodes in an electronic component.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a SUS electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • FIG. 10 is a cross-sectional view schematically showing a modification of the connection structure using the metal-containing particles according to the first embodiment of the present invention.
  • connection structure 61 shown in FIG. 10 connects the first connection target member 62, the second connection target members 63 and 64, and the first connection target member 62 and the second connection target members 63 and 64.
  • Connection portions 65 and 66 are formed using a connection material including metal-containing particles 1 and other metal-containing particles 67.
  • the material of the connection parts 65 and 66 is the connection material.
  • connection portion 65 and the second connection target member 63 are arranged on the first surface (one surface) side of the first connection target member 62.
  • the connection part 65 connects the first connection target member 62 and the second connection target member 63.
  • connection part 66 and the second connection target member 64 are arranged on the second surface (the other surface) side opposite to the first surface of the first connection target member 62.
  • the connection part 66 connects the first connection target member 62 and the second connection target member 64.
  • the metal-containing particles 1 and the metal-containing particles 67 are arranged between the first connection target member 62 and the second connection target members 63 and 64, respectively.
  • the metal atom-containing particles and the metal-containing particles 1 are in a sintered sintered state.
  • the metal-containing particles 1 are arranged between the first connection target member 62 and the second connection target members 63 and 64.
  • the first connection target member 62 and the second connection target members 63 and 64 are connected by the metal-containing particles 1.
  • connection structure 61 includes the heat sink 68, the second connection target member 63, the connection portion 65, the first connection target member 62, the connection portion 66, the second connection target member 64, and the heat sink 69 stacked in this order. It has the part which was made.
  • connection target member 62 a power semiconductor element made of Si, SiC, GaN or the like used for a rectifier diode, a power transistor (power MOSFET, insulated gate bipolar transistor), a thyristor, a gate turn-off thyristor, a triac, etc. Is mentioned.
  • a large amount of heat is likely to be generated in the first connection target member 62 when the connection structure 61 is used. Therefore, it is necessary to efficiently dissipate the heat generated from the first connection target member 62 to the heat sinks 68 and 69. For this reason, the connection portions 65 and 66 disposed between the first connection target member 62 and the heat sinks 68 and 69 are required to have high heat dissipation and high reliability.
  • Examples of the second connection target members 63 and 64 include a substrate made of ceramic, plastic, or the like.
  • the connecting portions 65 and 66 are formed by heating the connecting material to melt the tips of the metal-containing particles and then solidifying them.
  • grain coupling body and connection material of this invention can also be applied to the member for conduction
  • an aspect of the continuity inspection member will be described.
  • the member for continuity inspection is not limited to the following aspect.
  • the continuity inspection member and the continuity member may be sheet-like continuity members.
  • FIG. 19 (a) and 19 (b) are a plan view and a cross-sectional view showing an example of a continuity test member.
  • FIG. 19B is a cross-sectional view taken along the line AA in FIG.
  • 19 (a) and 19 (b) includes a base 12 having a through hole 12a and a conductive portion 13 disposed in the through hole 12a of the base 12.
  • the material of the conductive part 13 includes the metal-containing particles.
  • the continuity inspection member 11 may be a continuity member.
  • the base is a member that becomes a substrate of the continuity testing member.
  • the substrate preferably has an insulating property, and the substrate is preferably formed of an insulating material.
  • An example of the insulating material is an insulating resin.
  • the insulating resin constituting the substrate may be, for example, either a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin include polyester resin, polystyrene resin, polyethylene resin, polyamide resin, ABS resin, and polycarbonate resin.
  • the thermosetting resin include epoxy resin, urethane resin, polyimide resin, polyether ether ketone resin, polyamide imide resin, polyether imide resin, silicone resin, and phenol resin.
  • the silicone resin include silicone rubber.
  • the base is formed of an insulating resin
  • only one type of insulating resin constituting the base may be used, or two or more types may be used in combination.
  • the base is, for example, a plate shape or a sheet shape.
  • the sheet form includes a film form.
  • the thickness of the substrate can be appropriately set according to the type of the continuity test member, and may be, for example, 0.005 mm or more and 50 mm or less.
  • the size of the substrate in plan view can also be set appropriately according to the target inspection apparatus.
  • the base can be obtained, for example, by molding an insulating material such as the insulating resin as a raw material into a desired shape.
  • a plurality of the through holes of the base body are arranged on the base body. It is preferable that the through hole penetrates in the thickness direction of the substrate.
  • the through hole of the base body may be formed in a columnar shape, but is not limited to a columnar shape, and may be formed in other shapes, for example, a polygonal column shape. Further, the through hole may be formed in a tapered shape that tapers in one direction, or may be formed in a distorted shape.
  • the size of the through hole for example, the apparent area of the through hole in plan view, can be formed to an appropriate size, for example, formed to a size that can accommodate and hold the conductive portion. Just do it. If the through hole is, for example, a cylindrical shape, the diameter of the through hole is preferably 0.01 mm or more, and preferably 10 mm or less.
  • all of the through holes of the base body may have the same shape and the same size, or a part of the through holes of the base body may have a different shape or size from other through holes. .
  • the number of the through holes of the base body can be set within an appropriate range as long as the number of the through holes can be inspected, and can be appropriately set according to a target inspection apparatus.
  • the location of the through hole of the base can also be set as appropriate according to the target inspection apparatus.
  • the method for forming the through hole of the substrate is not particularly limited, and the through hole can be formed by a known method (for example, laser processing).
  • the conductive part in the through hole of the base has conductivity.
  • the conductive part includes particles derived from the metal-containing particles.
  • the conductive part is formed by accommodating a plurality of metal-containing particles in a through hole.
  • the conductive part includes an aggregate (particle group) of particles derived from metal-containing particles.
  • the material for the conductive part may include materials other than the metal-containing particles.
  • the material of the conductive part can contain a binder in addition to the metal-containing particles.
  • the metal-containing particles are more firmly aggregated, whereby the particles derived from the metal-containing particles are easily held in the through holes.
  • the binder is not particularly limited, and examples thereof include a photocurable resin and a thermosetting resin.
  • the photocurable resin preferably contains a photocurable resin and a photopolymerization initiator.
  • the thermosetting resin preferably contains a thermosetting resin and a thermosetting agent.
  • the resin include silicone copolymers, vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said resin, only 1 type may be used and 2 or more types may be used together.
  • the particles derived from the metal-containing particles are preferably closely packed in the through holes. In this case, a more reliable continuity test can be performed by the continuity test member. It is preferable that the conductive portion is accommodated in the through-hole so as to be conductive across the front and back surfaces of the conductive inspection member or the conductive member.
  • the particles derived from the metal-containing particles are continuously present from the surface to the back surface of the conductive part while the particles derived from the metal-containing particles are in contact with each other. In this case, the conductivity of the conductive part is improved.
  • the method for accommodating the conductive part in the through hole is not particularly limited.
  • the conductive part is formed in the through-hole by filling the metal-containing particle in the through hole by a method of applying the material containing the metal-containing particle and the binder to the substrate, and curing it under appropriate conditions. Can do.
  • an electroconductive part is accommodated in a through-hole.
  • the material containing the metal-containing particles and the binder may contain a solvent as necessary.
  • the material containing the metal-containing particles and the binder is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 10 parts by weight or more, preferably 100 parts by weight of the metal-containing particles in terms of solid content. 70 parts by weight or less, more preferably 50 parts by weight or less.
  • the above continuity test member can be used as a probe card.
  • the continuity test member may include other components as long as the effects of the present invention are not impaired.
  • 20 (a) to 20 (c) are diagrams schematically showing a state in which the electrical characteristics of the electronic circuit device are inspected by the continuity inspection member.
  • the electronic circuit device is a BGA substrate 31 (ball grid array substrate).
  • the BGA substrate 31 is a substrate having a structure in which connection pads are arranged on a multilayer substrate 31A in a lattice shape, and solder balls 31B are arranged on each pad.
  • the continuity test member 21 is a probe card.
  • a plurality of through holes 22a are formed in a base 22, and a conductive portion 23 is accommodated in the through hole 22a.
  • a BGA substrate 31 and a continuity test member 21 are prepared as shown in FIG. 20A, and the BGA substrate 31 is brought into contact with the continuity test member 21 and compressed as shown in FIG. At this time, the solder ball 31B contacts the conductive portion 23 in the through hole 22a.
  • the ammeter 32 can be connected and a continuity test can be performed to determine whether the BGA substrate 31 is acceptable.
  • Example 1 As the base particle A, divinylbenzene copolymer resin particles (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 3.0 ⁇ m were prepared.
  • divinylbenzene copolymer resin particles (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 3.0 ⁇ m were prepared.
  • the base particle A After 10 parts by weight of the base particle A was dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, the base particle A was taken out by filtering the solution. Subsequently, the base particle A was added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particle A. Suspension (A) was obtained by fully washing the base particle A whose surface was activated, and then adding and dispersing in 500 parts by weight of distilled water.
  • Suspension (B) was put into a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixture (C).
  • an electroless copper plating solution a mixed solution containing 250 g / L of copper sulfate, 150 g / L of ethylenediaminetetraacetic acid, 100 g / L of sodium gluconate, and 50 g / L of formaldehyde is adjusted to pH 10.5 with ammonia.
  • a plating solution (D) was prepared.
  • a silver plating solution (E) prepared by adjusting a mixed solution containing 30 g / L of silver nitrate, 100 g / L of succinimide and 20 g / L of formaldehyde to pH 8.0 with aqueous ammonia is prepared. did.
  • a plating solution for forming a protrusion (F) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
  • the copper plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 55 ° C. to perform electroless copper plating.
  • the dropping rate of the copper plating solution (D) was 30 mL / min, the dropping time was 30 minutes, and electroless copper plating was performed.
  • the copper metal part was arrange
  • the particles are taken out and washed with water, whereby a copper metal part is disposed on the surface of the base particle A and a metal part having a convex part on the surface. Obtained particles.
  • the particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
  • the silver plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating.
  • the dropping rate of the silver plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed.
  • the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes.
  • the protrusion forming plating solution (F) silver plating was performed while dispersing the generated silver protrusion nuclei by ultrasonic stirring (protrusion forming step). Thereafter, the particles are taken out by filtration, washed with water, and dried, so that copper and silver metal parts (thickness of the whole metal part in the part having no convex part: 0.1 ⁇ m) are arranged on the surface of the base particle A.
  • grains provided with the metal part which has a convex part on the surface and has a some protrusion on the surface of a convex part were obtained.
  • Example 2 Metal-containing particles were obtained in the same manner as in Example 1 except that the metal nickel particle slurry was changed to alumina particle slurry (average particle diameter 150 nm).
  • Example 3 The suspension (A) obtained in Example 1 was put into a solution containing nickel sulfate 40 ppm, trisodium citrate 2 g / L, and aqueous ammonia 10 g / L to obtain a particle mixture (B).
  • a plating solution (C) for forming needle-like protrusions which is an electroless copper-nickel-phosphorus alloy plating solution obtained by adjusting a mixed solution containing polyethylene glycol 1000 (molecular weight: 1000) 5 mg / L to pH 10.0 with ammonia water. Prepared.
  • a silver plating solution (D) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. .
  • a plating solution for forming a protrusion (E) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
  • the needle-like projection forming plating solution (C) was gradually dropped into the dispersed particle mixture (B) adjusted to 70 ° C. to form needle-like projections.
  • the electroless copper-nickel-phosphorus alloy plating was carried out at a dropping rate of the needle-like projection forming plating solution (C) of 40 mL / min and a dropping time of 60 minutes (acicular projection-forming and copper-nickel-phosphorus alloy plating). Process). Thereafter, the particles were taken out by filtration to obtain particles (F) having a metal part with a copper-nickel-phosphorus alloy metal part disposed on the surface of the base particle A and having a convex part on the surface. The particles (F) were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (G).
  • the particles are taken out and washed with water, so that the copper-nickel-phosphorus alloy metal part is arranged on the surface of the base particle A, and the surface is acicular.
  • grains provided with the metal part which has a convex part were obtained.
  • the particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
  • the silver plating solution (D) was gradually dropped into the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating.
  • the dropping rate of the silver plating solution (D) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed.
  • the protrusion forming plating solution (E) was gradually dropped to form protrusions.
  • the protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (E) of 1 mL / min and a dropping time of 10 minutes.
  • silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step).
  • the particles are taken out by filtration, washed with water, and dried to obtain a copper-nickel-phosphorus alloy and a silver metal part on the surface of the base particle A (total thickness of the metal part in the part having no projection: 0 0.1 ⁇ m) was obtained, and metal-containing particles having a plurality of needle-like protrusions on the surface and a metal part having a plurality of protrusions on the surface of the protrusion were obtained.
  • Example 4 The suspension (A) obtained in Example 1 was put into a solution containing 80 g / L of nickel sulfate, 10 ppm of thallium nitrate, and 5 ppm of bismuth nitrate to obtain a particle mixture (B).
  • a plating solution (C) for forming needle-like protrusions which is an electroless high-purity nickel plating solution adjusted to pH 9.0 with sodium hydroxide, was prepared.
  • a silver plating solution (D) prepared by adjusting a mixed solution containing silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia is prepared. did.
  • a plating solution for forming a protrusion (E) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
  • the needle-like projection forming plating solution (C) was gradually dropped into the dispersed particle mixture (B) adjusted to 60 ° C. to form needle-like projections.
  • Electrolytic high-purity nickel plating was carried out at a dropping rate of the needle-like protrusion-forming plating solution (C) of 20 mL / min and a dropping time of 50 minutes (needle-like protrusion formation and copper-nickel-phosphorus alloy plating step). Thereafter, the particles were taken out by filtration to obtain particles (F) having a high purity nickel metal part disposed on the surface of the base particle A and having a metal part having a convex part on the surface. The particles (F) were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (G).
  • the particles are taken out and washed, whereby a high-purity nickel metal part is disposed on the surface of the base particle A and has a needle-like convex part on the surface. Particles with a metal part were obtained.
  • the particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
  • the silver plating solution (D) was gradually dropped into the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating.
  • the dropping rate of the silver plating solution (D) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed.
  • the protrusion forming plating solution (E) was gradually dropped to form protrusions.
  • the protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (E) of 1 mL / min and a dropping time of 10 minutes.
  • silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step).
  • the particles are taken out by filtration, and high-purity nickel and silver metal parts are arranged on the surface of the base particle A, and have a needle-like convex part on the surface, and a plurality of protrusions on the surface of the convex part A particle mixed liquid (I) having a metal part having the following was obtained.
  • the particles are taken out, washed with water, and dried to obtain high-purity nickel and silver metal parts on the surface of the base particle A (the metal part in the part having no protrusions).
  • Total thickness: 0.1 ⁇ m) was arranged, and metal-containing particles having a plurality of needle-like protrusions on the surface and a metal part having a plurality of protrusions on the surface of the protrusions were obtained.
  • Example 5 The suspension (A) obtained in Example 1 was put in a solution containing 500 ppm of silver nitrate, 10 g / L of succinimide, and 10 g / L of aqueous ammonia to obtain a particle mixture (B).
  • a silver plating solution (C) was prepared by adjusting a mixed solution containing 30 g / L of silver nitrate, 100 g / L of succinimide, and 20 g / L of formaldehyde to pH 8 with aqueous ammonia.
  • a plating solution (D) (pH 10.0) for protrusion formation containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
  • the electroless silver plating solution (C) was gradually added dropwise to the dispersed particle mixture (B) adjusted to 60 ° C. to form needle-like protrusions.
  • the electroless silver plating solution (C) was dropped at a rate of 10 mL / min and a dropping time was 30 minutes (electroless silver plating step).
  • the protrusion forming plating solution (D) was gradually dropped to form protrusions.
  • the protrusion formation was carried out at a dropping rate of the plating solution for protrusion formation (D) of 1 mL / min and a dropping time of 10 minutes.
  • the projection forming plating solution (D) silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step). Thereafter, the particles are taken out by filtration, washed with water, and dried, whereby a silver metal part (the thickness of the whole metal part in the part having no protrusions: 0.1 ⁇ m) is arranged on the surface of the base particle A.
  • a metal-containing particle comprising a metal part having a plurality of protrusions on the surface was obtained.
  • Example 6 The suspension (A) obtained in Example 1 was placed in a solution containing 500 ppm of potassium cyanide, 10 g / L of potassium cyanide, and 10 g / L of potassium hydroxide to obtain a particle mixture (B).
  • the electroless silver plating solution (C) was gradually added dropwise to the dispersed particle mixture (B) adjusted to 80 ° C. to form needle-like protrusions.
  • the dropping rate of the electroless silver plating solution (C) was 10 mL / min, and the dropping time was 60 minutes, and electroless silver plating was performed (acicular protrusion formation and silver plating step). Thereafter, the particles are taken out by filtration, washed with water, and dried, whereby a silver metal part (the thickness of the whole metal part in the part where there is no protrusion: 0.1 ⁇ m) is arranged on the surface of the resin particles, Metal-containing particles provided with a silver metal portion on which a plurality of needle-like protrusions were formed were obtained.
  • Example 7 The suspension (A) obtained in Example 1 was placed in a solution containing 500 ppm of potassium cyanide, 10 g / L of potassium cyanide, and 10 g / L of potassium hydroxide to obtain a particle mixture (B).
  • a silver plating solution (D) prepared by adjusting a mixed solution containing silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia is prepared. did.
  • a plating solution for forming a protrusion (E) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
  • the electroless silver plating solution (C) was gradually added dropwise to the dispersed particle mixture (B) adjusted to 80 ° C. to form needle-like protrusions.
  • the dropping rate of the electroless silver plating solution (C) was 10 mL / min, the dropping time was 45 minutes, and electroless silver plating was performed (acicular protrusion formation and silver plating step).
  • the particles were taken out by filtration, and a particle (F) having a silver metal part on the surface of the base particle A and having a metal part having a needle-like convex part on the surface was obtained.
  • the particle mixture (G) was obtained by adding and dispersing the particles (F) in 500 parts by weight of distilled water.
  • the silver plating solution (D) was gradually dropped into the dispersed particle mixture (G) adjusted to 60 ° C. to perform electroless silver plating.
  • the dropping rate of the silver plating solution (D) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed.
  • the protrusion forming plating solution (E) was gradually dropped to form protrusions.
  • the protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (E) of 1 mL / min and a dropping time of 10 minutes.
  • silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step).
  • the particles are taken out by filtration, washed with water, and dried, whereby a silver metal part (the thickness of the entire metal part in the part having no convex part: 0.1 ⁇ m) is arranged on the surface of the base particle A.
  • a silver metal part (the thickness of the entire metal part in the part having no convex part: 0.1 ⁇ m) is arranged on the surface of the base particle A.
  • grains provided with the metal part which has a some needle-like convex part on the surface and has a some protrusion on the surface of a convex part were obtained.
  • Example 8 The suspension (B) obtained in Example 1 was put in a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate and 20 ppm of bismuth nitrate to obtain a particle mixture (C).
  • an electroless nickel-tungsten-boron alloy plating solution a mixed solution containing nickel sulfate 100 g / L, sodium tungstate 5 g / L, dimethylamine borane 30 g / L, bismuth nitrate 10 ppm, and trisodium citrate 30 g / L.
  • An electroless nickel-tungsten-boron alloy plating solution (D) adjusted to pH 6 with sodium hydroxide was prepared.
  • a silver plating solution (E) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. .
  • a plating solution for forming a protrusion (F) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
  • the electroless nickel-tungsten-boron alloy plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 60 ° C. to perform electroless nickel-tungsten-boron alloy plating.
  • the electroless nickel-tungsten-boron alloy plating solution (D) was dropped at a rate of 15 mL / min and the dropping time was 60 minutes to perform electroless nickel-tungsten-boron alloy plating.
  • the particles are taken out and washed with water, whereby a nickel-tungsten-boron alloy metal layer is disposed on the surface of the base material particle A, and a convex portion is formed on the surface.
  • grains provided with the metal part which has were obtained.
  • the particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
  • the silver plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating.
  • the dropping rate of the silver plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed.
  • the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes.
  • protrusion forming plating solution (F) silver plating was performed while dispersing the generated silver protrusion nuclei by ultrasonic stirring (protrusion forming step). Thereafter, the particles are removed by filtration, washed with water, and dried, whereby the nickel-tungsten-boron alloy and the silver metal part (the thickness of the entire metal part in the part having no protrusions: 0 on the surface of the base particle A: 0 0.1 ⁇ m) was obtained, and metal-containing particles were obtained that had a plurality of convex portions on the surface and a metal portion having a plurality of protrusions on the surface of the convex portions.
  • Example 9 The suspension (B) obtained in Example 1 was put in a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate and 20 ppm of bismuth nitrate to obtain a particle mixture (C).
  • an electroless nickel-tungsten-boron alloy plating solution a mixed solution containing nickel sulfate 100 g / L, sodium tungstate 2 g / L, dimethylamine borane 30 g / L, bismuth nitrate 10 ppm, and trisodium citrate 30 g / L.
  • An electroless nickel-tungsten-boron alloy plating solution (D) adjusted to pH 6 with sodium hydroxide was prepared.
  • potassium gold cyanide 30 g / L potassium gold cyanide 30 g / L
  • potassium cyanide 2 g / L trisodium citrate 30 g / L
  • ethylenediaminetetraacetic acid 15 g / L potassium hydroxide 10 g / L
  • dimethylamine borane 20 g / L A gold plating solution (E) in which the mixed solution containing L was adjusted to pH 8.0 with potassium hydroxide was prepared.
  • a plating solution for forming a protrusion (F) (pH 10.0) containing 30 g / L of sodium borohydride and 0.5 g / L of sodium hydroxide was prepared.
  • the electroless nickel-tungsten-boron alloy plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 60 ° C. to perform electroless nickel-tungsten-boron alloy plating.
  • the electroless nickel-tungsten-boron alloy plating solution (D) was dropped at a rate of 15 mL / min and the dropping time was 60 minutes to perform electroless nickel-tungsten-boron alloy plating. In this way, a particle (G) having a nickel-tungsten-boron alloy metal part disposed on the surface of the substrate particle A and having a metal part having a convex part on the surface was obtained.
  • the particles are taken out and washed with water, whereby a nickel-tungsten-boron alloy metal part is arranged on the surface of the base particle A, and a convex part is formed on the surface.
  • the particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
  • the electroless gold plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless gold plating.
  • the electroless gold plating solution (E) was dropped at a rate of 10 mL / min, and the dropping time was 30 minutes.
  • the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 5 minutes.
  • gold plating was performed while dispersing the generated gold protrusion nuclei by ultrasonic stirring (protrusion forming step).
  • the particles are taken out by filtration, washed with water, and dried to obtain a nickel-tungsten-boron alloy and a gold metal part on the surface of the base particle A (the thickness of the entire metal part in the part having no protrusions: 0). 0.1 ⁇ m) was obtained, and metal-containing particles were obtained that had a plurality of convex portions on the surface and a metal portion having a plurality of protrusions on the surface of the convex portions.
  • Example 10 The suspension (B) obtained in Example 1 was put in a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixture (C).
  • an electroless copper plating solution a mixed solution containing 250 g / L of copper sulfate, 150 g / L of ethylenediaminetetraacetic acid, 100 g / L of sodium gluconate, and 50 g / L of formaldehyde is adjusted to pH 10.5 with ammonia.
  • a plating solution (D) was prepared.
  • tin chloride 20 g / L As electroless tin plating solutions, tin chloride 20 g / L, nitrilotriacetic acid 50 g / L, thiourea 2 g / L, thiomalic acid 1 g / L, ethylenediaminetetraacetic acid 7.5 g / L, and titanium trichloride 15 g / L
  • a tin plating solution (E) was prepared by adjusting the pH of the mixed solution containing sulfuric acid to 7.0 with sulfuric acid.
  • the copper plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 55 ° C. to perform electroless copper plating.
  • the dropping rate of the copper plating solution (D) was 30 mL / min, the dropping time was 30 minutes, and electroless copper plating was performed. Thereafter, the particles are taken out by filtration, and in this way, a particle mixed solution (G) containing particles having a metal part in which the copper metal part is arranged on the surface of the base particle A and has a convex part on the surface. )
  • the particles are taken out and washed with water, thereby arranging a copper metal part on the surface of the substrate particle A, and a metal part having a convex part on the surface. Particles were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
  • the tin plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless tin plating.
  • the dropping rate of the tin plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless tin plating was performed.
  • the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes.
  • Example 11 (1) Preparation of silicone oligomer In a 100 ml separable flask placed in a hot tub, 1 part by weight of 1,3-divinyltetramethyldisiloxane and 20 parts by weight of 0.5 wt% p-toluenesulfonic acid aqueous solution were added. I put it in. After stirring at 40 ° C. for 1 hour, 0.05 part by weight of sodium bicarbonate was added.
  • aqueous solution B was prepared by mixing 80 parts by weight of a 5 wt% aqueous solution of “GOHSENOL GH-20” manufactured by Synthetic Chemical Co., Ltd. After the said solution A was put into the separable flask installed in the warm bath, the said aqueous solution B was added.
  • the base particle A was changed to the base particle B, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
  • Silicone particles (base particle C) having a particle size of 3.0 ⁇ m were obtained by using an acrylic silicone oil at both ends (“X-22-2445” manufactured by Shin-Etsu Chemical Co., Ltd.) instead of the silicone oligomer.
  • the base particle A was changed to the base particle C, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
  • the base material particle A was changed to the base material particle D, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
  • the base particle A was changed to the base particle E, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
  • the base particle A was changed to the base particle F, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
  • the base particle A was changed to the base particle G, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
  • Example 17 A base particle H having a particle diameter different from that of the base particle A and having a particle diameter of 50.0 ⁇ m was prepared.
  • the base particle A was changed to the base particle H, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
  • Example 18 To a 1000 mL separable flask equipped with a four-necked separable cover, stirring blade, three-way cock, condenser and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl-N-2-methacryloyloxyethyl A monomer composition containing 1 mmol of ammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride was weighed in ion-exchanged water so that the solid content was 5% by weight, and then at 200 rpm. The mixture was stirred and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Example 2 10 g of the metal-containing particles obtained in Example 1 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the product was further washed with methanol and dried to obtain metal-containing particles having insulating particles attached thereto.
  • Example 19 The suspension (B) obtained in Example 1 was put in a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate and 20 ppm of bismuth nitrate to obtain a particle mixture (C).
  • an electroless nickel-phosphorus alloy plating solution a mixed solution containing nickel sulfate 100 g / L, sodium hypophosphite 30 g / L, bismuth nitrate 10 ppm, and trisodium citrate 30 g / L was adjusted to pH 6 with sodium hydroxide.
  • An adjusted electroless nickel-phosphorus alloy plating solution (D) was prepared.
  • a silver plating solution (E) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. .
  • a plating solution for forming a protrusion (F) (pH 12.0) containing 130 g / L of sodium hypophosphite and 0.5 g / L of sodium hydroxide was prepared.
  • the electroless nickel-phosphorus alloy plating solution (D) was gradually dropped into the dispersed particle mixture (C) adjusted to 65 ° C. to perform electroless nickel-phosphorus alloy plating.
  • the electroless nickel-phosphorous alloy plating solution (D) was dropped at a rate of 15 mL / min and the dropping time was 60 minutes to perform electroless nickel-phosphorus alloy plating.
  • the particles are taken out and washed with water, whereby a nickel-phosphorus alloy metal layer is disposed on the surface of the base particle A, and has a convex portion on the surface. Particles with a metal part were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
  • the silver plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating.
  • the dropping rate of the silver plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed.
  • the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes.
  • protrusion forming plating solution F
  • silver plating was performed while dispersing the generated silver protrusion nuclei by ultrasonic stirring (protrusion forming step). Thereafter, the particles are removed by filtration, washed with water, and dried, whereby the nickel-phosphorus alloy and the silver metal part on the surface of the base particle A (total thickness of the metal part in the part having no protrusions: 0.1 ⁇ m) ) Are arranged, and a metal-containing particle having a plurality of protrusions on the surface and a metal portion having a plurality of protrusions on the surface of the protrusions is obtained.
  • Example 20 The metal-containing particles obtained in Example 1 were subjected to an antisulfurization treatment using “New Dyne Silver” manufactured by Daiwa Kasei Co., Ltd. as a silver discoloration inhibitor.
  • Example 21 The metal-containing particles obtained in Example 1 were subjected to anti-sulfurization treatment using a 2-mercaptobenzothiazole solution as a silver anti-sulfur agent.
  • Example 1 10 parts by weight of the metal-containing particles obtained in Example 1 were dispersed in 100 parts by weight of an isopropyl alcohol solution containing 0.5% by weight of 2-mercaptobenzothiazole using an ultrasonic disperser, and then the solution was filtered. As a result, metal-containing particles having an antisulfide film formed thereon were obtained.
  • Suspension (B) was put into a solution containing nickel sulfate 50 g / L, thallium nitrate 30 ppm and bismuth nitrate 20 ppm to obtain a particle mixed solution (C).
  • a nickel plating solution (D) (pH 6.5) containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was prepared.
  • the nickel plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 50 ° C. to perform electroless nickel plating.
  • the dropping rate of the nickel plating solution (D) was 25 mL / min, the dropping time was 60 minutes, and electroless nickel plating was performed (Ni plating step).
  • the particles are removed by filtration, washed with water, and dried, whereby a nickel-phosphorus alloy metal part is disposed on the surface of the base particle A, and a metal part having a metal part having a protrusion on the surface is provided.
  • a metal-containing particle alloy provided (the thickness of the entire metal part in the part where no protrusions were provided: 0.1 ⁇ m) was obtained.
  • Suspension (A) was put in a solution containing nickel sulfate 50 g / L, thallium nitrate 30 ppm and bismuth nitrate 20 ppm to obtain a particle mixed solution (B).
  • a plating solution for forming a protrusion (C) (pH 11.0) containing 300 g / L of sodium hypophosphite and 10 g / L of sodium hydroxide was prepared.
  • a nickel plating solution (D) (pH 6.5) containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was prepared.
  • the protrusion forming plating solution (C) was gradually dropped into the dispersed particle mixture (B) adjusted to 50 ° C. to form protrusions.
  • Protrusion formation was performed at a dropping speed of the plating solution for protrusion formation (C) of 20 mL / min and a dropping time of 5 minutes.
  • nickel plating was performed while dispersing the generated Ni projection nuclei by ultrasonic stirring (projection formation step). In this way, a dispersed Ni protrusion nucleus and particle mixture (E) were obtained.
  • the nickel plating solution (D) was gradually added dropwise to the dispersed Ni protrusion nuclei and the particle mixture (E) to perform electroless nickel plating.
  • the dropping rate of the nickel plating solution (D) was 25 mL / min, the dropping time was 60 minutes, and electroless nickel plating was performed.
  • nickel plating was performed while dispersing the generated Ni protrusion nuclei by ultrasonic stirring (Ni plating step).
  • the particles are taken out by filtration, washed with water, and dried, whereby the metal-containing particles are provided with a metal part having a protrusion on the surface, on which the nickel-phosphorus alloy metal part is arranged on the surface of the base particle A (The thickness of the whole metal part in a part without a protrusion: 0.1 micrometer) was obtained.
  • FE-TEM field emission transmission electron microscope
  • JEM-ARM200F manufactured by JEOL Ltd.
  • the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The protrusions and protrusions of each metal-containing particle were observed.
  • the heights of the protrusions and protrusions in the obtained metal-containing particles were measured, and were arithmetically averaged to obtain the average height of the protrusions and protrusions.
  • FE-TEM field emission transmission electron microscope
  • JEM-ARM200F manufactured by JEOL Ltd.
  • the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The protrusions and protrusions of each metal-containing particle were observed.
  • the base diameters of the protrusions and protrusions in the obtained metal-containing particles were measured, and arithmetically averaged to obtain the average base diameter of the protrusions and protrusions.
  • FE-TEM field emission transmission electron microscope
  • JEM-ARM200F manufactured by JEOL Ltd.
  • the image magnification was set to 1 million times, and 20 metal-containing particles were randomly selected, The protrusions of each metal-containing particle were observed.
  • the apex angles of the convex portions and the protrusions were measured, and arithmetically averaged to obtain the average of the apex angles of the convex portions and the protrusions.
  • FE-TEM field emission transmission electron microscope
  • JEM-ARM200F manufactured by JEOL Ltd.
  • the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The protrusions of each metal-containing particle were observed.
  • the base diameters of the protrusions and protrusions in the obtained metal-containing particles were measured, and arithmetically averaged to determine the average diameter at the center position of the heights of the protrusions and protrusions.
  • FE-TEM field emission transmission electron microscope
  • JEM-ARM200F manufactured by JEOL Ltd.
  • the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The metal part in the part without the protrusion of each metal-containing particle was observed.
  • the thickness of the whole metal part in the part without the protrusion in the obtained metal-containing particles was measured, and arithmetically averaged to obtain the thickness (average thickness) (described in the above examples and comparative examples).
  • Compressive elastic modulus of metal-containing particles (10% K value) The above-mentioned compression elastic modulus (10% K value) of the obtained metal-containing particles was measured using a micro-compression tester (“Fischer Scope H-100” manufactured by Fischer) according to the method described above at 23 ° C. did. A 10% K value was determined.
  • a transparent glass substrate having a copper electrode pattern with an L / S of 30 ⁇ m / 30 ⁇ m on the upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern with L / S of 30 ⁇ m / 30 ⁇ m on the lower surface was prepared.
  • the anisotropic conductive paste immediately after production was applied to a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 0.5 MPa is applied to apply the anisotropic conductive paste.
  • the layer was cured at 250 ° C. to obtain a connection structure A.
  • the electrodes were connected at a low pressure of 0.5 MPa.
  • connection structure was put into “Technobit 4000” manufactured by Kulzer and cured to prepare an embedded resin for connection structure inspection.
  • the cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the connection structure in the inspection resin.
  • connection structure A by using a scanning electron microscope (FE-SEM), by observing a cross section of the obtained connection structure A, whether or not the tip of the protrusion of the metal part of the metal-containing particle is melted and solidified is determined. Judged.
  • FE-SEM scanning electron microscope
  • connection structure A obtained by the evaluation of (10) above, the bonding state of protrusion of metal part is observed by observing a cross section of connection structure A. Was judged.
  • connection part In the connection part, the tip of the protrusion of the metal part in the metal-containing particle is melted and then solidified, and is joined to the electrode and other metal-containing particles.
  • B In the connection part, the metal part in the metal-containing particle The protrusion tips solidify after melting and are not joined to the electrodes and other metal-containing particles
  • Connection resistance is 1.0 ⁇ or less ⁇ : Connection resistance exceeds 1.0 ⁇ , 2.0 ⁇ or less ⁇ : Connection resistance exceeds 2.0 ⁇ , 3.0 ⁇ or less ⁇ : Connection resistance is 3.0 ⁇ Over 5 ⁇ or less ⁇ : Connection resistance exceeds 5 ⁇
  • connection target member As a first connection target member, a power semiconductor element having Ni / Au plating on the connection surface was prepared. As a second connection target member, an aluminum nitride substrate having a connection surface plated with Cu was prepared.
  • connection silver paste On the second connection target member, the sintered silver paste was applied to a thickness of about 70 ⁇ m to form a connection silver paste layer. Then, the said 1st connection object member was laminated
  • the obtained laminated body is preheated with a hot plate at 130 ° C. for 60 seconds, and then the laminated body is heated at 300 ° C. for 3 minutes under a pressure of 10 MPa, whereby the metal atoms contained in the sintered silver paste are obtained.
  • the connection particle B is formed by sintering the contained particles to form a connection portion including the sintered product and the metal-containing particles, and joining the first and second connection target members with the sintered product. It was.
  • connection structure was put into “Technobit 4000” manufactured by Kulzer and cured to prepare an embedded resin for connection structure inspection.
  • a cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the embedded resin for inspection.
  • connection structure B by using a scanning electron microscope (FE-SEM), by observing a cross section of the obtained connection structure B, whether or not the tip of the protrusion of the metal part of the metal-containing particle is solidified after being melted is determined. Judged.
  • FE-SEM scanning electron microscope
  • connection structure B obtained by the evaluation of (13) above, the connection structure B is observed in cross section, thereby bonding state of protrusion of metal part was judged.
  • connection part In the connection part, the tip of the protrusion of the metal part in the metal-containing particle is melted and then solidified, and is joined to the electrode and other metal-containing particles.
  • B In the connection part, the metal part in the metal-containing particle The protrusion tips solidify after melting and are not joined to the electrodes and other metal-containing particles
  • connection reliability in connection structure B The connection structure B obtained by the evaluation in (13) above was put into a thermal shock tester (manufactured by Espec: TSA-101S-W), and the minimum temperature ⁇ 40 The bonding strength was measured with a shear strength tester (manufactured by Reska Co., Ltd .: STR-1000) after 3000 cycles with the treatment conditions of 1 minute at a holding temperature of 30 minutes and a maximum temperature of 200 ° C. for 30 minutes. Connection reliability was determined according to the following criteria.
  • Bonding strength is 50 MPa or more XX: Bonding strength exceeds 40 MPa, 50 MPa or less ⁇ : Bonding strength exceeds 30 MPa, 40 MPa or less ⁇ : Bonding strength exceeds 20 MPa, 30 MPa or less X: Bonding strength is 20 MPa or less
  • the above silicone copolymer was polymerized by the following method. 162 g (628 mmol) of 4,4′-dicyclohexylmethane diisocyanate (Degussa), amino terminal-modified polydimethylsiloxane (“TSF4709” manufactured by Momentive) (molecular weight 10,000) 900 g (90 mmol) The solution was dissolved at 70 to 90 ° C. and stirred for 2 hours. Thereafter, 65 g (625 mmol) of neopentyl glycol (Mitsubishi Gas Chemical Co., Ltd.) was slowly added and kneaded for 30 minutes, and then unreacted neopentyl glycol was removed under reduced pressure.
  • TEZ4709 amino terminal-modified polydimethylsiloxane
  • the obtained silicone copolymer was dissolved in isopropyl alcohol and used at 20% by weight. The disappearance of the isocyanate group was confirmed by IR spectrum.
  • the silicone content was 80% by weight
  • the weight average molecular weight was 25000
  • the SP value was 7.8
  • the SP value of the repeating unit of the structure having a polar group (polyurethane) was 10. there were.
  • silicone rubber was prepared as a base material for the continuity test member (a sheet-like base material formed of an insulating material).
  • the silicone rubber has a width of 25 mm, a width of 25 mm and a thickness of 1 mm.
  • Silicone rubber is formed with a total of 400 cylindrical through-holes having a diameter of 0.5 mm formed by laser processing with 20 vertical and 20 horizontal holes.
  • the conductive material was coated on a silicone rubber having a through hole using a knife coater, and the through hole was filled with the conductive material.
  • the silicone rubber filled with the conductive material in the through hole was dried in an oven at 50 ° C. for 10 minutes, it was further dried at 100 ° C. for 20 minutes to obtain a continuity inspection member having a thickness of 1 mm.
  • the contact resistance value of the obtained continuity test member was measured using a contact resistance measurement system ("MS7500” manufactured by Fact Kei Co.).
  • MS7500 manufactured by Fact Kei Co.
  • the conductive portion of the continuity test member obtained with a load of 15 gf was pressed from the vertical direction with a platinum probe having a diameter of 0.5 mm.
  • 5V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.), and the contact resistance value was measured.
  • An average value of contact connection resistance values obtained by measuring five conductive portions was calculated.
  • the contact resistance value was determined according to the following criteria.
  • the repeated reliability test and the contact resistance value of the obtained continuity test member were measured using a contact resistance measurement system ("MS7500” manufactured by Fact Kei Co., Ltd.).
  • MS7500 manufactured by Fact Kei Co., Ltd.
  • the conductive portion of the probe sheet obtained with a load of 15 gf with a platinum probe having a diameter of 0.5 mm was repeatedly pressed 1000 times from the vertical direction. After repeatedly pressing 1000 times, 5 V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.), and the contact resistance value was measured. An average value of contact resistance values obtained by similarly measuring five conductive portions was calculated.
  • the contact resistance value was determined according to the following criteria.
  • the spherical shape in the convex portion and the protrusion includes a partial shape of the sphere. In Comparative Examples 1 and 2, it was confirmed that the tip of the protrusion did not melt even when heated to 400 ° C.

Abstract

Provided is a metal-containing particle which can be bonded to another particle or another member by melting the tip of each of projections in a metal part of the metal-containing particle at a relatively low temperature and solidifying a melted product after the melting procedure, and which has improved connection reliability. The metal-containing particle according to the present invention comprises a base particle and a metal part that is arranged on the surface of the base particle, wherein the metal part has multiple projections on the outer surface thereof and the tip of each of the projections in the metal part can be melted at 400ºC or lower.

Description

金属含有粒子、接続材料、接続構造体及び接続構造体の製造方法Metal-containing particles, connection material, connection structure, and method for manufacturing connection structure
 本発明は、基材粒子と、該基材粒子の表面上に配置された金属部とを備え、該金属部が外表面に突起を有する金属含有粒子に関する。また、本発明は、上記金属含有粒子を用いた接続材料、接続構造体及び接続構造体の製造方法に関する。 The present invention relates to a metal-containing particle comprising a base particle and a metal part disposed on the surface of the base particle, the metal part having a protrusion on the outer surface. The present invention also relates to a connection material, a connection structure, and a method for manufacturing the connection structure using the metal-containing particles.
 電子部品等において、2つの接続対象部材を接続する接続部を形成するために、金属粒子を含む接続材料が用いられることがある。 In an electronic component or the like, a connection material containing metal particles may be used to form a connection part that connects two connection target members.
 金属粒子の粒径が100nm以下のサイズまで小さくなり、構成原子数が少なくなると、粒子の体積に対する表面積比が急激に増大し、融点又は焼結温度がバルク状態に比較して大幅に低下することが知られている。この低温焼結機能を利用し、粒径が100nm以下の金属粒子を接続材料として用い、加熱により金属粒子同士を焼結させることで接続を行う方法が知られている。この接続方法では、接続後の金属粒子がバルク金属へと変化するのと同時に、接続界面で金属結合による接続が得られるため、耐熱性と接続信頼性と放熱性とが非常に高くなる。 When the particle size of metal particles is reduced to a size of 100 nm or less and the number of constituent atoms is reduced, the surface area ratio to the volume of the particles increases rapidly, and the melting point or sintering temperature decreases significantly compared to the bulk state. It has been known. A method is known in which this low-temperature sintering function is used to connect metal particles having a particle size of 100 nm or less as a connecting material and by sintering the metal particles by heating. In this connection method, since the metal particles after the connection are changed into a bulk metal, a connection by a metal bond is obtained at the connection interface, so that the heat resistance, the connection reliability, and the heat dissipation are very high.
 このような接続を行うための接続材料は、例えば、下記の特許文献1に開示されている。 A connection material for performing such connection is disclosed in, for example, Patent Document 1 below.
 特許文献1に記載の接続材料は、ナノサイズの複合銀粒子と、ナノサイズの銀粒子と、樹脂とを含む。上記複合銀粒子は、銀原子の集合体である銀核の周囲に、有機被覆層が形成された粒子である。上記有機被覆層は、炭素数10又は12のアルコール分子残基、アルコール分子誘導体(ここで、アルコール分子誘導体とは、カルボン酸及び/又はアルデヒドに限定される)及び/又はアルコール分子の一種以上のアルコール成分により形成されている。 The connection material described in Patent Document 1 includes nano-sized composite silver particles, nano-sized silver particles, and a resin. The composite silver particle is a particle in which an organic coating layer is formed around a silver nucleus that is an aggregate of silver atoms. The organic coating layer comprises at least one alcohol molecule residue having 10 or 12 carbon atoms, an alcohol molecule derivative (wherein the alcohol molecule derivative is limited to carboxylic acid and / or aldehyde) and / or alcohol molecules. It is formed by the alcohol component.
 また、下記の特許文献2には、ナノサイズの金属含有粒子と、導電性粒子とを含む接続材料が開示されている。 Also, Patent Document 2 below discloses a connection material including nano-sized metal-containing particles and conductive particles.
特許第5256281号公報Japanese Patent No. 5256281 特開2013-55046号公報JP 2013-55046 A
 ナノサイズの銀粒子などの金属粒子は、接続時の加熱処理により溶融接合し、バルクが形成される。バルクが形成されると融点が高くなるため、加熱温度が高くなるという問題がある。また、形成されたバルクでは、ナノサイズの粒子間に隙間が生じる。結果として、接続信頼性が低くなる。 Metal particles such as nano-sized silver particles are melt-bonded by heat treatment at the time of connection to form a bulk. When the bulk is formed, the melting point becomes high, so that there is a problem that the heating temperature becomes high. In the formed bulk, a gap is generated between the nano-sized particles. As a result, connection reliability is lowered.
 また、特許文献1では、上記複合銀粒子は、表面にアルコール成分を有するため、該アルコール成分に由来して、接続部分にボイドが生じやすい。結果として接続信頼性が低くなる。 Further, in Patent Document 1, since the composite silver particles have an alcohol component on the surface, voids are likely to be generated in the connection portion due to the alcohol component. As a result, connection reliability is lowered.
 本発明の目的は、金属含有粒子の金属部の突起の先端を比較的低温で溶融させ、溶融後に固化させて、他の粒子又は他の部材に接合させることができ、接続信頼性を高めることができる金属含有粒子を提供することである。また、本発明は、上記金属含有粒子を用いた接続材料、接続構造体及び接続構造体の製造方法を提供することも目的とする。 The object of the present invention is to melt the tip of the protrusion of the metal part of the metal-containing particle at a relatively low temperature, solidify after melting, and bond it to other particles or other members, thereby improving connection reliability. It is to provide metal-containing particles that can be produced. Another object of the present invention is to provide a connection material, a connection structure, and a method for manufacturing the connection structure using the metal-containing particles.
 本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置された金属部とを備え、前記金属部が外表面に複数の突起を有し、前記金属部の前記突起の先端は、400℃以下で溶融可能である、金属含有粒子が提供される。 According to a wide aspect of the present invention, the method includes a base particle and a metal part disposed on a surface of the base particle, the metal part having a plurality of protrusions on an outer surface, and the metal part The tip of the protrusion is provided with metal-containing particles that can be melted at 400 ° C. or lower.
 本発明に係る金属含有粒子のある特定の局面では、前記金属部が、外表面に複数の凸部を有し、前記金属部が、前記凸部の外表面に前記突起を有する。 In a specific aspect of the metal-containing particle according to the present invention, the metal portion has a plurality of convex portions on the outer surface, and the metal portion has the protrusions on the outer surface of the convex portion.
 本発明に係る金属含有粒子のある特定の局面では、前記凸部の平均高さの、前記突起の平均高さに対する比が、5以上、1000以下である。 In a specific aspect of the metal-containing particle according to the present invention, the ratio of the average height of the protrusions to the average height of the protrusions is 5 or more and 1000 or less.
 本発明に係る金属含有粒子のある特定の局面では、前記凸部の基部の平均径が、3nm以上、5000nm以下である。 In a specific aspect of the metal-containing particle according to the present invention, the average diameter of the base portion of the convex portion is 3 nm or more and 5000 nm or less.
 本発明に係る金属含有粒子のある特定の局面では、前記金属部の外表面の全表面積100%中、前記凸部がある部分の表面積が10%以上である。 In a specific aspect of the metal-containing particle according to the present invention, the surface area of the portion having the convex portion is 10% or more in the total surface area of 100% of the outer surface of the metal portion.
 本発明に係る金属含有粒子のある特定の局面では、前記凸部の形状が、針状又は球体の一部の形状である。 In a specific aspect of the metal-containing particle according to the present invention, the shape of the convex portion is a needle shape or a partial shape of a sphere.
 本発明に係る金属含有粒子のある特定の局面では、前記突起の頂角の平均が10°以上、60°以下である。 In a specific aspect of the metal-containing particle according to the present invention, the average apex angle of the protrusion is 10 ° or more and 60 ° or less.
 本発明に係る金属含有粒子のある特定の局面では、前記突起の平均高さが、3nm以上、5000nm以下である。 In a specific aspect of the metal-containing particle according to the present invention, the average height of the protrusions is 3 nm or more and 5000 nm or less.
 本発明に係る金属含有粒子のある特定の局面では、前記突起の基部の平均径が、3nm以上、1000nm以下である。 In a specific aspect of the metal-containing particle according to the present invention, the average diameter of the base of the protrusion is 3 nm or more and 1000 nm or less.
 本発明に係る金属含有粒子のある特定の局面では、前記突起の平均高さの、前記突起の基部の平均径に対する比が、0.5以上、10以下である。 In a specific aspect of the metal-containing particle according to the present invention, the ratio of the average height of the protrusion to the average diameter of the base of the protrusion is 0.5 or more and 10 or less.
 本発明に係る金属含有粒子のある特定の局面では、前記突起の形状が、針状又は球体の一部の形状である。 In a specific aspect of the metal-containing particle according to the present invention, the shape of the protrusion is a needle shape or a partial shape of a sphere.
 本発明に係る金属含有粒子のある特定の局面では、前記突起の材料が、銀、銅、金、パラジウム、錫、インジウム又は亜鉛を含む。 In a specific aspect of the metal-containing particle according to the present invention, the material of the protrusion includes silver, copper, gold, palladium, tin, indium, or zinc.
 本発明に係る金属含有粒子のある特定の局面では、前記金属部の材料が、はんだではない。 In a specific aspect of the metal-containing particle according to the present invention, the material of the metal part is not solder.
 本発明に係る金属含有粒子のある特定の局面では、前記金属部の材料が、銀、銅、金、パラジウム、錫、インジウム、亜鉛、ニッケル、コバルト、鉄、タングステン、モリブデン、ルテニウム、白金、ロジウム、イリジウム、リン又はホウ素を含む。 In a specific aspect of the metal-containing particle according to the present invention, the material of the metal part is silver, copper, gold, palladium, tin, indium, zinc, nickel, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium. , Iridium, phosphorus or boron.
 本発明に係る金属含有粒子のある特定の局面では、前記金属部の前記突起の先端は、好ましくは350℃以下で溶融可能であり、より好ましくは300℃以下で溶融可能であり、更に好ましくは250℃以下で溶融可能であり、特に好ましくは200℃以下で溶融可能である。 In a specific aspect of the metal-containing particle according to the present invention, the tip of the protrusion of the metal part is preferably meltable at 350 ° C. or lower, more preferably 300 ° C. or lower, and further preferably It can be melted at 250 ° C. or lower, particularly preferably 200 ° C. or lower.
 本発明に係る金属含有粒子のある特定の局面では、10%圧縮したときの圧縮弾性率が100N/mm以上、25000N/mm以下である。 In a specific aspect of the metal-containing particles according to the present invention, the compression elastic modulus of when compressed 10% 100 N / mm 2 or more and 25000N / mm 2 or less.
 本発明に係る金属含有粒子のある特定の局面では、前記基材粒子がシリコーン粒子である。 In a specific aspect of the metal-containing particle according to the present invention, the base material particle is a silicone particle.
 本発明の広い局面によれば、上述した金属含有粒子と、樹脂とを含む、接続材料が提供される。 According to a wide aspect of the present invention, there is provided a connection material including the metal-containing particles described above and a resin.
 本発明の広い局面によれば、第1の接続対象部材と、第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した金属含有粒子であるか、又は、前記金属含有粒子と樹脂とを含む接続材料である、接続構造体が提供される。 According to a wide aspect of the present invention, the first connection target member, the second connection target member, the connection portion connecting the first connection target member, and the second connection target member; There is provided a connection structure in which the material of the connection portion is the metal-containing particles described above or a connection material including the metal-containing particles and a resin.
 本発明の広い局面によれば、第1の接続対象部材と、第2の接続対象部材との間に、上述した金属含有粒子を配置するか、又は、前記金属含有粒子と樹脂とを含む接続材料を配置する工程と、前記金属含有粒子を加熱して、前記金属部の前記突起の先端を溶融させ、溶融後に固化させ、前記金属含有粒子又は前記接続材料によって、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を形成する工程とを備える、接続構造体の製造方法が提供される。 According to a wide aspect of the present invention, the metal-containing particles described above are arranged between the first connection target member and the second connection target member, or the connection includes the metal-containing particles and the resin. Arranging the material, heating the metal-containing particles, melting the tips of the protrusions of the metal part, solidifying after melting, and using the metal-containing particles or the connection material, the first connection target member And a step of forming a connection part connecting the second connection target member. A method for manufacturing a connection structure is provided.
 本発明に係る金属含有粒子は、基材粒子と、該基材粒子の表面上に配置された金属部とを備え、上記金属部が外表面に複数の突起を有し、上記金属部の上記突起の先端は、400℃以下で溶融可能であるので、金属含有粒子の金属部の突起の先端を比較的低温で溶融させ、溶融後に固化させて、他の粒子又は他の部材に接合させることができ、接続信頼性を高めることができる。 The metal-containing particle according to the present invention includes a base particle and a metal part disposed on the surface of the base particle, the metal part has a plurality of protrusions on the outer surface, Since the tip of the projection can be melted at 400 ° C. or lower, the tip of the projection of the metal part of the metal-containing particle is melted at a relatively low temperature, solidified after melting, and joined to other particles or other members. Connection reliability can be improved.
図1は、本発明の第1の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing metal-containing particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing metal-containing particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing metal-containing particles according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing metal-containing particles according to the fourth embodiment of the present invention. 図5は、本発明の第5の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing metal-containing particles according to the fifth embodiment of the present invention. 図6は、本発明の第6の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing metal-containing particles according to the sixth embodiment of the present invention. 図7は、本発明の第7の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing metal-containing particles according to the seventh embodiment of the present invention. 図8は、本発明の第8の実施形態に係る金属含有粒子を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing metal-containing particles according to the eighth embodiment of the present invention. 図9は、本発明の第1の実施形態に係る金属含有粒子を用いた接続構造体を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a connection structure using metal-containing particles according to the first embodiment of the present invention. 図10は、本発明の第1の実施形態に係る金属含有粒子を用いた接続構造体の変形例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a modified example of the connection structure using the metal-containing particles according to the first embodiment of the present invention. 図11は、製造された金属含有粒子の画像を示す図である。FIG. 11 is a diagram showing an image of the produced metal-containing particles. 図12は、製造された金属含有粒子の画像を示す図である。FIG. 12 is a diagram showing an image of the produced metal-containing particles. 図13は、製造された金属含有粒子の画像を示す図である。FIG. 13 is a diagram showing an image of the produced metal-containing particles. 図14は、製造された金属含有粒子の画像を示す図である。FIG. 14 is a diagram showing an image of the produced metal-containing particles. 図15は、製造された金属含有粒子の金属部の突起の先端を溶融させた後固化させた粒子の画像を示す図である。FIG. 15 is a diagram showing an image of particles that are solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles. 図16は、製造された金属含有粒子の金属部の突起の先端を溶融させた後固化させた粒子の画像を示す図である。FIG. 16 is a diagram showing an image of particles that are solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles. 図17は、製造された金属含有粒子の金属部の突起の先端を溶融させた後固化させた粒子の画像を示す図である。FIG. 17 is a diagram showing an image of particles that are solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles. 図18は、製造された金属含有粒子の金属部の突起の先端を溶融させた後固化させた粒子の画像を示す図である。FIG. 18 is a diagram showing an image of particles that have been solidified after melting the tips of the protrusions of the metal part of the manufactured metal-containing particles. 図19(a),(b)は、導通検査用部材の一例を示す平面図及び断面図である。19A and 19B are a plan view and a cross-sectional view showing an example of a continuity test member. 図20(a)~(c)は、電子回路デバイスの電気特性を導通検査用部材によって検査している様子を模式的に示す図である。20A to 20C are diagrams schematically showing a state in which the electrical characteristics of the electronic circuit device are inspected by the continuity inspection member.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (金属含有粒子)
 本発明に係る金属含有粒子は、基材粒子と、金属部とを備える。上記金属部は、上記基材粒子の表面上に配置されている。本発明に係る金属含有粒子では、上記金属部が外表面に複数の突起を有する。本発明に係る金属含有粒子では、上記金属部の上記突起の先端は、400℃以下で溶融可能である。
(Metal-containing particles)
The metal-containing particle according to the present invention includes a base particle and a metal part. The said metal part is arrange | positioned on the surface of the said base material particle. In the metal-containing particle according to the present invention, the metal part has a plurality of protrusions on the outer surface. In the metal-containing particles according to the present invention, the tips of the protrusions of the metal part can be melted at 400 ° C. or lower.
 本発明では、上記の構成が備えられているので、金属部の突起の先端を比較的低温で溶融させることができる。このため、上記金属含有粒子における上記金属部の突起の先端を比較的低温で溶融させ、溶融後に固化させて、他の粒子又は他の部材に接合させることができる。また、複数の金属含有粒子を溶融接合させることができる。また、金属含有粒子を接続対象部材に溶融接合させることができる。また更に、金属含有粒子を電極に溶融接合させることができる。 In the present invention, since the above configuration is provided, the tip of the protrusion of the metal part can be melted at a relatively low temperature. For this reason, the tips of the protrusions of the metal part in the metal-containing particles can be melted at a relatively low temperature, solidified after melting, and bonded to other particles or other members. In addition, a plurality of metal-containing particles can be melt bonded. Further, the metal-containing particles can be melt bonded to the connection target member. Still further, the metal-containing particles can be melt bonded to the electrode.
 金属粒子の粒径が100nm以下のサイズまで小さくなり、構成原子数が少なくなると、粒子の体積に対する表面積比が急激に増大し、融点又は焼結温度がバルク状態に比較して大幅に低下することが知られている。本発明者らは、上記金属部の突起の先端径を小さくすることで、ナノサイズの金属粒子を用いた場合と同様に、上記金属部の上記突起の先端の溶融温度を低くすることができることを見出した。 When the particle size of metal particles is reduced to a size of 100 nm or less and the number of constituent atoms is reduced, the surface area ratio to the volume of the particles increases rapidly, and the melting point or sintering temperature decreases significantly compared to the bulk state. It has been known. By reducing the tip diameter of the protrusion of the metal part, the present inventors can lower the melting temperature of the tip of the protrusion of the metal part, as in the case of using nano-sized metal particles. I found.
 上記金属部の上記突起の先端の溶融温度を低くするために、上記突起部の形状を先細りしている針状にしてもよい。上記金属部の上記突起の先端の溶融温度を低くするために、上記金属部の外表面に複数の小さな突起を形成してもよい。上記金属部の上記突起の先端の溶融温度を低くするために、本発明に係る金属含有粒子では、上記金属部が、外表面に複数の凸部(第1の突起)を有し、上記金属部が、上記凸部の外表面に上記突起(第2の突起)を有することが好ましい。上記凸部は、上記突起よりも大きいことが好ましい。上記突起とは別に、上記突起よりも大きい上記凸部が存在することで、接続信頼性がより一層高くなる。凸部と突起とは一体化していてもよく、凸部上に突起が付着していてもよい。上記突起は、粒子により構成されていてもよい。本明細書において、上記突起と区別して、該突起が外表面上に形成されている突起部分を凸部と呼ぶ。上記凸部の先端は、400℃以下で溶融可能でなくてもよい。 In order to lower the melting temperature of the tip of the protrusion of the metal part, the protrusion may have a tapered needle shape. A plurality of small protrusions may be formed on the outer surface of the metal part in order to lower the melting temperature of the tip of the protrusion of the metal part. In the metal-containing particle according to the present invention, in order to reduce the melting temperature of the tip of the protrusion of the metal part, the metal part has a plurality of protrusions (first protrusions) on the outer surface, and the metal It is preferable that the portion has the protrusion (second protrusion) on the outer surface of the convex portion. The convex portion is preferably larger than the protrusion. Apart from the protrusions, the presence of the protrusions larger than the protrusions further increases connection reliability. The protrusion and the protrusion may be integrated, or the protrusion may be attached on the protrusion. The protrusion may be composed of particles. In the present specification, a protrusion portion where the protrusion is formed on the outer surface is referred to as a convex portion in distinction from the protrusion. The tip of the convex part may not be meltable at 400 ° C. or lower.
 このように、突起の先端径を小さくすることで、溶融温度を低くすることができる。また、溶融温度を低くするために、金属部の材料を選択することができる。上記金属部の突起の先端の溶融温度を400℃以下にするために、突起の形状と金属部の材料とを選択することが好ましい。 Thus, the melting temperature can be lowered by reducing the tip diameter of the protrusion. Moreover, in order to lower the melting temperature, the material of the metal part can be selected. It is preferable to select the shape of the protrusion and the material of the metal part so that the melting temperature at the tip of the protrusion of the metal part is 400 ° C. or lower.
 上記金属部の突起の先端の溶融温度は、以下のようにして評価される。 The melting temperature at the tip of the protrusion of the metal part is evaluated as follows.
 上記金属部の突起の先端の溶融温度は、示差走査熱量計(ヤマト科学社製「DSC-6300」)を用いて測定できる。上記測定は、金属含有粒子15gを用いて、昇温範囲30℃から500℃、昇温速度5℃/min.、窒素パージ量5ml/min.の測定条件で行う。 The melting temperature at the tip of the protrusion of the metal part can be measured using a differential scanning calorimeter (“DSC-6300” manufactured by Yamato Scientific Co., Ltd.). The above measurement was performed using 15 g of metal-containing particles, with a temperature increase range of 30 ° C. to 500 ° C., a temperature increase rate of 5 ° C./min. , Nitrogen purge amount 5 ml / min. The measurement conditions are as follows.
 次に、上記の測定で得られた溶融温度で上記金属部の突起の先端が溶融していることを確認する。金属含有粒子1gを容器に入れ、電気炉に入れる。電気炉にて上記測定で得られた溶融温度と同じ温度を設定し、窒素雰囲気で10分間加熱する。その後、加熱した金属含有粒子を電気炉から取出し、走査型電子顕微鏡を用いて突起の先端の溶融状態(又は溶融後の固化状態)を確認する。 Next, it is confirmed that the tip of the protrusion of the metal part is melted at the melting temperature obtained by the above measurement. 1 g of metal-containing particles is placed in a container and placed in an electric furnace. The same temperature as the melting temperature obtained by the above measurement is set in an electric furnace and heated in a nitrogen atmosphere for 10 minutes. Thereafter, the heated metal-containing particles are taken out from the electric furnace, and the molten state (or solidified state after melting) of the tip of the protrusion is confirmed using a scanning electron microscope.
 突起の先端の溶融温度を効果的に低くし、接続信頼性を効果的に高める観点からは、上記突起の形状が、先細りしている針状であることが好ましい。この金属含有粒子では、上記金属部の外表面の上記突起の形状が従来の形状とは異なり、突起の形状が先細りしている針状であることによる新たな効果が発揮される。 From the viewpoint of effectively lowering the melting temperature at the tip of the protrusion and effectively improving the connection reliability, the shape of the protrusion is preferably a tapered needle shape. In this metal-containing particle, the shape of the protrusion on the outer surface of the metal portion is different from the conventional shape, and a new effect is exhibited due to the needle shape having a tapered protrusion shape.
 本発明に係る金属含有粒子は、上記金属部の上記の突起の先端を比較的低温で溶融接合させることができるので、2つの接続対象部材の接続に用いることができる。2つの接続対象部材間に、金属含有粒子における上記金属部の突起の先端において溶融接合させることで、強固な接続を発揮する接続部を形成することができ、接続信頼性を高めることができる。 The metal-containing particles according to the present invention can be used to connect two connection target members because the tips of the protrusions of the metal part can be melt-bonded at a relatively low temperature. By fusion-bonding between the two connection target members at the tips of the protrusions of the metal part in the metal-containing particles, a connection part that exhibits a strong connection can be formed, and connection reliability can be improved.
 また、本発明に係る金属含有粒子は、導電接続に用いてもよい。さらに、本発明に係る金属含有性粒子は、ギャップ制御材(スペーサ)としても用いることができる。 Moreover, the metal-containing particles according to the present invention may be used for conductive connection. Furthermore, the metal-containing particles according to the present invention can also be used as a gap control material (spacer).
 複数の上記突起の頂角の平均(a)は好ましくは10°以上、より好ましくは20°以上であり、好ましくは60°以下、より好ましくは45°以下である。上記頂角の平均(a)が上記下限以上であると、突起が過度に折れにくくなる。上記頂角の平均(a)が上記上限以下であると、溶融温度がより一層低くなる。なお、折れた突起は、導電接続時に電極間の接続抵抗を上昇させることがある。 The average apex angle (a) of the plurality of protrusions is preferably 10 ° or more, more preferably 20 ° or more, preferably 60 ° or less, more preferably 45 ° or less. If the average (a) of the apex angles is equal to or greater than the above lower limit, the protrusions are not easily broken. When the average (a) of the apex angles is not more than the above upper limit, the melting temperature is further lowered. Note that the broken protrusion may increase the connection resistance between the electrodes at the time of conductive connection.
 上記突起の上記頂角の平均(a)は、金属含有粒子1個に含まれる突起のそれぞれの頂角を、平均することにより求められる。 The average (a) of the apex angles of the protrusions can be obtained by averaging the apex angles of the protrusions included in one metal-containing particle.
 複数の上記突起の平均高さ(b)は、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは50nm以上であり、好ましくは5000nm以下、より好ましくは1000nm以下、更に好ましくは800nm以下である。上記突起の平均高さ(b)が上記下限以上であると、溶融温度がより一層低くなる。上記突起の平均高さ(b)が上記上限以下であると、突起が過度に折れにくくなる。 The average height (b) of the plurality of protrusions is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 50 nm or more, preferably 5000 nm or less, more preferably 1000 nm or less, still more preferably 800 nm or less. . When the average height (b) of the protrusions is not less than the above lower limit, the melting temperature is further lowered. When the average height (b) of the protrusions is not more than the above upper limit, the protrusions are not easily broken.
 上記突起の平均高さ(b)は、金属含有粒子1個に含まれる突起の高さの平均である。金属部が上記凸部を有さず、かつ上記突起を有する場合には、上記突起の高さは、金属含有粒子の中心と突起の先端とを結ぶ線(図1に示す破線L1)上における、突起が無いと想定した場合の金属部の仮想線(図1に示す破線L2)上(突起が無いと想定した場合の球状の金属含有粒子の外表面上)から突起の先端までの距離を示す。すなわち、図1においては、破線L1と破線L2との交点から突起の先端までの距離を示す。なお、上記金属部が上記凸部を有し、かつ上記突起を有する場合には、即ち上記金属部が上記凸部上に上記突起を有する場合には、上記突起の高さは、突起が無いと想定した場合の金属部(凸部)の仮想線から突起の先端までの距離を示す。突起は、複数の粒状物の集合体であってもよい。例えば、突起は、突起を構成する粒子が複数連なって形成されていてもよい。この場合に、突起の高さは、複数の粒状物の集合体又は連なった粒子を全体でみたときの突起の高さである。図3においても、突起1Ba,3Baの高さは、突起が無いと想定した場合の金属部の仮想線上から突起の先端までの距離を示す。 The average height (b) of the protrusions is the average height of protrusions included in one metal-containing particle. When the metal part does not have the convex part and has the protrusion, the height of the protrusion is on the line connecting the center of the metal-containing particle and the tip of the protrusion (broken line L1 shown in FIG. 1). The distance from the imaginary line (dashed line L2 shown in FIG. 1) of the metal part (on the outer surface of the spherical metal-containing particle when assuming no protrusion) to the tip of the protrusion when it is assumed that there is no protrusion. Show. That is, in FIG. 1, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the protrusion is shown. In addition, when the metal part has the protrusion and the protrusion, that is, when the metal part has the protrusion on the protrusion, the height of the protrusion has no protrusion. The distance from the imaginary line of the metal part (convex part) to the tip of the protrusion is assumed. The protrusion may be an aggregate of a plurality of granular materials. For example, the protrusion may be formed of a plurality of particles constituting the protrusion. In this case, the height of the protrusion is the height of the protrusion when the aggregate of a plurality of granular materials or continuous particles are viewed as a whole. Also in FIG. 3, the heights of the protrusions 1Ba and 3Ba indicate the distance from the imaginary line of the metal part to the tip of the protrusion when it is assumed that there is no protrusion.
 複数の上記突起の基部の平均径(c)は、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは50nm以上であり、好ましくは1000nm以下、より好ましくは800nm以下である。上記平均径(c)が上記下限以上であると、突起が過度に折れにくくなる。上記平均径(c)が上記上限以下であると、接続信頼性がより一層高くなる。 The average diameter (c) of the bases of the plurality of protrusions is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less. When the average diameter (c) is equal to or more than the lower limit, the protrusions are not easily broken. When the average diameter (c) is not more than the above upper limit, connection reliability is further enhanced.
 上記突起の基部の平均径(c)は、金属含有粒子1個に含まれる突起の基部の径の平均である。基部の径は、突起における基部のそれぞれの最大径である。上記金属部が上記凸部を有し、かつ上記突起を有する場合には、即ち上記金属部が上記凸部上に上記突起を有する場合には、金属含有粒子の中心と突起の先端とを結ぶ線上における、突起が無いと想定した場合の金属部の仮想線部分の端部が、上記突起の基部であり、上記仮想線部分の端部間距離(端部を直線で結んだ距離)が基部の径である。 The average diameter (c) of the base of the protrusion is an average of the diameter of the base of the protrusion included in one metal-containing particle. The diameter of the base is the maximum diameter of each of the bases in the protrusion. When the metal part has the protrusion and the protrusion, that is, when the metal part has the protrusion on the protrusion, the center of the metal-containing particle is connected to the tip of the protrusion. The end of the imaginary line portion of the metal portion on the line assuming no projection is the base of the projection, and the distance between the ends of the imaginary line portion (distance connecting the ends with a straight line) is the base. Of the diameter.
 複数の上記突起の平均高さ(b)の、複数の上記突起の基部の平均径(c)に対する比(平均高さ(b)/平均径(c))は、好ましくは0.5以上、より好ましくは1.5以上であり、好ましくは10以下、より好ましくは5以下である。上記比(平均高さ(b)/平均径(c))が上記下限以上であると、接続信頼性がより一層高くなる。上記比(平均高さ(b)/平均径(c))が上記上限以下であると、突起が過度に折れにくくなる。 The ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the bases of the plurality of protrusions (average height (b) / average diameter (c)) is preferably 0.5 or more. More preferably, it is 1.5 or more, preferably 10 or less, more preferably 5 or less. When the ratio (average height (b) / average diameter (c)) is not less than the lower limit, the connection reliability is further increased. When the ratio (average height (b) / average diameter (c)) is not more than the above upper limit, the protrusions are not easily broken.
 複数の上記突起の高さの中央の位置における平均径(d)の、複数の上記突起の基部の平均径(c)に対する比(平均径(d)/平均径(c))は、好ましくは1/5以上、より好ましくは1/4以上、更に好ましくは1/3以上であり、好ましくは4/5以下、より好ましくは3/4以下、更に好ましくは2/3以下である。上記比(平均径(d)/平均径(c))が上記下限以上であると、突起が過度に折れにくくなる。上記比(平均径(d)/平均径(c))が上記上限以下であると、接続信頼性がより一層高くなる。 The ratio (average diameter (d) / average diameter (c)) of the average diameter (d) at the center of the height of the plurality of protrusions to the average diameter (c) of the bases of the plurality of protrusions is preferably It is 1/5 or more, more preferably 1/4 or more, still more preferably 1/3 or more, preferably 4/5 or less, more preferably 3/4 or less, still more preferably 2/3 or less. When the ratio (average diameter (d) / average diameter (c)) is not less than the lower limit, the protrusions are not easily broken. When the ratio (average diameter (d) / average diameter (c)) is not more than the above upper limit, the connection reliability is further enhanced.
 上記突起の高さの中央の位置における平均径(d)は、金属含有粒子1個に含まれる突起の高さの中央の位置における径の平均である。突起の高さの中央の位置における径は、突起の高さの中央の位置のそれぞれの最大径である。 The average diameter (d) at the center position of the protrusion height is the average diameter at the center position of the protrusion height included in one metal-containing particle. The diameter at the central position of the height of the protrusion is the maximum diameter of each central position of the height of the protrusion.
 突起の過度の折れを抑え、突起による溶融接合性をより一層高め、接続信頼性を効果的に高める観点からは、複数の上記突起の形状は、針状又は球体の一部の形状であることが好ましい。針状の形状は、角錐状、円錐状又は回転放物面状であることが好ましく、円錐状又は回転放物面状であることがより好ましく、円錐状であることが更に好ましい。上記突起の形状は、角錐状であってもよく、円錐状であってもよく、回転放物面状であってもよい。本発明では、回転放物面状も、先細りしている針状に含まれる。回転放物面状の突起では、基部から先端にかけて先細りしている。 From the viewpoint of suppressing excessive bending of the protrusion, further improving the melt-bonding property by the protrusion, and effectively increasing the connection reliability, the shape of the plurality of protrusions is a needle shape or a partial shape of a sphere. Is preferred. The acicular shape is preferably a pyramid shape, a conical shape, or a paraboloidal shape, more preferably a conical shape or a parabolic shape, and still more preferably a conical shape. The shape of the protrusion may be a pyramid shape, a cone shape, or a paraboloid. In the present invention, a rotating paraboloid is also included in the tapered needle shape. The paraboloidal protrusion is tapered from the base to the tip.
 上記金属含有粒子1個あたりの上記金属部の外表面の突起は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は金属含有粒子の粒子径等を考慮して適宜選択できる。なお、上記金属含有粒子に含まれる突起は、先細りしている針状でなくてもよく、更に上記金属含有粒子に含まれる突起の全てが、先細りしている針状である必要はない。 The number of protrusions on the outer surface of the metal part per one metal-containing particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the metal-containing particles. Note that the protrusions included in the metal-containing particles do not have to be tapered, and it is not necessary that all the protrusions included in the metal-containing particles have a tapered needle shape.
 上記金属含有粒子1個あたりに含まれる突起の数に占める先細りしている針状である突起の数の割合は、好ましくは30%以上、より好ましくは50%以上、更に好ましくは60%以上、特に好ましくは70%以上、最も好ましくは80%以上である。針状の突起の数の割合が多いほど、針状の突起による効果がより一層効果的に得られる。 The ratio of the number of protrusions that are tapered in the number of protrusions contained per metal-containing particle is preferably 30% or more, more preferably 50% or more, and still more preferably 60% or more. Particularly preferred is 70% or more, and most preferred is 80% or more. As the ratio of the number of needle-like protrusions increases, the effect of the needle-like protrusions can be obtained more effectively.
 金属部の外表面の表面積の全体100%中、突起がある部分の表面積の割合(x)は好ましくは10%以上、より好ましくは20%以上、更に好ましくは30%以上であり、好ましくは90%以下、より好ましくは80%以下、更に好ましくは70%以下である。突起がある部分の表面積の割合が多いほど、突起による効果がより一層効果的に得られる。 Of the entire surface area of the outer surface of the metal portion, the ratio (x) of the surface area of the portion with protrusions is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, preferably 90 % Or less, more preferably 80% or less, and still more preferably 70% or less. The larger the surface area ratio of the portion where the protrusion is, the more effectively the effect of the protrusion can be obtained.
 接続信頼性を効果的に高める観点からは、金属部の外表面の表面積の全体100%中、針状の突起がある部分の表面積の割合は好ましくは10%以上、より好ましくは20%以上、更に好ましくは30%以上であり、好ましくは90%以下、より好ましくは80%以下、更に好ましくは70%以下である。針状の突起がある部分の表面積の割合が多いほど、突起による効果がより一層効果的に得られる。 From the viewpoint of effectively increasing the connection reliability, the ratio of the surface area of the portion having the needle-like protrusion is preferably 10% or more, more preferably 20% or more, out of 100% of the entire surface area of the outer surface of the metal part. More preferably, it is 30% or more, preferably 90% or less, more preferably 80% or less, and still more preferably 70% or less. As the ratio of the surface area of the portion having the needle-like protrusion is larger, the effect of the protrusion is more effectively obtained.
 複数の上記凸部の頂角の平均(A)は好ましくは10°以上、より好ましくは20°以上であり、好ましくは60°以下、より好ましくは45°以下である。上記頂角の平均(A)が上記下限以上であると、凸部が過度に折れにくくなる。上記頂角の平均(A)が上記上限以下であると、溶融温度がより一層低くなる。なお、折れた凸部は、導電接続時に電極間の接続抵抗を上昇させることがある。 The average (A) of the apex angles of the plurality of convex portions is preferably 10 ° or more, more preferably 20 ° or more, preferably 60 ° or less, more preferably 45 ° or less. If the average (A) of the apex angles is equal to or greater than the lower limit, the convex portion is not easily broken. When the average (A) of the apex angles is not more than the above upper limit, the melting temperature is further lowered. In addition, the broken convex part may raise the connection resistance between electrodes at the time of conductive connection.
 上記凸部の上記頂角の平均(A)は、金属含有粒子1個に含まれる凸部のそれぞれの頂角を、平均することにより求められる。 The average (A) of the apex angles of the convex portions can be obtained by averaging the apex angles of the convex portions included in one metal-containing particle.
 複数の上記凸部の平均高さ(B)は、好ましくは5nm以上、より好ましくは50nm以上であり、好ましくは5000nm以下、より好ましくは1000nm以下、更に好ましくは800nm以下である。上記凸部の平均高さ(B)が上記下限以上であると、溶融温度がより一層低くなる。上記凸部の平均高さ(B)が上記上限以下であると、凸部が過度に折れにくくなる。 The average height (B) of the plurality of convex portions is preferably 5 nm or more, more preferably 50 nm or more, preferably 5000 nm or less, more preferably 1000 nm or less, and still more preferably 800 nm or less. When the average height (B) of the convex portions is not less than the above lower limit, the melting temperature is further lowered. When the average height (B) of the convex portions is equal to or less than the upper limit, the convex portions are not easily broken.
 上記凸部の平均高さ(B)は、金属含有粒子1個に含まれる凸部の高さの平均である。上記凸部の高さは、金属含有粒子の中心と凸部の先端とを結ぶ線(図8に示す破線L1)上における、凸部が無いと想定した場合の金属部の仮想線(図8に示す破線L2)上(凸部が無いと想定した場合の球状の金属含有粒子の外表面上)から凸部の先端までの距離を示す。すなわち、図8においては、破線L1と破線L2との交点から凸部の先端までの距離を示す。 The average height (B) of the convex portions is the average height of the convex portions included in one metal-containing particle. The height of the convex part is an imaginary line of the metal part on the line connecting the center of the metal-containing particle and the tip of the convex part (broken line L1 shown in FIG. 8) assuming no convex part (FIG. 8). The distance from the broken line L2) (on the outer surface of the spherical metal-containing particle when it is assumed that there is no projection) to the tip of the projection is shown. That is, in FIG. 8, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the convex portion is shown.
 複数の上記凸部の基部の平均径(C)は、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは50nm以上であり、好ましくは5000nm以下、より好ましくは1000nm以下、更に好ましくは800nm以下である。上記平均径(C)が上記下限以上であると、凸部が過度に折れにくくなる。上記平均径(C)が上記上限以下であると、接続信頼性がより一層高くなる。 The average diameter (C) of the base portions of the plurality of convex portions is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 50 nm or more, preferably 5000 nm or less, more preferably 1000 nm or less, still more preferably 800 nm or less. It is. When the average diameter (C) is equal to or greater than the lower limit, the convex portion is not easily broken. When the average diameter (C) is not more than the upper limit, the connection reliability is further increased.
 上記凸部の基部の平均径(C)は、金属含有粒子1個に含まれる凸部の基部の径の平均である。基部の径は、凸部における基部のそれぞれの最大径である。金属含有粒子の中心と凸部の先端とを結ぶ線(図8に示す破線L1)上における、凸部が無いと想定した場合の金属部の仮想線部分(図8に示す破線L2)の端部が、上記凸部の基部であり、上記仮想線部分の端部間距離(端部を直線で結んだ距離)が基部の径である。 The average diameter (C) of the base of the convex part is an average of the diameters of the bases of the convex parts included in one metal-containing particle. The diameter of the base is the maximum diameter of each of the bases in the convex part. The end of the imaginary line part (dashed line L2 shown in FIG. 8) of the metal part on the line (dashed line L1 shown in FIG. 8) connecting the center of the metal-containing particle and the tip of the convex part when it is assumed that there is no convex part The portion is the base of the convex portion, and the distance between the ends of the imaginary line portion (the distance connecting the ends with a straight line) is the diameter of the base.
 複数の上記凸部の高さの中央の位置における平均径(D)の、複数の上記凸部の基部の平均径(C)に対する比(平均径(D)/平均径(C))は、好ましくは1/5以上、より好ましくは1/4以上、更に好ましくは1/3以上であり、好ましくは4/5以下、より好ましくは3/4以下、更に好ましくは2/3以下である。上記比(平均径(D)/平均径(C))が上記下限以上であると、凸部が過度に折れにくくなる。上記比(平均径(D)/平均径(C))が上記上限以下であると、接続信頼性がより一層高くなる。 The ratio (average diameter (D) / average diameter (C)) of the average diameter (D) at the center position of the height of the plurality of convex portions to the average diameter (C) of the base portions of the plurality of convex portions is: Preferably it is 1/5 or more, More preferably, it is 1/4 or more, More preferably, it is 1/3 or more, Preferably it is 4/5 or less, More preferably, it is 3/4 or less, More preferably, it is 2/3 or less. When the ratio (average diameter (D) / average diameter (C)) is equal to or greater than the lower limit, the convex portion is not easily broken. When the ratio (average diameter (D) / average diameter (C)) is not more than the above upper limit, the connection reliability is further enhanced.
 上記凸部の高さの中央の位置における平均径(D)は、金属含有粒子1個に含まれる凸部の高さの中央の位置における径の平均である。凸部の高さの中央の位置における径は、凸部の高さの中央の位置のそれぞれの最大径である。 The average diameter (D) at the central position of the height of the convex portion is an average of the diameters at the central position of the height of the convex portion included in one metal-containing particle. The diameter at the central position of the height of the convex portion is the maximum diameter of each central position of the height of the convex portion.
 凸部の過度の折れを抑え、凸部による溶融接合性をより一層高め、接続信頼性を効果的に高める観点からは、複数の上記凸部の形状は針状又は球体の一部の形状であることが好ましい。針状の形状は、角錐状、円錐状又は回転放物面状であることが好ましく、円錐状又は回転放物面状であることがより好ましく、円錐状であることが更に好ましい。上記凸部の形状は、角錐状であってもよく、円錐状であってもよく、回転放物面状であってもよい。本発明では、回転放物面状も、先細りしている針状に含まれる。回転放物面状の凸部では、基部から先端にかけて先細りしている。 From the viewpoint of suppressing excessive bending of the convex portion, further improving the melt-bonding property by the convex portion, and effectively increasing the connection reliability, the shape of the plurality of convex portions is a needle shape or a partial shape of a sphere. Preferably there is. The acicular shape is preferably a pyramid shape, a conical shape, or a paraboloidal shape, more preferably a conical shape or a parabolic shape, and still more preferably a conical shape. The shape of the convex portion may be a pyramid shape, a cone shape, or a paraboloid. In the present invention, a rotating paraboloid is also included in the tapered needle shape. The parabolic convex portion is tapered from the base to the tip.
 上記金属含有粒子1個あたりの上記金属部の外表面の凸部は、好ましくは3個以上、より好ましくは5個以上である。上記凸部の数の上限は特に限定されない。凸部の数の上限は金属含有粒子の粒子径等を考慮して適宜選択できる。なお、上記金属含有粒子に含まれる凸部は、先細りしている針状でなくてもよく、上記金属含有粒子に含まれる凸部の全てが、先細りしている針状である必要はない。 The number of protrusions on the outer surface of the metal part per metal-containing particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of the convex portions is not particularly limited. The upper limit of the number of convex portions can be appropriately selected in consideration of the particle diameter of the metal-containing particles. In addition, the convex part contained in the said metal containing particle | grain does not need to be a tapering needle shape, and all the convex parts contained in the said metal containing particle | grain need not be a tapering needle shape.
 上記金属含有粒子1個あたりに含まれる凸部の数に占める先細りしている針状である凸部の数の割合は、好ましくは30%以上、より好ましくは50%以上、更に好ましくは60%以上、特に好ましくは70%以上、最も好ましくは80%以上である。針状の凸部の数の割合が多いほど、針状の凸部による効果がより一層効果的に得られる。 The ratio of the number of convex portions that are tapered in the number of convex portions included in one metal-containing particle is preferably 30% or more, more preferably 50% or more, and still more preferably 60%. Above, especially preferably 70% or more, most preferably 80% or more. As the ratio of the number of needle-like convex portions increases, the effect of the needle-like convex portions can be obtained more effectively.
 金属部の外表面の表面積の全体100%中、凸部がある部分の表面積の割合(X)は好ましくは10%以上、より好ましくは20%以上、更に好ましくは30%以上であり、好ましくは90%以下、より好ましくは80%以下、更に好ましくは70%以下である。凸部がある部分の表面積の割合が多いほど、凸部上の突起による効果がより一層効果的に得られる。 Of the total surface area of the outer surface of the metal part, the ratio (X) of the surface area of the part having the convex part is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, preferably It is 90% or less, more preferably 80% or less, still more preferably 70% or less. As the ratio of the surface area of the portion having the convex portion is increased, the effect of the protrusion on the convex portion is more effectively obtained.
 接続信頼性を効果的に高める観点からは、金属部の外表面の表面積の全体100%中、針状の凸部がある部分の表面積の割合は好ましくは10%以上、より好ましくは20%以上、更に好ましくは30%以上であり、好ましくは90%以下、より好ましくは80%以下、更に好ましくは70%以下である。針状の凸部がある部分の表面積の割合が多いほど、凸部上の突起による効果がより一層効果的に得られる。 From the viewpoint of effectively increasing the connection reliability, the ratio of the surface area of the portion having the needle-like convex portion is preferably 10% or more, more preferably 20% or more, out of the entire surface area of the outer surface of the metal portion Further, it is preferably 30% or more, preferably 90% or less, more preferably 80% or less, still more preferably 70% or less. As the ratio of the surface area of the portion having the needle-like convex portion is larger, the effect of the protrusion on the convex portion is more effectively obtained.
 複数の上記凸部の平均高さ(B)の、複数の上記突起の平均高さ(b)に対する比(平均高さ(B)/平均高さ(b))は、好ましくは5以上、より好ましくは10以上であり、好ましくは1000以下、より好ましくは800以下である。上記比(平均高さ(B)/平均高さ(b))が上記下限以上であると、接続信頼性がより一層高くなる。上記比(平均高さ(B)/平均高さ(b))が上記上限以下であると、凸部が過度に折れにくくなる。 The ratio (average height (B) / average height (b)) of the average height (B) of the plurality of protrusions to the average height (b) of the plurality of protrusions is preferably 5 or more. Preferably it is 10 or more, preferably 1000 or less, more preferably 800 or less. When the ratio (average height (B) / average height (b)) is equal to or higher than the lower limit, the connection reliability is further increased. When the ratio (average height (B) / average height (b)) is not more than the above upper limit, the convex portion is not easily broken.
 複数の上記突起を有する上記金属部が、金属又は合金の結晶配向により形成されていることが好ましい。なお、後述する実施例では、金属部は、金属又は合金の結晶配向により形成されている。 It is preferable that the metal part having a plurality of the protrusions is formed by a crystal orientation of a metal or an alloy. In the examples described later, the metal part is formed by the crystal orientation of the metal or alloy.
 接続信頼性を効果的に高める観点からは、上記金属含有粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは100N/mm以上、より好ましくは1000N/mm以上、好ましくは25000N/mm以下、より好ましくは10000N/mm以下、より好ましくは8000N/mm以下である。 From the viewpoint of effectively increasing the connection reliability, the compression elastic modulus (10% K value) when the metal-containing particles are compressed by 10% is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more. preferably 25000N / mm 2 or less, more preferably 10000 N / mm 2 or less, and more preferably not more than 8000 N / mm 2.
 上記金属含有粒子の上記圧縮弾性率(10%K値)は、以下のようにして測定できる。 The compression elastic modulus (10% K value) of the metal-containing particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で金属含有粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 Using a micro-compression tester, the metal-containing particles are compressed under the conditions of a cylindrical indenter (diameter: 100 μm, made of diamond) and a smooth indenter at 25 ° C., a compression speed of 0.3 mN / sec, and a maximum test load of 20 mN. The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 10%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:金属含有粒子が10%圧縮変形したときの荷重値(N)
 S:金属含有粒子が10%圧縮変形したときの圧縮変位(mm)
 R:金属含有粒子の半径(mm)
10% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when the metal-containing particles are 10% compressively deformed
S: Compression displacement (mm) when the metal-containing particles are 10% compressively deformed
R: radius of metal-containing particles (mm)
 上記突起のX線回折における(111)面の割合が50%以上であることが好ましい。 The ratio of the (111) plane in the X-ray diffraction of the protrusion is preferably 50% or more.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing metal-containing particles according to the first embodiment of the present invention.
 図1に示すように、金属含有粒子1は、基材粒子2と、金属部3とを備える。 As shown in FIG. 1, the metal-containing particle 1 includes a base particle 2 and a metal part 3.
 金属部3は、基材粒子2の表面上に配置されている。金属含有粒子1は、基材粒子2の表面が金属部3により被覆された被覆粒子である。金属部3は連続皮膜である。 The metal part 3 is disposed on the surface of the base particle 2. The metal-containing particle 1 is a coated particle in which the surface of the base particle 2 is coated with the metal part 3. The metal part 3 is a continuous film.
 金属含有粒子1は金属部3の外表面に、複数の突起1aを有する。金属部3は外表面に、複数の突起3aを有する。複数の突起1a,3aの形状は、先細りしている針状であり、本実施形態では円錐状である。本実施形態では、突起1a,3aの先端が、400℃以下で溶融可能である。金属部3は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。複数の突起1a,3aを除く部分が、金属部3の上記第1の部分である。複数の突起1a,3aは、金属部3の厚みが厚い上記第2の部分である。 The metal-containing particle 1 has a plurality of protrusions 1 a on the outer surface of the metal part 3. The metal part 3 has a plurality of protrusions 3a on the outer surface. The shape of the plurality of protrusions 1a and 3a is a tapered needle shape, and is a conical shape in the present embodiment. In the present embodiment, the tips of the protrusions 1a and 3a can be melted at 400 ° C. or lower. The metal part 3 has a first part and a second part that is thicker than the first part. A portion excluding the plurality of protrusions 1 a and 3 a is the first portion of the metal portion 3. The plurality of protrusions 1a and 3a are the second part where the metal part 3 is thick.
 図2は、本発明の第2の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing metal-containing particles according to the second embodiment of the present invention.
 図2に示すように、金属含有粒子1Aは、基材粒子2と、金属部3Aとを備える。 As shown in FIG. 2, the metal-containing particle 1 </ b> A includes a base particle 2 and a metal part 3 </ b> A.
 金属部3Aは、基材粒子2の表面上に配置されている。金属含有粒子1Aは金属部3Aの外表面に、複数の突起1Aaを有する。金属部3Aは外表面に、複数の突起3Aaを有する。複数の突起1Aa,3Aaの形状は、先細りしている針状であり、本実施形態では回転放物面状である。本実施形態では、突起1Aa,3Aaの先端が、400℃以下で溶融可能である。 The metal part 3 </ b> A is disposed on the surface of the base particle 2. The metal-containing particle 1A has a plurality of protrusions 1Aa on the outer surface of the metal portion 3A. The metal portion 3A has a plurality of protrusions 3Aa on the outer surface. The shape of the plurality of protrusions 1Aa and 3Aa is a tapered needle shape, and is a paraboloid in this embodiment. In the present embodiment, the tips of the protrusions 1Aa and 3Aa can be melted at 400 ° C. or lower.
 金属含有粒子1,1Aのように、上記金属部における複数の突起の形状は、先細りしている針状であることが好ましく、円錐状であってもよく、回転放物面状であってもよい。 Like the metal-containing particles 1 and 1A, the shape of the plurality of protrusions in the metal part is preferably a tapered needle shape, may be a conical shape, or may be a paraboloidal shape. Good.
 図3は、本発明の第3の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 3 is a cross-sectional view schematically showing metal-containing particles according to the third embodiment of the present invention.
 図3に示すように、金属含有粒子1Bは、基材粒子2と、金属部3Bとを備える。 As shown in FIG. 3, the metal-containing particle 1B includes a base particle 2 and a metal part 3B.
 金属部3Bは、基材粒子2の表面上に配置されている。金属含有粒子1Bは金属部3Bの外表面に、複数の突起1Baを有する。金属部3Bは外表面に、複数の突起3Baを有する。複数の突起1Ba,3Baの形状は、球体の一部の形状である。金属部3Bは、外表面上に一部が露出するように埋め込まれた金属粒子3BXを有する。金属粒子3BXの露出している部分が、突起1Ba,3Baを構成している。本実施形態では、突起1Ba,3Baの先端が、400℃以下で溶融可能である。 The metal part 3B is disposed on the surface of the base particle 2. The metal-containing particle 1B has a plurality of protrusions 1Ba on the outer surface of the metal portion 3B. The metal part 3B has a plurality of protrusions 3Ba on the outer surface. The shape of the plurality of protrusions 1Ba and 3Ba is a partial shape of a sphere. The metal part 3B has metal particles 3BX embedded so as to be partially exposed on the outer surface. The exposed portions of the metal particles 3BX constitute the protrusions 1Ba and 3Ba. In the present embodiment, the tips of the protrusions 1Ba and 3Ba can be melted at 400 ° C. or lower.
 金属含有粒子1Bのように、突起を小さくすることで、突起の形状は、先細りしている針状でなくてもよく、例えば球体の一部の形状であってもよい。 As with the metal-containing particles 1B, by reducing the protrusion, the shape of the protrusion may not be a tapered needle shape, and may be, for example, a shape of a part of a sphere.
 図4は、本発明の第4の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing metal-containing particles according to the fourth embodiment of the present invention.
 図4に示すように、金属含有粒子1Cは、基材粒子2と、金属部3Cとを備える。 As shown in FIG. 4, the metal-containing particle 1 </ b> C includes a base particle 2 and a metal part 3 </ b> C.
 金属含有粒子1と金属含有粒子1Cとでは、金属部のみが異なっている。すなわち、金属含有粒子1では、1層構造の金属部3が形成されているのに対し、金属含有粒子1Cでは、2層構造の金属部3Cが形成されている。 The metal-containing particle 1 and the metal-containing particle 1C are different only in the metal part. That is, in the metal-containing particle 1, the metal part 3 having a single layer structure is formed, whereas in the metal-containing particle 1C, the metal part 3C having a two-layer structure is formed.
 金属部3Cは、第1の金属部3CA及び第2の金属部3CBを有する。第1,第2の金属部3CA,3CBは、基材粒子2の表面上に配置されている。基材粒子2と第2の金属部3CBとの間に、第1の金属部3CAが配置されている。従って、基材粒子2の表面上に第1の金属部3CAが配置されており、第1の金属部3CAの外表面上に第2の金属部3CBが配置されている。第1の金属部3CAの外形は球状である。金属含有粒子1Cは金属部3Cの外表面に、複数の突起1Caを有する。金属部3Cは、外表面に複数の突起3Caを有する。第2の金属部3CBは外表面に、複数の突起を有する。複数の突起1Ca,3Caの形状は、先細りしている針状であり、本実施形態では円錐状である。本実施形態では、突起1Ca,3Caの先端が、400℃以下で溶融可能である。内側の第1の金属部が外表面に、複数の突起を有していてもよい。 The metal part 3C has a first metal part 3CA and a second metal part 3CB. The first and second metal parts 3CA and 3CB are arranged on the surface of the base particle 2. 1st metal part 3CA is arrange | positioned between the base particle 2 and 2nd metal part 3CB. Accordingly, the first metal portion 3CA is disposed on the surface of the base particle 2, and the second metal portion 3CB is disposed on the outer surface of the first metal portion 3CA. The outer shape of the first metal part 3CA is spherical. The metal-containing particle 1C has a plurality of protrusions 1Ca on the outer surface of the metal portion 3C. The metal portion 3C has a plurality of protrusions 3Ca on the outer surface. Second metal portion 3CB has a plurality of protrusions on the outer surface. The shape of the plurality of protrusions 1Ca and 3Ca is a tapered needle shape, and is a conical shape in the present embodiment. In the present embodiment, the tips of the protrusions 1Ca and 3Ca can be melted at 400 ° C. or lower. The inner first metal part may have a plurality of protrusions on the outer surface.
 図5は、本発明の第5の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing metal-containing particles according to the fifth embodiment of the present invention.
 図5に示すように、金属含有粒子1Dは、基材粒子2と、金属部3Dとを備える。 As shown in FIG. 5, the metal-containing particle 1D includes a base particle 2 and a metal part 3D.
 金属部3Dは、基材粒子2の表面上に配置されている。金属含有粒子1Dは金属部3Dの外表面に、複数の突起1Daを有する。金属含有粒子1Dは金属部3Dの外表面に、複数の凸部(第1の突起)3Daを有する。金属部3Dは外表面に、複数の凸部(第1の突起)3Daを有する。金属部3Dは、凸部(第1の突起)3Daの外表面に、凸部(第1の突起)3Daよりも小さい突起3Db(第2の突起)を有する。凸部(第1の突起)3Daと突起3Db(第2の突起)とは一体化しており、連なっている。本実施形態では、突起3Db(第2の突起)の先端径が小さく、突起3Db(第2の突起)の先端が、400℃以下で溶融可能である。 The metal part 3D is disposed on the surface of the base particle 2. The metal-containing particle 1D has a plurality of protrusions 1Da on the outer surface of the metal portion 3D. The metal-containing particle 1D has a plurality of convex portions (first protrusions) 3Da on the outer surface of the metal portion 3D. The metal portion 3D has a plurality of convex portions (first protrusions) 3Da on the outer surface. The metal part 3D has a protrusion 3Db (second protrusion) smaller than the protrusion (first protrusion) 3Da on the outer surface of the protrusion (first protrusion) 3Da. The protrusion (first protrusion) 3Da and the protrusion 3Db (second protrusion) are integrated and connected. In this embodiment, the tip diameter of the protrusion 3Db (second protrusion) is small, and the tip of the protrusion 3Db (second protrusion) can be melted at 400 ° C. or lower.
 図6は、本発明の第6の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 6 is a cross-sectional view schematically showing metal-containing particles according to the sixth embodiment of the present invention.
 図6に示すように、金属含有粒子1Eは、基材粒子2と、金属部3Eと、芯物質4Eを備える。 As shown in FIG. 6, the metal-containing particle 1E includes a base particle 2, a metal part 3E, and a core substance 4E.
 金属部3Eは、基材粒子2の表面上に配置されている。金属含有粒子1Eは金属部3Eの外表面に、複数の突起1Eaを有する。金属含有粒子1Eは金属部3Eの外表面に、複数の凸部(第1の突起)3Eaを有する。金属部3Eは外表面に、複数の凸部(第1の突起)3Eaを有する。金属部3Eは、凸部(第1の突起)3Eaの外表面に、凸部(第1の突起)3Eaよりも小さい突起3Eb(第2の突起)を有する。凸部(第1の突起)3Eaと突起3Eb(第2の突起)とは一体化しており、連なっている。本実施形態では、突起3Eb(第2の突起)の先端径が小さく、突起3Eb(第2の突起)の先端が、400℃以下で溶融可能である。 The metal part 3E is disposed on the surface of the base particle 2. The metal-containing particle 1E has a plurality of protrusions 1Ea on the outer surface of the metal portion 3E. The metal-containing particle 1E has a plurality of convex portions (first protrusions) 3Ea on the outer surface of the metal portion 3E. The metal portion 3E has a plurality of convex portions (first protrusions) 3Ea on the outer surface. The metal part 3E has a protrusion 3Eb (second protrusion) smaller than the protrusion (first protrusion) 3Ea on the outer surface of the protrusion (first protrusion) 3Ea. The protrusion (first protrusion) 3Ea and the protrusion 3Eb (second protrusion) are integrated and connected. In this embodiment, the tip diameter of the protrusion 3Eb (second protrusion) is small, and the tip of the protrusion 3Eb (second protrusion) can be melted at 400 ° C. or less.
 複数の芯物質4Eが、基材粒子2の外表面上に配置されている。複数の芯物質4Eは、金属部3Eの内側に配置されている。複数の芯物質4Eは、金属部3Eの内側に埋め込まれている。芯物質4Eは、凸部3Eaの内側に配置されている。金属部3Eは、複数の芯物質4Eを被覆している。複数の芯物質4Eにより、金属部3Eの外表面が隆起されており、凸部3Eaが形成されている。 A plurality of core substances 4E are arranged on the outer surface of the base particle 2. Several core substance 4E is arrange | positioned inside the metal part 3E. The plurality of core materials 4E are embedded inside the metal portion 3E. The core substance 4E is disposed inside the convex portion 3Ea. The metal portion 3E covers a plurality of core materials 4E. The outer surface of the metal part 3E is raised by the plurality of core materials 4E, and the convex part 3Ea is formed.
 金属原子含有粒子1Eのように、金属含有粒子は、金属部の外表面を隆起させている複数の芯物質を備えていてもよい。 As in the case of the metal atom-containing particle 1E, the metal-containing particle may include a plurality of core substances that protrude the outer surface of the metal part.
 図7は、本発明の第7の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 7 is a cross-sectional view schematically showing metal-containing particles according to the seventh embodiment of the present invention.
 図7に示すように、金属含有粒子1Fは、基材粒子2と、金属部3Fとを備える。 As shown in FIG. 7, the metal-containing particle 1 </ b> F includes a base particle 2 and a metal part 3 </ b> F.
 金属部3Fは、基材粒子2の表面上に配置されている。金属含有粒子1Fは金属部3Fの外表面に、複数の突起1Faを有する。金属部3Fは、凸部(第1の突起)3Faの外表面に、凸部(第1の突起)3Faよりも小さい突起3Fb(第2の突起)を有する。凸部(第1の突起)3Faと突起3Fb(第2の突起)とは一体化していない。本実施形態では、突起3Fb(第2の突起)の先端径が小さく、突起3Fb(第2の突起)の先端が、400℃以下で溶融可能である。 The metal part 3F is disposed on the surface of the base particle 2. The metal-containing particle 1F has a plurality of protrusions 1Fa on the outer surface of the metal portion 3F. The metal part 3F has a protrusion 3Fb (second protrusion) smaller than the protrusion (first protrusion) 3Fa on the outer surface of the protrusion (first protrusion) 3Fa. The protrusion (first protrusion) 3Fa and the protrusion 3Fb (second protrusion) are not integrated. In the present embodiment, the tip diameter of the protrusion 3Fb (second protrusion) is small, and the tip of the protrusion 3Fb (second protrusion) can be melted at 400 ° C. or lower.
 図8は、本発明の第8の実施形態に係る金属含有粒子を模式的に示す断面図である。 FIG. 8 is a cross-sectional view schematically showing metal-containing particles according to the eighth embodiment of the present invention.
 図8に示すように、金属含有粒子1Gは、基材粒子2と、金属部3Gとを備える。 As shown in FIG. 8, the metal-containing particle 1G includes a base particle 2 and a metal portion 3G.
 金属部3Gは、第1の金属部3GA及び第2の金属部3GBを有する。第1,第2の金属部3GA,3GBは、基材粒子2の表面上に配置されている。基材粒子2と第2の金属部3GBとの間に、第1の金属部3GAが配置されている。従って、基材粒子2の表面上に第1の金属部3GAが配置されており、第1の金属部3GAの外表面上に第2の金属部3GBが配置されている。 The metal part 3G has a first metal part 3GA and a second metal part 3GB. The first and second metal parts 3GA and 3GB are arranged on the surface of the base particle 2. A first metal part 3GA is arranged between the base particle 2 and the second metal part 3GB. Accordingly, the first metal part 3GA is arranged on the surface of the base particle 2, and the second metal part 3GB is arranged on the outer surface of the first metal part 3GA.
 金属部3Gは、基材粒子2の表面上に配置されている。金属含有粒子1Gは金属部3Gの外表面に、複数の突起1Gaを有する。金属含有粒子1Gは金属部3Gの外表面に、複数の凸部(第1の突起)3Gaを有する。金属部3Gは、凸部(第1の突起)3Gaの外表面に、凸部(第1の突起)3Gaよりも小さい突起3Gb(第2の突起)を有する。凸部(第1の突起)3Gaと突起3Gb(第2の突起)との間に、界面が存在する。本実施形態では、突起3Gb(第2の突起)の先端径が小さく、突起3Gb(第2の突起)の先端が、400℃以下で溶融可能である。 The metal part 3G is disposed on the surface of the base particle 2. The metal-containing particle 1G has a plurality of protrusions 1Ga on the outer surface of the metal portion 3G. The metal-containing particle 1G has a plurality of convex portions (first protrusions) 3Ga on the outer surface of the metal portion 3G. The metal part 3G has a protrusion 3Gb (second protrusion) smaller than the protrusion (first protrusion) 3Ga on the outer surface of the protrusion (first protrusion) 3Ga. An interface exists between the protrusion (first protrusion) 3Ga and the protrusion 3Gb (second protrusion). In this embodiment, the tip diameter of the protrusion 3Gb (second protrusion) is small, and the tip of the protrusion 3Gb (second protrusion) can be melted at 400 ° C. or lower.
 また、図11~14に、実際に製造された金属含有粒子の画像を示した。図11~14に示す金属含有粒子は、金属部の外表面に複数の突起を有し、複数の該突起の先端は、400℃以下で溶融可能である。図14に示す金属含有粒子では、金属部が、外表面に複数の凸部を有し、該凸部の外表面上に上記凸部よりも小さい突起を有する。 FIGS. 11 to 14 show images of actually produced metal-containing particles. The metal-containing particles shown in FIGS. 11 to 14 have a plurality of protrusions on the outer surface of the metal portion, and the tips of the plurality of protrusions can be melted at 400 ° C. or less. In the metal-containing particles shown in FIG. 14, the metal part has a plurality of protrusions on the outer surface, and has protrusions smaller than the protrusions on the outer surface of the protrusions.
 また、図15~18に、製造された金属含有粒子の金属部の突起を溶融させた後固化させた粒子の画像を示した。図18は、図14に示す金属含有粒子の金属部の突起の先端を溶融させた後固化させた粒子である。 15 to 18 show images of particles solidified after melting the protrusions of the metal part of the produced metal-containing particles. FIG. 18 is a particle solidified after melting the tip of the protrusion of the metal part of the metal-containing particle shown in FIG.
 以下、金属含有粒子をより詳しく説明する。なお、以下の説明において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 Hereinafter, the metal-containing particles will be described in more detail. In the following description, “(meth) acryl” means one or both of “acryl” and “methacryl”, and “(meth) acrylate” means one or both of “acrylate” and “methacrylate”. means.
 [基材粒子]
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを有していてもよく、コアシェル粒子であってもよい。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。
[Base material particles]
Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The base particle may have a core and a shell disposed on the surface of the core, or may be a core-shell particle. The substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
 上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが更に好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、2つの接続対象部材の接続用途に好適な金属含有粒子が得られる。 The base material particles are more preferably resin particles or organic-inorganic hybrid particles, and may be resin particles or organic-inorganic hybrid particles. By using these preferable base particles, metal-containing particles suitable for the connection application of two connection target members can be obtained.
 上記基材粒子が樹脂粒子又は有機無機ハイブリッド粒子であると、上記金属含有粒子が変形しやすく、上記金属含有粒子の柔軟性が高くなる。このため、接続後に、衝撃吸収性が高くなる。 When the substrate particles are resin particles or organic / inorganic hybrid particles, the metal-containing particles are easily deformed, and the flexibility of the metal-containing particles is increased. For this reason, shock absorption becomes high after the connection.
 上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。2つの接続対象部材の接続用途に適した任意の圧縮時の物性を有する樹脂粒子を設計及び合成することができ、かつ基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Tons, polyethersulfone, and polymers such as obtained by a variety of polymerizable monomer having an ethylenically unsaturated group is polymerized with one or more thereof. Since the resin particles having the physical properties at the time of compression suitable for the connection application of the two connection target members can be designed and synthesized, and the hardness of the base particles can be easily controlled within a suitable range, the resin particles The resin for forming is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, as the polymerizable monomer having an ethylenically unsaturated group, a non-crosslinkable monomer and And a crosslinkable monomer.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc. Oxygen atom-containing (meth) acrylate compounds; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate Vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene Etc.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) sia Silane-containing monomers such as rate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. Can be mentioned.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 In the case where the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles, examples of the inorganic material for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black. . The inorganic substance is preferably not a metal. The particles formed by the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。接続信頼性を効果的に高める観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. From the viewpoint of effectively increasing the connection reliability, the substrate particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
 上記無機シェルを形成するための材料としては、上述した基材粒子を形成するための無機物が挙げられる。上記無機シェルを形成するための材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 Examples of the material for forming the inorganic shell include inorganic substances for forming the above-described base material particles. The material for forming the inorganic shell is preferably silica. The inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material. The metal alkoxide is preferably a silane alkoxide. The inorganic shell is preferably formed of a silane alkoxide.
 上記コアの粒径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記コアの粒径が上記下限以上及び上記上限以下であると、2つの接続対象部材の接続用途に好適に使用可能になる。例えば、上記コアの粒径が上記下限以上及び上記上限以下であると、上記金属含有粒子を用いて2つの接続対象部材を接続した場合に、金属含有粒子と接続対象部材との接触面積が充分に大きくなり、かつ金属部を形成する際に凝集した金属含有粒子が形成されにくくなる。また、金属含有粒子を介して接続された2つの接続対象部材の間隔が大きくなりすぎず、かつ金属部が基材粒子の表面から剥離し難くなる。 The particle size of the core is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 500 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less, particularly preferably 20 μm or less, and most preferably 10 μm or less. It is. When the particle diameter of the core is not less than the above lower limit and not more than the above upper limit, it can be suitably used for the connection application of two connection target members. For example, when the particle diameter of the core is not less than the lower limit and not more than the upper limit, when two connection target members are connected using the metal-containing particles, the contact area between the metal-containing particles and the connection target member is sufficient. And the agglomerated metal-containing particles are hardly formed when the metal part is formed. In addition, the interval between the two connection target members connected via the metal-containing particles does not become too large, and the metal portion is difficult to peel off from the surface of the substrate particles.
 上記コアの粒径は、上記コアが真球状である場合には直径を意味し、上記コアが真球状以外の形状である場合には、最大径を意味する。また、コアの粒径は、コアを任意の粒径測定装置により測定した平均粒径を意味する。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析などの原理を用いた粒度分布測定機が利用できる。 The particle diameter of the core means a diameter when the core is a true sphere, and means a maximum diameter when the core is a shape other than a true sphere. Moreover, the particle size of a core means the average particle size which measured the core with the arbitrary particle size measuring apparatus. For example, a particle size distribution measuring machine using principles such as laser light scattering, electrical resistance value change, and image analysis after imaging can be used.
 上記シェルの厚みは、好ましくは100nm以上、より好ましくは200nm以上であり、好ましくは5μm以下、より好ましくは3μm以下である。上記シェルの厚みが上記下限以上及び上記上限以下であると2つの接続対象部材の接続用途に好適に使用可能になる。上記シェルの厚みは、基材粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記シェルの厚みを制御可能である。 The thickness of the shell is preferably 100 nm or more, more preferably 200 nm or more, preferably 5 μm or less, more preferably 3 μm or less. When the thickness of the shell is not less than the above lower limit and not more than the above upper limit, the shell can be suitably used for connecting two connection target members. The thickness of the shell is an average thickness per base particle. The thickness of the shell can be controlled by controlling the sol-gel method.
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles.
 上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、より一層好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは400μm以下、更に好ましくは100μm以下、更に好ましくは50μm以下、更に一層好ましくは30μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下である。上記基材粒子の粒子径が上記下限以上であると、接続信頼性がより一層高くなる。さらに、基材粒子の表面に金属部を無電解めっきにより形成する際に凝集し難くなり、凝集した金属含有粒子が形成されにくくなる。基材粒子の平均粒子径が上記上限以下であると、金属含有粒子が充分に圧縮されやすく、接続信頼性がより一層高くなる。 The particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, still more preferably 1 μm or more, still more preferably 1.5 μm or more, particularly preferably 2 μm or more, preferably 1000 μm. Below, more preferably 500 μm or less, still more preferably 400 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, still more preferably 30 μm or less, particularly preferably 5 μm or less, and most preferably 3 μm or less. When the particle diameter of the substrate particles is not less than the above lower limit, the connection reliability is further enhanced. Furthermore, when forming a metal part on the surface of a base particle by electroless plating, it becomes difficult to aggregate and it becomes difficult to form the aggregated metal-containing particle. When the average particle diameter of the substrate particles is not more than the above upper limit, the metal-containing particles are easily compressed, and the connection reliability is further enhanced.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。 The particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
 接続信頼性のヒートサイクル試験での接続部のクラック又は剥離の発生をより一層抑え、応力負荷時のクラックの発生をより一層抑える観点からは、上記基材粒子は、シリコーン樹脂を含む粒子(シリコーン粒子)であることが好ましい。上記基材粒子の材料は、シリコーン樹脂を含むことが好ましい。 From the viewpoint of further suppressing the occurrence of cracks or delamination in the connection reliability heat cycle test, and further suppressing the occurrence of cracks during stress loading, the substrate particles are particles containing silicone resin (silicone Particles). The material of the substrate particles preferably contains a silicone resin.
 上記シリコーン粒子の材料は、好ましくは、ラジカル重合性基を有するシラン化合物と炭素数5以上の疎水基を有するシラン化合物とであるか、ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物であるか、もしくは、ラジカル重合性基を両末端に有するシラン化合物であることが好ましい。これらの材料を反応させた場合には、シロキサン結合が形成される。得られるシリコーン粒子において、ラジカル重合性基及び炭素数5以上の疎水基は一般に残存する。このような材料を用いることで、0.1μm以上、500μm以下の1次粒子径を有するシリコーン粒子を容易に得ることができ、しかもシリコーン粒子の耐薬品性を高くし、かつ透湿性を低くすることができる。 The material of the silicone particles is preferably a silane compound having a radical polymerizable group and a silane compound having a hydrophobic group having 5 or more carbon atoms, or having a radical polymerizable group and a hydrophobic group having 5 or more carbon atoms. It is preferably a silane compound having a radical polymerizable group or a silane compound having both radically polymerizable groups. When these materials are reacted, a siloxane bond is formed. In the resulting silicone particles, radically polymerizable groups and hydrophobic groups having 5 or more carbon atoms generally remain. By using such a material, silicone particles having a primary particle size of 0.1 μm or more and 500 μm or less can be easily obtained, and the chemical resistance of the silicone particles is increased and the moisture permeability is decreased. be able to.
 上記ラジカル重合性基を有するシラン化合物では、ラジカル重合性基はケイ素原子に直接結合していることが好ましい。上記ラジカル重合性基を有するシラン化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 In the silane compound having a radical polymerizable group, the radical polymerizable group is preferably directly bonded to a silicon atom. As for the silane compound which has the said radical polymerizable group, only 1 type may be used and 2 or more types may be used together.
 上記ラジカル重合性基を有するシラン化合物は、アルコキシシラン化合物であることが好ましい。上記ラジカル重合性基を有するシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、ジビニルメトキシビニルシラン、ジビニルエトキシビニルシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、及び1,3-ジビニルテトラメチルジシロキサン等が挙げられる。 The silane compound having a radical polymerizable group is preferably an alkoxysilane compound. Examples of the silane compound having a radical polymerizable group include vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, divinylmethoxyvinylsilane, divinylethoxyvinylsilane, divinyldimethoxysilane, divinyldiethoxysilane, and 1 , 3-divinyltetramethyldisiloxane and the like.
 上記炭素数5以上の疎水基を有するシラン化合物では、炭素数5以上の疎水基はケイ素原子に直接結合していることが好ましい。上記炭素数5以上の疎水基を有するシラン化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 In the silane compound having a hydrophobic group having 5 or more carbon atoms, the hydrophobic group having 5 or more carbon atoms is preferably directly bonded to a silicon atom. Only 1 type may be used for the said silane compound which has a C5 or more hydrophobic group, and 2 or more types may be used together.
 上記炭素数5以上の疎水基を有するシラン化合物は、アルコキシシラン化合物であることが好ましい。上記炭素数5以上の疎水基を有するシラン化合物としては、フェニルトリメトキシシラン、ジメトキシメチルフェニルシラン、ジエトキシメチルフェニルシラン、ジメチルメトキシフェニルシラン、ジメチルエトキシフェニルシラン、ヘキサフェニルジシロキサン、1,3,3,5-テトラメチル-1,1,5,5-テトラペニルトリシロキサン、1,1,3,5,5-ペンタフェニル-1,3,5-トリメチルトリシロキサン、ヘキサフェニルシクロトリシロキサン、フェニルトリス(トリメチルシロキシ)シラン、及びオクタフェニルシクロテトラシロキサン等が挙げられる。 The silane compound having a hydrophobic group having 5 or more carbon atoms is preferably an alkoxysilane compound. Examples of the silane compound having a hydrophobic group having 5 or more carbon atoms include phenyltrimethoxysilane, dimethoxymethylphenylsilane, diethoxymethylphenylsilane, dimethylmethoxyphenylsilane, dimethylethoxyphenylsilane, hexaphenyldisiloxane, 1,3, 3,5-tetramethyl-1,1,5,5-tetraphenyltrisiloxane, 1,1,3,5,5-pentaphenyl-1,3,5-trimethyltrisiloxane, hexaphenylcyclotrisiloxane, phenyl Examples include tris (trimethylsiloxy) silane and octaphenylcyclotetrasiloxane.
 上記ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物では、ラジカル重合性基はケイ素原子に直接結合していることが好ましく、炭素数5以上の疎水基はケイ素原子に直接結合していることが好ましい。上記ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 In the silane compound having a radical polymerizable group and a hydrophobic group having 5 or more carbon atoms, the radical polymerizable group is preferably directly bonded to a silicon atom, and the hydrophobic group having 5 or more carbon atoms is bonded to a silicon atom. Direct bonding is preferred. As for the silane compound having a radical polymerizable group and having a hydrophobic group having 5 or more carbon atoms, only one kind may be used, or two or more kinds may be used in combination.
 上記ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物としては、フェニルビニルジメトキシシラン、フェニルビニルジエトキシシラン、フェニルメチルビニルメトキシシラン、フェニルメチルビニルエトキシシラン、ジフェニルビニルメトキシシラン、ジフェニルビニルエトキシシラン、フェニルジビニルメトキシシラン、フェニルジビニルエトキシシラン、及び1,1,3,3-テトラフェニル-1,3-ジビニルジシロキサン等が挙げられる。 Examples of the silane compound having a radical polymerizable group and a hydrophobic group having 5 or more carbon atoms include phenylvinyldimethoxysilane, phenylvinyldiethoxysilane, phenylmethylvinylmethoxysilane, phenylmethylvinylethoxysilane, and diphenylvinylmethoxysilane. , Diphenylvinylethoxysilane, phenyldivinylmethoxysilane, phenyldivinylethoxysilane, 1,1,3,3-tetraphenyl-1,3-divinyldisiloxane, and the like.
 シリコーン粒子を得るために、上記ラジカル重合性基を有するシラン化合物と、上記炭素数5以上の疎水基を有するシラン化合物とを用いる場合に、上記ラジカル重合性基を有するシラン化合物と、上記炭素数5以上の疎水基を有するシラン化合物とは重量比で、1:1~1:20で用いることが好ましく、1:5~1:15で用いることがより好ましい。 In order to obtain silicone particles, when using the silane compound having a radical polymerizable group and the silane compound having a hydrophobic group having 5 or more carbon atoms, the silane compound having the radical polymerizable group and the carbon number The silane compound having 5 or more hydrophobic groups is preferably used in a weight ratio of 1: 1 to 1:20, more preferably 1: 5 to 1:15.
 シリコーン粒子を得るためのシラン化合物の全体において、ラジカル重合性基の数と炭素数5以上の疎水基の数とは、1:0.5~1:20であることが好ましく、1:1~1:15であることがより好ましい。 In the entire silane compound for obtaining silicone particles, the number of radical polymerizable groups and the number of hydrophobic groups having 5 or more carbon atoms are preferably 1: 0.5 to 1:20, and 1: 1 to More preferably, it is 1:15.
 耐薬品性を効果的に高くし、透湿性を効果的に低くし、10%K値を好適な範囲に制御する観点からは、上記シリコーン粒子は、1つのケイ素原子に2つのメチル基が結合したジメチルシロキサン骨格を有することが好ましく、上記シリコーン粒子の材料は、1つのケイ素原子に2つのメチル基が結合したシラン化合物を含むことが好ましい。 From the viewpoint of effectively increasing chemical resistance, effectively reducing moisture permeability, and controlling the 10% K value within a suitable range, the silicone particles have two methyl groups bonded to one silicon atom. Preferably, the material of the silicone particle contains a silane compound in which two methyl groups are bonded to one silicon atom.
 耐薬品性を効果的に高くし、透湿性を効果的に低くし、10%K値を好適な範囲に制御する観点からは、上記シリコーン粒子は、上述したシラン化合物を、ラジカル重合開始剤により反応させて、シロキサン結合を形成させることが好ましい。一般に、ラジカル重合開始剤を用いて、0.1μm以上、500μm以下の1次粒子径を有するシリコーン粒子を得ることは困難であり、100μm以下の1次粒子径を有するシリコーン粒子を得ることが特に困難である。これに対して、ラジカル重合開始剤を用いる場合でも、上記シラン化合物を用いることで、0.1μm以上、500μm以下の1次粒子径を有するシリコーン粒子を得ることができ、100μm以下の1次粒子径を有するシリコーン粒子を得ることもできる。 From the viewpoint of effectively increasing chemical resistance, effectively reducing moisture permeability, and controlling the 10% K value within a suitable range, the silicone particles described above can be obtained by using a radical polymerization initiator. It is preferable to react to form a siloxane bond. In general, it is difficult to obtain silicone particles having a primary particle size of 0.1 μm or more and 500 μm or less using a radical polymerization initiator, and it is particularly preferable to obtain silicone particles having a primary particle size of 100 μm or less. Have difficulty. In contrast, even when a radical polymerization initiator is used, silicone particles having a primary particle diameter of 0.1 μm or more and 500 μm or less can be obtained by using the silane compound, and primary particles of 100 μm or less. Silicone particles having a diameter can also be obtained.
 上記シリコーン粒子を得るために、ケイ素原子に結合した水素原子を有するシラン化合物を用いなくてもよい。この場合には、金属触媒を用いずに、ラジカル重合開始剤を用いて、シラン化合物を重合させることができる。結果として、シリコーン粒子に金属触媒が含まれないようにすることができ、シリコーン粒子における金属触媒の含有量を少なくすることができ、更に耐薬品性を効果的に高くし、透湿性を効果的に低くし、10%K値を好適な範囲に制御することができる。 In order to obtain the above silicone particles, it is not necessary to use a silane compound having a hydrogen atom bonded to a silicon atom. In this case, the silane compound can be polymerized using a radical polymerization initiator without using a metal catalyst. As a result, the metal particles can be prevented from being contained in the silicone particles, the content of the metal catalyst in the silicone particles can be reduced, the chemical resistance is effectively increased, and the moisture permeability is effectively increased. The 10% K value can be controlled within a suitable range.
 上記シリコーン粒子の具体的な製造方法としては、懸濁重合法、分散重合法、ミニエマルション重合法、又は乳化重合法等でシラン化合物の重合反応を行い、シリコーン粒子を作製する方法等がある。シラン化合物の重合を進行させてオリゴマーを得た後、懸濁重合法、分散重合法、ミニエマルション重合法、又は乳化重合法等で重合体(オリゴマーなど)であるシラン化合物の重合反応を行い、シリコーン粒子を作製してもよい。例えば、ビニル基を有するシラン化合物を重合させて、末端においてケイ素原子に結合したビニル基を有するシラン化合物を得てもよい。フェニル基を有するシラン化合物を重合させて、重合体(オリゴマーなど)として、側鎖においてケイ素原子に結合したフェニル基を有するシラン化合物を得てもよい。ビニル基を有するシラン化合物とフェニル基を有するシラン化合物とを重合させて、重合体(オリゴマーなど)として、末端においてケイ素原子に結合したビニル基を有しかつ側鎖においてケイ素原子に結合したフェニル基を有するシラン化合物を得てもよい。 Specific examples of the method for producing the silicone particles include a method of producing a silicone particle by performing a polymerization reaction of a silane compound by a suspension polymerization method, a dispersion polymerization method, a miniemulsion polymerization method, an emulsion polymerization method, or the like. After the polymerization of the silane compound proceeds to obtain an oligomer, a polymerization reaction of the silane compound that is a polymer (such as an oligomer) is performed by a suspension polymerization method, a dispersion polymerization method, a miniemulsion polymerization method, or an emulsion polymerization method, Silicone particles may be produced. For example, a silane compound having a vinyl group bonded to a silicon atom at the terminal may be obtained by polymerizing a silane compound having a vinyl group. A silane compound having a phenyl group may be polymerized to obtain a silane compound having a phenyl group bonded to a silicon atom in the side chain as a polymer (such as an oligomer). A silane compound having a vinyl group and a silane compound having a phenyl group are polymerized to form a polymer (such as an oligomer) having a vinyl group bonded to a silicon atom at a terminal and a phenyl group bonded to a silicon atom in a side chain You may obtain the silane compound which has this.
 シリコーン粒子は、複数の粒子を外表面に有していてもよい。この場合に、シリコーン粒子は、シリコーン粒子本体と、シリコーン粒子本体の表面上に配置された複数の粒子とを備えていてもよい。上記複数の粒子としては、シリコーン粒子及び球状シリカ等が挙げられる。上記複数の粒子の存在によって、シリコーン粒子の凝集を抑えることができる。 The silicone particles may have a plurality of particles on the outer surface. In this case, the silicone particle may include a silicone particle main body and a plurality of particles arranged on the surface of the silicone particle main body. Examples of the plurality of particles include silicone particles and spherical silica. The presence of the plurality of particles can suppress aggregation of the silicone particles.
 [金属部]
 上記金属部の上記突起の先端は、400℃以下で溶融可能である。溶融温度を低くすることで、加熱時のエネルギーの消費量を抑え、更に接続対象部材等の熱劣化を抑える観点からは、上記金属部の上記突起の先端は、350℃以下で溶融可能であることが好ましく、300℃以下で溶融可能であることがより好ましく、250℃以下で溶融可能であることが更に好ましく、200℃以下で溶融可能であることが特に好ましい。上記突起の先端の溶融温度は、突起の先端の金属の種類及び突起の先端の形状により制御することができる。上記凸部の基部、上記突起の高さの中央の位置、上記突起の基部、及び上記突起の高さの中央の位置の融点は、200℃を超えていてもよく、250℃を超えていてもよく、300℃を超えていてもよく、350℃を超えていてもよく、400℃を超えていてもよい。上記金属部、上記凸部及び上記突起は、200℃を超える部分を有していてもよく、250℃を超える部分を有していてもよく、300℃を超える部分を有していてもよく、350℃を超える部分を有していてもよく、400℃を超える部分を有していてもよい。
[Metal part]
The tip of the protrusion of the metal part can be melted at 400 ° C. or lower. From the viewpoint of suppressing the energy consumption during heating by lowering the melting temperature and further suppressing the thermal deterioration of the connection target member, the tip of the protrusion of the metal part can be melted at 350 ° C. or lower. It is more preferable that it can be melted at 300 ° C. or less, it is more preferable that it can be melted at 250 ° C. or less, and it is particularly preferable that it can be melted at 200 ° C. or less. The melting temperature at the tip of the protrusion can be controlled by the type of metal at the tip of the protrusion and the shape of the tip of the protrusion. The melting point of the base of the convex part, the center position of the height of the protrusion, the base part of the protrusion, and the center position of the height of the protrusion may exceed 200 ° C or exceed 250 ° C. Or may exceed 300 ° C, may exceed 350 ° C, or may exceed 400 ° C. The metal part, the convex part, and the protrusion may have a part exceeding 200 ° C., may have a part exceeding 250 ° C., and may have a part exceeding 300 ° C. , May have a portion exceeding 350 ° C., or may have a portion exceeding 400 ° C.
 上記金属部の材料は特に限定されない。上記金属部の材料は金属を含むことが好ましい。該金属としては、例えば、金、銀、パラジウム、ロジウム、イリジウム、リチウム、銅、白金、亜鉛、鉄、錫、鉛、ルテニウム、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)等が挙げられる。 The material for the metal part is not particularly limited. The material of the metal part preferably contains a metal. Examples of the metal include gold, silver, palladium, rhodium, iridium, lithium, copper, platinum, zinc, iron, tin, lead, ruthenium, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, and thallium. , Germanium, cadmium, silicon, and alloys thereof. Examples of the metal include tin-doped indium oxide (ITO).
 本発明では、上記金属部の突起の先端が400℃以下で溶融可能であるように、金属部の材料が選ばれる。 In the present invention, the material of the metal part is selected so that the tip of the protrusion of the metal part can be melted at 400 ° C. or less.
 接続信頼性を効果的に高める観点からは、上記突起の材料は、銀、銅、金、パラジウム、錫、インジウム又は亜鉛を含むことが好ましい。上記突起の材料は、錫を含んでいなくてもよい。 From the viewpoint of effectively improving connection reliability, the material of the protrusion preferably contains silver, copper, gold, palladium, tin, indium or zinc. The material of the protrusion may not contain tin.
 上記金属部の材料は、はんだではないことが好ましい。上記金属部の材料がはんだではないことで、金属部全体が過度に溶融するのを抑えることができる。上記金属部の材料は、錫を含んでいなくてもよい。 It is preferable that the material of the metal part is not solder. It can suppress that the whole metal part melt | dissolves excessively because the material of the said metal part is not a solder. The material of the metal part may not contain tin.
 接続信頼性を効果的に高める観点からは、上記金属部の材料は、銀、銅、金、パラジウム、錫、インジウム、亜鉛、ニッケル、コバルト、鉄、タングステン、モリブデン、ルテニウム、白金、ロジウム、イリジウム、リン又はホウ素を含むことが好ましく、銀、銅、金、パラジウム、錫、インジウム又は亜鉛を含むことがより好ましく、銀を含むことが更に好ましい。これらの好ましい材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。接続信頼性を効果的に高める観点からは、上記銀は、銀単体又は酸化銀として含まれていてもよい。酸化銀としては、AgO及びAgOが挙げられる。 From the viewpoint of effectively improving connection reliability, the material of the metal part is silver, copper, gold, palladium, tin, indium, zinc, nickel, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium , Phosphorus or boron is preferable, silver, copper, gold, palladium, tin, indium or zinc is more preferable, and silver is further preferable. As for these preferable materials, only 1 type may be used and 2 or more types may be used together. From the viewpoint of effectively improving the connection reliability, the silver may be contained as a single silver or silver oxide. Examples of silver oxide include Ag 2 O and AgO.
 銀を含む金属部100重量%中、銀の含有量は好ましくは0.1重量%以上、より好ましくは1重量%以上であり、好ましくは100重量%以下、より好ましくは90重量%以下、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。銀の含有量が上記下限以上及び上記上限以下であると、接合強度が高くなり、接続信頼性がより一層高くなる。 In 100% by weight of the metal part containing silver, the content of silver is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less, % By weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight or less may be used. When the silver content is not less than the above lower limit and not more than the above upper limit, the bonding strength is increased and the connection reliability is further enhanced.
 上記銅は、銅単体又は酸化銅として含まれていてもよい。 The copper may be contained as a simple copper or copper oxide.
 銅を含む金属部100重量%中、銅の含有量は好ましくは0.1重量%以上、より好ましくは1重量%以上であり、好ましくは100重量%以下、より好ましくは90重量%以下、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。銅の含有量が上記下限以上及び上記上限以下であると、接合強度が高くなり、接続信頼性がより一層高くなる。 In 100% by weight of the metal part containing copper, the content of copper is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less, % By weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight or less may be used. When the copper content is not less than the above lower limit and not more than the above upper limit, the bonding strength is increased and the connection reliability is further enhanced.
 上記金属部は、1つの層により形成されていてもよい。上記金属部は、複数の層により形成されていてもよい。 The metal part may be formed of one layer. The metal part may be formed of a plurality of layers.
 上記金属部の外表面は防錆処理されていてもよい。上記金属含有粒子は、上記金属部の外表面に防錆膜を有していてもよい。防錆処理としては、金属部の外表面に防錆剤を配置する方法、金属部の外表面を合金化し耐食性を向上する方法、金属部の外表面に高耐食金属膜をコーティングする方法等が挙げられる。上記防錆剤としては、ベンゾトリアゾール化合物、イミダゾール化合物等の含窒素ヘテロ環化合物;メルカプタン化合物、チアゾール化合物、有機ジスルフィド化合物のような含硫黄化合物;有機リン酸化合物等の含リン化合物が挙げられる。 The outer surface of the metal part may be rust-proofed. The metal-containing particles may have a rust preventive film on the outer surface of the metal part. Examples of the rust prevention treatment include a method of arranging a rust inhibitor on the outer surface of the metal part, a method of alloying the outer surface of the metal part to improve corrosion resistance, a method of coating a high corrosion resistant metal film on the outer surface of the metal part, etc. Can be mentioned. Examples of the rust preventive include nitrogen-containing heterocyclic compounds such as benzotriazole compounds and imidazole compounds; sulfur-containing compounds such as mercaptan compounds, thiazole compounds and organic disulfide compounds; and phosphorus-containing compounds such as organic phosphate compounds.
 [防錆処理]
 金属含有粒子の腐食を抑え、電極間の接続抵抗を低くするために、上記金属部の外表面は防錆処理、又は耐硫化処理されていることが好ましい。
[Rust prevention treatment]
In order to suppress the corrosion of the metal-containing particles and reduce the connection resistance between the electrodes, it is preferable that the outer surface of the metal part is subjected to a rust prevention treatment or a sulfuration resistance treatment.
 耐硫化剤、防錆剤や変色防止剤としては、ベンゾトリアゾール化合物、イミダゾール化合物等の含窒素ヘテロ環化合物;メルカプタン化合物、チアゾール化合物、有機ジスルフィド化合物のような含硫黄化合物;有機リン酸化合物等の含リン化合物が挙げられる。 Examples of sulfur-resistant agents, rust inhibitors and discoloration inhibitors include nitrogen-containing heterocyclic compounds such as benzotriazole compounds and imidazole compounds; sulfur-containing compounds such as mercaptan compounds, thiazole compounds and organic disulfide compounds; and organic phosphate compounds. Examples thereof include phosphorus-containing compounds.
 導通信頼性をより一層高める観点からは、上記金属部の外表面は、炭素数6~22のアルキル基を有する化合物により、防錆処理されていることが好ましい。上記金属部の表面は、リンを含まない化合物により防錆処理されていてもよく、炭素数6~22のアルキル基を有しかつリンを含まない化合物により防錆処理されていてもよい。導通信頼性をより一層高める観点からは、上記金属部の外表面は、アルキルリン酸化合物又はアルキルチオールにより、防錆処理されていることが好ましい。防錆処理により、上記金属部の外表面に、防錆膜を形成できる。 From the viewpoint of further improving the conduction reliability, the outer surface of the metal part is preferably rust-proofed with a compound having an alkyl group having 6 to 22 carbon atoms. The surface of the metal part may be rust-proofed with a compound not containing phosphorus, or may be rust-proofed with a compound having an alkyl group having 6 to 22 carbon atoms and not containing phosphorus. From the viewpoint of further improving the conduction reliability, the outer surface of the metal part is preferably rust-proofed with an alkyl phosphate compound or an alkyl thiol. By the rust prevention treatment, a rust prevention film can be formed on the outer surface of the metal part.
 上記防錆膜は、炭素数6~22のアルキル基を有する化合物(以下、化合物Aともいう)により形成されていることが好ましい。上記金属部の外表面は、上記化合物Aにより表面処理されていることが好ましい。上記アルキル基の炭素数が6以上であると、金属部全体で錆がより一層生じ難くなる。上記アルキル基の炭素数が22以下であると、金属含有粒子の導電性が高くなる。金属含有粒子の導電性をより一層高める観点からは、上記化合物Aにおける上記アルキル基の炭素数は16以下であることが好ましい。上記アルキル基は直鎖構造を有していてもよく、分岐構造を有していてもよい。上記アルキル基は、直鎖構造を有することが好ましい。 The rust preventive film is preferably formed of a compound having an alkyl group having 6 to 22 carbon atoms (hereinafter also referred to as compound A). The outer surface of the metal part is preferably surface-treated with the compound A. When the carbon number of the alkyl group is 6 or more, rust is more unlikely to occur in the entire metal part. When the carbon number of the alkyl group is 22 or less, the conductivity of the metal-containing particles is increased. From the viewpoint of further increasing the conductivity of the metal-containing particles, the alkyl group in the compound A preferably has 16 or less carbon atoms. The alkyl group may have a linear structure or a branched structure. The alkyl group preferably has a linear structure.
 上記化合物Aは、炭素数6~22のアルキル基を有していれば特に限定されない。上記化合物Aは、炭素数6~22のアルキル基を有するリン酸エステル又はその塩、炭素数6~22のアルキル基を有する亜リン酸エステル又はその塩、炭素数6~22のアルキル基を有するアルコキシシラン、炭素数6~22のアルキル基を有するアルキルチオール、又は、炭素数6~22のアルキル基を有するジアルキルジスルフィドであることが好ましい。すなわち、上記炭素数6~22のアルキル基を有する化合物Aは、リン酸エステル又はその塩、亜リン酸エステル又はその塩、アルコキシシラン、アルキルチオール、又は、ジアルキルジスルフィドであることが好ましい。これらの好ましい化合物Aの使用により、金属部に錆をより一層生じ難くすることができる。錆をより一層生じ難くする観点からは、上記化合物Aは、上記リン酸エステルもしくはその塩、亜リン酸エステルもしくはその塩、又は、アルキルチオールであることが好ましく、上記リン酸エステルもしくはその塩、又は、亜リン酸エステルもしくはその塩であることがより好ましい。上記化合物Aは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The compound A is not particularly limited as long as it has an alkyl group having 6 to 22 carbon atoms. The compound A has a phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, a phosphite ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, and an alkyl group having 6 to 22 carbon atoms. An alkoxysilane, an alkylthiol having an alkyl group having 6 to 22 carbon atoms, or a dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms is preferable. That is, the compound A having an alkyl group having 6 to 22 carbon atoms is preferably a phosphate ester or a salt thereof, a phosphite ester or a salt thereof, an alkoxysilane, an alkylthiol, or a dialkyl disulfide. By using these preferable compounds A, it is possible to further prevent rust from occurring in the metal part. From the viewpoint of making rust even more difficult to generate, the compound A is preferably the phosphate ester or salt thereof, phosphite ester or salt thereof, or alkylthiol, and the phosphate ester or salt thereof, Or it is more preferable that it is a phosphite or its salt. As for the said compound A, only 1 type may be used and 2 or more types may be used together.
 上記化合物Aは、上記金属部の外表面と反応可能な反応性官能基を有することが好ましい。上記金属含有粒子が上記金属部の外表面上に配置された絶縁性物質を備える場合に、上記化合物Aは、上記絶縁性物質と反応可能な反応性官能基を有することが好ましい。上記防錆膜は、上記金属部と化学結合していることが好ましい。上記防錆膜は、上記絶縁性物質と化学結合していることが好ましい。上記防錆膜は、上記金属部及び上記絶縁性物質の双方と化学結合していることがより好ましい。上記反応性官能基の存在により、及び上記化学結合により、上記防錆膜の剥離が生じ難くなり、この結果、金属部に錆がより一層生じ難くなり、かつ金属含有粒子の表面から絶縁性物質が意図せずにより一層脱離し難くなる。 The compound A preferably has a reactive functional group capable of reacting with the outer surface of the metal part. When the metal-containing particles include an insulating substance disposed on the outer surface of the metal part, the compound A preferably has a reactive functional group capable of reacting with the insulating substance. The rust preventive film is preferably chemically bonded to the metal part. The rust preventive film is preferably chemically bonded to the insulating material. More preferably, the rust preventive film is chemically bonded to both the metal part and the insulating material. Due to the presence of the reactive functional group and due to the chemical bond, the rust preventive film is less likely to be peeled off. As a result, the rust is less likely to be generated in the metal part, and the insulating material is exposed from the surface of the metal-containing particles. However, it becomes more difficult to detach unintentionally.
 上記炭素数6~22のアルキル基を有するリン酸エステル又はその塩としては、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル、リン酸モノヘキシルエステルモノナトリウム塩、リン酸モノヘプチルエステルモノナトリウム塩、リン酸モノオクチルエステルモノナトリウム塩、リン酸モノノニルエステルモノナトリウム塩、リン酸モノデシルエステルモノナトリウム塩、リン酸モノウンデシルエステルモノナトリウム塩、リン酸モノドデシルエステルモノナトリウム塩、リン酸モノトリデシルエステルモノナトリウム塩、リン酸モノテトラデシルエステルモノナトリウム塩及びリン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記リン酸エステルのカリウム塩を用いてもよい。 Examples of the phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof include, for example, hexyl phosphate, heptyl phosphate, monooctyl phosphate, monononyl phosphate, monodecyl phosphate, Monoundecyl phosphate, monododecyl phosphate, monotridecyl phosphate, monotetradecyl phosphate, monopentadecyl phosphate, monohexyl phosphate monosodium salt, monoheptyl phosphate monosodium Salt, monooctyl phosphate monosodium salt, monononyl phosphate monosodium salt, monodecyl phosphate monosodium salt, monoundecyl phosphate monosodium salt, monododecyl phosphate monosodium salt Phosphoric acid mono-tridecyl ester monosodium salt, phosphate acid mono tetradecyl ester monosodium salt and phosphoric acid mono pentadecyl ester monosodium salt. You may use the potassium salt of the said phosphate ester.
 上記炭素数6~22のアルキル基を有する亜リン酸エステル又はその塩としては、例えば、亜リン酸ヘキシルエステル、亜リン酸ヘプチルエステル、亜リン酸モノオクチルエステル、亜リン酸モノノニルエステル、亜リン酸モノデシルエステル、亜リン酸モノウンデシルエステル、亜リン酸モノドデシルエステル、亜リン酸モノトリデシルエステル、亜リン酸モノテトラデシルエステル、亜リン酸モノペンタデシルエステル、亜リン酸モノヘキシルエステルモノナトリウム塩、亜リン酸モノヘプチルエステルモノナトリウム塩、亜リン酸モノオクチルエステルモノナトリウム塩、亜リン酸モノノニルエステルモノナトリウム塩、亜リン酸モノデシルエステルモノナトリウム塩、亜リン酸モノウンデシルエステルモノナトリウム塩、亜リン酸モノドデシルエステルモノナトリウム塩、亜リン酸モノトリデシルエステルモノナトリウム塩、亜リン酸モノテトラデシルエステルモノナトリウム塩及び亜リン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記亜リン酸エステルのカリウム塩を用いてもよい。 Examples of the phosphite having a C 6-22 alkyl group or a salt thereof include, for example, hexyl phosphite, heptyl phosphite, monooctyl phosphite, monononyl phosphite, phosphite Phosphoric acid monodecyl ester, phosphorous acid monoundecyl ester, phosphorous acid monododecyl ester, phosphorous acid monotridecyl ester, phosphorous acid monotetradecyl ester, phosphorous acid monopentadecyl ester, phosphorous acid monohexyl Ester monosodium salt, phosphorous acid monoheptyl ester monosodium salt, phosphorous acid monooctyl ester monosodium salt, phosphorous acid monononyl ester monosodium salt, phosphorous acid monodecyl ester monosodium salt, phosphorous acid monoun Decyl ester monosodium salt, phosphorous acid Roh dodecyl ester monosodium salt, phosphorous acid mono-tridecyl ester monosodium salt, phosphorous acid mono-tetradecyl ester monosodium salt and phosphorous acid mono-pentadecyl ester monosodium salt. You may use the potassium salt of the said phosphite.
 上記炭素数6~22のアルキル基を有するアルコキシシランとしては、例えば、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ノニルトリメトキシシラン、ノニルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ウンデシルトリメトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、トリデシルトリメトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリメトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリメトキシシラン及びペンタデシルトリエトキシシラン等が挙げられる。 Examples of the alkoxysilane having an alkyl group having 6 to 22 carbon atoms include hexyltrimethoxysilane, hexyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, nonyltri Methoxysilane, nonyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, undecyltrimethoxysilane, undecyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tridecyltrimethoxysilane, tridecyltriethoxy Examples include silane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane, pentadecyltrimethoxysilane, and pentadecyltriethoxysilane.
 上記炭素数6~22のアルキル基を有するアルキルチオールとしては、例えば、ヘキシルチオール、ヘプチルチオール、オクチルチオール、ノニルチオール、デシルチオール、ウンデシルチオール、ドデシルチオール、トリデシルチオール、テトラデシルチオール、ペンタデシルチオール及びヘキサデシルチオール等が挙げられる。上記アルキルチオールは、アルキル鎖の末端にチオール基を有することが好ましい。 Examples of the alkyl thiol having an alkyl group having 6 to 22 carbon atoms include hexyl thiol, heptyl thiol, octyl thiol, nonyl thiol, decyl thiol, undecyl thiol, dodecyl thiol, tridecyl thiol, tetradecyl thiol, pentadecyl. Examples include thiol and hexadecyl thiol. The alkyl thiol preferably has a thiol group at the end of the alkyl chain.
 上記炭素数6~22のアルキル基を有するジアルキルジスルフィドとしては、例えば、ジヘキシルジスルフィド、ジヘプチルジスルフィド、ジオクチルジスルフィド、ジノニルジスルフィド、ジデシルジスルフィド、ジウンデシルジスルフィド、ジドデシルジスルフィド、ジトリデシルジスルフィド、ジテトラデシルジスルフィド、ジペンタデシルジスルフィド及びジヘキサデシルジスルフィド等が挙げられる。 Examples of the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms include dihexyl disulfide, diheptyl disulfide, dioctyl disulfide, dinonyl disulfide, didecyl disulfide, diundecyl disulfide, didodecyl disulfide, ditridecyl disulfide, ditetradecyl disulfide. Examples include decyl disulfide, dipentadecyl disulfide, and dihexadecyl disulfide.
 導通信頼性をより一層高める観点からは、上記金属部の外表面は、スルフィド化合物若しくはチオール化合物を主成分とする硫黄含有化合物、ベンゾトリアゾール化合物又はポリオキシエチレンエーテル界面活性剤のいずれかの層により、耐硫化処理されていることが好ましい。耐硫化処理により、上記金属部の外表面に、防錆膜を形成できる。 From the viewpoint of further improving the conduction reliability, the outer surface of the metal part is made of any layer of a sulfur-containing compound, a benzotriazole compound, or a polyoxyethylene ether surfactant mainly composed of a sulfide compound or a thiol compound. It is preferable that the sulfidation treatment is performed. A rust preventive film can be formed on the outer surface of the metal part by the anti-sulfurization treatment.
 上記スルフィド化合物としては、ジヘキシルスルフィド、ジヘプチルスルフィド、ジオクチルスルフィド、ジデシルスルフィド、ジドデシルスルフィド、ジテトラデシルスルフィド、ジヘキサデシルスルフィド、ジオクタデシルスルフィド等の炭素数6~40程度(好ましくは炭素数10~40程度)の直鎖状又は分岐鎖状のジアルキルスルフィド(アルキルスルフィド);ジフェニルスルフィド、フェニル-p-トリルスルフィド、4,4-チオビスベンゼンチオール等の炭素数12~30程度の芳香族スルフィド;3,3’-チオジプロピオン酸、4,4’-チオジブタン酸等のチオジカルボン酸等が挙げられる。上記スルフィド化合物は、ジアルキルスルフィドであることが特に好ましい。 Examples of the sulfide compound include about 6 to 40 carbon atoms (preferably carbon number) such as dihexyl sulfide, diheptyl sulfide, dioctyl sulfide, didecyl sulfide, didodecyl sulfide, ditetradecyl sulfide, dihexadecyl sulfide, and dioctadecyl sulfide. About 10 to 40) linear or branched dialkyl sulfide (alkyl sulfide); aromatic having about 12 to 30 carbon atoms such as diphenyl sulfide, phenyl-p-tolyl sulfide, 4,4-thiobisbenzenethiol, etc. Sulfides; thiodicarboxylic acids such as 3,3′-thiodipropionic acid and 4,4′-thiodibutanoic acid. The sulfide compound is particularly preferably a dialkyl sulfide.
 上記チオール化合物としては、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、2-メチル-2-プロパンチオールやオクタデシルチオール等の炭素数4~40程度(より好ましくは6~20程度)の直鎖状又は分岐鎖状のアルキルチオール等が挙げられる。また、これらの化合物の炭素基に結合している水素原子がフッ素に置換された化合物等が挙げられる。 Examples of the thiol compound include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2-methyl-2-propanethiol, octadecylthiol, and the like, and about 4 to 40 carbon atoms (more preferably 6 to 20). Degree) linear or branched alkylthiol and the like. Moreover, the compound etc. with which the hydrogen atom couple | bonded with the carbon group of these compounds was substituted by the fluorine are mentioned.
 上記ベンゾトリアゾール化合物としては、ベンゾトリアゾール、ベンゾトリアゾール塩、メチルベンゾトリアゾール、カルボキシベンゾトリアゾール及びベンゾトリアゾール誘導体等が挙げられる。 Examples of the benzotriazole compounds include benzotriazole, benzotriazole salts, methylbenzotriazole, carboxybenzotriazole, and benzotriazole derivatives.
 また、上記変色防止剤としては、北池産業社製の商品名「AC-20」、「AC-70」、「AC-80」、メルテックス社製の商品名「エンテックCU-56」、大和化成社製の商品名「ニューダインシルバー」、「ニューダインシルバーS-1」、千代田ケミカル社製の商品名「B-1057」、及び千代田ケミカル社製の商品名「B-1009NS」等が挙げられる。 Examples of the anti-discoloring agent include trade names “AC-20”, “AC-70” and “AC-80” manufactured by Kitaike Sangyo Co., Ltd., trade names “ENTEC CU-56” manufactured by Meltex, and Daiwa Kasei. Product names “New Dyne Silver”, “New Dine Silver S-1” manufactured by the company, “B-1057” manufactured by Chiyoda Chemical, and “B-1009NS” manufactured by Chiyoda Chemical .
 上記基材粒子の表面上に金属部を形成する方法は特に限定されない。金属部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。金属部の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。 The method for forming the metal part on the surface of the substrate particle is not particularly limited. As a method for forming a metal part, for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc. Since formation of a metal part is simple, the method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
 金属部の外表面に先細りしている針状の形状を有する突起を形成する方法としては、下記の方法が挙げられる。 As a method of forming a protrusion having a needle shape that is tapered on the outer surface of the metal part, the following method may be mentioned.
 還元剤としてヒドラジンを用いた無電解高純度ニッケルめっきによる方法、還元剤としてヒドラジンを用いた無電解パラジウム-ニッケル合金による方法、還元剤として次亜リン酸化合物を用いた無電解CoNiP合金めっき方法、還元剤としてヒドラジンを用いた無電解銀めっきによる方法、並びに還元剤として次亜リン酸化合物を用いた無電解銅-ニッケル-リン合金めっきによる方法等が挙げられる。 A method by electroless high-purity nickel plating using hydrazine as a reducing agent, a method by electroless palladium-nickel alloy using hydrazine as a reducing agent, an electroless CoNiP alloy plating method using a hypophosphite compound as a reducing agent, Examples thereof include a method by electroless silver plating using hydrazine as a reducing agent, and a method by electroless copper-nickel-phosphorus alloy plating using a hypophosphite compound as a reducing agent.
 無電解めっきにより形成する方法では、一般的に、触媒化工程と、無電解めっき工程とが行われる。以下、無電解めっきにより、樹脂粒子の表面に、銅及びニッケルを含む合金めっき層及び金属部の外表面に先細りしている針状の形状を有する突起を形成する方法の例を説明する。 In the method of forming by electroless plating, generally, a catalytic step and an electroless plating step are performed. Hereinafter, an example of a method of forming an alloy plating layer containing copper and nickel and a needle-like protrusion tapered on the outer surface of the metal part on the surface of the resin particle by electroless plating will be described.
 上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。 In the catalyzing step, a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
 上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む金属部を形成できる。 As a method of forming the catalyst on the surface of the resin particles, for example, after adding the resin particles to a solution containing palladium chloride and tin chloride, the surface of the resin particles is activated with an acid solution or an alkali solution, A method of depositing palladium on the surface of the resin particles, and after adding the resin particles to a solution containing palladium sulfate and aminopyridine, the surface of the resin particles is activated by a solution containing a reducing agent. Examples thereof include a method of depositing palladium on the surface. A phosphorus-containing reducing agent is used as the reducing agent. Moreover, the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
 上記無電解めっき工程では、銅含有化合物、錯化剤及び還元剤を含有するめっき液を用いる無電解銅-ニッケル-リン合金めっき方法において、還元剤として次亜リン酸化合物を含み、還元剤の反応開始金属触媒としてニッケル含有化合物を含み、かつノニオン界面活性剤を含む銅-ニッケル-リン合金めっき液を用いることが好ましい。 In the electroless plating step, in the electroless copper-nickel-phosphorus alloy plating method using a plating solution containing a copper-containing compound, a complexing agent and a reducing agent, a hypophosphite compound is included as a reducing agent, It is preferable to use a copper-nickel-phosphorus alloy plating solution containing a nickel-containing compound as a reaction initiation metal catalyst and containing a nonionic surfactant.
 銅-ニッケル-リン合金めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、銅-ニッケル-リン合金を析出させることができ、銅、ニッケル及びリンを含む金属部を形成できる。 By immersing resin particles in a copper-nickel-phosphorus alloy plating bath, a copper-nickel-phosphorus alloy can be deposited on the surface of the resin particles on which the catalyst is formed. A metal part can be formed.
 上記銅含有化合物としては、硫酸銅、塩化第二銅、及び硝酸銅等が挙げられる。上記銅含有化合物は、硫酸銅であることが好ましい。 Examples of the copper-containing compound include copper sulfate, cupric chloride, and copper nitrate. The copper-containing compound is preferably copper sulfate.
 上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、硫酸ニッケルであることが好ましい。 Examples of the nickel-containing compound include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate. The nickel-containing compound is preferably nickel sulfate.
 上記リン含有還元剤としては、次亜リン酸、及び次亜リン酸ナトリウム等が挙げられる。上記リン含有還元剤に加えて、ボロン含有還元剤を用いてもよい。上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。 Examples of the phosphorus-containing reducing agent include hypophosphorous acid and sodium hypophosphite. In addition to the phosphorus-containing reducing agent, a boron-containing reducing agent may be used. Examples of the boron-containing reducing agent include dimethylamine borane, sodium borohydride, and potassium borohydride.
 上記錯化剤は、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸錯化剤、マロン酸ニナトリウム等のジカルボン酸錯化剤、コハク酸ニナトリウム等のトリカルボン酸錯化剤、乳酸、DL-リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸錯化剤、グリシン、EDTA等のアミノ酸錯化剤、エチレンジアミン等のアミン錯化剤、マレイン酸等の有機酸錯化剤、又は、これらの塩であることが好ましい。これらの好ましい錯化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The complexing agents include monocarboxylic acid complexing agents such as sodium acetate and sodium propionate, dicarboxylic acid complexing agents such as disodium malonate, tricarboxylic acid complexing agents such as disodium succinate, lactic acid, DL-apple Hydroxy acid complexing agents such as acid, Rochelle salt, sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, organic acid complexing agents such as maleic acid, or These salts are preferred. Only 1 type may be used for these preferable complexing agents, and 2 or more types may be used together.
 上記界面活性剤としては、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤又は両性界面活性剤が挙げられ、特にノニオン界面活性剤が好適である。好ましいノニオン界面活性剤は、エーテル酸素原子を含むポリエーテルである。好ましいノニオン界面活性剤としては、ポリオキシエチレンラウリルエーテル、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルアミン、及びエチレンジアミンのポリオキシアルキレン付加物等が挙げられる。好ましくは、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル、ポリオキシエチレンポリオキシプロピレングリコールモノブチルエーテルなどのポリオキシエチレンモノアルキルエーテル、ポリエチレングリコール又はフェノールエトキシレートである。上記界面活性剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。分子量1000程度(例えば、500以上、2000以下)のポリエチレングリコールが特に好ましい。 Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant, and a nonionic surfactant is particularly preferable. Preferred nonionic surfactants are polyethers containing ether oxygen atoms. Preferred nonionic surfactants include polyoxyethylene lauryl ether, polyethylene glycol, polypropylene glycol, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene nonylphenyl ether, polyoxyethylene polyoxypropylene alkylamine, And polyoxyalkylene adducts of ethylenediamine and the like. Preferred are polyoxyethylene monoalkyl ethers such as polyoxyethylene monobutyl ether, polyoxypropylene monobutyl ether, polyoxyethylene polyoxypropylene glycol monobutyl ether, polyethylene glycol or phenol ethoxylate. As for the said surfactant, only 1 type may be used and 2 or more types may be used together. Polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less) is particularly preferable.
 金属部の外表面に先細りしている針状の形状を有する突起を形成するためには、銅化合物とニッケル化合物とのモル比を制御することが望ましい。上記の銅化合物の使用量は、ニッケル化合物に対するモル比で2倍から100倍であることが好ましい。 It is desirable to control the molar ratio of the copper compound to the nickel compound in order to form a needle-like protrusion that tapers on the outer surface of the metal part. The amount of the copper compound used is preferably 2 to 100 times in molar ratio to the nickel compound.
 また、上記のノニオン界面活性剤等を用いなくても、針状の形状を有する突起が得られる。より頂角が鋭利に先細りしている形状の突起を形成するためには、ノニオン界面活性剤を用いることが好ましく、分子量1000程度(例えば、500以上、2000以下)のポリエチレングリコールを用いることが特に好ましい。 Further, a protrusion having a needle shape can be obtained without using the above-described nonionic surfactant or the like. In order to form protrusions having a shape in which the apex angle is sharper, it is preferable to use a nonionic surfactant, and it is particularly preferable to use polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less). preferable.
 複数の突起の平均高さ(b)の、複数の上記突起の基部の平均径(c)に対する比(平均高さ(b)/平均径(c))は、金属部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。 The ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions (average height (b) / average diameter (c)) depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath. The plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
 次に、無電解めっきにより、樹脂粒子の表面に、銀めっき層及び金属部の外表面に先細りしている針状の形状を有する突起を形成する方法の例を説明する。 Next, an example of a method of forming a protrusion having a needle shape tapered on the outer surface of the silver plating layer and the metal part on the surface of the resin particle by electroless plating will be described.
 上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。 In the catalyzing step, a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
 上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む金属部を形成できる。 As a method of forming the catalyst on the surface of the resin particles, for example, after adding the resin particles to a solution containing palladium chloride and tin chloride, the surface of the resin particles is activated with an acid solution or an alkali solution, A method of depositing palladium on the surface of the resin particles, and after adding the resin particles to a solution containing palladium sulfate and aminopyridine, the surface of the resin particles is activated by a solution containing a reducing agent. Examples thereof include a method of depositing palladium on the surface. A phosphorus-containing reducing agent is used as the reducing agent. Moreover, the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
 上記無電解めっき工程では、銀含有化合物、錯化剤及び還元剤を含有するめっき液を用いる無電解銀めっき方法において、還元剤としてヒドラジン、ノニオン界面活性剤及び硫黄含有有機化合物を含む銀めっき液を用いることが好ましい。 In the electroless plating step, in the electroless silver plating method using a plating solution containing a silver-containing compound, a complexing agent and a reducing agent, a silver plating solution containing hydrazine, a nonionic surfactant and a sulfur-containing organic compound as a reducing agent Is preferably used.
 銀めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、銀を析出させることができ、銀を含む金属部を形成できる。 By immersing the resin particles in the silver plating bath, silver can be deposited on the surface of the resin particles on which the catalyst is formed, and a metal part containing silver can be formed.
 上記銀含有化合物としては、シアン化銀カリウム、硝酸銀、チオ硫酸銀ナトリウム、グルコン酸銀、銀-システイン錯体、メタンスルホン酸銀が好ましい。 As the silver-containing compound, potassium silver cyanide, silver nitrate, silver thiosulfate sodium, silver gluconate, silver-cysteine complex, and silver methanesulfonate are preferable.
 上記還元剤としては、ヒドラジン、次亜リン酸ナトリウム、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム、ホルマリン、ブドウ糖等が挙げられる。 Examples of the reducing agent include hydrazine, sodium hypophosphite, dimethylamine borane, sodium borohydride and potassium borohydride, formalin, glucose and the like.
 針状の形状を有する突起を形成する為の還元剤としては、ヒドラジン一水和物、塩酸ヒドラジン、及び硫酸ヒドラジンが好ましい。 As the reducing agent for forming the protrusion having a needle shape, hydrazine monohydrate, hydrazine hydrochloride, and hydrazine sulfate are preferable.
 上記錯化剤は、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL-リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤、又は、これらの塩であることが好ましい。これらの好ましい錯化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The complexing agent is a monocarboxylic acid complexing agent such as sodium acetate or sodium propionate, a dicarboxylic acid complexing agent such as disodium malonate, a tricarboxylic acid complexing agent such as disodium succinate, lactic acid, DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic acids such as maleic acid A complexing agent or a salt thereof is preferable. Only 1 type may be used for these preferable complexing agents, and 2 or more types may be used together.
 上記界面活性剤としては、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤又は両性界面活性剤が挙げられ、特にノニオン界面活性剤が好適である。好ましいノニオン界面活性剤は、エーテル酸素原子を含むポリエーテルである。好ましいノニオン界面活性剤としては、ポリオキシエチレンラウリルエーテル、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルアミン、及びエチレンジアミンのポリオキシアルキレン付加物等が挙げられる。好ましくは、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル、ポリオキシエチレンポリオキシプロピレングリコールモノブチルエーテルなどのポリオキシエチレンモノアルキルエーテル、ポリエチレングリコール又はフェノールエトキシレートである。上記界面活性剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。分子量1000程度(例えば、500以上、2000以下)のポリエチレングリコールが特に好ましい。 Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant, and a nonionic surfactant is particularly preferable. Preferred nonionic surfactants are polyethers containing ether oxygen atoms. Preferred nonionic surfactants include polyoxyethylene lauryl ether, polyethylene glycol, polypropylene glycol, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene nonylphenyl ether, polyoxyethylene polyoxypropylene alkylamine, And polyoxyalkylene adducts of ethylenediamine and the like. Preferred are polyoxyethylene monoalkyl ethers such as polyoxyethylene monobutyl ether, polyoxypropylene monobutyl ether, polyoxyethylene polyoxypropylene glycol monobutyl ether, polyethylene glycol or phenol ethoxylate. As for the said surfactant, only 1 type may be used and 2 or more types may be used together. Polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less) is particularly preferable.
 また、上記のノニオン界面活性剤等を用いなくても、針状の形状を有する突起が得られる。より頂角が鋭利に先細りしている形状の突起を形成するためには、ノニオン界面活性剤を用いることが好ましく、分子量1000程度(例えば、500以上、2000以下)のポリエチレングリコールを用いることが特に好ましい。 Further, a protrusion having a needle shape can be obtained without using the above-described nonionic surfactant or the like. In order to form protrusions having a shape in which the apex angle is sharper, it is preferable to use a nonionic surfactant, and it is particularly preferable to use polyethylene glycol having a molecular weight of about 1000 (for example, 500 or more and 2000 or less). preferable.
 上記硫黄含有有機化合物としては、スルフィド又はスルホン酸基を有する有機化合物、チオ尿素化合物、及びベンゾチアゾール化合物等が挙げられる。上記スルフィド又はスルホン酸基を有する有機化合物としては、N,N-ジメチル-ジチオカルバミン酸-(3-スルホプロピル)エステル、3-メルカプト-プロピルスルホン酸-(3-スルホプロピル)エステル、3-メルカプト-プロピルスルホン酸ナトリウム塩、3-メルカプト-1-プロパンスルホン酸カリウム塩、炭酸-ジチオ-o-エチルエステル、ビススルホプロピルジスルフィド、ビス-(3-スルホプロピル)-ジスルフィド・ジナトリウム塩、3-(ベンゾチアゾリル-s-チオ)プロピルスルホン酸ナトリウム塩、ピリジニウムプロピルスルホベタイン、1-ナトリウム-3-メルカプトプロパン-1-スルホネート、N,N-ジメチル-ジチオカルバミン酸-(3-スルホエチル)エステル、3-メルカプト-エチルプロピルスルホン酸-(3-スルホエチル)エステル、3-メルカプト-エチルスルホン酸ナトリウム塩、3-メルカプト-1-エタンスルホン酸カリウム塩、炭酸-ジチオ-o-エチルエステル-s-エステル、ビススルホエチルジスルフィド、3-(ベンゾチアゾリル-s-チオ)エチルスルホン酸ナトリウム塩、ピリジニウムエチルスルホベタイン、1-ナトリウム-3-メルカプトエタン-1-スルホネート、及びチオ尿素化合物等が挙げられる。上記チオ尿素化合物としては、チオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、ジエチルチオ尿素、及びアリルチオ尿素等が挙げられる。 Examples of the sulfur-containing organic compound include organic compounds having a sulfide or sulfonic acid group, thiourea compounds, and benzothiazole compounds. Examples of the organic compound having a sulfide or sulfonic acid group include N, N-dimethyl-dithiocarbamic acid- (3-sulfopropyl) ester, 3-mercapto-propylsulfonic acid- (3-sulfopropyl) ester, 3-mercapto- Propylsulfonic acid sodium salt, 3-mercapto-1-propanesulfonic acid potassium salt, carbonic acid-dithio-o-ethyl ester, bissulfopropyl disulfide, bis- (3-sulfopropyl) -disulfide disodium salt, 3- ( Benzothiazolyl-s-thio) propylsulfonic acid sodium salt, pyridiniumpropylsulfobetaine, 1-sodium-3-mercaptopropane-1-sulfonate, N, N-dimethyl-dithiocarbamic acid- (3-sulfoethyl) ester, 3-mercapto- D Rupropylsulfonic acid- (3-sulfoethyl) ester, 3-mercapto-ethylsulfonic acid sodium salt, 3-mercapto-1-ethanesulfonic acid potassium salt, carbonic acid-dithio-o-ethylester-s-ester, bissulfoethyl Examples include disulfide, 3- (benzothiazolyl-s-thio) ethylsulfonic acid sodium salt, pyridinium ethyl sulfobetaine, 1-sodium-3-mercaptoethane-1-sulfonate, and thiourea compounds. Examples of the thiourea compound include thiourea, 1,3-dimethylthiourea, trimethylthiourea, diethylthiourea, and allylthiourea.
 また、上記の硫黄含有有機化合物等を用いなくても、針状の形状を有する突起が得られる。より頂角が鋭利に先細りしている形状の突起を形成するためには、硫黄含有有機化合物を用いることが好ましく、チオ尿素を用いることが特に好ましい。 Further, a protrusion having a needle shape can be obtained without using the above-described sulfur-containing organic compound. In order to form a protrusion having a shape with a sharper apex angle, a sulfur-containing organic compound is preferably used, and thiourea is particularly preferably used.
 複数の突起の平均高さ(b)の、複数の上記突起の基部の平均径(c)に対する比(平均高さ(b)/平均径(c))は、金属部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。 The ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions (average height (b) / average diameter (c)) depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath. The plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
 次に、無電解めっきにより、樹脂粒子の表面に、高純度ニッケルめっき層及び金属部の外表面に先細りしている針状の形状を有する突起を形成する方法の例を説明する。 Next, an example of a method for forming a high-purity nickel plating layer and a needle-like protrusion tapered on the outer surface of the metal part on the surface of the resin particle by electroless plating will be described.
 上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。 In the catalyzing step, a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
 上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む金属部を形成できる。 As a method of forming the catalyst on the surface of the resin particles, for example, after adding the resin particles to a solution containing palladium chloride and tin chloride, the surface of the resin particles is activated with an acid solution or an alkali solution, A method of depositing palladium on the surface of the resin particles, and after adding the resin particles to a solution containing palladium sulfate and aminopyridine, the surface of the resin particles is activated by a solution containing a reducing agent. Examples thereof include a method of depositing palladium on the surface. A phosphorus-containing reducing agent is used as the reducing agent. Moreover, the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
 上記無電解めっき工程では、ニッケル含有化合物、錯化剤及び還元剤を含有するめっき液を用いる無電解高純度ニッケルめっき方法において、還元剤としてヒドラジンを含む高純度ニッケルめっき液が好適に用いられる。 In the electroless plating step, a high purity nickel plating solution containing hydrazine as a reducing agent is suitably used in an electroless high purity nickel plating method using a plating solution containing a nickel-containing compound, a complexing agent and a reducing agent.
 高純度ニッケルめっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、高純度ニッケルめっきを析出させることができ、高純度ニッケルの金属部を形成できる。 By immersing resin particles in a high-purity nickel plating bath, high-purity nickel plating can be deposited on the surface of the resin particles on which the catalyst is formed, and a metal portion of high-purity nickel can be formed.
 上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、塩化ニッケルであることが好ましい。 Examples of the nickel-containing compound include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate. The nickel-containing compound is preferably nickel chloride.
 上記の還元剤としては、ヒドラジン一水和物、塩酸ヒドラジン、及び硫酸ヒドラジンが挙げられる。上記の還元剤は、ヒドラジン一水和物であることが好ましい。 Examples of the reducing agent include hydrazine monohydrate, hydrazine hydrochloride, and hydrazine sulfate. The reducing agent is preferably hydrazine monohydrate.
 上記錯化剤としては、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL-リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤等が挙げられる。上記錯化剤は、アミノ酸系錯化剤であるグリシンであることが好ましい。 Examples of the complexing agent include monocarboxylic acid complexing agents such as sodium acetate and sodium propionate, dicarboxylic acid complexing agents such as disodium malonate, tricarboxylic acid complexing agents such as disodium succinate, and lactic acid. DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic such as maleic acid Examples include acid complexing agents. The complexing agent is preferably glycine, which is an amino acid complexing agent.
 金属部の外表面に先細りしている針状の形状を有する突起を形成するためには、めっき液のpHを8.0以上に調整することが好ましい。還元剤としてヒドラジンを用いる無電解めっき液では、ヒドラジンの酸化反応によりニッケルを還元する際にpHの急激な低下をともなう。上記のpHの急激な低下を抑制するために、リン酸、ホウ酸、炭酸等の緩衝剤を用いることが好ましい。上記緩衝剤は、pH8.0以上の緩衝作用の効果があるホウ酸であることが好ましい。 In order to form a needle-like protrusion tapering on the outer surface of the metal part, it is preferable to adjust the pH of the plating solution to 8.0 or more. An electroless plating solution using hydrazine as a reducing agent is accompanied by a sharp drop in pH when nickel is reduced by an oxidation reaction of hydrazine. In order to suppress the rapid decrease in pH, it is preferable to use a buffering agent such as phosphoric acid, boric acid or carbonic acid. The buffering agent is preferably boric acid having a buffering effect at pH 8.0 or higher.
 複数の突起の平均高さ(b)の、複数の上記突起の基部の平均径(c)に対する比(平均高さ(b)/平均径(c))は、金属部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は、好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。 The ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions (average height (b) / average diameter (c)) depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath. The plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
 次に、無電解めっきにより、樹脂粒子の表面に、パラジウム-ニッケル合金めっき層及び金属部の外表面に先細りしている針状の形状を有する突起を形成する方法の例を説明する。 Next, an example of a method for forming a projection having a needle-like shape tapering on the outer surface of the palladium-nickel alloy plating layer and the metal part on the surface of the resin particle by electroless plating will be described.
 上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。 In the catalyzing step, a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
 上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む金属部を形成できる。 As a method of forming the catalyst on the surface of the resin particles, for example, after adding the resin particles to a solution containing palladium chloride and tin chloride, the surface of the resin particles is activated with an acid solution or an alkali solution, A method of depositing palladium on the surface of the resin particles, and after adding the resin particles to a solution containing palladium sulfate and aminopyridine, the surface of the resin particles is activated by a solution containing a reducing agent. Examples thereof include a method of depositing palladium on the surface. A phosphorus-containing reducing agent is used as the reducing agent. Moreover, the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
 上記無電解めっき工程では、ニッケル含有化合物、パラジウム化合物、安定剤、錯化剤及び還元剤を含有するめっき液を用いる無電解パラジウム-ニッケルめっき方法において、還元剤としてヒドラジンを含むパラジウム-ニッケル合金めっき液が好適に用いられる。 In the electroless plating step, in the electroless palladium-nickel plating method using a plating solution containing a nickel-containing compound, a palladium compound, a stabilizer, a complexing agent and a reducing agent, a palladium-nickel alloy plating containing hydrazine as a reducing agent. A liquid is preferably used.
 パラジウム-ニッケル合金めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、パラジウム-ニッケル合金めっきを析出させることができ、パラジウム-ニッケルの金属部を形成できる。 By immersing resin particles in a palladium-nickel alloy plating bath, palladium-nickel alloy plating can be deposited on the surface of the resin particles on which the catalyst is formed, and a metal part of palladium-nickel can be formed. .
 上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、硫酸ニッケルであることが好ましい。 Examples of the nickel-containing compound include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate. The nickel-containing compound is preferably nickel sulfate.
 上記パラジウム含有化合物としては、ジクロロエチレンジアミンパラジウム(II)、塩化パラジウム、ジクロロジアンミンパラジウム(II)、ジニトロジアンミンパラジウム(II)、テトラアンミンパラジウム(II)硝酸塩、テトラアンミンパラジウム(II)硫酸塩、オキザラトジアンミンパラジウム(II)、テトラアンミンパラジウム(II)シュウ酸塩、及びテトラアンミンパラジウム(II)クロライド等が挙げられる。上記パラジウム含有化合物は、塩化パラジウムであることが好ましい。 Examples of the palladium-containing compound include dichloroethylenediamine palladium (II), palladium chloride, dichlorodiammine palladium (II), dinitrodiammine palladium (II), tetraammine palladium (II) nitrate, tetraammine palladium (II) sulfate, oxalato diammine. Palladium (II), tetraammine palladium (II) oxalate, tetraammine palladium (II) chloride, etc. are mentioned. The palladium-containing compound is preferably palladium chloride.
 上記安定剤としては、鉛化合物、ビスマス化合物、及びタリウム化合物等が挙げられる。これらの化合物としては、具体的には、化合物を構成する金属(鉛、ビスマス、タリウム)の硫酸塩、炭酸塩、酢酸塩、硝酸塩、及び塩酸塩等が挙げられる。環境への影響を考慮すると、ビスマス化合物又はタリウム化合物が好ましい。これらの好ましい安定剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The stabilizer includes a lead compound, a bismuth compound, a thallium compound, and the like. Specific examples of these compounds include sulfates, carbonates, acetates, nitrates, and hydrochlorides of metals (lead, bismuth, thallium) constituting the compounds. In consideration of the influence on the environment, a bismuth compound or a thallium compound is preferable. As for these preferable stabilizers, only 1 type may be used and 2 or more types may be used together.
 上記の還元剤としては、ヒドラジン一水和物、塩酸ヒドラジン、及び硫酸ヒドラジンが挙げられる。上記の還元剤は、ヒドラジン一水和物であることが好ましい。 Examples of the reducing agent include hydrazine monohydrate, hydrazine hydrochloride, and hydrazine sulfate. The reducing agent is preferably hydrazine monohydrate.
 上記錯化剤としては、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL-リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤等が挙げられる。上記錯化剤は、アミノ酸系錯化剤であるエチレンジアミンであることが好ましい。 Examples of the complexing agent include monocarboxylic acid complexing agents such as sodium acetate and sodium propionate, dicarboxylic acid complexing agents such as disodium malonate, tricarboxylic acid complexing agents such as disodium succinate, and lactic acid. DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic such as maleic acid Examples include acid complexing agents. The complexing agent is preferably ethylenediamine which is an amino acid complexing agent.
 金属部の外表面に先細りしている針状の形状を有する突起を形成するためには、めっき液のpHを8.0から10.0に調整することが好ましい。pH7.5以下では、めっき液の安定性が低下し、浴分解を引き起こすため、pH8.0以上にすることが好ましい。 In order to form a needle-like protrusion tapering on the outer surface of the metal part, it is preferable to adjust the pH of the plating solution from 8.0 to 10.0. When the pH is 7.5 or lower, the stability of the plating solution is lowered and bath decomposition is caused. Therefore, the pH is preferably 8.0 or higher.
 複数の突起の平均高さ(b)の、複数の上記突起の基部の平均径(c)に対する比(平均高さ(b)/平均径(c))は、金属部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。 The ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions (average height (b) / average diameter (c)) depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath. The plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
 次に、無電解めっきにより、樹脂粒子の表面に、コバルトとニッケルを含む合金めっき層及び金属部の外表面に先細りしている針状の形状を有する突起を形成する方法の一例を説明する。 Next, an example of a method for forming an alloy plating layer containing cobalt and nickel and a protrusion having a needle-like shape tapering on the outer surface of the metal part on the surface of the resin particle by electroless plating will be described.
 上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。 In the catalyzing step, a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
 上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む金属部を形成できる。 As a method of forming the catalyst on the surface of the resin particles, for example, after adding the resin particles to a solution containing palladium chloride and tin chloride, the surface of the resin particles is activated with an acid solution or an alkali solution, A method of depositing palladium on the surface of the resin particles, and after adding the resin particles to a solution containing palladium sulfate and aminopyridine, the surface of the resin particles is activated by a solution containing a reducing agent. Examples thereof include a method of depositing palladium on the surface. A phosphorus-containing reducing agent is used as the reducing agent. Moreover, the metal part containing phosphorus can be formed by using a phosphorus containing reducing agent as said reducing agent.
 上記無電解めっき工程では、コバルト含有化合物、無機添加剤、錯化剤及び還元剤を含有するめっき液を用いる無電解コバルト-ニッケル-リン合金めっき方法において、還元剤として次亜リン酸化合物を含み、還元剤の反応開始金属触媒としてコバルト含有化合物を含むコバルト-ニッケル-リン合金めっき液が好適に用いられる。 In the electroless plating step, in the electroless cobalt-nickel-phosphorus alloy plating method using a plating solution containing a cobalt-containing compound, an inorganic additive, a complexing agent and a reducing agent, a hypophosphite compound is included as a reducing agent. A cobalt-nickel-phosphorus alloy plating solution containing a cobalt-containing compound is preferably used as a reaction initiation metal catalyst for the reducing agent.
 コバルト-ニッケル-リン合金めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、コバルト-ニッケル-リン合金を析出させることができ、コバルト、ニッケル、及びリンを含む金属部を形成できる。 By immersing the resin particles in the cobalt-nickel-phosphorus alloy plating bath, the cobalt-nickel-phosphorus alloy can be deposited on the surface of the resin particles on which the catalyst is formed. The metal part containing can be formed.
 上記コバルト含有化合物は、硫酸コバルト、塩化コバルト、硝酸コバルト、酢酸コバルト、又は炭酸コバルトであることが好ましい。上記コバルト含有化合物は、硫酸コバルトであることがより好ましい。 The cobalt-containing compound is preferably cobalt sulfate, cobalt chloride, cobalt nitrate, cobalt acetate, or cobalt carbonate. The cobalt-containing compound is more preferably cobalt sulfate.
 上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、硫酸ニッケルであることが好ましい。 Examples of the nickel-containing compound include nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, and nickel nitrate. The nickel-containing compound is preferably nickel sulfate.
 上記リン含有還元剤としては、次亜リン酸、及び次亜リン酸ナトリウム等が挙げられる。上記リン含有還元剤に加えて、ボロン含有還元剤を用いてもよい。上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。 Examples of the phosphorus-containing reducing agent include hypophosphorous acid and sodium hypophosphite. In addition to the phosphorus-containing reducing agent, a boron-containing reducing agent may be used. Examples of the boron-containing reducing agent include dimethylamine borane, sodium borohydride, and potassium borohydride.
 上記錯化剤は、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL-リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤、又は、これらの塩であることが好ましい。これらの好ましい錯化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The complexing agent is a monocarboxylic acid complexing agent such as sodium acetate or sodium propionate, a dicarboxylic acid complexing agent such as disodium malonate, a tricarboxylic acid complexing agent such as disodium succinate, lactic acid, DL-malic acid, Rochelle salt, hydroxy acid complexing agents such as sodium citrate and sodium gluconate, amino acid complexing agents such as glycine and EDTA, amine complexing agents such as ethylenediamine, and organic acids such as maleic acid A complexing agent or a salt thereof is preferable. Only 1 type may be used for these preferable complexing agents, and 2 or more types may be used together.
 上記無機添加剤は、硫酸アンモニウム、塩化アンモニウム、又はホウ酸であることが好ましい。これらの好ましい無機添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記無機添加剤は、無電解コバルトめっき層の析出を促進させる作用をするものと考えられる。 The inorganic additive is preferably ammonium sulfate, ammonium chloride, or boric acid. As for these preferable inorganic additives, only 1 type may be used and 2 or more types may be used together. The inorganic additive is considered to act to promote precipitation of the electroless cobalt plating layer.
 金属部の外表面に先細りしている針状の形状を有する突起を形成するためには、コバルト化合物とニッケル化合物とのモル比を制御することが望ましい。上記のコバルト化合物の使用量は、ニッケル化合物に対するモル比で2倍から100倍であることが好ましい。 It is desirable to control the molar ratio between the cobalt compound and the nickel compound in order to form a needle-like protrusion that tapers on the outer surface of the metal part. The amount of the cobalt compound used is preferably 2 to 100 times in molar ratio to the nickel compound.
 また、上記の無機添加剤を用いなくても、針状の形状を有する突起が得られる。より頂角が小さく、鋭利に先細りしている形状の突起を形成するためには無機添加剤を用いることが好ましく、硫酸アンモニウムを用いることが特に好ましい。 Further, a protrusion having a needle shape can be obtained without using the above-mentioned inorganic additive. In order to form a protrusion having a smaller apex angle and sharply tapered shape, it is preferable to use an inorganic additive, and it is particularly preferable to use ammonium sulfate.
 複数の突起の平均高さ(b)の、複数の上記突起の基部の平均径(c)に対する比(平均高さ(b)/平均径(c))は、金属部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。 The ratio of the average height (b) of the plurality of protrusions to the average diameter (c) of the base portions of the plurality of protrusions (average height (b) / average diameter (c)) depends on the thickness of the metal part, It can be controlled by the immersion time in the plating bath. The plating temperature is preferably 30 ° C. or higher, preferably 100 ° C. or lower, and the immersion time in the plating bath is preferably 5 minutes or longer.
 上記突起が無い部分における金属部全体の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、特に好ましくは50nm以上であり、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは500nm以下、特に好ましくは400nm以下である。上記凸部が無い部分における金属部全体の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、特に好ましくは50nm以上であり、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは500nm以下、特に好ましくは400nm以下である。金属部全体の厚みが上記下限以上であると、金属部の剥離が抑えられる。金属部全体の厚みが上記上限以下であると、基材粒子と金属部との熱膨張率の差が小さくなり、基材粒子から金属部が剥離し難くなる。上記金属部の厚みは、金属部が複数の金属部(第1の金属部と第2の金属部)を有する場合には、金属部全体の厚み(第1,第2の金属部の合計の厚み)を示す。 The thickness of the entire metal part in the portion where there is no protrusion is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, Preferably it is 500 nm or less, Especially preferably, it is 400 nm or less. The thickness of the entire metal part in the portion without the convex part is preferably 5 nm or more, more preferably 10 nm or more, further preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, More preferably, it is 500 nm or less, Most preferably, it is 400 nm or less. When the thickness of the entire metal part is equal to or more than the above lower limit, peeling of the metal part is suppressed. If the thickness of the entire metal part is less than or equal to the above upper limit, the difference in coefficient of thermal expansion between the base particle and the metal part becomes small, and the metal part becomes difficult to peel from the base particle. When the metal part has a plurality of metal parts (first metal part and second metal part), the thickness of the metal part is the total thickness of the metal part (the total of the first and second metal parts). Thickness).
 上記金属部が複数の金属部を有する場合に、最外層の上記突起が無い部分における金属部の厚みは、好ましくは1nm以上、より好ましくは10nm以上であり、好ましくは500nm以下、より好ましくは100nm以下である。上記金属部が複数の金属部を有する場合に、最外層の上記凸部が無い部分における金属部の厚みは、好ましくは1nm以上、より好ましくは10nm以上であり、好ましくは500nm以下、より好ましくは100nm以下である。上記最外層の金属部の厚みが上記下限以上及び上記上限以下であると、最外層の金属部による被覆を均一にでき、耐腐食性が充分に高くなり、かつ電極間の接続抵抗が充分に低くなる。また、上記最外層が内層の金属部よりも高価である場合に、最外層の厚みが薄いほど、コストが低くなる。 When the metal part has a plurality of metal parts, the thickness of the metal part in the portion of the outermost layer without the protrusion is preferably 1 nm or more, more preferably 10 nm or more, preferably 500 nm or less, more preferably 100 nm. It is as follows. When the metal part has a plurality of metal parts, the thickness of the metal part in the portion of the outermost layer without the convex part is preferably 1 nm or more, more preferably 10 nm or more, preferably 500 nm or less, more preferably 100 nm or less. When the thickness of the metal part of the outermost layer is not less than the above lower limit and not more than the above upper limit, the coating with the metal part of the outermost layer can be made uniform, the corrosion resistance is sufficiently high, and the connection resistance between the electrodes is sufficiently high Lower. Further, when the outermost layer is more expensive than the metal part of the inner layer, the thinner the outermost layer, the lower the cost.
 上記金属部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、金属含有粒子の断面を観察することにより測定可能である。 The thickness of the metal part can be measured by observing the cross section of the metal-containing particles using, for example, a transmission electron microscope (TEM).
 [芯物質]
 上記金属含有粒子は、上記金属部の表面を隆起させている複数の芯物質を備えることが好ましく、上記金属部内において、複数の上記凸部又は複数の上記突起を形成するように、上記金属部の表面を隆起させている複数の芯物質を備えることがより好ましい。上記芯物質が上記金属部中に埋め込まれていることによって、上記金属部が外表面に複数の上記凸部又は複数の突起を有するようにすることが容易である。但し、金属含有粒子及び金属部の外表面に凸部又は突起を形成するために、芯物質を必ずしも用いなくてもよい。例えば、無電解めっきにより芯物質を用いずに凸部又は突起を形成する方法として、無電解めっきにより金属核を発生させ、基材粒子又は金属部の表面に金属核を付着させ、更に無電解めっきにより金属部を形成する方法等が挙げられる。
[Core material]
Preferably, the metal-containing particles include a plurality of core substances that protrude the surface of the metal part, and the metal part is formed so as to form the plurality of protrusions or the plurality of protrusions in the metal part. It is more preferable to provide a plurality of core materials that are raised on the surface. Since the core substance is embedded in the metal part, it is easy for the metal part to have a plurality of protrusions or protrusions on the outer surface. However, in order to form convex portions or protrusions on the outer surfaces of the metal-containing particles and the metal portion, the core substance is not necessarily used. For example, as a method of forming protrusions or protrusions without using a core material by electroless plating, metal nuclei are generated by electroless plating, and metal nuclei are attached to the surface of the substrate particles or metal parts, and further electroless Examples include a method of forming a metal part by plating.
 上記凸部又は突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより金属部を形成する方法、並びに基材粒子の表面に無電解めっきにより金属部を形成した後、芯物質を付着させ、更に無電解めっきにより金属部を形成する方法等が挙げられる。 As a method of forming the convex portion or the projection, a method of forming a metal part by electroless plating after attaching a core substance to the surface of the base particle, and a metal part by electroless plating on the surface of the base particle And a method of forming a metal part by electroless plating after the core material is attached.
 上記基材粒子の表面上に芯物質を配置する方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。 As a method of disposing the core substance on the surface of the base particle, for example, the core substance is added to the dispersion of the base particle, and the core substance is applied to the surface of the base particle, for example, van der Waals force. And a method in which a core substance is added to a container containing base particles, and a core substance is attached to the surface of the base particles by mechanical action such as rotation of the container. . Especially, since the quantity of the core substance to adhere is easy to control, the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
 上記芯物質が上記金属部中に埋め込まれていることによって、上記金属部が外表面に複数の上記凸部又は複数の突起を有するようにすることが容易である。但し、金属含有粒子の導電性の表面及び金属部の表面に凸部又は突起を形成するために、芯物質を必ずしも用いなくてもよい。 It is easy for the metal part to have a plurality of protrusions or a plurality of protrusions on the outer surface by embedding the core substance in the metal part. However, in order to form convex portions or protrusions on the conductive surface of the metal-containing particles and the surface of the metal portion, the core substance is not necessarily used.
 上記凸部又は突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより金属部を形成する方法、基材粒子の表面に無電解めっきにより金属部を形成した後、芯物質を付着させ、更に無電解めっきにより金属部を形成する方法、並びに基材粒子の表面に無電解めっきにより金属部を形成する途中段階で芯物質を添加する方法等が挙げられる。 As a method of forming the convex portion or the projection, a method of forming a metal part by electroless plating after attaching a core substance to the surface of the base particle, a method of forming a metal part by electroless plating on the surface of the base particle Examples of the method include forming a metal part by electroless plating after the core material has been formed, and adding a core substance in the middle of forming the metal part by electroless plating on the surface of the substrate particles. It is done.
 上記芯物質の材料としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ、チタン酸バリウム及びジルコニア等が挙げられる。なかでも、導電性を高めることができ、更に接続抵抗を効果的に低くすることができるので、金属が好ましい。上記芯物質は金属粒子であることが好ましい。上記芯物質の材料である金属としては、上記導電材料の材料として挙げた金属を適宜使用可能である。 The material of the core substance includes a conductive substance and a non-conductive substance. Examples of the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the non-conductive substance include silica, alumina, barium titanate, zirconia, and the like. Among them, metal is preferable because conductivity can be increased and connection resistance can be effectively reduced. The core substance is preferably metal particles. As the metal that is the material of the core substance, the metals mentioned as the material of the conductive material can be used as appropriate.
 上記芯物質の材料の具体例としては、チタン酸バリウム(モース硬度4.5)、ニッケル(モース硬度5)、シリカ(二酸化ケイ素、モース硬度6~7)、酸化チタン(モース硬度7)、ジルコニア(モース硬度8~9)、アルミナ(モース硬度9)、炭化タングステン(モース硬度9)及びダイヤモンド(モース硬度10)等が挙げられる。上記無機粒子は、ニッケル、シリカ、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが好ましく、シリカ、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることがより好ましく、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが更に好ましく、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが特に好ましい。上記芯物質の材料のモース硬度は好ましくは5以上、より好ましくは6以上、更に好ましくは7以上、特に好ましくは7.5以上である。 Specific examples of the core material include barium titanate (Mohs hardness 4.5), nickel (Mohs hardness 5), silica (silicon dioxide, Mohs hardness 6-7), titanium oxide (Mohs hardness 7), zirconia. (Mohs hardness 8-9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10), and the like. The inorganic particles are preferably nickel, silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, more preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, titanium oxide, zirconia. Alumina, tungsten carbide or diamond is more preferable, and zirconia, alumina, tungsten carbide or diamond is particularly preferable. The Mohs hardness of the core material is preferably 5 or more, more preferably 6 or more, still more preferably 7 or more, and particularly preferably 7.5 or more.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably a lump. Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
 上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。 The average diameter (average particle diameter) of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average diameter of the core substance is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is effectively reduced.
 上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter). The average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
 [絶縁性物質]
 本発明に係る金属含有粒子は、上記金属部の外表面上に配置された絶縁性物質を備えることが好ましい。この場合には、金属含有粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の金属含有粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で金属含有粒子を加圧することにより、金属含有粒子の金属部と電極との間の絶縁性物質を容易に排除できる。金属部が外表面に複数の突起を有するので、金属含有粒子の金属部と電極との間の絶縁性物質を容易に排除できる。また、金属部が外表面に複数の凸部を有する場合には、金属含有粒子の金属部と電極との間の絶縁性物質を容易に排除できる。
[Insulating material]
It is preferable that the metal-containing particle according to the present invention includes an insulating substance disposed on the outer surface of the metal part. In this case, when the metal-containing particles are used for connection between the electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when a plurality of metal-containing particles are in contact with each other, an insulating substance is present between the plurality of electrodes, so that a short circuit between electrodes adjacent in the lateral direction can be prevented instead of between the upper and lower electrodes. In addition, the insulating substance between the metal part of a metal containing particle and an electrode can be easily excluded by pressurizing a metal containing particle with two electrodes in the case of the connection between electrodes. Since the metal part has a plurality of protrusions on the outer surface, the insulating substance between the metal part of the metal-containing particles and the electrode can be easily excluded. Moreover, when a metal part has a some convex part on an outer surface, the insulating substance between the metal part of a metal containing particle and an electrode can be excluded easily.
 電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。 The insulating substance is preferably an insulating particle because the insulating substance can be more easily removed during crimping between the electrodes.
 上記絶縁性物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン化合物、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the insulating material include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, heat Examples thereof include curable resins and water-soluble resins.
 上記ポリオレフィン化合物としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。 Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid ester copolymer. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. As said thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, etc. are mentioned. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
 上記金属部の表面上に絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。なかでも、絶縁性物質が脱離し難いことから、上記金属部の表面に、化学結合を介して上記絶縁性物質を配置する方法が好ましい。 As a method of disposing an insulating material on the surface of the metal part, there are a chemical method, a physical or mechanical method, and the like. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. Especially, since the insulating substance is difficult to be detached, a method of arranging the insulating substance on the surface of the metal part through a chemical bond is preferable.
 上記金属部の外表面、及び絶縁性物質(絶縁性粒子等)の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。金属部の外表面と絶縁性物質の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。金属部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミンなどの高分子電解質を介して絶縁性物質の表面の官能基と化学結合していても構わない。 The outer surface of the metal part and the surface of an insulating substance (insulating particles or the like) may each be coated with a compound having a reactive functional group. The outer surface of the metal part and the surface of the insulating substance may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group into the outer surface of the metal part, the carboxyl group may be chemically bonded to a functional group on the surface of the insulating substance via a polymer electrolyte such as polyethyleneimine.
 上記絶縁性物質の平均径(平均粒子径)は、金属含有粒子の粒子径及び金属含有粒子の用途等によって適宜選択できる。上記絶縁性物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。絶縁性物質の平均径が上記下限以上であると、金属含有粒子がバインダー樹脂中に分散されたときに、複数の金属含有粒子における金属部同士が接触し難くなる。絶縁性物質の平均径が上記上限以下であると、電極間の接続の際に、電極と金属含有粒子との間の絶縁性物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 The average diameter (average particle diameter) of the insulating material can be appropriately selected depending on the particle diameter of the metal-containing particles and the use of the metal-containing particles. The average diameter (average particle diameter) of the insulating substance is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 1 μm or less, more preferably 0.5 μm or less. When the average diameter of the insulating material is equal to or more than the above lower limit, when the metal-containing particles are dispersed in the binder resin, the metal parts in the plurality of metal-containing particles are difficult to contact each other. When the average diameter of the insulating material is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating material between the electrode and the metal-containing particles at the time of connection between the electrodes. There is no need for heating.
 上記絶縁性物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁性物質の平均径は、粒度分布測定装置等を用いて求められる。 The “average diameter (average particle diameter)” of the insulating material indicates a number average diameter (number average particle diameter). The average diameter of the insulating material is determined using a particle size distribution measuring device or the like.
 (粒子連結体)
 本発明に係る金属含有粒子は前述の通り、金属部の突起を溶融させた後固化させることにより、図15に示されるような粒子連結体を形成することができる。このような粒子連結体は、従来の金属含有粒子よりも高い接続信頼性を高めることができる新規材料として有用である。即ち、本発明者らは、新規な接続材料として、さらに下記の発明を見出した。
(Particle connection)
As described above, the metal-containing particles according to the present invention can form a particle-connected body as shown in FIG. 15 by melting the protrusions of the metal part and then solidifying. Such a particle | grain coupling body is useful as a novel material which can improve connection reliability higher than the conventional metal containing particle | grains. That is, the present inventors have found the following invention as a new connection material.
 1)複数の金属含有粒子(本発明に係る金属含有粒子と区別して、金属含有粒子本体ともいう)が金属を含む柱状連結部を介して連結している粒子連結体。 1) A particle connected body in which a plurality of metal-containing particles (also referred to as a metal-containing particle main body as distinguished from the metal-containing particles according to the present invention) are connected via a columnar connecting portion containing metal.
 2)上記柱状連結部が、上記金属含有粒子に含まれる金属と同種の金属を含む上記1)の粒子連結体。 2) The particle connected body according to 1), wherein the columnar connecting portion contains the same kind of metal as the metal contained in the metal-containing particle.
 3)上記粒子連結体を構成する上記金属含有粒子が、本発明に係る金属含有粒子に由来する上記1)又は2)の粒子連結体。 3) The particle linked body according to 1) or 2), wherein the metal-containing particles constituting the particle linked body are derived from the metal-containing particles according to the present invention.
 4)上記粒子連結体を構成する上記金属含有粒子及び上記柱状連結部が、本発明に係る金属含有粒子の上記突起が溶融固化することで形成されている上記1)~3)のいずれかの粒子連結体。 4) The metal-containing particles and the columnar connecting portions constituting the particle-linked body are formed by melting and solidifying the protrusions of the metal-containing particles according to the present invention. Particle connected body.
 5)上記柱状連結部が本発明に係る金属含有粒子の突起に由来する上記1)~4)のいずれかの粒子連結体。 5) The particle connected body according to any one of 1) to 4), wherein the columnar connecting portion is derived from the protrusion of the metal-containing particle according to the present invention.
 本発明の粒子連結体は、前述した方法により製造することができるが、製造方法は前述した方法に限定されない。例えば金属含有粒子と柱状体を別々に製造して、金属含有粒子を柱状体により連結させて、柱状連結部を形成してもよい。 The particle linked body of the present invention can be produced by the method described above, but the production method is not limited to the method described above. For example, the metal-containing particles and the columnar bodies may be manufactured separately, and the metal-containing particles may be connected by the columnar bodies to form the columnar connecting portions.
 上記柱状連結部は円柱状連結部又は多角柱状連結部であってもよく、柱の中央部分が太くなっていてもよく、細くなっていてもよい。 The columnar connecting portion may be a columnar connecting portion or a polygonal columnar connecting portion, and the central portion of the column may be thicker or thinner.
 上記柱状連結部において、上記金属含有粒子との接続面の外接円の直径(d)は、好ましくは3nm以上、より好ましくは100nm以上であり、好ましくは10000nm以下、より好ましくは1000nm以下である。 In the columnar connecting portion, the diameter (d) of the circumscribed circle of the connection surface with the metal-containing particles is preferably 3 nm or more, more preferably 100 nm or more, preferably 10,000 nm or less, more preferably 1000 nm or less.
 上記柱状連結部において、柱状連結部の長さ(l)は、好ましくは3nm以上、より好ましくは100nm以上であり、好ましくは10000nm以下、より好ましくは1000nm以下である。 In the columnar connecting portion, the length (l) of the columnar connecting portion is preferably 3 nm or more, more preferably 100 nm or more, preferably 10,000 nm or less, more preferably 1000 nm or less.
 上記柱状連結部において、上記金属含有粒子との接続面の外接円の直径(d)に対する柱状連結部の長さ(l)の比((d)/(l))は、好ましくは0.001以上、より好ましくは0.1以上であり、好ましくは100以下、より好ましくは10以下である。 In the columnar connecting portion, the ratio ((d) / (l)) of the length (l) of the columnar connecting portion to the diameter (d) of the circumscribed circle of the connection surface with the metal-containing particles is preferably 0.001. As mentioned above, More preferably, it is 0.1 or more, Preferably it is 100 or less, More preferably, it is 10 or less.
 本発明の粒子連結体は、図15に示されるような2個の金属含有粒子の連結体であってもよく、3個以上の金属含有粒子の連結体であってもよい。 The particle linked body of the present invention may be a linked body of two metal-containing particles as shown in FIG. 15 or a linked body of three or more metal-containing particles.
 (接続材料)
 本発明に係る接続材料は、2つの接続対象部材を接続する接続部を形成するために好適に用いられる。上記接続材料は、上述した金属含有粒子と、樹脂とを含む。上記接続材料は、複数の金属含有粒子の金属部の突起の先端を溶融させた後に固化させることで、上記接続部を形成するために用いられることが好ましい。
(Connection material)
The connection material according to the present invention is suitably used for forming a connection portion that connects two connection target members. The connection material includes the metal-containing particles described above and a resin. It is preferable that the connection material is used for forming the connection portion by melting the tips of the protrusions of the metal portion of the plurality of metal-containing particles and then solidifying.
 上記樹脂は特に限定されない。上記樹脂は、上記金属含有粒子を分散させるバインダーである。上記樹脂は、熱可塑性樹脂又は硬化性樹脂を含むことが好ましく、硬化性樹脂を含むことがより好ましい。上記硬化性樹脂としては、光硬化性樹脂及び熱硬化性樹脂が挙げられる。上記光硬化性樹脂は、光硬化性樹脂及び光重合開始剤を含むことが好ましい。上記熱硬化性樹脂は、熱硬化性樹脂及び熱硬化剤を含むことが好ましい。上記樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The resin is not particularly limited. The resin is a binder that disperses the metal-containing particles. The resin preferably includes a thermoplastic resin or a curable resin, and more preferably includes a curable resin. Examples of the curable resin include a photocurable resin and a thermosetting resin. The photocurable resin preferably contains a photocurable resin and a photopolymerization initiator. The thermosetting resin preferably contains a thermosetting resin and a thermosetting agent. Examples of the resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記金属部の突起が金属酸化物を含む場合に、還元剤が用いられることが好ましい。上記還元剤としては、アルコール化合物(アルコール性水酸基を有する化合物)、カルボン酸化合物(カルボキシ基を有する化合物)及びアミン化合物(アミノ基を有する化合物)等が挙げられる。上記還元剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 It is preferable that a reducing agent is used when the protrusion of the metal part contains a metal oxide. Examples of the reducing agent include alcohol compounds (compounds having an alcoholic hydroxyl group), carboxylic acid compounds (compounds having a carboxy group), amine compounds (compounds having an amino group), and the like. As for the said reducing agent, only 1 type may be used and 2 or more types may be used together.
 上記アルコール化合物としては、アルキルアルコールが挙げられる。上記アルコール化合物の具体例としては、例えば、エタノール、プロパノール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、ノナデシルアルコール及びイコシルアルコール等が挙げられる。また、上記アルコール化合物としては、1級アルコール型化合物に限られず、2級アルコール型化合物、3級アルコール型化合物、アルカンジオール及び環状構造を有するアルコール化合物も使用可能である。さらに、上記アルコール化合物として、エチレングリコール及びトリエチレングリコールなど多数のアルコール基を有する化合物を用いてもよい。また、上記アルコール化合物として、クエン酸、アスコルビン酸及びグルコースなどの化合物を用いてもよい。 ア ル キ ル Examples of the alcohol compound include alkyl alcohols. Specific examples of the alcohol compound include, for example, ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol. , Pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol and icosyl alcohol. The alcohol compound is not limited to a primary alcohol type compound, but a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol, and an alcohol compound having a cyclic structure can also be used. Furthermore, as the alcohol compound, a compound having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used. Moreover, you may use compounds, such as a citric acid, ascorbic acid, and glucose, as said alcohol compound.
 上記カルボン酸化合物としては、アルキルカルボン酸等が挙げられる。上記カルボン酸化合物の具体例としては、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸及びイコサン酸等が挙げられる。また、上記カルボン酸化合物は、1級カルボン酸型化合物に限られず、2級カルボン酸型化合物、3級カルボン酸型化合物、ジカルボン酸及び環状構造を有するカルボキシル化合物も使用可能である。 Examples of the carboxylic acid compound include alkyl carboxylic acids. Specific examples of the carboxylic acid compound include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid. Examples include acids, octadecanoic acid, nonadecanoic acid and icosanoic acid. The carboxylic acid compound is not limited to a primary carboxylic acid type compound, and a secondary carboxylic acid type compound, a tertiary carboxylic acid type compound, a dicarboxylic acid, and a carboxyl compound having a cyclic structure can also be used.
 上記アミン化合物としては、アルキルアミン等が挙げられる。上記アミン化合物の具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン及びイコデシルアミン等が挙げられる。また、上記アミン化合物は分岐構造を有していてもよい。分岐構造を有するアミン化合物としては、2-エチルヘキシルアミン及び1,5-ジメチルヘキシルアミン等が挙げられる。上記アミン化合物は、1級アミン型化合物に限られず、2級アミン型化合物、3級アミン型化合物及び環状構造を有するアミン化合物も使用可能である。 Examples of the amine compound include alkylamines. Specific examples of the amine compound include butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, Examples include heptadecylamine, octadecylamine, nonadecylamine and icodecylamine. The amine compound may have a branched structure. Examples of the amine compound having a branched structure include 2-ethylhexylamine and 1,5-dimethylhexylamine. The amine compound is not limited to a primary amine type compound, and a secondary amine type compound, a tertiary amine type compound, and an amine compound having a cyclic structure can also be used.
 上記還元剤は、アルデヒド基、エステル基、スルホニル基又はケトン基などを有する有機物であってもよく、カルボン酸金属塩などの有機物であってもよい。カルボン酸金属塩は金属粒子の前駆体としても用いられる一方で、有機物を含有しているために、金属酸化物粒子の還元剤としても用いられる。 The reducing agent may be an organic substance having an aldehyde group, an ester group, a sulfonyl group, or a ketone group, or an organic substance such as a carboxylic acid metal salt. While the carboxylic acid metal salt is used as a precursor of metal particles, it also contains an organic substance, so that it is also used as a reducing agent for metal oxide particles.
 上記接続材料は、上記金属含有粒子及び上記樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the metal-containing particles and the resin, the connection material is, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. In addition, various additives such as ultraviolet absorbers, lubricants, antistatic agents and flame retardants may be contained.
 上記接続材料は、導電接続に用いられることが好ましく、導電接続材料であることが好ましい。上記接続材料は、異方導電接続に用いられることが好ましく、異方導電接続材料であることが好ましい。上記接続材料は、ペースト及びフィルム等として使用され得る。上記接続材料がフィルムである場合には、金属含有粒子を含むフィルムに、金属含有粒子を含まないフィルムが積層されていてもよい。上記ペーストは、導電ペーストであることが好ましく、異方性導電ペーストであることがより好ましい。上記フィルムは、導電フィルムであることが好ましく、異方性導電フィルムであることがより好ましい。 The connection material is preferably used for conductive connection, and is preferably a conductive connection material. The connection material is preferably used for anisotropic conductive connection, and is preferably an anisotropic conductive connection material. The connecting material can be used as a paste and a film. When the connection material is a film, a film containing no metal-containing particles may be laminated on a film containing metal-containing particles. The paste is preferably a conductive paste, and more preferably an anisotropic conductive paste. The film is preferably a conductive film, and more preferably an anisotropic conductive film.
 上記接続材料100重量%中、上記樹脂の含有量は好ましくは1重量%以上、より好ましくは5重量%以上、10重量%以上であってもよく、30重量%以上であってもよく、50重量%以上であってもよく、70重量%以上であってもよく、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記樹脂の含有量が上記下限以上及び上記上限以下であると、接続信頼性がより一層高くなる。 In 100% by weight of the connection material, the content of the resin is preferably 1% by weight or more, more preferably 5% by weight or more, 10% by weight or more, or 30% by weight or more. It may be 70% by weight or more, preferably 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the resin is not less than the above lower limit and not more than the above upper limit, connection reliability is further enhanced.
 上記接続材料100重量%中、上記金属含有粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは99重量%以下、より好ましくは95重量%以下、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。上記金属含有粒子の含有量が上記下限以上及び上記上限以下であると、接続信頼性がより一層高くなる。また、上記金属含有粒子の含有量が上記下限以上及び上記上限以下であると、第1,第2の接続対象部材間に、金属含有粒子を十分に存在させることができ、金属含有粒子によって、第1,第2の接続対象部材間の間隔が部分的に狭くなるのをより一層抑制できる。このため、接続部の放熱性が部分的に低くなるのを抑制することもできる。 In 100% by weight of the connection material, the content of the metal-containing particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 99% by weight or less, more preferably 95% by weight. Hereinafter, it may be 80% by weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight or less. Good. When the content of the metal-containing particles is not less than the above lower limit and not more than the above upper limit, connection reliability is further enhanced. Further, when the content of the metal-containing particles is not less than the lower limit and not more than the upper limit, the metal-containing particles can be sufficiently present between the first and second connection target members, It can further suppress that the space | interval between the 1st, 2nd connection object member becomes partially narrow. For this reason, it can also suppress that the heat dissipation of a connection part falls partially.
 上記接続材料は、金属含有粒子とは別に、基材粒子を有さない金属原子含有粒子を含んでいてもよい。 The connection material may contain metal atom-containing particles that do not have base material particles separately from the metal-containing particles.
 上記金属原子含有粒子としては、金属粒子及び金属化合物粒子等が挙げられる。上記金属化合物粒子は、金属原子と、該金属原子以外の原子とを含む。上記金属化合物粒子の具体例としては、金属酸化物粒子、金属の炭酸塩粒子、金属のカルボン酸塩粒子及び金属の錯体粒子等が挙げられる。上記金属化合物粒子は、金属酸化物粒子であることが好ましい。例えば、上記金属酸化物粒子は、還元剤の存在下で接続時の加熱で金属粒子となった後に焼結する。上記金属酸化物粒子は、金属粒子の前駆体である。上記金属のカルボン酸塩粒子としては、金属の酢酸塩粒子等が挙げられる。 Examples of the metal atom-containing particles include metal particles and metal compound particles. The metal compound particle includes a metal atom and an atom other than the metal atom. Specific examples of the metal compound particles include metal oxide particles, metal carbonate particles, metal carboxylate particles, and metal complex particles. The metal compound particles are preferably metal oxide particles. For example, the metal oxide particles are sintered after becoming metal particles by heating at the time of connection in the presence of a reducing agent. The metal oxide particles are metal particle precursors. Examples of the metal carboxylate particles include metal acetate particles.
 上記金属粒子及び上記金属酸化物粒子を構成する金属としては、銀、銅、ニッケル及び金等が挙げられる。銀又は銅が好ましく、銀が特に好ましい。従って、上記金属粒子は、好ましくは銀粒子又は銅粒子であり、より好ましくは銀粒子である。上記金属酸化物粒子は、好ましくは酸化銀粒子又は酸化銅粒子であり、より好ましくは酸化銀粒子である。銀粒子及び酸化銀粒子を用いた場合には、接続後に残渣が少なく、体積減少率も非常に小さい。該酸化銀粒子における酸化銀としては、AgO及びAgOが挙げられる。 Examples of the metal constituting the metal particles and the metal oxide particles include silver, copper, nickel, and gold. Silver or copper is preferred, and silver is particularly preferred. Therefore, the metal particles are preferably silver particles or copper particles, and more preferably silver particles. The metal oxide particles are preferably silver oxide particles or copper oxide particles, and more preferably silver oxide particles. When silver particles and silver oxide particles are used, there are few residues after connection and the volume reduction rate is very small. Examples of the silver oxide in the silver oxide particles include Ag 2 O and AgO.
 上記金属原子含有粒子は、400℃未満の加熱で焼結することが好ましい。上記金属原子含有粒子が焼結する温度(焼結温度)は、より好ましくは350℃以下、好ましくは300℃以上である。上記金属原子含有粒子が焼結する温度が上記上限以下又は上記上限未満であると、焼結を効率的に行うことができ、更に焼結に必要なエネルギーを低減し、かつ環境負荷を小さくすることができる。 The metal atom-containing particles are preferably sintered by heating at less than 400 ° C. The temperature at which the metal atom-containing particles are sintered (sintering temperature) is more preferably 350 ° C. or lower, and preferably 300 ° C. or higher. When the temperature at which the metal atom-containing particles are sintered is equal to or lower than the upper limit or lower than the upper limit, sintering can be efficiently performed, energy required for sintering is further reduced, and environmental load is reduced. be able to.
 上記金属原子含有粒子を含む接続材料は、平均粒子径が1nm以上、100nm以下である金属粒子を含む接続材料であるか、又は平均粒子径が1nm以上、50μm以下である金属酸化物粒子と還元剤とを含む接続材料であることが好ましい。このような接続材料を用いると、接続時の加熱で、上記金属原子含有粒子同士を良好に焼結させることができる。上記金属酸化物粒子の平均粒子径は、好ましくは5μm以下である。上記金属原子含有粒子の粒子径は、金属原子含有粒子が真球状である場合には、直径を示し、金属原子含有粒子が真球状ではない場合には、最大径を示す。 The connection material containing the metal atom-containing particles is a connection material containing metal particles having an average particle diameter of 1 nm or more and 100 nm or less, or reduced with metal oxide particles having an average particle diameter of 1 nm or more and 50 μm or less. It is preferable that it is a connection material containing an agent. When such a connection material is used, the metal atom-containing particles can be satisfactorily sintered by heating during connection. The average particle diameter of the metal oxide particles is preferably 5 μm or less. The particle diameter of the metal atom-containing particles indicates the diameter when the metal atom-containing particles are spherical, and indicates the maximum diameter when the metal atom-containing particles are not true spherical.
 上記接続材料100重量%中、上記金属原子含有粒子の含有量は、好ましく10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上であり、100重量%以下、好ましくは99重量%以下、より好ましくは90重量%以下である。上記接続材料の全量が、上記金属原子含有粒子であってもよい。上記金属原子含有粒子の含有量が上記下限以上であると、上記金属原子含有粒子をより一層緻密に焼結させることができる。この結果、接続部における放熱性及び耐熱性も高くなる。 In 100% by weight of the connection material, the content of the metal atom-containing particles is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and 100% by weight or less, preferably 99%. % By weight or less, more preferably 90% by weight or less. The total amount of the connecting material may be the metal atom-containing particles. When the content of the metal atom-containing particles is not less than the above lower limit, the metal atom-containing particles can be sintered more densely. As a result, heat dissipation and heat resistance at the connection portion are also increased.
 上記金属原子含有粒子が金属酸化物粒子である場合に、還元剤が用いられることが好ましい。上記還元剤としては、アルコール化合物(アルコール性水酸基を有する化合物)、カルボン酸化合物(カルボキシ基を有する化合物)及びアミン化合物(アミノ基を有する化合物)等が挙げられる。上記還元剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 It is preferable that a reducing agent is used when the metal atom-containing particles are metal oxide particles. Examples of the reducing agent include alcohol compounds (compounds having an alcoholic hydroxyl group), carboxylic acid compounds (compounds having a carboxy group), amine compounds (compounds having an amino group), and the like. As for the said reducing agent, only 1 type may be used and 2 or more types may be used together.
 上記アルコール化合物としては、アルキルアルコールが挙げられる。上記アルコール化合物の具体例としては、例えば、エタノール、プロパノール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、ノナデシルアルコール及びイコシルアルコール等が挙げられる。また、上記アルコール化合物としては、1級アルコール型化合物に限られず、2級アルコール型化合物、3級アルコール型化合物、アルカンジオール及び環状構造を有するアルコール化合物も使用可能である。さらに、上記アルコール化合物として、エチレングリコール及びトリエチレングリコールなど多数のアルコール基を有する化合物を用いてもよい。また、上記アルコール化合物として、クエン酸、アスコルビン酸及びグルコースなどの化合物を用いてもよい。 ア ル キ ル Examples of the alcohol compound include alkyl alcohols. Specific examples of the alcohol compound include, for example, ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol. , Pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol and icosyl alcohol. The alcohol compound is not limited to a primary alcohol type compound, but a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol, and an alcohol compound having a cyclic structure can also be used. Furthermore, as the alcohol compound, a compound having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used. Moreover, you may use compounds, such as a citric acid, ascorbic acid, and glucose, as said alcohol compound.
 上記カルボン酸化合物としては、アルキルカルボン酸等が挙げられる。上記カルボン酸化合物の具体例としては、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸及びイコサン酸等が挙げられる。また、上記カルボン酸化合物は、1級カルボン酸型化合物に限られず、2級カルボン酸型化合物、3級カルボン酸型化合物、ジカルボン酸及び環状構造を有するカルボキシル化合物も使用可能である。 Examples of the carboxylic acid compound include alkyl carboxylic acids. Specific examples of the carboxylic acid compound include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid. Examples include acids, octadecanoic acid, nonadecanoic acid and icosanoic acid. The carboxylic acid compound is not limited to a primary carboxylic acid type compound, and a secondary carboxylic acid type compound, a tertiary carboxylic acid type compound, a dicarboxylic acid, and a carboxyl compound having a cyclic structure can also be used.
 上記アミン化合物としては、アルキルアミン等が挙げられる。上記アミン化合物の具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン及びイコデシルアミン等が挙げられる。また、上記アミン化合物は分岐構造を有していてもよい。分岐構造を有するアミン化合物としては、2-エチルヘキシルアミン及び1,5-ジメチルヘキシルアミン等が挙げられる。上記アミン化合物は、1級アミン型化合物に限られず、2級アミン型化合物、3級アミン型化合物及び環状構造を有するアミン化合物も使用可能である。 Examples of the amine compound include alkylamines. Specific examples of the amine compound include butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, Examples include heptadecylamine, octadecylamine, nonadecylamine and icodecylamine. The amine compound may have a branched structure. Examples of the amine compound having a branched structure include 2-ethylhexylamine and 1,5-dimethylhexylamine. The amine compound is not limited to a primary amine type compound, and a secondary amine type compound, a tertiary amine type compound, and an amine compound having a cyclic structure can also be used.
 さらに、上記還元剤は、アルデヒド基、エステル基、スルホニル基又はケトン基などを有する有機物であってもよく、カルボン酸金属塩などの有機物であってもよい。カルボン酸金属塩は金属粒子の前駆体としても用いられる一方で、有機物を含有しているために、金属酸化物粒子の還元剤としても用いられる。 Furthermore, the reducing agent may be an organic substance having an aldehyde group, an ester group, a sulfonyl group or a ketone group, or an organic substance such as a carboxylic acid metal salt. While the carboxylic acid metal salt is used as a precursor of metal particles, it also contains an organic substance, so that it is also used as a reducing agent for metal oxide particles.
 上記金属原子含有粒子の焼結温度(接合温度)よりも低い融点を有する還元剤を用いると、接合時に凝集し、接合部にボイドが生じやすくなる傾向がある。カルボン酸金属塩の使用により、該カルボン酸金属塩は接合時の加熱により融解しないため、ボイドが生じるのを抑制できる。なお、カルボン酸金属塩以外にも有機物を含有する金属化合物を還元剤として用いてもよい。 When a reducing agent having a melting point lower than the sintering temperature (joining temperature) of the metal atom-containing particles is used, the reducing agent tends to aggregate at the time of joining and voids are likely to occur at the joint. By using the carboxylic acid metal salt, the carboxylic acid metal salt is not melted by heating at the time of joining, so that the generation of voids can be suppressed. In addition to the carboxylic acid metal salt, a metal compound containing an organic substance may be used as the reducing agent.
 上記還元剤が用いられる場合には、上記接続材料100重量%中、上記還元剤の含有量は、好ましくは1重量%以上、より好ましくは10重量%以上であり、好ましくは90重量%以下、より好ましくは70重量%以下、更に好ましくは50重量%以下である。上記還元剤の含有量が上記下限以上であると、上記金属原子含有粒子をより一層緻密に焼結させることができる。この結果、接合部における放熱性及び耐熱性も高くなる。 When the reducing agent is used, the content of the reducing agent in 100% by weight of the connecting material is preferably 1% by weight or more, more preferably 10% by weight or more, and preferably 90% by weight or less. More preferably, it is 70 weight% or less, More preferably, it is 50 weight% or less. When the content of the reducing agent is not less than the above lower limit, the metal atom-containing particles can be sintered more densely. As a result, heat dissipation and heat resistance at the joint are also increased.
 上記接続材料100重量%中、上記金属酸化物粒子の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは60重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下、より一層好ましくは99.5重量%以下、更に好ましくは99重量%以下、特に好ましくは90重量%以下、最も好ましくは80重量%以下である。 In 100% by weight of the connection material, the content of the metal oxide particles is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 60% by weight or more, and preferably 99.99% by weight or less. More preferably, it is 99.9% by weight or less, still more preferably 99.5% by weight or less, still more preferably 99% by weight or less, particularly preferably 90% by weight or less, and most preferably 80% by weight or less.
 上記接続材料がペーストである場合に、該ペーストに用いられるバインダーは特に限定されない。上記バインダーは、上記金属原子含有粒子が焼結する際に、消失することが好ましい。上記バインダーは、1種のみが用いられてもよく、2種以上が併用されてもよい。 When the connecting material is a paste, the binder used for the paste is not particularly limited. The binder preferably disappears when the metal atom-containing particles are sintered. As for the said binder, only 1 type may be used and 2 or more types may be used together.
 上記バインダーの具体例としては、溶媒としては、脂肪族系溶媒、ケトン系溶媒、芳香族系溶媒、エステル系溶媒、エーテル系溶媒、アルコール系溶媒、パラフィン系溶媒及び石油系溶媒等が挙げられる。 Specific examples of the binder include aliphatic solvents, ketone solvents, aromatic solvents, ester solvents, ether solvents, alcohol solvents, paraffin solvents, petroleum solvents, and the like.
 上記脂肪族系溶媒としては、シクロヘキサン、メチルシクロヘキサン及びエチルシクロヘキサン等が挙げられる。上記ケトン系溶媒としては、アセトン及びメチルエチルケトン等が挙げられる。上記芳香族系溶媒としては、トルエン及びキシレン等が挙げられる。上記エステル系溶媒としては、酢酸エチル、酢酸ブチル及び酢酸イソプロピル等が挙げられる。上記エーテル系溶媒としては、テトラヒドロフラン(THF)、及びジオキサン等が挙げられる。上記アルコール系溶媒としては、エタノール及びブタノール等が挙げられる。上記パラフィン系溶媒としては、パラフィン油及びナフテン油等が挙げられる。上記石油系溶媒としては、ミネラルターペン及びナフサ等が挙げられる。 Examples of the aliphatic solvent include cyclohexane, methylcyclohexane, and ethylcyclohexane. Examples of the ketone solvent include acetone and methyl ethyl ketone. Examples of the aromatic solvent include toluene and xylene. Examples of the ester solvent include ethyl acetate, butyl acetate and isopropyl acetate. Examples of the ether solvent include tetrahydrofuran (THF) and dioxane. Examples of the alcohol solvent include ethanol and butanol. Examples of the paraffinic solvent include paraffin oil and naphthenic oil. Examples of the petroleum solvent include mineral terpenes and naphtha.
 (接続構造体)
 本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備える。本発明に係る接続構造体では、上記接続部が、上記金属含有粒子又は上記接続材料により形成されている。上記接続部の材料が、上記金属含有粒子又は上記接続材料である。
(Connection structure)
The connection structure according to the present invention includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members. In the connection structure according to the present invention, the connection portion is formed of the metal-containing particles or the connection material. The material of the connection part is the metal-containing particle or the connection material.
 本発明に係る接続構造体の製造方法は、第1の接続対象部材と、第2の接続対象部材との間に、上記金属含有粒子を配置するか、又は、上記接続材料を配置する工程と、上記金属含有粒子を加熱して、上記金属部の上記突起の先端を溶融させ、溶融後に固化させ、上記金属含有粒子又は上記接続材料によって、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を形成する工程とを備える。 The method for manufacturing a connection structure according to the present invention includes the step of arranging the metal-containing particles or the connection material between the first connection target member and the second connection target member. The metal-containing particles are heated to melt the tips of the protrusions of the metal part, solidify after melting, and the first connection target member and the second connection are formed by the metal-containing particles or the connection material. Forming a connection portion connecting the target member.
 図9は、本発明の第1の実施形態に係る金属含有粒子を用いた接続構造体を模式的に示す断面図である。 FIG. 9 is a cross-sectional view schematically showing a connection structure using metal-containing particles according to the first embodiment of the present invention.
 図9に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、金属含有粒子1と樹脂(硬化した樹脂など)とを含む。接続部54は、金属含有粒子1を含む接続材料により形成されている。接続部54の材料は、上記接続材料である。接続部54は、接続材料を硬化させることにより形成されていることが好ましい。なお、図9では、金属含有粒子1の金属部3の突起3aの先端は、溶融した後固化している。接続部54では、複数の金属含有粒子1の接合体を含む。接続構造体51では、金属含有粒子1と第1の接続対象部材51とが接合しており、金属含有粒子1と第2の接続対象部材53とが接合している。 A connection structure 51 shown in FIG. 9 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53. Prepare. Connection portion 54 includes metal-containing particles 1 and a resin (such as a cured resin). The connection part 54 is formed of a connection material including the metal-containing particles 1. The material of the connection part 54 is the connection material. The connection portion 54 is preferably formed by curing a connection material. In addition, in FIG. 9, the front-end | tip of the processus | protrusion 3a of the metal part 3 of the metal containing particle | grains 1 is solidified after fuse | melting. The connection part 54 includes a joined body of a plurality of metal-containing particles 1. In the connection structure 51, the metal-containing particles 1 and the first connection target member 51 are joined, and the metal-containing particles 1 and the second connection target member 53 are joined.
 金属含有粒子1にかえて、金属含有粒子1A,1B,1C,1D,1E,1F,1Gなどの他の金属含有粒子を用いてもよい。 Instead of the metal-containing particles 1, other metal-containing particles such as metal-containing particles 1A, 1B, 1C, 1D, 1E, 1F, and 1G may be used.
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の金属含有粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が金属含有粒子1により電気的に接続されている。接続構造体51では、金属含有粒子1と第1の電極52aとが接合しており、金属含有粒子1と第2の電極53aとが接合している。 The first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface). The second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface). The first electrode 52 a and the second electrode 53 a are electrically connected by one or more metal-containing particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the metal-containing particles 1. In the connection structure 51, the metal-containing particle 1 and the first electrode 52a are joined, and the metal-containing particle 1 and the second electrode 53a are joined.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記接続材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of the manufacturing method of the connection structure, the connection material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like. The pressurizing pressure is about 9.8 × 10 4 to 4.9 × 10 6 Pa. The heating temperature is about 120 to 220 ° C.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板である電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記金属含有粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。 Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components that are circuit boards such as printed boards, flexible printed boards, glass epoxy boards, and glass boards. The connection target member is preferably an electronic component. The metal-containing particles are preferably used for electrical connection of electrodes in an electronic component.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、SUS電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a SUS electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 図10は、本発明の第1の実施形態に係る金属含有粒子を用いた接続構造体の変形例を模式的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing a modification of the connection structure using the metal-containing particles according to the first embodiment of the present invention.
 図10に示す接続構造体61は、第1の接続対象部材62と、第2の接続対象部材63,64と、第1の接続対象部材62と第2の接続対象部材63,64とを接続している接続部65,66とを備える。接続部65,66は、金属含有粒子1と、他の金属含有粒子67とを含む接続材料を用いて形成されている。接続部65,66の材料は、上記接続材料である。 The connection structure 61 shown in FIG. 10 connects the first connection target member 62, the second connection target members 63 and 64, and the first connection target member 62 and the second connection target members 63 and 64. Connecting portions 65 and 66. Connection portions 65 and 66 are formed using a connection material including metal-containing particles 1 and other metal-containing particles 67. The material of the connection parts 65 and 66 is the connection material.
 第1の接続対象部材62の第1の表面(一方の表面)側に接続部65及び第2の接続対象部材63が配置されている。接続部65は、第1の接続対象部材62と第2の接続対象部材63とを接続している。 The connection portion 65 and the second connection target member 63 are arranged on the first surface (one surface) side of the first connection target member 62. The connection part 65 connects the first connection target member 62 and the second connection target member 63.
 第1の接続対象部材62の第1の表面とは反対の第2の表面(他方の表面)側に接続部66及び第2の接続対象部材64が配置されている。接続部66は、第1の接続対象部材62と第2の接続対象部材64とを接続している。 The connection part 66 and the second connection target member 64 are arranged on the second surface (the other surface) side opposite to the first surface of the first connection target member 62. The connection part 66 connects the first connection target member 62 and the second connection target member 64.
 第1の接続対象部材62と第2の接続対象部材63,64との間にそれぞれ、金属含有粒子1と、金属含有粒子67とが配置されている。本実施形態では、接続部65,66において、金属原子含有粒子及び金属含有粒子1は焼結した焼結物の状態である。第1の接続対象部材62と第2の接続対象部材63,64間に、金属含有粒子1が配置されている。金属含有粒子1によって、第1の接続対象部材62と第2の接続対象部材63,64とが接続されている。 The metal-containing particles 1 and the metal-containing particles 67 are arranged between the first connection target member 62 and the second connection target members 63 and 64, respectively. In the present embodiment, in the connection portions 65 and 66, the metal atom-containing particles and the metal-containing particles 1 are in a sintered sintered state. The metal-containing particles 1 are arranged between the first connection target member 62 and the second connection target members 63 and 64. The first connection target member 62 and the second connection target members 63 and 64 are connected by the metal-containing particles 1.
 第2の接続対象部材63の接続部65側とは反対の表面に、ヒートシンク68が配置されている。第2の接続対象部材64の接続部66側とは反対側の表面に、ヒートシンク69が配置されている。従って、接続構造体61は、ヒートシンク68、第2の接続対象部材63、接続部65、第1の接続対象部材62、接続部66、第2の接続対象部材64及びヒートシンク69がこの順で積層された部分を有する。 The heat sink 68 is disposed on the surface opposite to the connection portion 65 side of the second connection target member 63. A heat sink 69 is disposed on the surface of the second connection target member 64 opposite to the connection portion 66 side. Therefore, the connection structure 61 includes the heat sink 68, the second connection target member 63, the connection portion 65, the first connection target member 62, the connection portion 66, the second connection target member 64, and the heat sink 69 stacked in this order. It has the part which was made.
 第1の接続対象部材62としては、整流ダイオード、パワートランジスタ(パワーMOSFET、絶縁ゲートバイポーラトランジスタ)、サイリスタ、ゲートターンオフサイリスタ及びトライアック等に用いられるSi,SiC,GaNなどが材料であるパワー半導体素子等が挙げられる。このような第1の接続対象部材62を備える接続構造体61では、接続構造体61の使用時に、第1の接続対象部材62において大きな熱量が発生しやすい。従って、第1の接続対象部材62から発生した熱量を、ヒートシンク68,69などに効率的に放散させる必要がある。このため、第1の接続対象部材62とヒートシンク68,69との間に配置されている接続部65,66には、高い放熱性と高い信頼性が求められる。 As the first connection target member 62, a power semiconductor element made of Si, SiC, GaN or the like used for a rectifier diode, a power transistor (power MOSFET, insulated gate bipolar transistor), a thyristor, a gate turn-off thyristor, a triac, etc. Is mentioned. In the connection structure 61 including the first connection target member 62 as described above, a large amount of heat is likely to be generated in the first connection target member 62 when the connection structure 61 is used. Therefore, it is necessary to efficiently dissipate the heat generated from the first connection target member 62 to the heat sinks 68 and 69. For this reason, the connection portions 65 and 66 disposed between the first connection target member 62 and the heat sinks 68 and 69 are required to have high heat dissipation and high reliability.
 第2の接続対象部材63,64としては、セラミック、プラスチックなどが材料である基板等が挙げられる。 Examples of the second connection target members 63 and 64 include a substrate made of ceramic, plastic, or the like.
 接続部65,66は、上記接続材料を加熱して、上記金属含有粒子の先端を溶融させた後に固化させることにより形成されている。 The connecting portions 65 and 66 are formed by heating the connecting material to melt the tips of the metal-containing particles and then solidifying them.
 (導通検査用部材又は導通用部材)
 本発明の粒子連結体、及び接続材料は、導通検査用部材又は導通用部材に適用することも可能である。以下、導通検査用部材の一態様を記す。なお、導通検査用部材は下記態様に限定されない。上記導通検査用部材及び上記導通用部材は、シート状導通用部材であってもよい。
(Continuity inspection member or Continuity member)
The particle | grain coupling body and connection material of this invention can also be applied to the member for conduction | electrical_connection inspection, or the member for conduction | electrical_connection. Hereinafter, an aspect of the continuity inspection member will be described. In addition, the member for continuity inspection is not limited to the following aspect. The continuity inspection member and the continuity member may be sheet-like continuity members.
 図19(a),(b)は、導通検査用部材の一例を示す平面図及び断面図である。図19(b)は、図19(a)中のA-A線に沿う断面図である。 19 (a) and 19 (b) are a plan view and a cross-sectional view showing an example of a continuity test member. FIG. 19B is a cross-sectional view taken along the line AA in FIG.
 図19(a),(b)に示す導通検査用部材11は、貫通孔12aを有する基体12と、基体12の貫通孔12a内に配置された導電部13とを備える。導電部13の材料が、上記金属含有粒子を含む。導通検査用部材11は、導通用部材であってもよい。 19 (a) and 19 (b) includes a base 12 having a through hole 12a and a conductive portion 13 disposed in the through hole 12a of the base 12. The material of the conductive part 13 includes the metal-containing particles. The continuity inspection member 11 may be a continuity member.
 上記基体は、上記導通検査用部材の基板となる部材である。上記基体は、絶縁性を有することが好ましく、上記基体は絶縁性の材料によって形成されていることが好ましい。絶縁性の材料としては、例えば、絶縁性樹脂が挙げられる。 The base is a member that becomes a substrate of the continuity testing member. The substrate preferably has an insulating property, and the substrate is preferably formed of an insulating material. An example of the insulating material is an insulating resin.
 上記基体を構成する絶縁性樹脂は、例えば、熱可塑性樹脂及び熱硬化性樹脂のいずれであってもよい。熱可塑性樹脂としては、ポリエステル樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ABS樹脂、及びポリカーボネート樹脂等が挙げられる。熱硬化性樹脂としては、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド系樹脂、シリコーン樹脂、及びフェノール樹脂等が挙げられる。シリコーン樹脂としては、シリコーンゴム等が挙げられる。 The insulating resin constituting the substrate may be, for example, either a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include polyester resin, polystyrene resin, polyethylene resin, polyamide resin, ABS resin, and polycarbonate resin. Examples of the thermosetting resin include epoxy resin, urethane resin, polyimide resin, polyether ether ketone resin, polyamide imide resin, polyether imide resin, silicone resin, and phenol resin. Examples of the silicone resin include silicone rubber.
 上記基体が絶縁性樹脂で形成される場合は、上記基体を構成する絶縁性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 When the base is formed of an insulating resin, only one type of insulating resin constituting the base may be used, or two or more types may be used in combination.
 上記基体は、例えば、板状、シート状等である。シート状には、フィルム状が含まれる。上記基体の厚みは、導通検査用部材の種類に応じて適宜設定することができ、例えば、0.005mm以上、50mm以下の厚みであってもよい。上記基体の平面視における大きさも目的の検査装置に応じて適宜設定することができる。 The base is, for example, a plate shape or a sheet shape. The sheet form includes a film form. The thickness of the substrate can be appropriately set according to the type of the continuity test member, and may be, for example, 0.005 mm or more and 50 mm or less. The size of the substrate in plan view can also be set appropriately according to the target inspection apparatus.
 上記基体は、例えば、上記の絶縁性樹脂等の絶縁性材料を原料として、所望の形状に成形することで得ることができる。 The base can be obtained, for example, by molding an insulating material such as the insulating resin as a raw material into a desired shape.
 上記基体の上記貫通孔は、上記基体に複数配置される。上記貫通孔は、上記基体の厚み方向に貫通していることが好ましい。 A plurality of the through holes of the base body are arranged on the base body. It is preferable that the through hole penetrates in the thickness direction of the substrate.
 上記基体の上記貫通孔は、円柱状に形成され得るが、円柱状に限らず、その他の形状、例えば、多角柱状に形成されていてもよい。また、上記貫通孔は、一方の方向に先細りしているテーパー状に形成されていてもよいし、その他、歪んだ形状に形成されていてもよい。 The through hole of the base body may be formed in a columnar shape, but is not limited to a columnar shape, and may be formed in other shapes, for example, a polygonal column shape. Further, the through hole may be formed in a tapered shape that tapers in one direction, or may be formed in a distorted shape.
 上記貫通孔の大きさ、例えば、平面視における上記貫通孔の見かけ面積も適宜の大きさに形成することができ、例えば、導電部を収容でき、かつ、保持できる程度の大きさに形成されていればよい。上記貫通孔が例えば円柱状であれば、上記貫通孔の直径は好ましくは0.01mm以上、好ましくは10mm以下である。 The size of the through hole, for example, the apparent area of the through hole in plan view, can be formed to an appropriate size, for example, formed to a size that can accommodate and hold the conductive portion. Just do it. If the through hole is, for example, a cylindrical shape, the diameter of the through hole is preferably 0.01 mm or more, and preferably 10 mm or less.
 なお、上記基体の上記貫通孔の全てが同じ形状、同じ大きさであってもよいし、上記基体の上記貫通孔の一部の形状又は大きさが、他の貫通孔と異なっていてもよい。 Note that all of the through holes of the base body may have the same shape and the same size, or a part of the through holes of the base body may have a different shape or size from other through holes. .
 上記基体の上記貫通孔の個数も適宜の範囲で設定することができ、導通検査が可能な程度の個数を有していればよく、目的の検査装置に応じて適宜設定することができる。また、上記基体の上記貫通孔の配置場所も目的の検査装置に応じて適宜設定することができる。 The number of the through holes of the base body can be set within an appropriate range as long as the number of the through holes can be inspected, and can be appropriately set according to a target inspection apparatus. The location of the through hole of the base can also be set as appropriate according to the target inspection apparatus.
 上記基体の上記貫通孔を形成する方法は特に限定されず、公知の方法(例えば、レーザー加工)で貫通孔を形成することが可能である。 The method for forming the through hole of the substrate is not particularly limited, and the through hole can be formed by a known method (for example, laser processing).
 上記基体の上記貫通孔内の導電部は導電性を有する。 The conductive part in the through hole of the base has conductivity.
 具体的に導電部は、上記金属含有粒子に由来する粒子を含む。例えば、導電部は、複数の金属含有粒子が貫通孔内に収容されて形成される。上記導電部は、金属含有粒子に由来する粒子の集合体(粒子群)を含む。 Specifically, the conductive part includes particles derived from the metal-containing particles. For example, the conductive part is formed by accommodating a plurality of metal-containing particles in a through hole. The conductive part includes an aggregate (particle group) of particles derived from metal-containing particles.
 上記導電部の材料は、上記金属含有粒子以外の材料を含んでいてもよい。例えば、上記導電部の材料は、上記金属含有粒子以外にバインダーを含むことができる。上記導電部の材料がバインダーを含むことで、上記金属含有粒子がより強固に集合し、これにより上記金属含有粒子に由来する粒子が上記貫通孔内に保持されやすくなる。 The material for the conductive part may include materials other than the metal-containing particles. For example, the material of the conductive part can contain a binder in addition to the metal-containing particles. When the material of the conductive part contains a binder, the metal-containing particles are more firmly aggregated, whereby the particles derived from the metal-containing particles are easily held in the through holes.
 上記バインダーとしては特に限定されず、例えば、光硬化性樹脂、熱硬化性樹脂が挙げられる。上記光硬化性樹脂は、光硬化性樹脂及び光重合開始剤を含むことが好ましい。上記熱硬化性樹脂は、熱硬化性樹脂及び熱硬化剤を含むことが好ましい。上記樹脂としては、例えば、シリコーン系共重合体、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder is not particularly limited, and examples thereof include a photocurable resin and a thermosetting resin. The photocurable resin preferably contains a photocurable resin and a photopolymerization initiator. The thermosetting resin preferably contains a thermosetting resin and a thermosetting agent. Examples of the resin include silicone copolymers, vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said resin, only 1 type may be used and 2 or more types may be used together.
 上記金属含有粒子に由来する粒子は、上記貫通孔内に密に充填されていることが好ましく、この場合、上記導通検査用部材よってより確実な導通検査を行うことができる。上記導電部は、導通検査用部材又は導通用部材の表裏にわたって導通可能であるように上記貫通孔内に収容されていることが好ましい。 The particles derived from the metal-containing particles are preferably closely packed in the through holes. In this case, a more reliable continuity test can be performed by the continuity test member. It is preferable that the conductive portion is accommodated in the through-hole so as to be conductive across the front and back surfaces of the conductive inspection member or the conductive member.
 上記導電部において、上記金属含有粒子に由来する粒子は、導電部の表面から裏面にわたって連続して上記金属含有粒子に由来する粒子が互いに接触しながら存在していることが好ましい。この場合、上記導電部の導通性が向上する。 In the conductive part, it is preferable that the particles derived from the metal-containing particles are continuously present from the surface to the back surface of the conductive part while the particles derived from the metal-containing particles are in contact with each other. In this case, the conductivity of the conductive part is improved.
 上記導電部を、上記貫通孔内に収容する方法は特に限定されない。例えば、上記金属含有粒子とバインダーを含む材料を基体に塗工する方法で上記金属含有粒子を貫通孔内に充填し、適宜の条件で硬化させることで、導電部を貫通孔内に形成することができる。これにより、導電部が貫通孔に収容される。上記金属含有粒子とバインダーを含む材料には必要に応じて溶剤が含まれていてもよい。 The method for accommodating the conductive part in the through hole is not particularly limited. For example, the conductive part is formed in the through-hole by filling the metal-containing particle in the through hole by a method of applying the material containing the metal-containing particle and the binder to the substrate, and curing it under appropriate conditions. Can do. Thereby, an electroconductive part is accommodated in a through-hole. The material containing the metal-containing particles and the binder may contain a solvent as necessary.
 上記金属含有粒子とバインダーを含む材料は、上記金属含有粒子100重量部に対して、バインダーの含有量は固形分換算で好ましくは5重量部以上、より好ましくは10重量部以上であり、好ましくは70重量部以下、より好ましくは50重量部以下である。 The material containing the metal-containing particles and the binder is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 10 parts by weight or more, preferably 100 parts by weight of the metal-containing particles in terms of solid content. 70 parts by weight or less, more preferably 50 parts by weight or less.
 上記導通検査用部材は、プローブカードとして用いることができる。なお、上記導通検査用部材は、本発明の効果が阻害されない程度であれば、その他の構成要素を備えていてもよい。 The above continuity test member can be used as a probe card. The continuity test member may include other components as long as the effects of the present invention are not impaired.
 図20(a)~(c)は、電子回路デバイスの電気特性を導通検査用部材によって検査している様子を模式的に示す図である。 20 (a) to 20 (c) are diagrams schematically showing a state in which the electrical characteristics of the electronic circuit device are inspected by the continuity inspection member.
 図20(a)~(c)では、電子回路デバイスは、BGA基板31(ボールグリッドアレイ基板)である。BGA基板31は、接続パッドが格子状に多層基板31Aに配列され、各パッドにはんだボール31Bが配設された構造を有する基板である。また、図20(a)~(c)では、導通検査用部材21は、プローブカードである。導通検査用部材21は、基体22に複数の貫通孔22aが形成されており、貫通孔22a内には導電部23が収容されている。図20(a)のように、BGA基板31と、導通検査用部材21とを準備し、図20(b)のように、BGA基板31を導通検査用部材21に接触させて圧縮させる。このとき、半田ボール31Bは、貫通孔22a内の導電部23と接触する。この状態において図20(c)のように、電流計32を接続して導通検査を実施し、BGA基板31の合否を判定することができる。 20A to 20C, the electronic circuit device is a BGA substrate 31 (ball grid array substrate). The BGA substrate 31 is a substrate having a structure in which connection pads are arranged on a multilayer substrate 31A in a lattice shape, and solder balls 31B are arranged on each pad. In FIGS. 20A to 20C, the continuity test member 21 is a probe card. In the continuity test member 21, a plurality of through holes 22a are formed in a base 22, and a conductive portion 23 is accommodated in the through hole 22a. A BGA substrate 31 and a continuity test member 21 are prepared as shown in FIG. 20A, and the BGA substrate 31 is brought into contact with the continuity test member 21 and compressed as shown in FIG. At this time, the solder ball 31B contacts the conductive portion 23 in the through hole 22a. In this state, as shown in FIG. 20C, the ammeter 32 can be connected and a continuity test can be performed to determine whether the BGA substrate 31 is acceptable.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 基材粒子Aとして、粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203」)を用意した。
Example 1
As the base particle A, divinylbenzene copolymer resin particles (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 3.0 μm were prepared.
 パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子A10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子Aを取り出した。次いで、基材粒子Aをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Aの表面を活性化させた。表面が活性化された基材粒子Aを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A)を得た。 After 10 parts by weight of the base particle A was dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, the base particle A was taken out by filtering the solution. Subsequently, the base particle A was added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particle A. Suspension (A) was obtained by fully washing the base particle A whose surface was activated, and then adding and dispersing in 500 parts by weight of distilled water.
 次に、金属ニッケル粒子スラリー(三井金属社製「2020SUS」、平均粒子径150nm)1重量部を3分間かけて上記懸濁液(A)に添加し、芯物質が付着された基材粒子Aを含む懸濁液(B)を得た。 Next, 1 part by weight of a metal nickel particle slurry (“2020SUS” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter of 150 nm) is added to the suspension (A) over 3 minutes, and the base particle A to which the core substance is adhered is added. A suspension (B) containing was obtained.
 懸濁液(B)を、硫酸銅20g/L、及びエチレンジアミン四酢酸30g/Lを含む溶液中に入れ、粒子混合液(C)を得た。 Suspension (B) was put into a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixture (C).
 また、無電解銅めっき液として、硫酸銅250g/L、エチレンジアミン四酢酸150g/L、グルコン酸ナトリウム100g/L、及びホルムアルデヒド50g/Lを含む混合液を、アンモニアにてpH10.5に調整した銅めっき液(D)を用意した。 Further, as an electroless copper plating solution, a mixed solution containing 250 g / L of copper sulfate, 150 g / L of ethylenediaminetetraacetic acid, 100 g / L of sodium gluconate, and 50 g / L of formaldehyde is adjusted to pH 10.5 with ammonia. A plating solution (D) was prepared.
 また、無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lを含む混合液を、アンモニア水にてpH8.0に調整した銀めっき液(E)を用意した。 Moreover, as an electroless silver plating solution, a silver plating solution (E) prepared by adjusting a mixed solution containing 30 g / L of silver nitrate, 100 g / L of succinimide and 20 g / L of formaldehyde to pH 8.0 with aqueous ammonia is prepared. did.
 また、ジメチルアミンボラン100g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(F)(pH10.0)を用意した。 Further, a plating solution for forming a protrusion (F) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
 55℃に調整した分散状態の粒子混合液(C)に上記銅めっき液(D)を徐々に滴下し、無電解銅めっきを行った。銅めっき液(D)の滴下速度は30mL/分、滴下時間は30分間で、無電解銅めっきを行った。このようにして、樹脂粒子の表面に銅金属部が配置されており、表面に凸部を有する金属部を備える粒子を含む粒子混合液(G)を得た。 The copper plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 55 ° C. to perform electroless copper plating. The dropping rate of the copper plating solution (D) was 30 mL / min, the dropping time was 30 minutes, and electroless copper plating was performed. Thus, the copper metal part was arrange | positioned on the surface of the resin particle, and the particle liquid mixture (G) containing the particle | grains provided with the metal part which has a convex part on the surface was obtained.
 その後、粒子混合液(G)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上に銅金属部が配置されており、表面に凸部を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H)を得た。 Thereafter, by filtering the particle mixture (G), the particles are taken out and washed with water, whereby a copper metal part is disposed on the surface of the base particle A and a metal part having a convex part on the surface. Obtained particles. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
 次に、60℃に調整した分散状態の粒子混合液(H)に上記銀めっき液(E)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(E)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、上記突起形成用めっき液(F)を徐々に滴下し、突起形成を行った。突起形成用めっき液(F)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(F)の滴下中は、発生した銀突起核を超音波攪拌により分散しながら銀めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上に銅及び銀金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Next, the silver plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating. The dropping rate of the silver plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed. Thereafter, the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the protrusion forming plating solution (F), silver plating was performed while dispersing the generated silver protrusion nuclei by ultrasonic stirring (protrusion forming step). Thereafter, the particles are taken out by filtration, washed with water, and dried, so that copper and silver metal parts (thickness of the whole metal part in the part having no convex part: 0.1 μm) are arranged on the surface of the base particle A. The metal-containing particle | grains provided with the metal part which has a convex part on the surface and has a some protrusion on the surface of a convex part were obtained.
 (実施例2)
 金属ニッケル粒子スラリーをアルミナ粒子スラリー(平均粒子径150nm)に変更したこと以外は実施例1と同様にして、金属含有粒子を得た。
(Example 2)
Metal-containing particles were obtained in the same manner as in Example 1 except that the metal nickel particle slurry was changed to alumina particle slurry (average particle diameter 150 nm).
 (実施例3)
 実施例1で得られた懸濁液(A)を、硫酸ニッケル40ppm、クエン酸3ナトリウム2g/L、及びアンモニア水10g/Lを含む溶液中に入れ、粒子混合液(B)を得た。
(Example 3)
The suspension (A) obtained in Example 1 was put into a solution containing nickel sulfate 40 ppm, trisodium citrate 2 g / L, and aqueous ammonia 10 g / L to obtain a particle mixture (B).
 針状突起形成用めっき液として、硫酸銅100g/L、硫酸ニッケル10g/L、次亜リン酸ナトリウム100g/L、クエン酸3ナトリウム70g/L、ホウ酸10g/L、及びノニオン界面活性剤としてポリエチレングリコール1000(分子量:1000)5mg/Lを含む混合液を、アンモニア水にてpH10.0に調整した無電解銅-ニッケル-リン合金めっき液である針状突起形成用めっき液(C)を用意した。 As a plating solution for forming acicular protrusions, copper sulfate 100 g / L, nickel sulfate 10 g / L, sodium hypophosphite 100 g / L, trisodium citrate 70 g / L, boric acid 10 g / L, and nonionic surfactant A plating solution (C) for forming needle-like protrusions, which is an electroless copper-nickel-phosphorus alloy plating solution obtained by adjusting a mixed solution containing polyethylene glycol 1000 (molecular weight: 1000) 5 mg / L to pH 10.0 with ammonia water. Prepared.
 また、無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lの混合液を、アンモニア水にてpH8.0に調整した銀めっき液(D)を用意した。 Further, as an electroless silver plating solution, a silver plating solution (D) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. .
 また、ジメチルアミンボラン100g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(E)(pH10.0)を用意した。 Further, a plating solution for forming a protrusion (E) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
 70℃に調整した分散状態の粒子混合液(B)に上記針状突起形成用めっき液(C)を徐々に滴下し、針状突起を形成した。針状突起形成用めっき液(C)の滴下速度は40mL/分、滴下時間は60分間で、無電解銅-ニッケル-リン合金めっきを行った(針状突起形成及び銅-ニッケル-リン合金めっき工程)。その後、ろ過することにより粒子を取り出し、基材粒子Aの表面上に銅-ニッケル-リン合金金属部が配置されており、表面に凸部を有する金属部を備える粒子(F)を得た。粒子(F)を蒸留水500重量部に加え、分散させることにより、懸濁液(G)を得た。 The needle-like projection forming plating solution (C) was gradually dropped into the dispersed particle mixture (B) adjusted to 70 ° C. to form needle-like projections. The electroless copper-nickel-phosphorus alloy plating was carried out at a dropping rate of the needle-like projection forming plating solution (C) of 40 mL / min and a dropping time of 60 minutes (acicular projection-forming and copper-nickel-phosphorus alloy plating). Process). Thereafter, the particles were taken out by filtration to obtain particles (F) having a metal part with a copper-nickel-phosphorus alloy metal part disposed on the surface of the base particle A and having a convex part on the surface. The particles (F) were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (G).
 その後、懸濁液(G)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上に銅-ニッケル-リン合金金属部が配置されており、表面に針状凸部を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H)を得た。 Thereafter, by filtering the suspension (G), the particles are taken out and washed with water, so that the copper-nickel-phosphorus alloy metal part is arranged on the surface of the base particle A, and the surface is acicular. The particle | grains provided with the metal part which has a convex part were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
 次に、60℃に調整した分散状態の粒子混合液(H)に上記銀めっき液(D)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、上記突起形成用めっき液(E)を徐々に滴下し、突起形成を行った。突起形成用めっき液(E)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(E)の滴下中は、発生した銀突起核を超音波攪拌により分散しながら銀めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上に銅-ニッケル-リン合金及び銀金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の針状凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Next, the silver plating solution (D) was gradually dropped into the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating. The dropping rate of the silver plating solution (D) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed. Thereafter, the protrusion forming plating solution (E) was gradually dropped to form protrusions. The protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (E) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the projection forming plating solution (E), silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step). Thereafter, the particles are taken out by filtration, washed with water, and dried to obtain a copper-nickel-phosphorus alloy and a silver metal part on the surface of the base particle A (total thickness of the metal part in the part having no projection: 0 0.1 μm) was obtained, and metal-containing particles having a plurality of needle-like protrusions on the surface and a metal part having a plurality of protrusions on the surface of the protrusion were obtained.
 (実施例4)
 実施例1で得られた懸濁液(A)を、硫酸ニッケル80g/L、硝酸タリウム10ppm及び硝酸ビスマス5ppmを含む溶液中に入れ、粒子混合液(B)を得た。
(Example 4)
The suspension (A) obtained in Example 1 was put into a solution containing 80 g / L of nickel sulfate, 10 ppm of thallium nitrate, and 5 ppm of bismuth nitrate to obtain a particle mixture (B).
 針状突起形成用めっき液として、塩化ニッケル100g/L、ヒドラジン一水和物100g/L、クエン酸3ナトリウム50g/L、及びポリエチレングリコール1000(分子量:1000)20mg/Lを含む混合液を、水酸化ナトリウムにてpH9.0に調整した無電解高純度ニッケルめっき液である針状突起形成用めっき液(C)を用意した。 As a plating solution for forming acicular protrusions, a mixed solution containing nickel chloride 100 g / L, hydrazine monohydrate 100 g / L, trisodium citrate 50 g / L, and polyethylene glycol 1000 (molecular weight: 1000) 20 mg / L, A plating solution (C) for forming needle-like protrusions, which is an electroless high-purity nickel plating solution adjusted to pH 9.0 with sodium hydroxide, was prepared.
 また、無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lを含む混合液を、アンモニア水にてpH8.0に調整した銀めっき液(D)を用意した。 In addition, as an electroless silver plating solution, a silver plating solution (D) prepared by adjusting a mixed solution containing silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia is prepared. did.
 また、ジメチルアミンボラン100g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(E)(pH10.0)を用意した。 Further, a plating solution for forming a protrusion (E) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
 60℃に調整した分散状態の粒子混合液(B)に上記針状突起形成用めっき液(C)を徐々に滴下し、針状突起を形成した。針状突起形成用めっき液(C)の滴下速度は20mL/分、滴下時間は50分間で、無電解高純度ニッケルめっきを行った(針状突起形成及び銅-ニッケル-リン合金めっき工程)。その後、ろ過することにより粒子を取り出し、基材粒子Aの表面上に高純度ニッケル金属部が配置されており、表面に凸部を有する金属部を備える粒子(F)を得た。粒子(F)を蒸留水500重量部に加え、分散させることにより、懸濁液(G)を得た。 The needle-like projection forming plating solution (C) was gradually dropped into the dispersed particle mixture (B) adjusted to 60 ° C. to form needle-like projections. Electrolytic high-purity nickel plating was carried out at a dropping rate of the needle-like protrusion-forming plating solution (C) of 20 mL / min and a dropping time of 50 minutes (needle-like protrusion formation and copper-nickel-phosphorus alloy plating step). Thereafter, the particles were taken out by filtration to obtain particles (F) having a high purity nickel metal part disposed on the surface of the base particle A and having a metal part having a convex part on the surface. The particles (F) were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (G).
 その後、懸濁液(G)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上に高純度ニッケル金属部を配置して、表面に針状凸部を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H)を得た。 Thereafter, by filtering the suspension (G), the particles are taken out and washed, whereby a high-purity nickel metal part is disposed on the surface of the base particle A and has a needle-like convex part on the surface. Particles with a metal part were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
 次に、60℃に調整した分散状態の粒子混合液(H)に上記銀めっき液(D)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、上記突起形成用めっき液(E)を徐々に滴下し、突起形成を行った。突起形成用めっき液(E)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(E)の滴下中は、発生した銀突起核を超音波攪拌により分散しながら銀めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、基材粒子Aの表面上に高純度ニッケル及び銀金属部が配置されており、表面に針状凸部を有し、凸部の表面上に複数の突起を有する金属部を備える粒子混合液(I)を得た。 Next, the silver plating solution (D) was gradually dropped into the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating. The dropping rate of the silver plating solution (D) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed. Thereafter, the protrusion forming plating solution (E) was gradually dropped to form protrusions. The protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (E) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the projection forming plating solution (E), silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step). Thereafter, the particles are taken out by filtration, and high-purity nickel and silver metal parts are arranged on the surface of the base particle A, and have a needle-like convex part on the surface, and a plurality of protrusions on the surface of the convex part A particle mixed liquid (I) having a metal part having the following was obtained.
 その後、粒子混合液(I)をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上に高純度ニッケル及び銀金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の針状凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Thereafter, by filtering the particle mixture (I), the particles are taken out, washed with water, and dried to obtain high-purity nickel and silver metal parts on the surface of the base particle A (the metal part in the part having no protrusions). Total thickness: 0.1 μm) was arranged, and metal-containing particles having a plurality of needle-like protrusions on the surface and a metal part having a plurality of protrusions on the surface of the protrusions were obtained.
 (実施例5)
 実施例1で得られた懸濁液(A)を、硝酸銀500ppm、コハク酸イミド10g/L、アンモニア水10g/L、を含む溶液中に入れ、粒子混合液(B)を得た。
(Example 5)
The suspension (A) obtained in Example 1 was put in a solution containing 500 ppm of silver nitrate, 10 g / L of succinimide, and 10 g / L of aqueous ammonia to obtain a particle mixture (B).
 無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lを含む混合液を、アンモニア水にてpH8に調整した銀めっき液(C)を用意した。 As an electroless silver plating solution, a silver plating solution (C) was prepared by adjusting a mixed solution containing 30 g / L of silver nitrate, 100 g / L of succinimide, and 20 g / L of formaldehyde to pH 8 with aqueous ammonia.
 また、ジメチルアミンボラン100g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(D)(pH10.0)を用意した。 Also, a plating solution (D) (pH 10.0) for protrusion formation containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
 60℃に調整した分散状態の粒子混合液(B)に上記無電解銀めっき液(C)を徐々に滴下し、針状突起を形成した。無電解銀めっき液(C)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った(銀めっき工程)。その後、上記突起形成用めっき液(D)を徐々に滴下し、突起形成を行った。突起形成用めっき液(D)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(D)の滴下中は、発生した銀突起核を超音波攪拌により分散しながら銀めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上に銀金属部(突起が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 The electroless silver plating solution (C) was gradually added dropwise to the dispersed particle mixture (B) adjusted to 60 ° C. to form needle-like protrusions. The electroless silver plating solution (C) was dropped at a rate of 10 mL / min and a dropping time was 30 minutes (electroless silver plating step). Thereafter, the protrusion forming plating solution (D) was gradually dropped to form protrusions. The protrusion formation was carried out at a dropping rate of the plating solution for protrusion formation (D) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the projection forming plating solution (D), silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step). Thereafter, the particles are taken out by filtration, washed with water, and dried, whereby a silver metal part (the thickness of the whole metal part in the part having no protrusions: 0.1 μm) is arranged on the surface of the base particle A. A metal-containing particle comprising a metal part having a plurality of protrusions on the surface was obtained.
 (実施例6)
 実施例1で得られた懸濁液(A)を、シアン化銀カリウム500ppm、シアン化カリウム10g/L、及び水酸化カリウム10g/Lを含む溶液中に入れ、粒子混合液(B)を得た。
(Example 6)
The suspension (A) obtained in Example 1 was placed in a solution containing 500 ppm of potassium cyanide, 10 g / L of potassium cyanide, and 10 g / L of potassium hydroxide to obtain a particle mixture (B).
 針状突起形成用めっき液として、シアン化銀カリウム80g/L、シアン化カリウム10g/L、ポリエチレングリコール1000(分子量:1000)20mg/L、チオ尿素50ppm、及びヒドラジン一水和物100g/Lを含む混合液を、水酸化カリウムにてpH7.5に調整した銀めっき液(C)を用意した。 A mixture containing potassium silver cyanide 80 g / L, potassium cyanide 10 g / L, polyethylene glycol 1000 (molecular weight: 1000) 20 mg / L, thiourea 50 ppm, and hydrazine monohydrate 100 g / L as a plating solution for forming acicular protrusions A silver plating solution (C) in which the solution was adjusted to pH 7.5 with potassium hydroxide was prepared.
 80℃に調整した分散状態の粒子混合液(B)に上記無電解銀めっき液(C)を徐々に滴下し、針状突起を形成した。無電解銀めっき液(C)の滴下速度は10mL/分、滴下時間は60分間で、無電解銀めっきを行った(針状突起形成及び銀めっき工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面に銀金属部(突起が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の針状突起が形成された銀金属部を備える金属含有粒子を得た。 The electroless silver plating solution (C) was gradually added dropwise to the dispersed particle mixture (B) adjusted to 80 ° C. to form needle-like protrusions. The dropping rate of the electroless silver plating solution (C) was 10 mL / min, and the dropping time was 60 minutes, and electroless silver plating was performed (acicular protrusion formation and silver plating step). Thereafter, the particles are taken out by filtration, washed with water, and dried, whereby a silver metal part (the thickness of the whole metal part in the part where there is no protrusion: 0.1 μm) is arranged on the surface of the resin particles, Metal-containing particles provided with a silver metal portion on which a plurality of needle-like protrusions were formed were obtained.
 (実施例7)
 実施例1で得られた懸濁液(A)を、シアン化銀カリウム500ppm、シアン化カリウム10g/L、及び水酸化カリウム10g/Lを含む溶液中に入れ、粒子混合液(B)を得た。
(Example 7)
The suspension (A) obtained in Example 1 was placed in a solution containing 500 ppm of potassium cyanide, 10 g / L of potassium cyanide, and 10 g / L of potassium hydroxide to obtain a particle mixture (B).
 針状突起形成用めっき液として、シアン化銀カリウム80g/L、シアン化カリウム10g/L、ポリエチレングリコール1000(分子量:1000)20mg/L、チオ尿素50ppm、及びヒドラジン一水和物100g/Lを含む混合液を、水酸化カリウムにてpH7.5に調整した銀めっき液(C)を用意した。 A mixture containing potassium silver cyanide 80 g / L, potassium cyanide 10 g / L, polyethylene glycol 1000 (molecular weight: 1000) 20 mg / L, thiourea 50 ppm, and hydrazine monohydrate 100 g / L as a plating solution for forming acicular protrusions A silver plating solution (C) in which the solution was adjusted to pH 7.5 with potassium hydroxide was prepared.
 また、無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lを含む混合液を、アンモニア水にてpH8.0に調整した銀めっき液(D)を用意した。 In addition, as an electroless silver plating solution, a silver plating solution (D) prepared by adjusting a mixed solution containing silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia is prepared. did.
 また、ジメチルアミンボラン100g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(E)(pH10.0)を用意した。 Further, a plating solution for forming a protrusion (E) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
 80℃に調整した分散状態の粒子混合液(B)に上記無電解銀めっき液(C)を徐々に滴下し、針状突起を形成した。無電解銀めっき液(C)の滴下速度は10mL/分、滴下時間は45分間で、無電解銀めっきを行った(針状突起形成及び銀めっき工程)。 The electroless silver plating solution (C) was gradually added dropwise to the dispersed particle mixture (B) adjusted to 80 ° C. to form needle-like protrusions. The dropping rate of the electroless silver plating solution (C) was 10 mL / min, the dropping time was 45 minutes, and electroless silver plating was performed (acicular protrusion formation and silver plating step).
 その後、ろ過することにより粒子を取り出し、基材粒子Aの表面上に銀金属部が配置されており、表面に針状凸部を有する金属部を備える粒子(F)を得た。粒子(F)を蒸留水500重量部に加え、分散させることにより、粒子混合液(G)を得た。 Thereafter, the particles were taken out by filtration, and a particle (F) having a silver metal part on the surface of the base particle A and having a metal part having a needle-like convex part on the surface was obtained. The particle mixture (G) was obtained by adding and dispersing the particles (F) in 500 parts by weight of distilled water.
 次に、60℃に調整した分散状態の粒子混合液(G)に上記銀めっき液(D)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、上記突起形成用めっき液(E)を徐々に滴下し、突起形成を行った。突起形成用めっき液(E)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(E)の滴下中は、発生した銀突起核を超音波攪拌により分散しながら銀めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上に銀金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の針状凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Next, the silver plating solution (D) was gradually dropped into the dispersed particle mixture (G) adjusted to 60 ° C. to perform electroless silver plating. The dropping rate of the silver plating solution (D) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed. Thereafter, the protrusion forming plating solution (E) was gradually dropped to form protrusions. The protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (E) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the projection forming plating solution (E), silver plating was performed while dispersing the generated silver projection nuclei by ultrasonic stirring (projection formation step). Thereafter, the particles are taken out by filtration, washed with water, and dried, whereby a silver metal part (the thickness of the entire metal part in the part having no convex part: 0.1 μm) is arranged on the surface of the base particle A. And the metal containing particle | grains provided with the metal part which has a some needle-like convex part on the surface and has a some protrusion on the surface of a convex part were obtained.
 (実施例8)
 実施例1で得られた懸濁液(B)を、硫酸ニッケル50g/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(C)を得た。
(Example 8)
The suspension (B) obtained in Example 1 was put in a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate and 20 ppm of bismuth nitrate to obtain a particle mixture (C).
 無電解ニッケル-タングステン-ボロン合金めっき液として、硫酸ニッケル100g/L、タングステン酸ナトリウム5g/L、ジメチルアミンボラン30g/L、硝酸ビスマス10ppm、及びクエン酸3ナトリウム30g/Lを含む混合液を、水酸化ナトリウムにてpH6に調整した無電解ニッケル-タングステン-ボロン合金めっき液(D)を用意した。 As an electroless nickel-tungsten-boron alloy plating solution, a mixed solution containing nickel sulfate 100 g / L, sodium tungstate 5 g / L, dimethylamine borane 30 g / L, bismuth nitrate 10 ppm, and trisodium citrate 30 g / L, An electroless nickel-tungsten-boron alloy plating solution (D) adjusted to pH 6 with sodium hydroxide was prepared.
 また、無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lの混合液を、アンモニア水にてpH8.0に調整した銀めっき液(E)を用意した。 Further, as an electroless silver plating solution, a silver plating solution (E) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. .
 また、ジメチルアミンボラン100g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(F)(pH10.0)を用意した。 Further, a plating solution for forming a protrusion (F) (pH 10.0) containing dimethylamine borane 100 g / L and sodium hydroxide 0.5 g / L was prepared.
 60℃に調整した分散状態の粒子混合液(C)に上記無電解ニッケル-タングステン-ボロン合金めっき液(D)を徐々に滴下し、無電解ニッケル-タングステン-ボロン合金めっきを行った。無電解ニッケル-タングステン-ボロン合金めっき液(D)の滴下速度は15mL/分、滴下時間は60分間で、無電解ニッケル-タングステン-ボロン合金めっきを行った。このようにして、基材粒子Aの表面上にニッケル-タングステン-ボロン合金金属部が配置されており、表面に凸部を有する金属部を備える粒子を含む粒子混合液(G)を得た。 The electroless nickel-tungsten-boron alloy plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 60 ° C. to perform electroless nickel-tungsten-boron alloy plating. The electroless nickel-tungsten-boron alloy plating solution (D) was dropped at a rate of 15 mL / min and the dropping time was 60 minutes to perform electroless nickel-tungsten-boron alloy plating. In this manner, a particle mixed liquid (G) containing particles having a metal part having a convex portion on the surface, on which the nickel-tungsten-boron alloy metal part is disposed on the surface of the base particle A, was obtained.
 その後、粒子混合液(G)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上にニッケル-タングステン-ボロン合金金属層が配置されており、表面に凸部を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H)を得た。 Thereafter, by filtering the particle mixture (G), the particles are taken out and washed with water, whereby a nickel-tungsten-boron alloy metal layer is disposed on the surface of the base material particle A, and a convex portion is formed on the surface. The particle | grains provided with the metal part which has were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
 次に、60℃に調整した分散状態の粒子混合液(H)に上記銀めっき液(E)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(E)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、上記突起形成用めっき液(F)を徐々に滴下し、突起形成を行った。突起形成用めっき液(F)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(F)の滴下中は、発生した銀突起核を超音波攪拌により分散しながら銀めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上にニッケル-タングステン-ボロン合金及び銀金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Next, the silver plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating. The dropping rate of the silver plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed. Thereafter, the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the protrusion forming plating solution (F), silver plating was performed while dispersing the generated silver protrusion nuclei by ultrasonic stirring (protrusion forming step). Thereafter, the particles are removed by filtration, washed with water, and dried, whereby the nickel-tungsten-boron alloy and the silver metal part (the thickness of the entire metal part in the part having no protrusions: 0 on the surface of the base particle A: 0 0.1 μm) was obtained, and metal-containing particles were obtained that had a plurality of convex portions on the surface and a metal portion having a plurality of protrusions on the surface of the convex portions.
 (実施例9)
 実施例1で得られた懸濁液(B)を、硫酸ニッケル50g/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(C)を得た。
Example 9
The suspension (B) obtained in Example 1 was put in a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate and 20 ppm of bismuth nitrate to obtain a particle mixture (C).
 無電解ニッケル-タングステン-ボロン合金めっき液として、硫酸ニッケル100g/L、タングステン酸ナトリウム2g/L、ジメチルアミンボラン30g/L、硝酸ビスマス10ppm、及びクエン酸3ナトリウム30g/Lを含む混合液を、水酸化ナトリウムにてpH6に調整した無電解ニッケル-タングステン-ボロン合金めっき液(D)を用意した。 As an electroless nickel-tungsten-boron alloy plating solution, a mixed solution containing nickel sulfate 100 g / L, sodium tungstate 2 g / L, dimethylamine borane 30 g / L, bismuth nitrate 10 ppm, and trisodium citrate 30 g / L, An electroless nickel-tungsten-boron alloy plating solution (D) adjusted to pH 6 with sodium hydroxide was prepared.
 また、無電解金めっき液として、シアン化金カリウム30g/L、シアン化カリウム2g/L、クエン酸3ナトリウム30g/L、エチレンジアミン四酢酸15g/L、水酸化カリウム10g/L、及びジメチルアミンボラン20g/Lを含む混合液を、水酸化カリウムにてpH8.0に調整した金めっき液(E)を用意した。 In addition, as electroless gold plating solution, potassium gold cyanide 30 g / L, potassium cyanide 2 g / L, trisodium citrate 30 g / L, ethylenediaminetetraacetic acid 15 g / L, potassium hydroxide 10 g / L, and dimethylamine borane 20 g / L A gold plating solution (E) in which the mixed solution containing L was adjusted to pH 8.0 with potassium hydroxide was prepared.
 また、水素化ホウ素ナトリウム30g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(F)(pH10.0)を用意した。 Moreover, a plating solution for forming a protrusion (F) (pH 10.0) containing 30 g / L of sodium borohydride and 0.5 g / L of sodium hydroxide was prepared.
 60℃に調整した分散状態の粒子混合液(C)に上記無電解ニッケル-タングステン-ボロン合金めっき液(D)を徐々に滴下し、無電解ニッケル-タングステン-ボロン合金めっきを行った。無電解ニッケル-タングステン-ボロン合金めっき液(D)の滴下速度は15mL/分、滴下時間は60分間で、無電解ニッケル-タングステン-ボロン合金めっきを行った。このようにして、基材粒子Aの表面上にニッケル-タングステン-ボロン合金金属部が配置されており、表面に凸部を有する金属部を備える粒子(G)を得た。 The electroless nickel-tungsten-boron alloy plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 60 ° C. to perform electroless nickel-tungsten-boron alloy plating. The electroless nickel-tungsten-boron alloy plating solution (D) was dropped at a rate of 15 mL / min and the dropping time was 60 minutes to perform electroless nickel-tungsten-boron alloy plating. In this way, a particle (G) having a nickel-tungsten-boron alloy metal part disposed on the surface of the substrate particle A and having a metal part having a convex part on the surface was obtained.
 その後、懸濁液(G)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上にニッケル-タングステン-ボロン合金金属部が配置されており、表面に凸部を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H)を得た。 Thereafter, by filtering the suspension (G), the particles are taken out and washed with water, whereby a nickel-tungsten-boron alloy metal part is arranged on the surface of the base particle A, and a convex part is formed on the surface. The particle | grains provided with the metal part which has were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
 次に、60℃に調整した分散状態の粒子混合液(H)に上記無電解金めっき液(E)を徐々に滴下し、無電解金めっきを行った。無電解金めっき液(E)の滴下速度は10mL/分、滴下時間は30分間で、無電解金めっきを行った。その後、上記突起形成用めっき液(F)を徐々に滴下し、突起形成を行った。突起形成用めっき液(F)の滴下速度は1mL/分、滴下時間は5分間で、突起形成を行った。突起形成用めっき液(F)の滴下中は、発生した金突起核を超音波攪拌により分散しながら金めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上にニッケル-タングステン-ボロン合金及び金金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Next, the electroless gold plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless gold plating. The electroless gold plating solution (E) was dropped at a rate of 10 mL / min, and the dropping time was 30 minutes. Thereafter, the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 5 minutes. During the dropping of the protrusion forming plating solution (F), gold plating was performed while dispersing the generated gold protrusion nuclei by ultrasonic stirring (protrusion forming step). Thereafter, the particles are taken out by filtration, washed with water, and dried to obtain a nickel-tungsten-boron alloy and a gold metal part on the surface of the base particle A (the thickness of the entire metal part in the part having no protrusions: 0). 0.1 μm) was obtained, and metal-containing particles were obtained that had a plurality of convex portions on the surface and a metal portion having a plurality of protrusions on the surface of the convex portions.
 (実施例10)
 実施例1で得られた懸濁液(B)を、硫酸銅20g/L、及びエチレンジアミン四酢酸30g/Lを含む溶液中に入れ、粒子混合液(C)を得た。
(Example 10)
The suspension (B) obtained in Example 1 was put in a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixture (C).
 また、無電解銅めっき液として、硫酸銅250g/L、エチレンジアミン四酢酸150g/L、グルコン酸ナトリウム100g/L、及びホルムアルデヒド50g/Lを含む混合液を、アンモニアにてpH10.5に調整した銅めっき液(D)を用意した。 Further, as an electroless copper plating solution, a mixed solution containing 250 g / L of copper sulfate, 150 g / L of ethylenediaminetetraacetic acid, 100 g / L of sodium gluconate, and 50 g / L of formaldehyde is adjusted to pH 10.5 with ammonia. A plating solution (D) was prepared.
 また、無電解錫めっき液として、塩化錫20g/L、ニトリロ三酢酸50g/L、チオ尿素2g/L、チオリンゴ酸1g/L、エチレンジアミン四酢酸7.5g/L、及び三塩化チタン15g/Lを含む混合液を、硫酸にてpH7.0に調整した錫めっき液(E)を用意した。 As electroless tin plating solutions, tin chloride 20 g / L, nitrilotriacetic acid 50 g / L, thiourea 2 g / L, thiomalic acid 1 g / L, ethylenediaminetetraacetic acid 7.5 g / L, and titanium trichloride 15 g / L A tin plating solution (E) was prepared by adjusting the pH of the mixed solution containing sulfuric acid to 7.0 with sulfuric acid.
 また、ジメチルアミンボラン100g/Lを含む突起形成用めっき液(F)(pH7.0)を用意した。 Further, a plating solution for forming protrusions (F) (pH 7.0) containing dimethylamine borane 100 g / L was prepared.
 55℃に調整した分散状態の粒子混合液(C)に上記銅めっき液(D)を徐々に滴下し、無電解銅めっきを行った。銅めっき液(D)の滴下速度は30mL/分、滴下時間は30分間で、無電解銅めっきを行った。その後、ろ過することにより粒子を取り出し、このようにして、基材粒子Aの表面上に銅金属部が配置されており、表面に凸部を有する金属部を備える粒子を含む粒子混合液(G)を得た。 The copper plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 55 ° C. to perform electroless copper plating. The dropping rate of the copper plating solution (D) was 30 mL / min, the dropping time was 30 minutes, and electroless copper plating was performed. Thereafter, the particles are taken out by filtration, and in this way, a particle mixed solution (G) containing particles having a metal part in which the copper metal part is arranged on the surface of the base particle A and has a convex part on the surface. )
 その後、粒子混合液(G)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上に銅金属部を配置して、表面に凸部を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H)を得た。 Thereafter, by filtering the particle mixture (G), the particles are taken out and washed with water, thereby arranging a copper metal part on the surface of the substrate particle A, and a metal part having a convex part on the surface. Particles were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
 次に、60℃に調整した分散状態の粒子混合液(H)に上記錫めっき液(E)を徐々に滴下し、無電解錫めっきを行った。錫めっき液(E)の滴下速度は10mL/分、滴下時間は30分間で、無電解錫めっきを行った。その後、上記突起形成用めっき液(F)を徐々に滴下し、突起形成を行った。突起形成用めっき液(F)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(F)の滴下中は、発生した錫突起核を超音波攪拌により分散しながら錫めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上に銅及び錫金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Next, the tin plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless tin plating. The dropping rate of the tin plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless tin plating was performed. Thereafter, the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the projection forming plating solution (F), tin plating was performed while dispersing the generated tin projection nuclei by ultrasonic stirring (projection formation step). Thereafter, the particles are taken out by filtration, washed with water, and dried, so that copper and tin metal parts (thickness of the whole metal part in the part having no protrusions: 0.1 μm) are arranged on the surface of the base particle A. Thus, metal-containing particles having a plurality of protrusions on the surface and a metal part having a plurality of protrusions on the surface of the protrusions were obtained.
 (実施例11)
 (1)シリコーンオリゴマーの作製
 温浴槽内に設置した100mlのセパラブルフラスコに、1,3-ジビニルテトラメチルジシロキサン1重量部と、0.5重量%p-トルエンスルホン酸水溶液20重量部とを入れた。40℃で1時間撹拌した後、炭酸水素ナトリウム0.05重量部を添加した。その後、ジメトキシメチルフェニルシラン10重量部、ジメチルジメトキシシラン49重量部、トリメチルメトキシシラン0.6重量部、及びメチルトリメトキシシラン3.6重量部を添加し、1時間撹拌を行った。その後、10重量%水酸化カリウム水溶液1.9重量部を添加して、85℃まで昇温してアスピレーターで減圧しながら、10時間撹拌、反応を行った。反応終了後、常圧に戻し40℃まで冷却して、酢酸0.2重量部を添加し、12時間以上分液漏斗内で静置した。二層分離後の下層を取り出して、エバポレーターにて精製することでシリコーンオリゴマーを得た。
(Example 11)
(1) Preparation of silicone oligomer In a 100 ml separable flask placed in a hot tub, 1 part by weight of 1,3-divinyltetramethyldisiloxane and 20 parts by weight of 0.5 wt% p-toluenesulfonic acid aqueous solution were added. I put it in. After stirring at 40 ° C. for 1 hour, 0.05 part by weight of sodium bicarbonate was added. Thereafter, 10 parts by weight of dimethoxymethylphenylsilane, 49 parts by weight of dimethyldimethoxysilane, 0.6 part by weight of trimethylmethoxysilane, and 3.6 parts by weight of methyltrimethoxysilane were added and stirred for 1 hour. Thereafter, 1.9 parts by weight of a 10% by weight aqueous potassium hydroxide solution was added, the temperature was raised to 85 ° C., and the mixture was stirred and reacted for 10 hours while reducing the pressure with an aspirator. After the completion of the reaction, the pressure was returned to normal pressure, cooled to 40 ° C., 0.2 parts by weight of acetic acid was added, and the mixture was allowed to stand in a separating funnel for 12 hours or more. The lower layer after two-layer separation was taken out and purified with an evaporator to obtain a silicone oligomer.
 (2)シリコーン粒子材料(有機ポリマーを含む)の作製
 得られたシリコーンオリゴマー30重量部に、tert-ブチル-2-エチルペルオキシヘキサノアート(重合開始剤、日油社製「パーブチルO」)0.5重量部を溶解させた溶解液Aを用意した。また、イオン交換水150重量部に、ラウリル硫酸トリエタノールアミン塩40重量%水溶液(乳化剤)0.8重量部とポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)の5重量%水溶液80重量部とを混合して、水溶液Bを用意した。温浴槽中に設置したセパラブルフラスコに、上記溶解液Aを入れた後、上記水溶液Bを添加した。その後、Shirasu Porous Glass(SPG)膜(細孔平均径約1μm)を用いることで、乳化を行った。その後、85℃に昇温して、9時間重合を行った。重合後の粒子の全量を遠心分離により水洗浄し、凍結乾燥を行った。乾燥後、粒子の凝集体が目的の比(平均2次粒子径/平均1次粒子径)になるまでボールミルにて粉砕して、粒子径が3.0μmのシリコーン粒子(基材粒子B)を得た。
(2) Production of silicone particle material (including organic polymer) 30 parts by weight of the obtained silicone oligomer was added to tert-butyl-2-ethylperoxyhexanoate (polymerization initiator, “Perbutyl O” manufactured by NOF Corporation). Solution A was prepared by dissolving 5 parts by weight. In addition, 150 parts by weight of ion-exchanged water, 0.8 part by weight of a 40% by weight aqueous solution of lauryl sulfate triethanolamine salt (emulsifier) and polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5-89 mol%, Japan An aqueous solution B was prepared by mixing 80 parts by weight of a 5 wt% aqueous solution of “GOHSENOL GH-20” manufactured by Synthetic Chemical Co., Ltd. After the said solution A was put into the separable flask installed in the warm bath, the said aqueous solution B was added. Thereafter, emulsification was performed using a Shirasu Porous Glass (SPG) membrane (pore average diameter of about 1 μm). Then, it heated up to 85 degreeC and superposition | polymerization was performed for 9 hours. The whole amount of the polymerized particles was washed with water by centrifugation and freeze-dried. After drying, the mixture is pulverized with a ball mill until the aggregate of the particles reaches the target ratio (average secondary particle size / average primary particle size) to obtain silicone particles (base particle B) having a particle size of 3.0 μm. Obtained.
 上記基材粒子Aを上記基材粒子Bに変更し、実施例1と同様にして金属部を形成して、金属含有粒子を得た。 The base particle A was changed to the base particle B, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
 (実施例12)
 シリコーンオリゴマーの代わりに両末端アクリルシリコーンオイル(信越化学工業社製「X-22-2445」)を用いて粒子径が3.0μmのシリコーン粒子(基材粒子C)を得た。
(Example 12)
Silicone particles (base particle C) having a particle size of 3.0 μm were obtained by using an acrylic silicone oil at both ends (“X-22-2445” manufactured by Shin-Etsu Chemical Co., Ltd.) instead of the silicone oligomer.
 上記基材粒子Aを上記基材粒子Cに変更し、実施例1と同様にして金属部を形成して、金属含有粒子を得た。 The base particle A was changed to the base particle C, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
 (実施例13)
 純銅粒子(日本アトマイズ加工社製「HXR-Cu」、粒子径2.5μm)を基材粒子Dとして用意した。
(Example 13)
Pure copper particles (“HXR-Cu” manufactured by Nippon Atomizing Co., Ltd., particle diameter: 2.5 μm) were prepared as base material particles D.
 上記基材粒子Aを上記基材粒子Dに変更し、実施例1と同様にして金属部を形成して、金属含有粒子を得た。 The base material particle A was changed to the base material particle D, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
 (実施例14)
 純銀粒子(粒子径2.5μm)を基材粒子Eとして用意した。
(Example 14)
Pure silver particles (particle diameter 2.5 μm) were prepared as substrate particles E.
 上記基材粒子Aを上記基材粒子Eに変更し、実施例1と同様にして金属部を形成して、金属含有粒子を得た。 The base particle A was changed to the base particle E, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
 (実施例15)
 基材粒子Aと粒子径のみが異なり、粒子径が2.0μmである基材粒子Fを用意した。
(Example 15)
Substrate particles F differing from the substrate particles A only in particle diameter and having a particle diameter of 2.0 μm were prepared.
 上記基材粒子Aを上記基材粒子Fに変更し、実施例1と同様にして金属部を形成して、金属含有粒子を得た。 The base particle A was changed to the base particle F, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
 (実施例16)
 基材粒子Aと粒子径のみが異なり、粒子径が10.0μmである基材粒子Gを用意した。
(Example 16)
Substrate particles G differing from the substrate particles A only in particle size and having a particle size of 10.0 μm were prepared.
 上記基材粒子Aを上記基材粒子Gに変更し、実施例1と同様にして金属部を形成して、金属含有粒子を得た。 The base particle A was changed to the base particle G, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
 (実施例17)
 基材粒子Aと粒子径のみが異なり、粒子径が50.0μmである基材粒子Hを用意した。
(Example 17)
A base particle H having a particle diameter different from that of the base particle A and having a particle diameter of 50.0 μm was prepared.
 上記基材粒子Aを上記基材粒子Hに変更し、実施例1と同様にして金属部を形成して、金属含有粒子を得た。 The base particle A was changed to the base particle H, and a metal part was formed in the same manner as in Example 1 to obtain metal-containing particles.
 (実施例18)
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
(Example 18)
To a 1000 mL separable flask equipped with a four-necked separable cover, stirring blade, three-way cock, condenser and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl-N-2-methacryloyloxyethyl A monomer composition containing 1 mmol of ammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride was weighed in ion-exchanged water so that the solid content was 5% by weight, and then at 200 rpm. The mixture was stirred and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。 The insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
 実施例1で得られた金属含有粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した金属含有粒子を得た。 10 g of the metal-containing particles obtained in Example 1 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 μm mesh filter, the product was further washed with methanol and dried to obtain metal-containing particles having insulating particles attached thereto.
 走査型電子顕微鏡(SEM)により観察したところ、金属含有粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により金属含有粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer of insulating particles was formed on the surface of the metal-containing particles. As a result of image analysis, the coating area of the insulating particles with respect to the area of 2.5 μm from the center of the metal-containing particles (that is, the projected area of the particle diameter of the insulating particles) was calculated.
 (実施例19)
 実施例1で得られた懸濁液(B)を、硫酸ニッケル50g/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(C)を得た。
(Example 19)
The suspension (B) obtained in Example 1 was put in a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate and 20 ppm of bismuth nitrate to obtain a particle mixture (C).
 無電解ニッケル-リン合金めっき液として、硫酸ニッケル100g/L、次亜リン酸ナトリウム30g/L、硝酸ビスマス10ppm、及びクエン酸3ナトリウム30g/Lを含む混合液を、水酸化ナトリウムにてpH6に調整した無電解ニッケル-リン合金めっき液(D)を用意した。 As an electroless nickel-phosphorus alloy plating solution, a mixed solution containing nickel sulfate 100 g / L, sodium hypophosphite 30 g / L, bismuth nitrate 10 ppm, and trisodium citrate 30 g / L was adjusted to pH 6 with sodium hydroxide. An adjusted electroless nickel-phosphorus alloy plating solution (D) was prepared.
 また、無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lの混合液を、アンモニア水にてpH8.0に調整した銀めっき液(E)を用意した。 Further, as an electroless silver plating solution, a silver plating solution (E) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinimide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. .
 また、次亜リン酸ナトリウム130g/L、及び水酸化ナトリウム0.5g/Lを含む突起形成用めっき液(F)(pH12.0)を用意した。 Also, a plating solution for forming a protrusion (F) (pH 12.0) containing 130 g / L of sodium hypophosphite and 0.5 g / L of sodium hydroxide was prepared.
 65℃に調整した分散状態の粒子混合液(C)に上記無電解ニッケル-リン合金めっき液(D)を徐々に滴下し、無電解ニッケル-リン合金めっきを行った。無電解ニッケル-リン合金めっき液(D)の滴下速度は15mL/分、滴下時間は60分間で、無電解ニッケル-リン合金めっきを行った。このようにして、基材粒子Aの表面上にニッケル-リン合金金属部が配置されており、表面に凸部を有する金属部を備える粒子を含む粒子混合液(G)を得た。 The electroless nickel-phosphorus alloy plating solution (D) was gradually dropped into the dispersed particle mixture (C) adjusted to 65 ° C. to perform electroless nickel-phosphorus alloy plating. The electroless nickel-phosphorous alloy plating solution (D) was dropped at a rate of 15 mL / min and the dropping time was 60 minutes to perform electroless nickel-phosphorus alloy plating. In this way, a particle mixed solution (G) containing particles having a metal part having a metal part having a convex part on the surface, on which the nickel-phosphorus alloy metal part is arranged on the surface of the base particle A, was obtained.
 その後、粒子混合液(G)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上にニッケル-リン合金金属層が配置されており、表面に凸部を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H)を得た。 Thereafter, by filtering the particle mixture (G), the particles are taken out and washed with water, whereby a nickel-phosphorus alloy metal layer is disposed on the surface of the base particle A, and has a convex portion on the surface. Particles with a metal part were obtained. The particles were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H).
 次に、60℃に調整した分散状態の粒子混合液(H)に上記銀めっき液(E)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(E)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、上記突起形成用めっき液(F)を徐々に滴下し、突起形成を行った。突起形成用めっき液(F)の滴下速度は1mL/分、滴下時間は10分間で、突起形成を行った。突起形成用めっき液(F)の滴下中は、発生した銀突起核を超音波攪拌により分散しながら銀めっきを行った(突起形成工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上にニッケル-リン合金及び銀金属部(凸部が無い部分における金属部全体の厚み:0.1μm)が配置されており、表面に複数の凸部を有し、凸部の表面上に複数の突起を有する金属部を備える金属含有粒子を得た。 Next, the silver plating solution (E) was gradually added dropwise to the dispersed particle mixture (H) adjusted to 60 ° C. to perform electroless silver plating. The dropping rate of the silver plating solution (E) was 10 mL / min, the dropping time was 30 minutes, and electroless silver plating was performed. Thereafter, the protrusion forming plating solution (F) was gradually dropped to form protrusions. Protrusion formation was performed at a dropping rate of the plating solution for forming protrusions (F) of 1 mL / min and a dropping time of 10 minutes. During the dropping of the protrusion forming plating solution (F), silver plating was performed while dispersing the generated silver protrusion nuclei by ultrasonic stirring (protrusion forming step). Thereafter, the particles are removed by filtration, washed with water, and dried, whereby the nickel-phosphorus alloy and the silver metal part on the surface of the base particle A (total thickness of the metal part in the part having no protrusions: 0.1 μm) ) Are arranged, and a metal-containing particle having a plurality of protrusions on the surface and a metal portion having a plurality of protrusions on the surface of the protrusions is obtained.
 (実施例20)
実施例1で得られた金属含有粒子について、銀変色防止剤として大和化成社製「ニューダインシルバー」を用いて硫化防止処理を行った。
(Example 20)
The metal-containing particles obtained in Example 1 were subjected to an antisulfurization treatment using “New Dyne Silver” manufactured by Daiwa Kasei Co., Ltd. as a silver discoloration inhibitor.
 ニューダインシルバー10重量%を含むイソプロピルアルコール溶液100重量部に、実施例1で得られた金属含有粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、硫化防止膜が形成された金属含有粒子を得た。 By dispersing 10 parts by weight of the metal-containing particles obtained in Example 1 in 100 parts by weight of an isopropyl alcohol solution containing 10% by weight of Newdyne Silver using an ultrasonic disperser, and then filtering the solution, Metal-containing particles having an antisulfide film formed thereon were obtained.
 (実施例21)
 実施例1で得られた金属含有粒子について、銀硫化防止剤として2-メルカプトベンゾチアゾール溶液を用いて硫化防止処理を行った。
(Example 21)
The metal-containing particles obtained in Example 1 were subjected to anti-sulfurization treatment using a 2-mercaptobenzothiazole solution as a silver anti-sulfur agent.
 2-メルカプトベンゾチアゾール0.5重量%を含むイソプロピルアルコール溶液100重量部に、実施例1で得られた金属含有粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、硫化防止膜が形成された金属含有粒子を得た。 10 parts by weight of the metal-containing particles obtained in Example 1 were dispersed in 100 parts by weight of an isopropyl alcohol solution containing 0.5% by weight of 2-mercaptobenzothiazole using an ultrasonic disperser, and then the solution was filtered. As a result, metal-containing particles having an antisulfide film formed thereon were obtained.
 (比較例1)
 パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、上記基材粒子A10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子Aを取り出した。次いで、基材粒子Aをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Aの表面を活性化させた。表面が活性化された基材粒子Aを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液(A)を得た。
(Comparative Example 1)
After dispersing 10 parts by weight of the above base particle A in 100 parts by weight of an alkaline solution containing 5% by weight of palladium catalyst solution using an ultrasonic disperser, the base particle A was taken out by filtering the solution. . Subsequently, the base particle A was added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particle A. The substrate particles A whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a dispersion (A).
 次に、金属ニッケル粒子スラリー(三井金属社製「2020SUS」、平均粒子径150nm)1gを3分間かけて上記分散液(A)に添加し、芯物質が付着された基材粒子Aを含む懸濁液(B)を得た。 Next, 1 g of metallic nickel particle slurry (“2020SUS” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter of 150 nm) is added to the dispersion (A) over 3 minutes, and the suspension containing the base particle A to which the core substance is attached is added. A turbid liquid (B) was obtained.
 懸濁液(B)を、硫酸ニッケル50g/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(C)を得た。 Suspension (B) was put into a solution containing nickel sulfate 50 g / L, thallium nitrate 30 ppm and bismuth nitrate 20 ppm to obtain a particle mixed solution (C).
 また、硫酸ニッケル200g/L、次亜リン酸ナトリウム85g/L、クエン酸ナトリウム30g/L、硝酸タリウム50ppm、及び硝酸ビスマス20ppmを含むニッケルめっき液(D)(pH6.5)を用意した。 Further, a nickel plating solution (D) (pH 6.5) containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was prepared.
 50℃に調整した分散状態の粒子混合液(C)に上記ニッケルめっき液(D)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(D)の滴下速度は25mL/分、滴下時間は60分間で、無電解ニッケルめっきを行った(Niめっき工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上にニッケル-リン合金金属部が配置されており、表面に突起を有する金属部を備える金属部を備える金属含有粒子合金(突起が無い部分における金属部全体の厚み:0.1μm)を得た。 The nickel plating solution (D) was gradually added dropwise to the dispersed particle mixture (C) adjusted to 50 ° C. to perform electroless nickel plating. The dropping rate of the nickel plating solution (D) was 25 mL / min, the dropping time was 60 minutes, and electroless nickel plating was performed (Ni plating step). Thereafter, the particles are removed by filtration, washed with water, and dried, whereby a nickel-phosphorus alloy metal part is disposed on the surface of the base particle A, and a metal part having a metal part having a protrusion on the surface is provided. A metal-containing particle alloy provided (the thickness of the entire metal part in the part where no protrusions were provided: 0.1 μm) was obtained.
 (比較例2)
 パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子A10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子Aを取り出した。次いで、基材粒子Aをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Aの表面を活性化させた。表面が活性化された基材粒子Aを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A)を得た。
(Comparative Example 2)
After 10 parts by weight of the base particle A was dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of the palladium catalyst solution using an ultrasonic disperser, the base particle A was taken out by filtering the solution. Subsequently, the base particle A was added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particle A. Suspension (A) was obtained by fully washing the base particle A whose surface was activated, and then adding and dispersing in 500 parts by weight of distilled water.
 懸濁液(A)を、硫酸ニッケル50g/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(B)を得た。 Suspension (A) was put in a solution containing nickel sulfate 50 g / L, thallium nitrate 30 ppm and bismuth nitrate 20 ppm to obtain a particle mixed solution (B).
 また、次亜リン酸ナトリウム300g/L、及び水酸化ナトリウム10g/Lを含む突起形成用めっき液(C)(pH11.0)を用意した。 Further, a plating solution for forming a protrusion (C) (pH 11.0) containing 300 g / L of sodium hypophosphite and 10 g / L of sodium hydroxide was prepared.
 また、硫酸ニッケル200g/L、次亜リン酸ナトリウム85g/L、クエン酸ナトリウム30g/L、硝酸タリウム50ppm、及び硝酸ビスマス20ppmを含むニッケルめっき液(D)(pH6.5)を用意した。 Further, a nickel plating solution (D) (pH 6.5) containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was prepared.
 50℃に調整した分散状態の粒子混合液(B)に上記突起形成用めっき液(C)を徐々に滴下し、突起形成を行った。突起形成用めっき液(C)の滴下速度は20mL/分、滴下時間は5分間で、突起形成を行った。突起形成用めっき液(C)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。このようにして、分散状態のNi突起核及び粒子混合液(E)を得た。 The protrusion forming plating solution (C) was gradually dropped into the dispersed particle mixture (B) adjusted to 50 ° C. to form protrusions. Protrusion formation was performed at a dropping speed of the plating solution for protrusion formation (C) of 20 mL / min and a dropping time of 5 minutes. During the dropping of the projection forming plating solution (C), nickel plating was performed while dispersing the generated Ni projection nuclei by ultrasonic stirring (projection formation step). In this way, a dispersed Ni protrusion nucleus and particle mixture (E) were obtained.
 その後、分散状態のNi突起核及び粒子混合液(E)に上記ニッケルめっき液(D)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(D)の滴下速度は25mL/分、滴下時間は60分間で、無電解ニッケルめっきを行った。ニッケルめっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(Niめっき工程)。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子Aの表面上にニッケル-リン合金金属部が配置されており、表面に突起を有する金属部を備える金属含有粒子(突起が無い部分における金属部全体の厚み:0.1μm)を得た。 Thereafter, the nickel plating solution (D) was gradually added dropwise to the dispersed Ni protrusion nuclei and the particle mixture (E) to perform electroless nickel plating. The dropping rate of the nickel plating solution (D) was 25 mL / min, the dropping time was 60 minutes, and electroless nickel plating was performed. During the dropping of the nickel plating solution (D), nickel plating was performed while dispersing the generated Ni protrusion nuclei by ultrasonic stirring (Ni plating step). Thereafter, the particles are taken out by filtration, washed with water, and dried, whereby the metal-containing particles are provided with a metal part having a protrusion on the surface, on which the nickel-phosphorus alloy metal part is arranged on the surface of the base particle A (The thickness of the whole metal part in a part without a protrusion: 0.1 micrometer) was obtained.
 (評価)
 (1)凸部及び突起の高さの測定
 得られた金属含有粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、金属含有粒子検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中に分散した金属含有粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属含有粒子の断面を切り出した。
(Evaluation)
(1) Measurement of height of protrusions and protrusions The obtained metal-containing particles are added to Kulzer's “Technobit 4000” so that the content is 30% by weight, and dispersed to inspect the metal-containing particles. An embedded resin was prepared. The cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-containing particles dispersed in the embedding resin for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、20個の金属含有粒子を無作為に選択し、それぞれの金属含有粒子の凸部及び突起を観察した。得られた金属含有粒子における凸部及び突起の高さを計測し、それを算術平均して凸部及び突起の平均高さとした。 Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The protrusions and protrusions of each metal-containing particle were observed. The heights of the protrusions and protrusions in the obtained metal-containing particles were measured, and were arithmetically averaged to obtain the average height of the protrusions and protrusions.
 (2)突起の基部の平均径の測定
 得られた金属含有粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、金属含有粒子検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中に分散した金属含有粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属含有粒子の断面を切り出した。
(2) Measurement of average diameter of base of protrusions The obtained metal-containing particles were added to Kulzer's “Technobit 4000” so that the content was 30% by weight, and dispersed to test for metal-containing particles. An embedding resin was produced. The cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-containing particles dispersed in the embedding resin for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、20個の金属含有粒子を無作為に選択し、それぞれの金属含有粒子の凸部及び突起を観察した。得られた金属含有粒子における凸部及び突起の基部径を計測し、それを算術平均して凸部及び突起の平均基部径とした。 Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The protrusions and protrusions of each metal-containing particle were observed. The base diameters of the protrusions and protrusions in the obtained metal-containing particles were measured, and arithmetically averaged to obtain the average base diameter of the protrusions and protrusions.
 (3)凸部及び突起の形状の観察
 走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、20個の金属含有粒子を無作為に選択し、それぞれの金属含有粒子の凸部及び突起を観察し、全ての凸部及び突起の属する形状の種類を調査した。
(3) Observation of the shape of protrusions and protrusions Using a scanning electron microscope (FE-SEM), the image magnification was set to 25000 times, 20 metal-containing particles were randomly selected, and each metal-containing The projections and projections of the particles were observed, and the shape types to which all the projections and projections belonged were investigated.
 (4)凸部及び突起の頂角の平均の測定
 得られた金属含有粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、金属含有粒子検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中に分散した金属含有粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属含有粒子の断面を切り出した。
(4) Measurement of average of apex angles of projections and protrusions The obtained metal-containing particles were added to Kulzer “Technobit 4000” so that the content was 30% by weight, dispersed, and contained metal An embedded resin for particle inspection was prepared. The cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-containing particles dispersed in the embedding resin for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率100万倍に設定し、20個の金属含有粒子を無作為に選択し、それぞれの金属含有粒子の突起部を観察した。得られた金属含有粒子における凸部及び突起の頂角を計測し、それを算術平均して凸部及び突起の頂角の平均とした。 Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 1 million times, and 20 metal-containing particles were randomly selected, The protrusions of each metal-containing particle were observed. In the obtained metal-containing particles, the apex angles of the convex portions and the protrusions were measured, and arithmetically averaged to obtain the average of the apex angles of the convex portions and the protrusions.
 (5)凸部及び突起の高さの中央の位置における平均径の測定
 得られた金属含有粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、金属含有粒子検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中に分散した金属含有粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属含有粒子の断面を切り出した。
(5) Measurement of average diameter at center position of height of protrusion and protrusion The obtained metal-containing particles were added to “Technobit 4000” manufactured by Kulzer and dispersed so that the content was 30% by weight. Thus, an embedded resin for inspecting metal-containing particles was produced. The cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-containing particles dispersed in the embedding resin for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、20個の金属含有粒子を無作為に選択し、それぞれの金属含有粒子の突起部を観察した。得られた金属含有粒子における凸部及び突起の基部径を計測し、それを算術平均して凸部及び突起の高さの中央の位置における平均径を求めた。 Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The protrusions of each metal-containing particle were observed. The base diameters of the protrusions and protrusions in the obtained metal-containing particles were measured, and arithmetically averaged to determine the average diameter at the center position of the heights of the protrusions and protrusions.
 (6)針状である凸部及び突起の数の割合の測定
 走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、20個の金属含有粒子を無作為に選択し、それぞれの金属含有粒子の凸部及び突起を観察した。全ての凸部及び突起は、凸部形状及び突起形状が、先細りしている針状か否かを評価して、凸部形状及び突起形状が先細りしている針状により形成されている凸部及び突起と、凸部形状及び突起形状が、先細りしている針状により形成されていない凸部及び突起とに分別した。このようにして、1つの金属含有粒子あたりの1)先細りしている針状により形成されている凸部及び突起の個数と、2)先細りしている針状形状により形成されていない凸部及び突起の個数とを計測した。1)と2)の突起部の全個数100%中の1)針状である凸部及び突起の数の割合Xを算出した。
(6) Measurement of the ratio of the number of protrusions and protrusions that are needle-shaped Using a scanning electron microscope (FE-SEM), the image magnification is set to 25000 times, and 20 metal-containing particles are randomly selected. And the convex part and protrusion of each metal containing particle | grain were observed. All the protrusions and protrusions are evaluated by evaluating whether or not the protrusions and protrusions are tapered needles, and the protrusions and protrusions are formed by needles that are tapered. The protrusions and the protrusions and the protrusions were separated into protrusions and protrusions not formed by the tapered needle shape. Thus, 1) the number of protrusions and protrusions formed by the tapered needle shape per metal-containing particle, and 2) the protrusions not formed by the tapered needle shape and The number of protrusions was measured. The ratio X of the number of protrusions and protrusions in the form of 1) out of 100% of the total number of protrusions in 1) and 2) was calculated.
 (7)凸部及び突起が無い部分における金属部全体の厚みの測定
 得られた金属含有粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、金属含有粒子検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中に分散した金属含有粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属含有粒子の断面を切り出した。
(7) Measurement of the thickness of the entire metal part in the part where there are no protrusions and protrusions The obtained metal-containing particles are added to “Technobit 4000” manufactured by Kulzer and dispersed so that the content is 30% by weight. Thus, an embedding resin for inspecting metal-containing particles was produced. The cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-containing particles dispersed in the embedding resin for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、20個の金属含有粒子を無作為に選択し、それぞれの金属含有粒子の突起が無い部分における金属部を観察した。得られた金属含有粒子における突起が無い部分における金属部全体の厚みを計測し、それを算術平均して厚み(平均厚み)(上記実施例及び比較例中に記載)とした。 Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 20 metal-containing particles were randomly selected, The metal part in the part without the protrusion of each metal-containing particle was observed. The thickness of the whole metal part in the part without the protrusion in the obtained metal-containing particles was measured, and arithmetically averaged to obtain the thickness (average thickness) (described in the above examples and comparative examples).
 (8)金属含有粒子の圧縮弾性率(10%K値)
 得られた金属含有粒子の上記圧縮弾性率(10%K値)を、23℃の条件で、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。10%K値を求めた。
(8) Compressive elastic modulus of metal-containing particles (10% K value)
The above-mentioned compression elastic modulus (10% K value) of the obtained metal-containing particles was measured using a micro-compression tester (“Fischer Scope H-100” manufactured by Fischer) according to the method described above at 23 ° C. did. A 10% K value was determined.
 (9)金属部の面格子の評価
 X線回折装置(理学電機社製「RINT2500VHF」)を用いて、回折角に依存する装置固有の回折線のピーク強度比を算出した。金層の回折線全体の回折ピーク強度に占める(111)方位の回折ピーク強度の割合((111)面の割合)を求めた。
(9) Evaluation of plane grating of metal part Using an X-ray diffractometer ("RINT2500VHF" manufactured by Rigaku Corporation), the peak intensity ratio of diffraction lines specific to the apparatus depending on the diffraction angle was calculated. The ratio of the diffraction peak intensity in the (111) direction occupying the diffraction peak intensity of the entire diffraction line of the gold layer (the ratio of the (111) plane) was determined.
 (10)接続構造体Aでの金属部の突起の先端の溶融及び固化状態
 得られた金属含有粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させて、異方性導電ペーストを作製した。
(10) Melting and solidification state of the tip of the protrusion of the metal part in the connection structure A The “Struct Bond XN-5A” manufactured by Mitsui Chemicals Co., Ltd. An anisotropic conductive paste was prepared by adding and dispersing.
 L/Sが30μm/30μmである銅電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが30μm/30μmである金電極パターンを下面に有する半導体チップを用意した。 A transparent glass substrate having a copper electrode pattern with an L / S of 30 μm / 30 μm on the upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern with L / S of 30 μm / 30 μm on the lower surface was prepared.
 上記透明ガラス基板上に、作製直後の異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が250℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、0.5MPaの圧力をかけて異方性導電ペースト層を250℃で硬化させて、接続構造体Aを得た。接続構造体Aを得るために、電極間を0.5MPaの低圧で接続した。 On the transparent glass substrate, the anisotropic conductive paste immediately after production was applied to a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 250 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 0.5 MPa is applied to apply the anisotropic conductive paste. The layer was cured at 250 ° C. to obtain a connection structure A. In order to obtain the connection structure A, the electrodes were connected at a low pressure of 0.5 MPa.
 得られた接続構造体を、Kulzer社製「テクノビット4000」に入れて硬化させ、接続構造体検査用埋め込み樹脂を作製した。その検査用樹脂中の接続構造体の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属含有粒子の断面を切り出した。 The obtained connection structure was put into “Technobit 4000” manufactured by Kulzer and cured to prepare an embedded resin for connection structure inspection. The cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the connection structure in the inspection resin.
 そして、走査型電子顕微鏡(FE-SEM)を用いて、得られた接続構造体Aを断面観察することで、金属含有粒子の金属部の突起の先端が溶融した後固化しているか否かを判定した。 Then, by using a scanning electron microscope (FE-SEM), by observing a cross section of the obtained connection structure A, whether or not the tip of the protrusion of the metal part of the metal-containing particle is melted and solidified is determined. Judged.
 [金属部の突起の先端の溶融及び固化状態の判定基準]
 A:金属部の突起の先端が溶融した後固化している
 B:金属部の突起の先端が溶融した後固化していない
[Criteria for melting and solidifying the tip of metal part protrusions]
A: The tip of the protrusion of the metal part is solidified after melting B: The tip of the protrusion of the metal part is not solidified after melting
 (11)接続構造体Aでの金属部の突起の接合状態
 上記(10)の評価で得られた接続構造体Aにおいて、接続構造体Aを断面観察することで、金属部の突起の接合状態を判定した。
(11) Bonding state of protrusion of metal part in connection structure A In connection structure A obtained by the evaluation of (10) above, the bonding state of protrusion of metal part is observed by observing a cross section of connection structure A. Was judged.
 [金属部の突起の接合状態の判定基準]
 A:接続部中で、金属含有粒子における金属部の突起の先端が溶融した後固化し、電極及び他の金属含有粒子と接合している
 B:接続部中で、金属含有粒子における金属部の突起の先端が溶融した後固化し、電極及び他の金属含有粒子と接合していない
[Judgment criteria for bonding state of metal part protrusions]
A: In the connection part, the tip of the protrusion of the metal part in the metal-containing particle is melted and then solidified, and is joined to the electrode and other metal-containing particles. B: In the connection part, the metal part in the metal-containing particle The protrusion tips solidify after melting and are not joined to the electrodes and other metal-containing particles
 (12)接続構造体Aにおける接続信頼性
 上記(10)の評価で得られた接続構造体A15個の上下の電極間の接続抵抗を、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続信頼性を下記の基準で判定した。
(12) Connection reliability in connection structure A The connection resistance between the upper and lower electrodes of 15 connection structures A obtained in the evaluation of (10) was measured by the four-terminal method. The average value of connection resistance was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. Connection reliability was determined according to the following criteria.
 [接続信頼性の判定基準]
 ○○○:接続抵抗が1.0Ω以下
 ○○:接続抵抗が1.0Ωを超え、2.0Ω以下
 ○:接続抵抗が2.0Ωを超え、3.0Ω以下
 △:接続抵抗が3.0Ωを超え、5Ω以下
 ×:接続抵抗が5Ωを超える
[Connection reliability criteria]
○○○: Connection resistance is 1.0Ω or less ○○: Connection resistance exceeds 1.0Ω, 2.0Ω or less ○: Connection resistance exceeds 2.0Ω, 3.0Ω or less Δ: Connection resistance is 3.0Ω Over 5Ω or less ×: Connection resistance exceeds 5Ω
 (13)接続構造体Bでの金属部の突起の先端の溶融及び固化状態
 得られた金属含有粒子を含有量が5重量%となるように、日本スペリア社製「ANP-1」(金属原子含有粒子を含む)に添加し、分散させて、焼結銀ペーストを作製した。
(13) Melting and solidification state of the tip of the protrusion of the metal part in the connection structure B “ANP-1” (metal atom) manufactured by Nippon Superior Co., Ltd. so that the content of the obtained metal-containing particles is 5% by weight. (Including contained particles) and dispersed to prepare a sintered silver paste.
 第1の接続対象部材として、接続面にNi/Auめっきが施されたパワー半導体素子を用意した。第2の接続対象部材として、接続面にCuめっきが施された窒化アルミニウム基板を用意した。 As a first connection target member, a power semiconductor element having Ni / Au plating on the connection surface was prepared. As a second connection target member, an aluminum nitride substrate having a connection surface plated with Cu was prepared.
 第2の接続対象部材上に、上記焼結銀ペーストを、約70μmの厚みとなるように塗布し、接続用銀ペースト層を形成した。その後、接続用銀ペースト層上に、上記第1の接続対象部材を積層して、積層体を得た。 On the second connection target member, the sintered silver paste was applied to a thickness of about 70 μm to form a connection silver paste layer. Then, the said 1st connection object member was laminated | stacked on the silver paste layer for connection, and the laminated body was obtained.
 得られた積層体を130℃のホットプレートで60秒間プレヒートし、その後、積層体を10MPaの圧力をかけて300℃で3分加熱することにより、焼結銀ペーストに含まれている上記金属原子含有粒子を焼結させて、焼結物と金属含有粒子とを含む接続部を形成し、該焼結物により上記第1,第2の接続対象部材を接合して、接続構造体Bを得た。 The obtained laminated body is preheated with a hot plate at 130 ° C. for 60 seconds, and then the laminated body is heated at 300 ° C. for 3 minutes under a pressure of 10 MPa, whereby the metal atoms contained in the sintered silver paste are obtained. The connection particle B is formed by sintering the contained particles to form a connection portion including the sintered product and the metal-containing particles, and joining the first and second connection target members with the sintered product. It was.
 得られた接続構造体を、Kulzer社製「テクノビット4000」に入れて硬化させ、接続構造体検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中の接続構造体の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属含有粒子の断面を切り出した。 The obtained connection structure was put into “Technobit 4000” manufactured by Kulzer and cured to prepare an embedded resin for connection structure inspection. A cross section of the metal-containing particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the embedded resin for inspection.
 そして、走査型電子顕微鏡(FE-SEM)を用いて、得られた接続構造体Bを断面観察することで、金属含有粒子の金属部の突起の先端が溶融した後固化しているか否かを判定した。 Then, by using a scanning electron microscope (FE-SEM), by observing a cross section of the obtained connection structure B, whether or not the tip of the protrusion of the metal part of the metal-containing particle is solidified after being melted is determined. Judged.
 [金属部の突起の先端の溶融及び固化状態の判定基準]
 A:金属部の突起の先端が溶融した後固化している
 B:金属部の突起の先端が溶融した後固化していない
[Criteria for melting and solidifying the tip of metal part protrusions]
A: The tip of the protrusion of the metal part is solidified after melting B: The tip of the protrusion of the metal part is not solidified after melting
 (14)接続構造体Bでの金属部の突起の接合状態
 上記(13)の評価で得られた接続構造体Bにおいて、接続構造体Bを断面観察することで、金属部の突起の接合状態を判定した。
(14) Bonding state of protrusion of metal part in connection structure B In connection structure B obtained by the evaluation of (13) above, the connection structure B is observed in cross section, thereby bonding state of protrusion of metal part Was judged.
 [金属部の突起の接合状態の判定基準]
 A:接続部中で、金属含有粒子における金属部の突起の先端が溶融した後固化し、電極及び他の金属含有粒子と接合している
 B:接続部中で、金属含有粒子における金属部の突起の先端が溶融した後固化し、電極及び他の金属含有粒子と接合していない
[Judgment criteria for bonding state of metal part protrusions]
A: In the connection part, the tip of the protrusion of the metal part in the metal-containing particle is melted and then solidified, and is joined to the electrode and other metal-containing particles. B: In the connection part, the metal part in the metal-containing particle The protrusion tips solidify after melting and are not joined to the electrodes and other metal-containing particles
 (15)接続構造体Bにおける接続信頼性
 上記(13)の評価で得られた接続構造体Bを、冷熱衝撃試験機(エスペック社製:TSA-101S-W)に投入し、最低温度-40℃で保持時間30分、最高温度200℃で保持時間30分の処理条件を1サイクルとして3000サイクル後にせん断強度試験機(レスカ社製:STR-1000)で接合強度を測定した。接続信頼性を下記の基準で判定した。
(15) Connection reliability in connection structure B The connection structure B obtained by the evaluation in (13) above was put into a thermal shock tester (manufactured by Espec: TSA-101S-W), and the minimum temperature −40 The bonding strength was measured with a shear strength tester (manufactured by Reska Co., Ltd .: STR-1000) after 3000 cycles with the treatment conditions of 1 minute at a holding temperature of 30 minutes and a maximum temperature of 200 ° C. for 30 minutes. Connection reliability was determined according to the following criteria.
 [接続信頼性の判定基準]
 ○○○:接合強度が50MPa以上
 ○○:接合強度が40MPaを超え、50MPa以下
 ○:接合強度が30MPaを超え、40MPa以下
 △:接合強度が20MPaを超え、30MPa以下
 ×:接合強度が20MPa以下
[Connection reliability criteria]
XX: Bonding strength is 50 MPa or more XX: Bonding strength exceeds 40 MPa, 50 MPa or less ◯: Bonding strength exceeds 30 MPa, 40 MPa or less Δ: Bonding strength exceeds 20 MPa, 30 MPa or less X: Bonding strength is 20 MPa or less
 (16)導通検査用部材の接触抵抗値
 シリコーン系共重合体10重量部、得られた金属含有粒子90重量部、エポキシシランカップリング剤(信越化学工業社製、「KBE-303」)1重量部及びイソプロピルアルコール36重量部を配合し、ホモディスパーを用いて1000rpmで20分撹拌させた後、シンキー社製「練太郎ARE250」を用いて脱泡することで、金属含有粒子とバインダーとを含む導電材料を調製した。
(16) Contact resistance value of continuity test member 10 parts by weight of silicone copolymer, 90 parts by weight of the obtained metal-containing particles, epoxy silane coupling agent (“KBE-303” manufactured by Shin-Etsu Chemical Co., Ltd.) 1 weight And 36 parts by weight of isopropyl alcohol were mixed and stirred at 1000 rpm for 20 minutes using a homodisper, and then defoamed using “Nentaro ARE250” manufactured by Shinky Co., thereby containing metal-containing particles and a binder. A conductive material was prepared.
 上記のシリコーン系共重合体は、次の方法で重合した。内容量2Lの金属混練機内に4,4’-ジシクロヘキシルメタンジイソシアネート(デグサ社製)162g(628mmol)、片末端アミノ基変性ポリジメチルシロキサン(モメンティブ社製「TSF4709」)(分子量10000)900g(90mmol)を入れ、70~90℃で溶解後、撹拌を2時間行った。その後、ネオペンチルグリコール(三菱ガス化学社製)65g(625mmol)をゆっくり加え、30分混練し、続けて未反応のネオペンチルグリコールを減圧除去した。得られたシリコーン系共重合体は20重量%になるようにイソプロピルアルコールに溶解させて使用した。なお、イソシアネート基の消失はIRスペクトルにて確認した。得られたシリコーン系共重合体において、シリコーン含有量は80重量%、重量平均分子量は25000であり、SP値は7.8、極性基を有する構造(ポリウレタン)の繰り返し単位のSP値は10であった。 The above silicone copolymer was polymerized by the following method. 162 g (628 mmol) of 4,4′-dicyclohexylmethane diisocyanate (Degussa), amino terminal-modified polydimethylsiloxane (“TSF4709” manufactured by Momentive) (molecular weight 10,000) 900 g (90 mmol) The solution was dissolved at 70 to 90 ° C. and stirred for 2 hours. Thereafter, 65 g (625 mmol) of neopentyl glycol (Mitsubishi Gas Chemical Co., Ltd.) was slowly added and kneaded for 30 minutes, and then unreacted neopentyl glycol was removed under reduced pressure. The obtained silicone copolymer was dissolved in isopropyl alcohol and used at 20% by weight. The disappearance of the isocyanate group was confirmed by IR spectrum. In the obtained silicone copolymer, the silicone content was 80% by weight, the weight average molecular weight was 25000, the SP value was 7.8, and the SP value of the repeating unit of the structure having a polar group (polyurethane) was 10. there were.
 次に、導通検査用部材の基材(絶縁材料により形成されたシート状の基材)として、シリコーンゴムを準備した。シリコーンゴムのサイズは、横幅25mm、縦幅25mm及び厚み1mmである。シリコーンゴムには、レーザー加工で形成した直径0.5mmの円柱状の貫通孔が縦20個及び横20個で総数400個形成されている。 Next, silicone rubber was prepared as a base material for the continuity test member (a sheet-like base material formed of an insulating material). The silicone rubber has a width of 25 mm, a width of 25 mm and a thickness of 1 mm. Silicone rubber is formed with a total of 400 cylindrical through-holes having a diameter of 0.5 mm formed by laser processing with 20 vertical and 20 horizontal holes.
 上記導電材料を、貫通孔を有するシリコーンゴム上にナイフコーターを用いて塗工し、貫通孔に導電材料を充填した。次に、導電材料が貫通孔に充填されたシリコーンゴムをオーブンにて50℃で10分間乾燥した後、更に続けて100℃で20分間乾燥し、厚さ1mmの導通検査用部材を得た。 The conductive material was coated on a silicone rubber having a through hole using a knife coater, and the through hole was filled with the conductive material. Next, after the silicone rubber filled with the conductive material in the through hole was dried in an oven at 50 ° C. for 10 minutes, it was further dried at 100 ° C. for 20 minutes to obtain a continuity inspection member having a thickness of 1 mm.
 得られた導通検査用部材の接触抵抗値は、接触抵抗測定システム(ファクトケイ社製「MS7500」)を用いて測定した。接触抵抗測定は、直径0.5mmの白金プローブにて荷重15gfで得られた導通検査用部材の導電部に垂直方向から加圧した。その際に、低抵抗計(鶴賀電機社製「MODEL3566」)で5Vを印加し、接触抵抗値を測定した。5か所の導電部を測定した接触接続抵抗値の平均値を算出した。接触抵抗値を下記の基準で判定した。 The contact resistance value of the obtained continuity test member was measured using a contact resistance measurement system ("MS7500" manufactured by Fact Kei Co.). In the contact resistance measurement, the conductive portion of the continuity test member obtained with a load of 15 gf was pressed from the vertical direction with a platinum probe having a diameter of 0.5 mm. At that time, 5V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.), and the contact resistance value was measured. An average value of contact connection resistance values obtained by measuring five conductive portions was calculated. The contact resistance value was determined according to the following criteria.
 [接触抵抗値の判定基準]
 ○○:接続抵抗の平均値が50.0mΩ以下
 ○:接続抵抗の平均値が50.0mΩを超え、100.0mΩ以下
 △:接続抵抗の平均値が100.0mΩを超え、500.0mΩ以下
 ×:接続抵抗の平均値が500.0mΩを超える
[Criteria for contact resistance value]
◯: Average connection resistance is 50.0 mΩ or less ○: Average connection resistance exceeds 50.0 mΩ, 100.0 mΩ or less △: Average connection resistance exceeds 100.0 mΩ, 500.0 mΩ or less : Average connection resistance exceeds 500.0 mΩ
 (17)導通検査用部材の繰り返し信頼性試験
 上記(16)導通検査用部材の接触抵抗値の評価の導通検査用部材を用意した。
(17) Repeated reliability test of continuity test member A continuity test member for evaluation of the contact resistance value of the above (16) continuity test member was prepared.
 得られた導通検査用部材の繰り返し信頼性試験及び接触抵抗値は、接触抵抗測定システム(ファクトケイ社製「MS7500」)を用いて測定した。繰り返し信頼性試験は、直径0.5mmの白金プローブにて荷重15gfで得られたプローブシートの導電部に垂直方向から1000回繰り返し加圧した。1000回繰り返し加圧した後に、低抵抗計(鶴賀電機社製「MODEL3566」)で5Vを印加し、接触抵抗値を測定した。5か所の導電部を同様に測定した接触抵抗値の平均値を算出した。接触抵抗値を下記の基準で判定した。 The repeated reliability test and the contact resistance value of the obtained continuity test member were measured using a contact resistance measurement system ("MS7500" manufactured by Fact Kei Co., Ltd.). In the repeated reliability test, the conductive portion of the probe sheet obtained with a load of 15 gf with a platinum probe having a diameter of 0.5 mm was repeatedly pressed 1000 times from the vertical direction. After repeatedly pressing 1000 times, 5 V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.), and the contact resistance value was measured. An average value of contact resistance values obtained by similarly measuring five conductive portions was calculated. The contact resistance value was determined according to the following criteria.
 [繰り返し加圧後の接触抵抗値の判定基準]
 ○○:接続抵抗の平均値が100.0mΩ以下
 ○:接続抵抗の平均値が100.0mΩを超え、500.0mΩ以下
 △:接続抵抗の平均値が500.0mΩを超え、1000.0mΩ以下
 ×:接続抵抗の平均値が1000.0mΩを超える
[Criteria for contact resistance after repeated pressurization]
◯: Average connection resistance is 100.0 mΩ or less ○: Average connection resistance exceeds 100.0 mΩ, 500.0 mΩ or less △: Average connection resistance exceeds 500.0 mΩ, 1000.0 mΩ or less : Average connection resistance exceeds 1000.0 mΩ
 組成及び結果を表1~5に示す。 Compositions and results are shown in Tables 1-5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、凸部及び突起における球状は、球の一部の形状を含む。なお、比較例1,2では、400℃まで加熱しても、突起の先端が溶融しないことを確認した。 In addition, the spherical shape in the convex portion and the protrusion includes a partial shape of the sphere. In Comparative Examples 1 and 2, it was confirmed that the tip of the protrusion did not melt even when heated to 400 ° C.
 1,1A,1B,1C,1D,1E,1F,1G…金属含有粒子
 1a,1Aa,1Ba,1Ca,1Da,1Ea,1Fa,1Ga…突起
 2…基材粒子
 3,3A,3B,3C,3D,3E,3F,3G…金属部(金属層)
 3a,3Aa,3Ba,3Ca,3Da,3Ea,3Fa,3Ga…突起
 3BX…金属粒子
 3CA,3GA…第1の金属部
 3CB,3GB…第2の金属部 
 3Da,3Ea,3Fa,3Ga…凸部
 3Db,3Eb,3Fb,3Gb…突起
 4E…芯物質
 11…導通検査用部材
 12…基体
 12a…貫通孔
 13…導電部
 21…導通検査用部材
 22…基体
 22a…貫通孔
 23…導電部
 31…BGA基板
 31A…多層基板
 31B…はんだボール
 32…電流計
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
 61…接続構造体
 62…第1の接続対象部材
 63,64…第2の接続対象部材
 65,66…接続部
 67…他の金属含有粒子
 68,69…ヒートシンク
1, 1A, 1B, 1C, 1D, 1E, 1F, 1G ... Metal-containing particles 1a, 1Aa, 1Ba, 1Ca, 1Da, 1Ea, 1Fa, 1Ga ... Protrusions 2 ... Base particles 3, 3A, 3B, 3C, 3D , 3E, 3F, 3G ... Metal part (metal layer)
3a, 3Aa, 3Ba, 3Ca, 3Da, 3Ea, 3Fa, 3Ga ... projection 3BX ... metal particles 3CA, 3GA ... first metal part 3CB, 3GB ... second metal part
3Da, 3Ea, 3Fa, 3Ga ... convex portion 3Db, 3Eb, 3Fb, 3Gb ... projection 4E ... core substance 11 ... continuity inspection member 12 ... base 12a ... through hole 13 ... conductive portion 21 ... continuity inspection member 22 ... base 22a ... through hole 23 ... conductive portion 31 ... BGA substrate 31A ... multilayer substrate 31B ... solder ball 32 ... ammeter 51 ... connection structure 52 ... first connection target member 52a ... first electrode 53 ... second connection target member 53a ... 2nd electrode 54 ... Connection part 61 ... Connection structure 62 ... 1st connection object member 63, 64 ... 2nd connection object member 65, 66 ... Connection part 67 ... Other metal containing particle | grains 68, 69 ... heatsink

Claims (23)

  1.  基材粒子と、
     前記基材粒子の表面上に配置された金属部とを備え、
     前記金属部が外表面に複数の突起を有し、
     前記金属部の前記突起の先端は、400℃以下で溶融可能である、金属含有粒子。
    Substrate particles,
    A metal part disposed on the surface of the base particle,
    The metal part has a plurality of protrusions on the outer surface;
    Metal-containing particles, wherein the tips of the protrusions of the metal part can be melted at 400 ° C. or lower.
  2.  前記金属部が、外表面に複数の凸部を有し、
     前記金属部が、前記凸部の外表面に前記突起を有する、請求項1に記載の金属含有粒子。
    The metal part has a plurality of protrusions on the outer surface;
    The metal-containing particle according to claim 1, wherein the metal part has the protrusion on an outer surface of the convex part.
  3.  前記凸部の平均高さの、前記突起の平均高さに対する比が、5以上、1000以下である、請求項2に記載の金属含有粒子。 The metal-containing particles according to claim 2, wherein the ratio of the average height of the convex portions to the average height of the protrusions is 5 or more and 1000 or less.
  4.  前記凸部の基部の平均径が、3nm以上、5000nm以下である、請求項2又は3に記載の金属含有粒子。 The metal-containing particles according to claim 2 or 3, wherein an average diameter of the base of the convex portion is 3 nm or more and 5000 nm or less.
  5.  前記金属部の外表面の全表面積100%中、前記凸部がある部分の表面積が10%以上である、請求項2~4のいずれか1項に記載の金属含有粒子。 The metal-containing particles according to any one of claims 2 to 4, wherein a surface area of the portion having the convex portion is 10% or more out of 100% of the total surface area of the outer surface of the metal portion.
  6.  前記凸部の形状が、針状又は球体の一部の形状である、請求項2~5のいずれか1項に記載の金属含有粒子。 6. The metal-containing particle according to claim 2, wherein the shape of the convex portion is a needle shape or a partial shape of a sphere.
  7.  前記突起の頂角の平均が10°以上、60°以下である、請求項1~6のいずれか1項に記載の金属含有粒子。 The metal-containing particles according to any one of claims 1 to 6, wherein an average apex angle of the protrusions is 10 ° or more and 60 ° or less.
  8.  前記突起の平均高さが、3nm以上、5000nm以下である、請求項1~7のいずれか1項に記載の金属含有粒子。 The metal-containing particles according to any one of claims 1 to 7, wherein the average height of the protrusions is 3 nm or more and 5000 nm or less.
  9.  前記突起の基部の平均径が、3nm以上、1000nm以下である、請求項1~8のいずれか1項に記載の金属含有粒子。 The metal-containing particles according to any one of claims 1 to 8, wherein the average diameter of the base of the protrusion is 3 nm or more and 1000 nm or less.
  10.  前記突起の平均高さの、前記突起の基部の平均径に対する比が、0.5以上、10以下である、請求項1~9のいずれか1項に記載の金属含有粒子。 The metal-containing particle according to any one of claims 1 to 9, wherein a ratio of an average height of the protrusions to an average diameter of a base portion of the protrusions is 0.5 or more and 10 or less.
  11.  前記突起の形状が、針状又は球体の一部の形状である、請求項1~10のいずれか1項に記載の金属含有粒子。 The metal-containing particle according to any one of claims 1 to 10, wherein the shape of the protrusion is a needle shape or a partial shape of a sphere.
  12.  前記突起の材料が、銀、銅、金、パラジウム、錫、インジウム又は亜鉛を含む、請求項1~11のいずれか1項に記載の金属含有粒子。 The metal-containing particle according to any one of claims 1 to 11, wherein a material of the protrusion includes silver, copper, gold, palladium, tin, indium or zinc.
  13.  前記金属部の材料が、はんだではない、請求項1~12のいずれか1項に記載の金属含有粒子。 The metal-containing particle according to any one of claims 1 to 12, wherein the material of the metal part is not solder.
  14.  前記金属部の材料が、銀、銅、金、パラジウム、錫、インジウム、亜鉛、ニッケル、コバルト、鉄、タングステン、モリブデン、ルテニウム、白金、ロジウム、イリジウム、リン又はホウ素を含む、請求項1~13のいずれか1項に記載の金属含有粒子。 The material of the metal part includes silver, copper, gold, palladium, tin, indium, zinc, nickel, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium, phosphorus or boron. Metal-containing particle | grains of any one of these.
  15.  前記金属部の前記突起の先端は、350℃以下で溶融可能である、請求項1~14のいずれか1項に記載の金属含有粒子。 The metal-containing particle according to any one of claims 1 to 14, wherein a tip of the protrusion of the metal part can be melted at 350 ° C or lower.
  16.  前記金属部の前記突起の先端は、300℃以下で溶融可能である、請求項15に記載の金属含有粒子。 The metal-containing particle according to claim 15, wherein a tip of the protrusion of the metal part can be melted at 300 ° C. or less.
  17.  前記金属部の前記突起の先端は、250℃以下で溶融可能である、請求項16に記載の金属含有粒子。 The metal-containing particle according to claim 16, wherein the tip of the protrusion of the metal part can be melted at 250 ° C or lower.
  18.  前記金属部の前記突起の先端は、200℃以下で溶融可能である、請求項17に記載の金属含有粒子。 The metal-containing particles according to claim 17, wherein a tip of the protrusion of the metal part can be melted at 200 ° C. or less.
  19.  10%圧縮したときの圧縮弾性率が100N/mm以上、25000N/mm以下である、請求項1~18のいずれか1項に記載の金属含有粒子。 10% compressed compressive elastic modulus of when the 100 N / mm 2 or more and 25000N / mm 2 or less, the metal-containing particles according to any one of claims 1 to 18.
  20.  前記基材粒子がシリコーン粒子である、請求項1~19のいずれか1項に記載の金属含有粒子。 The metal-containing particles according to any one of claims 1 to 19, wherein the substrate particles are silicone particles.
  21.  請求項1~20のいずれか1項に記載の金属含有粒子と、
     樹脂とを含む、接続材料。
    The metal-containing particles according to any one of claims 1 to 20,
    Connecting material including resin.
  22.  第1の接続対象部材と、
     第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~20のいずれか1項に記載の金属含有粒子であるか、又は、前記金属含有粒子と樹脂とを含む接続材料である、接続構造体。
    A first connection target member;
    A second connection target member;
    A connecting portion connecting the first connection target member and the second connection target member;
    A connection structure in which the material of the connection part is the metal-containing particle according to any one of claims 1 to 20, or a connection material containing the metal-containing particle and a resin.
  23.  第1の接続対象部材と、第2の接続対象部材との間に、請求項1~20のいずれか1項に記載の金属含有粒子を配置するか、又は、前記金属含有粒子と樹脂とを含む接続材料を配置する工程と、
     前記金属含有粒子を加熱して、前記金属部の前記突起の先端を溶融させ、溶融後に固化させ、前記金属含有粒子又は前記接続材料によって、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を形成する工程とを備える、接続構造体の製造方法。
    The metal-containing particles according to any one of claims 1 to 20 are disposed between the first connection target member and the second connection target member, or the metal-containing particles and the resin are disposed. Arranging a connecting material including:
    The metal-containing particles are heated to melt the tips of the protrusions of the metal part, solidify after melting, and the first connection object member and the second connection object by the metal-containing particles or the connection material. And a step of forming a connection portion connecting the members.
PCT/JP2017/010251 2016-03-15 2017-03-14 Metal-containing particle, connecting material, connected structure, and method for producing connected structure WO2017159694A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187010189A KR20180120667A (en) 2016-03-15 2017-03-14 Metal-containing particles, a connecting material, a connecting structure,
KR1020217040390A KR20210154865A (en) 2016-03-15 2017-03-14 Metal-containing particle, connecting material, connected structure, and method for producing connected structure
CN201780003651.8A CN108140450B (en) 2016-03-15 2017-03-14 Metal-containing particle, connecting material, connection structure, and method for producing connection structure
JP2017516171A JP7131908B2 (en) 2016-03-15 2017-03-14 Metal-containing particles, connecting material, connected structure, and method for producing connected structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051521 2016-03-15
JP2016-051521 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017159694A1 true WO2017159694A1 (en) 2017-09-21

Family

ID=59850332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010251 WO2017159694A1 (en) 2016-03-15 2017-03-14 Metal-containing particle, connecting material, connected structure, and method for producing connected structure

Country Status (5)

Country Link
JP (2) JP7131908B2 (en)
KR (2) KR20180120667A (en)
CN (1) CN108140450B (en)
TW (1) TW201800223A (en)
WO (1) WO2017159694A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107572A1 (en) * 2017-12-01 2019-06-06 積水化学工業株式会社 Electrically-conductive composition and cured product thereof, member for conduction inspection device, and conduction inspection device
WO2020100991A1 (en) * 2018-11-15 2020-05-22 積水化学工業株式会社 Particle-connected body, connecting material, connecting structure, continuity inspection member and continuity inspection device
WO2020100992A1 (en) * 2018-11-15 2020-05-22 積水化学工業株式会社 Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure
JP2022096613A (en) * 2020-12-17 2022-06-29 株式会社ドクサンハイメタル High-strength beads and conductive particles based on the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585090B (en) * 2019-01-03 2020-09-18 西安宏星电子浆料科技股份有限公司 High-adhesion low-temperature curing conductive paste and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302716A (en) * 2005-04-21 2006-11-02 Sekisui Chem Co Ltd Conductive particle and anisotropic conductive material
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder
JP2015149276A (en) * 2014-01-10 2015-08-20 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2016149360A (en) * 2015-02-06 2016-08-18 積水化学工業株式会社 Conductive particle, conductive material and connection structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPH05256281A (en) 1992-03-13 1993-10-05 Toshiba Corp Fluid compressor and refrigerant heating refrigerating cycle providing this fluid compressor
JP2004111253A (en) 2002-09-19 2004-04-08 Noda Screen:Kk Conductive composition for electrical connection of electronic device, and electron device
JP4739999B2 (en) 2006-03-17 2011-08-03 積水化学工業株式会社 Method for manufacturing anisotropic conductive material and anisotropic conductive material
AU2010253912B2 (en) 2009-05-28 2015-03-05 Avinger, Inc. Optical Coherence Tomography for biological imaging
EP2638990B1 (en) * 2010-11-08 2019-05-08 Namics Corporation Manufacturing method for metal particles
JP6018831B2 (en) 2011-08-05 2016-11-02 積水化学工業株式会社 Manufacturing method of bonded structure
WO2014073082A1 (en) 2012-11-08 2014-05-15 エム・テクニック株式会社 Fine metal particles provided with projections

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302716A (en) * 2005-04-21 2006-11-02 Sekisui Chem Co Ltd Conductive particle and anisotropic conductive material
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder
JP2015149276A (en) * 2014-01-10 2015-08-20 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2016149360A (en) * 2015-02-06 2016-08-18 積水化学工業株式会社 Conductive particle, conductive material and connection structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107572A1 (en) * 2017-12-01 2019-06-06 積水化学工業株式会社 Electrically-conductive composition and cured product thereof, member for conduction inspection device, and conduction inspection device
WO2020100991A1 (en) * 2018-11-15 2020-05-22 積水化学工業株式会社 Particle-connected body, connecting material, connecting structure, continuity inspection member and continuity inspection device
WO2020100992A1 (en) * 2018-11-15 2020-05-22 積水化学工業株式会社 Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure
JPWO2020100992A1 (en) * 2018-11-15 2021-09-30 積水化学工業株式会社 Metal-coated particles, particle linkages, manufacturing methods for particle linkages, connecting materials and connecting structures
JP2022096613A (en) * 2020-12-17 2022-06-29 株式会社ドクサンハイメタル High-strength beads and conductive particles based on the same
JP7352610B2 (en) 2020-12-17 2023-09-28 ドク サン ネオルクス カンパニー リミテッド High-strength beads and conductive particles using them

Also Published As

Publication number Publication date
KR20210154865A (en) 2021-12-21
JP7131908B2 (en) 2022-09-06
TW201800223A (en) 2018-01-01
KR20180120667A (en) 2018-11-06
CN108140450B (en) 2021-08-03
JPWO2017159694A1 (en) 2019-01-17
CN108140450A (en) 2018-06-08
JP2018009253A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP7128115B2 (en) METAL-CONTAINING PARTICLES, CONNECTING MATERIAL, CONNECTED STRUCTURE, CONNECTED STRUCTURE MANUFACTURING METHOD, CONDUCTIVITY TESTING MEMBER, AND CONTINUITY TESTING DEVICE
WO2017159694A1 (en) Metal-containing particle, connecting material, connected structure, and method for producing connected structure
JP7007138B2 (en) Metal atom-containing particles, connection materials, connection structures and methods for manufacturing connection structures
JP6009933B2 (en) Conductive particles, conductive materials, and connection structures
JP5719483B1 (en) Conductive particles, conductive materials, and connection structures
JP2020095966A (en) Conductive particle, conductive material, and connecting structure
JP2013214511A (en) Conductive particle, conductive material, and connection structure
JP2019140116A (en) Conductive particle, conductive material and connection structure
JP2016042466A (en) Conductive particle, conductive material, and connection structure
WO2020100992A1 (en) Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure
JP7144472B2 (en) Conductive particles, conductive materials and connecting structures
JP6747816B2 (en) Conductive particles, conductive material and connection structure
WO2020100991A1 (en) Particle-connected body, connecting material, connecting structure, continuity inspection member and continuity inspection device
JP6491446B2 (en) Conductive particles, conductive materials, and connection structures
TWI807064B (en) Conductive particles with insulating particles, conductive material and connection structure
JP6592298B2 (en) Conductive particles, conductive materials, and connection structures

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516171

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010189

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766692

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766692

Country of ref document: EP

Kind code of ref document: A1