WO2017159636A1 - Diffraction structure forming body, article provided with diffraction structure forming body, and production method for diffraction structure forming body - Google Patents

Diffraction structure forming body, article provided with diffraction structure forming body, and production method for diffraction structure forming body Download PDF

Info

Publication number
WO2017159636A1
WO2017159636A1 PCT/JP2017/010035 JP2017010035W WO2017159636A1 WO 2017159636 A1 WO2017159636 A1 WO 2017159636A1 JP 2017010035 W JP2017010035 W JP 2017010035W WO 2017159636 A1 WO2017159636 A1 WO 2017159636A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diffractive structure
structure forming
reflective
printing
Prior art date
Application number
PCT/JP2017/010035
Other languages
French (fr)
Japanese (ja)
Inventor
井出 英誉
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2018505925A priority Critical patent/JP6939772B2/en
Publication of WO2017159636A1 publication Critical patent/WO2017159636A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/445Marking by removal of material using chemical means, e.g. etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to a diffractive structure formed body, an article with a diffractive structure formed body, and a diffractive structure formed body that can be used in a forgery prevention medium that is required to prevent counterfeiting and falsification of securities and to easily detect fraud. It relates to the manufacturing method.
  • the diffractive structure forming body in which the diffractive structure portion employed as such a forgery preventing means is formed include a peelable layer having peelability, a diffractive structure forming layer having a diffraction grating, and a reflective layer having a metallic luster. And an adhesive layer are sequentially laminated on a base material to form a diffractive structure formed body as a transfer foil (see, for example, Patent Document 1).
  • Patent Document 3 proposes a molded article in which a metal reflective layer is partially provided for a hologram and a method for manufacturing the same.
  • a reflective layer composed of a vapor-deposited thin film or a transparent thin film having a metallic luster is laminated on the diffractive structure part with a predetermined pattern shape, The entire diffractive structure is laminated.
  • JP 61-190369 A Japanese Utility Model Publication No. 1-59671 JP 62-79489 A
  • the reflective layer and the printed layer are formed separately. It is difficult to align the layers with high accuracy. Therefore, the print layer and the reflective layer have to be arranged in consideration of the positional deviation in advance.
  • the present invention has been made in order to solve the above-described problems, and can provide a diffraction structure-forming body, an article with a diffraction structure-forming body, and a diffraction structure-forming body capable of suppressing the displacement of the position of the printed layer with respect to the pattern-like reflective layer, and
  • An object of the present invention is to provide a method for producing a diffractive structure forming body.
  • a diffractive structure forming body for solving the above problems includes a diffractive structure forming layer including a diffractive structure part on which optical image information is recorded, and at least one reflecting element located on a part of the diffractive structure part.
  • a reflective layer comprising: at least one printing element, and wherein the printing element is located on the reflective element, wherein the printing layer is a mask used to form the reflective layer At least some.
  • the printing element is located inside an edge of the reflecting element where the printing element is located in a plan view facing a plane in which the diffractive structure forming layer extends.
  • the printing layer includes a plurality of the printing elements, and the printing elements are positioned in a plurality of the printing elements in a plan view facing a plane in which the diffractive structure forming layer extends.
  • the printing element having a shape similar to the reflective element may be included.
  • the printing layer is a photoresist layer including at least one of a color material, a fluorescent material, and fillers.
  • the diffractive structure forming body further includes a support that contacts the diffractive structure forming layer on a side opposite to the reflective layer with respect to the diffractive structure forming layer, and the diffractive structure forming layer and the support include a laminate.
  • the printed layer, the reflective layer, and the laminate, the printed layer has the highest transmission density
  • the laminated body has the lowest transmission density
  • the reflective layer has a transmission density, It is preferably a value between the transmission density of the printed layer and the transmission density of the laminate.
  • the transmission density of the printing layer is 0.5 or more and less than 2.0
  • the transmission density of the reflection layer is 1.0 or more
  • the transmission density of the support is 0.00. It may be 8 or more and 2.0 or less.
  • An article with a diffractive structure forming body for solving the above-mentioned problem is an article with a diffractive structure forming body including a diffractive structure forming body and an article that supports the diffractive structure forming body, The diffraction structure forming body.
  • a method for manufacturing a diffractive structure forming body for solving the above problem is a method for manufacturing a diffractive structure forming body including a diffractive structure forming layer including a diffractive structure portion, a reflective layer including a reflective element, and a printed layer including a printing element. is there. Forming a thin film for forming the reflective layer on the diffractive structure, forming a mask for etching the thin film into a predetermined shape on the thin film, and using the mask to Forming the reflective element from the thin film by etching a thin film and forming the printing element located on the reflective element from the mask.
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG. It is a top view which shows a planar structure when the diffraction structure formation body of FIG. 1 is observed with transmitted light.
  • sectional drawing which shows the cross-section of a sticker when the diffraction structure formation body is embodied as a sticker.
  • sectional drawing which shows the cross-section of transfer foil when a diffraction structure formation body is embodied as transfer foil.
  • process drawing which shows the exposure process using a mask plate.
  • FIG. 1 is a plan view showing a planar structure of the diffractive structure forming body 10 and shows an example of the state of the optical image information section 101 observed from the diffractive structure forming layer 12 side with forward light, that is, reflected light.
  • FIG. 2 shows an example of a planar structure in the diffractive structure forming body 10 when observed by forward light from the side on which the printing layer 15 is formed.
  • a printed layer 15 having a pattern different from the pattern of the reflective layer 14 provided in the optical image information unit 101 is provided.
  • the diffractive structure forming body 10 can express different patterns in the observation with forward light from the diffractive structure forming body 10 side and the observation with forward light from the printed layer 15 side.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure taken along line AA of the diffractive structure forming body 10 in FIG.
  • a diffractive structure portion 13 composed of fine irregularities is formed on the surface of the diffractive structure forming layer 12 opposite to the support 11.
  • a reflective layer 14 is laminated on the diffractive structure forming layer 12.
  • the printed layer 15 is at least a part of a mask used for forming the reflective layer 14. More specifically, a part of the photoresist applied for selective removal in the thin film for forming the reflective layer 14 is exposed to light, that is, irradiated with light and developed, and then etched to form a part of the thin film. Even after the portion is removed, the diffraction structure forming body 10 functions as the print layer 15 by being positioned in a pattern on the reflective layer 14. These manufacturing methods will be described in detail later.
  • the diffractive structure forming body 10 includes a support 11 and a diffractive structure forming layer 12 positioned on one surface of the support 11.
  • the diffractive structure 13 is located on the surface opposite to the surface in contact with 11.
  • the surface on which the diffractive structure portion 13 is located is an uneven surface.
  • a reflective layer 14 having a predetermined shape is located on the concavo-convex surface of the diffractive structure forming layer 12, and the reflective layer 14 includes a plurality of reflective elements positioned apart from each other on the concavo-convex surface.
  • a printed layer 15 having a predetermined shape is located on the surface of the reflective layer 14 opposite to the surface in contact with the uneven surface.
  • the printing layer 15 includes a plurality of printing elements that are located apart from each other in a plan view facing the uneven surface, and at least one printing element is located on one reflective element.
  • the diffractive structure forming body 10 has a plate shape extending along the X direction and the Y direction, and the thickness direction of the diffractive structure forming body 10 is a direction parallel to the Z direction.
  • the first observation direction and the second observation direction can be set for the diffraction structure forming body 10.
  • the first observation direction is a direction in which the diffractive structure forming body 10 is observed from the side opposite to the diffractive structure forming layer 12 with respect to the support 11, and the second observation direction is a support with respect to the diffractive structure forming layer 12.
  • 11 is a direction in which the diffractive structure forming body 10 is observed from the opposite side.
  • the diffractive structure forming body 10 When observing the diffractive structure forming body 10 from the first observation direction, it is possible to observe the light incident on the diffractive structure forming body 10 from the support 11 and reflected by the reflective layer 14. is there. Further, when observing the diffractive structure forming body 10 from the first observation direction, the light that has entered the diffractive structure forming body 10 from the diffractive structure forming layer 12 and has passed through at least the diffractive structure forming layer 12 and the support 11. Can be observed.
  • the diffractive structure forming body 10 when observing the diffractive structure forming body 10 from the second observation direction, in the diffractive structure forming body 10, the light is incident on the reflective layer 14, the printed layer 15, and the diffractive structure forming layer 12, It is possible to observe the light reflected at each part. Further, when observing the diffractive structure forming body 10 from the second observation direction, light that has entered the diffractive structure forming body 10 from the support 11 and that has transmitted through at least the support 11 and the diffractive structure forming layer 12 is observed. Is possible.
  • the planar structure shown in FIG. 1 is a planar structure when the diffractive structure forming body 10 is observed from the diffractive structure forming layer 12 side with forward light.
  • FIG. 1 light that is observed from the first observation direction of the diffractive structure forming body 10 and is incident on the diffractive structure forming body 10 from the support 11 and reflected by the reflective layer 14.
  • the image which the diffraction structure formation body 10 displays when observing is shown.
  • the planar structure shown in FIG. 2 is a planar structure in the diffractive structure forming body 10 when the diffractive structure forming body 10 is observed by forward light from the side on which the printing layer 15 is formed.
  • the light incident on the reflection layer 14, the printing layer 15, and the diffraction structure forming layer 12 in the diffraction structure forming body 10 is observed from the second observation direction.
  • part is observed is shown.
  • the support 11 plays a role as a base material when the diffraction structure forming body 10 is manufactured.
  • the diffractive structure forming body 10 when the diffractive structure forming body 10 is embodied as a sticker, the diffractive structure forming body 10 may be attached to an article in a state including a support.
  • the diffractive structure forming body 10 when the diffractive structure forming body 10 is embodied as a transfer foil, the support serves as a support base material when a part of the diffractive structure forming body 10 is transferred to the article. After a part of 10 is transferred to the article, the diffractive structure forming body 10 is peeled from a portion other than the support.
  • the support is not necessarily required, and the support 11 and the diffraction structure forming layer 12 may be made of the same material. That is, if the diffractive structure forming layer 12 has mechanical strength capable of supporting the reflective layer 14 and the printed layer 15 formed on the diffractive structure forming layer 12, the support 11 is omitted. May be.
  • the support 11 may be a film or a sheet.
  • film or sheet materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate, triacetyl cellulose (TAC), polyvinyl chloride, polyethylene (PE), polyimide (PI), polyvinyl alcohol (PVA), etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • PE polyvinyl chloride
  • PE polyethylene
  • PI polyimide
  • PVA polyvinyl alcohol
  • PET polyethylene terephthalate
  • Optical image information is recorded in the diffractive structure section 13.
  • the diffractive structure 13 When light enters the diffractive structure 13 in the presence of the reflective layer 14, the diffractive structure 13 generates diffracted light. Display images that can be
  • an adhesive layer is provided on the diffractive structure portion 13 according to the use of the diffractive structure forming body 10.
  • the reflective layer 14 is not formed on the diffractive structure portion 13, the difference in refractive index between the diffractive structure forming layer 12 and the adhesive layer is small, so that diffracted light having sufficient luminance is obtained. Cannot be obtained. Therefore, the reflective layer 14 is located on the diffractive structure portion 13.
  • the optical image information is 2D or 3D visible image information displayed by diffracted light generated when light enters the diffractive structure 13.
  • the pattern includes a pattern, a character, and a color change, and is configured by a pattern that can be recognized visually.
  • an image is information that can be recognized visually, and includes characters, patterns, colors, and predetermined shapes in addition to pictorial images such as illustrations. Further, the image is not limited to the image displayed by the diffracted light, and includes the image formed by the printing layer 15 and the color of each component.
  • thermoplastic resin examples include acrylic resin, epoxy resin, cellulose resin, and vinyl resin.
  • thermosetting resin examples include acrylic resin, epoxy resin, cellulose resin, and vinyl resin.
  • thermosetting resin examples include acrylic resin, epoxy resin, cellulose resin, and vinyl resin.
  • thermosetting resin urethane resin, melamine resin, phenol resin, and the like obtained by adding polyisocyanate as a crosslinking agent to acrylic polyol having a reactive hydroxyl group, polyester polyol, or the like can be used.
  • ultraviolet or electron beam curable resin epoxy (meth) acryl, urethane (meth) acrylate, or the like can be used.
  • the diffractive structure forming layer 12 can be formed by a known coating method such as a gravure printing method or a micro gravure method.
  • a relief plate is used to form this fine irregular structure.
  • the relief plate first, the surface of the electron beam curable resin is irradiated with an electron beam, the electron beam curable resin is exposed in a desired pattern, and then developed to produce a master plate. Subsequently, a relief plate is formed by forming a metal film on the surface of the master plate by electroplating and replicating the concave / convex pattern of the master plate.
  • the diffractive structure 13 composed of a fine concavo-convex structure is formed by thermocompression bonding the relief plate to the diffractive structure forming layer 12 or by curing the relief plate in close contact with an uncured curable resin.
  • a diffracted light of an image obtained with light having good coherence may be incorporated in the diffractive structure 13 by recording on a photosensitive material.
  • Reflective layer 14 examples of the material that can be used for the reflective layer 14 include various metals such as aluminum, silver, gold, tin, copper, and chromium, and alloys containing these metals.
  • a metal compound such as titanium oxide, zinc sulfide, magnesium fluoride, antimony sulfide, or silicon oxide can be used as the material of the reflective layer 14.
  • the thickness of the reflective layer 14 is, for example, 10 nm or more and 100 nm or less, and preferably 30 nm or more and 80 nm or less.
  • a known method such as a vacuum deposition method, a sputtering method, or an ion plating method can be used.
  • aluminum is most suitable in view of availability and ease of removal when removing a part of the reflective layer.
  • the printed layer 15 is a layer that can visually recognize the shape of characters, illustrations, patterns, and the like.
  • the print layer 15 is formed as follows. That is, a photoresist is uniformly applied to the entire surface of the thin film for forming the reflective layer 14 by a known printing method such as a gravure printing method, a screen printing method, a relief printing method, or a coating method. After that, a portion positioned on the reflective layer 14 through exposure and development becomes a printed layer 15 having characters, illustrations, and a predetermined pattern shape.
  • a positive type photoresist is a so-called DNQ novolak resist in which a novolak resin is a main component and naphthoquinone diazide (DNQ) is added as a photosensitive material.
  • DNQ naphthoquinone diazide
  • a positive type photoresist is limited to this. It is not a thing.
  • examples of the negative photoresist include epoxy resin type and carboxyl group-containing resin type, but the negative photoresist is not limited to these.
  • the thickness of the printing layer 15 is, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • the development process of the photoresist and the process of forming the reflective layer 14 by partial removal by etching of a vacuum deposited film such as aluminum can be performed in a single process. Therefore, it is desirable that the photoresist can be developed with acid or alkali.
  • the material for forming the printing layer 15 may be any material that can function as a mask when the thin film for forming the reflective layer 14 is etched, and may be various metals or metal compounds, for example. . That is, the mask used when the thin film is etched to form the reflective layer 14 may be a hard mask.
  • the printing layer ink may contain a light-absorbing agent that changes the light transmittance according to the exposure amount with respect to the above-mentioned photoresist, and the printing layer ink may have a color.
  • One or more kinds of additives composed of a material, a fluorescent material, and fillers may be added. That is, the printing layer 15 may be a photoresist layer including at least one of a color material, a fluorescent material, and fillers.
  • the diffractive structure forming body 10 has a configuration in which a diffractive structure forming layer 12, a reflective layer 14, and a printing layer 15 are laminated in order from the support 11 side. Further, in the observation from the support 11 side, the diffractive structure forming body 10 has an anti-counterfeiting property due to a change in the pattern visually recognized by observation with forward light, that is, reflected light, and observation with reverse light, that is, transmitted light. Is given.
  • a pigment as a coloring material has a higher concealability with respect to transmitted light, and the visibility is improved with respect to observation under backlight. Therefore, it can be said that a pigment is more suitable as a coloring material than a dye.
  • pigments such as carbon black can be used, and examples thereof include azo, phthalocyanine, quinacridone, thioindigo, anthraquinone, and isoindolinone pigments.
  • Fluorescent materials can also use dye types and pigment types, but it can be said that the pigment type is more preferable.
  • fillers various inorganic fillers such as titanium oxide, precipitated barium sulfate, silica, talc, calcium carbonate, and aluminum oxide can be used.
  • various organic fine particles such as acrylic fine particles, styrene fine particles, acrylic-styrene fine particles, silicon fine particles, and fluorine fine particles can be used.
  • organic or inorganic hollow fine particles can be used, but the fillers are not limited to these.
  • the diffractive structure forming body 10 may include any other component as long as the configuration and function described above are not hindered.
  • constituent elements as described later may be provided, but the other constituent elements are not limited thereto.
  • the adhesive layer 16 is used for attaching the diffractive structure forming body 10 to an adherend substrate.
  • FIG. 5 shows an example in which the diffractive structure forming body 10 is embodied as a sticker.
  • the sticker includes a support 11 and a diffractive structure forming layer 12 formed on the support 11, and the diffractive structure forming layer 12 is on the side opposite to the surface in contact with the support 11.
  • the surface includes a diffractive structure 13.
  • the reflective layer 14 is located on a part of the diffractive structure 13, and the printed layer 15 is located on the reflective layer 14.
  • a portion of the diffractive structure 13 where the reflective layer 14 is not located is covered with an adhesive layer 16, and the reflective layer 14 and the print layer 15 are covered with the adhesive layer 16.
  • FIG. 6 shows an example in which the diffractive structure forming body 10 is embodied as a transfer foil.
  • a release layer 17 is provided between the support 11 and the diffractive structure forming layer 12.
  • the release layer 17 is also referred to as a release layer.
  • the thickness of the release layer 17 is, for example, from 0.1 ⁇ m to 5 ⁇ m, and preferably from 0.5 ⁇ m to 2 ⁇ m.
  • the transfer foil has the same structure as the sticker except that the release layer 17 is positioned between the support 11 and the diffraction structure forming layer 12.
  • a material known in the art can be used for the adhesive layer, and a pressure-sensitive type or heat-sensitive type adhesive can also be used depending on the object to be pasted.
  • the thickness of the adhesive layer is, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the support for the sticker is a release paper for protecting the adhesive surface of the adhesive layer 16 when the diffractive structure formed body 10 is embodied as a sticker, that is, when the diffractive structure formed body 10 has the adhesive layer 16. Or it is used as a release film.
  • the sticker support is peeled off from the adhesive layer 16 when the sticker is attached to an object to be stuck.
  • release paper coated with a release material on high-quality paper, coated paper, and nonwoven fabric, vinyl chloride resin, polyester terephthalate resin (PET), polyethylene resin, etc. are made into a film. It is possible to use a release film provided with a release layer.
  • the fine concavo-convex shape of the diffractive structure portion 13 can be formed by thermocompression bonding a relief plate to the diffractive structure forming layer 12.
  • a thin film made of aluminum or the like is uniformly provided on the entire diffractive structure 13 by vacuum deposition or the like.
  • a diffractive structure forming body before the printing layer 15 is formed is obtained by uniformly applying a photoresist layer to be the printing layer 15 on the surface of the thin film.
  • FIG. 7A to 7D are diagrams schematically showing a manufacturing process after pattern exposure using a mask plate.
  • the photoresist layer 19 side of the diffractive structure forming body 10a is irradiated with an irradiation beam, that is, irradiation light 40 through a mask plate 30, and thereby the photoresist layer 19 is exposed. That is, the irradiation light 40 is irradiated to the photoresist layer 19 through the mask plate 30 from the side opposite to the reflective layer 14 before patterning with respect to the photoresist layer 19.
  • the radiation with which the photoresist layer 19 is irradiated, that is, the irradiation beam with which the photoresist layer 19 is exposed means light such as ultraviolet rays, electron beams, and the like.
  • the support 11, the diffractive structure forming layer 12, the reflective layer 14 before patterning, and the photoresist layer 19 are stacked in the order described.
  • the mask plate 30 includes a first region 30a having a radiation transmittance A, a second region 30b having a radiation transmittance B, and a third region 30c having a radiation transmittance C, and having three different transmittances.
  • a pattern consisting of regions is formed. That is, the mask plate 30 includes a first region 30a having a radiation transmittance of A%, a second region 30b having a radiation transmittance of B%, and a third region 30c having a radiation transmittance of C%. Has a predetermined pattern.
  • the radiation transmittance in each region of the mask plate 30 is set as follows. That is, in the photoresist layer 19, the resistance to the developer in the region irradiated with radiation through the first region 30a is the lowest, and the developer in the region irradiated with radiation through the third region 30c.
  • the transmittance of the first region 30a and the transmittance of the third region 30c in the mask plate 30 are set so that the resistance to the highest is obtained.
  • the second region 30b of the mask plate 30 has a resistance to the developer in the region irradiated with radiation through the second region 30b so that it is between the first region 30a and the third region 30c.
  • the transmittance is set.
  • the transmittance of the first region 30a is such that the region irradiated with radiation through the first region 30a is uncured in the photoresist layer 19, so that the photoresist layer 19 becomes a developer.
  • this region is set to a value to be etched.
  • the transmittance of the second region 30b is such that a part of the region irradiated with radiation through the second region 30b is cured in the photoresist layer 19, thereby exposing the photoresist layer 19 to the developer.
  • this time is a second time longer than the first time, this region is set to a value to be etched.
  • the transmittance of the third region 30c is such that the region irradiated with radiation through the third region 30c in the photoresist layer 19 is completely cured and is in close contact with the reflective layer 14 as a lower layer. Set to a value.
  • the transmittance A is the highest, the transmittance C is the lowest, and the transmittance B is the transmittance A and the transmittance C. Is set to the transmittance between.
  • the transmittance A is the lowest, the transmittance C is the highest, and the transmittance B is the difference between the transmittance A and the transmittance C. The transmittance is set between.
  • the radiation applied to the photoresist layer 19 through the mask plate 30 can be an ultra-high pressure mercury lamp, a metal halide lamp, an ultraviolet ray using an LED lamp or the like, and the radiation is applied to the photoresist layer 19. In this case, it is desirable that the radiation is parallel light.
  • the exposure amount A is the largest, the exposure amount C is the smallest, and the exposure amount B is an exposure between the exposure amount A and the exposure amount C. Amount.
  • the exposure amount A is the smallest, the exposure amount C is the largest, and the exposure amount B is between the exposure amounts A and C. Exposure amount.
  • the photoresist layer 19 is developed according to the exposure amount.
  • the first region 19 a whose exposure amount is the exposure amount A is the reflective layer 14 that is first removed by development and formed of aluminum or the like, and the reflective layer 14 before patterning. Of these, the portion covered by the first region 19a is exposed.
  • the printing layer 15 includes a plurality of printing elements, and each printing element is located on the inner side of the edge of the reflective element on which the printing element is located.
  • each printing element and the edge of the reflective element in which the printing element is located may substantially coincide.
  • each printing element in a plan view opposite to the plane in which the diffractive structure forming layer 12 extends, each printing element may have a shape that is homologous to the reflective element in which the printing element is located. In this case, in the manufacturing method of the diffractive structure forming body 10, the steps described above with reference to FIG. 7D can be omitted.
  • the method for manufacturing the diffractive structure forming body 10 includes forming a thin film for forming the reflective layer 14 on the diffractive structure portion 13 included in the diffractive structure forming layer 12 and etching the thin film into a predetermined shape. Forming a mask on the thin film. Further, in the method of manufacturing the diffractive structure forming body 10, the reflective element included in the reflective layer 14 is formed from the thin film by etching the thin film using a mask, and the printed layer 15 is positioned on the reflective element. Forming a printing element comprising a mask.
  • the print layer 15 or the reflective layer 14 may have the following shape depending on the conditions under which the second region 19b of the photoresist layer 19 is etched. That is, the direction in which the second region 19b and the third region 19c are arranged in the photoresist layer 19 is the arrangement direction, and the end portion in contact with the reflective layer 14 in the printed layer 15 is the base end. The opposite end is the tip.
  • Each printing element constituting the printing layer 15 may include a portion where the thickness of the printing element gradually decreases toward each edge in the arrangement direction.
  • each reflective element located outside the printing element is an outer element.
  • the thickness of the outer element may be smaller than the thickness of the portion other than the outer element in the reflective element.
  • the photoresist layer 19 may have the following shape.
  • Each printing element constituting the printing layer 15 formed from the photoresist layer 19 may include a portion in which the thickness of the printing element gradually decreases toward each edge in the arrangement direction. The portion where the thickness of the printing element gradually decreases is formed so as to border each printing element.
  • the thickness of the printing element gradually decreases toward each edge in the arrangement direction. That is, when the printing elements constituting the printing layer 15 formed from the photoresist layer 19 are gradually reduced in thickness toward the respective edges in the arrangement direction and from the leading end to the base end.
  • the thickness of each printing element constituting the printing layer 15 gradually decreases toward each edge in the arrangement direction and from the base end to the tip end. Which case is determined depends on whether the photoresist is a positive type or a negative type, the characteristics of the photoresist, development conditions, etching conditions, and the like.
  • the photoresist layer 19 is formed of a positive type photoresist, in each printing element constituting the printing layer 15, the printing element 15 is directed toward each edge in the arrangement direction and from the leading end to the base end. The thickness tends to become smaller gradually.
  • the photoresist layer 19 is formed of a negative photoresist, the thickness of the printing element in each printing element constituting the printing layer 15 is directed to each edge in the arrangement direction and from the base end to the tip end. Tends to become smaller gradually.
  • the printed layer 15 included in the diffraction structure forming body 10 is used for the etching of the photoresist layer 19 used for etching to form the reflective layer 14. It may be possible to determine whether it is a part.
  • the photoresist layer 19 is a material that can be developed by acid or alkali
  • the developing process of the photoresist layer 19 and the etching process of the reflective layer 14 can be performed as one process, and the diffractive structure forming body.
  • the productivity of 10 can be improved.
  • the diffractive structure forming body 10 has the configuration illustrated in FIGS. 1 to 3, and the optical image information unit 101 includes a patterned reflection layer 14 and a diffractive structure forming layer 12 including the diffractive structure portion 13. It is configured.
  • the transmission density of the printing layer 15 is 0.5 or more and less than 2.0
  • the transmission density of the reflection layer 14 is 1.0 or more
  • the transmission density of the support 11 that supports them is By being 0.8 or more and 2.0 or less, the following effects can be acquired.
  • the transmission density of the printing layer 15, the transmission density of the reflection layer 14, and the transmission density of the laminated body of the diffraction structure forming layer 12 and the support 11 have the following relationship. That is, the transmission density of the printed layer 15 is the highest among the printed layer 15, the reflective layer 14, and the laminate of the diffractive structure forming layer 12 and the support 11. The transmission density of the laminate is the lowest, and the transmission density of the reflective layer 14 is a value between these transmission densities.
  • FIG. 1 shows an image formed by light reflected by the diffractive structure forming body 10 when observed from the first observation direction.
  • the image formed by the light reflected by the reflective layer 14 is visually recognized, the image formed by the print layer 15 located on the opposite side to the observation side with respect to the reflective layer 14 is not visually recognized.
  • FIG. 2 shows an image formed by light reflected by the diffractive structure forming body 10 when observed from the second observation direction. Therefore, an image formed by the light reflected by the printing layer 15 and the light reflected by the reflective layer 14 is visually recognized. Therefore, an image formed by the reflective layer 14 and an image formed by the print layer 15 located inside the reflective layer 14 are visually recognized.
  • the diffractive structure forming body 10 is observed by back light, that is, transmitted light, as shown in FIG. 4, the pattern of the reflective layer 14 and the pattern of the printed layer 15 formed with high alignment accuracy, as shown in FIG.
  • the watermark image 20 composed of contrast can be observed.
  • the diffractive structure forming body 10 is observed from the first observation direction, and the light is incident on the diffractive structure forming body 10 and passes through at least the diffractive structure forming layer 12 and the support 11. An image displayed by the diffraction structure forming body 10 when light is observed is shown.
  • the transmission density of the printed layer 15 is the highest, the transmission density of the laminate of the diffractive structure forming layer 12 and the support 11 is the lowest, and the transmission density of the reflective layer 14. Is a value between the transmission density of the printing layer 15 and the transmission density of the laminate of the diffraction structure forming layer 12 and the support 11. Therefore, when the light transmitted through the diffractive structure forming body 10 is observed from the first observation direction, the amount of light transmitted through the printing layer 15 is the smallest among the observed lights, and the diffractive structure forming layer 12 and the support 11 The amount of light transmitted through is the largest.
  • the amount of light transmitted through the reflective layer 14 is equal to the amount of light transmitted through the printing layer 15, the diffractive structure forming layer 12 and the support. It is a size between the amount of light transmitted through the body 11.
  • FIG. 8 to 10 are plan views showing an example of another diffractive structure forming body 10.
  • the optical image information portion 101 observed from the diffraction structure forming layer 12 side shown in FIG. 8 is the same shape as the reflective layer 14 as shown in FIG.
  • a printed layer 15 is formed.
  • the printing layer 15 includes a plurality of printing elements, and each printing element is smaller than the reflecting element in which the printing element is located in a plan view opposite to the plane in which the diffraction structure forming layer 12 extends, and It has a shape similar to the printing element. Note that only some of the printing elements may have a shape similar to the reflective element in which the printing element is located.
  • the print layer 15 it is difficult to form the print layer 15 while accurately aligning with the pattern of the reflective layer 14 while leaving a slight outline.
  • the printed layer 15 positioned slightly inside the edge of the reflective layer 14 is formed on the reflective layer 14 while accurately aligning the position of the printed layer 15 with respect to the position of the reflective layer 14.
  • the manufacturing method of the diffractive structure forming body 10 described above the alignment accuracy between the reflective layer 14 and the print layer 15 can be increased, and the position of the reflective layer 14 and the position of the print layer 15 It is possible to suppress the deviation between the two.
  • the diffractive structure forming body 10 when the diffractive structure forming body 10 is observed with backlight, that is, transmitted light, it becomes possible to recognize a pattern as a double grayscale image leaving a uniform outline. More specifically, the light incident on the diffractive structure forming body 10 from the opposite side of the support 11 with respect to the diffractive structure forming layer 12 and transmitted through at least the diffractive structure forming layer 12 and the support 11. Observation is performed from the second observation direction described above. Thereby, an image in which the watermark image 20 that is an image formed by the light transmitted through the printing element is positioned inside the image formed by the light transmitted through the reflective element is visually recognized.
  • the print element is positioned on the reflective element so that the center of each print element substantially coincides with the center of the reflective element on which the print element is located in a plan view opposite to the plane on which the diffractive structure forming layer 12 extends. ing. Therefore, when the light transmitted through the diffractive structure forming body 10 is visually recognized from the first observation direction, the image formed by the reflective element is outside the image formed by the printing element positioned on the reflective element.
  • the portion located at has a substantially equal width.
  • the mask plate at the time of exposure includes three types of portions having different transmittances, but may be configured to include four or more regions having different transmittances.
  • the photoresist layer 19 is exposed using a pattern composed of four or more regions having different transmittances, the printed layer 15 is observed when the diffractive structure forming body 10 is observed with transmitted light. It is also possible to express shading in the inside. This makes it possible to make the watermark image that can be confirmed by the observer at the time of observation with backlight, that is, transmitted light more expressive, in other words, to improve the design of the watermark image.
  • Example 1 As a support for the sticker, a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m was used. The following ink composition was applied to one side of the support by the gravure printing method, and then the coating film was dried to form the diffraction structure forming layer 12 having a thickness of 1.5 ⁇ m.
  • PET polyethylene terephthalate
  • the diffractive structure forming layer 12 having the diffractive structure 13 aluminum is laminated by a vacuum deposition method, and a thin film for forming the reflective layer 14 having a film thickness of 40 nm, that is, the reflective layer 14 before patterning. Formed.
  • the coating film was dried to form a photoresist layer 19 having a film thickness of 10 ⁇ m. Note that a negative photoresist was used as the photoresist.
  • UV curable photoresist 20.0 parts by weight Hydrophobic inorganic filler 5.0 parts by weight Methyl ethyl ketone 75.0 parts by weight
  • a mask plate for exposure was prepared in which characters and pattern patterns were formed by these areas. The first area was opaque, the second area was translucent, and the third area was transparent. This mask plate is overlaid on the photoresist layer 19, and the photoresist layer 19 is exposed by irradiating the photoresist layer 19 with collimated ultraviolet rays through the mask plate using an ultrahigh pressure mercury lamp as a light source. It was.
  • a film including the exposed photoresist layer 19, that is, a laminate composed of the support 11, the diffractive structure forming layer 12, the reflective layer 14, and the photoresist layer 19 is converted into a 1% sodium hydroxide aqueous solution. It was immersed in the developing solution.
  • the mask plate When the laminate was immersed in the developer, when the photoresist layer 19 was exposed in the photoresist layer 19, the mask plate had an area where the light transmittance was 0%, that is, the first area facing the first area. The first region 19a, which is the exposed portion, was first dissolved, thereby exposing the reflective layer 14 located immediately below the first region 19a. Furthermore, when the laminate was kept immersed in the developer, the portion of the reflective layer 14 exposed from the photoresist layer 19 was etched and dissolved. Furthermore, if the laminate is kept immersed in the developer, the region of the mask plate where the light transmittance is 20% when the photoresist layer 19 is exposed in the photoresist layer 19, that is, the second layer.
  • the second region 19b facing the region is dissolved, and finally, in the photoresist layer 19, when the photoresist layer 19 is exposed, a region having a light transmittance of 98% or more in the mask plate, that is, the first layer A third region 19c facing the three regions remained on the reflective layer 14 as the print layer 15. Thereby, the reflective layer 14 and the printing layer 15 patterned into a predetermined shape were formed.
  • the following ink composition is applied by gravure printing so as to cover the entire surface of the diffraction structure forming layer 12, the reflective layer 14, and the printing layer 15, and then the coating film is dried, whereby the film thickness is 5 ⁇ m.
  • an adhesive layer 16 was laminated.
  • a polyethylene layer was laminated on one side of kraft paper having a thickness of about 100 ⁇ m, and silicon treatment was performed on the polyethylene layer to form a separator. By sticking this separator to the adhesive layer 16, a sticker was obtained.
  • the sticker as the diffractive structure forming body 10 obtained in this way, diffracted light is generated when light is incident on the portion where the reflective layer 14 is located in a normal light environment, and the diffractive structure corresponding to the pattern shape of the reflective layer 14 is used. Letters and images were observed. Furthermore, in a backlit environment, it was recognized that the printed layer 15 located under the reflective layer 14 was formed in a character or pattern pattern, so that it was observed as a black watermark image.
  • the reflective layer 14 having the same shape as the printed layer 15 of the character pattern was observed as a contour because the alignment accuracy of the reflective layer 14 and the printed layer 15 was high. .
  • micro characters and patterns finer than the micro characters displayed by the reflective layer 14 can be observed inside the micro characters by the reflective layer 14.
  • the normal light environment refers to a state in which the light reflected by the diffractive structure forming body 10 is observed from the first observation direction, while the reverse light environment refers to a diffraction structure from the first observation direction. In this state, the light transmitted through the formed body 10 is observed.
  • Example 2 As the support 11, a polyethylene terephthalate (PET) film having a thickness of 25 ⁇ m was used. The following ink composition was applied to one side of the support 11 by a gravure printing method, and then the coating film was dried to form a release layer 17 having a film thickness of 0.5 ⁇ m.
  • PET polyethylene terephthalate
  • Polyamideimide resin 19.0 parts by weight Polyethylene powder 1.0 part by weight Dimethylacetamide 30.0 parts by weight Toluene 50.0 parts by weight
  • the coating film was dried to laminate the diffraction structure forming layer 12 having a film thickness of 1.5 ⁇ m. Then, the desired diffraction structure part 13 was formed on the diffraction structure formation layer 12 by performing the embossing which presses against the diffraction structure formation layer 12, applying a hot pressure to the relief plate for expressing a diffraction light pattern.
  • the coating layer was dried to form a photoresist layer 19 having a thickness of 10 ⁇ m.
  • UV curable photoresist 20.0 parts by weight Hydrophobic inorganic filler 5.0 parts by weight Methyl ethyl ketone 75.0 parts by weight
  • This mask plate is overlaid on the photoresist layer 19, and the photoresist layer 19 is exposed by irradiating the photoresist layer 19 with collimated ultraviolet rays through the mask plate using an ultrahigh pressure mercury lamp as a light source. It was.
  • a film including the exposed photoresist layer 19, that is, a laminate composed of the support 11, the release layer 17, the diffraction structure forming layer 12, the reflective layer 14, and the photoresist layer 19, is 1%. It was immersed in the developing solution which is sodium hydroxide aqueous solution.
  • the mask plate When the laminate is immersed, in the photoresist layer 19, when the photoresist layer 19 is exposed, the mask plate is a region where the light transmittance is 0%, that is, an unexposed portion facing the first region. A certain first region 19a was first dissolved, thereby exposing a reflective layer located immediately below the first region 19a. Furthermore, when the laminate was kept immersed in the developer, the portion of the reflective layer 14 exposed from the photoresist layer 19 was etched and dissolved. Further, when the laminated body is kept immersed, when the photoresist layer 19 is exposed in the photoresist layer 19, the mask plate is opposed to the region having a light transmittance of 20%, that is, the second region.
  • the mask plate has a light transmittance of 98% or more, that is, the third region.
  • the opposing third region 19c remained on the reflective layer 14 as the printed layer 15. Thereby, the reflective layer 14 and the printing layer 15 patterned into a predetermined shape were formed.
  • the film thickness is reduced by drying the coating film.
  • An adhesive layer 16 having a thickness of 3 ⁇ m was laminated. Thereby, the transfer foil as the diffractive structure forming body 10 was obtained.
  • Vinyl chloride vinyl acetate copolymer resin 15.0 parts by weight
  • Acrylic resin 10.0 parts by weight
  • Methyl ethyl ketone 44.0 parts by weight
  • Toluene 30.0 parts by weight
  • a transparent PET film having a thickness of 50 ⁇ m was prepared as a substrate for transfer foil. Then, the transfer foil is placed on the substrate to be transferred, and a part of the transfer foil is transferred with a hot roll transfer machine, and then the support 11 is peeled off, whereby the adhesive layer 16, the printing layer 15, and the reflective layer 14. The support 11 was removed from the laminate composed of the diffraction structure forming layer 12 and the release layer 17.
  • Example 2 an article 50 which is a forgery prevention medium having the diffractive structure forming body 10 was obtained.
  • the article 50 is embodied as a gift card.
  • the printed layer 15 positioned below the reflective layer 14 was formed in a pattern of characters or a pattern, so that it was observed as a black watermark image.
  • the reflective layer 14 having the same shape as the printed layer 15 of the character pattern is observed as a contour because the alignment accuracy of the reflective layer 14 and the printed layer 15 is high. It was. In other words, it was recognized that micro characters and patterns finer than the micro characters represented by the reflective layer 14 can be observed inside the micro characters formed by the reflective layer 14.
  • the reflective layer 14 and the printed layer 15 are observed in an aligned state, and the printed layer 15 is colored. It was recognized that the color of the printing layer 15 that cannot be confirmed from the peeling layer 17 side is also visually recognized.
  • the diffractive structure forming body 10 is embodied as a forgery prevention medium such as a sticker or a transfer foil, and thus the diffractive structure forming body 10 is attached to various articles, so that it is difficult to forge or tamper.
  • Article 50 can be provided.
  • SYMBOLS 10 Diffraction structure formation body 10a ... Pre-pattern formation diffraction structure formation body 11 ... Support body 12 ... Diffraction structure formation layer 13 ... Diffraction structure formation part 14 ... Reflection layer 15 ... Print layer 16 ... Adhesion layer 17 ... Release layer DESCRIPTION OF SYMBOLS 19 ... Photoresist layer 19a ... 1st area

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

This diffraction structure forming body is provided with: a diffraction structure forming layer that includes a diffraction structure portion in which optical image information is recorded; a reflection layer that is disposed at a part on the diffraction structure portion and that includes at least one reflection element; and a printing layer that includes at least one printing element, the printing element being disposed on the reflection element. The printing layer is at least a part of a mask which is used for forming the reflection layer.

Description

回折構造形成体、回折構造形成体付き物品、および、回折構造形成体の製造方法Diffraction structure forming body, article with diffraction structure forming body, and method for manufacturing diffraction structure forming body
 本発明は、有価証券類の偽造や改竄の防止や、不正を容易に発見することが求められる偽造防止媒体に利用可能な回折構造形成体、回折構造形成体付き物品、および、回折構造形成体の製造方法に関する。 The present invention relates to a diffractive structure formed body, an article with a diffractive structure formed body, and a diffractive structure formed body that can be used in a forgery prevention medium that is required to prevent counterfeiting and falsification of securities and to easily detect fraud. It relates to the manufacturing method.
 近年、偽造を防止する対象である物品に取り付けることにより、物品の真贋を一目で容易に判定することが可能であり、且つ取扱いも容易であることから回折格子パターンが記録された回折構造部が、偽造を防止する手段として広く使われている。このような偽造防止手段として採用される回折構造部が形成された回折構造形成体としては、例えば、剥離性を持つ剥離層、回折格子が形成された回折構造形成層、金属光沢を持つ反射層、および接着層を基材上に順次積層して回折構造形成体を転写箔化したものがある(例えば、特許文献1参照)。 In recent years, it is possible to easily determine the authenticity of an article at a glance by attaching it to an article that is a target for preventing counterfeiting, and since the handling is easy, there is a diffraction structure portion on which a diffraction grating pattern is recorded. It is widely used as a means to prevent counterfeiting. Examples of the diffractive structure forming body in which the diffractive structure portion employed as such a forgery preventing means is formed include a peelable layer having peelability, a diffractive structure forming layer having a diffraction grating, and a reflective layer having a metallic luster. And an adhesive layer are sequentially laminated on a base material to form a diffractive structure formed body as a transfer foil (see, for example, Patent Document 1).
 また、透明な回折格子上に、反射層として透明な金属蒸着薄膜や無機化合物の薄膜を形成することにより、反射層よりも下層に位置するものも、回折格子を通して目視にて観察できるようにしたものもある(例えば、特許文献2参照)。 In addition, by forming a transparent metal-deposited thin film or an inorganic compound thin film as a reflective layer on a transparent diffraction grating, it is possible to visually observe what is located below the reflective layer through the diffraction grating. There are some (see, for example, Patent Document 2).
 更に、特許文献3では、ホログラムに対して、金属反射層が部分的に設けられた成形品およびその製造方法が提案されている。 Furthermore, Patent Document 3 proposes a molded article in which a metal reflective layer is partially provided for a hologram and a method for manufacturing the same.
 これらの従来から用いられている回折構造形成体では、何れも金属光沢を持った蒸着薄膜や透明薄膜からなる反射層が、決まったパターン状を有して回折構造部上に積層されるか、回折構造部の全体に積層されている。 In these conventionally used diffractive structure forming bodies, a reflective layer composed of a vapor-deposited thin film or a transparent thin film having a metallic luster is laminated on the diffractive structure part with a predetermined pattern shape, The entire diffractive structure is laminated.
特開昭61-190369号公報JP 61-190369 A 実開平1-59671号公報Japanese Utility Model Publication No. 1-59671 特開昭62-79489号公報JP 62-79489 A
 更に偽造防止効果を高めるために、反射層に対して回折構造部とは反対側にパターン状の印刷層を形成した場合、反射層と印刷層とは別々に形成されるため、印刷層と反射層とを高い精度で位置合わせすることは困難である。それゆえに、予め位置のずれを考慮して印刷層と反射層とを配置せざるを得ない。 To further increase the anti-counterfeiting effect, when a patterned printed layer is formed on the opposite side of the diffractive structure from the reflective layer, the reflective layer and the printed layer are formed separately. It is difficult to align the layers with high accuracy. Therefore, the print layer and the reflective layer have to be arranged in consideration of the positional deviation in advance.
 本発明は、上記の問題点を解決するためになされたものであり、パターン状の反射層に対する印刷層の位置のずれを抑えることができる回折構造形成体、回折構造形成体付き物品、および、回折構造形成体の製造方法を提供することを目的とするものである。 The present invention has been made in order to solve the above-described problems, and can provide a diffraction structure-forming body, an article with a diffraction structure-forming body, and a diffraction structure-forming body capable of suppressing the displacement of the position of the printed layer with respect to the pattern-like reflective layer, and An object of the present invention is to provide a method for producing a diffractive structure forming body.
 上記課題を解決するための回折構造形成体は、光学的画像情報が記録された回折構造部を含む回折構造形成層と、前記回折構造部上の一部に位置するとともに、少なくとも1つの反射要素を含む反射層と、少なくとも1つの印刷要素を含むとともに、前記印刷要素が前記反射要素上に位置する印刷層と、を備え、前記印刷層は、前記反射層を形成するために用いられるマスクの少なくとも一部である。 A diffractive structure forming body for solving the above problems includes a diffractive structure forming layer including a diffractive structure part on which optical image information is recorded, and at least one reflecting element located on a part of the diffractive structure part. A reflective layer comprising: at least one printing element, and wherein the printing element is located on the reflective element, wherein the printing layer is a mask used to form the reflective layer At least some.
 上記回折構造形成体において、前記回折構造形成層が広がる平面と対向する平面視において、前記印刷要素は、その印刷要素が位置する前記反射要素の縁よりも内側に位置していることが好ましい。 In the diffractive structure forming body, it is preferable that the printing element is located inside an edge of the reflecting element where the printing element is located in a plan view facing a plane in which the diffractive structure forming layer extends.
 上記回折構造形成体において、前記印刷層は、複数の前記印刷要素を含み、複数の前記印刷要素には、前記回折構造形成層が広がる平面と対向する平面視において、その印刷要素が位置する前記反射要素と相似な形状を有した前記印刷要素が含まれてもよい。 In the diffractive structure forming body, the printing layer includes a plurality of the printing elements, and the printing elements are positioned in a plurality of the printing elements in a plan view facing a plane in which the diffractive structure forming layer extends. The printing element having a shape similar to the reflective element may be included.
 上記回折構造形成体において、前記印刷層が、色材、蛍光材、および、フィラー類のうち、少なくとも1つを含むフォトレジスト層であることが好ましい。 In the diffractive structure forming body, it is preferable that the printing layer is a photoresist layer including at least one of a color material, a fluorescent material, and fillers.
 上記回折構造形成体において、前記回折構造形成層に対して前記反射層とは反対側において前記回折構造形成層に接する支持体をさらに備え、前記回折構造形成層と前記支持体とは積層体を構成し、前記印刷層、前記反射層、および、前記積層体のなかで、前記印刷層の透過濃度が最も高く、前記積層体の透過濃度が最も低く、且つ、前記反射層の透過濃度が、前記印刷層の透過濃度と前記積層体の透過濃度との間の値であることが好ましい。 The diffractive structure forming body further includes a support that contacts the diffractive structure forming layer on a side opposite to the reflective layer with respect to the diffractive structure forming layer, and the diffractive structure forming layer and the support include a laminate. The printed layer, the reflective layer, and the laminate, the printed layer has the highest transmission density, the laminated body has the lowest transmission density, and the reflective layer has a transmission density, It is preferably a value between the transmission density of the printed layer and the transmission density of the laminate.
 上記回折構造形成体において、前記印刷層の透過濃度が0.5以上2.0未満であり、前記反射層の透過濃度が1.0以上であり、且つ、前記支持体の透過濃度が0.8以上2.0以下であってもよい。 In the diffractive structure forming body, the transmission density of the printing layer is 0.5 or more and less than 2.0, the transmission density of the reflection layer is 1.0 or more, and the transmission density of the support is 0.00. It may be 8 or more and 2.0 or less.
 上記課題を解決するための回折構造形成体付き物品は、回折構造形成体と、前記回折構造形成体を支持する物品と、を含む回折構造形成体付き物品であって、前記回折構造形成体が、上記回折構造形成体である。 An article with a diffractive structure forming body for solving the above-mentioned problem is an article with a diffractive structure forming body including a diffractive structure forming body and an article that supports the diffractive structure forming body, The diffraction structure forming body.
 上記課題を解決するための回折構造形成体の製造方法は、回折構造部を含む回折構造形成層と反射要素を含む反射層と印刷要素を含む印刷層とを備える回折構造形成体の製造方法である。前記回折構造部上に、前記反射層を形成するための薄膜を形成することと、前記薄膜を所定の形状にエッチングするためのマスクを前記薄膜上に形成することと、前記マスクを用いて前記薄膜をエッチングすることによって、前記反射要素を前記薄膜から形成するとともに、前記反射要素上に位置する前記印刷要素を前記マスクから形成することと、を含む。 A method for manufacturing a diffractive structure forming body for solving the above problem is a method for manufacturing a diffractive structure forming body including a diffractive structure forming layer including a diffractive structure portion, a reflective layer including a reflective element, and a printed layer including a printing element. is there. Forming a thin film for forming the reflective layer on the diffractive structure, forming a mask for etching the thin film into a predetermined shape on the thin film, and using the mask to Forming the reflective element from the thin film by etching a thin film and forming the printing element located on the reflective element from the mask.
 本発明によれば、パターン状の反射層に対する印刷層の位置のずれを抑えることができる。 According to the present invention, it is possible to suppress the displacement of the position of the printed layer with respect to the patterned reflective layer.
回折構造形成体の一例における平面構造を示す平面図である。It is a top view which shows the planar structure in an example of a diffraction structure formation body. 図1に示す回折構造形成体を印刷層側から観察した平面構造を示す平面図である。It is a top view which shows the planar structure which observed the diffraction structure formation body shown in FIG. 1 from the printing layer side. 図2に示すA-A線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 図1の回折構造形成体を透過光で観察したときの平面構造を示す平面図である。It is a top view which shows a planar structure when the diffraction structure formation body of FIG. 1 is observed with transmitted light. 回折構造形成体をステッカーとして具体化したときのステッカーの断面構造を示す断面図である。It is sectional drawing which shows the cross-section of a sticker when the diffraction structure formation body is embodied as a sticker. 回折構造形成体を転写箔として具体化したときの転写箔の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of transfer foil when a diffraction structure formation body is embodied as transfer foil. マスク版を用いた露光工程を示す工程図である。It is process drawing which shows the exposure process using a mask plate. 現像工程を示す工程図である。It is process drawing which shows a image development process. エッチング工程を示す工程図である。It is process drawing which shows an etching process. 現像工程を示す工程図である。It is process drawing which shows a image development process. 回折構造形成体の別の例における平面構造を示す平面図である。It is a top view which shows the planar structure in another example of a diffraction structure formation body. 図8の回折構造形成体を印刷層側から観察した平面構造を示す平面図である。It is a top view which shows the planar structure which observed the diffraction structure formation body of FIG. 8 from the printing layer side. 図8の回折構造形成体を透過光で観察したときの平面構造を示す平面図である。It is a top view which shows a planar structure when the diffraction structure formation body of FIG. 8 is observed with transmitted light. 回折構造形成体を貼付した物品の一例における平面構造示す平面図である。It is a top view which shows the planar structure in an example of the articles | goods which stuck the diffraction structure formation body. 図11の破線部を透過光で観察したときの平面構造を拡大して示す拡大平面図である。It is an enlarged plan view which expands and shows a planar structure when the broken-line part of FIG. 11 is observed with transmitted light.
 以下、回折構造形成体、回折構造形成体付き物品、および、回折構造形成体の製造方法を具体化した好適な実施形態を、図面を参照しながら詳細に説明する。 Hereinafter, preferred embodiments in which a diffractive structure formed body, an article with a diffractive structure formed body, and a method for producing the diffractive structure formed body are embodied will be described in detail with reference to the drawings.
 図1は、回折構造形成体10の平面構造を示す平面図であり、回折構造形成層12側から順光すなわち反射光によって観察した光学的画像情報部101の状態の一例を示している。 FIG. 1 is a plan view showing a planar structure of the diffractive structure forming body 10 and shows an example of the state of the optical image information section 101 observed from the diffractive structure forming layer 12 side with forward light, that is, reflected light.
 これに対し、図2は、印刷層15が形成された側から順光によって観察した場合の回折構造形成体10における平面構造の一例を示している。光学的画像情報部101に設けられた反射層14のパターンとは、異なる形状を有したパターンの印刷層15が設けられている。 On the other hand, FIG. 2 shows an example of a planar structure in the diffractive structure forming body 10 when observed by forward light from the side on which the printing layer 15 is formed. A printed layer 15 having a pattern different from the pattern of the reflective layer 14 provided in the optical image information unit 101 is provided.
 このことから、回折構造形成体10は、回折構造形成体10側からの順光による観察と印刷層15側からの順光による観察とで異なる絵柄を表現することが可能となる。 From this, the diffractive structure forming body 10 can express different patterns in the observation with forward light from the diffractive structure forming body 10 side and the observation with forward light from the printed layer 15 side.
 図3は、図2における回折構造形成体10のA-A線に沿う断面構造を示す断面図である。回折構造形成層12の支持体11とは反対の面には、微細な凹凸からなる回折構造部13が形成される。 FIG. 3 is a cross-sectional view showing a cross-sectional structure taken along line AA of the diffractive structure forming body 10 in FIG. On the surface of the diffractive structure forming layer 12 opposite to the support 11, a diffractive structure portion 13 composed of fine irregularities is formed.
 回折構造形成層12には反射層14が積層されている。印刷層15は、反射層14を形成するために用いられるマスクの少なくとも一部である。より詳しくは、反射層14を形成するための薄膜において選択的な除去を行なうために塗布されるフォトレジストの一部は、露光すなわち光の照射や現像が行われた後、エッチングによって薄膜の一部を除去した後も、反射層14上にパターン状に位置することで、回折構造形成体10において印刷層15として機能する。これらの製造方法については、後ほど詳述する。 A reflective layer 14 is laminated on the diffractive structure forming layer 12. The printed layer 15 is at least a part of a mask used for forming the reflective layer 14. More specifically, a part of the photoresist applied for selective removal in the thin film for forming the reflective layer 14 is exposed to light, that is, irradiated with light and developed, and then etched to form a part of the thin film. Even after the portion is removed, the diffraction structure forming body 10 functions as the print layer 15 by being positioned in a pattern on the reflective layer 14. These manufacturing methods will be described in detail later.
 図3に示すように、回折構造形成体10は、支持体11と、支持体11の一方の面上に位置する回折構造形成層12とを備え、回折構造形成層12のなかで、支持体11に接する面とは反対側の面に、回折構造部13が位置している。回折構造形成層12のうち、回折構造部13が位置する面は凹凸面である。回折構造形成層12の凹凸面には、所定の形状を有した反射層14が位置し、反射層14は、凹凸面上において互いに離れて位置する複数の反射要素を備えている。反射層14のなかで、凹凸面に接する面とは反対側の面上には、所定の形状を有した印刷層15が位置している。印刷層15は、凹凸面と対向する平面視において互いに離れて位置する複数の印刷要素を備え、1つの反射要素上には、少なくとも1つの印刷要素が位置している。 As shown in FIG. 3, the diffractive structure forming body 10 includes a support 11 and a diffractive structure forming layer 12 positioned on one surface of the support 11. The diffractive structure 13 is located on the surface opposite to the surface in contact with 11. Of the diffractive structure forming layer 12, the surface on which the diffractive structure portion 13 is located is an uneven surface. A reflective layer 14 having a predetermined shape is located on the concavo-convex surface of the diffractive structure forming layer 12, and the reflective layer 14 includes a plurality of reflective elements positioned apart from each other on the concavo-convex surface. A printed layer 15 having a predetermined shape is located on the surface of the reflective layer 14 opposite to the surface in contact with the uneven surface. The printing layer 15 includes a plurality of printing elements that are located apart from each other in a plan view facing the uneven surface, and at least one printing element is located on one reflective element.
 なお、1つの方向がX方向であり、X方向に直交する方向がY方向である。X方向とY方向との両方に直交する方向がZ方向である。回折構造形成体10は、X方向およびY方向に沿って広がる板状を有し、回折構造形成体10の厚さ方向は、Z方向と平行な方向である。 One direction is the X direction, and the direction orthogonal to the X direction is the Y direction. The direction orthogonal to both the X direction and the Y direction is the Z direction. The diffractive structure forming body 10 has a plate shape extending along the X direction and the Y direction, and the thickness direction of the diffractive structure forming body 10 is a direction parallel to the Z direction.
 回折構造形成体10には、第1観察方向と第2観察方向とを設定することが可能である。第1観察方向は、支持体11に対して回折構造形成層12とは反対側から回折構造形成体10を観察する方向であり、第2観察方向は、回折構造形成層12に対して支持体11とは反対側から回折構造形成体10を観察する方向である。 The first observation direction and the second observation direction can be set for the diffraction structure forming body 10. The first observation direction is a direction in which the diffractive structure forming body 10 is observed from the side opposite to the diffractive structure forming layer 12 with respect to the support 11, and the second observation direction is a support with respect to the diffractive structure forming layer 12. 11 is a direction in which the diffractive structure forming body 10 is observed from the opposite side.
 なお、第1観察方向から回折構造形成体10を観察するときには、回折構造形成体10に支持体11から入射した光であって、反射層14にて反射された光を観察することが可能である。また、第1観察方向から回折構造形成体10を観察するときには、回折構造形成体10に回折構造形成層12から入射した光であって、少なくとも回折構造形成層12および支持体11を透過した光を観察することが可能である。 When observing the diffractive structure forming body 10 from the first observation direction, it is possible to observe the light incident on the diffractive structure forming body 10 from the support 11 and reflected by the reflective layer 14. is there. Further, when observing the diffractive structure forming body 10 from the first observation direction, the light that has entered the diffractive structure forming body 10 from the diffractive structure forming layer 12 and has passed through at least the diffractive structure forming layer 12 and the support 11. Can be observed.
 これに対して、第2観察方向から回折構造形成体10を観察するときには、回折構造形成体10において、反射層14、印刷層15、および、回折構造形成層12に入射した光であって、各部位において反射された光を観察することが可能である。また、第2観察方向から回折構造形成体10を観察するときには、回折構造形成体10に支持体11から入射した光であって、少なくとも支持体11および回折構造形成層12を透過した光を観察することが可能である。 On the other hand, when observing the diffractive structure forming body 10 from the second observation direction, in the diffractive structure forming body 10, the light is incident on the reflective layer 14, the printed layer 15, and the diffractive structure forming layer 12, It is possible to observe the light reflected at each part. Further, when observing the diffractive structure forming body 10 from the second observation direction, light that has entered the diffractive structure forming body 10 from the support 11 and that has transmitted through at least the support 11 and the diffractive structure forming layer 12 is observed. Is possible.
 上述したように、図1に示す平面構造は、回折構造形成体10を回折構造形成層12側から順光によって観察したときの平面構造である。言い換えれば、図1には、第1観察方向から回折構造形成体10を観察し、且つ、回折構造形成体10に支持体11から入射した光であって、反射層14にて反射された光を観察したときに、回折構造形成体10が表示する像が示されている。 As described above, the planar structure shown in FIG. 1 is a planar structure when the diffractive structure forming body 10 is observed from the diffractive structure forming layer 12 side with forward light. In other words, in FIG. 1, light that is observed from the first observation direction of the diffractive structure forming body 10 and is incident on the diffractive structure forming body 10 from the support 11 and reflected by the reflective layer 14. The image which the diffraction structure formation body 10 displays when observing is shown.
 これに対して、図2に示す平面構造は、回折構造形成体10を印刷層15が形成された側から順光によって観察した場合の回折構造形成体10における平面構造である。言い換えれば、図2には、第2観察方向から回折構造形成体10を観察し、且つ、回折構造形成体10において、反射層14、印刷層15、および、回折構造形成層12に入射した光であって、各部位において反射された光を観察したときに、回折構造形成体10が表示する像が示されている。 On the other hand, the planar structure shown in FIG. 2 is a planar structure in the diffractive structure forming body 10 when the diffractive structure forming body 10 is observed by forward light from the side on which the printing layer 15 is formed. In other words, in FIG. 2, the light incident on the reflection layer 14, the printing layer 15, and the diffraction structure forming layer 12 in the diffraction structure forming body 10 is observed from the second observation direction. And the image which the diffraction structure formation body 10 displays when the light reflected in each site | part is observed is shown.
 以下、回折構造形成体10が備える各要素について、より詳しく説明する。
 (支持体)
 支持体11は、回折構造形成体10を製造する際の基材としての役割を担う。なお、回折構造形成体10がステッカーとして具体化される場合には、回折構造形成体10が支持体を含んだ状態で物品に貼付される場合がある。一方で、回折構造形成体10が転写箔として具体化される場合には、支持体は回折構造形成体10の一部が物品に転写される際の支持基材となるが、回折構造形成体10の一部が物品に転写された後は、回折構造形成体10のうち支持体以外の部分から剥離される。
Hereafter, each element with which the diffraction structure formation body 10 is provided is demonstrated in detail.
(Support)
The support 11 plays a role as a base material when the diffraction structure forming body 10 is manufactured. In addition, when the diffractive structure forming body 10 is embodied as a sticker, the diffractive structure forming body 10 may be attached to an article in a state including a support. On the other hand, when the diffractive structure forming body 10 is embodied as a transfer foil, the support serves as a support base material when a part of the diffractive structure forming body 10 is transferred to the article. After a part of 10 is transferred to the article, the diffractive structure forming body 10 is peeled from a portion other than the support.
 なお、支持体は必ずしも必要ではなく、支持体11と回折構造形成層12とが、同一素材であってもよい。すなわち、回折構造形成層12が回折構造形成層12の上に形成される反射層14および印刷層15を支持することが可能な機械的な強度を有していれば、支持体11は省略されてもよい。 Note that the support is not necessarily required, and the support 11 and the diffraction structure forming layer 12 may be made of the same material. That is, if the diffractive structure forming layer 12 has mechanical strength capable of supporting the reflective layer 14 and the printed layer 15 formed on the diffractive structure forming layer 12, the support 11 is omitted. May be.
 支持体11は、フィルムまたはシートであればよい。フィルムまたはシートの材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート、トリアセチルセルロース(TAC)、ポリ塩化ビニル、ポリエチレン(PE)、ポリイミド(PI)、ポリビニルアルコール(PVA)などの各種樹脂を挙げることができるが、これらに限定されるものではない。 The support 11 may be a film or a sheet. Examples of film or sheet materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate, triacetyl cellulose (TAC), polyvinyl chloride, polyethylene (PE), polyimide (PI), polyvinyl alcohol (PVA), etc. However, the present invention is not limited to these.
 一般には、入手のし易さや加工時の取り扱いやすさなどの点から、ポリエチレンテレフタレート(PET)が、支持体を形成する材料として最も好適であると言える。 Generally speaking, polyethylene terephthalate (PET) can be said to be most suitable as a material for forming a support from the viewpoints of availability and ease of handling during processing.
 (回折構造部)
 回折構造部13には、光学的画像情報が記録されている。反射層14の存在下において、回折構造部13に光が入射することで、回折構造部13は回折光を発生し、この回折光が2D(二次元)画像または3D(三次元)による立体視が可能な画像を表示する。
(Diffraction structure)
Optical image information is recorded in the diffractive structure section 13. When light enters the diffractive structure 13 in the presence of the reflective layer 14, the diffractive structure 13 generates diffracted light. Display images that can be
 一般的に、回折構造形成体10が物品に付される場合には、回折構造形成体10の用途に応じて、回折構造部13に接着層が設けられる。この場合には、回折構造部13上に反射層14が形成されていないと、回折構造形成層12と接着層との間の屈折率の差が小さいために、十分な輝度を有した回折光が得られない。そのため、回折構造部13上には、反射層14が位置している。 Generally, when the diffractive structure forming body 10 is attached to an article, an adhesive layer is provided on the diffractive structure portion 13 according to the use of the diffractive structure forming body 10. In this case, if the reflective layer 14 is not formed on the diffractive structure portion 13, the difference in refractive index between the diffractive structure forming layer 12 and the adhesive layer is small, so that diffracted light having sufficient luminance is obtained. Cannot be obtained. Therefore, the reflective layer 14 is located on the diffractive structure portion 13.
 なお、光学的画像情報は、回折構造部13に光が入射することで発生した回折光により表示される2Dまたは3Dによる視認可能な画像情報である。詳細には、絵柄や文字、色の変化を含むパターンであって、視覚によって認識が可能なパターンなどで構成される。 The optical image information is 2D or 3D visible image information displayed by diffracted light generated when light enters the diffractive structure 13. Specifically, the pattern includes a pattern, a character, and a color change, and is configured by a pattern that can be recognized visually.
 また、画像とは視覚により認識できる情報のことであり、イラストなどの絵画的画像のほか、文字、模様、色彩、所定の形状を含む。さらに、画像は回折光により表示されたものに限られず、印刷層15により形成された画像および各構成要素の色彩も含む。 Also, an image is information that can be recognized visually, and includes characters, patterns, colors, and predetermined shapes in addition to pictorial images such as illustrations. Further, the image is not limited to the image displayed by the diffracted light, and includes the image formed by the printing layer 15 and the color of each component.
 回折構造部13が形成される回折構造形成層12の材料として、熱可塑性樹脂、熱硬化性樹脂、紫外線あるいは電子線硬化性樹脂などを使用することができる。例えば、熱可塑性樹脂には、アクリル樹脂、エポキシ系樹脂、セルロース系樹脂、ビニル系樹脂などが挙げられる。また、熱硬化性樹脂には、反応性水酸基を有するアクリルポリオールやポレエステルポリオールなどにポリイソシアネートを架橋剤として添加して架橋させたウレタン樹脂、メラミン系樹脂、フェノール系樹脂などが使用できる。また、紫外線あるいは電子線硬化性樹脂としては、エポキシ(メタ)アクリル、ウレタン(メタ)アクリレートなどを使用することができる。これらの材料を主材料として、グラビア印刷法やマイクログラビア法など、公知の塗布方法によって回折構造形成層12を形成することができる。 As a material of the diffraction structure forming layer 12 on which the diffraction structure portion 13 is formed, a thermoplastic resin, a thermosetting resin, an ultraviolet ray, an electron beam curable resin, or the like can be used. For example, examples of the thermoplastic resin include acrylic resin, epoxy resin, cellulose resin, and vinyl resin. Further, as the thermosetting resin, urethane resin, melamine resin, phenol resin, and the like obtained by adding polyisocyanate as a crosslinking agent to acrylic polyol having a reactive hydroxyl group, polyester polyol, or the like can be used. In addition, as the ultraviolet or electron beam curable resin, epoxy (meth) acryl, urethane (meth) acrylate, or the like can be used. Using these materials as main materials, the diffractive structure forming layer 12 can be formed by a known coating method such as a gravure printing method or a micro gravure method.
 また、回折構造部13への光学的画像情報の記録方法も、当分野でよく知られた方法を用いることができる。 Also, a method well known in the art can be used as a method for recording optical image information on the diffractive structure 13.
 光学的画像情報が微細な凹凸からなる回折構造を用いて記録される場合、この微細な凹凸構造を形成するためにレリーフ版が使用される。レリーフ版を形成するときには、まず、電子線硬化型樹脂の表面に電子線を照射して、電子線硬化型樹脂を所望のパターンで露光し、その後現像することによってマスター版が作製される。続いて、このマスター版の表面に電気メッキ法で金属膜を形成してマスター版の凹凸パターンを複製することによって、レリーフ版が形成される。 When optical image information is recorded using a diffractive structure consisting of fine irregularities, a relief plate is used to form this fine irregular structure. When forming the relief plate, first, the surface of the electron beam curable resin is irradiated with an electron beam, the electron beam curable resin is exposed in a desired pattern, and then developed to produce a master plate. Subsequently, a relief plate is formed by forming a metal film on the surface of the master plate by electroplating and replicating the concave / convex pattern of the master plate.
 そして、回折構造形成層12にこのレリーフ版を熱圧着させるか、未硬化の硬化型樹脂にレリーフ版を密着させながら硬化することで、微細な凹凸構造から構成される回折構造部13が形成される。 Then, the diffractive structure 13 composed of a fine concavo-convex structure is formed by thermocompression bonding the relief plate to the diffractive structure forming layer 12 or by curing the relief plate in close contact with an uncured curable resin. The
 また干渉性のよい光によって得た像の回折光を感光材料に記録させたものを回折構造部13に組み込んでも良い。 Further, a diffracted light of an image obtained with light having good coherence may be incorporated in the diffractive structure 13 by recording on a photosensitive material.
 (反射層)
 反射層14として用いることのできる材料としては、アルミニウム、銀、金、錫、銅、クロムなどの各種金属類、これらの金属を含む合金類などを挙げることができる。また、反射層14の材料には、酸化チタン、硫化亜鉛、フッ化マグネシウム、硫化アンチモン、酸化ケイ素などの金属化合物を用いることもできる。反射層14の厚さは、例えば10nm以上100nm以下であり、30nm以上80nm以下であることが好ましい。
(Reflective layer)
Examples of the material that can be used for the reflective layer 14 include various metals such as aluminum, silver, gold, tin, copper, and chromium, and alloys containing these metals. In addition, a metal compound such as titanium oxide, zinc sulfide, magnesium fluoride, antimony sulfide, or silicon oxide can be used as the material of the reflective layer 14. The thickness of the reflective layer 14 is, for example, 10 nm or more and 100 nm or less, and preferably 30 nm or more and 80 nm or less.
 以上のような材料を用いて、反射層14を形成するための薄膜を形成する方法としては、公知の真空蒸着法、スパッタリング法、イオンプレーティング法などの方法を用いることが可能である。 As a method of forming a thin film for forming the reflective layer 14 using the materials as described above, a known method such as a vacuum deposition method, a sputtering method, or an ion plating method can be used.
 反射層14の材料としては、入手の容易性や反射層の一部を除去するときの除去のし易さなどを考慮するとアルミニウムが最も好適であると言える。 As the material of the reflective layer 14, aluminum is most suitable in view of availability and ease of removal when removing a part of the reflective layer.
 (印刷層)
 印刷層15は文字やイラスト、模様など、目視にてその形状を視認することが可能な層である。印刷層15は、以下のように形成される。すなわち、グラビア印刷法やスクリーン印刷法、凸版印刷法などの公知の印刷法あるいはコーティング法などによりフォトレジストを、反射層14を形成するための薄膜の全面に均一に塗布する。その後、露光や現像を経て反射層14上に位置する部分が、文字やイラスト、所定の模様の形状を有した印刷層15になる。
(Print layer)
The printed layer 15 is a layer that can visually recognize the shape of characters, illustrations, patterns, and the like. The print layer 15 is formed as follows. That is, a photoresist is uniformly applied to the entire surface of the thin film for forming the reflective layer 14 by a known printing method such as a gravure printing method, a screen printing method, a relief printing method, or a coating method. After that, a portion positioned on the reflective layer 14 through exposure and development becomes a printed layer 15 having characters, illustrations, and a predetermined pattern shape.
 フォトレジストとしては、ポジ型およびネガ型のいずれのフォトレジストを用いてもよい。ポジ型のフォトレジストにおける代表例としては、ノボラック樹脂を主成分とし、ナフトキノンジアジド(DNQ)を感光性物質として添加したいわゆるDNQノボラックレジストがあげられるが、ポジ型のフォトレジストはこれに限定されるものではない。 As the photoresist, either positive or negative photoresist may be used. A typical example of a positive type photoresist is a so-called DNQ novolak resist in which a novolak resin is a main component and naphthoquinone diazide (DNQ) is added as a photosensitive material. However, a positive type photoresist is limited to this. It is not a thing.
 また、ネガ型のフォトレジストとしては、エポキシ系樹脂タイプのものやカルボキシル基含有樹脂タイプのものなどを挙げることができるが、ネガ型のフォトレジストは、これらに限定されるものではない。印刷層15の厚さは、例えば1μm以上30μm以下である。 In addition, examples of the negative photoresist include epoxy resin type and carboxyl group-containing resin type, but the negative photoresist is not limited to these. The thickness of the printing layer 15 is, for example, 1 μm or more and 30 μm or less.
 フォトレジストの現像工程と、アルミニウムなどの真空蒸着膜のエッチングによる部分的な除去によって反射層14を形成する工程とは、単一の工程で実施できることが望ましい。そのため、フォトレジストは、酸あるいはアルカリによって現像が可能であることが望ましい。 It is desirable that the development process of the photoresist and the process of forming the reflective layer 14 by partial removal by etching of a vacuum deposited film such as aluminum can be performed in a single process. Therefore, it is desirable that the photoresist can be developed with acid or alkali.
 なお、印刷層15の形成材料は、反射層14を形成するための薄膜をエッチングするときにマスクとして機能することができる材料であればよく、例えば、各種の金属や金属化合物であってもよい。すなわち、反射層14を形成するため薄膜をエッチングするときに用いられるマスクが、ハードマスクであってもよい。 The material for forming the printing layer 15 may be any material that can function as a mask when the thin film for forming the reflective layer 14 is etched, and may be various metals or metal compounds, for example. . That is, the mask used when the thin film is etched to form the reflective layer 14 may be a hard mask.
 印刷層用のインキには、上述のフォトレジストに対して露光量に応じて光透過率の変化する吸光剤が含まれているものを用いてもよいし、印刷層用のインキには、色材、蛍光材料、そしてフィラー類からなる添加剤から1種以上のものが添加されていてもよい。すなわち、印刷層15は、色材、蛍光材、および、フィラー類のうち、少なくとも1つを含むフォトレジスト層であってもよい。 The printing layer ink may contain a light-absorbing agent that changes the light transmittance according to the exposure amount with respect to the above-mentioned photoresist, and the printing layer ink may have a color. One or more kinds of additives composed of a material, a fluorescent material, and fillers may be added. That is, the printing layer 15 may be a photoresist layer including at least one of a color material, a fluorescent material, and fillers.
 色材としては、顔料並びに染料を使うことができる。なお、回折構造形成体10は、支持体11側から順に回折構造形成層12、反射層14、および、印刷層15が積層された構成を有する。また、回折構造形成体10は、支持体11側からの観察において、順光すなわち反射光での観察と、逆光すなわち透過光での観察とによって視認されるパターンが変化することによって、偽造防止性が付与されるものである。 As pigments, pigments and dyes can be used. The diffractive structure forming body 10 has a configuration in which a diffractive structure forming layer 12, a reflective layer 14, and a printing layer 15 are laminated in order from the support 11 side. Further, in the observation from the support 11 side, the diffractive structure forming body 10 has an anti-counterfeiting property due to a change in the pattern visually recognized by observation with forward light, that is, reflected light, and observation with reverse light, that is, transmitted light. Is given.
 ここで、色材として染料を用いた場合よりも顔料を用いた場合の方が、透過光に対する隠蔽性が高く、且つ、逆光での観察に対して、より視認性が向上する。そのため、色材としては、染料よりも顔料がより好適であるといえる。 Here, the use of a pigment as a coloring material has a higher concealability with respect to transmitted light, and the visibility is improved with respect to observation under backlight. Therefore, it can be said that a pigment is more suitable as a coloring material than a dye.
 使用する顔料としては、カーボンブラックを始め、種々の公知の顔料を使用することができ、例えばアゾ系、フタロシアニン系、キナクリドン系、チオインジゴ系、アントラキノン系、イソインドリノン系などの顔料が挙げられる。 As the pigment to be used, various known pigments such as carbon black can be used, and examples thereof include azo, phthalocyanine, quinacridone, thioindigo, anthraquinone, and isoindolinone pigments.
 蛍光材においても染料タイプならびに顔料タイプを用いることができるが、顔料タイプの方がより好適であるといえる。 Fluorescent materials can also use dye types and pigment types, but it can be said that the pigment type is more preferable.
 フィラー類としては、酸化チタン、沈降性硫酸バリウム、シリカ、タルク、炭酸カルシウム、酸化アルミニウムなどの各種無機系フィラー類を用いることができる。また、フィラー類としては、アクリル系微粒子、スチレン系微粒子、アクリル-スチレン系微粒子、シリコン系微粒子、フッ素系微粒子などの各種有機系微粒子を用いることができる。更には、フィラー類としては、有機系あるいは無機系の中空微粒子などを用いることができるが、フィラー類は、これらに限定されるものではない。 As the fillers, various inorganic fillers such as titanium oxide, precipitated barium sulfate, silica, talc, calcium carbonate, and aluminum oxide can be used. As the fillers, various organic fine particles such as acrylic fine particles, styrene fine particles, acrylic-styrene fine particles, silicon fine particles, and fluorine fine particles can be used. Furthermore, as the fillers, organic or inorganic hollow fine particles can be used, but the fillers are not limited to these.
 (その他の構成要素)
 回折構造形成体10は、上述した構成および機能を妨げるものでない限り、他の任意の構成要素を備えてもよい。例えば帯電防止層や防汚層、剥離層、易接着処理層などのほかに、後述するような構成要素を備えてもよいが、他の構成要素はこれらに限られない。
(Other components)
The diffractive structure forming body 10 may include any other component as long as the configuration and function described above are not hindered. For example, in addition to the antistatic layer, the antifouling layer, the release layer, the easy adhesion treatment layer, and the like, constituent elements as described later may be provided, but the other constituent elements are not limited thereto.
 (接着層)
 接着層16は、回折構造形成体10を被着基材に貼付するために用いられる。図5は、回折構造形成体10がステッカーとして具体化された一例を示している。図5に示すように、ステッカーは、支持体11と、支持体11上に形成された回折構造形成層12とを備え、回折構造形成層12は、支持体11に接する面とは反対側の面に回折構造部13を含んでいる。ステッカーにおいて、回折構造部13の一部には、反射層14が位置し、反射層14上には印刷層15が位置している。回折構造部13のうち、反射層14が位置していない部分は、接着層16によって覆われ、また、反射層14および印刷層15が、接着層16によって覆われている。
(Adhesive layer)
The adhesive layer 16 is used for attaching the diffractive structure forming body 10 to an adherend substrate. FIG. 5 shows an example in which the diffractive structure forming body 10 is embodied as a sticker. As shown in FIG. 5, the sticker includes a support 11 and a diffractive structure forming layer 12 formed on the support 11, and the diffractive structure forming layer 12 is on the side opposite to the surface in contact with the support 11. The surface includes a diffractive structure 13. In the sticker, the reflective layer 14 is located on a part of the diffractive structure 13, and the printed layer 15 is located on the reflective layer 14. A portion of the diffractive structure 13 where the reflective layer 14 is not located is covered with an adhesive layer 16, and the reflective layer 14 and the print layer 15 are covered with the adhesive layer 16.
 また、図6は、回折構造形成体10が転写箔として具体化された一例を示し、転写箔において、支持体11と回折構造形成層12との間に剥離層17が設けられている。なお、剥離層17は離型層とも言う。剥離層17の厚さは、例えば0.1μm以上5μm以下であり、0.5μm以上2μm以下であることが好ましい。図6に示すように、転写箔は、支持体11と回折構造形成層12との間に剥離層17が位置する以外は、ステッカーと同様の構造である。 FIG. 6 shows an example in which the diffractive structure forming body 10 is embodied as a transfer foil. In the transfer foil, a release layer 17 is provided between the support 11 and the diffractive structure forming layer 12. Note that the release layer 17 is also referred to as a release layer. The thickness of the release layer 17 is, for example, from 0.1 μm to 5 μm, and preferably from 0.5 μm to 2 μm. As shown in FIG. 6, the transfer foil has the same structure as the sticker except that the release layer 17 is positioned between the support 11 and the diffraction structure forming layer 12.
 接着層には当分野で公知の材料を用いることができ、被貼付物によっては、感圧タイプや、感熱タイプの接着剤も使用することができる。接着層の厚さは、例えば1μm以上20μm以下である。 A material known in the art can be used for the adhesive layer, and a pressure-sensitive type or heat-sensitive type adhesive can also be used depending on the object to be pasted. The thickness of the adhesive layer is, for example, 1 μm or more and 20 μm or less.
 (ステッカー用支持体)
 ステッカー用支持体は、回折構造形成体10がステッカーとして具体化された場合に、すなわち、回折構造形成体10が接着層16を有する場合に、接着層16が有する接着面を保護する離型紙、または離型フィルムとして使用されるものである。ステッカー用支持体は、ステッカーが被貼付物に貼り付けられるときに、接着層16から剥離される。
(Sticker support)
The support for the sticker is a release paper for protecting the adhesive surface of the adhesive layer 16 when the diffractive structure formed body 10 is embodied as a sticker, that is, when the diffractive structure formed body 10 has the adhesive layer 16. Or it is used as a release film. The sticker support is peeled off from the adhesive layer 16 when the sticker is attached to an object to be stuck.
 ステッカー用支持体としては、上質紙、コート紙、および、不織布などに離型材料を塗布した離型紙や、塩化ビニル樹脂、ポリエステルテレフタレート樹脂(PET)、および、ポリエチレン樹脂などをフィルム化し、これに離型層を設けた離型フィルムなどを利用することが可能である。 As the support for the sticker, release paper coated with a release material on high-quality paper, coated paper, and nonwoven fabric, vinyl chloride resin, polyester terephthalate resin (PET), polyethylene resin, etc. are made into a film. It is possible to use a release film provided with a release layer.
 (回折構造形成体の製造方法)
 回折構造部13が有する微細な凹凸形状は、上述したように、回折構造形成層12に対し、レリーフ版を熱圧着することにより形成することができる。
(Diffraction structure forming body manufacturing method)
As described above, the fine concavo-convex shape of the diffractive structure portion 13 can be formed by thermocompression bonding a relief plate to the diffractive structure forming layer 12.
 その後、アルミニウムなどからなる薄膜を真空蒸着法などによって、回折構造部13の全体に均一に設ける。次に、印刷層15となるフォトレジスト層を薄膜の表面に均一に塗布して設けることによって、印刷層15が形成される前の回折構造形成体を得る。 Thereafter, a thin film made of aluminum or the like is uniformly provided on the entire diffractive structure 13 by vacuum deposition or the like. Next, a diffractive structure forming body before the printing layer 15 is formed is obtained by uniformly applying a photoresist layer to be the printing layer 15 on the surface of the thin film.
 図7Aから図7Dは、マスク版を用いたパターン露光以降の製造工程を概略的に示す図である。図7Aに示すように、回折構造形成体10aのフォトレジスト層19側に、マスク版30を介して、照射線すなわち照射光40の照射を行い、これによりフォトレジスト層19を露光する。すなわち、フォトレジスト層19に対してパターニング前の反射層14とは反対側から、マスク版30を介してフォトレジスト層19に照射光40を照射する。ここで、フォトレジスト層19に照射される放射線、すなわちフォトレジスト層19が露光される照射線とは、紫外線などの光や電子線などを意味するものとする。 7A to 7D are diagrams schematically showing a manufacturing process after pattern exposure using a mask plate. As shown in FIG. 7A, the photoresist layer 19 side of the diffractive structure forming body 10a is irradiated with an irradiation beam, that is, irradiation light 40 through a mask plate 30, and thereby the photoresist layer 19 is exposed. That is, the irradiation light 40 is irradiated to the photoresist layer 19 through the mask plate 30 from the side opposite to the reflective layer 14 before patterning with respect to the photoresist layer 19. Here, the radiation with which the photoresist layer 19 is irradiated, that is, the irradiation beam with which the photoresist layer 19 is exposed means light such as ultraviolet rays, electron beams, and the like.
 なお、回折構造形成体10aにおいて、支持体11、回折構造形成層12、パターニング前の反射層14、および、フォトレジスト層19が、記載の順に積み重なっている。 In the diffractive structure forming body 10a, the support 11, the diffractive structure forming layer 12, the reflective layer 14 before patterning, and the photoresist layer 19 are stacked in the order described.
 マスク版30は、放射線透過率Aである第1領域30a、放射線透過率Bである第2領域30b、放射線透過率Cである第3領域30cであって、互いに異なる透過率を有する3種の領域からなるパターンを形成している。すなわち、マスク版30は、放射線の透過率がA%である第1領域30a、放射線の透過率がB%である第2領域30b、および、放射線の透過率がC%である第3領域30cから構成される所定のパターンを有している。 The mask plate 30 includes a first region 30a having a radiation transmittance A, a second region 30b having a radiation transmittance B, and a third region 30c having a radiation transmittance C, and having three different transmittances. A pattern consisting of regions is formed. That is, the mask plate 30 includes a first region 30a having a radiation transmittance of A%, a second region 30b having a radiation transmittance of B%, and a third region 30c having a radiation transmittance of C%. Has a predetermined pattern.
 なお、マスク版30の各領域における放射線の透過率は以下のように設定されている。すなわち、フォトレジスト層19のなかで、第1領域30aを介して放射線が照射された領域での現像液に対する耐性が最も低く、第3領域30cを介して放射線が照射された領域での現像液に対する耐性が最も高くなるように、マスク版30における第1領域30aの透過率、および、第3領域30cの透過率が設定されている。加えて、第2領域30bを介して放射線が照射された領域での現像液に対する耐性が、第1領域30aと第3領域30cとの間になるように、マスク版30における第2領域30bの透過率が設定されている。 The radiation transmittance in each region of the mask plate 30 is set as follows. That is, in the photoresist layer 19, the resistance to the developer in the region irradiated with radiation through the first region 30a is the lowest, and the developer in the region irradiated with radiation through the third region 30c. The transmittance of the first region 30a and the transmittance of the third region 30c in the mask plate 30 are set so that the resistance to the highest is obtained. In addition, the second region 30b of the mask plate 30 has a resistance to the developer in the region irradiated with radiation through the second region 30b so that it is between the first region 30a and the third region 30c. The transmittance is set.
 例えば、第1領域30aの透過率は、フォトレジスト層19のなかで、第1領域30aを介して放射線が照射された領域が未硬化の状態であり、これによりフォトレジスト層19が現像液に曝される時間が第1時間になったときに、この領域がエッチングされる値に設定される。また、第2領域30bの透過率は、フォトレジスト層19のなかで、第2領域30bを介して放射線が照射された領域の一部が硬化し、これによりフォトレジスト層19が現像液に曝される時間が第1時間よりも長い第2時間になったときに、この領域がエッチングされる値に設定される。また、第3領域30cの透過率は、フォトレジスト層19のなかで、第3領域30cを介して放射線が照射された領域が、完全に硬化し、且つ、下層である反射層14に密着する値に設定される。 For example, the transmittance of the first region 30a is such that the region irradiated with radiation through the first region 30a is uncured in the photoresist layer 19, so that the photoresist layer 19 becomes a developer. When the exposure time reaches the first time, this region is set to a value to be etched. In addition, the transmittance of the second region 30b is such that a part of the region irradiated with radiation through the second region 30b is cured in the photoresist layer 19, thereby exposing the photoresist layer 19 to the developer. When this time is a second time longer than the first time, this region is set to a value to be etched. The transmittance of the third region 30c is such that the region irradiated with radiation through the third region 30c in the photoresist layer 19 is completely cured and is in close contact with the reflective layer 14 as a lower layer. Set to a value.
 より具体的には、フォトレジスト層19がポジ型のレジストから形成されるときには、透過率Aが最も高く、透過率Cが最も低く、且つ、透過率Bが、透過率Aと透過率Cとの間の透過率に設定される。これに対して、フォトレジスト層19がネガ型のレジストから形成されるときには、透過率Aが最も低く、透過率Cが最も高く、且つ、透過率Bが、透過率Aと透過率Cとの間の透過率に設定される。 More specifically, when the photoresist layer 19 is formed from a positive resist, the transmittance A is the highest, the transmittance C is the lowest, and the transmittance B is the transmittance A and the transmittance C. Is set to the transmittance between. On the other hand, when the photoresist layer 19 is formed from a negative resist, the transmittance A is the lowest, the transmittance C is the highest, and the transmittance B is the difference between the transmittance A and the transmittance C. The transmittance is set between.
 また、マスク版30を介してフォトレジスト層19に照射される放射線には、超高圧水銀ランプ、メタルハライドランプ、LEDランプを光源とする紫外線などを用いることができ、放射線をフォトレジスト層19に照射する際には、放射線が平行光であることが望ましい。 The radiation applied to the photoresist layer 19 through the mask plate 30 can be an ultra-high pressure mercury lamp, a metal halide lamp, an ultraviolet ray using an LED lamp or the like, and the radiation is applied to the photoresist layer 19. In this case, it is desirable that the radiation is parallel light.
 このようにして、マスク版30を介して、フォトレジスト層19にパターン露光がなされることにより、フォトレジスト層19には、露光量Aの第1領域19a、露光量Bの第2領域19b、および露光量Cの第3領域19cが形成される。 In this way, pattern exposure is performed on the photoresist layer 19 through the mask plate 30, so that the photoresist layer 19 has a first region 19a with an exposure amount A, a second region 19b with an exposure amount B, Then, a third region 19c having an exposure amount C is formed.
 なお、フォトレジスト層19がポジ型のレジストから形成されるときには、露光量Aが最も大きく、露光量Cが最も小さく、且つ、露光量Bが、露光量Aと露光量Cとの間の露光量である。これに対して、フォトレジスト層19がネガ型のレジストから形成されるときには、露光量Aが最も小さく、露光量Cが最も大きく、且つ、露光量Bが露光量Aと露光量Cとの間の露光量である。 When the photoresist layer 19 is formed from a positive resist, the exposure amount A is the largest, the exposure amount C is the smallest, and the exposure amount B is an exposure between the exposure amount A and the exposure amount C. Amount. In contrast, when the photoresist layer 19 is formed from a negative resist, the exposure amount A is the smallest, the exposure amount C is the largest, and the exposure amount B is between the exposure amounts A and C. Exposure amount.
 図7Bに示すように、露光済みの回折構造形成体を現像液に投入すると、露光量に応じてフォトレジスト層19が現像される。例えば、フォトレジスト層19のなかで、露光量が露光量Aである第1領域19aが、最初に現像によって除去され、アルミニウムなどから形成される反射層14であって、パターニング前の反射層14のうち、第1領域19aに覆われていた部分が露出する。 As shown in FIG. 7B, when the exposed diffractive structure forming body is put into a developer, the photoresist layer 19 is developed according to the exposure amount. For example, in the photoresist layer 19, the first region 19 a whose exposure amount is the exposure amount A is the reflective layer 14 that is first removed by development and formed of aluminum or the like, and the reflective layer 14 before patterning. Of these, the portion covered by the first region 19a is exposed.
 これにより、図7Cが示すように、パターニング前の反射層14のうち、フォトレジスト層19から露出された部分のみがエッチングされることにより、所定のパターンを有した反射層14が形成される。 Thus, as shown in FIG. 7C, only the portion exposed from the photoresist layer 19 in the reflective layer 14 before patterning is etched, thereby forming the reflective layer 14 having a predetermined pattern.
 その後、図7Dに示すように、更にフォトレジスト層19の現像を進めることにより、フォトレジスト層19のなかで、露光量が露光量Bである第2領域19bが除去され、現像を止めることで露光量Cである第3領域19cが残り、これにより印刷層15が形成される。印刷層15は複数の印刷要素を含み、各印刷要素は、その印刷要素が位置する反射要素の縁よりも内側に位置している。 Thereafter, as shown in FIG. 7D, by further developing the photoresist layer 19, the second region 19b having the exposure amount B of the exposure amount B is removed from the photoresist layer 19, and the development is stopped. The third region 19c having the exposure amount C remains, and thereby the printing layer 15 is formed. The printing layer 15 includes a plurality of printing elements, and each printing element is located on the inner side of the edge of the reflective element on which the printing element is located.
 なお、各印刷要素の縁と、その印刷要素が位置する反射要素の縁とがほぼ一致していてもよい。言い換えれば、回折構造形成層12が広がる平面と対向する平面視において、各印刷要素は、その印刷要素が位置する反射要素と相同な形状を有してもよい。この場合には、回折構造形成体10の製造方法において、図7Dを参照して先に説明した工程を割愛することができる。 In addition, the edge of each printing element and the edge of the reflective element in which the printing element is located may substantially coincide. In other words, in a plan view opposite to the plane in which the diffractive structure forming layer 12 extends, each printing element may have a shape that is homologous to the reflective element in which the printing element is located. In this case, in the manufacturing method of the diffractive structure forming body 10, the steps described above with reference to FIG. 7D can be omitted.
 このように、回折構造形成体10の製造方法は、回折構造形成層12が含む回折構造部13上に反射層14を形成するための薄膜を形成することと、薄膜を所定の形状にエッチングするためのマスクを薄膜上に形成することとを含む。また、回折構造形成体10の製造方法は、マスクを用いて薄膜をエッチングすることによって、反射層14が含む反射要素を薄膜から形成するとともに、反射要素上に位置し、且つ、印刷層15が含む印刷要素をマスクから形成することと、を含む。 As described above, the method for manufacturing the diffractive structure forming body 10 includes forming a thin film for forming the reflective layer 14 on the diffractive structure portion 13 included in the diffractive structure forming layer 12 and etching the thin film into a predetermined shape. Forming a mask on the thin film. Further, in the method of manufacturing the diffractive structure forming body 10, the reflective element included in the reflective layer 14 is formed from the thin film by etching the thin film using a mask, and the printed layer 15 is positioned on the reflective element. Forming a printing element comprising a mask.
 なお、フォトレジスト層19の第2領域19bがエッチングされる条件によって印刷層15あるいは反射層14は以下のような形状を有することがある。すなわち、フォトレジスト層19において第2領域19bと第3領域19cとが並ぶ方向が配列方向であり、印刷層15のなかで、反射層14に接する端部が基端であり、基端とは反対側の端部が先端である。印刷層15を構成する各印刷要素は、配列方向における各縁に向けて、印刷要素の厚さが次第に小さくなる部分を含むことがある。 Note that the print layer 15 or the reflective layer 14 may have the following shape depending on the conditions under which the second region 19b of the photoresist layer 19 is etched. That is, the direction in which the second region 19b and the third region 19c are arranged in the photoresist layer 19 is the arrangement direction, and the end portion in contact with the reflective layer 14 in the printed layer 15 is the base end. The opposite end is the tip. Each printing element constituting the printing layer 15 may include a portion where the thickness of the printing element gradually decreases toward each edge in the arrangement direction.
 また、回折構造部13と対向する平面視において、各反射要素のなかで印刷要素よりも外側に位置する部分が外側要素である。反射要素において、外側要素の厚さが、反射要素における外側要素以外の部分の厚さよりも小さいことがある。 Further, in a plan view facing the diffractive structure portion 13, a portion of each reflective element located outside the printing element is an outer element. In the reflective element, the thickness of the outer element may be smaller than the thickness of the portion other than the outer element in the reflective element.
 また、フォトレジスト層19が露光される条件によってフォトレジスト層19は以下のような形状を有することがある。フォトレジスト層19から形成された印刷層15を構成する各印刷要素は、配列方向における各縁に向けて印刷要素の厚さが次第に小さくなる部分を含むことがある。この印刷要素の厚さが次第に小さくなる部分は、各印刷要素を縁取るように形成される。フォトレジスト層19から形成された印刷層15を構成する各印刷要素において、配列方向における各縁に向けて印刷要素の厚さが次第に小さくなる部分には、以下の2つの場合がある。すなわち、フォトレジスト層19から形成された印刷層15を構成する各印刷要素は、配列方向における各縁に向けて、且つ、先端から基端に向けて、印刷要素の厚さが次第に小さくなる場合と、印刷層15を構成する各印刷要素は、配列方向における各縁に向けて、且つ、基端から先端に向けて、印刷要素の厚さが次第に小さくなる場合とがある。どちらの場合となるかは、フォトレジストがポジ型およびネガ型いずれであるか、フォトレジストの特性、また、現像条件、エッチング条件などにより決定される。 Further, depending on the conditions under which the photoresist layer 19 is exposed, the photoresist layer 19 may have the following shape. Each printing element constituting the printing layer 15 formed from the photoresist layer 19 may include a portion in which the thickness of the printing element gradually decreases toward each edge in the arrangement direction. The portion where the thickness of the printing element gradually decreases is formed so as to border each printing element. In each printing element constituting the printing layer 15 formed from the photoresist layer 19, there are the following two cases where the thickness of the printing element gradually decreases toward each edge in the arrangement direction. That is, when the printing elements constituting the printing layer 15 formed from the photoresist layer 19 are gradually reduced in thickness toward the respective edges in the arrangement direction and from the leading end to the base end. In some cases, the thickness of each printing element constituting the printing layer 15 gradually decreases toward each edge in the arrangement direction and from the base end to the tip end. Which case is determined depends on whether the photoresist is a positive type or a negative type, the characteristics of the photoresist, development conditions, etching conditions, and the like.
 フォトレジスト層19がポジ型のフォトレジストから形成されているときには、印刷層15を構成する各印刷要素において、配列方向における各縁に向けて、且つ、先端から基端に向けて、印刷要素の厚さが次第に小さくなりやすい。フォトレジスト層19がネガのフォトレジストから形成されているときには、印刷層15を構成する各印刷要素において、配列方向における各縁に向けて、且つ、基端から先端に向けて、印刷要素の厚さが次第に小さくなりやすい。 When the photoresist layer 19 is formed of a positive type photoresist, in each printing element constituting the printing layer 15, the printing element 15 is directed toward each edge in the arrangement direction and from the leading end to the base end. The thickness tends to become smaller gradually. When the photoresist layer 19 is formed of a negative photoresist, the thickness of the printing element in each printing element constituting the printing layer 15 is directed to each edge in the arrangement direction and from the base end to the tip end. Tends to become smaller gradually.
 そのため、反射層14および印刷層15が上述した形状を含むか否かによって、回折構造形成体10の備える印刷層15が、反射層14を形成するためのエッチングに用いられたフォトレジスト層19の一部であるか否かを判断することが可能なことがある。 Therefore, depending on whether or not the reflective layer 14 and the printed layer 15 include the above-described shape, the printed layer 15 included in the diffraction structure forming body 10 is used for the etching of the photoresist layer 19 used for etching to form the reflective layer 14. It may be possible to determine whether it is a part.
 ここで、フォトレジスト層19が、酸あるいはアルカリによって現像される材料であれば、フォトレジスト層19の現像工程と反射層14のエッチング工程とを一つの工程として行うことができ、回折構造形成体10の生産性を向上させることができる。 Here, if the photoresist layer 19 is a material that can be developed by acid or alkali, the developing process of the photoresist layer 19 and the etching process of the reflective layer 14 can be performed as one process, and the diffractive structure forming body. The productivity of 10 can be improved.
 (回折構造形成体の検証方法)
 回折構造形成体10は、図1から図3に例示される構成を有し、光学的画像情報部101は、パターン形成された反射層14と回折構造部13を含む回折構造形成層12とによって構成されている。
(Diffraction structure formed body verification method)
The diffractive structure forming body 10 has the configuration illustrated in FIGS. 1 to 3, and the optical image information unit 101 includes a patterned reflection layer 14 and a diffractive structure forming layer 12 including the diffractive structure portion 13. It is configured.
 ここで、印刷層15の透過濃度が0.5以上2.0未満であり、且つ、反射層14の透過濃度が1.0以上であり、さらに、これらを支持する支持体11の透過濃度が0.8以上2.0以下とであることにより、以下の効果を得ることができる。なお、印刷層15の透過濃度、反射層14の透過濃度、および、回折構造形成層12と支持体11との積層体の透過濃度は、以下の関係を有している。すなわち、印刷層15、反射層14、および、回折構造形成層12と支持体11との積層体の間において、印刷層15の透過濃度が最も高く、回折構造形成層12と支持体11との積層体の透過濃度が最も低く、且つ、反射層14の透過濃度が、これらの透過濃度の間の値である。 Here, the transmission density of the printing layer 15 is 0.5 or more and less than 2.0, the transmission density of the reflection layer 14 is 1.0 or more, and the transmission density of the support 11 that supports them is By being 0.8 or more and 2.0 or less, the following effects can be acquired. The transmission density of the printing layer 15, the transmission density of the reflection layer 14, and the transmission density of the laminated body of the diffraction structure forming layer 12 and the support 11 have the following relationship. That is, the transmission density of the printed layer 15 is the highest among the printed layer 15, the reflective layer 14, and the laminate of the diffractive structure forming layer 12 and the support 11. The transmission density of the laminate is the lowest, and the transmission density of the reflective layer 14 is a value between these transmission densities.
 図1に示されるように、回折構造形成層12側からの順光すなわち反射光による観察では、光学的画像情報部101が表示する光学的画像情報のみが観察される。なお、図1には、第1観察方向から観察したときに、回折構造形成体10にて反射された光によって形成される像が示されている。このとき、反射層14にて反射された光によって形成された像が視認されるため、反射層14に対して観察側とは反対側に位置する印刷層15が形成する像は視認されない。 As shown in FIG. 1, only the optical image information displayed by the optical image information unit 101 is observed in the observation with the forward light, that is, the reflected light from the diffraction structure forming layer 12 side. FIG. 1 shows an image formed by light reflected by the diffractive structure forming body 10 when observed from the first observation direction. At this time, since the image formed by the light reflected by the reflective layer 14 is visually recognized, the image formed by the print layer 15 located on the opposite side to the observation side with respect to the reflective layer 14 is not visually recognized.
 これに対し、図2に示されるように、印刷層15側から観察することにより、反射層14のパターンとの位置合わせの精度が高い状態で形成された印刷層15のパターンが観察される。なお、図2には、第2観察方向から観察したときに、回折構造形成体10にて反射された光によって形成される像が示されている。そのため、印刷層15にて反射された光、および、反射層14にて反射された光によって形成される像が視認される。それゆえに、反射層14が形成する像と、反射層14の内側に位置する印刷層15が形成する像とが視認される。 On the other hand, as shown in FIG. 2, by observing from the printed layer 15 side, the pattern of the printed layer 15 formed with high alignment accuracy with the pattern of the reflective layer 14 is observed. FIG. 2 shows an image formed by light reflected by the diffractive structure forming body 10 when observed from the second observation direction. Therefore, an image formed by the light reflected by the printing layer 15 and the light reflected by the reflective layer 14 is visually recognized. Therefore, an image formed by the reflective layer 14 and an image formed by the print layer 15 located inside the reflective layer 14 are visually recognized.
 更に、回折構造形成体10を逆光すなわち透過光によって観察すると、図4に示されるように、反射層14のパターンと位置合わせの精度が高い状態で形成された印刷層15のパターンにより、濃淡のコントラストからなる透かし画像20を観察することができる。言い換えれば、図4には、第1観察方向から回折構造形成体10を観察し、且つ、回折構造形成体10に入射した光であって、少なくとも回折構造形成層12および支持体11を透過した光を観察したときに、回折構造形成体10が表示する像が示されている。 Further, when the diffractive structure forming body 10 is observed by back light, that is, transmitted light, as shown in FIG. 4, the pattern of the reflective layer 14 and the pattern of the printed layer 15 formed with high alignment accuracy, as shown in FIG. The watermark image 20 composed of contrast can be observed. In other words, in FIG. 4, the diffractive structure forming body 10 is observed from the first observation direction, and the light is incident on the diffractive structure forming body 10 and passes through at least the diffractive structure forming layer 12 and the support 11. An image displayed by the diffraction structure forming body 10 when light is observed is shown.
 上述したように、回折構造形成体10において、印刷層15の透過濃度が最も高く、回折構造形成層12と支持体11との積層体の透過濃度が最も低く、且つ、反射層14の透過濃度は、印刷層15の透過濃度と、回折構造形成層12と支持体11との積層体の透過濃度との間の値である。そのため、第1観察方向から回折構造形成体10を透過した光を観察したときには、観察される光において、印刷層15を透過した光の光量が最も小さく、回折構造形成層12と支持体11とを透過した光の光量が最も大きい。また、第1観察方向から回折構造形成体10を透過した光を観察したときには、反射層14を透過した光の光量が、印刷層15を透過した光の光量と、回折構造形成層12と支持体11とを透過した光の光量との間の大きさである。 As described above, in the diffractive structure forming body 10, the transmission density of the printed layer 15 is the highest, the transmission density of the laminate of the diffractive structure forming layer 12 and the support 11 is the lowest, and the transmission density of the reflective layer 14. Is a value between the transmission density of the printing layer 15 and the transmission density of the laminate of the diffraction structure forming layer 12 and the support 11. Therefore, when the light transmitted through the diffractive structure forming body 10 is observed from the first observation direction, the amount of light transmitted through the printing layer 15 is the smallest among the observed lights, and the diffractive structure forming layer 12 and the support 11 The amount of light transmitted through is the largest. When the light transmitted through the diffractive structure forming body 10 is observed from the first observation direction, the amount of light transmitted through the reflective layer 14 is equal to the amount of light transmitted through the printing layer 15, the diffractive structure forming layer 12 and the support. It is a size between the amount of light transmitted through the body 11.
 それゆえに、第1観察方向から回折構造形成体10を透過した光を観察したときには、反射層14によって形成される像に対して、印刷層15によって形成される像が重なるように視認される。 Therefore, when the light transmitted through the diffractive structure forming body 10 is observed from the first observation direction, it is visually recognized so that the image formed by the printing layer 15 overlaps the image formed by the reflection layer 14.
 図8から図10は、別の回折構造形成体10の一例を示す平面図である。図8に示された回折構造形成層12側から観察される光学的画像情報部101に対して、図9に示されるように反射層14と同形であり、且つ反射層14よりも少し縮小された印刷層15が形成されている。言い換えれば、印刷層15は、複数の印刷要素を含み、回折構造形成層12が広がる平面と対向する平面視において、各印刷要素は、その印刷要素が位置する反射要素よりも小さく、且つ、その印刷要素と相似な形状を有している。なお、複数の印刷要素のうち、一部の印刷要素のみが、その印刷要素が位置する反射要素と相似な形状を有してもよい。 8 to 10 are plan views showing an example of another diffractive structure forming body 10. The optical image information portion 101 observed from the diffraction structure forming layer 12 side shown in FIG. 8 is the same shape as the reflective layer 14 as shown in FIG. A printed layer 15 is formed. In other words, the printing layer 15 includes a plurality of printing elements, and each printing element is smaller than the reflecting element in which the printing element is located in a plan view opposite to the plane in which the diffraction structure forming layer 12 extends, and It has a shape similar to the printing element. Note that only some of the printing elements may have a shape similar to the reflective element in which the printing element is located.
 従来、既に形成されている反射層のパターンに合わせて印刷層を形成する場合には、印刷層を形成するための印刷工程において、既に形成されている反射層のパターンとの位置合わせをしながら印刷をする必要があった。そのため、実際には、反射層の位置と印刷層の位置との間に微妙な位置のずれが生じてしまう。 Conventionally, when a printed layer is formed in accordance with a pattern of a reflective layer that has already been formed, while aligning with the pattern of a reflective layer that has already been formed in a printing process for forming the printed layer, I had to print. Therefore, in reality, a slight positional deviation occurs between the position of the reflective layer and the position of the printed layer.
 従って、図9に示すように、僅かに輪郭部を残して反射層14のパターンと正確に位置合わせをしながら、印刷層15を形成することは困難であった。言い換えれば、従来の方法では、反射層14の位置に対する印刷層15の位置を正確に合わせながら、反射層14の縁よりも僅かに内側に位置する印刷層15を反射層14上に形成することは困難であった。これに対し、上述した回折構造形成体10の製造方法を用いることにより、反射層14と印刷層15との位置合わせの精度を高めることができ、反射層14の位置と印刷層15の位置との間のずれを抑えることが可能となる。 Therefore, as shown in FIG. 9, it is difficult to form the print layer 15 while accurately aligning with the pattern of the reflective layer 14 while leaving a slight outline. In other words, in the conventional method, the printed layer 15 positioned slightly inside the edge of the reflective layer 14 is formed on the reflective layer 14 while accurately aligning the position of the printed layer 15 with respect to the position of the reflective layer 14. Was difficult. On the other hand, by using the manufacturing method of the diffractive structure forming body 10 described above, the alignment accuracy between the reflective layer 14 and the print layer 15 can be increased, and the position of the reflective layer 14 and the position of the print layer 15 It is possible to suppress the deviation between the two.
 これにより、図10に示されるように、回折構造形成体10を逆光すなわち透過光で観察すると、均一な輪郭を残して二重の濃淡画像としてパターンを認識することが可能となる。より詳しくは、回折構造形成層12に対して支持体11とは反対側から回折構造形成体10に入射した光であって、少なくとも回折構造形成層12と支持体11とを透過した光を、上述した第2観察方向から観察する。これにより、反射要素を透過した光によって形成される像の内側に、印刷要素を透過した光によって形成される像である透かし画像20が位置する像が視認される。 Thus, as shown in FIG. 10, when the diffractive structure forming body 10 is observed with backlight, that is, transmitted light, it becomes possible to recognize a pattern as a double grayscale image leaving a uniform outline. More specifically, the light incident on the diffractive structure forming body 10 from the opposite side of the support 11 with respect to the diffractive structure forming layer 12 and transmitted through at least the diffractive structure forming layer 12 and the support 11. Observation is performed from the second observation direction described above. Thereby, an image in which the watermark image 20 that is an image formed by the light transmitted through the printing element is positioned inside the image formed by the light transmitted through the reflective element is visually recognized.
 なお、回折構造形成層12が広がる平面と対向する平面視において、各印刷要素の中心が、その印刷要素が位置する反射要素の中心とほぼ一致するように、反射要素上に印刷要素が位置している。そのため、第1観察方向から回折構造形成体10を透過した光が視認されたときには、反射要素によって形成される像のなかで、その反射要素上に位置する印刷要素によって形成される像よりも外側に位置する部分は、ほぼ等しい幅を有する。 It should be noted that the print element is positioned on the reflective element so that the center of each print element substantially coincides with the center of the reflective element on which the print element is located in a plan view opposite to the plane on which the diffractive structure forming layer 12 extends. ing. Therefore, when the light transmitted through the diffractive structure forming body 10 is visually recognized from the first observation direction, the image formed by the reflective element is outside the image formed by the printing element positioned on the reflective element. The portion located at has a substantially equal width.
 また、露光時のマスク版は、透過率が互いに異なる3種の部分を備えているが、透過率が互いに異なる4種以上の領域を備える構成でもよい。このように、透過率が互いに異なる4種以上の領域で構成されたパターンを用いてフォトレジスト層19の露光を行うことで、透過光によって回折構造形成体10を観察したときに、印刷層15のなかにおいて濃淡を表現することも可能となる。これにより、逆光すなわち透過光による観察時に観察者が確認することのできる透かし画像をより表現豊かなものとすること、言い換えれば、透かし画像の意匠性を高めることができる。 Further, the mask plate at the time of exposure includes three types of portions having different transmittances, but may be configured to include four or more regions having different transmittances. In this way, when the photoresist layer 19 is exposed using a pattern composed of four or more regions having different transmittances, the printed layer 15 is observed when the diffractive structure forming body 10 is observed with transmitted light. It is also possible to express shading in the inside. This makes it possible to make the watermark image that can be confirmed by the observer at the time of observation with backlight, that is, transmitted light more expressive, in other words, to improve the design of the watermark image.
 以下、実施例およびその効果について説明するが、実施例は本発明の適用範囲を限定するものではない。 Hereinafter, examples and effects thereof will be described, but the examples do not limit the scope of application of the present invention.
 (実施例1)
 ステッカーの支持体として、厚さが50μmであるポリエチレンテレフタレート(PET)フィルムを使用した。この支持体の片面に、下記インキ組成物をグラビア印刷法にて塗布した後、塗膜を乾燥させることによって、膜厚が1.5μmである回折構造形成層12を形成した。
Example 1
As a support for the sticker, a polyethylene terephthalate (PET) film having a thickness of 50 μm was used. The following ink composition was applied to one side of the support by the gravure printing method, and then the coating film was dried to form the diffraction structure forming layer 12 having a thickness of 1.5 μm.
 (回折構造形成層インキ組成物)
  ウレタン系樹脂         15.0重量部
  トルエン            42.5重量部
  メチルエチルケトン       42.5重量部
(Diffraction structure forming layer ink composition)
Urethane resin 15.0 parts by weight Toluene 42.5 parts by weight Methyl ethyl ketone 42.5 parts by weight
 次に、回折光パターンを発現するためのレリーフ版に熱圧を加えながら回折構造形成層12に押し当て、回折構造形成層12上に所望の回折構造部13を形成した。 Next, while applying pressure to the relief plate for expressing the diffracted light pattern, it was pressed against the diffractive structure forming layer 12 to form the desired diffractive structure 13 on the diffractive structure forming layer 12.
 次に、回折構造部13を有する回折構造形成層12上に、真空蒸着法にてアルミニウムを積層し、膜厚が40nmである反射層14を形成するための薄膜、すなわちパターニング前の反射層14を形成した。 Next, on the diffractive structure forming layer 12 having the diffractive structure 13, aluminum is laminated by a vacuum deposition method, and a thin film for forming the reflective layer 14 having a film thickness of 40 nm, that is, the reflective layer 14 before patterning. Formed.
 次に、パターニング前の反射層14上に、下記インキ組成物を、グラビア印刷法にて塗布した後、塗膜を乾燥させることによって、膜厚が10μmであるフォトレジスト層19を形成した。なお、フォトレジストとして、ネガ型のフォトレジストを用いた。 Next, after applying the following ink composition on the reflection layer 14 before patterning by a gravure printing method, the coating film was dried to form a photoresist layer 19 having a film thickness of 10 μm. Note that a negative photoresist was used as the photoresist.
 (フォトレジスト層インキ組成物)
  紫外線硬化型フォトレジスト   20.0重量部
  疎水性無機フィラー        5.0重量部
  メチルエチルケトン       75.0重量部
(Photoresist layer ink composition)
UV curable photoresist 20.0 parts by weight Hydrophobic inorganic filler 5.0 parts by weight Methyl ethyl ketone 75.0 parts by weight
 次に、光線透過率が98%以上である第3領域、光線透過率が20%である第2領域、光線透過率が0%である第1領域であって、透過率が互いに異なる3種類の領域によって文字や絵柄パターンが構成された露光用のマスク版を用意した。なお、第1領域は不透明であり、第2領域は半透明であり、第3領域は透明であった。フォトレジスト層19上にこのマスク版を重ね合わせ、超高圧水銀ランプを光源とし、更に平行光化した紫外線を、マスク版越しにフォトレジスト層19に照射して、フォトレジスト層19の露光を行なった。 Next, a third region having a light transmittance of 98% or more, a second region having a light transmittance of 20%, and a first region having a light transmittance of 0%, each having three different transmittances. A mask plate for exposure was prepared in which characters and pattern patterns were formed by these areas. The first area was opaque, the second area was translucent, and the third area was transparent. This mask plate is overlaid on the photoresist layer 19, and the photoresist layer 19 is exposed by irradiating the photoresist layer 19 with collimated ultraviolet rays through the mask plate using an ultrahigh pressure mercury lamp as a light source. It was.
 次に、露光済みのフォトレジスト層19を含むフィルム、すなわち、支持体11、回折構造形成層12、反射層14、および、フォトレジスト層19から構成される積層体を1%の水酸化ナトリウム水溶液である現像液に浸漬した。 Next, a film including the exposed photoresist layer 19, that is, a laminate composed of the support 11, the diffractive structure forming layer 12, the reflective layer 14, and the photoresist layer 19 is converted into a 1% sodium hydroxide aqueous solution. It was immersed in the developing solution.
 積層体を現像液に浸漬したところ、フォトレジスト層19のなかで、フォトレジスト層19が露光されるときに、マスク版において光線透過率が0%である領域、すなわち第1領域と対向する未露光部分である第1領域19aが最初に溶解し、これにより、第1領域19aの直下に位置する反射層14が露出した。更に、積層体を現像液に浸漬した状態を維持すると、反射層14のなかで、フォトレジスト層19から露出した部分がエッチングされて溶解した。更に、積層体を現像液に浸漬した状態を維持すると、フォトレジスト層19のなかで、フォトレジスト層19が露光されるときに、マスク版において光線透過率が20%である領域、すなわち第2領域と対向する第2領域19bが溶解し、最後に、フォトレジスト層19のなかで、フォトレジスト層19が露光されるときに、マスク版において光線透過率が98%以上である領域、すなわち第3領域と対向する第3領域19cが印刷層15として反射層14上に残った。これにより、所定の形状にパターニングされた反射層14と印刷層15とを形成した。 When the laminate was immersed in the developer, when the photoresist layer 19 was exposed in the photoresist layer 19, the mask plate had an area where the light transmittance was 0%, that is, the first area facing the first area. The first region 19a, which is the exposed portion, was first dissolved, thereby exposing the reflective layer 14 located immediately below the first region 19a. Furthermore, when the laminate was kept immersed in the developer, the portion of the reflective layer 14 exposed from the photoresist layer 19 was etched and dissolved. Furthermore, if the laminate is kept immersed in the developer, the region of the mask plate where the light transmittance is 20% when the photoresist layer 19 is exposed in the photoresist layer 19, that is, the second layer. The second region 19b facing the region is dissolved, and finally, in the photoresist layer 19, when the photoresist layer 19 is exposed, a region having a light transmittance of 98% or more in the mask plate, that is, the first layer A third region 19c facing the three regions remained on the reflective layer 14 as the print layer 15. Thereby, the reflective layer 14 and the printing layer 15 patterned into a predetermined shape were formed.
 次に、回折構造形成層12、反射層14、および、印刷層15の全面を覆うように、下記インキ組成物をグラビア印刷にて塗布した後、塗膜を乾燥させることによって、膜厚が5μmである接着層16言い換えれば粘着層を積層した。次いで、厚さが約100μmであるクラフト紙の片面にポリエチレン層をラミネートし、ポリエチレン層の上にシリコン処理を施してセパレータを形成した。このセパレータを接着層16に仮粘着させることによって、ステッカーを得た。 Next, the following ink composition is applied by gravure printing so as to cover the entire surface of the diffraction structure forming layer 12, the reflective layer 14, and the printing layer 15, and then the coating film is dried, whereby the film thickness is 5 μm. In other words, an adhesive layer 16 was laminated. Next, a polyethylene layer was laminated on one side of kraft paper having a thickness of about 100 μm, and silicon treatment was performed on the polyethylene layer to form a separator. By sticking this separator to the adhesive layer 16, a sticker was obtained.
 (接着層用インキ組成物)
  アクリル粘着剤         30.0重量部
  酢酸エチル           50.0重量部
  トルエン            20.0重量部
(Ink composition for adhesive layer)
Acrylic adhesive 30.0 parts by weight Ethyl acetate 50.0 parts by weight Toluene 20.0 parts by weight
 こうして得られた回折構造形成体10としてのステッカーでは、順光環境下では反射層14が位置する部分に光が入射すると回折光が発生し、反射層14が有するパターン形状に対応した回折構造による文字や画像が観察されることが認められた。更に逆光環境下では、反射層14の下層に位置する印刷層15が文字や絵柄のパターン状に形成されることで、黒い透かし画像として観察されることが認められた。 In the sticker as the diffractive structure forming body 10 obtained in this way, diffracted light is generated when light is incident on the portion where the reflective layer 14 is located in a normal light environment, and the diffractive structure corresponding to the pattern shape of the reflective layer 14 is used. Letters and images were observed. Furthermore, in a backlit environment, it was recognized that the printed layer 15 located under the reflective layer 14 was formed in a character or pattern pattern, so that it was observed as a black watermark image.
 また、逆光環境下では、反射層14と印刷層15との位置合わせの精度が高いために、文字パターンの印刷層15に同じ形状を有した反射層14が輪郭として観察されること認められた。言い換えれば、反射層14によるマイクロ文字の内側に、反射層14が表示するマイクロ文字よりも微細なマイクロ文字や絵柄を観察することが可能であることが認められた。 Further, in a backlit environment, it was recognized that the reflective layer 14 having the same shape as the printed layer 15 of the character pattern was observed as a contour because the alignment accuracy of the reflective layer 14 and the printed layer 15 was high. . In other words, it was recognized that micro characters and patterns finer than the micro characters displayed by the reflective layer 14 can be observed inside the micro characters by the reflective layer 14.
 なお、順光環境下とは、第1観察方向から回折構造形成体10が反射した光を観察している状態であり、これに対して、逆光環境下とは、第1観察方向から回折構造形成体10を透過した光を観察している状態である。 Note that the normal light environment refers to a state in which the light reflected by the diffractive structure forming body 10 is observed from the first observation direction, while the reverse light environment refers to a diffraction structure from the first observation direction. In this state, the light transmitted through the formed body 10 is observed.
 (実施例2)
 支持体11として、厚さが25μmであるポリエチレンテレフタレート(PET)フィルムを使用した。この支持体11の片面に、下記インキ組成物をグラビア印刷法にて塗布した後、塗膜を乾燥させることによって、膜厚が0.5μmである剥離層17を形成した。
(Example 2)
As the support 11, a polyethylene terephthalate (PET) film having a thickness of 25 μm was used. The following ink composition was applied to one side of the support 11 by a gravure printing method, and then the coating film was dried to form a release layer 17 having a film thickness of 0.5 μm.
 (剥離層インキ組成物)
  ポリアミドイミド樹脂      19.0重量部
  ポリエチレンパウダー       1.0重量部
  ジメチルアセトアミド      30.0重量部
  トルエン            50.0重量部
(Peeling layer ink composition)
Polyamideimide resin 19.0 parts by weight Polyethylene powder 1.0 part by weight Dimethylacetamide 30.0 parts by weight Toluene 50.0 parts by weight
 次に、剥離層17上に下記インキ組成物をグラビア印刷法にて塗布した後、塗膜を乾燥させることによって、膜厚が1.5μmである回折構造形成層12を積層した。その後、回折光パターンを発現するためのレリーフ版に熱圧を加えながら回折構造形成層12に押し当てるエンボス加工を行うことによって、回折構造形成層12上に所望の回折構造部13を形成した。 Next, after applying the following ink composition on the release layer 17 by a gravure printing method, the coating film was dried to laminate the diffraction structure forming layer 12 having a film thickness of 1.5 μm. Then, the desired diffraction structure part 13 was formed on the diffraction structure formation layer 12 by performing the embossing which presses against the diffraction structure formation layer 12, applying a hot pressure to the relief plate for expressing a diffraction light pattern.
 (回折構造形成層インキ組成物)
  ウレタン系樹脂         15.0重量部
  トルエン            42.5重量部
  メチルエチルケトン       42.5重量部
(Diffraction structure forming layer ink composition)
Urethane resin 15.0 parts by weight Toluene 42.5 parts by weight Methyl ethyl ketone 42.5 parts by weight
 次に、回折構造部13を有する回折構造形成層12上に、真空蒸着法にてアルミニウムを積層し、膜厚が40nmである反射層14を形成した。 Next, on the diffractive structure forming layer 12 having the diffractive structure part 13, aluminum was laminated by a vacuum vapor deposition method to form a reflective layer 14 having a film thickness of 40 nm.
 次に、反射層14上に、下記インキ組成物を、グラビア印刷法にて塗布した後に、塗膜を乾燥させることによって、膜厚が10μmであるフォトレジスト層19を形成した。 Next, after applying the following ink composition on the reflective layer 14 by a gravure printing method, the coating layer was dried to form a photoresist layer 19 having a thickness of 10 μm.
 (フォトレジスト層インキ組成物)
  紫外線硬化型フォトレジスト   20.0重量部
  疎水性無機フィラー        5.0重量部
  メチルエチルケトン       75.0重量部
(Photoresist layer ink composition)
UV curable photoresist 20.0 parts by weight Hydrophobic inorganic filler 5.0 parts by weight Methyl ethyl ketone 75.0 parts by weight
 次に、光線透過率が98%以上である第3領域、光線透過率が20%である第2領域、光線透過率が0%である第1領域であって、透過率が互いに異なる3種類の領域によって文字や絵柄のパターンが構成されたマスク版を用意した。なお、第1領域は不透明であり、第2領域は半透明であり、第3領域は透明であった。フォトレジスト層19上にこのマスク版を重ね合わせ、超高圧水銀ランプを光源とし、更に平行光化した紫外線を、マスク版越しにフォトレジスト層19に照射して、フォトレジスト層19の露光を行なった。 Next, a third region having a light transmittance of 98% or more, a second region having a light transmittance of 20%, and a first region having a light transmittance of 0%, each having three different transmittances. We prepared a mask version in which characters and patterns of patterns were composed of the above areas. The first area was opaque, the second area was translucent, and the third area was transparent. This mask plate is overlaid on the photoresist layer 19, and the photoresist layer 19 is exposed by irradiating the photoresist layer 19 with collimated ultraviolet rays through the mask plate using an ultrahigh pressure mercury lamp as a light source. It was.
 次に、露光済みのフォトレジスト層19を含むフィルム、すなわち、支持体11、剥離層17、回折構造形成層12、反射層14、および、フォトレジスト層19から構成される積層体を1%の水酸化ナトリウム水溶液である現像液に浸漬した。 Next, a film including the exposed photoresist layer 19, that is, a laminate composed of the support 11, the release layer 17, the diffraction structure forming layer 12, the reflective layer 14, and the photoresist layer 19, is 1%. It was immersed in the developing solution which is sodium hydroxide aqueous solution.
 積層体を浸漬したところ、フォトレジスト層19のなかで、フォトレジスト層19が露光されるときに、マスク版において光線透過率が0%である領域、すなわち第1領域と対向する未露光部分である第1領域19aが最初に溶解し、これにより、第1領域19aの直下に位置する反射層が露出した。更に、積層体を現像液に浸漬した状態を維持すると、反射層14のなかで、フォトレジスト層19から露出した部分がエッチングされて溶解した。更に、積層体を浸漬した状態を維持すると、フォトレジスト層19のなかで、フォトレジスト層19が露光されるときに、マスク版において光線透過率が20%である領域、すなわち第2領域と対向する第2領域19bが溶解し、最後に、フォトレジスト層19のなかで、フォトレジスト層19が露光されるときに、マスク版において光線透過率が98%以上である領域、すなわち第3領域と対向する第3領域19cが印刷層15として反射層14上に残った。これにより、所定の形状にパターニングされた反射層14と印刷層15とを形成した。 When the laminate is immersed, in the photoresist layer 19, when the photoresist layer 19 is exposed, the mask plate is a region where the light transmittance is 0%, that is, an unexposed portion facing the first region. A certain first region 19a was first dissolved, thereby exposing a reflective layer located immediately below the first region 19a. Furthermore, when the laminate was kept immersed in the developer, the portion of the reflective layer 14 exposed from the photoresist layer 19 was etched and dissolved. Further, when the laminated body is kept immersed, when the photoresist layer 19 is exposed in the photoresist layer 19, the mask plate is opposed to the region having a light transmittance of 20%, that is, the second region. When the second region 19b is dissolved and finally the photoresist layer 19 is exposed in the photoresist layer 19, the mask plate has a light transmittance of 98% or more, that is, the third region. The opposing third region 19c remained on the reflective layer 14 as the printed layer 15. Thereby, the reflective layer 14 and the printing layer 15 patterned into a predetermined shape were formed.
 次に、回折構造形成層12、反射層14、および、印刷層15の全面を覆うように、下記インキ組成物をグラビア印刷法にて塗布した後に、塗膜を乾燥させることによって、膜厚が3μmである接着層16を積層した。これにより、回折構造形成体10としての転写箔を得た。 Next, after coating the following ink composition by the gravure printing method so as to cover the entire surface of the diffractive structure forming layer 12, the reflective layer 14, and the printing layer 15, the film thickness is reduced by drying the coating film. An adhesive layer 16 having a thickness of 3 μm was laminated. Thereby, the transfer foil as the diffractive structure forming body 10 was obtained.
 (接着層用インキ組成物)
  塩化ビニル酢酸ビニル共重合樹脂 15.0重量部
  アクリル樹脂          10.0重量部
  シリカ              1.0重量部
  メチルエチルケトン       44.0重量部
  トルエン            30.0重量部
(Ink composition for adhesive layer)
Vinyl chloride vinyl acetate copolymer resin 15.0 parts by weight Acrylic resin 10.0 parts by weight Silica 1.0 part by weight Methyl ethyl ketone 44.0 parts by weight Toluene 30.0 parts by weight
 次に、厚さが50μmである透明なPETフィルムを、転写箔の被転写基材として準備した。そして、被転写基材上に転写箔を重ねて置き、熱ロール転写機で転写箔の一部を転写してから支持体11を剥離することによって、接着層16、印刷層15、反射層14、回折構造形成層12、および、剥離層17から構成される積層体から支持体11を除去した。 Next, a transparent PET film having a thickness of 50 μm was prepared as a substrate for transfer foil. Then, the transfer foil is placed on the substrate to be transferred, and a part of the transfer foil is transferred with a hot roll transfer machine, and then the support 11 is peeled off, whereby the adhesive layer 16, the printing layer 15, and the reflective layer 14. The support 11 was removed from the laminate composed of the diffraction structure forming layer 12 and the release layer 17.
 これにより、図11に示すように、回折構造形成体10を有する偽造防止媒体である物品50を得た。実施例2では、物品50をギフトカードに具体化した。 Thereby, as shown in FIG. 11, an article 50 which is a forgery prevention medium having the diffractive structure forming body 10 was obtained. In Example 2, the article 50 is embodied as a gift card.
 こうして得られた回折構造形成体付き物品50は、順光環境下では剥離層17側から反射層14が位置する部分に光が入射すると回折光が発生し、これにより、剥離層17側から観察すると、反射層14が有するパターン形状に対応した回折構造による文字や画像が観察されることが認められた。 In the article 50 with a diffractive structure formed body thus obtained, diffracted light is generated when light is incident on the portion where the reflective layer 14 is located from the release layer 17 side in a normal light environment, whereby the observation is performed from the release layer 17 side. Then, it was recognized that the character and image by the diffraction structure corresponding to the pattern shape which the reflection layer 14 has are observed.
 図12に示すように、逆光環境下では、反射層14の下層に位置する印刷層15が文字や絵柄のパターン状に形成されることで、黒い透かし画像として観察されることが認められた。また、逆光環境下では、反射層14と印刷層15との位置合わせの精度が高いために、文字パターンの印刷層15に同じ形状を有した反射層14が輪郭として観察されることが認められた。言い換えれば、反射層14によるマイクロ文字の内側に、反射層14が表現するマイクロ文字よりも微細なマイクロ文字や絵柄を観察することが可能であることが認められた。 As shown in FIG. 12, in a backlit environment, it was recognized that the printed layer 15 positioned below the reflective layer 14 was formed in a pattern of characters or a pattern, so that it was observed as a black watermark image. In addition, in a backlit environment, it is recognized that the reflective layer 14 having the same shape as the printed layer 15 of the character pattern is observed as a contour because the alignment accuracy of the reflective layer 14 and the printed layer 15 is high. It was. In other words, it was recognized that micro characters and patterns finer than the micro characters represented by the reflective layer 14 can be observed inside the micro characters formed by the reflective layer 14.
 一方、接着層16側から透明な被転写基材越しに物品50を観察すると、反射層14と印刷層15とが位置合わせされた状態で観察され、また、印刷層15が着色されている場合には、剥離層17側からは確認することができない印刷層15の色彩も視認されることが認められた。 On the other hand, when the article 50 is observed from the adhesive layer 16 side through the transparent substrate to be transferred, the reflective layer 14 and the printed layer 15 are observed in an aligned state, and the printed layer 15 is colored. It was recognized that the color of the printing layer 15 that cannot be confirmed from the peeling layer 17 side is also visually recognized.
 このように、回折構造形成体10は、ステッカーや転写箔などの偽造防止媒体として具体化され、これにより、各種の物品に回折構造形成体10が付されることによって、偽造や改竄が困難な物品50を提供することができる。 As described above, the diffractive structure forming body 10 is embodied as a forgery prevention medium such as a sticker or a transfer foil, and thus the diffractive structure forming body 10 is attached to various articles, so that it is difficult to forge or tamper. Article 50 can be provided.
 10 … 回折構造形成体
 10a… フォトレジストのパターン形成前回折構造形成体
 11 … 支持体
 12 … 回折構造形成層
 13 … 回折構造形成部
 14 … 反射層
 15 … 印刷層
 16 … 接着層
 17 … 剥離層
 19 … フォトレジスト層
 19a… 第1領域
 19b… 第2領域
 19c… 第3領域
 101… 光学的画像情報部
 20 … 透かし画像
 30 … マスク版
 30a… 第1領域
 30b… 第2領域
 30c… 第3領域
 40 … 照射光
 50 … 物品
DESCRIPTION OF SYMBOLS 10 ... Diffraction structure formation body 10a ... Pre-pattern formation diffraction structure formation body 11 ... Support body 12 ... Diffraction structure formation layer 13 ... Diffraction structure formation part 14 ... Reflection layer 15 ... Print layer 16 ... Adhesion layer 17 ... Release layer DESCRIPTION OF SYMBOLS 19 ... Photoresist layer 19a ... 1st area | region 19b ... 2nd area | region 19c ... 3rd area | region 101 ... Optical image information part 20 ... Watermark image 30 ... Mask plate 30a ... 1st area | region 30b ... 2nd area | region 30c ... 3rd area | region 40 ... Irradiation light 50 ... Article

Claims (8)

  1.  光学的画像情報が記録された回折構造部を含む回折構造形成層と、
     前記回折構造部上の一部に位置するとともに、少なくとも1つの反射要素を含む反射層と、
     少なくとも1つの印刷要素を含むとともに、前記印刷要素が前記反射要素上に位置する印刷層と、を備え、
     前記印刷層は、前記反射層を形成するために用いられるマスクの少なくとも一部である
     回折構造形成体。
    A diffractive structure forming layer including a diffractive structure portion on which optical image information is recorded;
    A reflective layer located on a portion of the diffractive structure and including at least one reflective element;
    A printing layer comprising at least one printing element, wherein the printing element is located on the reflective element,
    The printed layer is at least a part of a mask used for forming the reflective layer.
  2.  前記回折構造形成層が広がる平面と対向する平面視において、
     前記印刷要素は、その印刷要素が位置する前記反射要素の縁よりも内側に位置している
     請求項1に記載の回折構造形成体。
    In a plan view facing the plane in which the diffractive structure forming layer spreads,
    The diffractive structure forming body according to claim 1, wherein the printing element is located inside an edge of the reflective element where the printing element is located.
  3.  前記印刷層は、複数の前記印刷要素を含み、
     複数の前記印刷要素には、前記回折構造形成層が広がる平面と対向する平面視において、その印刷要素が位置する前記反射要素と相似な形状を有した前記印刷要素が含まれる
     請求項2に記載の回折構造形成体。
    The printing layer includes a plurality of the printing elements,
    The plurality of printing elements include the printing element having a shape similar to the reflective element in which the printing element is located in a plan view facing a plane in which the diffraction structure forming layer extends. Diffraction structure formed body.
  4.  前記印刷層が、色材、蛍光材、および、フィラー類のうち、少なくとも1つを含むフォトレジスト層である
     請求項1から3のいずれか一項に記載の回折構造形成体。
    The diffractive structure forming body according to any one of claims 1 to 3, wherein the print layer is a photoresist layer including at least one of a color material, a fluorescent material, and fillers.
  5.  前記回折構造形成層に対して前記反射層とは反対側において前記回折構造形成層に接する支持体をさらに備え、
     前記回折構造形成層と前記支持体とは積層体を構成し、
     前記印刷層、前記反射層、および、前記積層体のなかで、前記印刷層の透過濃度が最も高く、前記積層体の透過濃度が最も低く、且つ、前記反射層の透過濃度が、前記印刷層の透過濃度と前記積層体の透過濃度との間の値である
     請求項1から4のいずれか一項に記載の回折構造形成体。
    A support body in contact with the diffractive structure forming layer on the side opposite to the reflective layer with respect to the diffractive structure forming layer;
    The diffraction structure forming layer and the support constitute a laminate,
    Among the printed layer, the reflective layer, and the laminated body, the transmission density of the printed layer is the highest, the transmission density of the laminated body is the lowest, and the transmission density of the reflective layer is the printed layer. The diffractive structure forming body according to any one of claims 1 to 4, wherein the diffractive structure forming body is a value between the transmission density of the laminated body and the transmission density of the laminated body.
  6.  前記印刷層の透過濃度が0.5以上2.0未満であり、前記反射層の透過濃度が1.0以上であり、且つ、前記支持体の透過濃度が0.8以上2.0以下である
     請求項5に記載の回折構造形成体。
    The transmission density of the printed layer is 0.5 or more and less than 2.0, the transmission density of the reflective layer is 1.0 or more, and the transmission density of the support is 0.8 or more and 2.0 or less. The diffractive structure formed body according to claim 5.
  7.  回折構造形成体と、
     前記回折構造形成体を支持する物品と、を含む回折構造形成体付き物品であって、
     前記回折構造形成体が、請求項1から6のいずれか一項に記載の回折構造形成体である
     回折構造形成体付き物品。
    A diffractive structure forming body;
    An article with a diffractive structure forming body, the article supporting the diffractive structure forming body,
    The article with a diffractive structure forming body is the diffractive structure forming body according to any one of claims 1 to 6.
  8.  回折構造部を含む回折構造形成層と反射要素を含む反射層と印刷要素を含む印刷層とを備える回折構造形成体の製造方法であって、
     前記回折構造部上に、前記反射層を形成するための薄膜を形成することと、
     前記薄膜を所定の形状にエッチングするためのマスクを前記薄膜上に形成することと、
     前記マスクを用いて前記薄膜をエッチングすることによって、前記反射要素を前記薄膜から形成するとともに、前記反射要素上に位置する前記印刷要素を前記マスクから形成することと、を含む
     回折構造形成体の製造方法。
    A method for producing a diffractive structure forming body comprising a diffractive structure forming layer including a diffractive structure part, a reflective layer including a reflective element, and a printed layer including a printing element,
    Forming a thin film for forming the reflective layer on the diffractive structure;
    Forming a mask on the thin film for etching the thin film into a predetermined shape;
    Forming the reflective element from the thin film by etching the thin film using the mask, and forming the printing element positioned on the reflective element from the mask. Production method.
PCT/JP2017/010035 2016-03-14 2017-03-13 Diffraction structure forming body, article provided with diffraction structure forming body, and production method for diffraction structure forming body WO2017159636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505925A JP6939772B2 (en) 2016-03-14 2017-03-13 A method for manufacturing a diffraction structure forming body, an article with a diffraction structure forming body, and a diffraction structure forming body.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-049503 2016-03-14
JP2016049503 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017159636A1 true WO2017159636A1 (en) 2017-09-21

Family

ID=59852302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010035 WO2017159636A1 (en) 2016-03-14 2017-03-13 Diffraction structure forming body, article provided with diffraction structure forming body, and production method for diffraction structure forming body

Country Status (3)

Country Link
JP (1) JP6939772B2 (en)
TW (1) TW201740140A (en)
WO (1) WO2017159636A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167595A (en) * 2009-01-20 2010-08-05 Dainippon Printing Co Ltd Visual information rewrite card
JP2011031574A (en) * 2009-08-05 2011-02-17 Toppan Printing Co Ltd Counterfeit preventing structure and method for manufacturing the same
WO2015174089A1 (en) * 2014-05-13 2015-11-19 凸版印刷株式会社 Diffraction structure transfer foil and forgery prevention medium using same
US20150352887A1 (en) * 2013-02-01 2015-12-10 De La Rue International Limited Security devices and methods of manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167595A (en) * 2009-01-20 2010-08-05 Dainippon Printing Co Ltd Visual information rewrite card
JP2011031574A (en) * 2009-08-05 2011-02-17 Toppan Printing Co Ltd Counterfeit preventing structure and method for manufacturing the same
US20150352887A1 (en) * 2013-02-01 2015-12-10 De La Rue International Limited Security devices and methods of manufacture thereof
WO2015174089A1 (en) * 2014-05-13 2015-11-19 凸版印刷株式会社 Diffraction structure transfer foil and forgery prevention medium using same

Also Published As

Publication number Publication date
JPWO2017159636A1 (en) 2019-01-17
TW201740140A (en) 2017-11-16
JP6939772B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US11110734B2 (en) Security element having a lenticular image
TWI497124B (en) Display and article labeled with display
JP3883232B2 (en) Method of manufacturing a partially transparent security element
KR101858379B1 (en) Diffraction structure transfer foil and forgery prevention medium using same
JP5169083B2 (en) Anti-counterfeit laminate, anti-counterfeit transfer foil, anti-counterfeit seal, anti-counterfeit medium, and methods for producing these
JP2010099929A (en) Security film, transfer foil, and print
JP6256018B2 (en) Diffraction structure and anti-counterfeit medium using the same
JP2013222027A (en) Display body and manufacturing method thereof
JP2011031420A (en) Display and labeled article
CN109291673A (en) A kind of patterning holographic false proof device and preparation method thereof accurately aluminized
JP5169093B2 (en) Anti-counterfeit laminate, anti-counterfeit transfer foil, anti-counterfeit seal, anti-counterfeit medium, and methods for producing these
JP7318666B2 (en) Indicators and printed matter with labels
JP4487521B2 (en) Anti-counterfeit media and anti-counterfeit seal
US20220048311A1 (en) Security documents and methods of manufacture thereof
JP5633391B2 (en) Anti-counterfeit medium having metal thin film layer and anti-counterfeit paper
JP5267075B2 (en) Indicator
JP7120224B2 (en) Information record body and personal proof body
JP6939772B2 (en) A method for manufacturing a diffraction structure forming body, an article with a diffraction structure forming body, and a diffraction structure forming body.
JP6907943B2 (en) Optical elements and articles with optical elements
JP2011231151A (en) Security ink
JP2014240892A (en) Optical element, and method for manufacturing transfer foil for forming optical element
JP2018173463A (en) Hologram structure
JP2011027832A (en) Display body, transfer foil, and forgery prevention medium
JP2012192585A (en) Transfer foil, transfer medium, and method of manufacturing transfer foil
JP7452376B2 (en) Transfer foil and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505925

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766635

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766635

Country of ref document: EP

Kind code of ref document: A1