WO2017159486A1 - Power factor improvement device, and power storage device provided therewith - Google Patents

Power factor improvement device, and power storage device provided therewith Download PDF

Info

Publication number
WO2017159486A1
WO2017159486A1 PCT/JP2017/009195 JP2017009195W WO2017159486A1 WO 2017159486 A1 WO2017159486 A1 WO 2017159486A1 JP 2017009195 W JP2017009195 W JP 2017009195W WO 2017159486 A1 WO2017159486 A1 WO 2017159486A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power factor
load
current
storage battery
Prior art date
Application number
PCT/JP2017/009195
Other languages
French (fr)
Japanese (ja)
Inventor
直晃 萩野
内田 丈
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2017159486A1 publication Critical patent/WO2017159486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power factor correction device and a power storage device including the same.
  • Japanese Unexamined Patent Application Publication No. 2012-120428 discloses a power distribution management system that controls reactive power in a power distribution system having a renewable power generation facility.
  • An object of the present invention is to provide a power factor correction device that improves the power factor of a system and a power storage device including the same.
  • a power factor improving apparatus is connected between a system and a storage battery, converts AC power into DC power, and converts DC power into AC power, the system and the power converter.
  • a current detection unit for detecting an alternating current between a voltage detection unit for detecting an AC voltage between the system and the power conversion unit, and controlling the power conversion unit, the detected AC current and the
  • the storage battery is charged with AC power corresponding to the power consumption of the AC load connected to the grid, and at least one of the AC power is discharged from the storage battery so that the power factor based on the AC voltage becomes a predetermined value.
  • a power factor improvement control unit is connected between a system and a storage battery, converts AC power into DC power, and converts DC power into AC power, the system and the power converter.
  • the power factor correction control unit may charge the storage battery by inputting an AC current corresponding to a consumption current of the AC load in the power conversion unit.
  • the power factor of the system can be set to a predetermined value by inputting an alternating current corresponding to the consumed current of the alternating load to the storage battery.
  • the power conversion unit is connected to the AC load, and the power factor improvement control unit discharges the storage battery and responds to the consumption current of the AC load from the power conversion unit.
  • the AC current may be output to the AC load.
  • the AC power corresponding to the current consumption of the AC load is discharged from the storage battery and supplied to the AC load, so that the power of the system is not consumed by the AC load, and the power factor of the power consumption of the AC load is reduced.
  • the decrease can be suppressed.
  • the power conversion unit is connected to the AC load, converts DC power generated by the power generation device into AC power, and supplies the AC power to the system.
  • the unit may discharge the storage battery and output an AC current corresponding to a consumption current of the AC load from the power conversion unit to the AC load.
  • the power conversion unit is connected to the AC load and supplies AC power discharged from the storage battery to the system.
  • the power factor improvement control unit further includes the storage battery. It is good also as discharging alternating current and outputting the alternating current according to the consumption current of the said alternating current load from the said power converter to the said alternating current load.
  • the power factor correction control unit inputs an AC current corresponding to power consumption of the AC load to the power conversion unit to charge the storage battery, and discharges the storage battery.
  • An alternating current corresponding to the consumption current of the alternating load may be output from the power conversion unit to the system, and the charge amount and the discharge amount of the storage battery may be equal.
  • the accumulator is charged with an alternating current corresponding to the power consumption of the ac load and discharged from the accumulator so that the power factor in the system becomes a predetermined value, and the charge amount and the discharge amount of the accumulator are equal. It has become. Therefore, when the storage battery is in the standby mode in which neither charging nor discharging is performed, it is possible to improve the power factor reduction caused by the power consumption of the AC load while maintaining the apparent standby mode.
  • the power storage device includes any one of the power factor correction devices and the storage battery described above.
  • the power factor of the system can be improved.
  • FIG. 1 is a schematic diagram illustrating a connection example of the power factor correction apparatus according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the power conversion unit and the power factor improvement unit of the power factor correction apparatus illustrated in FIG. 1.
  • FIG. 3 is a diagram illustrating an operation flow of the power factor correction apparatus according to the first embodiment.
  • FIG. 4A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system after the power factor is improved.
  • FIG.4 (b) is the figure which illustrated the electric current waveform which charges a storage battery for power factor improvement in Fig.4 (a).
  • FIG. 5A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system after the power factor is improved.
  • FIG.5 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.5 (a).
  • FIG. 6A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system before and after power factor improvement at the time of selling solar cell power.
  • FIG.6 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.6 (a).
  • FIG. 7A illustrates the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system before and after power factor improvement when the power of the storage battery is supplied to the system.
  • FIG. FIG.7 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.7 (a).
  • FIG. 8 is an operation flowchart of the power factor correction apparatus according to the second embodiment.
  • FIG. 9A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system after power factor improvement when the storage battery is in the standby mode.
  • FIG.9 (b) is the figure which illustrated the electric current waveform at the time of charging / discharging a storage battery for power factor improvement in Fig.9 (a).
  • FIG. 10A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system before power factor improvement in Modification Example (1).
  • FIG.10 (b) is the figure which illustrated the waveform of the input electric current which charges a storage battery for power factor improvement in Fig.10 (a).
  • FIG. 11 is a schematic configuration diagram illustrating a connection example of the power storage device in the modification (2).
  • FIG. 12A is a diagram illustrating the voltage waveform of the system and the current waveform before power factor improvement and the consumption current waveform of the AC load in Modification Example (2).
  • FIG.12 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.12 (a).
  • FIG. 1 is a schematic diagram showing a connection example of the power factor correction apparatus according to the first embodiment of the present invention.
  • a power factor correction apparatus 11 is provided in an energy management system 10 such as a HEMS (Home Energy Management System) provided in a house.
  • HEMS Home Energy Management System
  • the energy management system 10 is connected to the wiring L connected to the grid 20 via the distribution board 12.
  • the power factor improving device 11 and the AC load 13 are connected to the wiring L via the distribution board 12, and the solar cell 14 and the storage battery 15 are connected to the power factor improving device 11, respectively.
  • the AC load 13 is an electrical device that operates by supplying AC power, such as an OA device such as a personal computer or a server installed in a home, a television, a refrigerator, or a lighting.
  • an OA device such as a personal computer or a server installed in a home, a television, a refrigerator, or a lighting.
  • the solar cell 14 includes a solar cell module in which a plurality of cells are connected in series or in parallel, and converts sunlight into DC power by the photovoltaic effect.
  • the storage battery 15 is a rechargeable secondary battery, for example, a lithium ion battery.
  • the storage battery 15 has a charge mode for storing DC power, a discharge mode for discharging DC power, and a standby mode in which neither power storage nor discharge is performed. It operates in the operation mode.
  • the power factor improvement apparatus 11 includes a power conversion unit 11A and a power factor improvement unit 11B.
  • the power factor improving unit 11B controls the power conversion unit 11A so as to charge or discharge the storage battery 15 so that the power factor in the wiring L connecting the system 20 and the distribution board 12 becomes a predetermined value.
  • FIG. 2 is a block diagram showing a schematic configuration of the power conversion unit 11A and the power factor improvement unit 11B of the power factor correction apparatus 11.
  • the power conversion unit 11 ⁇ / b> A includes an AC / DC converter 111 and a DC / DC converter 112.
  • the AC / DC converter 111 converts the AC power from the system 20 into DC power and outputs it to the DC / DC converter 112 under the control of the power factor improving unit 11B, or the DC power from the DC / DC converter 112 is converted. It is converted into AC power and output to the AC load 13 or the system 20.
  • the DC / DC converter 112 converts the DC power output from the AC / DC converter 111 or the DC power generated by the solar battery 14 into a voltage corresponding to the voltage of the storage battery 15 and outputs the voltage to the storage battery 15. Further, the DC / DC converter 112 converts the DC power generated by the solar battery 14 and the DC power discharged from the storage battery 15 into a predetermined voltage and outputs the voltage to the AC / DC converter 111.
  • the power factor improvement unit 11B includes a voltage detection unit 113, a current detection unit 114, and a power factor improvement control unit 115.
  • the voltage detection unit 113 detects the AC voltage in the wiring L, that is, the AC voltage in the system 20, and outputs the detection result to the power factor correction control unit 115.
  • the current detection unit 114 detects the AC current in the wiring L, that is, the AC current in the system 20, and outputs the detection result to the power factor correction control unit 115.
  • the power factor improvement control unit 115 is composed of, for example, a microcomputer.
  • the power factor correction control unit 115 calculates the power factor based on the detected effective value of the alternating current (current effective value) and the detected effective value of the alternating voltage (voltage effective value). Then, the power factor improvement control unit 115 controls the power conversion unit 11A to charge or discharge the storage battery 15 so that the power factor becomes a predetermined value according to the power flow (buying or selling power).
  • Whether the AC load 13 consumes power from the system 20 (power purchase) or whether power is supplied to the system 20 (power sale) is based on the sign of the current value detected by the current detection unit 114. You may make it judge. That is, for example, when the current detection unit 114 is installed so that a positive current value is detected when power is supplied from the grid 20, if the sign of the detected current value is positive, the purchase is made. If it is negative, it is determined that the power is sold.
  • FIG. 3 is a diagram illustrating an operation flow of the power factor correction apparatus 11 according to the present embodiment. In the following description, it is assumed that the storage battery 15 operates in the charge mode or the discharge mode, and the AC load 13 consumes power.
  • the power factor correction apparatus 11 calculates the power factor of the system 20 by using the AC voltage and the AC current detected by the voltage detection unit 113 and the current detection unit 114 in the power factor correction control unit 115, respectively (step S11). . Then, in the case of a power purchase state in which power is not flowing backward to the grid 20 (step S12: No), the power factor improvement control unit 115 is in the charge mode (step S13: Yes). Then, an AC current corresponding to the consumption current of the AC load 13 is input to the AC / DC converter 111 so that the power factor becomes a predetermined value (for example, 1.0), and the storage battery 15 is charged (step S15).
  • a predetermined value for example, 1.0
  • FIG. 4A shows that the voltage waveform W1 in the system 20 when the AC load 13 is consuming power (power purchase), the current consumption waveform W2 of the AC load 13, and the power factor of the system 20 are predetermined values ( It is the figure which illustrated current waveform W3 in system 20 in the case of 1.0).
  • the power factor correction control unit 115 charges the storage battery 15 by controlling the input current in the AC / DC converter 111 so that the current in the system 20 becomes the current waveform W3. That is, the current indicated by the current waveform W4 in FIG. 4B is AC / AC so that the current waveform obtained by combining the consumption current of the AC load 13 and the AC current input to the AC / DC converter 111 becomes the current waveform W3. Input in the DC converter 111 to charge the storage battery 15. Thereby, the current waveform in the system 20 becomes a current waveform W3 in which the distortion of the consumption current waveform W2 is compensated, and the power factor is improved.
  • step S13 when the operation mode of the storage battery 15 is the discharge mode in step S13 (step S13: No), the power factor improvement control unit 115 sets the AC load 13 so that the power factor becomes a predetermined value (for example, 0). The storage battery 15 is discharged so that an alternating current corresponding to the consumed current is output from the AC / DC converter 111 (step S15).
  • a predetermined value for example, 0
  • FIG. 5A shows a voltage waveform W1 in the system 20 at the time of power purchase, a consumption current waveform W2 of the AC load 13, and a current waveform W6 of the system 20 after power factor improvement, as in FIG. 4A.
  • FIG. When the AC load 13 consumes the power of the system 20, reactive power is generated and the power factor of the system 20 is reduced.
  • the storage battery 15 When the storage battery 15 is in the discharge mode, the storage battery 15 is discharged to supplement the power consumption of the AC load 13 with the power of the storage battery 15, and the current waveform W5 of FIG. / Supplied from the DC converter 111 to the AC load 13.
  • the AC load 13 consumes the electric power discharged from the storage battery 15, the current in the system 20 becomes 0 as shown by the current waveform W6 in FIG. 5A, and the power factor becomes 0.
  • the current flowing from the system 20 into the home is 0, a reduction in the power factor of the system 20 due to the AC load 13 consuming the power from the system 20 is suppressed.
  • step S12 when the power is flowing backward in step S12 (step S12: Yes), when the power is generated by the solar cell 14 (step S16: Yes), the power factor correction control unit 115 A current corresponding to the power consumption of the AC load 13 is discharged from the storage battery 15 so that the voltage and current in the system 20 are in opposite phases, that is, the absolute value of the power factor is 1.0, and the AC load 13 (step S17).
  • FIG. 6A shows the voltage waveform W11 of the grid 20, the consumption current waveform W12 of the AC load 13, the current waveform W13 of the grid 20 before power factor improvement, and after power factor improvement during the sale of power of the solar cell 14. It is the figure which illustrated current waveform W14 of system 20 of.
  • the power conversion unit 11 ⁇ / b> A converts the DC power generated by the solar cell 14 into AC power and outputs it so as to have a predetermined power factor (for example, 1.0).
  • a predetermined power factor for example, 1.0.
  • the current waveform in the system 20 is the current waveform W14 in FIG.
  • the consumption current waveform W12 in FIG. 6A the current waveform of the system 20 becomes the current waveform W23 due to the reactive power generated when the AC load 13 consumes power, and the power factor is reduced.
  • the power factor correction control unit 115 discharges the storage battery 15 so that the current and voltage in the system 20 at the time of power sale are in opposite phases, and corresponds to the consumption current of the AC load 13 (b) in FIG.
  • Current waveform W15 is supplied from the AC / DC converter 111 to the AC load 13.
  • the AC load 13 consumes the electric power discharged from the storage battery 15, the current waveform of the system 20 becomes a current waveform W14 shown in FIG. 6A, and the power factor of the system 20 is improved to a predetermined value.
  • step S16 when the electric power discharged from the storage battery 15 is supplied to the system 20 in step S16 (step S16: No), the power factor correction control unit 115 causes the voltage and current in the system 20 to be in opposite phases. That is, the current obtained by adding the current consumption of the AC load 13 is discharged from the storage battery 15 and supplied to the system 20 and the AC load 13 so that the absolute value of the power factor becomes 1.0 (step S18).
  • FIG. 7A shows the voltage waveform W11 of the system 20, the current consumption waveform W12 of the AC load 13 and the current waveform W23 of the system 20 before power factor improvement when the power of the storage battery 15 is supplied to the system 20.
  • FIG. 5 is a diagram illustrating a current waveform W24 of the system 20 after power factor improvement.
  • the power conversion unit 11A converts the DC power of the storage battery 15 into AC power and outputs it so as to have a predetermined power factor (for example, 1.0).
  • a predetermined power factor for example, 1.0
  • the current waveform in the system 20 is the current waveform W24 in FIG.
  • the consumption current waveform W12 in FIG. 7A the current waveform of the system 20 becomes the current waveform W23 due to the reactive power generated by the power consumption of the AC load 13, and the power factor decreases.
  • the power factor correction control unit 115 discharges from the storage battery 15 power corresponding to the power consumed by the AC load 13 in addition to the power supplied to the system 20 so that the current and voltage in the system 20 are in opposite phases. Then, the power consumption of the AC load 13 is supplemented. Accordingly, the AC / DC converter 111 outputs the current waveform W25 in FIG. 7B, which is a combination of the current output to the system 20 and the current corresponding to the consumption current waveform W12. As a result, the AC load 13 consumes AC power supplied from the storage battery 15, and the current waveform of the system 20 becomes a current waveform W24 shown in FIG. 7A, so that the power factor of the system 20 is improved.
  • FIG. 8 is an operation flowchart of the power factor correction apparatus 11 in the present embodiment.
  • the power factor correction apparatus 11 calculates the power factor based on the AC voltage and AC current in the system 20 in the power factor correction control unit 115 (step S11).
  • the power factor improvement control part 115 charges / discharges the electric power according to the power consumption of the alternating current load 13 so that the calculated power factor may become a predetermined value (step S20).
  • the voltage in the system 20 is the voltage waveform W31 shown in FIG. 9A, and the consumption current of the AC load 13 becomes the consumption current waveform W32 shown in FIG. 9A due to the reactive power generated by the power consumption of the AC load 13.
  • the power factor correction control unit 115 charges and discharges the storage battery 15 so that the current waveform in the system 20 becomes the current waveform W33 shown in FIG.
  • the power factor correction control unit 115 is configured so that the current waveform W34 shown in FIG. 9B is input to and output from the AC / DC converter 111 in accordance with the current consumption waveform W32 of the AC load 13.
  • the battery is charged and discharged.
  • the charge amount and discharge amount during charging / discharging are equivalent.
  • the charge amount is a value obtained by integrating the alternating current input from the AC / DC converter 111 to the storage battery 15 with the charging time
  • the discharge amount is the alternating current output from the storage battery 15 to the AC / DC converter 111 with the discharge time. The integrated value.
  • the remaining amount of the storage battery 15 after charging / discharging is substantially the same as before the start of charging / discharging, and apparently the standby mode is maintained. Further, the current in the system 20 becomes a current waveform W33 shown in FIG. 9A, and the power factor of the system 20 is improved to a predetermined value.
  • step S16 of FIG. 3 the power generated by the solar cell 14 is being sold (step S16: Yes), and the storage battery is set so that the power factor of the system 20 becomes a predetermined value.
  • FIG. 10 (a) the example (FIG. 6 (a) (b)) which discharges 15 was demonstrated, you may charge the storage battery 15 at this time.
  • the current waveform W15 ′ shown in FIG. 10 (b) corresponding to the consumption current waveform W12 is changed to AC in order to compensate for the distortion of the consumption current waveform W12 of the AC load 13.
  • Input into DC converter 111 to charge storage battery 15.
  • the current waveform of the system 20 becomes a current waveform W14 '.
  • the power storage device 30 including the power factor improving device 110 and the storage battery 15 It may be installed outside the house.
  • the term “outside the house” refers to the outside (system side) of a charge meter provided for each consumer.
  • the ampere breaker of the electric power company is installed in the distribution board 12, the outside (system side) from the ampere breaker is outside the house.
  • the power factor correction apparatus 110 includes a power conversion unit 11A and a power factor improvement unit 110B similar to those in the first embodiment.
  • the power factor improvement unit 110B detects an AC voltage and an AC current in the system 20, and calculates a power factor in the system 20 based on the detected AC voltage and AC current.
  • the power factor improving unit 110B is configured so that the power factor of the system 20 becomes a predetermined value as in FIGS. 4A and 4B of the first embodiment described above.
  • a current waveform W4 (FIG. 4B) corresponding to the consumption current of the AC load 13 is input to the AC / DC converter 111 to charge the storage battery 15.
  • the power generated by the power generation device may be supplied to the system 20.
  • the power factor improvement unit 110B determines the AC current value to be detected. If the sign is negative, it is determined that the power is being sold.
  • FIG. 12A shows a voltage waveform W11 in the system 20 when the AC load 13 is consuming power during power sale, a consumption current waveform W12 of the AC load 13, and a current waveform in the system 20 before power factor improvement.
  • the current waveform W42 and a current waveform W44 in the system 20 whose power factor is a predetermined value (for example, 1.0) are shown.
  • the current waveform W42 of the system 20 is distorted due to power consumption by the AC load 13 at the time of selling power, and does not have an opposite phase to the voltage waveform W11.
  • the power factor correction apparatus 110 outputs the current waveform W43 shown in FIG. 12B corresponding to the consumption current waveform W12 from the AC / DC converter 111 so as to compensate for the consumption current of the AC load 13.
  • the storage battery 15 is discharged. Thereby, the current waveform of the system 20 becomes a current waveform W44 shown in FIG. 12A, and the power factor of the system 20 is improved to a predetermined value.
  • the power factor improving apparatus of the above-described embodiment has been described as improving the power factor reduction due to the distortion of the AC current waveform in the system, but even when applied to the improvement of the power factor reduction due to the phase shift of the AC current. Good.

Abstract

The purpose of the present invention is to provide a power factor improvement device for improving the power factor of a system. A power factor improvement control device (11) is provided with: a power converter (11A) connected between a system (20) and a storage battery (15); a current detector (114); a voltage detector (113); and a power factor improvement controller (115). The current detector (114) detects alternating current between the system (20) and the power converter (11A), and the voltage detector (113) detects alternating-current voltage between the system (20) and the power converter (11A). The power factor improvement controller (115) performs at least one of charging the storage battery (15) with an alternating-current power that corresponds to the power consumption of an alternating-current load (13) connected to the system (20) and discharging such alternating-current power from the storage battery (15). DRAWING:

Description

力率改善装置、及びそれを備えた蓄電装置Power factor correction device and power storage device including the same
 本発明は、力率改善装置、及びそれを備えた蓄電装置に関する。 The present invention relates to a power factor correction device and a power storage device including the same.
 電力会社の電力系統から需要家の交流負荷に電力を供給する際、交流負荷が誘導性負荷の場合、電圧に対して電流の位相が遅れ、力率が低下する。電力系統の力率が低下すると皮相電力が大きくなり、電力損失が増大するため、電力会社の発電設備に影響する。そのため、従来より、電力系統の力率を改善するための技術が提案されている。例えば、特開2012-120428号公報には、再生可能発電設備を有する配電系統の無効電力を制御する配電管理システムが開示されている。 When supplying power from the power system of the power company to the AC load of the customer, if the AC load is an inductive load, the phase of the current is delayed with respect to the voltage, and the power factor is reduced. When the power factor of the power system decreases, apparent power increases and power loss increases, which affects the power generation facilities of the power company. Therefore, conventionally, techniques for improving the power factor of the power system have been proposed. For example, Japanese Unexamined Patent Application Publication No. 2012-120428 discloses a power distribution management system that controls reactive power in a power distribution system having a renewable power generation facility.
 ところで、工場等の一部の需要家については、負荷の力率を改善することで、力率に応じた料金を割り引くというインセンティブが電力会社から与えられている。今後、一般家庭でも力率に応じた料金インセンティブが与えられる可能性が考えられる。また、電力の小売の自由化を考慮すると、電力系統の力率が一定程度保たれるように需要家ごとに力率を改善することが望ましい。 By the way, for some customers, such as factories, an incentive is given by the electric power company to discount the charge according to the power factor by improving the power factor of the load. In the future, it may be possible that ordinary households will be given a fee incentive according to the power factor. In consideration of the liberalization of power retailing, it is desirable to improve the power factor for each customer so that the power factor of the power system is maintained at a certain level.
 本発明は、系統の力率を改善する力率改善装置及びそれを備えた蓄電装置を提供することを目的とする。 An object of the present invention is to provide a power factor correction device that improves the power factor of a system and a power storage device including the same.
 本発明に係る力率改善装置は、系統と蓄電池との間に接続され、交流電力を直流電力に変換し、直流電力を交流電力に変換する電力変換部と、前記系統と前記電力変換部との間の交流電流を検出する電流検出部と、前記系統と前記電力変換部との間の交流電圧を検出する電圧検出部と、前記電力変換部を制御し、検出された前記交流電流と前記交流電圧とに基づく力率が所定値となるように、前記系統に接続された交流負荷の消費電力に応じた交流電力を前記蓄電池に充電、及び当該交流電力を前記蓄電池から放電の少なくとも一方を行う力率改善制御部と、を備える力率改善装置。 A power factor improving apparatus according to the present invention is connected between a system and a storage battery, converts AC power into DC power, and converts DC power into AC power, the system and the power converter. A current detection unit for detecting an alternating current between, a voltage detection unit for detecting an AC voltage between the system and the power conversion unit, and controlling the power conversion unit, the detected AC current and the The storage battery is charged with AC power corresponding to the power consumption of the AC load connected to the grid, and at least one of the AC power is discharged from the storage battery so that the power factor based on the AC voltage becomes a predetermined value. And a power factor improvement control unit.
 この構成によれば、系統の力率が所定値となるように、交流負荷の電力消費を考慮した交流電力を蓄電池に充電、及び当該交流電力を蓄電池から放電の少なくとも一方を行う。そのため、系統に接続された交流負荷の電力消費によって系統における力率が低下しても、系統の力率を改善することができる。 According to this configuration, at least one of charging the storage battery with AC power considering the power consumption of the AC load and discharging the AC power from the storage battery so that the power factor of the system becomes a predetermined value. Therefore, even if the power factor in the system is reduced due to the power consumption of the AC load connected to the system, the power factor of the system can be improved.
 また、上記力率改善装置において、前記力率改善制御部は、前記電力変換部において、前記交流負荷の消費電流に応じた交流電流を入力して前記蓄電池を充電することとしてもよい。 Further, in the power factor correction apparatus, the power factor correction control unit may charge the storage battery by inputting an AC current corresponding to a consumption current of the AC load in the power conversion unit.
 この構成によれば、交流負荷の消費電流に応じた交流電流を蓄電池に入力することにより、系統の力率を所定値にすることができる。 According to this configuration, the power factor of the system can be set to a predetermined value by inputting an alternating current corresponding to the consumed current of the alternating load to the storage battery.
 また、上記力率改善装置において、前記電力変換部は、前記交流負荷と接続され、前記力率改善制御部は、前記蓄電池を放電して、前記電力変換部から前記交流負荷の消費電流に応じた交流電流を前記交流負荷に出力することとしてもよい。 Further, in the power factor correction apparatus, the power conversion unit is connected to the AC load, and the power factor improvement control unit discharges the storage battery and responds to the consumption current of the AC load from the power conversion unit. Alternatively, the AC current may be output to the AC load.
 この構成によれば、交流負荷の消費電流に応じた交流電流を蓄電池から放電して交流負荷に供給することにより、系統の電力が交流負荷によって消費されず、交流負荷の電力消費による力率の低下を抑制することができる。 According to this configuration, the AC power corresponding to the current consumption of the AC load is discharged from the storage battery and supplied to the AC load, so that the power of the system is not consumed by the AC load, and the power factor of the power consumption of the AC load is reduced. The decrease can be suppressed.
 また、上記力率改善装置において、前記電力変換部は、前記交流負荷と接続され、発電装置で発電された直流電力を交流電力に変換して前記系統へ供給しており、前記力率改善制御部は、前記蓄電池を放電して、前記電力変換部から前記交流負荷の消費電流に応じた交流電流を前記交流負荷に出力することとしてもよい。 Further, in the power factor correction device, the power conversion unit is connected to the AC load, converts DC power generated by the power generation device into AC power, and supplies the AC power to the system. The unit may discharge the storage battery and output an AC current corresponding to a consumption current of the AC load from the power conversion unit to the AC load.
 この構成によれば、交流負荷の消費電流に応じた交流電流を蓄電池から放電して交流負荷に供給するため、発電装置による電力の売電時に交流負荷の電力消費によって生じる力率の低下を改善することができる。 According to this configuration, since the AC current corresponding to the current consumed by the AC load is discharged from the storage battery and supplied to the AC load, the power factor reduction caused by the power consumption of the AC load when the power is sold by the power generator is improved. can do.
 また、上記力率改善装置において、前記電力変換部は、前記交流負荷と接続され、前記蓄電池から放電した交流電力を前記系統に供給しており、前記力率改善制御部は、さらに、前記蓄電池を放電して、前記交流負荷の消費電流に応じた交流電流を前記電力変換部から前記交流負荷に出力することとしてもよい。 In the power factor correction apparatus, the power conversion unit is connected to the AC load and supplies AC power discharged from the storage battery to the system. The power factor improvement control unit further includes the storage battery. It is good also as discharging alternating current and outputting the alternating current according to the consumption current of the said alternating current load from the said power converter to the said alternating current load.
 この構成によれば、交流負荷の消費電流に応じた交流電力を蓄電池から放電して交流負荷に供給するため、蓄電池の電力を系統に供給する際に交流負荷の電力消費によって生じる力率の低下を改善することができる。 According to this configuration, since the AC power corresponding to the consumption current of the AC load is discharged from the storage battery and supplied to the AC load, the power factor decreases due to the power consumption of the AC load when supplying the storage battery power to the system. Can be improved.
 また、上記力率改善装置において、前記力率改善制御部は、前記交流負荷の消費電力に応じた交流電流を前記電力変換部に入力して前記蓄電池を充電するとともに、前記蓄電池を放電して前記交流負荷の消費電流に応じた交流電流を前記電力変換部から前記系統に出力し、前記蓄電池の充電量と放電量は同等であることとしてもよい。 In the power factor correction apparatus, the power factor correction control unit inputs an AC current corresponding to power consumption of the AC load to the power conversion unit to charge the storage battery, and discharges the storage battery. An alternating current corresponding to the consumption current of the alternating load may be output from the power conversion unit to the system, and the charge amount and the discharge amount of the storage battery may be equal.
 この構成によれば、系統における力率が所定値となるように、交流負荷の消費電力に応じた交流電流を蓄電池に充電するとともに蓄電池から放電し、蓄電池の充電量と放電量とが同等となっている。そのため、蓄電池が充電と放電の両方を行わない待機モードの場合に、見かけ上は待機モードを保ちつつ、交流負荷の電力消費によって生じる力率の低下を改善することができる。 According to this configuration, the accumulator is charged with an alternating current corresponding to the power consumption of the ac load and discharged from the accumulator so that the power factor in the system becomes a predetermined value, and the charge amount and the discharge amount of the accumulator are equal. It has become. Therefore, when the storage battery is in the standby mode in which neither charging nor discharging is performed, it is possible to improve the power factor reduction caused by the power consumption of the AC load while maintaining the apparent standby mode.
 本発明に係る蓄電装置は、上記したいずれかの力率改善装置と蓄電池とを備える。 The power storage device according to the present invention includes any one of the power factor correction devices and the storage battery described above.
 この構成によれば、系統の力率が所定値となるように、交流負荷の電力消費を考慮した交流電力を蓄電池に充電、及び当該交流電力を蓄電池から放電の少なくとも一方を行う。そのため、系統に接続された交流負荷の電力消費によって系統における力率が低下しても、系統の力率を改善することができる。 According to this configuration, at least one of charging the storage battery with AC power considering the power consumption of the AC load and discharging the AC power from the storage battery so that the power factor of the system becomes a predetermined value. Therefore, even if the power factor in the system is reduced due to the power consumption of the AC load connected to the system, the power factor of the system can be improved.
 本発明の構成によれば、系統の力率を改善することができる。 According to the configuration of the present invention, the power factor of the system can be improved.
図1は、第1実施形態に係る力率改善装置の接続例を示す概略模式図である。FIG. 1 is a schematic diagram illustrating a connection example of the power factor correction apparatus according to the first embodiment. 図2は、図1に示す力率改善装置の電力変換部と力率改善部の概略構成を示すブロック図である。FIG. 2 is a block diagram illustrating a schematic configuration of the power conversion unit and the power factor improvement unit of the power factor correction apparatus illustrated in FIG. 1. 図3は、第1実施形態における力率改善装置の動作フローを示す図である。FIG. 3 is a diagram illustrating an operation flow of the power factor correction apparatus according to the first embodiment. 図4(a)は、系統の電圧波形、交流負荷の消費電流波形、及び力率改善後の系統の電流波形を例示した図である。図4(b)は、図4(a)において力率改善のために蓄電池を充電する電流波形を例示した図である。FIG. 4A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system after the power factor is improved. FIG.4 (b) is the figure which illustrated the electric current waveform which charges a storage battery for power factor improvement in Fig.4 (a). 図5(a)は、系統の電圧波形、交流負荷の消費電流波形、及び力率改善後の系統の電流波形を例示した図である。図5(b)は、図5(a)において力率改善のために蓄電池を放電する電流波形を例示した図である。FIG. 5A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system after the power factor is improved. FIG.5 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.5 (a). 図6(a)は、太陽電池の電力の売電時における、系統の電圧波形、交流負荷の消費電流波形、及び力率改善前と力率改善後の系統の電流波形を例示した図である。図6(b)は、図6(a)において力率改善のために蓄電池を放電する電流波形を例示した図である。FIG. 6A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system before and after power factor improvement at the time of selling solar cell power. . FIG.6 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.6 (a). 図7(a)は、蓄電池の電力を系統に供給しているときの、系統の電圧波形、交流負荷の消費電流波形、及び力率改善前と力率改善後の系統の電流波形を例示した図である。図7(b)は、図7(a)において力率改善のために蓄電池を放電する電流波形を例示した図である。FIG. 7A illustrates the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system before and after power factor improvement when the power of the storage battery is supplied to the system. FIG. FIG.7 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.7 (a). 図8は、第2実施形態における力率改善装置の動作フロー図である。FIG. 8 is an operation flowchart of the power factor correction apparatus according to the second embodiment. 図9(a)は、系統の電圧波形、交流負荷の消費電流波形、及び蓄電池が待機モードの場合における力率改善後の系統の電流波形を例示した図である。図9(b)は、図9(a)において力率改善のために蓄電池を充放電する際の電流波形を例示した図である。FIG. 9A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system after power factor improvement when the storage battery is in the standby mode. FIG.9 (b) is the figure which illustrated the electric current waveform at the time of charging / discharging a storage battery for power factor improvement in Fig.9 (a). 図10(a)は、変形例(1)における系統の電圧波形、交流負荷の消費電流波形、及び力率改善前の系統の電流波形を例示した図である。図10(b)は、図10(a)において力率改善のために蓄電池を充電する入力電流の波形を例示した図である。FIG. 10A is a diagram illustrating the voltage waveform of the system, the consumption current waveform of the AC load, and the current waveform of the system before power factor improvement in Modification Example (1). FIG.10 (b) is the figure which illustrated the waveform of the input electric current which charges a storage battery for power factor improvement in Fig.10 (a). 図11は、変形例(2)における蓄電装置の接続例を示す概略構成図である。FIG. 11 is a schematic configuration diagram illustrating a connection example of the power storage device in the modification (2). 図12(a)は、変形例(2)における系統の電圧波形及び力率改善前の電流波形と、交流負荷の消費電流波形とを例示した図である。図12(b)は、図12(a)において力率改善のために蓄電池を放電する電流波形を例示した図である。FIG. 12A is a diagram illustrating the voltage waveform of the system and the current waveform before power factor improvement and the consumption current waveform of the AC load in Modification Example (2). FIG.12 (b) is the figure which illustrated the electric current waveform which discharges a storage battery for power factor improvement in Fig.12 (a).
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
<第1実施形態>
 図1は、本発明の第1実施形態に係る力率改善装置の接続例を示す概略模式図である。図1に示すように、宅内に設けられたHEMS(Home Energy Management System)等のエネルギー管理システム10に力率改善装置11は設けられる。
<First Embodiment>
FIG. 1 is a schematic diagram showing a connection example of the power factor correction apparatus according to the first embodiment of the present invention. As shown in FIG. 1, a power factor correction apparatus 11 is provided in an energy management system 10 such as a HEMS (Home Energy Management System) provided in a house.
 エネルギー管理システム10は、系統20と接続された配線Lに分電盤12を介して接続されている。力率改善装置11と交流負荷13は、分電盤12を介して配線Lに接続され、太陽電池14と蓄電池15はそれぞれ力率改善装置11と接続されている。 The energy management system 10 is connected to the wiring L connected to the grid 20 via the distribution board 12. The power factor improving device 11 and the AC load 13 are connected to the wiring L via the distribution board 12, and the solar cell 14 and the storage battery 15 are connected to the power factor improving device 11, respectively.
 交流負荷13は、例えば、宅内に設置されたパーソナルコンピュータやサーバ等のOA機器、テレビ、冷蔵庫、照明等、交流電力の供給によって動作する電気機器である。 The AC load 13 is an electrical device that operates by supplying AC power, such as an OA device such as a personal computer or a server installed in a home, a television, a refrigerator, or a lighting.
 太陽電池14は、複数のセルが直列又は並列に接続された太陽電池モジュールを備え、光起電力効果によって太陽光を直流電力に変換する。 The solar cell 14 includes a solar cell module in which a plurality of cells are connected in series or in parallel, and converts sunlight into DC power by the photovoltaic effect.
 蓄電池15は、繰り返し充放電可能な二次電池であり、例えば、リチウムイオン電池が用いられる。蓄電池15は、直流電力を蓄電する充電モードと、直流電力を放電する放電モードと、蓄電及び放電のいずれも行っていない待機モードとを有し、力率改善装置11の制御の下、いずれかの動作モードで動作する。 The storage battery 15 is a rechargeable secondary battery, for example, a lithium ion battery. The storage battery 15 has a charge mode for storing DC power, a discharge mode for discharging DC power, and a standby mode in which neither power storage nor discharge is performed. It operates in the operation mode.
 力率改善装置11は、電力変換部11Aと力率改善部11Bとを含む。力率改善部11Bは、系統20と分電盤12とを接続する配線Lにおける力率が所定値となるように、電力変換部11Aを制御して電流制御を行い、蓄電池15を充電又は放電させる。 The power factor improvement apparatus 11 includes a power conversion unit 11A and a power factor improvement unit 11B. The power factor improving unit 11B controls the power conversion unit 11A so as to charge or discharge the storage battery 15 so that the power factor in the wiring L connecting the system 20 and the distribution board 12 becomes a predetermined value. Let
 図2は、力率改善装置11の電力変換部11Aと力率改善部11Bの概略構成を示すブロック図である。図2に示すように、電力変換部11Aは、AC/DCコンバータ111とDC/DCコンバータ112とを含む。 FIG. 2 is a block diagram showing a schematic configuration of the power conversion unit 11A and the power factor improvement unit 11B of the power factor correction apparatus 11. As shown in FIG. 2, the power conversion unit 11 </ b> A includes an AC / DC converter 111 and a DC / DC converter 112.
 AC/DCコンバータ111は、力率改善部11Bの制御の下、系統20からの交流電力を直流電力に変換してDC/DCコンバータ112に出力したり、DC/DCコンバータ112からの直流電力を交流電力に変換して交流負荷13又は系統20に出力する。 The AC / DC converter 111 converts the AC power from the system 20 into DC power and outputs it to the DC / DC converter 112 under the control of the power factor improving unit 11B, or the DC power from the DC / DC converter 112 is converted. It is converted into AC power and output to the AC load 13 or the system 20.
 DC/DCコンバータ112は、AC/DCコンバータ111から出力される直流電力や、太陽電池14で生成された直流電力を蓄電池15の電圧に応じた電圧に変換して蓄電池15に出力する。また、DC/DCコンバータ112は、太陽電池14で生成された直流電力、及び蓄電池15から放電された直流電力を所定の電圧に変換してAC/DCコンバータ111に出力する。 The DC / DC converter 112 converts the DC power output from the AC / DC converter 111 or the DC power generated by the solar battery 14 into a voltage corresponding to the voltage of the storage battery 15 and outputs the voltage to the storage battery 15. Further, the DC / DC converter 112 converts the DC power generated by the solar battery 14 and the DC power discharged from the storage battery 15 into a predetermined voltage and outputs the voltage to the AC / DC converter 111.
 力率改善部11Bは、電圧検出部113、電流検出部114、及び力率改善制御部115を有する。 The power factor improvement unit 11B includes a voltage detection unit 113, a current detection unit 114, and a power factor improvement control unit 115.
 電圧検出部113は、配線Lにおける交流電圧、つまり系統20における交流電圧を検出し、検出結果を力率改善制御部115に出力する。 The voltage detection unit 113 detects the AC voltage in the wiring L, that is, the AC voltage in the system 20, and outputs the detection result to the power factor correction control unit 115.
 電流検出部114は、配線Lにおける交流電流、つまり系統20における交流電流を検出し、検出結果を力率改善制御部115に出力する。 The current detection unit 114 detects the AC current in the wiring L, that is, the AC current in the system 20, and outputs the detection result to the power factor correction control unit 115.
 力率改善制御部115は、例えば、マイコン等で構成される。力率改善制御部115は、検出された交流電流の実効値(電流実効値)と、検出された交流電圧の実効値(電圧実効値)とに基づいて力率を算出する。そして、力率改善制御部115は、電力潮流(買電又は売電)に応じて、力率が所定値となるように、電力変換部11Aを制御して蓄電池15を充電又は放電させる。なお、交流負荷13が系統20からの電力を消費(買電)、又は系統20に電力が供給(売電)されているか否かは、電流検出部114で検出される電流値の符号に基づいて判断するようにしてもよい。つまり、例えば、系統20から電力の供給を受けている場合に正の電流値が検出されるように電流検出部114が設置されている場合、検出される電流値の符号が正であれば買電と判断し、負であれば売電であると判断する。 The power factor improvement control unit 115 is composed of, for example, a microcomputer. The power factor correction control unit 115 calculates the power factor based on the detected effective value of the alternating current (current effective value) and the detected effective value of the alternating voltage (voltage effective value). Then, the power factor improvement control unit 115 controls the power conversion unit 11A to charge or discharge the storage battery 15 so that the power factor becomes a predetermined value according to the power flow (buying or selling power). Whether the AC load 13 consumes power from the system 20 (power purchase) or whether power is supplied to the system 20 (power sale) is based on the sign of the current value detected by the current detection unit 114. You may make it judge. That is, for example, when the current detection unit 114 is installed so that a positive current value is detected when power is supplied from the grid 20, if the sign of the detected current value is positive, the purchase is made. If it is negative, it is determined that the power is sold.
 (動作)
 図3は、本実施形態における力率改善装置11の動作フローを示す図である。なお、以下では、蓄電池15は充電モード又は放電モードで動作し、交流負荷13は電力を消費しているものとして説明する。
(Operation)
FIG. 3 is a diagram illustrating an operation flow of the power factor correction apparatus 11 according to the present embodiment. In the following description, it is assumed that the storage battery 15 operates in the charge mode or the discharge mode, and the AC load 13 consumes power.
 力率改善装置11は、力率改善制御部115において、電圧検出部113と電流検出部114によりそれぞれ検出される交流電圧と交流電流とを用い、系統20の力率を算出する(ステップS11)。そして、力率改善制御部115は、系統20へ電力が逆潮流していない買電状態の場合において(ステップS12:No)、蓄電池15の動作モードが充電モードであれば(ステップS13:Yes)、力率が所定値(例えば1.0)となるように、交流負荷13の消費電流に応じた交流電流をAC/DCコンバータ111に入力して蓄電池15を充電する(ステップS15)。 The power factor correction apparatus 11 calculates the power factor of the system 20 by using the AC voltage and the AC current detected by the voltage detection unit 113 and the current detection unit 114 in the power factor correction control unit 115, respectively (step S11). . Then, in the case of a power purchase state in which power is not flowing backward to the grid 20 (step S12: No), the power factor improvement control unit 115 is in the charge mode (step S13: Yes). Then, an AC current corresponding to the consumption current of the AC load 13 is input to the AC / DC converter 111 so that the power factor becomes a predetermined value (for example, 1.0), and the storage battery 15 is charged (step S15).
 図4(a)は、交流負荷13が電力を消費している場合(買電)の系統20における電圧波形W1と、交流負荷13の消費電流波形W2と、系統20の力率が所定値(例えば1.0)である場合の系統20における電流波形W3とを例示した図である。 FIG. 4A shows that the voltage waveform W1 in the system 20 when the AC load 13 is consuming power (power purchase), the current consumption waveform W2 of the AC load 13, and the power factor of the system 20 are predetermined values ( It is the figure which illustrated current waveform W3 in system 20 in the case of 1.0).
 消費電流波形W2で示すように、交流負荷13の電力消費によって、電圧波形W1よりも電流の位相が遅れ、系統20の力率は所定値よりも低下する。この場合、力率改善制御部115は、系統20における電流が電流波形W3となるように、AC/DCコンバータ111において入力電流を制御して蓄電池15を充電する。すなわち、交流負荷13の消費電流と、AC/DCコンバータ111に入力する交流電流とを合わせた電流波形が電流波形W3となるように、図4(b)の電流波形W4で示す電流をAC/DCコンバータ111において入力して蓄電池15を充電する。これにより、系統20における電流波形は、消費電流波形W2の歪みが補償された電流波形W3となり、力率が改善される。 As shown by the current consumption waveform W2, due to the power consumption of the AC load 13, the phase of the current is delayed from the voltage waveform W1, and the power factor of the system 20 falls below a predetermined value. In this case, the power factor correction control unit 115 charges the storage battery 15 by controlling the input current in the AC / DC converter 111 so that the current in the system 20 becomes the current waveform W3. That is, the current indicated by the current waveform W4 in FIG. 4B is AC / AC so that the current waveform obtained by combining the consumption current of the AC load 13 and the AC current input to the AC / DC converter 111 becomes the current waveform W3. Input in the DC converter 111 to charge the storage battery 15. Thereby, the current waveform in the system 20 becomes a current waveform W3 in which the distortion of the consumption current waveform W2 is compensated, and the power factor is improved.
 一方、ステップS13において、蓄電池15の動作モードが放電モードである場合(ステップS13:No)、力率改善制御部115は、力率が所定値(例えば0)となるように、交流負荷13の消費電流に応じた交流電流がAC/DCコンバータ111から出力されるように蓄電池15を放電する(ステップS15)。 On the other hand, when the operation mode of the storage battery 15 is the discharge mode in step S13 (step S13: No), the power factor improvement control unit 115 sets the AC load 13 so that the power factor becomes a predetermined value (for example, 0). The storage battery 15 is discharged so that an alternating current corresponding to the consumed current is output from the AC / DC converter 111 (step S15).
 図5(a)は、上記した図4(a)と同様、買電時の系統20における電圧波形W1と、交流負荷13の消費電流波形W2と、力率改善後の系統20の電流波形W6を例示した図である。交流負荷13が系統20の電力を消費することにより無効電力が生じて系統20の力率が低下する。蓄電池15が放電モードの場合、交流負荷13の消費電力を蓄電池15の電力で補うべく、蓄電池15を放電して、交流負荷13の消費電流に相当する図5(b)の電流波形W5をAC/DCコンバータ111から交流負荷13に供給する。これにより、交流負荷13は蓄電池15から放電された電力を消費し、系統20における電流は図5(a)の電流波形W6で示すように0となり、力率は0になる。この場合、系統20から宅内に流れる電流は0であるため、系統20からの電力を交流負荷13が消費することによる系統20の力率の低下が抑制される。 FIG. 5A shows a voltage waveform W1 in the system 20 at the time of power purchase, a consumption current waveform W2 of the AC load 13, and a current waveform W6 of the system 20 after power factor improvement, as in FIG. 4A. FIG. When the AC load 13 consumes the power of the system 20, reactive power is generated and the power factor of the system 20 is reduced. When the storage battery 15 is in the discharge mode, the storage battery 15 is discharged to supplement the power consumption of the AC load 13 with the power of the storage battery 15, and the current waveform W5 of FIG. / Supplied from the DC converter 111 to the AC load 13. As a result, the AC load 13 consumes the electric power discharged from the storage battery 15, the current in the system 20 becomes 0 as shown by the current waveform W6 in FIG. 5A, and the power factor becomes 0. In this case, since the current flowing from the system 20 into the home is 0, a reduction in the power factor of the system 20 due to the AC load 13 consuming the power from the system 20 is suppressed.
 また、ステップS12において電力が逆潮流している場合に(ステップS12:Yes)、太陽電池14で発電された電力の売電であるとき(ステップS16:Yes)、力率改善制御部115は、系統20における電圧と電流とが逆位相になるように、つまり、力率の絶対値が1.0となるように、交流負荷13の消費電力に応じた電流を蓄電池15から放電して交流負荷13に供給する(ステップS17)。 Further, when the power is flowing backward in step S12 (step S12: Yes), when the power is generated by the solar cell 14 (step S16: Yes), the power factor correction control unit 115 A current corresponding to the power consumption of the AC load 13 is discharged from the storage battery 15 so that the voltage and current in the system 20 are in opposite phases, that is, the absolute value of the power factor is 1.0, and the AC load 13 (step S17).
 図6(a)は、太陽電池14の電力の売電中における、系統20の電圧波形W11、交流負荷13の消費電流波形W12、力率改善前の系統20の電流波形W13、力率改善後の系統20の電流波形W14を例示した図である。 6A shows the voltage waveform W11 of the grid 20, the consumption current waveform W12 of the AC load 13, the current waveform W13 of the grid 20 before power factor improvement, and after power factor improvement during the sale of power of the solar cell 14. It is the figure which illustrated current waveform W14 of system 20 of.
 太陽電池14の電力を売電する場合、電力変換部11Aにおいて、所定の力率(例えば1.0)となるように太陽電池14で生成された直流電力を交流電力に変換して出力する。このとき、交流負荷13による電力消費がなければ、系統20における電流波形は図6(a)の電流波形W14となる。図6(a)の消費電流波形W12で示すように、交流負荷13が電力を消費することによって生じる無効電力によって、系統20の電流波形は電流波形W23となり、力率が低下する。 When selling the power of the solar cell 14, the power conversion unit 11 </ b> A converts the DC power generated by the solar cell 14 into AC power and outputs it so as to have a predetermined power factor (for example, 1.0). At this time, if there is no power consumption by the AC load 13, the current waveform in the system 20 is the current waveform W14 in FIG. As shown by the consumption current waveform W12 in FIG. 6A, the current waveform of the system 20 becomes the current waveform W23 due to the reactive power generated when the AC load 13 consumes power, and the power factor is reduced.
 この場合、力率改善制御部115は、売電時の系統20における電流と電圧とが逆位相となるように、蓄電池15を放電し、交流負荷13の消費電流に相当する図6(b)の電流波形W15をAC/DCコンバータ111から交流負荷13に供給する。これにより、交流負荷13は蓄電池15から放電された電力を消費し、系統20の電流波形は図6(a)に示す電流波形W14となり、系統20の力率は所定値に改善される。 In this case, the power factor correction control unit 115 discharges the storage battery 15 so that the current and voltage in the system 20 at the time of power sale are in opposite phases, and corresponds to the consumption current of the AC load 13 (b) in FIG. Current waveform W15 is supplied from the AC / DC converter 111 to the AC load 13. Thereby, the AC load 13 consumes the electric power discharged from the storage battery 15, the current waveform of the system 20 becomes a current waveform W14 shown in FIG. 6A, and the power factor of the system 20 is improved to a predetermined value.
 一方、ステップS16において、蓄電池15から放電した電力が系統20に供給されている場合(ステップS16:No)、力率改善制御部115は、系統20における電圧と電流とが逆位相となるように、つまり力率の絶対値が1.0となるように、交流負荷13の消費電流を合わせた電流を蓄電池15から放電し、系統20と交流負荷13に供給する(ステップS18)。 On the other hand, when the electric power discharged from the storage battery 15 is supplied to the system 20 in step S16 (step S16: No), the power factor correction control unit 115 causes the voltage and current in the system 20 to be in opposite phases. That is, the current obtained by adding the current consumption of the AC load 13 is discharged from the storage battery 15 and supplied to the system 20 and the AC load 13 so that the absolute value of the power factor becomes 1.0 (step S18).
 図7(a)は、蓄電池15の電力を系統20に供給しているときの、系統20の電圧波形W11、交流負荷13の消費電流波形W12と、力率改善前の系統20の電流波形W23、及び力率改善後の系統20の電流波形W24を例示した図である。 FIG. 7A shows the voltage waveform W11 of the system 20, the current consumption waveform W12 of the AC load 13 and the current waveform W23 of the system 20 before power factor improvement when the power of the storage battery 15 is supplied to the system 20. FIG. 5 is a diagram illustrating a current waveform W24 of the system 20 after power factor improvement.
 蓄電池15から放電した電力を系統20へ供給する場合、電力変換部11Aにおいて、所定の力率(例えば1.0)となるように、蓄電池15の直流電力を交流電力に変換して出力する。このとき、交流負荷13による電力消費がなければ、系統20における電流波形は、図7(a)の電流波形W24となる。図7(a)の消費電流波形W12で示すように、交流負荷13の電力消費によって生じる無効電力により、系統20の電流波形は電流波形W23となり、力率が低下する。 When supplying the electric power discharged from the storage battery 15 to the system 20, the power conversion unit 11A converts the DC power of the storage battery 15 into AC power and outputs it so as to have a predetermined power factor (for example, 1.0). At this time, if there is no power consumption by the AC load 13, the current waveform in the system 20 is the current waveform W24 in FIG. As shown by the consumption current waveform W12 in FIG. 7A, the current waveform of the system 20 becomes the current waveform W23 due to the reactive power generated by the power consumption of the AC load 13, and the power factor decreases.
 この場合、力率改善制御部115は、系統20における電流と電圧とが逆位相となるように、系統20に供給する電力に加え、交流負荷13の消費電力に相当する電力を蓄電池15から放電し、交流負荷13の消費電力を補う。従って、系統20に出力される電流と消費電流波形W12に相当する電流とを合わせた図7(b)の電流波形W25がAC/DCコンバータ111から出力される。これにより、交流負荷13は蓄電池15から供給される交流電力を消費し、系統20の電流波形は図7(a)に示す電流波形W24となり、系統20の力率が改善される。 In this case, the power factor correction control unit 115 discharges from the storage battery 15 power corresponding to the power consumed by the AC load 13 in addition to the power supplied to the system 20 so that the current and voltage in the system 20 are in opposite phases. Then, the power consumption of the AC load 13 is supplemented. Accordingly, the AC / DC converter 111 outputs the current waveform W25 in FIG. 7B, which is a combination of the current output to the system 20 and the current corresponding to the consumption current waveform W12. As a result, the AC load 13 consumes AC power supplied from the storage battery 15, and the current waveform of the system 20 becomes a current waveform W24 shown in FIG. 7A, so that the power factor of the system 20 is improved.
<第2実施形態>
 本実施形態では、系統20から交流負荷13に電力が供給されている場合において、蓄電池15が待機モードの場合の力率改善制御について説明する。
Second Embodiment
In the present embodiment, power factor correction control in the case where the storage battery 15 is in the standby mode when power is supplied from the system 20 to the AC load 13 will be described.
 図8は、本実施形態における力率改善装置11の動作フロー図である。力率改善装置11は、第1実施形態と同様、力率改善制御部115において、系統20における交流電圧と交流電流とに基づいて力率を算出する(ステップS11)。そして、力率改善制御部115は、算出した力率が所定値となるように、交流負荷13の消費電力に応じた電力を蓄電池15に充放電する(ステップS20)。 FIG. 8 is an operation flowchart of the power factor correction apparatus 11 in the present embodiment. As in the first embodiment, the power factor correction apparatus 11 calculates the power factor based on the AC voltage and AC current in the system 20 in the power factor correction control unit 115 (step S11). And the power factor improvement control part 115 charges / discharges the electric power according to the power consumption of the alternating current load 13 so that the calculated power factor may become a predetermined value (step S20).
 系統20における電圧が図9(a)に示す電圧波形W31であり、交流負荷13の電力消費によって生じる無効電力によって、交流負荷13の消費電流が図9(a)に示す消費電流波形W32となる場合、力率改善制御部115は、系統20における電流波形が図9(a)に示す電流波形W33となるように、蓄電池15を充放電させる。 The voltage in the system 20 is the voltage waveform W31 shown in FIG. 9A, and the consumption current of the AC load 13 becomes the consumption current waveform W32 shown in FIG. 9A due to the reactive power generated by the power consumption of the AC load 13. In this case, the power factor correction control unit 115 charges and discharges the storage battery 15 so that the current waveform in the system 20 becomes the current waveform W33 shown in FIG.
 具体的には、力率改善制御部115は、交流負荷13の消費電流波形W32に応じて、図9(b)に示す電流波形W34がAC/DCコンバータ111に入出力されるように蓄電池15の充電と放電とを行う。なお、充放電を行っている間の充電量と放電量は同等である。充電量は、AC/DCコンバータ111から蓄電池15に入力される交流電流を充電時間で積分した値であり、放電量は、蓄電池15からAC/DCコンバータ111に出力された交流電流を放電時間で積分した値である。 Specifically, the power factor correction control unit 115 is configured so that the current waveform W34 shown in FIG. 9B is input to and output from the AC / DC converter 111 in accordance with the current consumption waveform W32 of the AC load 13. The battery is charged and discharged. In addition, the charge amount and discharge amount during charging / discharging are equivalent. The charge amount is a value obtained by integrating the alternating current input from the AC / DC converter 111 to the storage battery 15 with the charging time, and the discharge amount is the alternating current output from the storage battery 15 to the AC / DC converter 111 with the discharge time. The integrated value.
 そのため、充放電後の蓄電池15の残量は充放電の開始前と略同じであり、見かけ上は待機モードが維持される。また、系統20における電流は図9(a)に示す電流波形W33となり、系統20の力率が所定値に改善される。 Therefore, the remaining amount of the storage battery 15 after charging / discharging is substantially the same as before the start of charging / discharging, and apparently the standby mode is maintained. Further, the current in the system 20 becomes a current waveform W33 shown in FIG. 9A, and the power factor of the system 20 is improved to a predetermined value.
<変形例>
 以上、本発明の実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。以下、本発明の変形例について説明する。
<Modification>
As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof. Hereinafter, modifications of the present invention will be described.
 (1)上述した第1実施形態では、図3のステップS16において、太陽電池14で発電された電力を売電中(ステップS16:Yes)、系統20の力率が所定値となるように蓄電池15を放電する例(図6(a)(b))を説明したが、このとき蓄電池15を充電してもよい。具体的には、図10(a)に示すように、交流負荷13の消費電流波形W12の歪みを補償するべく、消費電流波形W12に応じた図10(b)に示す電流波形W15’をAC/DCコンバータ111に入力して蓄電池15を充電する。これにより、系統20の電流波形は電流波形W14’となる。つまり、蓄電池15を充電することによって、太陽電池14から系統20へ出力される電力が相殺され、系統20における電流は0となり、力率は0になる。その結果、系統20からの電力を交流負荷13が消費することによる系統20の力率の低下が抑制される。 (1) In the first embodiment described above, in step S16 of FIG. 3, the power generated by the solar cell 14 is being sold (step S16: Yes), and the storage battery is set so that the power factor of the system 20 becomes a predetermined value. Although the example (FIG. 6 (a) (b)) which discharges 15 was demonstrated, you may charge the storage battery 15 at this time. Specifically, as shown in FIG. 10 (a), the current waveform W15 ′ shown in FIG. 10 (b) corresponding to the consumption current waveform W12 is changed to AC in order to compensate for the distortion of the consumption current waveform W12 of the AC load 13. / Input into DC converter 111 to charge storage battery 15. As a result, the current waveform of the system 20 becomes a current waveform W14 '. That is, by charging the storage battery 15, the power output from the solar battery 14 to the system 20 is canceled out, the current in the system 20 becomes 0, and the power factor becomes 0. As a result, a reduction in the power factor of the system 20 due to the consumption of power from the system 20 by the AC load 13 is suppressed.
 (2)上述した実施形態では、力率改善装置と蓄電池とが宅内に設置される例を説明したが、図11に示すように、力率改善装置110と蓄電池15とを含む蓄電装置30が宅外に設置されていてもよい。本実施形態において、宅外とは、需要家毎に設けられる料金メータの外側(系統側)である。但し、分電盤12の中に電力会社のアンペアブレーカーが設置されている場合、アンペアブレーカーより外側(系統側)を宅外とする。 (2) In the above-described embodiment, the example in which the power factor improving device and the storage battery are installed in the home has been described. However, as illustrated in FIG. 11, the power storage device 30 including the power factor improving device 110 and the storage battery 15 It may be installed outside the house. In this embodiment, the term “outside the house” refers to the outside (system side) of a charge meter provided for each consumer. However, when the ampere breaker of the electric power company is installed in the distribution board 12, the outside (system side) from the ampere breaker is outside the house.
 力率改善装置110は、第1実施形態と同様の電力変換部11Aと力率改善部110Bとを含む。以下、第1実施形態と異なる点について主に説明する。力率改善部110Bは、系統20における交流電圧と交流電流とを検出し、検出した交流電圧と交流電流とに基づいて系統20における力率を算出する。力率改善部110Bは、交流負荷13が電力を消費している場合、上述した第1実施形態の図4(a)(b)と同様、系統20の力率が所定値となるように、交流負荷13の消費電流に応じた電流波形W4(図4(b))をAC/DCコンバータ111に入力して蓄電池15を充電する。 The power factor correction apparatus 110 includes a power conversion unit 11A and a power factor improvement unit 110B similar to those in the first embodiment. Hereinafter, differences from the first embodiment will be mainly described. The power factor improvement unit 110B detects an AC voltage and an AC current in the system 20, and calculates a power factor in the system 20 based on the detected AC voltage and AC current. When the AC load 13 is consuming electric power, the power factor improving unit 110B is configured so that the power factor of the system 20 becomes a predetermined value as in FIGS. 4A and 4B of the first embodiment described above. A current waveform W4 (FIG. 4B) corresponding to the consumption current of the AC load 13 is input to the AC / DC converter 111 to charge the storage battery 15.
 また、図11には図示されていないが、太陽電池等の発電装置が宅内に設置されている場合において、発電装置で発電された電力が系統20に供給されていてもよい。例えば、宅内に電力が供給されている買電の場合に系統20の電流値が正となるように電流検出部が設けられている場合、力率改善部110Bは、検出される交流電流値の符号が負であれば売電状態であると判断する。図12(a)は、売電時に交流負荷13が電力を消費している場合の系統20における電圧波形W11と、交流負荷13の消費電流波形W12と、力率改善前の系統20における電流波形W42と、力率が所定値(例えば1.0)系統20における電流波形W44とを示している。図12(a)に示すように、売電時に交流負荷13による電力消費によって、系統20の電流波形W42は歪み、電圧波形W11と逆位相とならない。この場合、力率改善装置110は、交流負荷13の消費電流を補うように、消費電流波形W12に応じた図12(b)に示す電流波形W43がAC/DCコンバータ111から出力されるように蓄電池15を放電する。これにより、系統20の電流波形は図12(a)に示す電流波形W44となり、系統20の力率が所定値に改善される。 Although not shown in FIG. 11, when a power generation device such as a solar cell is installed in the house, the power generated by the power generation device may be supplied to the system 20. For example, when the current detection unit is provided so that the current value of the system 20 is positive in the case of power purchase in which power is supplied to the home, the power factor improvement unit 110B determines the AC current value to be detected. If the sign is negative, it is determined that the power is being sold. FIG. 12A shows a voltage waveform W11 in the system 20 when the AC load 13 is consuming power during power sale, a consumption current waveform W12 of the AC load 13, and a current waveform in the system 20 before power factor improvement. W42 and a current waveform W44 in the system 20 whose power factor is a predetermined value (for example, 1.0) are shown. As shown in FIG. 12A, the current waveform W42 of the system 20 is distorted due to power consumption by the AC load 13 at the time of selling power, and does not have an opposite phase to the voltage waveform W11. In this case, the power factor correction apparatus 110 outputs the current waveform W43 shown in FIG. 12B corresponding to the consumption current waveform W12 from the AC / DC converter 111 so as to compensate for the consumption current of the AC load 13. The storage battery 15 is discharged. Thereby, the current waveform of the system 20 becomes a current waveform W44 shown in FIG. 12A, and the power factor of the system 20 is improved to a predetermined value.
 (3)上述した実施形態では、力率改善装置11に太陽電池14が接続されている例を説明したが、太陽電池に限らず、風力を用いた発電装置や燃料電池等を発電装置として用いてもよいし、力率改善装置11に発電装置が接続されていなくてもよい。 (3) In the above-described embodiment, the example in which the solar cell 14 is connected to the power factor improving device 11 has been described. Alternatively, the power generation device 11 may not be connected to the power factor correction device 11.
 (4)上述した実施形態の力率改善装置は、系統における交流電流波形の歪みによる力率低下を改善するものとして説明したが、交流電流の位相シフトによる力率低下の改善に適用してもよい。 (4) The power factor improving apparatus of the above-described embodiment has been described as improving the power factor reduction due to the distortion of the AC current waveform in the system, but even when applied to the improvement of the power factor reduction due to the phase shift of the AC current. Good.

Claims (7)

  1.  系統と蓄電池との間に接続され、交流電力を直流電力に変換し、直流電力を交流電力に変換する電力変換部と、
     前記系統と前記電力変換部との間の交流電流を検出する電流検出部と、
     前記系統と前記電力変換部との間の交流電圧を検出する電圧検出部と、
     前記電力変換部を制御し、検出された前記交流電流と前記交流電圧とに基づく力率が所定値となるように、前記系統に接続された交流負荷の消費電力に応じた交流電力を前記蓄電池に充電、及び当該交流電力を前記蓄電池から放電の少なくとも一方を行う力率改善制御部と、
     を備える力率改善装置。
    A power conversion unit that is connected between the grid and the storage battery, converts AC power into DC power, and converts DC power into AC power;
    A current detector for detecting an alternating current between the system and the power converter;
    A voltage detection unit for detecting an AC voltage between the system and the power conversion unit;
    The storage battery stores AC power according to the power consumption of the AC load connected to the system so that the power conversion unit is controlled and a power factor based on the detected AC current and AC voltage becomes a predetermined value. A power factor correction controller that performs at least one of charging and discharging the AC power from the storage battery;
    A power factor improvement device comprising:
  2.  前記力率改善制御部は、前記電力変換部において、前記交流負荷の消費電流に応じた交流電流を入力して前記蓄電池を充電する、請求項1に記載の力率改善装置。 The power factor improvement apparatus according to claim 1, wherein the power factor improvement control unit inputs an alternating current corresponding to a consumption current of the alternating load and charges the storage battery in the power conversion unit.
  3.  前記電力変換部は、前記交流負荷と接続され、
     前記力率改善制御部は、前記蓄電池を放電して、前記電力変換部から前記交流負荷の消費電流に応じた交流電流を前記交流負荷に出力する、請求項1に記載の力率改善装置。
    The power converter is connected to the AC load,
    The power factor correction apparatus according to claim 1, wherein the power factor improvement control unit discharges the storage battery and outputs an AC current corresponding to a consumption current of the AC load from the power conversion unit to the AC load.
  4.  前記電力変換部は、前記交流負荷と接続され、発電装置で発電された直流電力を交流電力に変換して前記系統へ供給しており、
     前記力率改善制御部は、前記蓄電池を放電して、前記電力変換部から前記交流負荷の消費電流に応じた交流電流を前記交流負荷に出力する、請求項1に記載の力率改善装置。
    The power conversion unit is connected to the AC load, converts DC power generated by a power generator into AC power, and supplies the AC power to the system.
    The power factor correction apparatus according to claim 1, wherein the power factor improvement control unit discharges the storage battery and outputs an AC current corresponding to a consumption current of the AC load from the power conversion unit to the AC load.
  5.  前記電力変換部は、前記交流負荷と接続され、前記蓄電池から放電した交流電力を前記系統に供給しており、
     前記力率改善制御部は、さらに、前記蓄電池を放電して、前記交流負荷の消費電流に応じた交流電流を前記電力変換部から前記交流負荷に出力する、請求項1に記載の力率改善装置。
    The power conversion unit is connected to the AC load and supplies AC power discharged from the storage battery to the system.
    2. The power factor improvement according to claim 1, wherein the power factor improvement control unit further discharges the storage battery and outputs an AC current corresponding to a consumption current of the AC load from the power conversion unit to the AC load. apparatus.
  6.  前記力率改善制御部は、前記交流負荷の消費電力に応じた交流電流を前記電力変換部に入力して前記蓄電池を充電するとともに、前記蓄電池を放電して前記交流負荷の消費電流に応じた交流電流を前記電力変換部から前記系統に出力し、前記蓄電池の充電量と放電量は同等である、請求項1に記載の力率改善装置。 The power factor correction control unit inputs an alternating current according to the power consumption of the alternating current load to the power conversion unit to charge the storage battery, and discharges the storage battery to respond to the current consumption of the alternating current load. The power factor correction apparatus according to claim 1, wherein an alternating current is output from the power conversion unit to the system, and a charge amount and a discharge amount of the storage battery are equal.
  7.  請求項1から6のいずれか一項に記載の力率改善装置と、
     前記蓄電池と、
     を備える蓄電装置。
    A power factor correction apparatus according to any one of claims 1 to 6,
    The storage battery;
    A power storage device comprising:
PCT/JP2017/009195 2016-03-14 2017-03-08 Power factor improvement device, and power storage device provided therewith WO2017159486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-049216 2016-03-14
JP2016049216A JP2017169253A (en) 2016-03-14 2016-03-14 Power factor improvement device, and power storage device including the same

Publications (1)

Publication Number Publication Date
WO2017159486A1 true WO2017159486A1 (en) 2017-09-21

Family

ID=59851122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009195 WO2017159486A1 (en) 2016-03-14 2017-03-08 Power factor improvement device, and power storage device provided therewith

Country Status (2)

Country Link
JP (1) JP2017169253A (en)
WO (1) WO2017159486A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687384A (en) * 2018-12-29 2019-04-26 苏州路之遥科技股份有限公司 A kind of high-power excision protection and repositioning method based on calculating reactive power
JP2021508933A (en) * 2018-01-02 2021-03-11 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Electrical appliances and control methods for connecting to AC power
JP7296821B2 (en) 2019-08-22 2023-06-23 三菱電機株式会社 DC power supply, motor drive and air conditioner
JP7313231B2 (en) 2019-08-22 2023-07-24 三菱電機株式会社 DC power supply, motor drive and air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11406791B2 (en) 2009-04-03 2022-08-09 Scientia Vascular, Inc. Micro-fabricated guidewire devices having varying diameters
US11052228B2 (en) 2016-07-18 2021-07-06 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US11207502B2 (en) 2016-07-18 2021-12-28 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US11452541B2 (en) 2016-12-22 2022-09-27 Scientia Vascular, Inc. Intravascular device having a selectively deflectable tip
EP3842091B1 (en) 2017-05-26 2023-09-13 Scientia Vascular, Inc. Micro-fabricated medical device having a non-helical cut arrangement
WO2019083568A1 (en) * 2017-10-27 2019-05-02 Shuy Geoffrey Wen Tai Controlled energy storage balance technology
JP2020108273A (en) * 2018-12-27 2020-07-09 ナブテスコ株式会社 Power distribution system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231169A (en) * 2000-02-18 2001-08-24 Sato Benec Co Ltd Compensating device for unbalanced load in distribution system and building facility
JP2003244868A (en) * 1993-08-12 2003-08-29 Shinano Denki Kk Uninterruptible power supply
JP2004215324A (en) * 2002-12-26 2004-07-29 Ntt Data Corp Active filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244868A (en) * 1993-08-12 2003-08-29 Shinano Denki Kk Uninterruptible power supply
JP2001231169A (en) * 2000-02-18 2001-08-24 Sato Benec Co Ltd Compensating device for unbalanced load in distribution system and building facility
JP2004215324A (en) * 2002-12-26 2004-07-29 Ntt Data Corp Active filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508933A (en) * 2018-01-02 2021-03-11 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Electrical appliances and control methods for connecting to AC power
CN109687384A (en) * 2018-12-29 2019-04-26 苏州路之遥科技股份有限公司 A kind of high-power excision protection and repositioning method based on calculating reactive power
JP7296821B2 (en) 2019-08-22 2023-06-23 三菱電機株式会社 DC power supply, motor drive and air conditioner
JP7313231B2 (en) 2019-08-22 2023-07-24 三菱電機株式会社 DC power supply, motor drive and air conditioner

Also Published As

Publication number Publication date
JP2017169253A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2017159486A1 (en) Power factor improvement device, and power storage device provided therewith
US9559521B1 (en) Renewable energy system with integrated home power
CN103840487B (en) Black-start method, EMS and common ac bus are from net type light storage microgrid
WO2011122672A1 (en) Power supply system, power supply method, and control program for power supply system
JP5756903B2 (en) Power distribution system
JP2015159726A (en) Storage battery system, storage battery controller, and method for controlling storage battery system
JP2011211885A (en) Power storage system
JP5542578B2 (en) DC power supply system
WO2011122669A1 (en) Power supply system, power supply method, and control program for power supply system
JP2012210018A (en) Dc power-feeding system
CN107332270B (en) Energy management device for photovoltaic grid-connected power generation system
JP2010178495A (en) Power conversion apparatus and power conversion system
JP2014230455A (en) Power generator
JP2012253952A (en) Fast charger, fast charging apparatus and fast charging method
JP5938679B2 (en) Bidirectional converter
KR102142983B1 (en) Customer load management system using Uninterruptible Power Supply
WO2011105580A1 (en) Charging system, charge/discharge control apparatus, and charge/discharge control method
US9263896B2 (en) Current control device, current control method, and current control system
JP6541186B2 (en) Power storage system
KR20130051772A (en) Power applying apparatus and method for controlling connecting photovoltaic power generating apparatus
TWI505597B (en) Micro-grid operation system with smart energy management
JP6783581B2 (en) Power supply system
JP6479516B2 (en) Input control power storage system
JP2014121216A (en) Power storage equipment and quick charger
KR102022321B1 (en) Energy storage system

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766487

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766487

Country of ref document: EP

Kind code of ref document: A1