WO2017159266A1 - 体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法 - Google Patents

体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法 Download PDF

Info

Publication number
WO2017159266A1
WO2017159266A1 PCT/JP2017/006778 JP2017006778W WO2017159266A1 WO 2017159266 A1 WO2017159266 A1 WO 2017159266A1 JP 2017006778 W JP2017006778 W JP 2017006778W WO 2017159266 A1 WO2017159266 A1 WO 2017159266A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
blood
systolic
diastolic
flow rate
Prior art date
Application number
PCT/JP2017/006778
Other languages
English (en)
French (fr)
Inventor
知明 橋本
強 長谷川
亮平 勝木
悠希 原
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to EP17766271.5A priority Critical patent/EP3431120A4/en
Priority to JP2018505388A priority patent/JP7085986B2/ja
Publication of WO2017159266A1 publication Critical patent/WO2017159266A1/ja
Priority to US16/113,386 priority patent/US11617819B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3666Cardiac or cardiopulmonary bypass, e.g. heart-lung machines
    • A61M1/3667Cardiac or cardiopulmonary bypass, e.g. heart-lung machines with assisted venous return
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/523Regulation using real-time patient data using blood flow data, e.g. from blood flow transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/546Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • A61M2230/06Heartbeat rate only

Definitions

  • the present invention relates to, for example, an extracorporeal circulation management device for managing an extracorporeal circulation for supplying blood to a patient, an extracorporeal circulation management program, and a control method for the extracorporeal circulation management device.
  • IABP Intra-aortic balloon pumping
  • PCPS percutaneous cardiopulmonary support
  • the cardiopulmonary assist is performed via the femoral arteriovenous device by the artificial heart-lung machine (extracorporeal circulation device).
  • extracorporeal circulation device since a constant blood flow is continuously sent to the patient, the cardiac assist effect is higher than that of IABP, but it collides with the blood delivered from the patient's heart and “mixing” reduces the effect of PCPS. Not only does this occur, but there is a problem that the afterload increases.
  • the two methods can be used together to compensate for both problems.
  • the devices used in the two methods are complicated and that they must be synchronized accurately. is there.
  • the present invention provides an extracorporeal circulation management device and extracorporeal circulation that can deliver blood in synchronism with the heartbeat without using a plurality of devices and without damaging the blood.
  • An object is to provide a device, an extracorporeal circulation management program, and a control method for the extracorporeal circulation management device.
  • the above object is based on the flow rate information storage unit that stores the flow rate information of the blood of the subject acquired from the flow rate measurement unit and the comparison information of the plurality of flow rate information in time series.
  • a candidate information generation unit for identifying systolic candidate information that may correspond to systolic information for contracting the heart, diastolic candidate information that may correspond to diastole information for expanding the heart, and a time series Based on the plurality of systolic candidate information and the appearance information of the plurality of diastolic candidate information, the systolic diastolic information generating unit for specifying the systolic information and diastolic information in each pulsation, the systolic information and the This is achieved by an extracorporeal circulation management device that is configured to transmit blood supply information for blood supply or blood supply stop information for stopping blood supply to the motor unit based on the diastolic information.
  • the heart of a subject contracts based on comparison information (for example, the flow rate value is “large” or “small”, for example, which has the highest flow rate) of a plurality of, for example, three points in time series.
  • Systolic candidate information for example, “minimum value”
  • diastolic candidate information for example, “maximum value”
  • the timing candidate information of the pulsation consisting of the systolic and diastolic phases of the patient's heart can be accurately determined. Can be obtained.
  • the systolic information and the diastolic information in each pulsation are specified based on the plurality of systolic candidate information in time series and the appearance information of the plurality of diastolic candidate information, erroneous contractions
  • the noise information that is the candidate information and the candidate diastolic information can be removed with high accuracy, and the systolic information and the diastolic information based on the heartbeat of the patient or the like can be grasped with high accuracy.
  • systolic information and the diastolic information, it is configured to transmit blood sending information to send blood or blood sending stop information to stop blood sending to the motor unit. Blood can be sent in synchronism with the pulsation of the heart without being used or damaging the blood.
  • threshold information that is reference information of the comparison information and the systolic information or the diastolic information, it is determined whether or not the systolic candidate information or the diastolic candidate information is met. To do.
  • the systolic candidate information or the diastolic candidate information falls on the basis of threshold information that is reference information of the comparison information and the systolic information or the diastolic information, Whether it is systolic candidate information or diastolic candidate information can be accurately determined.
  • the comparison information is comparison information of the flow rate information at three points in time series.
  • the difference information between the systolic information and the diastolic information and the actual pulsation is acquired as difference change information, and the systolic information and the diastolic information are corrected based on the difference change information. It is characterized by.
  • the difference information between the systolic information and the diastolic information and the actual pulsation is acquired as difference change information (for example, difference value data), and based on the difference change information, the systolic information and the diastole Since the information is corrected, blood can be sent in synchronism with the heartbeat. Moreover, since it corrects based on difference change information, it can correct easily.
  • an oxygenator for exchanging blood of the subject's blood a tube that connects the oxygenator and the patient, the flow rate measuring unit that measures the blood flow in the tube, and the tube And a motor unit for feeding blood.
  • a blood-feeding time change information storage unit that stores blood-feeding time change information for changing the blood-feeding time of the oxygenator based on the tube length that is the length of the tube between the oxygenator and the subject It is characterized by having.
  • blood supply timing change information for changing the blood supply timing of the oxygenator is stored based on the tube length (for example, tube length) which is the length of the tube between the oxygenator and the subject.
  • a liquid feed timing change information storage unit for this reason, even if the length of a tube portion such as a tube used by each extracorporeal circulation device is different, blood can be sent in synchronism with the heartbeat at the optimum timing.
  • the extracorporeal circulation management device is provided in the present invention as a flow rate information storage unit for storing the flow rate information of the blood of the subject obtained from the flow rate measurement unit, and comparison information of a plurality of the flow rate information in time series.
  • a systolic / diastolic information generating unit that identifies systolic information and diastolic information in each pulsation based on the plurality of systolic candidate information in time series and the appearance information of the plurality of diastolic candidate information.
  • extracorporeal circulation for causing the extracorporeal circulation management device to function so as to transmit blood sending information to send blood or blood sending stop information to stop blood sending to the motor unit. It is achieved by the management program.
  • the flow rate information storage unit stores the blood flow information of the subject obtained from the flow rate measurement unit, and based on the comparison information of the plurality of flow rate information in time series, A plurality of the systolic phases in a time series by identifying systolic candidate information that may correspond to systolic information that the heart contracts and diastole candidate information that may correspond to the diastole information that the heart dilates Based on the candidate information and the appearance information of the plurality of diastolic candidate information, the systolic information and diastolic information in each pulsation are specified, and blood is sent based on the systolic information and the diastolic information
  • a circulation management device As described above, according to the present invention, it is possible to send blood in synchronism with the heartbeat without using a plurality of devices and without damaging the blood.
  • a circulation management device an extracorporeal circulation device, an extracorporeal circulation management program, and a control method for the extracorporeal circulation management device can be provided.
  • FIG. 1 is a schematic diagram showing a main configuration of an extracorporeal circulation device 1 according to an embodiment of the present invention.
  • the extracorporeal circulation apparatus 1 shown in FIG. 1 is an apparatus that extracorporeally circulates blood of a patient P who is the subject shown in FIG.
  • the patient P when using the extracorporeal circulation device 1 may be a case where the heart does not operate normally or a case where the heart operates normally but the lung does not operate normally.
  • the extracorporeal circulation apparatus 1 shown in FIG. 1 according to the present embodiment is used, for example, in the case of performing cardiac surgery on the patient P or in subsequent treatment in an ICU (intensive care unit).
  • the “centrifugal pump 3” is operated via the drive motor 4 which is a motor part of the extracorporeal circulation apparatus 1, and blood is removed from the vein (vena cava) of the patient P to form an artificial lung part.
  • the extracorporeal blood circulation is performed in which the blood is returned to the artery (aorta) of the patient P again. That is, the extracorporeal circulation device 1 is a device that performs substitution of the heart and lungs.
  • the extracorporeal circulation apparatus 1 has the following configuration. That is, as shown in FIG. 1, the extracorporeal circulation device 1 has a “circulation circuit 1R” for circulating blood, and the circulation circuit 1R includes “artificial lung 2”, “centrifugal pump 3”, and “drive motor 4”. , “Venous side cannula (blood removal side cannula) 5”, “arterial side cannula (blood supply side cannula) 6”, and an extracorporeal circulation management device, for example, a controller 10.
  • the centrifugal pump 3 is also called a blood pump, and pumps other than the centrifugal type can be used.
  • venous cannula 5 is inserted from the femoral vein via the connector 8, and the tip of the venous cannula 5 is placed in the right atrium.
  • An artery side cannula (blood supply side cannula) 6 is inserted from the femoral artery via the connector 9 of FIG.
  • the venous cannula 5 is connected to the centrifugal pump 3 via a connector 8 using, for example, a blood removal tube 11 which is a tube part.
  • a blood removal tube (also referred to as “blood removal line”) 11 is a conduit for sending blood.
  • the centrifugal pump 3 removes blood from the blood removal tube 11 and passes it through the oxygenator 2, which is a blood tube, for example, a blood supply tube 12 (also referred to as “liquid feeding line”) is returned to the patient P.
  • the oxygenator 2 which is a blood tube, for example, a blood supply tube 12 (also referred to as “liquid feeding line”) is returned to the patient P.
  • the artificial lung 2 is disposed between the centrifugal pump 3 and the blood supply tube 12.
  • the oxygenator 2 introduces oxygen gas as shown in FIG. 1 and performs a gas exchange operation (oxygen addition and / or carbon dioxide removal) on the blood.
  • the oxygenator 2 is, for example, a membrane oxygenator, and a hollow fiber membrane oxygenator is particularly preferably used.
  • the blood supply tube 12 is a conduit connecting the artificial lung 2 and the artery side cannula 6.
  • the blood removal tube 11 and the blood supply tube 12 are highly transparent and flexible synthetic resin conduits such as vinyl chloride resin and silicone rubber. In the blood removal tube 11, blood flows in the V direction, and in the blood supply tube 12, blood flows in the W direction.
  • a flow rate sensor 7 that is a flow rate measurement unit that measures a flow rate value of blood in the blood supply tube 12 is arranged in the blood supply tube 12. .
  • the controller 10 of the extracorporeal circulation apparatus 1 shown in FIG. 1 has a computer, and the computer has a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc., not shown. These are connected via a bus.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • FIG. 2 is a schematic block diagram showing the main configuration of the controller 10 of the extracorporeal circulation device 1 of FIG.
  • the controller 10 includes a “controller control unit 21”, and the controller control unit 21 communicates with the drive motor 4, the flow sensor 7, and other devices shown in FIG. 1. 22. It is configured to be able to control a “touch panel 23” formed of a color liquid crystal, an organic EL or the like capable of displaying various information and inputting various information.
  • the controller 10 also controls an input device 24 for inputting various information, a time measuring device 25 for generating time information, and a controller body 26.
  • controller control unit 21 performs the “first various information storage unit 30”, the “second various information storage unit 40”, the “third various information storage unit 50”, and the “fourth various information storage unit” illustrated in FIG.
  • the “information storage unit 60”, “fifth various information storage unit 70” and “sixth various information storage unit 80” are controlled.
  • 3 to 8 are respectively “first various information storage unit 30”, “second various information storage unit 40”, “third various information storage unit 50”, and “fourth various information storage unit 60”. ], “Fifth various information storage unit 70” and “sixth various information storage unit 80”. These contents will be described later.
  • FIGS. 1 to 8 are schematic flowcharts showing main operation examples of the extracorporeal circulation device 1 of FIG.
  • ST the venous cannula 5 and the arterial cannula 6 are inserted into the femoral vein and femoral artery of the patient P and placed without operating the extracorporeal circulation device 1 of FIG.
  • the process proceeds to step (hereinafter referred to as “ST”) 1.
  • the heart of the patient P contracts and pushes blood in the heart into the artery (systole), and regularly expands and receives blood from the vein (diastolic phase). This operation is performed by the myocardium constituting the heart wall. This movement is called pulsation, and the average heart rate per minute is 62-72 for adult boys, 70-80 for girls, and there are fewer elderly people and more children.
  • the flow rate sensor 7 of the extracorporeal circulation device 1 measures the fluctuation of the blood flow value due to the pulsation of the patient P. Become. As shown in FIG. 9, in ST1, the flow sensor 7 measures the blood flow value (an example of flow information) of the patient P flowing in the blood feeding tube 12, and associates it with the time data of the time measuring device 25 of FIG. For example, it is stored in the “flow rate data storage unit 31” which is the flow rate information storage unit of FIG.
  • FIG. 14 is a schematic explanatory diagram illustrating an example of flow rate data stored in the flow rate data storage unit 31. As shown in FIG. 14, the flow rate value reflects the fluctuation due to the heartbeat of the patient P.
  • Step2 it is determined whether or not flow rate value data for 1 minute has been acquired. If flow rate value data for 1 minute has been acquired, the flow proceeds to ST3.
  • the “first determination target flow value data extraction processing unit (program) 32” in FIG. 3 operates to select three flow value data in the “flow data storage unit 31” in chronological order from the oldest, It is stored in the “judgment target flow value data storage unit 33” in FIG. 3 together with the corresponding time data.
  • FIGS. 15 and 16 are schematic explanatory views showing sample data of the data of the “flow rate data storage unit 31” in FIG. “1” to “20” in FIGS. 15 and 16 indicate time-series time data, and the sample value indicates a flow rate value at that time.
  • X1 “1” to “3” (hereinafter referred to as “X1” to “X3”) are selected in chronological order. Then, the flow rate value “1.0” at time X1, the flow rate value “10.0” at X2, and the flow rate value “5.0” at X3 are selected and associated with the time data (such as X1). The data is stored in the data storage unit 33 ”.
  • the “maximum candidate value data determination processing unit (program) 34” in FIG. 3 operates, and refers to the “flow rate data storage unit 31” in FIG.
  • the flow rate values “1.0”, “10.0”, and “5.0” of X1, X2, and X3 are selected, and the second flow rate value of, for example, X2 is two points before and after that (for example, X1 and It is determined whether or not the flow rate value is greater than X3).
  • the second (for example, X2) flow rate value “10.0” is stored in the “maximum candidate value data storage unit 35” of FIG. 3 together with the corresponding time data “X2”.
  • the “maximum value data determination processing unit (program) 36” in FIG. 3 operates, and the “maximum candidate value data” in the “maximum candidate value data storage unit 35”, in the above example, the time data “X2”. It is determined whether or not the flow rate value “10.0” is larger than the “upper threshold value” that is the threshold value information of the “threshold value data storage unit 37”, for example.
  • the “threshold data storage unit 37” stores the minimum reference information when the flow rate value corresponds to the “systole” or “diastolic period” of the patient P described above. Specifically, in the case of “expansion period”, “6.7” or more is used as a reference and stored as “upper threshold data” as shown in FIG. On the other hand, in the case of “systole”, as shown in FIG. 15, “3.3” or less is used as a reference, and is stored as “lower threshold data”.
  • the “maximum value data” is stored as influential data as the flow rate value of the patient P in the “diastolic period”.
  • the stored maximum value data is an example of “dilation period candidate information”.
  • the “maximum value data determination processing unit (program) 36” is an example of the candidate information generation unit.
  • Step10 it is determined whether or not all the flow rate value data of the “flow rate data storage unit 31” in FIG. 3, for example, for one minute have been determined, and when it is determined that all have not been determined, Proceed to ST11.
  • the “second determination target flow value data extraction processing unit (program) 42” in FIG. 4 operates, and among the flow value data in the “flow data storage unit 31” in FIG. Flow rate value data storage unit 33 ", in the above example, the oldest time data of X1 (1.0), X2 (10.0), X3 (5.0), data associated with X1 (X1 (1 ...))), And in the above example, X2 (10.0), X3 (5.0), and X4 (6.5) are selected.
  • the second, this time X3 (5.0) has a larger flow rate value than the first X2 (10.0) and the third X4 (6.5). If it is larger, it is compared with the “upper threshold value”, and if it is “above the upper threshold value”, it is stored in the “maximum value storage unit 41”. This step is determined for all data in the “flow rate data storage unit 31”.
  • time data X2 (10.0), X8 (7.0), X13 (10.0), X16 (10.0), X18 (9 .5) is stored in the “maximum value data storage unit 41” of FIG. 4 as the “maximum value”, that is, the flow rate value candidate of the “diastolic phase” of the heart of the patient P.
  • the “first determination target flow value data extraction processing unit (program) 32” in FIG. 3 operates, and the flow rate data in the “flow rate data storage unit 31” in FIG. Three are selected in order from the oldest, for example, “1.0”, “10.0”, “5.0”, and the “judgment target flow value data storage unit 33 in FIG. 3 together with the corresponding time data X1, X2, X3. To remember.
  • ST13 the “minimum candidate value data determination processing unit (program) 43” of FIG. 4 is operated, and the “judgment target flow value data storage unit 33” is referred to, and three points (for example, X1, X2, etc.) in chronological order are used. X3) flow rate values (“1.0”, “10.0”, “5.0”) are selected, and the second flow rate value of, for example, X2 “10.0” is the two points before and after it. It is determined whether or not the flow rate is smaller than (for example, X1 and X3).
  • ST14 “whether or not the second (X2 (10.0)) is the smallest” is determined. However, in the above example, since it is not the smallest, the process proceeds to ST15.
  • the “second determination target flow value data extraction processing unit (program) 42” in FIG. 4 operates, and among the flow rate value data in the “flow rate data storage unit 31”, “determination” Except for the data (for example, X1) associated with the oldest time data of X1, X2, X3, for example, the data in the target flow rate value data storage unit 33 ”(for example,“ 10. “0”, “5.0” and “6.5” are selected and stored together with the corresponding time data (X2, X3, X4) in the “judgment target flow value data storage unit 33” in FIG. The stored data is deleted.
  • ST13 proceed to ST13.
  • the “minimum candidate value data determination processing unit (program) 43” of FIG. 4 is operated, the “determination target flow value data storage unit 33” is referred to, and three points (for example, in chronological order) , X2, X3, X4) and select the second flow rate value (“10.0”, “5.0”, “6.0”), for example, the flow rate value of X3 “5.0” It is determined whether or not it is smaller than the flow rate values at two points before and after that (for example, X2 and X4).
  • the process proceeds to ST14.
  • the second (X3 (5.0)) is the smallest, the process proceeds to ST16.
  • the second flow rate value (for example, “5.0”) is stored in the “minimum candidate value data storage unit 44” of FIG. 4 together with the corresponding time data (X3).
  • the “minimum value data determination processing unit (program) 45” in FIG. 4 operates, and “minimum candidate value data” in the “minimum candidate value data storage unit 44” in FIG. 5.0) is smaller than the “lower threshold” of “threshold data storage unit 37” in FIG. 3, for example, “3.3”.
  • the stored local minimum data is an example of “systolic candidate information”.
  • the “minimum value data determination processing unit (program) 45” is an example of the candidate information generation unit.
  • the process proceeds to ST20. If it is determined in ST20 that the determination of all the flow rate data for one minute in the “flow rate data storage unit 31” has been completed, the storage in the “minimum value storage unit 46” ends.
  • the time data X1 (1.0), X9 (1.5), X11 (2.0), X14 (1.5), and X20 (1.5) are “minimum values”. In other words, it is stored in the “minimum value data storage unit 46” of FIG.
  • the “pulsation noise deletion processing unit (program) 51” in FIG. 5 operates and refers to the “maximum value data storage unit 41” and the “minimum value data storage unit 46” in FIG. Extract.
  • the “first pulsation start time data” is an example of systolic information.
  • “X1” in FIG. 15 which is “minimum value data” corresponding to “at the start of the first pulsation” and “maximum value” and “time data” closest in time series
  • “X2” in the example of FIG. Is stored in the “beat period data storage unit 52” of FIG. 5 as the maximum value of “beat of the first beat” and the “first beat maximum time data” that is the time data thereof.
  • This “first pulsation maximum time data” is an example of diastole information.
  • the “pulsation noise deletion processing unit (program) 51” is an example of the systolic / diastolic period information generation unit.
  • ST23 the time data of “maximum value” of “beat of the first beat” which is “first beat maximum value time data”, “X2” in the above example, in time series. “Minimum value data” and “time data” that are closest to each other, in the example of FIG. 15, “X9” is “the second beat start data” that is the “start time” of the “second beat”. Is stored in the “beat period data storage unit 52” in FIG.
  • the maximum value of “X8” in FIG. 15 is deleted as noise data. This is because the “minimum value” and the “maximum value” of the pulsation are alternately generated, so that “X8” generated continuously with “X2” is processed as noise, and the “systole” of the patient P is processed. This is to accurately identify the “diastolic period”.
  • “X9” in FIG. 15 that is “minimum value data” corresponding to “at the start of the second pulsation” and “maximum value” and “time data” that are closest in time series
  • “X13” in the example of FIG. Is stored in the “beat period data storage unit 52” as the maximum value of “the beat of the second beat” and the “second beat maximum time data” that is the time data thereof. That is, the “minimum value” of X11 is deleted as noise.
  • the pulsation information including the “systole” and “diastolic” of the patient P is shown in FIG. 5 is stored in the “beat period data storage unit 52”.
  • data of “systole (at the start of pulsation)” and “diastolic phase (at the time of pulsation maximum)” of each pulsation repeated 120 times per minute is stored together with the time information.
  • the extracorporeal circulation device 1 sends blood from an artificial lung 2 to a patient P via a blood sending tube 12 or the like. At that time, the process is performed in synchronization with the “systole” and “diastolic” periods of the heart of the patient P.
  • the length of the blood supply tube 12 of the extracorporeal circulation device 1 may differ depending on the type of the extracorporeal circulation device 1, the length of the blood supply tube 12 is taken into consideration and the “contraction” of the heart of the patient P Blood delivery from the oxygenator 2 to the patient P for each of the “phase” and “diastolic” must be synchronized. Therefore, in the present embodiment, for example, the timing of synchronizing the expansion and contraction of the heart and blood supply in the patient P according to the length of the tube part of the extracorporeal circulation device 1 such as the blood supply tube 12 or the like. Make adjustments.
  • the “corrected pulsation cycle data generation processing unit (program) 61” in FIG. 6 operates and refers to, for example, the “delayed data storage unit 53” which is the blood transmission time change storage unit in FIG. .
  • the “delay data storage unit 53” stores a delay time ( ⁇ T1) corresponding to the length of the blood supply tube 12 or the like. That is, the arrival and timing of “blood” sent from the oxygenator 2 to the patient P differs depending on the length of the blood supply tube 12 and the like between the oxygenator 2 and the patient P. Therefore, data on the arrival delay time of “blood” is stored according to the length of the blood supply tube 12 arranged in advance.
  • the “delay time” corresponding to the “length data of the blood feeding tube 12” stored in the “tube length data storage unit 54” in FIG. 5 is specified, and the “pulsation cycle” in FIG. Time data such as “first beat start data”, “first beat maximum data”, “second beat start data”, “second beat maximum data”, etc. in the data storage unit 52 As corrected, “corrected first beat start data”, “corrected first beat maximum data”, “corrected second beat start data”, “corrected second beat maximum data”, etc. 6 is stored in the “corrected pulsation cycle data storage unit 62”.
  • the “corrected first pulsation start time data”, “corrected first pulsation maximum time data” and the like stored in the “corrected pulsation cycle data storage unit 62” indicate the length of the blood feeding tube 12 and the like.
  • the data can synchronize the “systole” or “diastolic period” of the heart of the patient P and the blood supply to the patient P at the optimum timing in consideration.
  • the process proceeds to ST27.
  • the “blood feeding operation instruction processing unit (program) 63” in FIG. 6 operates, and “corrected first pulsation start data” and “corrected first” in the “corrected pulsation cycle data storage unit 62” in FIG. “Maximum data at one beat”, “Data at the start of corrected second beat”, “Data at the time of corrected second beat maximum”, etc., and blood volume data of “blood volume data storage unit 64” in FIG.
  • the drive motor is controlled to stop blood feeding to the artery (aorta) and to feed a predetermined amount of blood. Execute. For example, “stop blood feeding” at the time (timing) of “corrected first pulsation start data” and “execute blood feeding” at the time of “corrected first pulsation maximum time data”.
  • the timing of blood supply to the artery is assumed to be the timing at which the heart accumulates blood (the diastole of the heart). In the diastole of the heart, since there is no blood supply from the heart, there is little resistance and the flow rate value of the flow sensor 7 is increased.
  • the corrected beat data for one minute (the corrected first beat start data), the corrected first beat maximum data, the corrected second beat start data, and the corrected second beat
  • blood feeding synchronized with the heartbeat of the patient P can be performed.
  • the drive motor 4 or the like is caused to perform 120 beats in one minute together with the heart beat of the patient P.
  • the blood is synchronized with the heartbeat of the patient P without using a plurality of devices and using only the extracorporeal circulation apparatus 1 without damaging the blood. Can send blood.
  • the conventionally used IABP can synchronize with the heart, but the cardiac assist effect is small.
  • PCPS has a higher cardiac assist effect than IABP, but the effect of PCPS is reduced. ) ”Not only occurs, but also increases the afterload.
  • blood is sent in synchronization with the heartbeat of the patient P, so that it can collide with blood delivered from the heart and prevent the occurrence of MIXING (mixing) that reduces the effect, Generation of afterload can also be prevented.
  • MIXING mixeding
  • blood can be sent from the artificial lung 2 in synchronization with the heartbeat of the patient P. It may happen that it is out of sync with the heart beat. Therefore, in the present embodiment, the synchronization correction process is executed as follows.
  • the flow rate value of the flow rate sensor 7 in FIG. 2 is monitored, and the flow rate value is stored in the “flow rate data storage unit 31” in FIG. 3 together with time data.
  • the “difference value data generation processing unit (program) 71” in FIG. 7 operates and refers to the “corrected pulsation cycle data storage unit 62” in FIG. 6 and the “flow rate data storage unit 31” in FIG. “Corrected first pulsation start data”, “Modified first pulsation maximum data”, “Modified second pulsation start data”, “Modified second pulsation” “Flow value data” corresponding to time data such as “maximum time data” is extracted, and the difference is stored as “difference value data” in the “difference value data storage unit 72” of FIG. This “difference value data” is an example of “difference change information”.
  • FIG. 17 is a schematic explanatory diagram illustrating the difference value data with a waveform.
  • FIG. 17A shows “corrected first beat start data”, “corrected first beat maximum data”, and “corrected second beat start data” in the “corrected beat cycle data storage unit 62”.
  • the controller 20 It is a schematic explanatory drawing which shows the waveform in the case where the timing of performing and stopping the blood supply to the patient P and the pulsation timing of the heart of the patient P coincide.
  • flow rate sensor 7 at the same time data (timing) as the flow rate value (h1) of “corrected first pulsation maximum time data” controlled by the controller 10.
  • the flow rate value (h5) of the flow rate (h1) controlled by the controller 10 and the flow rate value (h2) in the tube during the “diastolic phase” of the heart of the patient P The difference value data becomes the flow rate value (h2) in the “diastolic” tube of the heart of the patient P.
  • the flow rate value (h3) of the “corrected second pulsation start time data” and the flow rate value (h6) of the “flow rate sensor 7” at the same time data (timing) are as shown in FIG.
  • the sum of the flow rate value (h3) controlled by the controller 10 and the flow rate value (h4) in the tube in the “systole” of the heart of the patient P, and the difference value data is the “systole” of the heart of the patient P.
  • the flow rate value (h4) in the tube Accordingly, in FIG. 17A, the waveform of the flow rate value of the flow sensor 7 is a waveform that draws a large wave.
  • FIG. 17B shows “corrected first beat start data”, “corrected first beat maximum data”, “corrected second beat data” in the “corrected beat period data storage unit 62”.
  • time data such as “movement start data” and “corrected second pulsation maximum time data” and the time data of the heartbeat of the patient P (“systole” and “diastolic”) do not match, That is, it is a schematic explanatory diagram showing a waveform in a case where the timing of executing and stopping blood supply to the patient P of the controller 20 and the heart beat timing of the patient P do not match.
  • the flow value (h1) controlled by the controller 10 the flow value (h7) in the tube during the “systole” of the heart of the patient P, as shown in FIG.
  • the difference value data is a flow rate value (h7) in the “systole” tube of the heart of the patient P.
  • the flow value (h3) of the “corrected second pulsation start data” and the flow value (h11) of the “flow sensor 7” at the same time data (timing) are as shown in FIG.
  • This is the sum of the flow rate value (h3) controlled by the controller 10 and the flow rate value (h10) in the tube in the “diastolic phase” of the heart of the patient P.
  • the difference value data is the “diastolic phase” of the heart of the patient P.
  • the flow rate value in the tube (h10) is the flow rate value in the tube (h10).
  • the heart of the patient P is in the “systole” at the time data (timing) of the “corrected first pulsation maximum time data” of the controller 10 as shown in the figure. Since the pulsation is being executed, the blood supply to the patient P of the extracorporeal circulation device 1 and the “systole” in which the heart pumps the blood are executed simultaneously, and the blood from the extracorporeal circulation device 1 and the heart There is a risk that “mixing” may occur due to collision with blood. At this time, the waveform of the flow rate value of the flow rate sensor 7 is substantially a straight line.
  • the timing of blood sending and stopping from the controller 10 and the timing of the heartbeat (“systole” and “diastolic”) of the patient P do not match.
  • the occurrence of “mixing” or the like can be easily grasped by the difference in waveform phase as shown in FIGS. 17 (a) and 17 (b). Therefore, in the present embodiment, as described above, “flow rate value data” corresponding to time data such as “corrected first pulsation start time data” in “corrected pulsation cycle data storage unit 62” is extracted, Based on the stored “difference value data”, the degree of phase difference (deviation) is grasped. Therefore, as will be described later, the controller 10 easily corrects the blood supply and stop timing (time data) based on the degree of phase difference (deviation) based on the “difference value data”. Can be modified.
  • the “recorrected pulsation cycle data generation processing unit (program) 73” in FIG. 7 operates, and the “difference value data storage unit 72” in FIG. 7 and the “difference value corresponding time correction data storage” in FIG. Reference is made to part 74 ".
  • the “difference value corresponding time correction data storage unit 74” stores correction time data for eliminating the difference value based on the “difference value data”. That is, “correction time data” based on “difference value data” is stored in order to correct the phase shift (difference) shown in FIGS.
  • the “recorrected pulsation cycle data generation processing unit (program) 73” converts the time data such as “corrected first pulsation start time data”, which is “corrected pulsation cycle data”, into the “corrected time data”. Is corrected to “recorrected first pulsation start time data” or the like and stored in the “recorrected pulsation cycle data storage unit 81” of FIG.
  • the “second blood transfer operation instruction processing unit (program) 82” in FIG. 8 operates, and “recorrected first pulsation start time data” in the “recorrected pulsation cycle data storage unit 81” in FIG. , “Recorrected first beat maximum data”, “Recorrected second beat start data”, “Recorrected second beat maximum data”, etc., and “Blood delivery data storage unit 64” in FIG. Based on the blood volume data, the drive motor 4 is controlled to stop the blood flow to the artery and perform a predetermined volume of blood flow.
  • the timing of the heartbeat (“systole” and “diastolic”) of the patient P changes, the change is grasped, and the blood flow by the extracorporeal circulation device 1 can be quickly detected.
  • the timing of execution or stop of blood transfer can be corrected to match the error (deviation).
  • modified pulsation cycle data generation processing unit Program
  • 62 Corrected pulsation period data
  • 63 Blood supply operation instruction processing part
  • 64 Blood supply volume data storage part
  • 73 Recorrected pulsation cycle data generation processing unit
  • 74 74... Difference value corresponding time correction data storage unit, 80.
  • Various information storage units, 81... Recorrected pulsation cycle data storage unit, 82 Second blood transfer operation instruction processing unit (program), 1R.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Medical Informatics (AREA)
  • External Artificial Organs (AREA)

Abstract

複数の機器を使用することなく、また、血液にダメージ等を与えることなく、心臓の拍動に同期して血液を送血等することができる体外循環管理装置等を提供する。 流量測定部(7)から取得した流量情報を記憶する流量情報記憶部(31)と、時系列における複数の前記流量情報の比較情報に基づき、心臓の収縮期情報に該当する可能性がある収縮期候補情報と、心臓の拡張期情報に該当する可能性がある拡張期候補情報を特定する候補情報生成部(36)と、時系列における複数の収縮期候補情報及び拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定する収縮拡張期情報生成部(51)と、収縮期情報及び拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部(4)に送信する構成となっている。

Description

体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法
 本発明は、例えば、患者へ血液を供給する体外循環を管理する体外循環管理装置体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法に関するものである。
 従来から例えば、大動脈内にバルーンを配置し、心臓の拡張期には、このバルーンを膨らませ、逆に収縮期には、バルーンを収縮させ、心臓に対する負荷を軽減させる「大動脈内バルーンパンピング(IABP:Intra―aortic balloon pumping」という方法がある。IABPでは、心臓の拍動と同期させることは可能だが、心臓補助効果が低いという問題がある。
 さらに、体外循環手法として、経皮的心肺補助法(Parcutaneous cardiopulmonary support(PCPS)が用いられている。この経皮的心肺補助法は、一般的に遠心ポンプと膜型人工肺を用いた閉鎖回路の人工心肺装置(体外循環装置)により、大腿動静脈経由で心肺補助を行うものである。
 この体外循環装置では、一定の血流を患者に送り続けるため、心臓補助効果はIABPと比べ高いが、患者の心臓から送り出される血液とぶつかり、PCPSの効果が低減する「ミキシング(MIXING)」と言われる現象が発生するだけでなく、後負荷が増加するという問題がある。
 また、2つの手法を併用して両方の良い点を兼ねて、問題点を補うことができるが、2つの手法で用いる機器を併用する煩雑さと、これらを正確に同期させなければならないという問題がある。
 一方、体外循環装置に電磁弁等を組み込んで、患者の拍動に合わせた血液の送血を可能とする提案も成されている(例えば、特許文献1)。
特開2008―264512号公報
 しかしながら、この提案の場合は、電磁弁等を使用するため、電磁弁が直接血液に触れることからも血液にダメージ(損傷)を与えるおそれがある。
 そこで、本発明は、複数の機器を使用することなく、また、血液にダメージ等を与えることなく、心臓の拍動に同期して血液を送血等することができる体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法を提供することを目的とする。
 上記目的は、本発明にあっては、流量測定部から取得した対象者の血液の流量情報を記憶する流量情報記憶部と、時系列における複数の前記流量情報の比較情報に基づき、対象者の心臓が収縮する収縮期情報に該当する可能性がある収縮期候補情報と、心臓が拡張する拡張期情報に該当する可能性がある拡張期候補情報を特定する候補情報生成部と、時系列における複数の前記収縮期候補情報及び複数の前記拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定する収縮拡張期情報生成部と、前記収縮期情報及び前記拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部に送信する構成となっていることを特徴とする体外循環管理装置により達成される。
 前記構成によれば、時系列における複数、例えば、3点の流量情報の比較情報(例えば、流量値が最も「大」又は「小」等)に基づき、患者等の対象者の心臓が収縮する収縮期情報に該当する可能性がある収縮期候補情報(例えば、「極小値」)と、心臓が拡張する拡張期情報に該当する可能性がある拡張期候補情報(例えば、「極大値」)を特定することができる。
 このため、患者の実際の血液の流量情報から収縮期候補情報及び拡張期候補情報を抽出、特定することで、当該患者の心臓の収縮期と拡張期とから成る拍動のタイミング候補情報を正確に取得することができる。
 また、前記構成によれば、時系列における複数の収縮期候補情報及び複数の拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定するので、誤った収縮期候補情報や拡張期候補情報であるノイズ情報を精度良く除去することができ、患者等の心臓の拍動に基づく、収縮期情報及び拡張期情報を精度良く把握することができる。
 そして、このような収縮期情報及び前記拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部に送信する構成となっているので、複数の機器を使用することなく、また、血液にダメージ等を与えることなく、心臓の拍動に同期して血液を送血等することができる。
 好ましくは、前記比較情報及び前記収縮期情報又は前記拡張期情報の基準情報である閾値情報に基づいて前記収縮期候補情報又は前記拡張期候補情報に該当するが否かを判断することを特徴とする。
 前記構成によれば、比較情報及び前記収縮期情報又は前記拡張期情報の基準情報である閾値情報に基づいて前記収縮期候補情報又は前記拡張期候補情報に該当するが否かを判断するので、収縮期候補情報又は拡張期候補情報であるか否かを精度良く判断することができる。
 好ましくは、前記比較情報が、時系列における3点の前記流量情報の比較情報であることを特徴とする。
 前記構成によれば、時系列における3点の前記流量情報の比較情報なので、この比較情報を用いることで、実際の流量情報の変化を精度良く把握することができる。
 好ましくは、前記収縮期情報及び前記拡張期情報と実際の拍動との差異情報を差異変化情報として取得し、前記差異変化情報に基づいて、前記収縮期情報及び前記拡張期情報を修正することを特徴とする。
 前記構成によれば、収縮期情報及び拡張期情報と実際の拍動との差異情報を差異変化情報(例えば、差異値データ)として取得し、差異変化情報に基づいて、収縮期情報及び拡張期情報を修正するので、常に心臓の拍動に同期して血液を送血等することができる。
 また、差異変化情報に基づいて修正するので、容易に修正することができる。
 好ましくは、対象者の血液のガス交換を行う人工肺部と、前記人工肺部と患者とを連結する管部と、前記管部内の血流を測定する前記流量測定部と、前記管部内の血液を送液させるモータ部と、を有することを特徴とする。
 好ましくは、前記人工肺部と対象者間の管部の長さである管部長に基づいて、人工肺部の送血時期を変化させる送血時期変化情報を記憶する送血時期変化情報記憶部を有することを特徴とする。
 前記構成によれば、人工肺部と対象者間の管部の長さである管部長(例えば、チューブ長)に基づいて、人工肺部の送血時期を変化させる送血時期変化情報を記憶する送液時期変化情報記憶部を有する。
 このため、各体外循環装置が使用するチューブ等の管部の長さが相違しても常に、最適のタイミングで心臓の拍動に同期して血液を送血等することができる。
 上記目的は、本発明にあっては、体外循環管理装置を、流量測定部から取得した対象者の血液の流量情報を記憶する流量情報記憶部、時系列における複数の前記流量情報の比較情報に基づき、対象者の心臓が収縮する収縮期情報に該当する可能性がある収縮期候補情報と、心臓が拡張する拡張期情報に該当する可能性がある拡張期候補情報を特定する候補情報生成部、時系列における複数の前記収縮期候補情報及び複数の前記拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定する収縮拡張期情報生成部、として機能させ、前記収縮期情報及び前記拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部に送信するように前記体外循環管理装置を機能させるための体外循環管理プログラムにより達成される。
 上記目的は、本発明にあっては、流量情報記憶部に流量測定部から取得した対象者の血液の流量情報を記憶し、時系列における複数の前記流量情報の比較情報に基づき、対象者の心臓が収縮する収縮期情報に該当する可能性がある収縮期候補情報と、心臓が拡張する拡張期情報に該当する可能性がある拡張期候補情報を特定し、時系列における複数の前記収縮期候補情報及び複数の前記拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定し、前記収縮期情報及び前記拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部に送信する構成となっていることを特徴とする体外循環管理装置の制御方法により達成される。
 以上説明したように、本発明によれば、複数の機器を使用することなく、また、血液にダメージ等を与えることなく、心臓の拍動に同期して血液を送血等することができる体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法を提供できるという利点がある。
本発明実施の形態に係る体外循環装置の主な構成を示す概略図である。 図1の体外循環装置のコントローラの主な構成を示す概略ブロック図である。 第1の各種情報記憶部の主な構成を示す概略ブロック図である。 第2の各種情報記憶部の主な構成を示す概略ブロック図である。 第3の各種情報記憶部の主な構成を示す概略ブロック図である。 第4の各種情報記憶部の主な構成を示す概略ブロック図である。 第5の各種情報記憶部の主な構成を示す概略ブロック図である。 第6の各種情報記憶部の主な構成を示す概略ブロック図である。 図1の体外循環装置の主な動作例等を示す概略フローチャートである。 図1の体外循環装置の主な動作例等を示す他の概略フローチャートである。 図1の体外循環装置の主な動作例等を示す他の概略フローチャートである。 図1の体外循環装置の主な動作例等を示す他の概略フローチャートである。 図1の体外循環装置の主な動作例等を示す他の概略フローチャートである。 流量データ記憶部に記憶される流量データの一例を示す概略説明図である。 図3の「流量データ記憶部」のデータのサンプルデータを示す概略説明図である。 図3の「流量データ記憶部」のデータのサンプルデータを示す他の概略説明図である。 差分値データを波形で説明した概略説明図である。
 以下、この発明の好適な実施の形態を、添付図面等を参照しながら、詳細に説明する。
 尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
 図1は、本発明実施の形態に係る体外循環装置1の主な構成を示す概略図である。
 図1に示す体外循環装置1は、図1に示す対象者である例えば、患者Pの血液の体外循環を行う装置である。体外循環装置1を使用するときの患者Pは、心臓が正常に動作しない場合又は心臓は正常に動作するものの肺が正常に動作しない場合等が考えられる。
 ところで、本実施の形態にかかる図1に示す体外循環装置1は、例えば、患者Pの心臓外科手術を行う場合やその後のICU(集中治療室)における治療等で用いられる。
 具体的には、体外循環装置1のモータ部である例えば、ドライブモータ4を介して「遠心ポンプ3」を動作させ、患者Pの静脈(大静脈)から脱血して、人工肺部である例えば、人工肺2により血液中のガス交換を行って血液の酸素化を行った後に、この血液を再び患者Pの動脈(大動脈)に戻す「人工肺体外血液循環」を行う。すなわち、体外循環装置1は、心臓と肺の代行を行う装置となる。
 また、体外循環装置1は、以下のような構成となっている。
 すなわち、図1に示すように、体外循環装置1は、血液を循環させる「循環回路1R」を有し、循環回路1Rは、「人工肺2」、「遠心ポンプ3」、「ドライブモータ4」、「静脈側カニューレ(脱血側カニューレ)5」と、「動脈側カニューレ(送血側カニューレ)6」と、体外循環管理装置である例えば、コントローラ10を有している。なお、遠心ポンプ3は、血液ポンプとも称し、遠心式以外のポンプも利用できる。
 そして、図1の静脈側カニューレ(脱血側カニューレ)5は、コネクター8を介して、大腿静脈より挿入され、静脈側カニューレ5の先端が右心房に留置される。動脈側カニューレ(送血側カニューレ)6は、図1のコネクター9を介して、大腿動脈より挿入される。
 静脈側カニューレ5は、コネクター8を介して、管部である例えば、脱血チューブ11を用いて遠心ポンプ3に接続されている。脱血チューブ(「脱血ライン」とも称す。)11は、血液を送る管路である。
 ドライブモータ4がコントローラ10の指令SGにより遠心ポンプ3を操作させると、遠心ポンプ3は、脱血チューブ11から脱血して人工肺2に通した血液を、管部である例えば、送血チューブ12(「送液ライン」とも称する。)を介して患者Pに戻す構成となっている。
 人工肺2は、遠心ポンプ3と送血チューブ12の間に配置されている。人工肺2は、図1に示すように酸素ガスを導入し、この血液に対するガス交換動作(酸素付加及び/又は二酸化炭素除去)を行う。
 人工肺2は、例えば、膜型人工肺であるが、特に好ましくは中空糸膜型人工肺を用いる。送血チューブ12は、人工肺2と動脈側カニューレ6を接続している管路である。
 脱血チューブ11と送血チューブ12は、例えば、塩化ビニル樹脂やシリコーンゴム等の透明性が高く、可撓性を有する合成樹脂製の管路である。
 脱血チューブ11内では、血液はV方向に流れ、送血チューブ12内では、血液はW方向に流れる。
 また、体外循環装置1は、その送血チューブ12に、図1に示すように、送血チューブ12内の血液の流量値を測定する流量測定部である例えば、流量センサ7が配置されている。
 ところで、図1に示す体外循環装置1のコントローラ10等は、コンピュータを有し、コンピュータは、図示しないCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を有し、これらは、バスを介して接続されている。
 図2は、図1の体外循環装置1のコントローラ10の主な構成を示す概略ブロック図である。
 図2に示すように、コントローラ10は、「コントローラ制御部21」を有し、コントローラ制御部21は、図1に示すドライブモータ4及び流量センサ7、そして他の機器と通信するための通信装置22、各種情報を表示すると共に各種情報を入力可能なカラー液晶,有機EL等で形成される「タッチパネル23」を制御可能な構成となっている。
 また、コントローラ10は、各種情報を入力する入力装置24、時刻情報を生成する計時装置25やコントローラ本体26も制御する。
 さらに、コントローラ制御部21は、図2に示す「第1の各種情報記憶部30」、「第2の各種情報記憶部40」、「第3の各種情報記憶部50」、「第4の各種情報記憶部60」、「第5の各種情報記憶部70」及び「第6の各種情報記憶部80」を制御する。
 図3乃至図8は、それぞれ「第1の各種情報記憶部30」、「第2の各種情報記憶部40」、「第3の各種情報記憶部50」、「第4の各種情報記憶部60」、「第5の各種情報記憶部70」及び「第6の各種情報記憶部80」の主な構成を示す概略ブロック図である。これらの内容は後述する。
 図9乃至図13は、図1の体外循環装置1の主な動作例等を示す概略フローチャートである。以下、これらのフローチャートに沿って説明すると共に、図1乃至図8等の構成等についても説明する。
 先ず、図1の体外循環装置1を動作させない状態で、静脈側カニューレ5や動脈側カニューレ6を患者Pの大腿静脈及び大腿動脈に挿入し、配置する。
 この状態で、ステップ(以下「ST」とする。)1へ進む。
 患者Pの心臓は、収縮して心臓内の血液を動脈中に押し出し(収縮期)、拡張して静脈から血液を受け入れる(拡張期)動作を規則的に行う。この動作は、心臓壁を構成している心筋(しんきん)によって行われる。
 この動作を拍動といい、1分間の平均心拍数は成人男子が62~72に対し、女子は70~80で、高齢者は少なく、子どもは多い傾向となっている。
 したがって、体外循環装置1を患者Pに接続し、遠心ポンプ3等が動作しない状態では、体外循環装置1の流量センサ7が、患者Pの拍動による血液の流量値の変動を測定することとなる。
 図9に示すように、ST1では、流量センサ7が、送血チューブ12内を流れる患者Pの血液の流量値(流量情報の一例)を測定し、図2の計時装置25の時刻データと関連付けて図3の流量情報記憶部である例えば、「流量データ記憶部31」に記憶する。
 図14は,流量データ記憶部31に記憶される流量データの一例を示す概略説明図である。
 図14に示すように、流量値は、患者Pの心臓の拍動による変動を反映することとなる。
 次いで、ST2で、1分間の流量値のデータを取得したか否かを判断し、1分間の流量値のデータを取得したときは、ST3へ進む。
 ST3では、図3の「第1の判断対象流量値データ抽出処理部(プログラム)32」が動作し、「流量データ記憶部31」の流量値データを時系列に古い順に3個、選択し、対応する時刻データと共に図3の「判断対象流量値データ記憶部33」に記憶する。
 図15及び図16は、図3の「流量データ記憶部31」のデータのサンプルデータを示す概略説明図である。
 図15及び図16の「1」乃至「20」は、時系列の時刻データを示し、サンプル値はその時刻の流量値を示す。
 そして、本実施の形態では、例えば、時系列に古い順に「1」乃至「3」(これを「X1」乃至「X3」とする。)を選択する。
 そして、時刻X1では流量値「1.0」、X2では流量値「10.0」、X3では流量値「5.0」を選択し、時刻データ(X1等)と関連付けて「判断対象流量値データ記憶部33」に記憶させる。
 次いで、ST4へ進む。ST4では、図3の「極大候補値データ判断処理部(プログラム)34」が動作し、図3の「流量データ記憶部31」を参照し、時系列の古い順に3点、上述の例では、X1、X2,X3の各流量値「1.0」「10.0」「5.0」を選択し、2番目である例えば、X2の流量値が、その前後の2点(例えば、X1及びX3)の流量値より大きいか否かを判断する。
 本実施の形態では、2番目のX2での流量値「10.0」は、X1の「1.0」とX3の「5.0」より大きいので、ST5では、「2番目が最も大きい」と判断され、ST6へ進む。この「2番目が最も大きいか否か」が比較情報の一例である。
 ST6では、当該2番目(例えば、X2)の流量値「10.0」を、対応する時刻データ「X2」と共に図3の「極大候補値データ記憶部35」に記憶する。
 このように本実施の形態では、時系列に近接する複数、例えば、3点の流量値を比較するので、実際の流量値の変化を精度良く把握することができる。
 次いで、ST7へ進む。ST7では、図3の「極大値データ判断処理部(プログラム)36」が動作し、「極大候補値データ記憶部35」の「極大候補値データ」、上述の例では、時刻データ「X2」の流量値「10.0」が「閾値データ記憶部37」の閾値情報である例えば、「上閾値」より大きいか否かを判断する。
 すなわち、「閾値データ記憶部37」に、当該流量値が、上述の患者Pの「収縮期」や「拡張期」に該当する場合の最低の基準情報が記憶されている。
 具体的には、「拡張期」であれば、図15に示すように「6.7」以上が基準となり「上閾値データ」として記憶されている。
 一方、「収縮期」であれば、図15に示すように「3.3」以下が基準となり、「下閾値データ」として、記憶されている。
 すなわち、図3の「極大候補値データ」であっても、当該流量値が「上閾値以上」でなければ、この工程で、「拡張期」の流量値でないと判断される。
 したがって、「拡張期」の判断を精度良く行うことができる。
 ST8で、図3の「極大候補値データ」が「上閾値(6.7)以上」であると判断されたときは、ST9へ進む。
 ST9では、「上閾値(6.7)」より大きい「極大候補データ(例えば、X2(10.0))」を、「極大値データ」として対応時刻データ(X2)と関連付けて、図4の「極大値記憶部41」に記憶される。
 すなわち、この「極大値データ」が、患者Pの「拡張期」の流量値として有力なデータとして記憶される。
 この記憶された極大値データが「拡張期候補情報」の一例となっている。また、「極大値データ判断処理部(プログラム)36」が、候補情報生成部の一例となっている。
 次いで、ST10へ進む。ST10では、図3の「流量データ記憶部31」の流量値データ、例えば、1分間分の全てについて判断したか否かを判断し、未だ、全てについて判断していないと判断されたときは、ST11へ進む。
 ST11では、図4の「第2の判断対象流量値データ抽出処理部(プログラム)42」が動作し、図3の「流量データ記憶部31」の流量値データのうち、図3の「判断対象流量値データ記憶部33」、上述の例では、X1(1.0)、X2(10.0)、X3(5.0)の最も古い時刻データ、X1と関連付けられているデータ(X1(1.0))を除き、時系列に古い順に3個、上述の例では、X2(10.0)、X3(5.0)、X4(6.5)選択する。
 そして、対応する時刻データと共に図3の「判断対象流量値データ記憶部33」に記憶する。このとき、既に記憶されているデータ、上述の例ではX1(1.0)、X2(10.0)、X3(5.0)は削除される。
 次いで、ST4で、上述と同様に、2番目、今回は、X3(5.0)が、1番目のX2(10.0)と3番目のX4(6.5)より流量値が大きいか否かを判断し、大きい場合は「上閾値」と比較し、「上閾値以上」であれば「極大値記憶部41」に記憶される。
 この工程が、「流量データ記憶部31」の全てのデータについて判断される。
 すると、本実施の形態では、図15に示すように、例えば、時刻データX2(10.0)、X8(7.0)、X13(10.0)、X16(10.0)、X18(9.5)が「極大値」、すなわち、患者Pの心臓の「拡張期」の流量値候補として、図4の「極大値データ記憶部41」に記憶される。
 ST10で、「流量データ記憶部31」の1分間分の流量値データの全てについての判断が終了したとされると、ST12へ進む。ST12以下では、「流量データ記憶部31」の流量値データが、患者Pの心臓の「収縮期」に該当する可能性があるか否かが判断される。
 ST11では、図3の「第1の判断対象流量値データ抽出処理部(プログラム)32」が動作し、ST3と同様に、図3の「流量データ記憶部31」の流量値データを時系列に古い順に3個、例えば、「1.0」、「10.0」、「5.0」を選択し、対応する時刻データX1、X2、X3と共に図3の「判断対象流量値データ記憶部33」に記憶する。
 次いで、ST13へ進む。ST13では、図4の「極小候補値データ判断処理部(プログラム)43」動作し、「判断対象流量値データ記憶部33」を参照し、時系列の古い順に3点(例えば、X1、X2,X3)の流量値(「1.0」、「10.0」、「5.0」)を選択し、2番目である例えば、X2「10.0」の流量値が、その前後の2点(例えば、X1及びX3)の流量値より小さいか否かを判断する。
 次いで、ST14で、「2番目(X2(10.0))が最も小さいか否か」が判断されるが、上述の例では、最も小さくはないため、ST15へ進む。
 ST15では、上述のST11と同様に、図4の「第2の判断対象流量値データ抽出処理部(プログラム)42」が動作し、「流量データ記憶部31」の流量値データのうち、「判断対象流量値データ記憶部33」のデータ、例えば、X1、X2、X3の最も古い時刻データと関連付けられているデータ(例えば、X1)を除き、時系列に古い順に3個(例えば、「10.0」、「5.0」「6.5」を選択し、対応する時刻データ(X2、X3、X4)と共に図3の「判断対象流量値データ記憶部33」に記憶する。このとき、既に記憶されているデータは削除される。
 次いで、ST13へ進む。ST13では、上述のように、図4の「極小候補値データ判断処理部(プログラム)43」動作し、「判断対象流量値データ記憶部33」を参照し、時系列の古い順に3点(例えば、X2、X3,X4)の流量値(「10.0」、「5.0」、「6.0」)を選択し、2番目である例えば、X3「5.0」の流量値が、その前後の2点(例えば、X2及びX4)の流量値より小さいか否かを判断する。
 次いで、ST14へ進む。上述の例では、2番目(X3(5.0))が最も小さいので、ST16へ進む。
 ST16では、当該2番目の流量値(例えば、「5.0」)を、対応する時刻データ(X3)と共に図4の「極小候補値データ記憶部44」に記憶する。
 次いで、ST17では、図4の「極小値データ判断処理部(プログラム)45」が動作し、図4の「極小候補値データ記憶部44」の「極小候補値データ」、上述の例ではX3(5.0)が図3の「閾値データ記憶部37」の「下閾値」例えば、「3.3」より小さいか否かを判断する。
 上述の例では、X3(5.0)は「下閾値(3.3)」より小さくないため、患者Pの「収縮期」には該当しないとして、ST15へ進み、次の3点であるX3,X4、X5で2番目が最も小さいか判断し、更に、「下閾値(3.3)」より小さいかを判断する。
 図15の例では、選択された3点が、X8(7.0)、X9(1.5)、X10(5.5)の場合に、2番目(X9(1.5))が最も小さく、且つ、「下閾値(3.3)」より小さくなる。
 このため、この例では、ST18で、「下閾値」より小さいと判断され、ST19へ進む。ST19では、「下閾値」より小さい「極小候補データ(例えば、X9(1.5))」を、「極小値データ」として対応時刻データ(X9)と関連付けて,図4の「極小値データ記憶部46」に記憶する。
 この記憶された極小値データが「収縮期候補情報」の一例となっている。また、「極小値データ判断処理部(プログラム)45」が、候補情報生成部の一例となっている。
 次いで、ST20へ進む。ST20で、「流量データ記憶部31」の1分間分の流量値データの全てについての判断が終了したとされると、「極小値記憶部46」への記憶が終了する。
 図15の例では、例えば、時刻データX1(1.0)、X9(1.5)、X11(2.0)、X14(1.5)、X20(1.5)が「極小値」、すなわち、患者Pの心臓の「収縮期」の流量値候補として、図4の「極小値データ記憶部46」に記憶される。
 次いで、ST21へ進む。ST21では、図4の「極大値データ記憶部41」及び「極小値データ記憶部46」に記憶されているデータには、患者Pの「収縮期」や「拡張期」に相当するデータのみならず、ノイズデータ等も含まれている可能性があるため、以下、そのノイズデータの削除を行う。
 すなわち、図5の「拍動ノイズ削除処理部(プログラム)51」が動作し、図3の「極大値データ記憶部41」と「極小値データ記憶部46」を参照し、時系列において古い順に抽出する。
 図15の例では、古い順に、X1(極小値)、X2(極大値)、X8(極大値)、X9(極小値)、X11(極小値)、X13(極大値)、X14(極小値)、X16(極大値)、X18(極大値)、X20(極小値)となる。
 そして、最も古い「極小値データ」「1.0」と、「その時刻データ」である「X1」を「第1拍目の拍動」の「開始時」である「第1拍動開始時データ」として図5の「拍動周期データ記憶部52」に記憶する。
 なお、この「第1拍動開始時データ」等が収縮期情報の一例となる。
 次いで、ST22へ進む。ST22では「第1拍動開始時」にあたる「極小値データ」である図15の「X1」と時系列で最も近接する「極大値」と「その時刻データ」、図15の例では、「X2」を「第1拍目の拍動」の極大値と、その時刻データである「第1拍動最大時データ」として、図5の「拍動周期データ記憶部52」に記憶する。
 この「第1拍動最大時データ」等が、拡張期情報の一例となる。また、「拍動ノイズ削除処理部(プログラム)51」が収縮拡張期情報生成部の一例となっている。
 次いで、ST23へ進む、ST23では、「第1拍動最大値時刻データ」である「第1拍目の拍動」の「極大値」の時刻データ、上述の例では「X2」と時系列で最も近接する「極小値データ」と「その時刻データ」、図15の例では、「X9」を「第2拍目の拍動」の「開始時」である「第2拍動開始時データ」として図5の「拍動周期データ記憶部52」に記憶する。
 したがって、図15の「X8」の極大値は、ノイズデータとして削除する。これは、拍動の「極小値」と「極大値」は交互に発生することから、「X2」と連続して発生している「X8」をノイズとして処理し、患者Pの「収縮期」と「拡張期」を精度高く特定するためである。
 次いで、「第2拍動開始時」にあたる「極小値データ」である図15の「X9」と時系列で最も近接する「極大値」と「その時刻データ」、図15の例では、「X13」を「第2拍目の拍動」の極大値と、その時刻データである「第2拍動最大時データ」として、「拍動周期データ記憶部52」に記憶する。
 すなわち、X11の「極小値」はノイズとして削除処理される。
 このような、判断を続け、「極大値データ記憶部41」と「極小値データ記憶部46」の全てのデータについて判断する。
 ST25で、全てのデータについての処理が完了したとき、「流量データ記憶部31」の1分間の流量データについて、患者Pの「収縮期」と「拡張期」から成る拍動の情報は、図5の「拍動周期データ記憶部52」に記憶される。
 例えば、1分間に120回繰り返される各拍動の「収縮期(拍動開始時)」と「拡張期(拍動最大時)」のデータが、その時刻情報と共に記憶される。
 次いで、ST26へ進む。図1に示すように、体外循環装置1は、送血チューブ12等を介して、人工肺2から血液を患者Pへ送血する。そして、その際、患者Pの心臓の「収縮期」と「拡張期」の時期に同期させて行う。しかし、体外循環装置1の送血チューブ12の長さは、体外循環装置1の種類によって相違する場合があるため、当該送血チューブ12の長さを考慮して、患者Pの心臓の「収縮期」と「拡張期」のそれぞれに対する人工肺2からの患者Pへの血液の送血を同期させなければならない。
 そこで、本実施の形態では、当該体外循環装置1の管部長である例えば、送血チューブ12等の長さに応じて、当該患者Pにおける心臓の拡張収縮と血液の送血とを同期させるタイミングの調整を行う。
 先ず、ST26では、図6の「修正拍動周期データ生成処理部(プログラム)61」が動作し、図5の送血時期変化時記憶部である例えば、「遅延データ記憶部53」を参照する。
 「遅延データ記憶部53」には、送血チューブ12等の長さに対応する遅延時間(ΔT1)が記憶されている。
 すなわち、人工肺2と患者Pとの間の送血チューブ12等の長さによって、人工肺2から患者Pへ送血される「血液」の到達、タイミングが相違する。
 そこで、予め配置する送血チューブ12の長さに従い、「血液」の到達遅延時間のデータが記憶されている。
 例えば、計算式は以下のとおり。
ΔT1=L(チューブ長さ)/V(当該モータで流される血液の流速平均)
V(当該モータで流される血液の流速平均)=Q(想定流量)/A(当該チューブの断面積
 例えば、L=1.5m、V=0.94m/sec(Q=4.0L/min、チューブ直径=約9.5mm)の場合、ΔT1は「約1.6秒」となる。
 そこで、本工程では、図5の「チューブ長データ記憶部54」に記憶されている「送血チューブ12の長さデータ」に対応する「遅延時間」を特定し、図5の「拍動周期データ記憶部52」の「第1拍動開始時データ」、「第1拍動最大時データ」、「第2拍動開始時データ」、「第2拍動最大時データ」等の時刻データを修正し、「修正第1拍動開始時データ」、「修正第1拍動最大時データ」、「修正第2拍動開始時データ」、「修正第2拍動最大時データ」等として、図6の「修正拍動周期データ記憶部62」に記憶させる。
 これにより、「修正拍動周期データ記憶部62」に記憶された「修正第1拍動開始時データ」、「修正第1拍動最大時データ」等は、送血チューブ12等の長さを考慮した最適のタイミングで、患者Pの心臓の「収縮期」や「拡張期」と患者Pへの血液の送血とを同期させることができるデータとなっている。
 次いで、ST27へ進む。ST27では、図6の「送血動作指示処理部(プログラム)63」が動作し、図6の「修正拍動周期データ記憶部62」の「修正第1拍動開始時データ」、「修正第1拍動最大時データ」、「修正第2拍動開始時データ」、「修正第2拍動最大時データ」等と図6の「送血量データ記憶部64」の送血量データ{体外循環装置1の人工肺2(遠心ポンプ3)から患者Pへ送血される送血量データ}に基づいて、ドライブモータを制御し、動脈(大動脈)へ送血の停止及び所定量の送血を実行する。
 例えば、「修正第1拍動開始時データ」の時刻(タイミング)で「送血を停止」し、「修正第1拍動最大時データ」の時刻で「送血を実行」する。
 これは、動脈への送血の停止のタイミングは心臓から血液が拍出されているタイミング(心臓の収縮期)とする。心臓の収縮期は、血液が送り出されているため、流量センサ7の流量値は、心臓からの送血に圧して下がる関係となるからである。
 一方、動脈への送血の実行のタイミングは、心臓が血液を貯めているタイミング(心臓の拡張期)とする。心臓の拡張期は、心臓からの送血がないため抵抗が少なく流量センサ7の流量値は上がる関係となる。
 したがって、修正された1分間分の拍動データ(修正第1拍動開始時データ」、「修正第1拍動最大時データ」、「修正第2拍動開始時データ」、「修正第2拍動最大時データ」等に基づいて「送血の停止」と「送血の実行」を行うことで、患者Pの心臓の拍動に同期させた送血等が可能となる。
 このとき、例えば、1分間で、120回の拍動を、患者Pの心臓の拍動と合わせてドライブモータ4等に実行させる。
 このように本実施の形態では、複数の機器を使用することなく、体外循環装置1のみを使用するだけで、血液にダメージ等を与えることなく、患者Pの心臓の拍動に同期して血液を送血することができる。
 ところで、従来から用いられているIABPは、心臓と同期させることはできるが、心臓補助効果が小さく、一方、PCPSは、心臓補助効果がIABPより高いが、PCPSの効果が低減する「ミキシング(MIXING)」と言われる現象が発生するだけでなく、後負荷が増加するという問題があった。
 この点、本実施の形態では、患者Pの心臓の拍動に同期して血液を送血するので、心臓から送り出される血液とぶつかり、効果が低減するMIXING(ミキシング)の発生を防止できると共に、後負荷の発生も防止することができる。
 さらに、IABPを使用しないので、複数の機器を同期させる煩雑さや、複数の機器による打ち消し効果の発生を未然に防止することできる。
 このように、本実施の形態では、患者Pの心臓の拍動に同期させて、人工肺2から血液を送血等することができるが、送血を実行している過程で、患者Pの心臓の拍動と同期しなくなる場合があり得る。
 そこで、本実施の形態では、以下のように、その同期の修正工程を実行する。
 先ず、ST31では、図2の流量センサ7の流量値をモニターし、時刻データと共に、流量値を図3の「流量データ記憶部31」に記憶する。
 次いで、ST32へ進む。ST32では、図7の「差分値データ生成処理部(プログラム)71」が動作し、図6の「修正拍動周期データ記憶部62」と図3の「流量データ記憶部31」を参照し、「修正拍動周期データ記憶部62」の「修正第1拍動開始時データ」、「修正第1拍動最大時データ」、「修正第2拍動開始時データ」、「修正第2拍動最大時データ」等の時刻データに対応する「流量値データ」を抽出し、差分を「差分値データ」として図7の「差分値データ記憶部72」に記憶する。
 この「差分値データ」が、「差異変化情報」の一例となる。
 図17は、差分値データを波形で説明した概略説明図である。
 図17(a)は、「修正拍動周期データ記憶部62」の「修正第1拍動開始時データ」、「修正第1拍動最大時データ」、「修正第2拍動開始時データ」、「修正第2拍動最大時データ」等の時刻データと、患者Pの心臓の拍動(「収縮期」及び「拡張期」)の時刻データが一致している場合、すなわち、コントローラ20の患者Pへ血液の送血の実行及び停止を行うタイミングと患者Pの心臓の拍動タイミングが一致している場合における波形を示す概略説明図である。
 この場合は、図17(a)に示すように、コントローラ10が制御する例えば、「修正第1拍動最大時データ」の流量値(h1)と同じ時刻データ(タイミング)における「流量センサ7」の流量値(h5)は、図17(a)に示すように、コントローラ10が制御する流量値(h1)と、患者Pの心臓の「拡張期」におけるチューブ内の流量値(h2)との和となり、その差分値データは、患者Pの心臓の「拡張期」のチューブ内の流量値(h2)となる。
 一方、「修正第2拍動開始時データ」の流量値(h3)と、同じ時刻データ(タイミング)における「流量センサ7」の流量値(h6)は、図17(a)に示すように、コントローラ10が制御する流量値(h3)と、患者Pの心臓の「収縮期」におけるチューブ内の流量値(h4)との和となり、その差分値データは、患者Pの心臓の「収縮期」のチューブ内の流量値(h4)となる。
 したがって、図17(a)では、流量センサ7の流量値の波形は、大きな波を描く波形となる。
 これに対して、図17(b)は、「修正拍動周期データ記憶部62」の「修正第1拍動開始時データ」、「修正第1拍動最大時データ」、「修正第2拍動開始時データ」、「修正第2拍動最大時データ」等の時刻データと、患者Pの心臓の拍動(「収縮期」及び「拡張期」)の時刻データが一致していない場合、すなわち、コントローラ20の患者Pへ血液の送血の実行及び停止を行うタイミングと患者Pの心臓の拍動タイミングが一致していない場合における波形を示す概略説明図である。
 この場合は、図17(b)に示すように、コントローラ10が制御する例えば、「修正第1拍動最大時データ」の流量値(h1)と、同じ時刻データ(タイミング)における「流量センサ7」の流量値(h8)は、図17(b)に示すように、コントローラ10が制御する流量値(h1)と、患者Pの心臓の「収縮期」におけるチューブ内の流量値(h7)との和となり、その差分値データは、患者Pの心臓の「収縮期」のチューブ内の流量値(h7)となる。
 一方、「修正第2拍動開始時データ」の流量値(h3)と、同じ時刻データ(タイミング)における「流量センサ7」の流量値(h11)は、図17(b)に示すように、コントローラ10が制御する流量値(h3)と、患者Pの心臓の「拡張期」におけるチューブ内の流量値(h10)との和となり、その差分値データは、患者Pの心臓の「拡張期」のチューブ内の流量値(h10)となる。
 このように、図17(b)の場合は、図示するように、コントローラ10の「修正第1拍動最大時データ」の時刻データ(タイミング)で、患者Pの心臓は、「収縮期」の拍動を実行しているため、体外循環装置1の患者Pへ血液の送血の実行と、心臓が血液を送り出す「収縮期」が同時に実行され、体外循環装置1からの血液と、心臓からの血液とがぶつかり「ミキシング」が発生するおそれがある。
 そして、このとき、流量センサ7の流量値の波形は、略直線となる。
 このように、本実施の形態では、コントローラ10からの血液の送血及び停止のタイミングと、患者Pの心臓の拍動(「収縮期」及び「拡張期」)のタイミングが一致せず、「ミキシング」等が発生していることは、図17(a)(b)に示すように波形の位相の相違で容易に把握することができる。
 そこで、本実施の形態では、上述のように、「修正拍動周期データ記憶部62」の「修正第1拍動開始時データ」等の時刻データに対応する「流量値データ」を抽出し、記憶した「差分値データ」に基づき、位相の相違(ズレ)の程度を把握する構成となっている。
 したがって、後述のように、「差分値データ」に基づく、位相の相違(ズレ)の程度に基づいて、コントローラ10が血液の送血及び停止のタイミング(時刻データ)を修正することで、容易に修正が可能となる。
 以下、図13のST33及びST34で具体的に説明する。
 先ず、ST33では、図7の「再修正拍動周期データ生成処理部(プログラム)73」が動作し、図7の「差分値データ記憶部72」と図3の「差分値対応時刻修正データ記憶部74」を参照する。
 この「差分値対応時刻修正データ記憶部74」には、「差分値データ」に基づき、差分値を解消するための修正時間データが記憶されている。
 すなわち、上述の図17(a)(b)で示す位相のズレ(相違)を修正するため、「差分値データ」に基づく「修正時間データ」が記憶されている。
 そして、「再修正拍動周期データ生成処理部(プログラム)73」は、「修正拍動周期データ」である「修正第1拍動開始時データ」等の時刻データを、この「修正時間データ」で修正し「再修正第1拍動開始時データ」等とし、図8の「再修正拍動周期データ記憶部81」に記憶する。
 次いで、ST34へ進む。ST34では、図8の「第2送血動作指示処理部(プログラム)82」が動作し、図8の「再修正拍動周期データ記憶部81」の「再修正第1拍動開始時データ」、「再修正第1拍動最大時データ」、「再修正第2拍動開始時データ」、「再修正第2拍動最大時データ」等及び図6の「送血量データ記憶部64」の送血量データに基づいて、ドライブモータ4を制御し、動脈へ送血の停止及び所定量の送血を実行する。
 このように本実施の形態では、患者Pの心臓の拍動(「収縮期」及び「拡張期」)のタイミングが変化しても、その変化を把握し、迅速に体外循環装置1による血液の送血の実行や停止のタイミングを修正し、誤差(ズレ)を合わせることができる。
 ところで、本発明は、上述の実施の形態に限定されない。
 1・・・体外循環装置、2・・・人工肺、3・・・遠心ポンプ、4・・・ドライブモータ、5・・・静脈側カニューレ(脱血側カニューレ)、6・・・動脈側カニューレ(送血側カニューレ)、7・・・流用センサ、8、9・・・コネクター、10・・・コントローラ、11・・・脱血チューブ、12・・・送血チューブ、21・・・コントローラ制御部、22・・・通信装置、23・・・タッチパネル、24・・・入力装置、25・・・計時装置、26・・・コントローラ本体、30・・・第1の各種情報記憶部、31・・・流量データ記憶部、32・・・第1の判断対象流量値データ抽出処理部(プログラム)、33・・・判断対象流量値データ記憶部、34・・・極大候補値データ判断処理部(プログラム)、35・・・極大候補値データ記憶部、36・・・極大値データ判断処理部(プログラム)、37・・・閾値データ記憶部、40・・・第2の各種情報記憶部、41・・・極大値データ記憶部、42・・・第2の判断対象流量値データ抽出処理部(プログラム)、43・・・極小候補値データ判断処理部(プログラム)、44・・・極小候補値データ記憶部、45・・・極小値データ判断処理部(プログラム)、46・・・極小値データ記憶部、50・・・第3の各種情報記憶部、51・・・拍動ノイズ削除処理部(プログラム)、52・・・拍動周期データ記憶部、53・・・遅延データ記憶部、54・・・チューブ長データ記憶部、60・・・第4の各種情報記憶部、61・・・修正拍動周期データ生成処理部(プログラム)、62・・・修正拍動周期データ記憶部、63・・・送血動作指示処理部(プログラム)、64・・・送血量データ記憶部、70・・・第5の各種情報記憶部、71・・・差分値データ生成処理部(プログラム)、72・・・差分値データ記憶部、73・・・再修正拍動周期データ生成処理部(プログラム)、74・・・差分値対応時刻修正データ記憶部、80・・・第6の各種情報記憶部、81・・・再修正拍動周期データ記憶部、82・・・第2送血動作指示処理部(プログラム)、1R・・・循環回路、P・・・患者

Claims (8)

  1.  流量測定部から取得した対象者の血液の流量情報を記憶する流量情報記憶部と、
     時系列における複数の前記流量情報の比較情報に基づき、対象者の心臓が収縮する収縮期情報に該当する可能性がある収縮期候補情報と、心臓が拡張する拡張期情報に該当する可能性がある拡張期候補情報を特定する候補情報生成部と、
     時系列における複数の前記収縮期候補情報及び複数の前記拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定する収縮拡張期情報生成部と、
     前記収縮期情報及び前記拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部に送信する構成となっていることを特徴とする体外循環管理装置。
  2.  前記比較情報及び前記収縮期情報又は前記拡張期情報の基準情報である閾値情報に基づいて前記収縮期候補情報又は前記拡張期候補情報に該当するが否かを判断することを特徴とする請求項1に記載の体外循環管理装置。
  3.  前記比較情報が、時系列における3点の前記流量情報の比較情報であることを特徴とする請求項1又は請求項2に記載の体外循環管理装置。
  4.  前記収縮期情報及び前記拡張期情報と実際の拍動との差異情報を差異変化情報として取得し、前記差異変化情報に基づいて、前記収縮期情報及び前記拡張期情報を修正することを特徴とする請求項1乃至請求項3のいずれか1項に記載の体外循環管理装置。
  5.  対象者の血液のガス交換を行う人工肺部と、
     前記人工肺部と患者とを連結する管部と、
     前記管部内の血流を測定する前記流量測定部と、
     前記管部内の血液を送液させるモータ部と、を有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の体外循環管理装置を備える体外循環装置。
  6.  前記人工肺部と対象者間の管部の長さである管部長に基づいて、人工肺部の送血時期を変化させる送血時期変化情報を記憶する送血時期変化情報記憶部を有することを特徴とする請求項5に記載の体外循環装置。
  7.  体外循環管理装置を、流量測定部から取得した対象者の血液の流量情報を記憶する流量情報記憶部、
     時系列における複数の前記流量情報の比較情報に基づき、対象者の心臓が収縮する収縮期情報に該当する可能性がある収縮期候補情報と、心臓が拡張する拡張期情報に該当する可能性がある拡張期候補情報を特定する候補情報生成部、
     時系列における複数の前記収縮期候補情報及び複数の前記拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定する収縮拡張期情報生成部、として機能させ、
     前記収縮期情報及び前記拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部に送信するように前記体外循環管理装置を機能させるための体外循環管理プログラム。
  8.  流量情報記憶部に流量測定部から取得した対象者の血液の流量情報を記憶し、
     時系列における複数の前記流量情報の比較情報に基づき、対象者の心臓が収縮する収縮期情報に該当する可能性がある収縮期候補情報と、心臓が拡張する拡張期情報に該当する可能性がある拡張期候補情報を特定し、
     時系列における複数の前記収縮期候補情報及び複数の前記拡張期候補情報の出現情報に基づいて、各拍動における収縮期情報及び拡張期情報を特定し、
     前記収縮期情報及び前記拡張期情報に基づいて、送血する送血情報又は送血を停止する送血停止情報をモータ部に送信する構成となっていることを特徴とする体外循環管理装置の制御方法。
PCT/JP2017/006778 2016-03-17 2017-02-23 体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法 WO2017159266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17766271.5A EP3431120A4 (en) 2016-03-17 2017-02-23 DEVICE FOR MANAGING EXTRACORPORAL CIRCULATION, EXTRACORPOREAL CIRCULAR DEVICE, PROGRAM FOR MANAGING EXTRACORPORAL CIRCULATION, AND CONTROL PROCEDURE FOR A DEVICE FOR MANAGING EXTRACORPOREAL CIRCULATION
JP2018505388A JP7085986B2 (ja) 2016-03-17 2017-02-23 体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法
US16/113,386 US11617819B2 (en) 2016-03-17 2018-08-27 Extracorporeal circulation management device with heartbeat synchronizaton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054036 2016-03-17
JP2016054036 2016-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/113,386 Continuation US11617819B2 (en) 2016-03-17 2018-08-27 Extracorporeal circulation management device with heartbeat synchronizaton

Publications (1)

Publication Number Publication Date
WO2017159266A1 true WO2017159266A1 (ja) 2017-09-21

Family

ID=59851254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006778 WO2017159266A1 (ja) 2016-03-17 2017-02-23 体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法

Country Status (4)

Country Link
US (1) US11617819B2 (ja)
EP (1) EP3431120A4 (ja)
JP (1) JP7085986B2 (ja)
WO (1) WO2017159266A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888609B2 (ja) * 1990-06-07 1999-05-10 テルモ株式会社 血液補助循環装置
JP3138023B2 (ja) * 1991-10-18 2001-02-26 泉工医科工業株式会社 人工心肺装置
JP2009297174A (ja) * 2008-06-11 2009-12-24 San Medical Gijutsu Kenkyusho:Kk 人工心臓制御装置、人工心臓システム及び人工心臓の制御方法
JP2013252365A (ja) * 2012-06-08 2013-12-19 Terumo Corp 人工心肺装置及び人工心肺装置の制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511413B2 (en) * 2001-05-16 2003-01-28 Levram Medical Devices, Ltd. Single cannula ventricular-assist method and apparatus
US20080249456A1 (en) * 2007-03-27 2008-10-09 Syuuji Inamori Pulsation-type auxiliary circulation system, pulsatile flow generation control device, and pulsatile flow generation control method
JP6616405B2 (ja) * 2014-05-29 2019-12-04 セントビンセンツ ホスピタル シドニー リミテッド 心室補助人工心臓の方法及び装置
JP2017518862A (ja) * 2014-06-18 2017-07-13 ハートウェア, インコーポレイテッドHeartware, Inc. 吸引事象を同定するための方法及びデバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888609B2 (ja) * 1990-06-07 1999-05-10 テルモ株式会社 血液補助循環装置
JP3138023B2 (ja) * 1991-10-18 2001-02-26 泉工医科工業株式会社 人工心肺装置
JP2009297174A (ja) * 2008-06-11 2009-12-24 San Medical Gijutsu Kenkyusho:Kk 人工心臓制御装置、人工心臓システム及び人工心臓の制御方法
JP2013252365A (ja) * 2012-06-08 2013-12-19 Terumo Corp 人工心肺装置及び人工心肺装置の制御方法

Also Published As

Publication number Publication date
EP3431120A4 (en) 2019-10-30
JP7085986B2 (ja) 2022-06-17
US11617819B2 (en) 2023-04-04
JPWO2017159266A1 (ja) 2019-01-24
EP3431120A1 (en) 2019-01-23
US20180369465A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US20230048736A1 (en) Ventricular assist device
US12029891B2 (en) Ventricular assist device control
EP3449958B1 (en) Counterpulsation device driver apparatus, method and system
US20070208210A1 (en) Method and apparatus to unload a failing heart
JP5557175B2 (ja) 拍動流発生制御装置及び拍動流発生制御方法
WO2003068292A1 (en) Physiologically compatible cardiac assist device and method
US20080249456A1 (en) Pulsation-type auxiliary circulation system, pulsatile flow generation control device, and pulsatile flow generation control method
JP2021074483A (ja) 大動脈内デュアルバルーン駆動パンピングカテーテル装置
JP7085986B2 (ja) 体外循環管理装置、体外循環装置、体外循環管理プログラム及び体外循環管理装置の制御方法
US20120041256A1 (en) Apparatus for providing short-term cardiac support
Catena et al. Role of echocardiography in the perioperative management of mechanical circulatory assistance
Kolyva et al. Newly shaped intra‐aortic balloons improve the performance of counterpulsation at the semirecumbent position: an in vitro study
Kim et al. Application of a phase-locked loop counterpulsation control algorithm to a pneumatic pulsatile VAD
CN111481763A (zh) 脉冲式人工肺体外循环管理器
Coppel et al. An introduction to mechanical circulatory support in cardiac intensive care
Kanchi et al. Intra-aortic Balloon Pump—Current Status
WO2021177423A1 (ja) 体外循環装置
CN110382016B (zh) 带有血泵、控制单元和用于传送测量值的仪器的装置
Jungschleger et al. Mechanical circulatory support
Barrack et al. INTRA-AORTIC BALLOON PUMPS
Platts et al. Echocardiography in mechanical circulatory support
Price et al. Portable (short-term) mechanical circulatory support
Nickson Intra-aortic Balloon Pump

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766271

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766271

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766271

Country of ref document: EP

Kind code of ref document: A1