WO2017159233A1 - Method for manufacturing resin film and method for manufacturing polarizing film - Google Patents

Method for manufacturing resin film and method for manufacturing polarizing film Download PDF

Info

Publication number
WO2017159233A1
WO2017159233A1 PCT/JP2017/006357 JP2017006357W WO2017159233A1 WO 2017159233 A1 WO2017159233 A1 WO 2017159233A1 JP 2017006357 W JP2017006357 W JP 2017006357W WO 2017159233 A1 WO2017159233 A1 WO 2017159233A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
unstretched
stretching
mass
Prior art date
Application number
PCT/JP2017/006357
Other languages
French (fr)
Japanese (ja)
Inventor
雄一朗 九内
直子 小林
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016238514A external-priority patent/JP6353016B2/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201780015963.0A priority Critical patent/CN108780173B/en
Priority to KR1020187027007A priority patent/KR20180124875A/en
Publication of WO2017159233A1 publication Critical patent/WO2017159233A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a resin film and a method for producing a polarizing film.
  • the polarizing plate is widely used in image display devices such as liquid crystal display devices.
  • a polarizing plate the thing of the structure which bonded the protective film to the single side
  • the resin film used as a raw material for the polarizing film can be produced by drying and stretching water from a coating film containing a polyvinyl alcohol-based resin [for example, JP-A-2014-059564 (Patent Document 1), Japanese Patent No. 5390053 (Patent Document 2)].
  • JP 2014-059564 A Japanese Patent No. 5390053
  • a resin film for a polarizing film is required to exhibit high polarizing performance when a polarizing film is formed by stretching and dyeing.
  • a polarizing film is formed by stretching and dyeing.
  • the crystal grows until the resin film is stretched, or after the resin film is stretched and until the stretched resin film is dyed, and the dense crystal structure is disturbed. was there. Therefore, in order to exhibit high polarization performance when a polarizing film is used, it is necessary to suppress crystal growth and maintain a dense crystal structure during this period.
  • This invention is made
  • One embodiment of the present invention includes a film forming step of forming a strip-shaped unstretched film using a polyvinyl alcohol-based resin as a forming material by reducing water from a coating film of a polyvinyl alcohol-based resin solution, and the unstretched film in the longitudinal direction. And a stretching step for obtaining a belt-shaped resin film that is stretched while being conveyed and is stretched, and is unstretched until the unstretched film is stretched in the stretching step after the film formation step is completed.
  • the relationship between the temperature T1 at which the film is exposed and the glass transition temperature A1 of the unstretched film represented by the following formula (1) provides a method for producing a resin film satisfying the following formula (2).
  • the moisture content of the coating film before reducing water is greater than 30% by mass, and the moisture content of the coating film is 30% by mass in the process of reducing water.
  • the water removal rate is preferably 0.01 to 1.8% by mass / second.
  • the moisture content of the coating film before water reduction is greater than 30% by mass, and in the process of reducing water, the moisture content of the coating film is 30 to 10% by mass.
  • the average water removal rate is preferably 0.01 to 1.8% by mass / second.
  • One embodiment of the present invention includes a film forming step of forming a strip-shaped unstretched film using a polyvinyl alcohol-based resin as a forming material by reducing water from a coating film of a polyvinyl alcohol-based resin solution, and the unstretched film in the longitudinal direction.
  • the glass of the resin film represented by the temperature T2 to which the resin film is exposed and the resin film represented by the following formula (3) until the resin film is dyed in the dyeing process after the stretching process is finished. It is preferable that the relationship with the transition temperature A2 satisfies the following formula (4).
  • a polyvinyl alcohol-based resin solution is applied to at least one surface of the substrate film while conveying the belt-shaped substrate film in the longitudinal direction, and is applied to at least one surface. It is preferable to laminate an unstretched film.
  • the polarizing film preferably has a thickness of 10 ⁇ m or less.
  • the moisture content of the coating film before reducing water is greater than 30% by mass, and the moisture content of the coating film is 30% by mass in the process of reducing water.
  • the water removal rate is preferably 0.01 to 1.8% by mass / second.
  • the moisture content of the coating film before water reduction is greater than 30% by mass, and in the process of reducing water, the moisture content of the coating film is 30 to 10% by mass.
  • the average water removal rate is preferably 0.01 to 1.8% by mass / second.
  • One aspect of the present invention includes a stretching step of stretching a belt-shaped unstretched film having a polyvinyl alcohol-based resin as a forming material while conveying it in the longitudinal direction to obtain a resin film obtained by stretching the unstretched film, and a resin film.
  • a dyeing step of immersing a resin film dyed with a dichroic substance in a crosslinking bath containing a crosslinking agent after dyeing with the dichroic substance while being conveyed in the longitudinal direction, and dyeing after completion of the stretching process Until the resin film is dyed in the process, the relationship between the temperature T2 at which the resin film is exposed and the glass transition temperature A2 of the resin film represented by the following formula (3) satisfies the following formula (4).
  • a method for producing a polarizing film is provided.
  • a method for producing a resin film that exhibits high polarization performance when used as a polarizing film and a method for producing a polarizing film using the resin film.
  • FIG. 1 is a flowchart showing a method for manufacturing a polarizing film using a resin film according to the first embodiment of the present invention.
  • the resin film manufacturing method according to the present embodiment includes a film forming process including steps S11 and S12 and a stretching process including step S13.
  • the film forming process according to the present embodiment includes Step S11 and Step S12.
  • a polyvinyl alcohol-based resin hereinafter, PVA-based resin
  • pulverized product, or cut product is swollen with a solvent
  • the swollen PVA-based resin is heated and stirred, and the PVA-based resin solution is Prepare.
  • the concentration of the PVA resin in the PVA resin solution is preferably 3 to 40% by mass, and more preferably 10 to 30% by mass.
  • a saponified polyvinyl acetate resin can be used as the PVA resin that is a material for forming the unstretched film.
  • the polyvinyl acetate resin include, in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the PVA resin used in this embodiment is preferably a completely saponified product.
  • the saponification degree of the PVA resin in this embodiment is preferably 80.0 mol% or more and 99.5 mol% or less, more preferably 90.0 mol% or more and 99.5 mol% or less, 94 It is more preferable that it is 0.0 mol% or more and 99.0 mol% or less.
  • the degree of saponification of the PVA-based resin is less than 80.0 mol%, the water resistance and moist heat resistance may decrease when a polarizing film is obtained.
  • the degree of saponification of the PVA-based resin is larger than 99.5 mol%, the dyeing speed becomes slow in the manufacturing process of the polarizing film, the productivity is lowered, and a polarizing film having sufficient polarizing performance cannot be obtained. There is.
  • the degree of saponification (unit: mol%) of the PVA-based resin is the unit in which the acetate group contained in the polyvinyl acetate-based resin that is the raw material of the PVA-based resin is changed to the hydroxyl group by the saponification step. It is expressed in a ratio (unit: mol%) and is a numerical value defined by the following formula (S1). This numerical value can be obtained by a method defined in JIS K 6726 (1994).
  • Degree of saponification (number of hydroxyl groups) / (number of hydroxyl groups + number of acetate groups) ⁇ 100 (S1)
  • the PVA resin used in the present embodiment may be a modified PVA partially modified.
  • PVA resins may be modified with olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters of unsaturated carboxylic acids, acrylamide, and the like.
  • the proportion of modification is preferably less than 30 mol%, and more preferably less than 10 mol%. When modification exceeding 30 mol% is performed, it is difficult to adsorb the dichroic dye, and the polarization performance when a polarizing film is obtained may be lowered.
  • the average degree of polymerization of the PVA resin in the present embodiment is not particularly limited, but is preferably 100 to 10,000, more preferably 1500 to 8000, and further preferably 2000 to 5000.
  • the average degree of polymerization of the PVA-based resin can be determined by a method defined by JIS K 6726 (1994), similarly to the degree of saponification.
  • PVA resins having such characteristics include PVA124 (saponification degree: 98.0 to 99.0 mol%) and PVA117 (degree of saponification: 98.0 to 99.0 mol%) manufactured by Kuraray Co., Ltd. ), PVA624 (degree of saponification: 95.0-96.0 mol%) and PVA617 (degree of saponification: 94.5-95.5 mol%); for example, AH-26 (ken Degree of saponification: 97.0 to 98.8 mol%), AH-22 (degree of saponification: 97.5 to 98.5 mol%), NH-18 (degree of saponification: 98.0 to 99.0 mol%) ), And N-300 (degree of saponification: 98.0 to 99.0 mol%); for example, JC-33 (degree of saponification: 99.0 mol% or more) of Nippon Acetate Bi-Poval, JM-33 (Degree of saponification: 93.5-95.5 mol%), JM-26 (ken Degree: 95.5 to 97.5 to
  • the first drying process of step S12 is performed following the preparation process of step S11.
  • water is reduced from the coating film of the PVA resin solution to form a strip-shaped unstretched film using the PVA resin as a forming material.
  • a conventionally known apparatus can be used.
  • the apparatus provided with the some drying roll whose rotation axis is mutually parallel, for example is mentioned.
  • a coating film is formed by discharging the PVA resin solution obtained in step S11 onto one drying roll of this apparatus.
  • water is reduced from this coating film to form an unstretched film made of a PVA-based resin.
  • the first drying treatment according to the present embodiment can be performed by heating, and may be performed under reduced pressure as necessary.
  • Examples of the method for drying the PVA resin solution by heating include hot air drying.
  • the moisture content of the coating film of the PVA resin solution is preferably greater than 30% by mass.
  • the water removal rate when the water content of the coating film is 30% by mass is 0.01 to 1.8% by mass / second.
  • the average removal rate of water when the water content is 30 to 10% by mass is 0.01 to 1.8% by mass / second.
  • the drying temperature and drying time in the first drying treatment may be determined according to the moisture content of the coating film of the PVA resin solution, the water removal rate at this moisture content, or the average removal rate.
  • the drying temperature is preferably 50 to 200 ° C., for example, and more preferably 60 to 150 ° C.
  • crystal nuclei made of PVA resin increase in the coating film of the PVA resin solution, and the density of crystal nuclei increases.
  • a dense crystal structure in this way, when a resin film is dyed with a dichroic substance in a subsequent dyeing process, a complex composed of the dichroic substance and a PVA resin is formed in the vicinity of the crystal. Is done. Since this complex is stable and highly oriented, it contributes to an improvement in polarization performance when a polarizing film is obtained.
  • the crystal structure of the unstretched film may change after completion of the film forming process until the unstretched film is stretched in the stretching process described later.
  • thermoplastic resin having crystallinity such as a PVA resin (hereinafter sometimes simply referred to as “crystalline resin”) reaches a temperature higher than its glass transition temperature, crystals grow.
  • crystalline resin a thermoplastic resin having crystallinity
  • water acts as a plasticizer, so the crystalline resin softens at a temperature lower than the original glass transition temperature, and the movement of molecular chains in the crystalline resin is large.
  • rearrangement of molecular chains may cause crystals to grow at a temperature lower than the original glass transition temperature, resulting in an increase in crystallinity.
  • the ratio of the amorphous part to the mass of the crystalline resin decreases, so that the moisture content of the amorphous part relatively increases. Therefore, the glass transition temperature of the crystalline resin that has been crystallized is lower than the original glass transition temperature. Thereby, the crystal grows at a temperature lower than the original glass transition temperature, and the crystallinity is further increased.
  • the manufacturing conditions are defined as follows. That is, the temperature T1 at which the unstretched film is exposed and the glass transition temperature A1 determined from the moisture content of the unstretched film until the unstretched film is stretched in the stretching process described later after the film formation step is completed. And the stretching process was performed on an unstretched film satisfying this rule.
  • the extending process according to this embodiment includes step S13.
  • the unstretched film obtained in step S12 is stretched while being transported in the longitudinal direction to form a belt-shaped resin film obtained by stretching the unstretched film.
  • the temperature T1 (unit: ° C.) at which the unstretched film is exposed until the unstretched film is stretched in the stretching process after the film formation process is finished, and is expressed by the following formula (1).
  • the relationship with the glass transition temperature A1 (unit: ° C.) of the unstretched film satisfies the following formula (2). Further, the relationship between the temperature T1 and the glass transition temperature A1 of the unstretched film is more preferably T1 ⁇ A1.
  • temperature T1 means the highest temperature to which an unstretched film is exposed after the completion
  • the time until the unstretched film is stretched in the stretching step is usually 1 second or longer, may be 1 day or longer, and can suppress crystal growth. From the point, it is usually 3 months or less.
  • the time for line transporting the unstretched film from the film forming process to the stretching process, and after finishing the film forming process, the unstretched film is wound around a roll and transported to the next process and unstretched from the roll. Includes time to unwind the film.
  • the stretching in the stretching process of the present embodiment is preferably dry uniaxial stretching.
  • the draw ratio in the drawing process according to this embodiment is more than 5 times and 17 times or less, more preferably more than 5 times and 8 times or less.
  • the humidity control process can be performed to achieve a desired moisture content before the stretching process.
  • the humidity control method include a method of placing an unstretched film in a room adjusted to a desired humidity and temperature, or a method of passing an unstretched film through a humidity control furnace adjusted to a desired humidity and temperature. It is done.
  • the moisture content of the unstretched film can be increased (humidified) or the moisture content can be decreased (dried) depending on the state of the unstretched film before stretching.
  • the manufacturing method of the polarizing film using the resin film which concerns on this embodiment is the film-forming process containing step S11 and step S12, the extending
  • steps S11 to S13 are common to the resin film manufacturing method according to the present embodiment. Therefore, the same code
  • the dyeing process according to the present embodiment includes Step S21 and Step S22.
  • the resin film is dyed with a dichroic substance while being conveyed in the longitudinal direction, and the dichroic substance is adsorbed and oriented to form a dyed film.
  • the resin film dyed with the dichroic substance in step S21 (hereinafter, dyed film) is cross-linked with a cross-linking agent to form a cross-linked film.
  • the dyeing process according to this embodiment is performed by immersing a resin film in a liquid containing a dichroic substance (hereinafter, dye bath).
  • a solution in which the above dichroic substance is dissolved in a solvent can be used.
  • a solvent for the dyeing bath for example, water is preferable.
  • An organic solvent compatible with water may be further added to the dyeing bath. Specific examples of the organic solvent include methanol, ethanol, propanol, or glycerin.
  • dichroic substance used in the present embodiment examples include iodine or a known dichroic organic dye as a coloring material for a polarizing film.
  • dichroic organic dyes include red BR, red LR, red R, pink LB, Rubin BL, Bordeaux GS, sky blue LG, lemon yellow, blue BR, blue 2R, navy RY, green LG, violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Includes Sky Blue, Direct First Orange S and First Black.
  • a dichroic dye may be used individually by 1 type, and may use 2 or more types together.
  • the concentration of the dichroic substance in the dyeing bath is preferably 0.01 to 10% by mass, and more preferably 0.02 to 7% by mass.
  • iodine When iodine is used as the dichroic substance, it is preferable to further add iodide to a dyeing bath containing iodine for the purpose of improving dyeing efficiency.
  • iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. It is preferable to add potassium iodide.
  • the dyeing bath may contain a crosslinking agent.
  • the concentration of iodide in the dye bath is preferably 0.01 to 20% by mass.
  • the ratio of iodine to potassium iodide is preferably 1: 5 to 1: 100, more preferably 1: 6 to 1:80 in terms of mass ratio.
  • the temperature of the dyeing bath is preferably 10 to 60 ° C, more preferably 20 to 40 ° C.
  • the dyeing film is immersed in a liquid containing a crosslinking agent (hereinafter, a crosslinking bath) to perform a crosslinking process to obtain a crosslinked film.
  • a crosslinking agent hereinafter, a crosslinking bath
  • a boron compound As the crosslinking agent used in this embodiment, a boron compound, glyoxal, or glutaraldehyde is preferable, and a boron compound is more preferable.
  • the boron compound include boric acid and borax. Only 1 type may be used for a crosslinking agent and it may use 2 or more types together.
  • the crosslinking bath of this embodiment a solution in which a crosslinking agent is dissolved in a solvent can be used.
  • a solvent for example, water is preferable.
  • the crosslinking bath may further contain an organic solvent compatible with water. Specific examples of the organic solvent are the same as described above.
  • the concentration of the crosslinking agent in the crosslinking bath is preferably 1 to 20% by mass, more preferably 6 to 15% by mass.
  • the crosslinking bath of the present embodiment can further contain iodide.
  • iodide By adding iodide to the cross-linking bath, the polarizing performance in the plane of the obtained polarizing film can be made uniform. Specific examples of iodide are the same as described above.
  • the concentration of iodide in the crosslinking bath is preferably 0.05 to 15% by mass, and more preferably 0.5 to 8% by weight.
  • the temperature of the crosslinking bath is preferably 10 to 90 ° C.
  • the temperature T2 (unit: ° C.) at which the resin film is exposed until the resin film is dyed in the dyeing process after the end of the stretching process, and the resin film represented by the following formula (3)
  • the glass transition temperature A2 (unit: ° C.) preferably satisfies the following formula (4). This is the relationship between the temperature T1 at which the unstretched film is exposed and the glass transition temperature A1 of the unstretched film until the unstretched film is stretched in the stretching process after the film forming process according to this embodiment is completed. For the same reason as prescribing. Further, the relationship between the temperature T2 and the glass transition temperature A2 of the resin film is more preferably T2 ⁇ A2.
  • the temperature T2 refers to the maximum temperature at which the resin film is exposed after the end of the stretching process and before the resin film is dyed in the dyeing process.
  • the time until the resin film is dyed in the dyeing process after the stretching process is usually 1 second or longer, may be 1 day or longer, and can suppress crystal growth. Usually less than 3 months. In this time, for example, the time when the resin film is line-conveyed from the stretching process to the dyeing process or the crosslinking process, and after finishing the stretching process, the resin film is once wound on a roll and transported to the next process. Includes time to unwind.
  • the cleaning process according to the present embodiment includes step S23.
  • the cleaning process in step S23 the crosslinked film obtained in step S22 is cleaned.
  • the cleaning treatment according to the present embodiment is performed by immersing the crosslinked film in pure water (hereinafter referred to as a cleaning bath) such as ion exchange water or distilled water.
  • a cleaning bath such as ion exchange water or distilled water.
  • the washing bath may further contain an organic solvent compatible with water. Specific examples of the organic solvent are the same as described above.
  • the washing temperature is preferably 3 to 50 ° C, more preferably 4 to 20 ° C.
  • the cleaning process according to this embodiment may be a cleaning process using an aqueous solution containing iodide, or a combination of a cleaning process using an aqueous solution containing iodide and a cleaning process using pure water.
  • Specific examples of iodide are the same as described above.
  • the washing bath may contain a crosslinking agent, and in order to prevent defects due to precipitation of the crosslinking agent on the film surface, an addition amount of 1 part by mass or less is more preferable with respect to 100 parts by mass of water.
  • the concentration of iodide in the washing bath is preferably 1 to 15% by mass.
  • the drying process according to the present embodiment includes step S24.
  • the crosslinked film washed in step S23 is dried.
  • the drying temperature is preferably 20 to 95 ° C. If the drying temperature is too low, the drying time becomes longer and the production efficiency decreases. On the other hand, when the drying temperature is too high, the obtained polarizing film is deteriorated, and the polarizing performance and the hue are deteriorated.
  • the drying time is preferably 2 to 20 minutes. In this way, a polarizing film is obtained.
  • this film-forming process can be abbreviate
  • the temperature T2 (unit: ° C.) at which the resin film is exposed until the resin film is dyed in the dyeing process after the stretching process is finished, and is expressed by the above formula (3).
  • the relationship with the glass transition temperature A2 (unit: ° C.) of the resin film satisfies the above formula (4).
  • the polarizing plate by which the polarizing film and the protective film were laminated
  • thermoplastic resin excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable.
  • the thermoplastic resin include acetyl cellulose resins such as triacetyl cellulose, cycloolefin resins, cycloolefin copolymer resins, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycarbonate resins, and polyresins.
  • acrylic resins such as methyl methacrylate, acyclic olefin resins such as polypropylene and polyethylene, and mixtures thereof.
  • the thickness of the protective film is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, and even more preferably 10 to 50 ⁇ m.
  • the protective film which consists of the same resin material may be used on both surfaces, and the protective film which consists of a different resin material may be used.
  • Examples of the adhesive for the polarizing plate according to this embodiment include an aqueous adhesive and an active energy ray-curable adhesive.
  • Examples of the water-based adhesive include an adhesive in which a polyvinyl alcohol-based resin is dissolved or dispersed in water.
  • Examples of the active energy ray-curable adhesive include an adhesive containing a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • active energy ray-curable adhesive since it exhibits good adhesion, active energy ray-curable adhesive containing either or both of a cationic polymerizable curable compound and a radical polymerizable curable compound It is preferable to use an agent composition.
  • the active energy ray-curable adhesive can further include a cationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • Examples of cationically polymerizable curable compounds include epoxy compounds (compounds having one or more epoxy groups in the molecule) and oxetane compounds (one or two or more oxetane rings in the molecule). Compound), or a combination thereof.
  • radical polymerizable curable compound examples include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule) and radical polymerizable double bonds. Other vinyl compounds or combinations thereof can be mentioned.
  • the active energy ray curable adhesive may be a cationic polymerization accelerator, an ion trap agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow modifier, a plasticizer, Additives such as foaming agents, antistatic agents, leveling agents and solvents can be contained.
  • a manufacturing method of the polarizing plate according to the present embodiment will be described.
  • a protective film is laminated
  • an active energy ray such as ultraviolet ray, visible light, electron beam, or X-ray is irradiated to cure the adhesive layer made of the active energy ray-curable adhesive.
  • ultraviolet rays are preferable, and as a light source in this case, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, or the like is used. it can.
  • the protective film when a protective film is bonded using an aqueous adhesive, the protective film may be laminated on the polarizing film via the aqueous adhesive and then dried by heating.
  • the polarizing plate of the present embodiment can be subjected to a surface treatment on the polarizing film and / or the protective film for the purpose of improving the adhesiveness with the adhesive.
  • a surface treatment examples include corona treatment, plasma treatment, flame treatment, ultraviolet treatment, primer treatment, saponification treatment, solvent treatment by solvent application and drying.
  • a surface treatment layer such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, or an antifouling layer may be formed on the surface of the protective film opposite to the polarizing film.
  • FIG. 2 is a flowchart showing a method for manufacturing a polarizing film using a resin film according to the second embodiment of the present invention.
  • the method for producing a resin film and the method for producing a polarizing film using the resin film according to this embodiment are the same as those in the first embodiment shown in FIG. 1, steps S11 to S13 and steps S21 to S24. Are common.
  • step S31 is included between step S11 and step S12 in the film forming process of the first embodiment. Therefore, in this embodiment, the same reference numerals are given to the steps after the staining step that are common to the first embodiment, and detailed description thereof is omitted.
  • the film forming process includes step S11, step S31, and step S12.
  • the PVA resin solution prepared in step S11 is applied to at least one surface of the base film while transporting the belt-shaped base film in the longitudinal direction. Thereby, a coating layer is formed in the at least one surface of a base film.
  • step S12 water is reduced from the coating layer obtained in step S31 to form a laminate in which an unstretched film is laminated on at least one surface of the base film.
  • the base film used in the present embodiment those conventionally used as a protective film for a polarizing film can be used.
  • the base film forming material include transparency, mechanical strength, and heat stability.
  • a thermoplastic resin having excellent properties, moisture barrier properties, isotropic properties, stretchability and the like is used.
  • thermoplastic resins examples include polyolefin resins such as chain polyolefin resins, cyclic polyolefin resins (norbornene resins), polyester resins, (meth) acrylic resins, cellulose triacetate, cellulose diacetate, and the like.
  • polyolefin resins such as chain polyolefin resins, cyclic polyolefin resins (norbornene resins), polyester resins, (meth) acrylic resins, cellulose triacetate, cellulose diacetate, and the like.
  • a copolymer obtained by copolymerizing the above resin monomers may be used as a material for forming a base film
  • the base film in the present embodiment is formed of one or more thermoplastic resins.
  • the base film may have a single layer structure composed of one resin layer or a multilayer structure in which a plurality of resin layers are laminated.
  • the base film is preferably composed of a resin that can be stretched at a stretching temperature suitable for stretching the unstretched film in a stretching step performed after the film forming step.
  • the base film is an ultraviolet absorber, antioxidant, lubricant, plasticizer, mold release agent, anti-coloring agent, flame retardant, nucleating agent, antistatic agent, pigment, or coloring as long as the effects of the present invention are not impaired. You may contain additives, such as an agent.
  • the thickness of the base film is preferably 1 to 500 ⁇ m, more preferably 1 to 300 ⁇ m, further preferably 5 to 200 ⁇ m, and particularly preferably 5 to 150 ⁇ m from the viewpoint of strength and handleability.
  • a conventionally known method can be employed as a method for applying the PVA resin solution.
  • Conventionally known methods include, for example, roll coating methods such as wire bar coating, reverse coating, and gravure coating, die coating, comma coating, lip coating, screen coating, fountain coating, dipping, and spraying. Can be mentioned.
  • the PVA resin solution may be applied to only one surface of the base film, or may be applied to both surfaces.
  • Processing may be performed.
  • surface treatment include corona treatment, plasma treatment, flame (flame) treatment, and the like.
  • a coating layer may be formed on the base film via a primer layer or the like.
  • thermoplastic resin excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropic property, stretchability, and the like is used.
  • thermoplastic resins include (meth) acrylic resins and polyvinyl alcohol resins.
  • a polyvinyl alcohol-based resin is preferable and a polyvinyl alcohol resin is more preferable because it can exhibit good adhesion to both the base film and the unstretched film of the laminate.
  • Examples of the method for forming the primer layer include a method in which a mixed solution of the above resin and solvent is applied to the surface of the substrate film and then dried.
  • the solvent is not particularly limited as long as the resin can be dissolved, but water is preferable.
  • the method for applying the primer layer is the same as the method for applying the PVA resin solution.
  • the drying temperature when forming the primer layer is preferably 50 to 200 ° C, more preferably 60 to 150 ° C. When water is contained as a solvent, the drying temperature is preferably 80 ° C. or higher.
  • the primer layer may contain a crosslinking agent in order to improve its strength.
  • a crosslinking agent include, for example, epoxy-based, isocyanate-based, dialdehyde-based, metal-based, or polymer-based crosslinking agents.
  • the metal-based crosslinking agent include metal salts, metal oxides, metal hydroxides, and organometallic compounds.
  • a polyvinyl alcohol-based resin is employed as a material for forming the primer layer
  • a polyamide epoxy resin, a methylolated melamine resin, a dialdehyde-based crosslinking agent, a metal chelate compound-based crosslinking agent, or the like is preferably used.
  • the thickness of the primer layer is preferably about 0.05 to 1 ⁇ m, more preferably 0.1 to 0.4 ⁇ m. If the thickness of the primer layer is less than 0.05 ⁇ m, sufficient adhesion between the base film and the unstretched film may not be obtained.
  • a first drying process is performed in which water is reduced from the coating layer in the laminate to form an unstretched film.
  • the first drying process according to the present embodiment can be performed by heating as in the first embodiment, and may be performed under reduced pressure as necessary.
  • Examples of the method for drying the PVA resin solution by heating include drying with a hot roll or hot air drying.
  • the moisture content of the coating layer in the laminate is preferably greater than 30% by mass.
  • the water removal rate when the water content of the coating film is 30% by mass is 0.01 to 1.8% by mass / second.
  • the average removal rate of water when the water content is 30 to 10% by mass is 0.01 to 1.8% by mass / second.
  • the extending process according to this embodiment includes step S13.
  • the laminate obtained in Step S12 is stretched, and a stretched base film in which the base film is stretched and a resin film formed on at least one surface of the stretched base film are: A laminated film is formed.
  • the temperature T1 (unit: ° C.) at which the unstretched film is exposed until the unstretched film is stretched in the stretching process, and the above formula (1)
  • the relationship with the glass transition temperature A1 (unit: ° C.) of the unstretched film represented by) is the same as in the first embodiment.
  • the crystal growth of the PVA resin in the unstretched film can be suppressed.
  • crystallization of the PVA-type resin in an unstretched film can be made small enough, a polarizing film with high polarizing performance when it is set as a polarizing film can be obtained.
  • the time until the unstretched film is stretched in the stretching step is usually 1 second or longer, may be 1 day or longer, and can suppress crystal growth. From the point, it is usually 3 months or less.
  • the time for line transporting the unstretched film from the film forming process to the stretching process, and after finishing the film forming process, the unstretched film is wound around a roll and transported to the next process and unstretched from the roll. Includes time to unwind the film.
  • the stretching ratio in the stretching treatment according to this embodiment may be appropriately selected according to the desired polarization performance, but is preferably more than 5 times and not more than 17 times the original length of the laminate, and more than 5 times and 8 times. The following is more preferable. If the draw ratio is 5 times or less, the orientation of the PVA-based resin is insufficient, so that sufficient polarizing performance may not be obtained when a polarizing film is obtained. On the other hand, when the draw ratio exceeds 17 times, breakage of the laminated film is likely to occur, and the thickness of the laminated film becomes thinner than a desired thickness, which may reduce workability and handleability in subsequent processes.
  • the drawing treatment can be performed in multiple stages.
  • all of the multistage stretching processes may be performed continuously before the dyeing process, or the second and subsequent stretching processes may be performed simultaneously with the dyeing process or the crosslinking process or both in the dyeing process.
  • the first-stage stretching is performed in a dry manner
  • the stretching ratio is more than 1.1 times and not more than 3.0 times
  • the second-stage stretching is performed in water
  • the stretching ratio is 2 to 5 times. It is good also as follows.
  • the stretching treatment may be longitudinal stretching that extends in the longitudinal direction of the laminate (transport direction of the laminate), transverse stretching that extends in the width direction of the laminate, or oblique stretching.
  • Examples of the longitudinal stretching method include inter-roll stretching using a roll, compression stretching, stretching using a chuck (clip), and the like.
  • Examples of the transverse stretching method include a tenter method.
  • As the stretching treatment either a wet stretching method or a dry stretching method can be adopted. However, it is preferable to use the dry stretching method because the stretching temperature can be selected from a wide range.
  • the stretching temperature may be set to be higher than the temperature at which the laminate can be stretched to such a degree that it can be stretched, preferably 80 to 160 ° C, more preferably 90 to 150 ° C, and further preferably 100 to 130 ° C.
  • the thickness of the resin film in the laminated film is preferably 3 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. In this embodiment, when the thickness of the resin film is within the above range, it is easy to dye with a dichroic substance in the dyeing step, and the polarizing performance when the polarizing film is obtained is excellent.
  • insolubilization treatment may be performed in order to insolubilize the resin film in the laminated film.
  • the insolubilization treatment can be performed by immersing the laminated film in a solution containing a crosslinking agent (hereinafter referred to as insolubilization bath).
  • the crosslinking agent contained in the insolubilizing bath is the same as the crosslinking agent used for the crosslinking treatment of the first embodiment.
  • a solvent for the insolubilizing bath for example, water is preferable.
  • the insolubilizing bath may further contain an organic solvent compatible with water. Specific examples of the organic solvent are the same as described above.
  • the concentration of the crosslinking agent in the insolubilizing bath is preferably 1 to 4% by mass.
  • the temperature of the insolubilizing bath is preferably 25 ° C. or higher, more preferably 30 to 85 ° C., and further preferably 30 to 60 ° C.
  • the time for immersing the laminated film in the insolubilizing bath is preferably 5 to 800 seconds, more preferably 8 to 500 seconds.
  • the dyeing process, the washing process, and the drying process that are performed after the stretching process according to the present embodiment are the same as those in the first embodiment. In this way, a polarizing laminated film in which a polarizing film is laminated on the surface of the base film is obtained.
  • the present embodiment there is provided a method for producing a polarizing film that exhibits high polarization performance when used as a polarizing film as in the first embodiment.
  • an unstretched film can be extended
  • stretches the film which consists of PVA-type resin independently, and manufacture of a polarizing film Compared with the method, a thin polarizing film is easily obtained. That is, the thickness of the polarizing film obtained by the method for manufacturing a polarizing film according to this embodiment is preferably 10 ⁇ m or less, and may be 7 ⁇ m or less.
  • the polarizing film having a thickness of 10 ⁇ m or less compared with the polarizing film having a thickness of more than 10 ⁇ m, since there are many complexes composed of a dichroic substance and a PVA resin existing on the surface of the polarizing film, there is an influence on the polarizing performance. I can't overlook.
  • the temperature at which the film is exposed By managing the relationship with the glass transition temperature of the film, it is possible to suppress the growth of crystals in the film and maintain the polarization performance when a polarizing film is kept high.
  • a protective film is bonded on the polarizing film of both surfaces, respectively.
  • protective films made of the same resin material may be used, or protective films made of different resin materials may be used.
  • a polarizing plate having a protective film on one side is obtained by peeling the base film from the polarizing laminated film having a protective film on one side.
  • this polarizing laminated film is equipped with a polarizing film on both surfaces of a base film and a protective film is bonded to both of these polarizing films, a protective film is applied to one side for each polarizing laminated film. Two polarizing plates are obtained.
  • the same method as the separator (peeling film) peeling step performed by a conventional polarizing plate equipped with an adhesive can be employed.
  • the protective film in the polarizing plate with a protective film on one side that is, on the surface opposite to the protective film that has already been bonded
  • the protective film is bonded on both sides by bonding the protective film using an adhesive.
  • the applied polarizing plate is obtained.
  • Specific examples of the protective film and the adhesive used at this time are the same as described above.
  • an apparatus including a plurality of drying rolls whose rotation axes are parallel to each other is used.
  • a heat treatment roll may be provided on the downstream side of the plurality of drying rolls.
  • the dyeing process is performed after the stretching process.
  • the dyeing process can be performed before the stretching process, or these processes can be performed simultaneously.
  • the crosslinking treatment is performed before the dyeing treatment.
  • the crosslinking treatment may be performed simultaneously with the dyeing treatment by blending a crosslinking agent in the dyeing bath. .
  • the polarizing plate is on the polarizing film in the polarizing plate with the protective film on one side or on the protective film in the polarizing plate with the protective film on both sides.
  • stack the adhesive layer for bonding to other members (For example, the liquid crystal cell in the case of applying to a liquid crystal display device).
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive composition obtained by adding a crosslinking agent to a base polymer.
  • the base polymer include (meth) acrylic resins, styrene resins, silicone resins, and the like.
  • a crosslinking agent an isocyanate compound, an epoxy compound, an aziridine compound etc. are mentioned, for example.
  • the pressure-sensitive adhesive composition may further contain fine particles to form a pressure-sensitive adhesive layer exhibiting light scattering properties.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 to 40 ⁇ m, and more preferably 3 to 25 ⁇ m.
  • another optical layer may be laminated on either the polarizing film in the polarizing plate having a protective film on one side or the protective film in the polarizing plate having a protective film on both sides.
  • the other optical layer include a reflective polarizing film, a film with a surface antireflection function, a reflection film having a reflection function on the surface, a transflective film having both a reflection function and a transmission function, and a viewing angle compensation film.
  • the polarizing plate having the polarizing film obtained by the production method of the present embodiment can be suitably applied to the viewing side and the back side of the display device.
  • the total thickness of the obtained base film was 90 ⁇ m, and the thickness ratio (FLX80E4 / W151 / FLX80E4) of each layer was 3/4/3.
  • PVA powder manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Z-200, average polymerization degree 1100, saponification degree 99.5 mol% was dissolved in 95 ° C. hot water to prepare a 3 mass% PVA aqueous solution. .
  • the obtained PVA aqueous solution was mixed with 5 parts by weight of a crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez Resin (registered trademark) 650) with respect to 6 parts by weight of PVA powder to obtain an adhesive.
  • the obtained adhesive was applied to the surface of a substrate film subjected to corona treatment using a micro gravure coater.
  • the substrate film after coating was dried at 80 ° C. for 10 minutes to form a primer layer having a thickness of 0.2 ⁇ m.
  • PVA powder manufactured by Kuraray Co., Ltd., trade name: PVA124, average polymerization degree 2400, saponification degree 98.0 to 99.0 mol% is dissolved in hot water at 95 ° C. to prepare a 7.5 mass% PVA aqueous solution. did.
  • the obtained PVA aqueous solution was applied to the surface of the base film on which the primer layer was formed using a die coater.
  • the base film after coating was dried at 80 ° C. to form a resin layer made of polyvinyl alcohol having a thickness of 9.2 ⁇ m.
  • the water removal rate when the water content is 30% by mass is 1.20% by mass / second, and the average water removal rate between the water content of 30 and 10% by mass is 1.21% by mass / second. there were.
  • stacked the base film, the primer layer, and the resin layer in this order was produced.
  • the crystallization index (peak ratio) X at the start of storage and at the end of storage was determined, respectively, and from the crystallization index after the end of storage, A crystallization index difference ⁇ X obtained by subtracting the crystallization index was calculated. At this time, the larger the crystallization index difference ⁇ X, the more crystals are growing in the unstretched film during storage.
  • the crystallization index (peak ratio) X of the resin layer was determined by the following method.
  • Crystallization index (peak ratio) X A 1141 / A 1440 (S2) (In the formula (S2), A 1141 and A 1440 refers to the absorbance at each wavenumber 1141cm -1 and 1440cm -1.)
  • Table 1 shows the crystallization index X and the crystallization index difference ⁇ X at the start of storage and at the end of storage of the laminates of Examples and Comparative Examples. Moreover, the graph which plotted the relationship between the moisture content and the glass transition temperature in the obtained unstretched film about the Example and the comparative example was shown in FIG. The curve in FIG. 3 shows the relationship between the moisture content and the glass transition temperature in the unstretched film when the crystallinity is 0%. Further, “ ⁇ ” and “x” shown in FIG. 3 correspond to “ ⁇ ” and “x” shown in Table 1.
  • an aqueous boric acid solution containing 10.4 parts by mass of boric acid per 100 parts by mass of water was prepared. It was immersed in a boric acid aqueous solution adjusted to a liquid temperature of 78 ° C. for 120 seconds. Furthermore, an aqueous solution (crosslinking bath) containing 5.0 parts by mass of boric acid and 12.0 parts by mass of potassium iodide was prepared with respect to 100 parts by mass of water. A crosslinking treatment was performed by immersing in a crosslinking bath adjusted to a liquid temperature of 65 ° C. for 60 seconds to obtain a crosslinked film.
  • Polarizing films were prepared from the laminates of the examples and comparative examples, and the polarizing performance was evaluated.
  • Table 1 a laminate having a crystallization index difference ⁇ X of less than 0.053, that is, a polarizing film produced using the laminate of the example, has a higher polarization than a polarizing film produced using the laminate of the comparative example. It was found to show performance. This is presumably because the crystal growth in the unstretched film during storage could be suppressed and a dense crystal structure could be maintained.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

[Problem] To provide a method for manufacturing a resin film which exhibits high polarizing performance as a polarizing film, and a method for manufacturing a polarizing film using the resin film. [Solution] This method for manufacturing the resin film is provided with: a film formation step for forming a belt-like unstretched film, which uses a polyvinyl alcohol-based resin as a forming material, by reducing water from the coating film of a polyvinyl alcohol-based resin solution; and a stretching step for conveying and stretching the unstretched film in a longitudinal direction and acquiring a belt-like resin film formed by stretching the unstretched film, wherein a relationship between a temperature T1 to which the unstretched film is exposed during a period from the end of the film formation step to stretching of the unstretched film in the stretching step, and the glass transition temperature A1 of the unstretched film represented by expression (1) satisfies expression (2). T1(°C)<A1(°C)+4(°C)... (2) (It should be noted that the "water content of the unstretched film" is expressed by mass fraction.)

Description

樹脂フィルムの製造方法および偏光フィルムの製造方法Method for producing resin film and method for producing polarizing film
 本発明は、樹脂フィルムの製造方法および偏光フィルムの製造方法に関するものである。 The present invention relates to a method for producing a resin film and a method for producing a polarizing film.
 偏光板は、液晶表示装置を代表とする画像表示装置等に広く用いられている。偏光板としては、樹脂フィルムに二色性色素で染色してなる偏光フィルムの片面または両面に保護フィルムを貼合した構成のものが一般的である。偏光フィルムの原料となる樹脂フィルムは、ポリビニルアルコール系樹脂を含有する塗膜から水を乾燥し、延伸することにより作製することができる〔例えば、特開2014-059564号公報(特許文献1)、特許第5390053号公報(特許文献2)〕。 The polarizing plate is widely used in image display devices such as liquid crystal display devices. As a polarizing plate, the thing of the structure which bonded the protective film to the single side | surface or both surfaces of the polarizing film formed by dye | staining with a dichroic dye to a resin film is common. The resin film used as a raw material for the polarizing film can be produced by drying and stretching water from a coating film containing a polyvinyl alcohol-based resin [for example, JP-A-2014-059564 (Patent Document 1), Japanese Patent No. 5390053 (Patent Document 2)].
特開2014-059564号公報JP 2014-059564 A 特許第5390053号公報Japanese Patent No. 5390053
 偏光フィルム用の樹脂フィルムには、延伸・染色によって偏光フィルムとしたときに高い偏光性能を示すことが求められる。このためには、上述の塗膜から水を乾燥除去する際に、塗膜中に十分な量のポリビニルアルコール系樹脂からなる結晶核を生成させ、緻密な結晶構造を形成することが望まれる。しかし、この塗膜の乾燥後、樹脂フィルムを延伸するまでの間や、樹脂フィルムの延伸後、延伸された樹脂フィルムを染色するまでの間に、結晶が成長し、緻密な結晶構造が乱れることがあった。そのため、偏光フィルムとしたときに高い偏光性能を示すためには、かかる期間に結晶の成長を抑制し、緻密な結晶構造を保つ必要があった。 A resin film for a polarizing film is required to exhibit high polarizing performance when a polarizing film is formed by stretching and dyeing. For this purpose, when removing water from the above-mentioned coating film by drying, it is desired to generate a crystal nucleus composed of a sufficient amount of polyvinyl alcohol resin in the coating film to form a dense crystal structure. However, after this coating is dried, the crystal grows until the resin film is stretched, or after the resin film is stretched and until the stretched resin film is dyed, and the dense crystal structure is disturbed. was there. Therefore, in order to exhibit high polarization performance when a polarizing film is used, it is necessary to suppress crystal growth and maintain a dense crystal structure during this period.
 本発明はこのような事情に鑑みてなされたものであって、偏光フィルムとしたときに高い偏光性能を示す樹脂フィルムの製造方法、および樹脂フィルムを用いた偏光フィルムの製造方法を提供することを目的とする。 This invention is made | formed in view of such a situation, Comprising: Providing the manufacturing method of the resin film which shows a high polarizing performance when it is set as a polarizing film, and the manufacturing method of the polarizing film using a resin film Objective.
 本発明の一態様は、ポリビニルアルコール系樹脂溶液の塗膜から水を低減し、ポリビニルアルコール系樹脂を形成材料とする帯状の未延伸フィルムを形成する成膜工程と、未延伸フィルムを長手方向に搬送しながら延伸し、未延伸フィルムが延伸されてなる帯状の樹脂フィルムを得る延伸工程と、を備え、成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの間、未延伸フィルムが曝される温度T1と、下記式(1)で表される未延伸フィルムのガラス転移温度A1との関係が、下記式(2)を満たす樹脂フィルムの製造方法を提供する。 One embodiment of the present invention includes a film forming step of forming a strip-shaped unstretched film using a polyvinyl alcohol-based resin as a forming material by reducing water from a coating film of a polyvinyl alcohol-based resin solution, and the unstretched film in the longitudinal direction. And a stretching step for obtaining a belt-shaped resin film that is stretched while being conveyed and is stretched, and is unstretched until the unstretched film is stretched in the stretching step after the film formation step is completed. The relationship between the temperature T1 at which the film is exposed and the glass transition temperature A1 of the unstretched film represented by the following formula (1) provides a method for producing a resin film satisfying the following formula (2).
Figure JPOXMLDOC01-appb-M000005
  T1(℃)<A1(℃)+4(℃)  …(2)
(ただし、「未延伸フィルムの含水率」は、質量分率である)
Figure JPOXMLDOC01-appb-M000005
T1 (° C.) <A1 (° C.) + 4 (° C.) (2)
(However, “moisture content of unstretched film” is a mass fraction)
 本発明の一態様においては、成膜工程において、水を低減する前の塗膜の含水率は30質量%より大きく、水を低減する過程において塗膜の含水率が30質量%であるときの水の除去速度が0.01~1.8質量%/秒であることが好ましい。 In one embodiment of the present invention, in the film forming step, the moisture content of the coating film before reducing water is greater than 30% by mass, and the moisture content of the coating film is 30% by mass in the process of reducing water. The water removal rate is preferably 0.01 to 1.8% by mass / second.
 本発明の一態様においては、成膜工程において、水を低減する前の塗膜の含水率は30質量%より大きく、水を低減する過程において塗膜の含水率が30~10質量%であるときの水の平均除去速度が0.01~1.8質量%/秒であることが好ましい。 In one embodiment of the present invention, in the film forming step, the moisture content of the coating film before water reduction is greater than 30% by mass, and in the process of reducing water, the moisture content of the coating film is 30 to 10% by mass. The average water removal rate is preferably 0.01 to 1.8% by mass / second.
 本発明の一態様は、ポリビニルアルコール系樹脂溶液の塗膜から水を低減し、ポリビニルアルコール系樹脂を形成材料とする帯状の未延伸フィルムを形成する成膜工程と、未延伸フィルムを長手方向に搬送しながら延伸し、未延伸フィルムが延伸されてなる帯状の樹脂フィルムを得る延伸工程と、樹脂フィルムを長手方向に搬送しながら二色性物質で染色した後に、二色性物質で染色された樹脂フィルムを、架橋剤を含む架橋浴に浸漬する染色工程と、を備え、成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの間、未延伸フィルムが曝される温度T1と、下記式(1)で表される未延伸フィルムのガラス転移温度A1との関係が、下記式(2)を満たす偏光フィルムの製造方法を提供する。 One embodiment of the present invention includes a film forming step of forming a strip-shaped unstretched film using a polyvinyl alcohol-based resin as a forming material by reducing water from a coating film of a polyvinyl alcohol-based resin solution, and the unstretched film in the longitudinal direction. Stretching while transporting and obtaining a strip-shaped resin film in which an unstretched film is stretched, and dyeing with a dichroic material while transporting the resin film in the longitudinal direction, followed by staining with a dichroic material A dyeing step of immersing the resin film in a cross-linking bath containing a cross-linking agent, and a temperature T1 at which the unstretched film is exposed until the unstretched film is stretched in the stretching step after the film forming step is completed. And the relationship with the glass transition temperature A1 of the unstretched film represented by following formula (1) provides the manufacturing method of the polarizing film which satisfy | fills following formula (2).
Figure JPOXMLDOC01-appb-M000006
  T1(℃)<A1(℃)+4(℃)  …(2)
(ただし、「未延伸フィルムの含水率」は、質量分率である)
Figure JPOXMLDOC01-appb-M000006
T1 (° C.) <A1 (° C.) + 4 (° C.) (2)
(However, “moisture content of unstretched film” is a mass fraction)
 本発明の一態様においては、延伸工程の終了後、染色工程にて樹脂フィルムを染色するまでの間、樹脂フィルムが曝される温度T2と、下記式(3)で表される樹脂フィルムのガラス転移温度A2との関係が、下記式(4)を満たすことが好ましい。 In one aspect of the present invention, the glass of the resin film represented by the temperature T2 to which the resin film is exposed and the resin film represented by the following formula (3) until the resin film is dyed in the dyeing process after the stretching process is finished. It is preferable that the relationship with the transition temperature A2 satisfies the following formula (4).
Figure JPOXMLDOC01-appb-M000007
  T2(℃)<A2(℃)+4(℃)  …(4)
(ただし、「樹脂フィルムの含水率」は、質量分率である)
Figure JPOXMLDOC01-appb-M000007
T2 (° C.) <A2 (° C.) + 4 (° C.) (4)
(However, “water content of the resin film” is a mass fraction)
 本発明の一態様においては、成膜工程において、帯状の基材フィルムを長手方向に搬送しながら、基材フィルムの少なくとも一方の面にポリビニルアルコール系樹脂溶液を塗工し、少なくとも一方の面に未延伸フィルムを積層することが好ましい。 In one embodiment of the present invention, in the film forming step, a polyvinyl alcohol-based resin solution is applied to at least one surface of the substrate film while conveying the belt-shaped substrate film in the longitudinal direction, and is applied to at least one surface. It is preferable to laminate an unstretched film.
 本発明の一態様においては、偏光フィルムの厚みが10μm以下であることが好ましい。 In one embodiment of the present invention, the polarizing film preferably has a thickness of 10 μm or less.
 本発明の一態様においては、成膜工程において、水を低減する前の塗膜の含水率は30質量%より大きく、水を低減する過程において塗膜の含水率が30質量%であるときの水の除去速度が0.01~1.8質量%/秒であることが好ましい。 In one embodiment of the present invention, in the film forming step, the moisture content of the coating film before reducing water is greater than 30% by mass, and the moisture content of the coating film is 30% by mass in the process of reducing water. The water removal rate is preferably 0.01 to 1.8% by mass / second.
 本発明の一態様においては、成膜工程において、水を低減する前の塗膜の含水率は30質量%より大きく、水を低減する過程において塗膜の含水率が30~10質量%であるときの水の平均除去速度が0.01~1.8質量%/秒であることが好ましい。 In one embodiment of the present invention, in the film forming step, the moisture content of the coating film before water reduction is greater than 30% by mass, and in the process of reducing water, the moisture content of the coating film is 30 to 10% by mass. The average water removal rate is preferably 0.01 to 1.8% by mass / second.
 本発明の一態様は、ポリビニルアルコール系樹脂を形成材料とする帯状の未延伸フィルムを長手方向に搬送しながら延伸し、未延伸フィルムが延伸されてなる樹脂フィルムを得る延伸工程と、樹脂フィルムを長手方向に搬送しながら二色性物質で染色した後に、二色性物質で染色された樹脂フィルムを、架橋剤を含む架橋浴に浸漬する染色工程と、を備え、延伸工程の終了後、染色工程にて樹脂フィルムを染色するまでの間、樹脂フィルムが曝される温度T2と、下記式(3)で表される樹脂フィルムのガラス転移温度A2との関係が、下記式(4)を満たす偏光フィルムの製造方法を提供する。 One aspect of the present invention includes a stretching step of stretching a belt-shaped unstretched film having a polyvinyl alcohol-based resin as a forming material while conveying it in the longitudinal direction to obtain a resin film obtained by stretching the unstretched film, and a resin film. A dyeing step of immersing a resin film dyed with a dichroic substance in a crosslinking bath containing a crosslinking agent after dyeing with the dichroic substance while being conveyed in the longitudinal direction, and dyeing after completion of the stretching process Until the resin film is dyed in the process, the relationship between the temperature T2 at which the resin film is exposed and the glass transition temperature A2 of the resin film represented by the following formula (3) satisfies the following formula (4). A method for producing a polarizing film is provided.
Figure JPOXMLDOC01-appb-M000008
  T2(℃)<A2(℃)+4(℃)  …(4)
(ただし、「樹脂フィルムの含水率」は、質量分率である)
Figure JPOXMLDOC01-appb-M000008
T2 (° C.) <A2 (° C.) + 4 (° C.) (4)
(However, “water content of the resin film” is a mass fraction)
 本発明の一態様によれば、偏光フィルムとしたときに高い偏光性能を示す樹脂フィルムの製造方法、および樹脂フィルムを用いた偏光フィルムの製造方法が提供される。 According to one embodiment of the present invention, there are provided a method for producing a resin film that exhibits high polarization performance when used as a polarizing film, and a method for producing a polarizing film using the resin film.
本発明の第1実施形態に係る樹脂フィルムを用いた偏光フィルムの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the polarizing film using the resin film which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る樹脂フィルムを用いた偏光フィルムの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the polarizing film using the resin film which concerns on 2nd Embodiment of this invention. 本発明の実施例および比較例について、得られた未延伸フィルムにおける含水率とガラス転移温度との関係をプロットしたグラフである。It is the graph which plotted the relationship between the moisture content and the glass transition temperature in the obtained unstretched film about the Example and comparative example of this invention.
<第1実施形態>
 以下、本発明の第1実施形態に係る樹脂フィルムの製造方法、および樹脂フィルムを用いた偏光フィルムの製造方法について、図1を参照しながら、適宜符号を用いて説明する。図1は、本発明の第1実施形態に係る樹脂フィルムを用いた偏光フィルムの製造方法を示すフローチャートである。
<First Embodiment>
Hereinafter, the manufacturing method of the resin film which concerns on 1st Embodiment of this invention, and the manufacturing method of the polarizing film using the resin film are demonstrated using a code | symbol suitably, referring FIG. FIG. 1 is a flowchart showing a method for manufacturing a polarizing film using a resin film according to the first embodiment of the present invention.
[樹脂フィルムの製造方法]
 本実施形態に係る樹脂フィルムの製造方法は、ステップS11およびS12を含む成膜工程と、ステップS13を含む延伸工程と、を備えている。
[Production method of resin film]
The resin film manufacturing method according to the present embodiment includes a film forming process including steps S11 and S12 and a stretching process including step S13.
(成膜工程)
 本実施形態に係る成膜工程は、ステップS11と、ステップS12と、を備える。
 ステップS11の調製処理では、ポリビニルアルコール系樹脂(以下、PVA系樹脂)の粉末、粉砕物または切断物等を溶媒により膨潤させた後、膨潤したPVA系樹脂を加熱撹拌し、PVA系樹脂溶液を調製する。PVA系樹脂溶液中のPVA系樹脂の濃度は3~40質量%が好ましく、10~30質量%がより好ましい。
(Film formation process)
The film forming process according to the present embodiment includes Step S11 and Step S12.
In the preparation process of step S11, after a polyvinyl alcohol-based resin (hereinafter, PVA-based resin) powder, pulverized product, or cut product is swollen with a solvent, the swollen PVA-based resin is heated and stirred, and the PVA-based resin solution is Prepare. The concentration of the PVA resin in the PVA resin solution is preferably 3 to 40% by mass, and more preferably 10 to 30% by mass.
 未延伸フィルムの形成材料であるPVA系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、例えば酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと共重合可能な他の単量体との共重合体などが挙げられる。
 酢酸ビニルに共重合可能な他の単量体としては、例えば不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
As the PVA resin that is a material for forming the unstretched film, a saponified polyvinyl acetate resin can be used. Examples of the polyvinyl acetate resin include, in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate.
Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 本実施形態で用いるPVA系樹脂は、完全ケン化品であることが好ましい。本実施形態におけるPVA樹脂のケン化度は、80.0モル%以上99.5モル%以下であるものが好ましく、90.0モル%以上99.5モル%以下であるものがより好ましく、94.0モル%以上99.0以下モル%であるものがさらに好ましい。PVA系樹脂のケン化度が80.0モル%未満であると、偏光フィルムとしたときに耐水性・耐湿熱性が低下することがある。また、PVA系樹脂のケン化度が99.5モル%より大きいと、偏光フィルムの製造工程において染色速度が遅くなり、生産性が低下するとともに十分な偏光性能を有する偏光フィルムが得られないことがある。 The PVA resin used in this embodiment is preferably a completely saponified product. The saponification degree of the PVA resin in this embodiment is preferably 80.0 mol% or more and 99.5 mol% or less, more preferably 90.0 mol% or more and 99.5 mol% or less, 94 It is more preferable that it is 0.0 mol% or more and 99.0 mol% or less. When the degree of saponification of the PVA-based resin is less than 80.0 mol%, the water resistance and moist heat resistance may decrease when a polarizing film is obtained. Further, if the degree of saponification of the PVA-based resin is larger than 99.5 mol%, the dyeing speed becomes slow in the manufacturing process of the polarizing film, the productivity is lowered, and a polarizing film having sufficient polarizing performance cannot be obtained. There is.
 本実施形態において、PVA系樹脂のケン化度(単位:モル%)とは、PVA系樹脂の原料であるポリ酢酸ビニル系樹脂に含まれる酢酸基がケン化工程により水酸基に変化した割合をユニット比(単位:モル%)で表したものであり、下記式(S1)で定義される数値である。この数値は、JIS K 6726(1994)で規定されている方法で求めることができる。 In the present embodiment, the degree of saponification (unit: mol%) of the PVA-based resin is the unit in which the acetate group contained in the polyvinyl acetate-based resin that is the raw material of the PVA-based resin is changed to the hydroxyl group by the saponification step. It is expressed in a ratio (unit: mol%) and is a numerical value defined by the following formula (S1). This numerical value can be obtained by a method defined in JIS K 6726 (1994).
 ケン化度=(水酸基の数)/(水酸基の数+酢酸基の数)×100  …(S1)
 PVA系樹脂のケン化度が高いほど、水酸基の割合が高いことを示しており、すなわち結晶化を阻害する酢酸基の割合が低いことを示している。
Degree of saponification = (number of hydroxyl groups) / (number of hydroxyl groups + number of acetate groups) × 100 (S1)
The higher the degree of saponification of the PVA-based resin, the higher the ratio of hydroxyl groups, that is, the lower the ratio of acetic acid groups that inhibit crystallization.
 また、本実施形態で用いるPVA系樹脂は、一部が変性されている変性PVAでもよい。例えば、PVA系樹脂をエチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、不飽和カルボン酸のアルキルエステル、アクリルアミドなどで変性したものなどが挙げられる。変性の割合は30モル%未満であることが好ましく、10モル%未満であることがより好ましい。30モル%を超える変性を行った場合には、二色性色素を吸着しにくくなり、偏光フィルムとしたときの偏光性能が低くなってしまうことがある。 Further, the PVA resin used in the present embodiment may be a modified PVA partially modified. For example, PVA resins may be modified with olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters of unsaturated carboxylic acids, acrylamide, and the like. The proportion of modification is preferably less than 30 mol%, and more preferably less than 10 mol%. When modification exceeding 30 mol% is performed, it is difficult to adsorb the dichroic dye, and the polarization performance when a polarizing film is obtained may be lowered.
 本実施形態におけるPVA系樹脂の平均重合度は、特に限定されないが、100~10000が好ましく、1500~8000がより好ましく、2000~5000がさらに好ましい。PVA系樹脂の平均重合度は、ケン化度と同様にJIS K 6726(1994)によって定められた方法によって求めることができる。 The average degree of polymerization of the PVA resin in the present embodiment is not particularly limited, but is preferably 100 to 10,000, more preferably 1500 to 8000, and further preferably 2000 to 5000. The average degree of polymerization of the PVA-based resin can be determined by a method defined by JIS K 6726 (1994), similarly to the degree of saponification.
 このような特性を有するPVA系樹脂としては、例えば株式会社クラレ製のPVA124(ケン化度:98.0~99.0モル%)、PVA117(ケン化度:98.0~99.0モル%)、PVA624(ケン化度:95.0~96.0モル%)およびPVA617(ケン化度:94.5~95.5モル%);例えば日本合成化学工業株式会社製のAH-26(ケン化度:97.0~98.8モル%)、AH-22(ケン化度:97.5~98.5モル%)、NH-18(ケン化度:98.0~99.0モル%)、およびN-300(ケン化度:98.0~99.0モル%);例えば日本酢ビ・ポバール株式会社のJC-33(ケン化度:99.0モル%以上)、JM-33(ケン化度:93.5~95.5モル%)、JM-26(ケン化度:95.5~97.5モル%)、JP-45(ケン化度:86.5~89.5モル%)、JF-17(ケン化度:98.0~99.0モル%)、JF-17L(ケン化度:98.0~99.0モル%)、およびJF-20(ケン化度:98.0~99.0モル%)などが挙げられる。 Examples of PVA resins having such characteristics include PVA124 (saponification degree: 98.0 to 99.0 mol%) and PVA117 (degree of saponification: 98.0 to 99.0 mol%) manufactured by Kuraray Co., Ltd. ), PVA624 (degree of saponification: 95.0-96.0 mol%) and PVA617 (degree of saponification: 94.5-95.5 mol%); for example, AH-26 (ken Degree of saponification: 97.0 to 98.8 mol%), AH-22 (degree of saponification: 97.5 to 98.5 mol%), NH-18 (degree of saponification: 98.0 to 99.0 mol%) ), And N-300 (degree of saponification: 98.0 to 99.0 mol%); for example, JC-33 (degree of saponification: 99.0 mol% or more) of Nippon Acetate Bi-Poval, JM-33 (Degree of saponification: 93.5-95.5 mol%), JM-26 (ken Degree: 95.5 to 97.5 mol%), JP-45 (degree of saponification: 86.5 to 89.5 mol%), JF-17 (degree of saponification: 98.0 to 99.0 mol%) , JF-17L (degree of saponification: 98.0 to 99.0 mol%), JF-20 (degree of saponification: 98.0 to 99.0 mol%), and the like.
 本実施形態に係る成膜工程では、ステップS11の調製処理に引き続いて、ステップS12の第1の乾燥処理が行われる。第1の乾燥処理では、PVA系樹脂溶液の塗膜から水を低減し、PVA系樹脂を形成材料とする帯状の未延伸フィルムを形成する。 In the film forming process according to the present embodiment, the first drying process of step S12 is performed following the preparation process of step S11. In the first drying treatment, water is reduced from the coating film of the PVA resin solution to form a strip-shaped unstretched film using the PVA resin as a forming material.
 ステップS12の第1の乾燥処理では、従来公知の装置を使用できる。従来公知の装置としては、例えば回転軸が互いに平行な複数の乾燥ロールを備える装置が挙げられる。この装置の1つの乾燥ロール上にステップS11で得られたPVA系樹脂溶液を吐出して塗膜を形成する。次いで、この乾燥ロールと、この乾燥ロールより下流側の他の乾燥ロールを用いて、この塗膜から水を低減して、PVA系樹脂からなる未延伸フィルムを形成する。 In the first drying process in step S12, a conventionally known apparatus can be used. As a conventionally well-known apparatus, the apparatus provided with the some drying roll whose rotation axis is mutually parallel, for example is mentioned. A coating film is formed by discharging the PVA resin solution obtained in step S11 onto one drying roll of this apparatus. Next, using this drying roll and another drying roll downstream from this drying roll, water is reduced from this coating film to form an unstretched film made of a PVA-based resin.
 本実施形態に係る第1の乾燥処理は加熱により行うことができ、必要に応じて、減圧条件下で行ってもよい。PVA系樹脂溶液を加熱により乾燥する方法としては、例えば温風乾燥等が挙げられる。 The first drying treatment according to the present embodiment can be performed by heating, and may be performed under reduced pressure as necessary. Examples of the method for drying the PVA resin solution by heating include hot air drying.
 本実施形態に係る成膜工程において、PVA系樹脂溶液の塗膜の含水率は30質量%より大きいことが好ましい。このとき、第1の乾燥処理では、この塗膜の含水率が30質量%であるときの水の除去速度が0.01~1.8質量%/秒であることが好ましい。また、上記以外の条件としては、含水率が30~10質量%であるときの水の平均除去速度が0.01~1.8質量%/秒であることが好ましい。これにより、塗膜中にPVA系樹脂からなる結晶核を十分な量生成させることができる。 In the film forming step according to the present embodiment, the moisture content of the coating film of the PVA resin solution is preferably greater than 30% by mass. At this time, in the first drying treatment, it is preferable that the water removal rate when the water content of the coating film is 30% by mass is 0.01 to 1.8% by mass / second. As conditions other than the above, it is preferable that the average removal rate of water when the water content is 30 to 10% by mass is 0.01 to 1.8% by mass / second. Thereby, a sufficient amount of crystal nuclei made of PVA-based resin can be generated in the coating film.
 第1の乾燥処理における乾燥温度および乾燥時間は、PVA系樹脂溶液の塗膜の含水率や、この含水率における水の除去速度、または平均除去速度に応じて決定すればよい。乾燥温度は、例えば50~200℃が好ましく、60~150℃がより好ましい。 The drying temperature and drying time in the first drying treatment may be determined according to the moisture content of the coating film of the PVA resin solution, the water removal rate at this moisture content, or the average removal rate. The drying temperature is preferably 50 to 200 ° C., for example, and more preferably 60 to 150 ° C.
 上述の条件で第1の乾燥処理を行うことにより、PVA系樹脂溶液の塗膜中でPVA系樹脂からなる結晶核が増加し、結晶核の密度が高くなる。このようにして緻密な結晶構造を形成することにより、後の染色工程において樹脂フィルムを二色性物質で染色するときに、結晶の近傍に二色性物質とPVA系樹脂とからなる錯体が形成される。この錯体は、安定かつ配向性が高いことから、偏光フィルムとしたときの偏光性能の向上に寄与する。 By performing the first drying treatment under the above-mentioned conditions, crystal nuclei made of PVA resin increase in the coating film of the PVA resin solution, and the density of crystal nuclei increases. By forming a dense crystal structure in this way, when a resin film is dyed with a dichroic substance in a subsequent dyeing process, a complex composed of the dichroic substance and a PVA resin is formed in the vicinity of the crystal. Is done. Since this complex is stable and highly oriented, it contributes to an improvement in polarization performance when a polarizing film is obtained.
 このように、緻密な結晶構造を形成させることにより偏光フィルムとしたときの偏光性能を向上させることができる。しかし、成膜工程の終了後、後述する延伸工程にて未延伸フィルムを延伸するまでの間、未延伸フィルムの結晶構造が変化することがある。 Thus, by forming a dense crystal structure, the polarization performance when a polarizing film is obtained can be improved. However, the crystal structure of the unstretched film may change after completion of the film forming process until the unstretched film is stretched in the stretching process described later.
 一般に、PVA系樹脂などの結晶性を有する熱可塑性樹脂(以下、単に「結晶性樹脂」ということがある)は、そのガラス転移温度以上の温度になると、結晶が成長する。しかし、結晶性樹脂において含水率が高くなると、水が可塑剤の働きをするため、本来のガラス転移温度よりも低い温度で結晶性樹脂が軟化し、結晶性樹脂中の分子鎖の動きが多くなる。これにより、分子鎖が再配列することで、本来のガラス転移温度よりも低い温度で結晶が成長し、結晶化度が高くなることがある。結晶性樹脂中の結晶が成長すると、結晶性樹脂の質量に占める非晶部の割合が減少するため、相対的に非晶部の含水率が増加する。
そのため、結晶化が進行した結晶性樹脂のガラス転移温度は、本来のガラス転移温度よりも低くなる。これにより、本来のガラス転移温度より低い温度で、結晶が成長し、結晶化度がさらに高くなる。
In general, when a thermoplastic resin having crystallinity such as a PVA resin (hereinafter sometimes simply referred to as “crystalline resin”) reaches a temperature higher than its glass transition temperature, crystals grow. However, when the moisture content of the crystalline resin increases, water acts as a plasticizer, so the crystalline resin softens at a temperature lower than the original glass transition temperature, and the movement of molecular chains in the crystalline resin is large. Become. As a result, rearrangement of molecular chains may cause crystals to grow at a temperature lower than the original glass transition temperature, resulting in an increase in crystallinity. When the crystal in the crystalline resin grows, the ratio of the amorphous part to the mass of the crystalline resin decreases, so that the moisture content of the amorphous part relatively increases.
Therefore, the glass transition temperature of the crystalline resin that has been crystallized is lower than the original glass transition temperature. Thereby, the crystal grows at a temperature lower than the original glass transition temperature, and the crystallinity is further increased.
 そこで、本実施形態においては、このような未延伸フィルムの結晶の成長を抑制し、偏光フィルムとしたときの偏光性能を維持するため、製造条件を次のように規定した。すなわち、成膜工程の終了後、後述する延伸工程にて未延伸フィルムを延伸するまでの間、未延伸フィルムが曝される温度T1と、未延伸フィルムの含水率から求められるガラス転移温度A1との関係を規定し、この規定を満たす未延伸フィルムに対して、延伸処理を施すこととした。 Therefore, in this embodiment, in order to suppress the crystal growth of such an unstretched film and maintain the polarization performance when the polarizing film is obtained, the manufacturing conditions are defined as follows. That is, the temperature T1 at which the unstretched film is exposed and the glass transition temperature A1 determined from the moisture content of the unstretched film until the unstretched film is stretched in the stretching process described later after the film formation step is completed. And the stretching process was performed on an unstretched film satisfying this rule.
(延伸工程)
 本実施形態に係る延伸工程は、ステップS13を備える。
 ステップS13の延伸処理では、ステップS12で得られた未延伸フィルムを長手方向に搬送しながら延伸し、未延伸フィルムが延伸されてなる帯状の樹脂フィルムを形成する。
(Stretching process)
The extending process according to this embodiment includes step S13.
In the stretching process of step S13, the unstretched film obtained in step S12 is stretched while being transported in the longitudinal direction to form a belt-shaped resin film obtained by stretching the unstretched film.
 本実施形態において、成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの間、未延伸フィルムが曝される温度T1(単位:℃)と、下記式(1)で表される未延伸フィルムのガラス転移温度A1(単位:℃)との関係が、下記式(2)を満たす。さらに、温度T1と未延伸フィルムのガラス転移温度A1との関係が、T1<A1であることがより好ましい。 In the present embodiment, the temperature T1 (unit: ° C.) at which the unstretched film is exposed until the unstretched film is stretched in the stretching process after the film formation process is finished, and is expressed by the following formula (1). The relationship with the glass transition temperature A1 (unit: ° C.) of the unstretched film satisfies the following formula (2). Further, the relationship between the temperature T1 and the glass transition temperature A1 of the unstretched film is more preferably T1 <A1.
Figure JPOXMLDOC01-appb-M000009
  T1(℃)<A1(℃)+4(℃)  …(2)
(ただし、「未延伸フィルムの含水率」は、質量分率である)
Figure JPOXMLDOC01-appb-M000009
T1 (° C.) <A1 (° C.) + 4 (° C.) (2)
(However, “moisture content of unstretched film” is a mass fraction)
 上記関係を満たすことにより、未延伸フィルム中のPVA系樹脂の結晶の成長を抑制することができる。これにより、未延伸フィルム中のPVA系樹脂の結晶を十分に小さくすることができるため、偏光フィルムとしたときの偏光性能が高い偏光フィルムを得ることができる。なお、温度T1とは、成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの間において未延伸フィルムが曝される最高温度のことをいう。 By satisfying the above relationship, it is possible to suppress the crystal growth of the PVA resin in the unstretched film. Thereby, since the crystal | crystallization of the PVA-type resin in an unstretched film can be made small enough, a polarizing film with high polarizing performance when it is set as a polarizing film can be obtained. In addition, temperature T1 means the highest temperature to which an unstretched film is exposed after the completion | finish of a film-forming process until it extends | stretches an unstretched film at a extending process.
 本実施形態において、成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの時間は通常1秒以上であり、1日以上であってもよく、また、結晶の成長を抑制できる点から通常3ヶ月以下である。この時間には、例えば未延伸フィルムを成膜工程から延伸工程へライン搬送する時間、及び成膜工程を終了後、未延伸フィルムを一度ロールに巻き取って次工程へ搬送し、ロールから未延伸フィルムを巻き出すまでの時間を含む。 In the present embodiment, after the film formation step is completed, the time until the unstretched film is stretched in the stretching step is usually 1 second or longer, may be 1 day or longer, and can suppress crystal growth. From the point, it is usually 3 months or less. In this time, for example, the time for line transporting the unstretched film from the film forming process to the stretching process, and after finishing the film forming process, the unstretched film is wound around a roll and transported to the next process and unstretched from the roll. Includes time to unwind the film.
 本実施形態の延伸処理における延伸は、乾式の一軸延伸であることが好ましい。本実施形態に係る延伸工程での延伸倍率は、5倍超17倍以下であり、より好ましくは5倍超8倍以下が好ましい。 The stretching in the stretching process of the present embodiment is preferably dry uniaxial stretching. The draw ratio in the drawing process according to this embodiment is more than 5 times and 17 times or less, more preferably more than 5 times and 8 times or less.
 本実施形態においては、延伸処理を行う前に所望の含水率になるように調湿処理を行うことができる。調湿処理の方法としては、例えば所望の湿度および温度に調節された部屋に未延伸フィルムを置く方法または、所望の湿度および温度に調節された調湿炉に未延伸フィルムを通す方法等が挙げられる。調湿処理では、延伸前の未延伸フィルムの状態に応じて、未延伸フィルムの含水率を増加させる(加湿する)こともできるし、含水率を減少させる(乾燥させる)こともできる。 In the present embodiment, the humidity control process can be performed to achieve a desired moisture content before the stretching process. Examples of the humidity control method include a method of placing an unstretched film in a room adjusted to a desired humidity and temperature, or a method of passing an unstretched film through a humidity control furnace adjusted to a desired humidity and temperature. It is done. In the humidity control treatment, the moisture content of the unstretched film can be increased (humidified) or the moisture content can be decreased (dried) depending on the state of the unstretched film before stretching.
 以上のような構成によれば、高い偏光性能を有する偏光フィルムが得られる樹脂フィルムの製造方法が提供される。 According to the above configuration, there is provided a method for producing a resin film from which a polarizing film having high polarization performance can be obtained.
[偏光フィルムの製造方法]
 以下、本発明の第1実施形態に係る偏光フィルムの製造方法について、図1を参照しながら、適宜符号を用いて説明する。
[Production method of polarizing film]
Hereinafter, the manufacturing method of the polarizing film which concerns on 1st Embodiment of this invention is demonstrated using a code | symbol suitably, referring FIG.
 本実施形態に係る樹脂フィルムを用いた偏光フィルムの製造方法は、ステップS11およびステップS12を含む成膜工程と、ステップS13を含む延伸工程と、ステップS21およびステップS22を含む染色工程と、ステップS23を含む洗浄工程と、ステップ24を含む乾燥工程と、を備えている。図1において、ステップS11~S13は、本実施形態に係る樹脂フィルムの製造方法と共通している。したがって、染色工程以前については同じ符号を付し、詳細な説明は省略する。 The manufacturing method of the polarizing film using the resin film which concerns on this embodiment is the film-forming process containing step S11 and step S12, the extending | stretching process containing step S13, the dyeing | staining process containing step S21 and step S22, and step S23. And a drying process including step 24. In FIG. 1, steps S11 to S13 are common to the resin film manufacturing method according to the present embodiment. Therefore, the same code | symbol is attached | subjected before the dyeing process, and detailed description is abbreviate | omitted.
(染色工程)
 本実施形態に係る染色工程は、ステップS21と、ステップS22と、を備える。
 ステップS21の染色処理では、樹脂フィルムを長手方向に搬送しながら二色性物質で染色して、二色性物質を吸着配向させ、染色フィルムを形成する。
(Dyeing process)
The dyeing process according to the present embodiment includes Step S21 and Step S22.
In the dyeing process in step S21, the resin film is dyed with a dichroic substance while being conveyed in the longitudinal direction, and the dichroic substance is adsorbed and oriented to form a dyed film.
 ステップS22の架橋処理では、ステップS21において二色性物質で染色された樹脂フィルム(以下、染色フィルム)を架橋剤で架橋して、架橋フィルムを形成する。 In the cross-linking process in step S22, the resin film dyed with the dichroic substance in step S21 (hereinafter, dyed film) is cross-linked with a cross-linking agent to form a cross-linked film.
 本実施形態に係る染色処理は、二色性物質が含まれる液(以下、染色浴)に樹脂フィルムを浸漬させることにより行われる。この染色浴としては、上記二色性物質を溶媒に溶解した溶液を使用できる。染色浴の溶媒としては、例えば水が好ましい。染色浴に水と相溶性のある有機溶媒がさらに添加されてもよい。有機溶媒の具体例としては、メタノール、エタノール、プロパノール、またはグリセリンなどが挙げられる。 The dyeing process according to this embodiment is performed by immersing a resin film in a liquid containing a dichroic substance (hereinafter, dye bath). As this dyeing bath, a solution in which the above dichroic substance is dissolved in a solvent can be used. As a solvent for the dyeing bath, for example, water is preferable. An organic solvent compatible with water may be further added to the dyeing bath. Specific examples of the organic solvent include methanol, ethanol, propanol, or glycerin.
 本実施形態で用いる二色性物質は、例えば、ヨウ素または偏光フィルム用色素として公知の二色性有機染料が挙げられる。二色性有機染料としては、例えば、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラックを含む。二色性色素は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 Examples of the dichroic substance used in the present embodiment include iodine or a known dichroic organic dye as a coloring material for a polarizing film. Examples of dichroic organic dyes include red BR, red LR, red R, pink LB, Rubin BL, Bordeaux GS, sky blue LG, lemon yellow, blue BR, blue 2R, navy RY, green LG, violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Includes Sky Blue, Direct First Orange S and First Black. A dichroic dye may be used individually by 1 type, and may use 2 or more types together.
 染色浴における二色性物質の濃度は、0.01~10質量%であることが好ましく、0.02~7質量%であることがより好ましい。 The concentration of the dichroic substance in the dyeing bath is preferably 0.01 to 10% by mass, and more preferably 0.02 to 7% by mass.
 二色性物質としてヨウ素を使用する場合、染色効率を向上させる目的で、ヨウ素を含む染色浴にヨウ化物をさらに添加することが好ましい。ヨウ化物としては、例えばヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられ、ヨウ化カリウムを添加することが好ましい。また、染色浴は架橋剤を含んでいてもよい。 When iodine is used as the dichroic substance, it is preferable to further add iodide to a dyeing bath containing iodine for the purpose of improving dyeing efficiency. Examples of iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. It is preferable to add potassium iodide. Moreover, the dyeing bath may contain a crosslinking agent.
 染色浴中におけるヨウ化物の濃度は、0.01~20質量%が好ましい。ヨウ素を含む染色浴にヨウ化カリウムを添加する場合、ヨウ素とヨウ化カリウムとの割合は質量比で、1:5~1:100が好ましく、1:6~1:80がより好ましい。
 染色浴の温度は、10~60℃が好ましく、20~40℃より好ましい。
The concentration of iodide in the dye bath is preferably 0.01 to 20% by mass. When potassium iodide is added to a dyeing bath containing iodine, the ratio of iodine to potassium iodide is preferably 1: 5 to 1: 100, more preferably 1: 6 to 1:80 in terms of mass ratio.
The temperature of the dyeing bath is preferably 10 to 60 ° C, more preferably 20 to 40 ° C.
 本実施形態に係る染色工程では、染色処理に引き続いて、架橋剤が含まれる液(以下、架橋浴)に染色フィルムを浸漬させ、架橋フィルムとする架橋処理行われる。 In the dyeing process according to the present embodiment, following the dyeing process, the dyeing film is immersed in a liquid containing a crosslinking agent (hereinafter, a crosslinking bath) to perform a crosslinking process to obtain a crosslinked film.
 本実施形態で用いる架橋剤としては、ホウ素化合物、グリオキザール、またはグルタルアルデヒドが好ましく、ホウ素化合物がより好ましい。ホウ素化合物としては、例えば、ホウ酸、ホウ砂等が挙げられる。架橋剤は1種のみを使用してもよいし2種以上を併用してもよい。 As the crosslinking agent used in this embodiment, a boron compound, glyoxal, or glutaraldehyde is preferable, and a boron compound is more preferable. Examples of the boron compound include boric acid and borax. Only 1 type may be used for a crosslinking agent and it may use 2 or more types together.
 本実施形態の架橋浴としては、架橋剤を溶媒に溶解した溶液を使用できる。溶媒としては、例えば水が好ましい。架橋浴に水と相溶性のある有機溶媒をさらに含んでもよい。有機溶剤の具体例としては、上記と同様である。架橋浴における架橋剤の濃度は、1~20質量%が好ましく、6~15質量%がより好ましい。 As the crosslinking bath of this embodiment, a solution in which a crosslinking agent is dissolved in a solvent can be used. As the solvent, for example, water is preferable. The crosslinking bath may further contain an organic solvent compatible with water. Specific examples of the organic solvent are the same as described above. The concentration of the crosslinking agent in the crosslinking bath is preferably 1 to 20% by mass, more preferably 6 to 15% by mass.
 本実施形態の架橋浴は、ヨウ化物をさらに含むことができる。架橋浴にヨウ化物を添加することにより、得られる偏光フィルムの面内における偏光性能を均一化させることができる。ヨウ化物の具体例としては、上記と同様である。 The crosslinking bath of the present embodiment can further contain iodide. By adding iodide to the cross-linking bath, the polarizing performance in the plane of the obtained polarizing film can be made uniform. Specific examples of iodide are the same as described above.
 架橋浴におけるヨウ化物の濃度は、0.05~15質量%が好ましく、0.5~8重量%がより好ましい。
 架橋浴の温度は、10~90℃が好ましい。
The concentration of iodide in the crosslinking bath is preferably 0.05 to 15% by mass, and more preferably 0.5 to 8% by weight.
The temperature of the crosslinking bath is preferably 10 to 90 ° C.
 本実施形態において、延伸工程の終了後、染色工程にて樹脂フィルムを染色するまでの間、樹脂フィルムが曝される温度T2(単位:℃)と、下記式(3)で表される樹脂フィルムのガラス転移温度A2(単位:℃)との関係が、下記式(4)を満たすことが好ましい。これは、本実施形態に係る成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの間、未延伸フィルムが曝される温度T1と未延伸フィルムのガラス転移温度A1との関係を規定することと同様の理由による。さらに、温度T2と樹脂フィルムのガラス転移温度A2との関係が、T2<A2であることがより好ましい。 In this embodiment, the temperature T2 (unit: ° C.) at which the resin film is exposed until the resin film is dyed in the dyeing process after the end of the stretching process, and the resin film represented by the following formula (3) The glass transition temperature A2 (unit: ° C.) preferably satisfies the following formula (4). This is the relationship between the temperature T1 at which the unstretched film is exposed and the glass transition temperature A1 of the unstretched film until the unstretched film is stretched in the stretching process after the film forming process according to this embodiment is completed. For the same reason as prescribing. Further, the relationship between the temperature T2 and the glass transition temperature A2 of the resin film is more preferably T2 <A2.
Figure JPOXMLDOC01-appb-M000010
  T2(℃)<A2(℃)+4(℃)  …(4)
(ただし、「樹脂フィルムの含水率」は、質量分率である)
Figure JPOXMLDOC01-appb-M000010
T2 (° C.) <A2 (° C.) + 4 (° C.) (4)
(However, “water content of the resin film” is a mass fraction)
 上記関係を満たすことにより、延伸工程の終了後、染色工程にて樹脂フィルムを染色するまでの間、樹脂フィルム中のPVA系樹脂の結晶の成長を抑制することができる。これにより、樹脂フィルム中のPVA系樹脂の結晶を十分に小さくすることができるため、偏光フィルムとしたときの偏光性能が高い偏光フィルムを得ることができる。なお、温度T2とは、延伸工程の終了後、染色工程にて樹脂フィルムを染色するまでの間において樹脂フィルムが曝される最高温度のことをいう。 By satisfying the above relationship, it is possible to suppress crystal growth of the PVA-based resin in the resin film until the resin film is dyed in the dyeing process after the stretching process is completed. Thereby, since the crystal | crystallization of the PVA-type resin in a resin film can be made small enough, a polarizing film with high polarizing performance when it is set as a polarizing film can be obtained. The temperature T2 refers to the maximum temperature at which the resin film is exposed after the end of the stretching process and before the resin film is dyed in the dyeing process.
 本実施形態において、延伸工程の終了後、染色工程にて樹脂フィルムを染色するまでの時間は通常1秒以上であり、1日以上であってもよく、また、結晶の成長を抑制できる点から通常3ヶ月以下である。この時間には、例えば樹脂フィルムを延伸工程から染色処理または架橋処理へライン搬送する時間、及び延伸工程を終了後、樹脂フィルムを一度ロールに巻き取って次工程へ搬送し、ロールから樹脂フィルムを巻き出すまでの時間を含む。 In this embodiment, the time until the resin film is dyed in the dyeing process after the stretching process is usually 1 second or longer, may be 1 day or longer, and can suppress crystal growth. Usually less than 3 months. In this time, for example, the time when the resin film is line-conveyed from the stretching process to the dyeing process or the crosslinking process, and after finishing the stretching process, the resin film is once wound on a roll and transported to the next process. Includes time to unwind.
(洗浄工程)
 本実施形態に係る洗浄工程は、ステップS23を備える。
 ステップS23の洗浄処理では、ステップS22で得られた架橋フィルムを洗浄する。
(Washing process)
The cleaning process according to the present embodiment includes step S23.
In the cleaning process in step S23, the crosslinked film obtained in step S22 is cleaned.
 本実施形態に係る洗浄処理は、イオン交換水、蒸留水のような純水(以下、洗浄浴)に架橋フィルムを浸漬することにより行われる。これにより、架橋フィルムに残された薬剤、例えば余剰の二色性物質や未反応の架橋剤を低減することができる。洗浄浴に水と相溶性のある有機溶媒をさらに含んでもよい。有機溶剤の具体例としては、上記と同様である。
 洗浄温度は、3~50℃が好ましく、4~20℃がより好ましい。
The cleaning treatment according to the present embodiment is performed by immersing the crosslinked film in pure water (hereinafter referred to as a cleaning bath) such as ion exchange water or distilled water. Thereby, the chemical | medical agent left on the crosslinked film, for example, an excess dichroic substance and an unreacted crosslinking agent can be reduced. The washing bath may further contain an organic solvent compatible with water. Specific examples of the organic solvent are the same as described above.
The washing temperature is preferably 3 to 50 ° C, more preferably 4 to 20 ° C.
 なお、本実施形態に係る洗浄処理は、ヨウ化物を含む水溶液による洗浄処理であってもよいし、ヨウ化物を含む水溶液による洗浄処理と純水による洗浄処理とを組み合わせてもよい。ヨウ化物の具体例としては、上記と同様である。洗浄浴中にヨウ化物が含まれることにより、得られる偏光フィルムの色相を調製することができる。また、洗浄浴は架橋剤を含んでいてもよく、フィルム表面への架橋剤の析出による欠陥の防止のために、水100質量部に対して1質量部以下の添加量の方が好ましい。 The cleaning process according to this embodiment may be a cleaning process using an aqueous solution containing iodide, or a combination of a cleaning process using an aqueous solution containing iodide and a cleaning process using pure water. Specific examples of iodide are the same as described above. By including iodide in the washing bath, the hue of the obtained polarizing film can be prepared. Moreover, the washing bath may contain a crosslinking agent, and in order to prevent defects due to precipitation of the crosslinking agent on the film surface, an addition amount of 1 part by mass or less is more preferable with respect to 100 parts by mass of water.
 洗浄浴中のヨウ化物の濃度は、1~15質量%が好ましい。 The concentration of iodide in the washing bath is preferably 1 to 15% by mass.
(乾燥工程)
 本実施形態に係る乾燥工程は、ステップS24を備える。
 ステップS24の第2の乾燥処理では、ステップS23で洗浄した架橋フィルムを乾燥する。
(Drying process)
The drying process according to the present embodiment includes step S24.
In the second drying process in step S24, the crosslinked film washed in step S23 is dried.
 本実施形態に係る第2の乾燥処理は、従来公知の方法を採用することができ、例えば自然乾燥、送風乾燥、加熱乾燥等が挙げられる。例えば加熱乾燥の場合、乾燥温度は20~95℃が好ましい。乾燥温度が低すぎると、乾燥時間が長くなり、製造効率が低下する。
一方、乾燥温度が高すぎると、得られる偏光フィルムが劣化し、偏光性能および色相が悪化する。また、乾燥時間は2~20分が好ましい。このようにして、偏光フィルムが得られる。
For the second drying treatment according to the present embodiment, a conventionally known method can be adopted, and examples thereof include natural drying, blow drying, and heat drying. For example, in the case of heat drying, the drying temperature is preferably 20 to 95 ° C. If the drying temperature is too low, the drying time becomes longer and the production efficiency decreases.
On the other hand, when the drying temperature is too high, the obtained polarizing film is deteriorated, and the polarizing performance and the hue are deteriorated. The drying time is preferably 2 to 20 minutes. In this way, a polarizing film is obtained.
 なお、本実施形態に係る偏光フィルムの製造方法は、本実施形態に係る樹脂フィルムの製造方法と、成膜工程が共通しているが、この成膜工程を省略することができる。すなわち、本実施形態に係る偏光フィルムの製造方法においては、ポリビニルアルコール系樹脂を形成材料とする帯状の未延伸フィルムを用意し、この未延伸フィルムを長手方向に搬送しながら延伸し、未延伸フィルムが延伸されてなる樹脂フィルムを得る延伸工程から始めてもよい。このような場合には、延伸工程の終了後、染色工程にて樹脂フィルムを染色するまでの間、樹脂フィルムが曝される温度T2(単位:℃)と、上記式(3)で表される樹脂フィルムのガラス転移温度A2(単位:℃)との関係が、上記式(4)を満たす。 In addition, although the manufacturing method of the polarizing film which concerns on this embodiment shares the manufacturing method of the resin film which concerns on this embodiment, and the film-forming process, this film-forming process can be abbreviate | omitted. That is, in the method for producing a polarizing film according to the present embodiment, a strip-shaped unstretched film using a polyvinyl alcohol-based resin as a forming material is prepared, and the unstretched film is stretched while being conveyed in the longitudinal direction. You may start from the extending | stretching process of obtaining the resin film formed by extending | stretching. In such a case, the temperature T2 (unit: ° C.) at which the resin film is exposed until the resin film is dyed in the dyeing process after the stretching process is finished, and is expressed by the above formula (3). The relationship with the glass transition temperature A2 (unit: ° C.) of the resin film satisfies the above formula (4).
 以上のような構成によれば、高い偏光性能を有する偏光フィルムが得られる偏光フィルムの製造方法が提供される。 According to the above configuration, there is provided a method for producing a polarizing film from which a polarizing film having high polarization performance can be obtained.
[偏光板の製造方法]
 本実施形態においては、上記方法で製造された偏光フィルムの少なくとも一方の面に、接着剤を用いて保護フィルムを貼合することにより、偏光フィルムと保護フィルムとが積層された偏光板が得られる。
[Production method of polarizing plate]
In this embodiment, the polarizing plate by which the polarizing film and the protective film were laminated | stacked by sticking a protective film on the at least one surface of the polarizing film manufactured by the said method using an adhesive agent is obtained. .
(保護フィルム)
 本実施形態に係る偏光板の保護フィルムの材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性等に優れる熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えばトリアセチルセルロース等のアセチルセルロース系樹脂、シクロオレフィン系樹脂、シクロオレフィン系共重合樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、ポリプロピレン、ポリエチレン等の非環状オレフィン系樹脂またはこれらの混合物などが挙げられる。
(Protective film)
As a material for the protective film of the polarizing plate according to the present embodiment, a thermoplastic resin excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable. Examples of the thermoplastic resin include acetyl cellulose resins such as triacetyl cellulose, cycloolefin resins, cycloolefin copolymer resins, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycarbonate resins, and polyresins. Examples thereof include acrylic resins such as methyl methacrylate, acyclic olefin resins such as polypropylene and polyethylene, and mixtures thereof.
 上記保護フィルムの厚さは、1~200μmが好ましく、5~100μmがより好ましく、10~50μmがさらに好ましい。 The thickness of the protective film is preferably 1 to 200 μm, more preferably 5 to 100 μm, and even more preferably 10 to 50 μm.
 なお、本実施形態において偏光フィルムの両面に保護フィルムを設ける場合、その両面で同じ樹脂材料からなる保護フィルムを用いてもよく、異なる樹脂材料からなる保護フィルムを用いてもよい。 In addition, when providing a protective film on both surfaces of a polarizing film in this embodiment, the protective film which consists of the same resin material may be used on both surfaces, and the protective film which consists of a different resin material may be used.
(接着剤)
 本実施形態に係る偏光板の接着剤としては、例えば、水系接着剤、または活性エネルギー線硬化性接着剤が挙げられる。水系接着剤としては、例えば、ポリビニルアルコール系樹脂を水に溶解、または分散させた接着剤が挙げられる。活性エネルギー線硬化性接着剤としては、例えば、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含有する接着剤が挙げられる。
(adhesive)
Examples of the adhesive for the polarizing plate according to this embodiment include an aqueous adhesive and an active energy ray-curable adhesive. Examples of the water-based adhesive include an adhesive in which a polyvinyl alcohol-based resin is dissolved or dispersed in water. Examples of the active energy ray-curable adhesive include an adhesive containing a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
 活性エネルギー線硬化性接着剤としては、良好な接着性を示すことから、カチオン重合性の硬化性化合物、ラジカル重合性の硬化性化合物のいずれか一方または、その両方を含む活性エネルギー線硬化性接着剤組成物を用いることが好ましい。活性エネルギー線硬化性接着剤は、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤、またはラジカル重合開始剤をさらに含むことができる。 As active energy ray-curable adhesive, since it exhibits good adhesion, active energy ray-curable adhesive containing either or both of a cationic polymerizable curable compound and a radical polymerizable curable compound It is preferable to use an agent composition. The active energy ray-curable adhesive can further include a cationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 カチオン重合性の硬化性化合物としては、例えばエポキシ系化合物(分子内に1個又は2個以上のエポキシ基を有する化合物)や、オキセタン系化合物(分子内に1個又は2個以上のオキセタン環を有する化合物)、またはこれらの組み合わせを挙げることができる。 Examples of cationically polymerizable curable compounds include epoxy compounds (compounds having one or more epoxy groups in the molecule) and oxetane compounds (one or two or more oxetane rings in the molecule). Compound), or a combination thereof.
 ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル系化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)や、ラジカル重合性の二重結合を有するその他のビニル系化合物、またはこれらの組み合わせを挙げることができる。 Examples of the radical polymerizable curable compound include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule) and radical polymerizable double bonds. Other vinyl compounds or combinations thereof can be mentioned.
 活性エネルギー線硬化性接着剤は、必要に応じて、カチオン重合促進剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶剤等の添加剤を含有することができる。 The active energy ray curable adhesive may be a cationic polymerization accelerator, an ion trap agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow modifier, a plasticizer, Additives such as foaming agents, antistatic agents, leveling agents and solvents can be contained.
 以下、本実施形態に係る偏光板の製造方法について説明する。活性エネルギー線硬化性接着剤を用いて保護フィルムを貼合する場合は、活性エネルギー線硬化性接着剤を介して保護フィルムを偏光フィルム上に積層する。次いで、紫外線、可視光、電子線、X線のような活性エネルギー線を照射して、活性エネルギー線硬化性接着剤からなる接着剤層を硬化させる。活性エネルギー線としては、紫外線が好ましく、この場合の光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等を用いることができる。 Hereinafter, a manufacturing method of the polarizing plate according to the present embodiment will be described. When bonding a protective film using an active energy ray curable adhesive, a protective film is laminated | stacked on a polarizing film through an active energy ray curable adhesive. Next, an active energy ray such as ultraviolet ray, visible light, electron beam, or X-ray is irradiated to cure the adhesive layer made of the active energy ray-curable adhesive. As the active energy ray, ultraviolet rays are preferable, and as a light source in this case, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, or the like is used. it can.
 一方、水系接着剤を用いて保護フィルムを貼合する場合は、水系接着剤を介して保護フィルムを偏光フィルム上に積層した後、加熱乾燥させればよい。 On the other hand, when a protective film is bonded using an aqueous adhesive, the protective film may be laminated on the polarizing film via the aqueous adhesive and then dried by heating.
 本実施形態の偏光板は、接着剤との接着性を向上させる目的で、偏光フィルムまたは保護フィルムもしくはその両方に、表面処理を行うことができる。表面処理としては、例えば、コロナ処理、プラズマ処理、火炎処理、紫外線処理、プライマー処理、ケン化処理、溶剤の塗布および乾燥による溶剤処理が挙げられる。 The polarizing plate of the present embodiment can be subjected to a surface treatment on the polarizing film and / or the protective film for the purpose of improving the adhesiveness with the adhesive. Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, ultraviolet treatment, primer treatment, saponification treatment, solvent treatment by solvent application and drying.
 また、保護フィルムにおける偏光フィルムとは反対側の表面には、ハードコート層、防眩層、反射防止層、帯電防止層、防汚層等の表面処理層(コーティング層)を形成してもよい。 A surface treatment layer (coating layer) such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, or an antifouling layer may be formed on the surface of the protective film opposite to the polarizing film. .
 以上のような構成によれば、本実施形態に係る偏光フィルムを備えているため、高い偏光性能を示す偏光板が提供される。 According to the above configuration, since the polarizing film according to this embodiment is provided, a polarizing plate exhibiting high polarization performance is provided.
<第2実施形態>
 以下、本発明の第2実施形態に係る樹脂フィルムの製造方法、および樹脂フィルムを用いた偏光フィルムの製造方法について、図2を参照しながら、適宜符号を用いて説明する。図2は、本発明の第2実施形態に係る樹脂フィルムを用いた偏光フィルムの製造方法を示すフローチャートである。
Second Embodiment
Hereinafter, the manufacturing method of the resin film which concerns on 2nd Embodiment of this invention, and the manufacturing method of the polarizing film using the resin film are demonstrated using a code | symbol suitably, referring FIG. FIG. 2 is a flowchart showing a method for manufacturing a polarizing film using a resin film according to the second embodiment of the present invention.
 図2に示すように、本実施形態に係る樹脂フィルムの製造方法、および樹脂フィルムを用いた偏光フィルムの製造方法は、図1に示す第1実施形態と、ステップS11~S13およびステップS21~S24が共通している。第1実施形態と第2実施形態とで異なるのは、第1実施形態における成膜工程において、ステップS11とステップS12との間にステップS31を含むことである。したがって、本実施形態において、第1実施形態と共通する染色工程以降の工程については同じ符号を付し、詳細な説明は省略する。 As shown in FIG. 2, the method for producing a resin film and the method for producing a polarizing film using the resin film according to this embodiment are the same as those in the first embodiment shown in FIG. 1, steps S11 to S13 and steps S21 to S24. Are common. The difference between the first embodiment and the second embodiment is that step S31 is included between step S11 and step S12 in the film forming process of the first embodiment. Therefore, in this embodiment, the same reference numerals are given to the steps after the staining step that are common to the first embodiment, and detailed description thereof is omitted.
(成膜工程)
 本実施形態に係る成膜工程はステップS11と、ステップS31と、ステップS12と、を備える。
 ステップS31の塗工処理では、帯状の基材フィルムを長手方向に搬送しながら、基材フィルムの少なくとも一方の面にステップS11で調製したPVA系樹脂溶液を塗工する。これにより、基材フィルムの少なくとも一方の面に塗工層を形成する。
(Film formation process)
The film forming process according to the present embodiment includes step S11, step S31, and step S12.
In the coating process of step S31, the PVA resin solution prepared in step S11 is applied to at least one surface of the base film while transporting the belt-shaped base film in the longitudinal direction. Thereby, a coating layer is formed in the at least one surface of a base film.
 ステップS12の第1の乾燥処理は、ステップS31で得られた塗工層から水を低減して、基材フィルムの少なくとも一方の面に未延伸フィルムを積層した積層体を形成する。 In the first drying process in step S12, water is reduced from the coating layer obtained in step S31 to form a laminate in which an unstretched film is laminated on at least one surface of the base film.
 本実施形態で用いる基材フィルムとしては、従来、偏光フィルムの保護フィルムとして用いられているものを用いることができ、基材フィルムの形成材料としては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性などに優れる熱可塑性樹脂が用いられる。 As the base film used in the present embodiment, those conventionally used as a protective film for a polarizing film can be used. Examples of the base film forming material include transparency, mechanical strength, and heat stability. A thermoplastic resin having excellent properties, moisture barrier properties, isotropic properties, stretchability and the like is used.
 このような熱可塑性樹脂としては、例えば、鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)等のポリオレフィン系樹脂、ポリエステル系樹脂、(メタ)アクリル系樹脂、セルローストリアセテート、セルロースジアセテート等のセルロースエステル系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、ポリ酢酸ビニル系樹脂、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、またはこれらの混合物が挙げられる。また、上記樹脂のモノマーを共重合した共重合体を、基材フィルムの形成材料として用いてもよい。これらの中でもポリプロピレン等のポリオレフィン系樹脂、非晶性ポリエチレンテレフタレート等のポリエステル系樹脂が好ましい。 Examples of such thermoplastic resins include polyolefin resins such as chain polyolefin resins, cyclic polyolefin resins (norbornene resins), polyester resins, (meth) acrylic resins, cellulose triacetate, cellulose diacetate, and the like. Cellulose ester resins, polycarbonate resins, polyvinyl alcohol resins, polyvinyl acetate resins, polyarylate resins, polystyrene resins, polyethersulfone resins, polysulfone resins, polyamide resins, polyimide resins, or these Of the mixture. In addition, a copolymer obtained by copolymerizing the above resin monomers may be used as a material for forming a base film. Among these, polyolefin resins such as polypropylene and polyester resins such as amorphous polyethylene terephthalate are preferable.
 本実施形態における基材フィルムは、1種または2種以上の熱可塑性樹脂から形成されている。基材フィルムは、1つの樹脂層からなる単層構造であってもよいし、樹脂層を複数積層した多層構造であってもよい。基材フィルムは、成膜工程の後に行われる延伸工程において、未延伸フィルムを延伸するのに好適な延伸温度で延伸できるような樹脂で構成されることが好ましい。 The base film in the present embodiment is formed of one or more thermoplastic resins. The base film may have a single layer structure composed of one resin layer or a multilayer structure in which a plurality of resin layers are laminated. The base film is preferably composed of a resin that can be stretched at a stretching temperature suitable for stretching the unstretched film in a stretching step performed after the film forming step.
 基材フィルムは、本発明の効果を損なわない範囲において、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、または着色剤等の添加剤を含有してもよい。 The base film is an ultraviolet absorber, antioxidant, lubricant, plasticizer, mold release agent, anti-coloring agent, flame retardant, nucleating agent, antistatic agent, pigment, or coloring as long as the effects of the present invention are not impaired. You may contain additives, such as an agent.
 本実施形態において、基材フィルムの厚みは、強度や取扱性等の点から1~500μmが好ましく、1~300μmがより好ましく、5~200μmがさらに好ましく、5~150μmが特に好ましい。 In the present embodiment, the thickness of the base film is preferably 1 to 500 μm, more preferably 1 to 300 μm, further preferably 5 to 200 μm, and particularly preferably 5 to 150 μm from the viewpoint of strength and handleability.
 本実施形態において、PVA系樹脂溶液の塗工方法としては、従来公知の方法を採用することができる。従来公知の方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法等が挙げられる。PVA系樹脂溶液は、基材フィルムの一方の面のみに塗工してもよいし、両面に塗工してもよい。 In the present embodiment, a conventionally known method can be employed as a method for applying the PVA resin solution. Conventionally known methods include, for example, roll coating methods such as wire bar coating, reverse coating, and gravure coating, die coating, comma coating, lip coating, screen coating, fountain coating, dipping, and spraying. Can be mentioned. The PVA resin solution may be applied to only one surface of the base film, or may be applied to both surfaces.
 ステップS11とステップS31との間において、得られる積層体の基材フィルムと未延伸フィルムとの密着性を向上させるために、少なくとも塗工層が形成される側の基材フィルムの表面に、表面処理を施してもよい。このような表面処理としては、例えばコロナ処理、プラズマ処理、またはフレーム(火炎)処理等が挙げられる。また、同様の目的で、基材フィルム上にプライマー層等を介して塗工層を形成してもよい。 In order to improve the adhesion between the base film and the unstretched film of the laminate obtained between step S11 and step S31, at least the surface of the base film on the side on which the coating layer is formed, Processing may be performed. Examples of such surface treatment include corona treatment, plasma treatment, flame (flame) treatment, and the like. For the same purpose, a coating layer may be formed on the base film via a primer layer or the like.
 プライマー層の形成材料としては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性などに優れる熱可塑性樹脂が用いられる。このような熱可塑性樹脂としては、例えば(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂等が挙げられる。
プライマー層の形成材料としては、得られる積層体の基材フィルムと未延伸フィルムとの両方に良好な密着性を発揮できることから、ポリビニルアルコール系樹脂が好ましく、ポリビニルアルコール樹脂がより好ましい。
As a material for forming the primer layer, for example, a thermoplastic resin excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropic property, stretchability, and the like is used. Examples of such thermoplastic resins include (meth) acrylic resins and polyvinyl alcohol resins.
As a material for forming the primer layer, a polyvinyl alcohol-based resin is preferable and a polyvinyl alcohol resin is more preferable because it can exhibit good adhesion to both the base film and the unstretched film of the laminate.
 プライマー層の形成方法としては、例えば上記樹脂と溶媒との混合溶液を基材フィルムの表面に塗工した後、乾燥させる方法が挙げられる。溶媒としては、上記樹脂を溶解できる限り、特に限定されないが、水であることが好ましい。プライマー層の塗工方法としては、PVA系樹脂溶液の塗工方法と同様である。プライマー層を形成するときの乾燥温度は、50~200℃が好ましく、60~150℃がより好ましい。溶媒として水が含まれる場合、乾燥温度は80℃以上であることが好ましい。 Examples of the method for forming the primer layer include a method in which a mixed solution of the above resin and solvent is applied to the surface of the substrate film and then dried. The solvent is not particularly limited as long as the resin can be dissolved, but water is preferable. The method for applying the primer layer is the same as the method for applying the PVA resin solution. The drying temperature when forming the primer layer is preferably 50 to 200 ° C, more preferably 60 to 150 ° C. When water is contained as a solvent, the drying temperature is preferably 80 ° C. or higher.
 プライマー層は、その強度を向上させるために、架橋剤を含有してもよい。架橋剤の具体例としては、例えばエポキシ系、イソシアネート系、ジアルデヒド系、金属系、または高分子系の架橋剤が挙げられる。金属系の架橋剤としては、例えば金属塩、金属酸化物、金属水酸化物、有機金属化合物等が挙げられる。プライマー層の形成材料として、ポリビニルアルコール系樹脂を採用する場合は、ポリアミドエポキシ樹脂、メチロール化メラミン樹脂、ジアルデヒド系架橋剤、金属キレート化合物系架橋剤等が好適に用いられる。 The primer layer may contain a crosslinking agent in order to improve its strength. Specific examples of the crosslinking agent include, for example, epoxy-based, isocyanate-based, dialdehyde-based, metal-based, or polymer-based crosslinking agents. Examples of the metal-based crosslinking agent include metal salts, metal oxides, metal hydroxides, and organometallic compounds. When a polyvinyl alcohol-based resin is employed as a material for forming the primer layer, a polyamide epoxy resin, a methylolated melamine resin, a dialdehyde-based crosslinking agent, a metal chelate compound-based crosslinking agent, or the like is preferably used.
 プライマー層の厚みは、0.05~1μm程度であることが好ましく、0.1~0.4μmであることがより好ましい。プライマー層の厚みが0.05μmより薄いと、基材フィルムと未延伸フィルムとの密着性が十分に得られないことがある。 The thickness of the primer layer is preferably about 0.05 to 1 μm, more preferably 0.1 to 0.4 μm. If the thickness of the primer layer is less than 0.05 μm, sufficient adhesion between the base film and the unstretched film may not be obtained.
 本実施形態に係る成膜工程では、塗工処理に引き続いて、積層体中の塗工層から水を低減して未延伸フィルムとする第1の乾燥処理行われる。 In the film forming process according to this embodiment, following the coating process, a first drying process is performed in which water is reduced from the coating layer in the laminate to form an unstretched film.
 本実施形態に係る第1の乾燥処理は、第1実施形態と同様に加熱により行うことができ、必要に応じて、減圧条件下で行ってもよい。PVA系樹脂溶液を加熱により乾燥する方法としては、例えば熱ロールによる乾燥、または温風乾燥等が挙げられる。 The first drying process according to the present embodiment can be performed by heating as in the first embodiment, and may be performed under reduced pressure as necessary. Examples of the method for drying the PVA resin solution by heating include drying with a hot roll or hot air drying.
 本実施形態に係る成膜工程において、積層体中の塗工層の含水率は30質量%より大きいことが好ましい。このとき、第1の乾燥処理では、この塗膜の含水率が30質量%であるときの水の除去速度が0.01~1.8質量%/秒であることが好ましい。また、上記以外の条件としては、含水率が30~10質量%であるときの水の平均除去速度が0.01~1.8質量%/秒であることが好ましい。これにより、塗工層中にPVA系樹脂からなる結晶核を十分な量生成させることができる。 In the film forming step according to the present embodiment, the moisture content of the coating layer in the laminate is preferably greater than 30% by mass. At this time, in the first drying treatment, it is preferable that the water removal rate when the water content of the coating film is 30% by mass is 0.01 to 1.8% by mass / second. As conditions other than the above, it is preferable that the average removal rate of water when the water content is 30 to 10% by mass is 0.01 to 1.8% by mass / second. Thereby, a sufficient amount of crystal nuclei made of PVA-based resin can be generated in the coating layer.
(延伸工程)
 本実施形態に係る延伸工程は、ステップS13を備える。
 ステップS13の延伸処理では、ステップS12で得られた積層体を延伸して、基材フィルムが延伸された延伸基材フィルムと、延伸基材フィルムの少なくとも一方の面に形成された樹脂フィルムとが積層した積層フィルムを形成する。
(Stretching process)
The extending process according to this embodiment includes step S13.
In the stretching process of Step S13, the laminate obtained in Step S12 is stretched, and a stretched base film in which the base film is stretched and a resin film formed on at least one surface of the stretched base film are: A laminated film is formed.
 本実施形態に係る延伸工程において、成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの間、未延伸フィルムが曝される温度T1(単位:℃)と、上記式(1)で表される未延伸フィルムのガラス転移温度A1(単位:℃)との関係は、第1実施形態と同様である。これにより、未延伸フィルム中のPVA系樹脂の結晶の成長を抑制することができる。これにより、未延伸フィルム中のPVA系樹脂の結晶を十分に小さくすることができるため、偏光フィルムとしたときの偏光性能が高い偏光フィルムを得ることができる。 In the stretching process according to the present embodiment, after the film forming process is finished, the temperature T1 (unit: ° C.) at which the unstretched film is exposed until the unstretched film is stretched in the stretching process, and the above formula (1) The relationship with the glass transition temperature A1 (unit: ° C.) of the unstretched film represented by) is the same as in the first embodiment. Thereby, the crystal growth of the PVA resin in the unstretched film can be suppressed. Thereby, since the crystal | crystallization of the PVA-type resin in an unstretched film can be made small enough, a polarizing film with high polarizing performance when it is set as a polarizing film can be obtained.
 本実施形態において、成膜工程の終了後、延伸工程にて未延伸フィルムを延伸するまでの時間は通常1秒以上であり、1日以上であってもよく、また、結晶の成長を抑制できる点から通常3ヶ月以下である。この時間には、例えば未延伸フィルムを成膜工程から延伸工程へライン搬送する時間、及び成膜工程を終了後、未延伸フィルムを一度ロールに巻き取って次工程へ搬送し、ロールから未延伸フィルムを巻き出すまでの時間を含む。 In the present embodiment, after the film formation step is completed, the time until the unstretched film is stretched in the stretching step is usually 1 second or longer, may be 1 day or longer, and can suppress crystal growth. From the point, it is usually 3 months or less. In this time, for example, the time for line transporting the unstretched film from the film forming process to the stretching process, and after finishing the film forming process, the unstretched film is wound around a roll and transported to the next process and unstretched from the roll. Includes time to unwind the film.
 本実施形態に係る延伸処理での延伸倍率は、所望の偏光性能に応じて、適宜選択すればよいが、積層体の元長に対して5倍超17倍以下が好ましく、5倍超8倍以下がより好ましい。延伸倍率が5倍以下であると、PVA系樹脂の配向性が不十分であるため、偏光フィルムとしたときに十分な偏光性能が得られないおそれがある。一方、延伸倍率が17倍を超えると、積層フィルムの破断が生じ易くなるとともに、積層フィルムの厚みが所望の厚みよりも薄くなり、後工程での加工性および取扱性が低下するおそれがある。 The stretching ratio in the stretching treatment according to this embodiment may be appropriately selected according to the desired polarization performance, but is preferably more than 5 times and not more than 17 times the original length of the laminate, and more than 5 times and 8 times. The following is more preferable. If the draw ratio is 5 times or less, the orientation of the PVA-based resin is insufficient, so that sufficient polarizing performance may not be obtained when a polarizing film is obtained. On the other hand, when the draw ratio exceeds 17 times, breakage of the laminated film is likely to occur, and the thickness of the laminated film becomes thinner than a desired thickness, which may reduce workability and handleability in subsequent processes.
 延伸倍率が上記範囲内であれば、延伸処理は多段階的に行うこともできる。この場合、多段階の延伸処理のすべてを、染色工程の前に連続的に行ってもよいし、2段階目以降の延伸処理を染色工程における染色処理または架橋処理もしくは両方と同時に行ってもよい。このような態様では、例えば1段階目の延伸を乾式でおこない、延伸倍率を1.1倍超3.0倍以下とし、2段階目の延伸を水中でおこない、延伸倍率を2倍以上5倍以下としてもよい。 If the draw ratio is within the above range, the drawing treatment can be performed in multiple stages. In this case, all of the multistage stretching processes may be performed continuously before the dyeing process, or the second and subsequent stretching processes may be performed simultaneously with the dyeing process or the crosslinking process or both in the dyeing process. . In such an embodiment, for example, the first-stage stretching is performed in a dry manner, the stretching ratio is more than 1.1 times and not more than 3.0 times, the second-stage stretching is performed in water, and the stretching ratio is 2 to 5 times. It is good also as follows.
 延伸処理は、積層体の長手方向(積層体の搬送方向)に延伸する縦延伸であってもよいし、積層体の幅方向に延伸する横延伸、または斜め延伸等であってもよい。縦延伸方式としては、ロールを用いて延伸するロール間延伸、圧縮延伸、チャック(クリップ)を用いた延伸等が挙げられる。横延伸方式としては、テンター法等が挙げられる。延伸処理は、湿潤式延伸方法、乾式延伸方法のいずれも採用できるが、乾式延伸方法を用いる方が、延伸温度を広い範囲から選択することができることから、好ましい。 The stretching treatment may be longitudinal stretching that extends in the longitudinal direction of the laminate (transport direction of the laminate), transverse stretching that extends in the width direction of the laminate, or oblique stretching. Examples of the longitudinal stretching method include inter-roll stretching using a roll, compression stretching, stretching using a chuck (clip), and the like. Examples of the transverse stretching method include a tenter method. As the stretching treatment, either a wet stretching method or a dry stretching method can be adopted. However, it is preferable to use the dry stretching method because the stretching temperature can be selected from a wide range.
 延伸温度は、積層体が延伸可能な程度に流動性を示す温度以上に設定されればよく、80~160℃が好ましく、90~150℃がより好ましく、100~130℃がさらに好ましい。 The stretching temperature may be set to be higher than the temperature at which the laminate can be stretched to such a degree that it can be stretched, preferably 80 to 160 ° C, more preferably 90 to 150 ° C, and further preferably 100 to 130 ° C.
 積層フィルムにおける樹脂フィルムの厚みは、3~30μmが好ましく、5~20μmがより好ましい。本実施形態において樹脂フィルムの厚みが上記範囲内であることにより、染色工程において二色性物質による染色がしやすく、偏光フィルムとしたときの偏光性能に優れている。 The thickness of the resin film in the laminated film is preferably 3 to 30 μm, more preferably 5 to 20 μm. In this embodiment, when the thickness of the resin film is within the above range, it is easy to dye with a dichroic substance in the dyeing step, and the polarizing performance when the polarizing film is obtained is excellent.
 本実施形態においては、延伸処理に引き続き、積層フィルム中の樹脂フィルムを不溶化させるために、不溶化処理を行ってもよい。不溶化処理は、積層フィルムを架橋剤を含む溶液(以下、不溶化浴)に浸漬させることにより、行うことができる。不溶化浴に含まれる架橋剤としては、第1実施形態の架橋処理に用いられる架橋剤と同様である。不溶化浴の溶媒としては、例えば水が好ましい。不溶化浴に水と相溶性のある有機溶媒をさらに含んでもよい。有機溶剤の具体例としては、上記と同様である。 In the present embodiment, subsequent to the stretching treatment, insolubilization treatment may be performed in order to insolubilize the resin film in the laminated film. The insolubilization treatment can be performed by immersing the laminated film in a solution containing a crosslinking agent (hereinafter referred to as insolubilization bath). The crosslinking agent contained in the insolubilizing bath is the same as the crosslinking agent used for the crosslinking treatment of the first embodiment. As a solvent for the insolubilizing bath, for example, water is preferable. The insolubilizing bath may further contain an organic solvent compatible with water. Specific examples of the organic solvent are the same as described above.
 不溶化浴における架橋剤の濃度は、1~4質量%が好ましい。また、不溶化浴の温度は、25℃以上が好ましく、30~85℃がより好ましく、30~60℃がさらに好ましい。この不溶化浴に積層フィルムを浸漬させる時間は、5~800秒間が好ましく、8~500秒間がより好ましい。 The concentration of the crosslinking agent in the insolubilizing bath is preferably 1 to 4% by mass. The temperature of the insolubilizing bath is preferably 25 ° C. or higher, more preferably 30 to 85 ° C., and further preferably 30 to 60 ° C. The time for immersing the laminated film in the insolubilizing bath is preferably 5 to 800 seconds, more preferably 8 to 500 seconds.
 本実施形態に係る延伸工程の後に引き続き行われる染色工程、洗浄工程および乾燥工程は第1実施形態と同様である。このようにして、基材フィルムの表面に偏光フィルムが積層した偏光性積層フィルムが得られる。 The dyeing process, the washing process, and the drying process that are performed after the stretching process according to the present embodiment are the same as those in the first embodiment. In this way, a polarizing laminated film in which a polarizing film is laminated on the surface of the base film is obtained.
 本実施形態によれば、第1実施形態と同様に偏光フィルムとしたときに高い偏光性能を示す偏光フィルムの製造方法が提供される。また、本実施形態では、基材フィルムとともに未延伸フィルムを延伸し、樹脂フィルムとすることができるため、PVA系樹脂からなるフィルムを単独で延伸する従来の樹脂フィルムの製造方法および偏光フィルムの製造方法と比べて薄型の偏光フィルムが得られやすい。すなわち、本実施形態に係る偏光フィルムの製造方法で得られる偏光フィルムの厚みは、10μm以下であることが好ましく、7μm以下であってもよい。 According to the present embodiment, there is provided a method for producing a polarizing film that exhibits high polarization performance when used as a polarizing film as in the first embodiment. Moreover, in this embodiment, since an unstretched film can be extended | stretched with a base film and it can be set as a resin film, the manufacturing method of the conventional resin film which extends | stretches the film which consists of PVA-type resin independently, and manufacture of a polarizing film Compared with the method, a thin polarizing film is easily obtained. That is, the thickness of the polarizing film obtained by the method for manufacturing a polarizing film according to this embodiment is preferably 10 μm or less, and may be 7 μm or less.
 特に、厚みが10μm以下の偏光フィルムでは、厚みが10μm超の偏光フィルムと比べて、偏光フィルム表面に存在する二色性物質とPVA系樹脂とからなる錯体が多いため、偏光性能への影響を看過できない。本実施形態では、塗工層の乾燥後、基材フィルム上の未延伸フィルムを延伸するまでの間や、延伸後、樹脂フィルムを染色するまでの間において、上記フィルムが曝される温度と、上記フィルムのガラス転移温度との関係を管理することにより、上記フィルム中の結晶の成長を抑制し、偏光フィルムとしたときの偏光性能を高く保ったまま維持することができる。 In particular, in the polarizing film having a thickness of 10 μm or less, compared with the polarizing film having a thickness of more than 10 μm, since there are many complexes composed of a dichroic substance and a PVA resin existing on the surface of the polarizing film, there is an influence on the polarizing performance. I can't overlook. In this embodiment, after drying the coating layer, until the unstretched film on the base film is stretched, and after stretching, until the resin film is dyed, the temperature at which the film is exposed, By managing the relationship with the glass transition temperature of the film, it is possible to suppress the growth of crystals in the film and maintain the polarization performance when a polarizing film is kept high.
[偏光板の製造方法]
 本実施形態においては、上記方法で製造された偏光性積層フィルムの偏光フィルム上、すなわち偏光フィルムにおける基材フィルムとは反対側の表面に、接着剤を用いて保護フィルムを貼合することで、片面に保護フィルムが施された偏光性積層フィルムが得られる。本実施形態で用いる保護フィルムおよび接着剤は、第1実施形態と同様のものである。
[Production method of polarizing plate]
In this embodiment, on the polarizing film of the polarizing laminate film produced by the above method, that is, by bonding the protective film to the surface opposite to the base film in the polarizing film using an adhesive, A polarizing laminate film having a protective film on one side is obtained. The protective film and adhesive used in the present embodiment are the same as those in the first embodiment.
 なお、偏光性積層フィルムが、基材フィルムの両面に偏光フィルムを備える場合には、両面の偏光フィルム上にそれぞれ保護フィルムが貼合される。このとき、同じ樹脂材料からなる保護フィルムを用いてもよく、異なる樹脂材料からなる保護フィルムを用いてもよい。 In addition, when a light-polarizing laminated film equips both surfaces of a base film with a polarizing film, a protective film is bonded on the polarizing film of both surfaces, respectively. At this time, protective films made of the same resin material may be used, or protective films made of different resin materials may be used.
 本実施形態においては、片面に保護フィルムが施された偏光性積層フィルムから基材フィルムを剥離することにより、片面に保護フィルムが施された偏光板が得られる。
 なお、この偏光性積層フィルムが基材フィルムの両面に偏光フィルムを備え、これら両方の偏光フィルムに保護フィルムを貼合した場合には、偏光性積層フィルム1枚につき、片面に保護フィルムが施された偏光板が2枚得られることになる。
In the present embodiment, a polarizing plate having a protective film on one side is obtained by peeling the base film from the polarizing laminated film having a protective film on one side.
In addition, when this polarizing laminated film is equipped with a polarizing film on both surfaces of a base film and a protective film is bonded to both of these polarizing films, a protective film is applied to one side for each polarizing laminated film. Two polarizing plates are obtained.
 基材フィルムを剥離する方法としては、従来の粘着剤を備えた偏光板で行われるセパレータ(剥離フィルム)の剥離工程と同様の方法が採用できる。 As a method for peeling the substrate film, the same method as the separator (peeling film) peeling step performed by a conventional polarizing plate equipped with an adhesive can be employed.
 片面に保護フィルムが施された偏光板における偏光フィルム上、すなわち既に貼合された保護フィルムとは反対側の表面に、接着剤を用いて保護フィルムを貼合することにより、両面に保護フィルムが施された偏光板が得られる。このとき用いる保護フィルムおよび接着剤の具体例としては、上記と同様である。 On the polarizing film in the polarizing plate with a protective film on one side, that is, on the surface opposite to the protective film that has already been bonded, the protective film is bonded on both sides by bonding the protective film using an adhesive. The applied polarizing plate is obtained. Specific examples of the protective film and the adhesive used at this time are the same as described above.
 以上のような構成によれば、本実施形態に係る偏光フィルムを備えているため、高い偏光性能を示す偏光板が提供される。 According to the above configuration, since the polarizing film according to this embodiment is provided, a polarizing plate exhibiting high polarization performance is provided.
<変形例>
 なお、本発明の技術範囲は、上記実施形態に限定されず、本発明の効果を損なわない範囲において、種々の変更を加えることができる。
<Modification>
The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the effects of the present invention.
 第1実施形態および第2実施形態において、第1の乾燥処理では、回転軸が互いに平行な複数の乾燥ロールを備える装置を使用する。このとき複数の乾燥ロールよりも下流側に熱処理ロールが設けられていてもよい。これにより、本実施形態に係る延伸工程前に、PVA系樹脂からなる結晶核を増加させたり、延伸中のフィルムの延伸性を向上させたりすることができる。 In the first embodiment and the second embodiment, in the first drying process, an apparatus including a plurality of drying rolls whose rotation axes are parallel to each other is used. At this time, a heat treatment roll may be provided on the downstream side of the plurality of drying rolls. Thereby, before the extending process which concerns on this embodiment, the crystal nucleus which consists of PVA-type resin can be increased, or the extending | stretching property of the film in extending | stretching can be improved.
 第1実施形態および第2実施形態において、染色工程は延伸工程の後に行っているが、延伸工程の前に行うことや、これらの工程を同時に行うこともできる。 In the first embodiment and the second embodiment, the dyeing process is performed after the stretching process. However, the dyeing process can be performed before the stretching process, or these processes can be performed simultaneously.
 また、第1実施形態および第2実施形態の染色工程において、架橋処理は、染色処理の前に行っているが、架橋剤を染色浴中に配合することにより、染色処理と同時に行うこともできる。また、組成の異なる2種以上の架橋浴を用いて、架橋処理を別々に2回以上行ってもよい。 In the dyeing process of the first embodiment and the second embodiment, the crosslinking treatment is performed before the dyeing treatment. However, the crosslinking treatment may be performed simultaneously with the dyeing treatment by blending a crosslinking agent in the dyeing bath. . Moreover, you may perform a crosslinking process separately twice or more using 2 or more types of crosslinking baths from which a composition differs.
 第1実施形態および第2実施形態において、片面に保護フィルムが施された偏光板における偏光フィルム上、または両面に保護フィルムが施された偏光板における保護フィルムのどちらか一方の上に、偏光板を他の部材(例えば、液晶表示装置に適用する場合における液晶セル)に貼合するための粘着剤層を積層してもよい。粘着剤層を形成する粘着剤は、ベースポリマーに架橋剤を加えた粘着剤組成物から形成される。ベースポリマーとしては、例えば(メタ)アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂等が挙げられる。架橋剤としては、例えばイソシアネート化合物、エポキシ化合物、アジリジン化合物等が挙げられる。この粘着剤組成物に、さらに微粒子を含有させて光散乱性を示す粘着剤層とすることもできる。粘着剤層の厚みは1~40μmが好ましく、3~25μmがより好ましい。 In the first embodiment and the second embodiment, the polarizing plate is on the polarizing film in the polarizing plate with the protective film on one side or on the protective film in the polarizing plate with the protective film on both sides. You may laminate | stack the adhesive layer for bonding to other members (For example, the liquid crystal cell in the case of applying to a liquid crystal display device). The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive composition obtained by adding a crosslinking agent to a base polymer. Examples of the base polymer include (meth) acrylic resins, styrene resins, silicone resins, and the like. As a crosslinking agent, an isocyanate compound, an epoxy compound, an aziridine compound etc. are mentioned, for example. The pressure-sensitive adhesive composition may further contain fine particles to form a pressure-sensitive adhesive layer exhibiting light scattering properties. The thickness of the pressure-sensitive adhesive layer is preferably 1 to 40 μm, and more preferably 3 to 25 μm.
 また、片面に保護フィルムが施された偏光板における偏光フィルム上、または両面に保護フィルムが施された偏光板における保護フィルムのどちらか一方の上に、他の光学層を積層してもよい。他の光学層としては、反射型偏光フィルム、表面反射防止機能付フィルム、表面に反射機能を有する反射フィルム、反射機能と透過機能とを併せ持つ半透過反射フィルム、視野角補償フィルム等が挙げられる。本実施形態の製造方法により得られる偏光フィルムを有する偏光板は、表示装置の視認側にも背面側にも好適に適用できる。 Further, another optical layer may be laminated on either the polarizing film in the polarizing plate having a protective film on one side or the protective film in the polarizing plate having a protective film on both sides. Examples of the other optical layer include a reflective polarizing film, a film with a surface antireflection function, a reflection film having a reflection function on the surface, a transflective film having both a reflection function and a transmission function, and a viewing angle compensation film. The polarizing plate having the polarizing film obtained by the production method of the present embodiment can be suitably applied to the viewing side and the back side of the display device.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
<製造例(積層体の製造)>
[基材フィルム]
 エチレンユニットを約5重量%含むプロピレン/エチレンのランダム共重合体からなる樹脂層の両側にプロピレンの単独重合体であるホモポリプロピレンからなる樹脂層を配置した3層構造の長尺のフィルムを作製し、基材フィルムとした。基材フィルムは、多層押出成形機を用いた共押出成形により作製した。
 プロピレン/エチレンのランダム共重合体およびホモポリプロピレンとして、以下の材料を用いた。
 プロピレン/エチレンのランダム共重合体:住友(登録商標)ノーブレン(登録商標)W151、住友化学株式会社製、融点=138℃
 ホモポリプロピレン:住友(登録商標)ノーブレン(登録商標)FLX80E4、住友化学株式会社製、融点=163℃
 得られた基材フィルムの合計厚みは90μmであり、各層の厚み比(FLX80E4/W151/FLX80E4)は3/4/3であった。
<Manufacturing Example (Manufacture of Laminate)>
[Base film]
A long film having a three-layer structure in which a resin layer made of homopolypropylene, which is a propylene homopolymer, is disposed on both sides of a resin layer made of a propylene / ethylene random copolymer containing about 5% by weight of ethylene units. A base film was obtained. The base film was produced by co-extrusion using a multilayer extruder.
The following materials were used as a random copolymer of propylene / ethylene and homopolypropylene.
Propylene / ethylene random copolymer: Sumitomo (registered trademark) Nobrene (registered trademark) W151, manufactured by Sumitomo Chemical Co., Ltd., melting point = 138 ° C.
Homopolypropylene: Sumitomo (registered trademark) Nobrene (registered trademark) FLX80E4, manufactured by Sumitomo Chemical Co., Ltd., melting point = 163 ° C.
The total thickness of the obtained base film was 90 μm, and the thickness ratio (FLX80E4 / W151 / FLX80E4) of each layer was 3/4/3.
[プライマー層形成工程]
 PVA粉末(日本合成化学工業株式会社製、商品名:Z-200、平均重合度1100、ケン化度99.5モル%)を95℃の熱水に溶解させ、3質量%PVA水溶液を調製した。得られたPVA水溶液に、PVA粉末6重量部に対して5重量部の架橋剤(住友化学株式会社製、商品名:スミレーズレジン(登録商標)650)を混合し、接着剤とした。
得られた接着剤を、コロナ処理を施した基材フィルムの表面に、マイクログラビアコーターを用いて塗工した。塗工後の基材フィルムを、80℃で10分間乾燥させることにより、厚み0.2μmのプライマー層を形成した。
[Primer layer forming step]
PVA powder (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Z-200, average polymerization degree 1100, saponification degree 99.5 mol%) was dissolved in 95 ° C. hot water to prepare a 3 mass% PVA aqueous solution. . The obtained PVA aqueous solution was mixed with 5 parts by weight of a crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez Resin (registered trademark) 650) with respect to 6 parts by weight of PVA powder to obtain an adhesive.
The obtained adhesive was applied to the surface of a substrate film subjected to corona treatment using a micro gravure coater. The substrate film after coating was dried at 80 ° C. for 10 minutes to form a primer layer having a thickness of 0.2 μm.
[成膜工程]
 PVA粉末(株式会社クラレ製、商品名:PVA124、平均重合度2400、ケン化度98.0~99.0モル%)を95℃の熱水に溶解させ、7.5質量%PVA水溶液を調製した。得られたPVA水溶液を、プライマー層が形成された基材フィルムの表面に、ダイコーターを用いて塗工した。塗工後の基材フィルムを、80℃で乾燥させることにより、厚み9.2μmのポリビニルアルコールからなる樹脂層を形成した。含水率が30質量%であるときの水の除去速度は1.20質量%/秒であり、含水率30~10質量%の間における水の平均除去速度は、1.21質量%/秒であった。
 このようにして、基材フィルム、プライマー層、樹脂層がこの順に積層した3層構造の積層体を作製した。
[Film formation process]
PVA powder (manufactured by Kuraray Co., Ltd., trade name: PVA124, average polymerization degree 2400, saponification degree 98.0 to 99.0 mol%) is dissolved in hot water at 95 ° C. to prepare a 7.5 mass% PVA aqueous solution. did. The obtained PVA aqueous solution was applied to the surface of the base film on which the primer layer was formed using a die coater. The base film after coating was dried at 80 ° C. to form a resin layer made of polyvinyl alcohol having a thickness of 9.2 μm. The water removal rate when the water content is 30% by mass is 1.20% by mass / second, and the average water removal rate between the water content of 30 and 10% by mass is 1.21% by mass / second. there were.
Thus, the laminated body of the 3 layer structure which laminated | stacked the base film, the primer layer, and the resin layer in this order was produced.
<積層体の保管試験>
[実施例1~9、比較例1~6]
 製造例で作製した積層体を、表1に示す温度(単位:℃)および、積層体中の未延伸フィルムにおける含水率(単位:質量分率)になるように管理された湿熱環境下で2週間保管した。
<Storage test of laminate>
[Examples 1 to 9, Comparative Examples 1 to 6]
The laminate produced in the production example was heated under a wet heat environment controlled so as to have the temperature (unit: ° C.) shown in Table 1 and the moisture content (unit: mass fraction) of the unstretched film in the laminate. Stored for a week.
 各実施例および各比較例の積層体の未延伸フィルムに対して、保管開始時と保管終了時の結晶化指数(ピーク比)Xをそれぞれ求め、保管終了後の結晶化指数から保管開始時の結晶化指数を引いた結晶化指数差ΔXを算出した。このとき、結晶化指数差ΔXが大きいほど、保管時に未延伸フィルム中で結晶が成長していることを意味する。なお、樹脂層の結晶化指数(ピーク比)Xは以下の方法で求めた。 With respect to the unstretched films of the laminates of each Example and each Comparative Example, the crystallization index (peak ratio) X at the start of storage and at the end of storage was determined, respectively, and from the crystallization index after the end of storage, A crystallization index difference ΔX obtained by subtracting the crystallization index was calculated. At this time, the larger the crystallization index difference ΔX, the more crystals are growing in the unstretched film during storage. The crystallization index (peak ratio) X of the resin layer was determined by the following method.
[結晶化指数(ピーク比)Xの算出方法]
 まず、保管前後の積層体に含まれる樹脂層の赤外分光スペクトルを、フーリエ変換赤外分光光度計(Varian Inc.製、Varian 640-IR)にて、透過法を用いて測定した。このとき、分解能は0.5cm-1に設定し、積算回数は16回とした。
 次いで、得られた赤外分光スペクトルから、波数1141cm-1および1440cm-1における吸光度を求め、下記式(S2)に基づいて結晶化指数(ピーク比)Xを算出した。なお、波数1141cm-1のピークはPVA系樹脂からなる結晶に対応し、波数1440cm-1のピークはレファレンスに対応する。
[Calculation method of crystallization index (peak ratio) X]
First, the infrared spectrum of the resin layer contained in the laminate before and after storage was measured with a Fourier transform infrared spectrophotometer (Varian Inc., Varian 640-IR) using the transmission method. At this time, the resolution was set to 0.5 cm −1 and the number of integrations was 16 times.
Then, the obtained infrared spectrum, determine the absorbances at wave numbers of 1141cm -1 and 1440cm -1, was calculated crystallization index (peak ratio) X on the basis of the following formula (S2). The peak of wavenumber 1141cm -1 corresponds to crystals composed of PVA-based resin, the peak of wavenumber 1440cm -1 corresponds to the reference.
  結晶化指数(ピーク比)X=A1141/A1440  …(S2)
(式(S2)中、A1141およびA1440はそれぞれ波数1141cm-1および1440cm-1における吸光度を意味する。)
Crystallization index (peak ratio) X = A 1141 / A 1440 (S2)
(In the formula (S2), A 1141 and A 1440 refers to the absorbance at each wavenumber 1141cm -1 and 1440cm -1.)
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 各実施例および各比較例の積層体の保管試験の結果を、以下の基準により評価した。下記式(2)を満たすものを「○」とし、下記式(2)を満たさないものを「×」とした。
  T1(℃)<A1(℃)+4(℃)  …(2)
The result of the storage test of the laminated body of each Example and each Comparative Example was evaluated according to the following criteria. What satisfy | filled following formula (2) was set to "(circle)", and what does not satisfy following formula (2) was set to "x".
T1 (° C.) <A1 (° C.) + 4 (° C.) (2)
 表1に、各実施例および各比較例の積層体の保管開始時および保管終了時の結晶化指数Xと、結晶化指数差ΔXを示した。また、図3に、実施例および比較例について、得られた未延伸フィルムにおける含水率とガラス転移温度との関係をプロットしたグラフを示した。図3中の曲線は、結晶化度が0%のときの未延伸フィルムにおける含水率とガラス転移温度との関係を示している。また、図3に示す「○」および「×」は、表1に示す「○」および「×」に対応している。 Table 1 shows the crystallization index X and the crystallization index difference ΔX at the start of storage and at the end of storage of the laminates of Examples and Comparative Examples. Moreover, the graph which plotted the relationship between the moisture content and the glass transition temperature in the obtained unstretched film about the Example and the comparative example was shown in FIG. The curve in FIG. 3 shows the relationship between the moisture content and the glass transition temperature in the unstretched film when the crystallinity is 0%. Further, “◯” and “x” shown in FIG. 3 correspond to “◯” and “x” shown in Table 1.
表1に示すように、各実施例では積層体の未延伸フィルムにおける含水率から求められるガラス転移温度A1(単位:℃)と、保管温度T1(単位:℃)との関係が上記式(2)を満たしていることがわかった。このときの結晶化指数差ΔXは0.053未満であった。一方、各比較例では、積層体の未延伸フィルムにおける含水率から求められるガラス転移温度A1と、保管温度T1との関係が上記式(2)を満たしていないことがわかった。
このときの結晶化指数差ΔXは0.053以上であった。
As shown in Table 1, in each Example, the relationship between the glass transition temperature A1 (unit: ° C) obtained from the moisture content in the unstretched film of the laminate and the storage temperature T1 (unit: ° C) is expressed by the above formula (2 ) At this time, the difference in crystallization index ΔX was less than 0.053. On the other hand, in each comparative example, it turned out that the relationship between the glass transition temperature A1 calculated | required from the moisture content in the unstretched film of a laminated body, and the storage temperature T1 does not satisfy | fill said Formula (2).
At this time, the crystallization index difference ΔX was 0.053 or more.
<偏光フィルムの製造>
[延伸工程]
 各実施例および各比較例で保管した積層体に対し、フローティングの縦一軸延伸装置を用いて150℃で5.3倍の自由端一軸延伸を実施し、積層フィルムを得た。積層フィルム中の樹脂フィルムの厚みは5.1μmであった。
<Manufacture of polarizing film>
[Stretching process]
The laminated body stored in each Example and each Comparative Example was subjected to 5.3 times free end uniaxial stretching at 150 ° C. using a floating longitudinal uniaxial stretching apparatus to obtain a laminated film. The thickness of the resin film in the laminated film was 5.1 μm.
[染色工程]
 水100質量部に対して、ヨウ素を0.6質量部、ヨウ化カリウムを10.0質量部配合したヨウ素水溶液(染色浴)を調製した。液温30℃に調節された染色浴に、積層フィルムを180秒間浸漬させることによりヨウ素で染色し、染色フィルムとした。
[Dyeing process]
An iodine aqueous solution (dyeing bath) containing 0.6 parts by mass of iodine and 10.0 parts by mass of potassium iodide was prepared with respect to 100 parts by mass of water. The laminated film was immersed in a dyeing bath adjusted to a liquid temperature of 30 ° C. for 180 seconds to be dyed with iodine to obtain a dyed film.
 次いで、水100質量部に対してホウ酸を10.4質量部配合したホウ酸水溶液を調製した。液温78℃に調節されたホウ酸水溶液に120秒間浸漬させた。さらに、水100質量部に対して、ホウ酸を5.0質量部、ヨウ化カリウムを12.0質量部配合した水溶液(架橋浴)を調製した。液温65℃に調節された架橋浴に60秒間浸漬させることにより架橋処理を施し、架橋フィルムとした。 Next, an aqueous boric acid solution containing 10.4 parts by mass of boric acid per 100 parts by mass of water was prepared. It was immersed in a boric acid aqueous solution adjusted to a liquid temperature of 78 ° C. for 120 seconds. Furthermore, an aqueous solution (crosslinking bath) containing 5.0 parts by mass of boric acid and 12.0 parts by mass of potassium iodide was prepared with respect to 100 parts by mass of water. A crosslinking treatment was performed by immersing in a crosslinking bath adjusted to a liquid temperature of 65 ° C. for 60 seconds to obtain a crosslinked film.
[洗浄工程および乾燥工程]
 得られた架橋フィルムを液温10℃に調節された純水に10秒浸漬し、洗浄した。洗浄後すぐにエアーブロワーを用いて表面に付着した水分を取り除いて、乾燥させた。このようにして、基材フィルムの表面に偏光フィルムを備えた偏光性積層フィルムを得た。
[Washing process and drying process]
The obtained crosslinked film was immersed in pure water adjusted to a liquid temperature of 10 ° C. for 10 seconds and washed. Immediately after washing, moisture adhered to the surface was removed using an air blower and dried. Thus, the polarizing laminated film provided with the polarizing film on the surface of the base film was obtained.
<偏光フィルムの偏光性能の評価>
 各実施例および各比較例の積層体から偏光フィルムを作製し、偏光性能を評価した。表1において、結晶化指数差ΔXが0.053未満の積層体、すなわち、実施例の積層体を用いて作製した偏光フィルムは、比較例の積層体を用いて作製した偏光フィルムに比べ高い偏光性能を示すことがわかった。これは、保管時に未延伸フィルム中で結晶が成長するのを抑制でき、緻密な結晶構造を保つことができたためだと考えられる。
<Evaluation of polarization performance of polarizing film>
Polarizing films were prepared from the laminates of the examples and comparative examples, and the polarizing performance was evaluated. In Table 1, a laminate having a crystallization index difference ΔX of less than 0.053, that is, a polarizing film produced using the laminate of the example, has a higher polarization than a polarizing film produced using the laminate of the comparative example. It was found to show performance. This is presumably because the crystal growth in the unstretched film during storage could be suppressed and a dense crystal structure could be maintained.
 以上のことから、本発明が有用であることが確かめられた。 From the above, it was confirmed that the present invention is useful.

Claims (10)

  1.  ポリビニルアルコール系樹脂溶液の塗膜から水を低減し、ポリビニルアルコール系樹脂を形成材料とする帯状の未延伸フィルムを形成する成膜工程と、
     前記未延伸フィルムを長手方向に搬送しながら延伸し、前記未延伸フィルムが延伸されてなる帯状の樹脂フィルムを得る延伸工程と、を備え、
     前記成膜工程の終了後、前記延伸工程にて前記未延伸フィルムを延伸するまでの間、前記未延伸フィルムが曝される温度T1と、下記式(1)で表される前記未延伸フィルムのガラス転移温度A1との関係が、下記式(2)を満たす樹脂フィルムの製造方法。
    Figure JPOXMLDOC01-appb-M000001
      T1(℃)<A1(℃)+4(℃)  …(2)
    (ただし、「未延伸フィルムの含水率」は、質量分率である)
    A film forming step for reducing the water from the coating film of the polyvinyl alcohol-based resin solution and forming a strip-shaped unstretched film having the polyvinyl alcohol-based resin as a forming material;
    Stretching while transporting the unstretched film in the longitudinal direction, and obtaining a strip-shaped resin film obtained by stretching the unstretched film,
    The temperature T1 at which the unstretched film is exposed and the unstretched film represented by the following formula (1) until the unstretched film is stretched in the stretching process after the film formation step is completed. A method for producing a resin film, wherein the relationship with the glass transition temperature A1 satisfies the following formula (2).
    Figure JPOXMLDOC01-appb-M000001
    T1 (° C.) <A1 (° C.) + 4 (° C.) (2)
    (However, “moisture content of unstretched film” is a mass fraction)
  2.  前記成膜工程において、前記水を低減する前の前記塗膜の含水率は30質量%より大きく、前記水を低減する過程において前記塗膜の含水率が30質量%であるときの水の除去速度が0.01~1.8質量%/秒である請求項1に記載の樹脂フィルムの製造方法。 In the film-forming step, the water content of the coating film before reducing the water is greater than 30% by mass, and water is removed when the water content of the coating film is 30% by mass in the process of reducing the water. The method for producing a resin film according to claim 1, wherein the speed is 0.01 to 1.8% by mass / second.
  3.  前記成膜工程において、前記水を低減する前の前記塗膜の含水率は30質量%より大きく、前記水を低減する過程において前記塗膜の含水率が30~10質量%であるときの水の平均除去速度が0.01~1.8質量%/秒である請求項1または2に記載の樹脂フィルムの製造方法。 In the film forming step, the water content of the coating film before the water reduction is greater than 30% by mass, and the water content of the coating film is 30 to 10% by mass in the process of reducing the water. The method for producing a resin film according to claim 1 or 2, wherein the average removal rate of is from 0.01 to 1.8% by mass / second.
  4.  ポリビニルアルコール系樹脂溶液の塗膜から水を低減し、ポリビニルアルコール系樹脂を形成材料とする帯状の未延伸フィルムを形成する成膜工程と、
     前記未延伸フィルムを長手方向に搬送しながら延伸し、前記未延伸フィルムが延伸されてなる帯状の樹脂フィルムを得る延伸工程と、
     前記樹脂フィルムを長手方向に搬送しながら二色性物質で染色した後に、前記二色性物質で染色された前記樹脂フィルムを、架橋剤を含む架橋浴に浸漬する染色工程と、を備え、
     前記成膜工程の終了後、前記延伸工程にて前記未延伸フィルムを延伸するまでの間、前記未延伸フィルムが曝される温度T1と、下記式(1)で表される前記未延伸フィルムのガラス転移温度A1との関係が、下記式(2)を満たす偏光フィルムの製造方法。
    Figure JPOXMLDOC01-appb-M000002
      T1(℃)<A1(℃)+4(℃)  …(2)
    (ただし、「未延伸フィルムの含水率」は、質量分率である)
    A film forming step for reducing the water from the coating film of the polyvinyl alcohol-based resin solution and forming a strip-shaped unstretched film having the polyvinyl alcohol-based resin as a forming material;
    Stretching while transporting the unstretched film in the longitudinal direction to obtain a belt-shaped resin film obtained by stretching the unstretched film;
    A dyeing step of immersing the resin film dyed with the dichroic substance in a crosslinking bath containing a crosslinking agent after dyeing with the dichroic substance while conveying the resin film in the longitudinal direction;
    The temperature T1 at which the unstretched film is exposed and the unstretched film represented by the following formula (1) until the unstretched film is stretched in the stretching process after the film formation step is completed. The manufacturing method of the polarizing film whose relationship with glass transition temperature A1 satisfy | fills following formula (2).
    Figure JPOXMLDOC01-appb-M000002
    T1 (° C.) <A1 (° C.) + 4 (° C.) (2)
    (However, “moisture content of unstretched film” is a mass fraction)
  5.  前記延伸工程の終了後、前記染色工程にて前記樹脂フィルムを染色するまでの間、前記樹脂フィルムが曝される温度T2と、下記式(3)で表される前記樹脂フィルムのガラス転移温度A2との関係が、下記式(4)を満たす請求項4に記載の偏光フィルムの製造方法。
    Figure JPOXMLDOC01-appb-M000003
      T2(℃)<A2(℃)+4(℃)  …(4)
    (ただし、「樹脂フィルムの含水率」は、質量分率である)
    The temperature T2 at which the resin film is exposed and the glass transition temperature A2 of the resin film represented by the following formula (3) until the resin film is dyed in the dyeing process after the stretching process is finished. The manufacturing method of the polarizing film of Claim 4 with which the relationship with following formula | equation (4) is satisfy | filled.
    Figure JPOXMLDOC01-appb-M000003
    T2 (° C.) <A2 (° C.) + 4 (° C.) (4)
    (However, “water content of the resin film” is a mass fraction)
  6.  前記成膜工程において、帯状の基材フィルムを長手方向に搬送しながら、前記基材フィルムの少なくとも一方の面に前記ポリビニルアルコール系樹脂溶液を塗工し、前記少なくとも一方の面に前記未延伸フィルムを積層する請求項4または5に記載の偏光フィルムの製造方法。 In the film forming step, the polyvinyl alcohol resin solution is applied to at least one surface of the base film while the belt-shaped base film is conveyed in the longitudinal direction, and the unstretched film is applied to the at least one surface. The manufacturing method of the polarizing film of Claim 4 or 5 which laminates | stacks.
  7.  前記偏光フィルムの厚みが10μm以下である請求項4~6のいずれか1項に記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to any one of claims 4 to 6, wherein the polarizing film has a thickness of 10 µm or less.
  8.  前記成膜工程において、前記水を低減する前の前記塗膜の含水率は30質量%より大きく、前記水を低減する過程において前記塗膜の含水率が30質量%であるときの水の除去速度が0.01~1.8質量%/秒である請求項4~7のいずれか1項に記載の偏光フィルムの製造方法。 In the film-forming step, the water content of the coating film before reducing the water is greater than 30% by mass, and water is removed when the water content of the coating film is 30% by mass in the process of reducing the water. The method for producing a polarizing film according to any one of claims 4 to 7, wherein the speed is 0.01 to 1.8% by mass / second.
  9.  前記成膜工程において、前記水を低減する前の前記塗膜の含水率は30質量%より大きく、前記水を低減する過程において前記塗膜の含水率が30~10質量%であるときの水の平均除去速度が0.01~1.8質量%/秒である請求項4~8のいずれか1項に記載の偏光フィルムの製造方法。 In the film forming step, the water content of the coating film before the water reduction is greater than 30% by mass, and the water content of the coating film is 30 to 10% by mass in the process of reducing the water. The method for producing a polarizing film according to any one of claims 4 to 8, wherein an average removal rate of is from 0.01 to 1.8% by mass / second.
  10.  ポリビニルアルコール系樹脂を形成材料とする帯状の未延伸フィルムを長手方向に搬送しながら延伸し、前記未延伸フィルムが延伸されてなる樹脂フィルムを得る延伸工程と、 前記樹脂フィルムを長手方向に搬送しながら二色性物質で染色した後に、前記二色性物質で染色された前記樹脂フィルムを、架橋剤を含む架橋浴に浸漬する染色工程と、を備え、
     前記延伸工程の終了後、前記染色工程にて前記樹脂フィルムを染色するまでの間、前記樹脂フィルムが曝される温度T2と、下記式(3)で表される前記樹脂フィルムのガラス転移温度A2との関係が、下記式(4)を満たす偏光フィルムの製造方法。
    Figure JPOXMLDOC01-appb-M000004
      T2(℃)<A2(℃)+4(℃)  …(4)
    (ただし、「樹脂フィルムの含水率」は、質量分率である)
    Stretching a belt-shaped unstretched film made of a polyvinyl alcohol resin as a forming material while transporting in the longitudinal direction to obtain a resin film obtained by stretching the unstretched film; and transporting the resin film in the longitudinal direction A dyeing step of immersing the resin film dyed with the dichroic substance in a crosslinking bath containing a crosslinking agent after dyeing with the dichroic substance,
    The temperature T2 at which the resin film is exposed and the glass transition temperature A2 of the resin film represented by the following formula (3) until the resin film is dyed in the dyeing process after the stretching process is finished. The manufacturing method of the polarizing film with which relationship with following formula | equation (4) is satisfy | filled.
    Figure JPOXMLDOC01-appb-M000004
    T2 (° C.) <A2 (° C.) + 4 (° C.) (4)
    (However, “water content of the resin film” is a mass fraction)
PCT/JP2017/006357 2016-03-14 2017-02-21 Method for manufacturing resin film and method for manufacturing polarizing film WO2017159233A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780015963.0A CN108780173B (en) 2016-03-14 2017-02-21 Method for producing resin film and method for producing polarizing film
KR1020187027007A KR20180124875A (en) 2016-03-14 2017-02-21 Method for producing resin film and method for producing polarizing film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016049936 2016-03-14
JP2016-049936 2016-03-14
JP2016-238514 2016-12-08
JP2016238514A JP6353016B2 (en) 2016-03-14 2016-12-08 Method for producing resin film and method for producing polarizing film

Publications (1)

Publication Number Publication Date
WO2017159233A1 true WO2017159233A1 (en) 2017-09-21

Family

ID=59852095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006357 WO2017159233A1 (en) 2016-03-14 2017-02-21 Method for manufacturing resin film and method for manufacturing polarizing film

Country Status (1)

Country Link
WO (1) WO2017159233A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343522A (en) * 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizer film and its manufacturing method
JP2010168120A (en) * 2010-03-16 2010-08-05 Toyo Seikan Kaisha Ltd Manufacturing method for content packed in container
JP2013011847A (en) * 2010-12-02 2013-01-17 Nitto Denko Corp Method for manufacturing polarizing plate
JP2016024364A (en) * 2014-07-22 2016-02-08 住友化学株式会社 Method for manufacturing polarizing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343522A (en) * 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizer film and its manufacturing method
JP2010168120A (en) * 2010-03-16 2010-08-05 Toyo Seikan Kaisha Ltd Manufacturing method for content packed in container
JP2013011847A (en) * 2010-12-02 2013-01-17 Nitto Denko Corp Method for manufacturing polarizing plate
JP2016024364A (en) * 2014-07-22 2016-02-08 住友化学株式会社 Method for manufacturing polarizing plate

Similar Documents

Publication Publication Date Title
KR101420584B1 (en) Method for producing polarizing laminated film and double-sided polarizing laminated film
KR101427017B1 (en) Process for producing polarizing laminate film and polarizing plate
KR102444485B1 (en) Polarizing film and method for producing polarizing laminate film
TW201204551A (en) Stretched film, polarizing stretched film and manufacturing methods thereof
JP5999248B2 (en) Polarizing film, polarizing plate, and manufacturing method of polarizing film
JP6231511B2 (en) Manufacturing method of polarizing film
KR102473609B1 (en) Method for manufacturing laminated polarizing plate and method for manufacturing polarizing plate
JP6472381B2 (en) Raw film for optical film production
JP6360943B2 (en) Method for producing laminated film and method for producing polarizing plate
KR20170065531A (en) Method for producing polarizing laminated film and method for producing polarizing plate
JP6353016B2 (en) Method for producing resin film and method for producing polarizing film
JP6302293B2 (en) Manufacturing method of polarizing plate
KR102288392B1 (en) Method for producing polarizing film, laminated film
KR102288391B1 (en) Method for manufacturing a polarizing plate
WO2017159233A1 (en) Method for manufacturing resin film and method for manufacturing polarizing film
JP2018092156A (en) Polarizing film and manufacturing method of polarized laminate film
JP6619986B2 (en) Method for producing stretched film and method for producing polarizing film
JP6321999B2 (en) Manufacturing method of polarizing plate
JP6456710B2 (en) Manufacturing method of laminated polarizing plate and manufacturing method of polarizing plate
JP6659217B2 (en) Manufacturing method of polarizing plate
JP2018010317A (en) Production method of polyvinyl alcohol resin film and production method of polarizing film

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027007

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766240

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766240

Country of ref document: EP

Kind code of ref document: A1