WO2017159224A1 - Water-based-resin-coated metal plate - Google Patents

Water-based-resin-coated metal plate Download PDF

Info

Publication number
WO2017159224A1
WO2017159224A1 PCT/JP2017/006159 JP2017006159W WO2017159224A1 WO 2017159224 A1 WO2017159224 A1 WO 2017159224A1 JP 2017006159 W JP2017006159 W JP 2017006159W WO 2017159224 A1 WO2017159224 A1 WO 2017159224A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
layer
resin
colloidal silica
metal plate
Prior art date
Application number
PCT/JP2017/006159
Other languages
French (fr)
Japanese (ja)
Inventor
徹 江口
哲也 山本
大輝 酒井
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017159224A1 publication Critical patent/WO2017159224A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials

Definitions

  • the present invention relates to a water-based resin-coated metal plate excellent in all of heat dissipation, conductivity, and corrosion resistance, in which a thin-film carbon black-containing layer is laminated on a metal plate having a thin clear coating film (first layer). Is.
  • the water-based resin-coated metal plate of the present invention can be used for casings and interior / exterior parts of household electric appliances, outer plate materials such as metal furniture, and building materials.
  • the present invention has been aimed at providing a resin-coated metal plate that is inexpensive and satisfies all of heat dissipation, conductivity, and corrosion resistance.
  • One aspect of the present invention is an aqueous resin having a first layer containing an aqueous resin and colloidal silica on at least one surface of a metal plate, and an aqueous resin and a second layer containing carbon black on the first layer.
  • a coated metal plate wherein the first layer has a film thickness of 0.1 to 0.4 ⁇ m, and the resin component is 70 to 95% by mass in a total of 100% by mass of the resin component and colloidal silica.
  • the second layer has a film thickness of 0.3 to 0.7 ⁇ m and may contain colloidal silica. The total amount of the resin component, colloidal silica and carbon black is 100% by mass.
  • the resin component is 50 to 85% by mass
  • the colloidal silica is 0 to 20% by mass
  • the carbon black is 15 to 30% by mass
  • the total film thickness of the first layer and the second layer is 0.4 to 0. .8 ⁇ m
  • the inventors of the present invention have studied the cause of the corrosion resistance of resin-coated metal plates that are greatly reduced when the film is thinned to ensure conductivity and the amount of carbon black is increased to ensure heat dissipation. As a result, it was found that the deterioration of the corrosion resistance was not caused mainly by the deterioration of the film due to the addition of carbon black, but because it was a corrosion site because carbon black had conductivity. And, by providing an extremely thin film (first layer) that does not contain carbon black between the metal plate and the carbon black-containing film, the corrosion resistance was successfully improved, and the present invention was completed. . According to the present invention, it is possible to provide an inexpensive resin-coated metal plate that has a thin carbon black-containing film (second layer) that exhibits electrical conductivity and that is excellent in corrosion resistance and heat dissipation.
  • the aqueous resin-coated metal plate of the present invention has a first layer containing an aqueous resin and colloidal silica on at least one surface of the metal plate, and a second layer containing an aqueous resin and carbon black is formed on the first layer.
  • a water-based resin-coated metal plate having a film thickness of 0.1 to 0.4 ⁇ m, and the resin component is 70 to 95% by mass in a total of 100% by mass of the resin component and colloidal silica.
  • the colloidal silica is 5 to 30% by mass
  • the second layer has a film thickness of 0.3 to 0.7 ⁇ m and may contain colloidal silica.
  • the total of the resin component, colloidal silica and carbon black In 100% by mass, the resin component is 50 to 85% by mass, colloidal silica is 0 to 20% by mass, carbon black is 15 to 30% by mass, and the total film thickness of the first layer and the second layer is 0.00. 4-0. It is 8 ⁇ m.
  • Metal plate It does not specifically limit as a metal plate used by this embodiment, for example, a cold-rolled steel plate, a hot-rolled steel plate, an electrogalvanized steel plate (EG), a hot-dip galvanized steel plate (GI), an alloyed hot-dip galvanized steel plate (GA), 5% Al—Zn plated steel sheets, 55% Al—Zn plated steel sheets, various plated steel sheets such as aluminum plates (Al), steel sheets such as stainless steel sheets, known metal plates, and the like can all be applied.
  • EG electrogalvanized steel plate
  • GI hot-dip galvanized steel plate
  • G alloyed hot-dip galvanized steel plate
  • 5% Al—Zn plated steel sheets 5% Al—Zn plated steel sheets
  • 55% Al—Zn plated steel sheets various plated steel sheets
  • various plated steel sheets such as aluminum plates (Al), steel sheets such as stainless steel sheets, known metal plates, and the like can all be applied.
  • the metal plate may be subjected to surface treatment such as chromate treatment or phosphate treatment for the purpose of improving the corrosion resistance, improving the adhesion of the coating film, etc.
  • surface treatment such as chromate treatment or phosphate treatment for the purpose of improving the corrosion resistance, improving the adhesion of the coating film, etc.
  • a chromated metal plate may be used, and any embodiment is included within the scope of the present invention.
  • the first layer essentially contains an aqueous resin and colloidal silica.
  • aqueous resin refers to a resin that is an aqueous dispersion or a water-soluble resin.
  • an ethylene-unsaturated carboxylic acid copolymer is preferable.
  • the ethylene-unsaturated carboxylic acid copolymer those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
  • Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like.
  • a copolymer can be obtained by polymerization using a legal method or the like.
  • the copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10 to 40% by mass of unsaturated carboxylic acid when the total amount of monomers is 100% by mass. If the unsaturated carboxylic acid content is less than 10% by mass, the carboxyl group that is the starting point of intermolecular association by ion clusters is small, so that the film strength effect is not exhibited and the emulsion composition is inferior in emulsion stability. A more preferable lower limit of the unsaturated carboxylic acid is 15% by mass. On the other hand, when unsaturated carboxylic acid exceeds 40 mass%, the corrosion resistance and water resistance of a 1st layer may be inferior. A more preferred upper limit is 25% by mass.
  • the ethylene-unsaturated carboxylic acid copolymer has a carboxyl group, it can be emulsified (aqueous dispersion) by neutralization with an organic base or metal ion.
  • organic base include primary, secondary, and tertiary amines (preferably triethylamine).
  • An amine having a low boiling point preferably an amine having a boiling point of 100 ° C. or lower under atmospheric pressure; for example, triethylamine
  • Monovalent metal ions are also preferably used in combination with amines.
  • the amine is preferably used in an amount of 0.2 to 0.8 mol (20 to 80 mol%) with respect to 1 mol of the carboxyl group in the ethylene unsaturated carboxylic acid copolymer. It can be seen that the amount of monovalent metal ions affects the water vapor permeability, and if the amount of monovalent metal compound used increases, the affinity between the resin and water increases, and the water vapor permeability increases.
  • the amount is preferably 0.02 to 0.2 mol (2 to 20 mol%) based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer.
  • the total amount of amines and metal ions used is 0.3 to 1 per mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. It is good to set it as the range of 0 mol.
  • the metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
  • emulsification an appropriate amount of a compound having a surfactant function such as tall oil fatty acid may be added.
  • the above-mentioned ethylene-unsaturated carboxylic acid copolymer can be stirred at high speed in a container capable of high temperature (about 150 ° C.) and high pressure (about 5 atm) in the presence of the carboxylic acid polymer described below, if necessary. Emulsify after 1-6 hours. Further, a hydrophilic organic solvent such as a lower alcohol having about 1 to 5 carbon atoms may be partially added to water.
  • the mass average molecular weight (Mw) of the ethylene-unsaturated carboxylic acid copolymer is preferably 1,000 to 100,000, more preferably 3,000 to 70,000, and still more preferably 5,000 to 30,000 in terms of polystyrene. It is. This Mw can be measured by GPC using polystyrene as a standard.
  • a carboxylic acid polymer can also be used as a resin component.
  • the carboxylic acid polymer any polymer having an unsaturated carboxylic acid as a constituent unit exemplified as one that can be used for the synthesis of the ethylene-unsaturated carboxylic acid copolymer can be used. Among these, acrylic acid and maleic acid are preferable, and maleic acid is more preferable.
  • the carboxylic acid polymer may contain a constituent unit derived from a monomer other than the unsaturated carboxylic acid, but the constituent unit amount derived from the other monomer is 10% by mass or less in the polymer.
  • carboxylic acid polymer composed only of an unsaturated carboxylic acid is more preferable.
  • carboxylic acid polymer include polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer, polymaleic acid and the like.
  • polymaleic acid is preferred from the viewpoint of resin film adhesion and corrosion resistance. More preferred.
  • the exact mechanism by which the corrosion resistance is improved by using polymaleic acid is unknown, the adhesion between the resin film and the metal plate is improved due to the large amount of carboxyl groups. It is done. However, the present invention is not limited to this estimation.
  • the Mw of the carboxylic acid polymer used in the present embodiment is preferably from 500 to 30,000, more preferably from 800 to 10,000, still more preferably from 900 to 3,000, most preferably from 1,000 to 2, in terms of polystyrene. 000. This Mw can be measured by GPC using polystyrene as a standard.
  • the content ratio of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is 1,000: 1 to 10: 1, preferably 200: 1 to 20: 1 in terms of mass ratio. If the content ratio of the carboxylic acid polymer is too low, the effect of combining the olefin-acid copolymer and the carboxylic acid polymer is not sufficiently exhibited. Conversely, if the content ratio of the carboxylic acid polymer is excessive, There is a possibility that the olefin-acid copolymer and the carboxylic acid polymer may be phase-separated in the first layer-forming coating solution, and a uniform resin film may not be formed.
  • colloidal silica When colloidal silica is present in the first layer, it dissolves and dissolves at the film defects in a corrosive environment, and suppresses dissolution / elution of the metal plate by pH buffering and passive film formation, thus improving corrosion resistance. .
  • the state of dispersion in the film changes depending on the surface area (particle diameter) of the colloidal silica, which greatly affects mechanical properties such as hardness and brittleness of the film.
  • colloidal silica In order to form a dense film and improve the toughness of the film, it is desirable to uniformly disperse colloidal silica having a small particle diameter in the film.
  • colloidal silica has an average particle diameter of 4 to It is preferably 20 nm.
  • the average particle size of colloidal silica is more preferably 4 to 6 nm.
  • the average particle diameter of silica can be measured by the Sears method when the average particle diameter is about 1 to 10 nm and by the BET method when it is about 10 to 100 nm.
  • Colloidal silica is commercially available. For example, if it has an average particle size of 4 to 6 nm, “Snowtex (registered trademark) XS” manufactured by Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) 40", “Snowtex (registered trademark) N”, “Snowtex (registered trademark) SS”, “Snowtex (registered trademark) O” manufactured by Nissan Chemical Industries, Ltd., and ADEKA “Adelite (registered trademark) AT-30”, “Adelite (registered trademark) AT-30A”, and the like manufactured by the same company can be used. Since the first layer forming coating solution is aqueous, it is preferable to select the type of colloidal silica according to the pH of the coating solution in order to disperse the colloidal silica well.
  • the resin component (ethylene-unsaturated carboxylic acid copolymer and carboxylic acid polymer) and colloidal silica in the first layer have a resin component of 70 to 95 when the total of the resin component and colloidal silica is 100% by mass. % By mass and 5-30% by mass of colloidal silica. Outside this range, corrosion resistance may be insufficient.
  • the first layer forming coating solution may contain a silane coupling agent.
  • a silane coupling agent When a silane coupling agent is used, the adhesion between the metal and the first layer is improved, and the corrosion resistance is also improved accordingly. Moreover, there exists an effect which improves the bond strength of a resin component and colloidal silica, and the toughness of a film
  • Glycidyl group-containing silane coupling agents include ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxymethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) Examples include ethyltrimethoxysilane.
  • the amount of the silane coupling agent in the first layer forming coating liquid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the resin component and colloidal silica.
  • the amount is less than 0.1 parts by mass, the adhesion between the metal plate and the resin film and the bonding force between the resin component and colloidal silica are insufficient, and the toughness and corrosion resistance of the film may be insufficient.
  • it exceeds 10 parts by mass the effect of improving the adhesion between the metal plate and the resin film is saturated, and the coatability may be reduced because the functional groups in the resin are reduced.
  • silane coupling agents cause a hydrolysis condensation reaction, the stability of the coating liquid is lowered, and there is a possibility of causing gelation and precipitation of colloidal silica.
  • the amount of the silane coupling agent is more preferably 3 to 9 parts by mass, and further preferably 5 to 7 parts by mass.
  • the first layer forming coating solution of the present embodiment may further contain a carbodiimide group-containing compound.
  • the carbodiimide group reacts with the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer. Therefore, by using a carbodiimide group-containing compound, the amount of carboxyl groups in the first layer can be reduced and water resistance can be improved.
  • one or more carbodiimide group-containing compounds can be used.
  • the first layer forming coating solution is aqueous
  • an aqueous carbodiimide group-containing compound is preferable.
  • a compound containing a plurality of carbodiimide groups in one molecule is preferable.
  • corrosion resistance and the like can be further improved by a crosslinking reaction with a carboxyl group in the resin component.
  • polycarbodiimide compounds examples include N, N-dicyclohexylcarbodiimide, N, N-diisopropylcarbodiimide and the like, and polycarbodiimides (polymers having a plurality of carbodiimide groups in one molecule) manufactured by Nisshinbo. Mention may be made of the “Carbolite®” series. “Carbolite (registered trademark)” grades include water-soluble “SV-02”, “V-02”, “V-02-L2”, “V-04” and emulsion type “E-01”. , “E-02” and the like are preferable.
  • the amount of the carbodiimide group-containing compound is set according to the amount of carboxyl groups in the resin component.
  • the amount of the carbodiimide group-containing compound is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, further preferably 100 parts by mass. It is 8 parts by mass or more.
  • the amount of the carbodiimide group-containing compound is excessive, the effect of the combination of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is lowered.
  • the amount of the carbodiimide group-containing compound is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 16 parts by mass or less with respect to 100 parts by mass.
  • the first layer forming coating solution preferably has a solid content of about 15 to 25% by mass.
  • the thickness of the first layer is preferably 0.1 to 0.4 ⁇ m, more preferably 0.2 to 0.3 ⁇ m. If it is thinner than 0.1 ⁇ m, the corrosion resistance is insufficient. Further, even if the thickness exceeds 0.4 ⁇ m, the corrosion resistance improving effect is saturated.
  • a wax, a crosslinking agent, a diluent, an anti-skinning agent, a surfactant, an emulsifier, a dispersant, a leveling agent, an antifoaming agent as long as the effect of the present invention is not impaired
  • Penetration agents, film-forming aids, dyes, pigments, thickeners, lubricants, and the like can also be included.
  • the second layer includes a resin component and carbon black.
  • carbon black is added for heat dissipation.
  • the carbon black is not particularly limited.
  • the carbon black is preferably 15 to 30% by mass when the resin component constituting the second layer and the carbon black (including colloidal silica described later also includes colloidal silica) are 100% by mass. More preferably, it is 20 to 30% by mass, and further preferably 25 to 30% by mass. If the amount of carbon black is small, sufficient heat dissipation cannot be exhibited. If carbon black is added in an amount exceeding 30% by mass, the corrosion resistance tends to decrease, which is not preferable.
  • the heat dissipation in this embodiment is a wavelength of 4.5 to 15 when a resin-coated metal plate is heated to 100 ° C. using a Fourier transform infrared spectrophotometer (manufactured by JEOL Ltd., JIR-5500).
  • the spectral radiant intensity of a 4 ⁇ m sample and a black body was measured, and the value obtained by dividing the spectral radiant intensity of the sample by the spectral radiant intensity of the black body was used as an index.
  • the emissivity is preferably 0.3 or more. A more detailed method for measuring the emissivity will be described later.
  • any one or more of polyolefin resin, polyurethane resin, and polyester resin is preferable.
  • polyolefin resin polyolefin resins exemplified as suitable for the first layer can be used.
  • polyurethane resin for example, Adekabon titer (registered trademark; water-based polyurethane) series manufactured by ADEKA is used.
  • polyester-type resin the Toyobo Co., Ltd. baironal (trademark; water-dispersed polyester) series can be used, for example.
  • Colloidal silica may not be added to the second layer. However, in order to improve the hardness of the film and improve the corrosion resistance, it is preferable to contain colloidal silica in the range of 20% by mass or less. . When silica is used in excess of 20% by mass, the corrosion resistance may be reduced. Therefore, when the total amount of the resin component, colloidal silica, and carbon black is 100% by mass, the resin component is 50 to 85% by mass, the colloidal silica is 0 to 20% by mass, and the carbon black is 15 to 30% by mass. It is preferable.
  • the second layer forming coating solution preferably has a solid content of about 15 to 25% by mass. You may mix
  • the thickness of the second layer is preferably 0.3 to 0.7 ⁇ m, more preferably 0.4 to 0.7 ⁇ m. If it is thinner than 0.3 ⁇ m, the heat dissipation is insufficient, but if it exceeds 0.7 ⁇ m, the heat dissipation effect is saturated.
  • the total film thickness of the first layer and the second layer is 0.4 to 0.8 ⁇ m. If it exceeds 0.8 ⁇ m, the conductivity is insufficient.
  • infrared integrated emissivity means the ease of releasing (easy absorption) of infrared (thermal energy). Therefore, the higher the infrared integrated emissivity, the greater the amount of heat energy released (absorbed). For example, when 100% of the thermal energy given to an object (in this embodiment, a resin-coated metal plate) is emitted, the infrared integrated emissivity is 1.
  • the infrared integrated emissivity when heated to 100 ° C. is determined. This is because the coated laminate metal plate in the present embodiment is applied to electrical equipment applications (although it differs depending on the members, etc., the normal atmospheric temperature is approximately 50 to 70 ° C., and maximum is about 100 ° C.). In consideration of this, the heating temperature is set to 100 ° C. in order to match the temperature of the practical level.
  • the measuring method of the infrared integrated emissivity in this embodiment is as follows. Equipment: “JIR-5500 type Fourier transform infrared spectrophotometer” manufactured by JEOL Ltd. and radiation measurement unit “IRR-200” Measurement wavelength range: 4.5 to 15.4 ⁇ m Measurement temperature: set the sample heating temperature to 100 ° C. Integration count: 200 times Resolution: 16 cm ⁇ 1
  • the spectral radiant intensity (measured value) of the sample in the infrared wavelength region was measured.
  • the measured value of the above sample is measured as a numerical value obtained by adding / adding the background radiation intensity and the instrument function, an emissivity measurement program [JEOL emissivity measurement program manufactured by JEOL Ltd.] ] To calculate the integral emissivity.
  • A instrument function
  • KFB ⁇ : spectral radiant intensity of fixed background
  • K80 ° C. ( ⁇ , 80 ° C.): Spectral radiant intensity of a black body furnace at a wavelength ⁇ of 80 ° C. (calculated from the theoretical formula of the blank) Means each.
  • variable background radiation meaning background radiation that varies depending on the sample. Since the radiation from the periphery of the sample is reflected on the sample surface, the measured value of the spectral radiant intensity of the sample is Spectral radiation intensity (which appears as a numerical value with background radiation added) can be controlled low.
  • the water-based resin-coated metal plate of this embodiment can be manufactured by the following method. First, the first layer forming coating solution prepared by mixing the above components at a predetermined ratio and stirring for several minutes with a stirrer is applied to the surface of the metal plate by a known coating method and dried. Subsequently, the above components are mixed at a predetermined ratio, and stirred for several minutes with a stirrer to apply the second layer forming coating solution to the surface of the metal plate by a known coating method, followed by drying. be able to.
  • the coating method is not particularly limited, but for example, the coating liquid is applied to the surface of a long metal strip that has been cleaned and galvanized using the bar coater method, roll coater method, spray method, curtain flow coater method, etc.
  • Examples of the method include coating and drying through a hot-air drying furnace.
  • the roll coater method is preferable in practical use in consideration of film thickness uniformity, processing cost, coating efficiency, and the like.
  • One aspect of the present invention is an aqueous resin having a first layer containing an aqueous resin and colloidal silica on at least one surface of a metal plate, and an aqueous resin and a second layer containing carbon black on the first layer.
  • a coated metal plate wherein the first layer has a film thickness of 0.1 to 0.4 ⁇ m, and the resin component is 70 to 95% by mass in a total of 100% by mass of the resin component and colloidal silica.
  • the second layer has a film thickness of 0.3 to 0.7 ⁇ m and may contain colloidal silica. The total amount of the resin component, colloidal silica and carbon black is 100% by mass.
  • the resin component is 50 to 85% by mass
  • the colloidal silica is 0 to 20% by mass
  • the carbon black is 15 to 30% by mass
  • the total film thickness of the first layer and the second layer is 0.4 to 0. .8 ⁇ m
  • the first layer preferably contains a polyolefin resin.
  • the second layer preferably contains at least one of a polyolefin resin, a polyurethane resin, and a polyester resin.
  • a part means a mass part.
  • a glycidoxy group-containing silane coupling agent (“TSL8350” manufactured by Momentive Performance Materials, ⁇ -glycidoxypropyltrimethoxysilane), a carbodiimide group-containing compound (“Carbodilite (registered trademark)” manufactured by Nisshinbo Co., Ltd. SV-02 ", polycarbodiimide, Mw: 2,700, solid content 40% by mass) 31.2 parts and ion-exchanged water 72.8 parts were added and stirred for 10 minutes to obtain an ethylene-acrylic acid copolymer. An emulsion emulsified and mixed with each component was obtained (solid content 20.3% by mass, measured according to JIS K6833; hereinafter referred to as aqueous polyolefin resin solution).
  • TSL8350 glycidoxy group-containing silane coupling agent
  • Carbodiimide group-containing compound (“Carbodilite (registered trademark)” manufactured by Nisshinbo Co., Ltd.
  • Table 1 shows the amount of colloidal silica ("Snowtex (registered trademark) XS” manufactured by Nissan Chemical Industries Ltd., solid content 20 mass%, average particle size (catalog value): 4 to 6 nm) in the aqueous polyolefin resin solution.
  • the mixture was diluted with ion-exchanged water and stirred to obtain a coating solution for forming a first layer.
  • Sample 33 of Experimental Example 33 is an example in which carbon black (“SA Black DY-6” manufactured by Mikuni Dye Co., Ltd., solid content: 30.5 mass%) was added to the first layer.
  • a polyester resin (“Vironal (registered trademark) MD-1200, manufactured by Toyobo Co., Ltd., solid content: 34 mass% (water dispersion type), Tg 67 ° C.)” was used as the second layer resin.
  • a polyurethane resin (“ADEKA BONTITER (registered trademark) HUX-522” manufactured by ADEKA, solid content of 30% by mass).
  • aqueous polyolefin resin solution obtained above blended so as to be 70% by mass of polyolefin resin, 5% by mass of colloidal silica, and 25% by mass of carbon black in terms of solid content, and diluted with ion-exchanged water and stirred. And the coating liquid for 2nd layer formation was obtained.
  • a coating solution for forming a second layer is applied with a bar coater so that the thickness of the second layer after drying is 0.48 ⁇ m. Heat drying was performed at a temperature of 90 to 100 ° C. (furnace temperature 220 ° C. ⁇ 12 seconds) to form a second layer on the steel plate.
  • the present invention it is possible to provide a water-based resin-coated metal plate that is inexpensive and satisfies all of heat dissipation, conductivity, and corrosion resistance.
  • the water-based resin-coated metal plate of the present invention can be used for casings and interior / exterior parts of household electrical appliances, outer plate materials such as metal furniture, and building materials.

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention relates to a water-based-resin-coated metal plate having a first layer containing a water-based resin and colloidal silica on at least one side of a metal plate and having, on the first layer, a second layer containing a water-based resin and carbon black, the water-based-resin-coated metal plate being characterized in that the first layer has a film thickness of 0.1-0.4 µm and contains 70-95 mass% of the resin component and 5-30 mass% of the colloidal silica with respect to 100 mass% in total of the resin component and the colloidal silica, the second layer has a film thickness of 0.3-0.7 µm, may contain colloidal silica, and contains 50-85 mass% of the resin component, 0-20 mass% of the colloidal silica, and 15-30 mass% of the carbon black with respect to 100 mass% in total of the resin component, the colloidal silica, and the carbon black, and the total film thickness of the first layer and the second layer is 0.4-0.8 µm.

Description

水系樹脂塗装金属板Water-based resin-coated metal plate
 本発明は、薄膜のクリア塗膜(第一層)を有する金属板の上に、薄膜のカーボンブラック含有層を積層した、放熱性、導電性および耐食性の全てに優れた水系樹脂塗装金属板に関するものである。 The present invention relates to a water-based resin-coated metal plate excellent in all of heat dissipation, conductivity, and corrosion resistance, in which a thin-film carbon black-containing layer is laminated on a metal plate having a thin clear coating film (first layer). Is.
 本発明の水系樹脂塗装金属板は、家庭用電化製品の筐体や内装・外装部品、金属製家具等の外板材、建築材料等に用いることができる。 The water-based resin-coated metal plate of the present invention can be used for casings and interior / exterior parts of household electric appliances, outer plate materials such as metal furniture, and building materials.
 従来から、電化製品の内装部品や外装部品には、多くの亜鉛めっき鋼板が使用されており、耐食性や耐指紋性が付与された塗膜が形成された鋼板が用いられることが多い。また、電化製品は、小型化・高性能化が進むにつれ、放熱対策にファンやヒートシンク等を設置しなければならないため、コスト高となっている。そこで、ファンやヒートシンクを省略してコストダウンすることのできる放熱性を付与した鋼板が開発されてきている(特許文献1、特許文献2等)。 Conventionally, many galvanized steel sheets have been used for interior parts and exterior parts of electrical appliances, and steel sheets on which a coating film with corrosion resistance and fingerprint resistance is formed are often used. In addition, as electric appliances are miniaturized and improved in performance, it is necessary to install a fan, a heat sink, or the like as a heat dissipation measure, which increases the cost. In view of this, steel plates having heat dissipation properties that can reduce costs by omitting fans and heat sinks have been developed (Patent Document 1, Patent Document 2, etc.).
 鋼板の放熱性を高めるためには、カーボンブラック等の放射率の高い物質を添加した皮膜を、厚膜で鋼板上に形成することが有効である。しかし、皮膜を厚くすると、スポット溶接性や電磁波シールド性を確保するのに必要な導電性が低下し、電化製品用の鋼板に求められる導電性のレベルには到達できなくなり、Ni等の添加が必須となってコストが高くなってしまう。 In order to improve the heat dissipation of the steel sheet, it is effective to form a thick film on the steel sheet to which a material having a high emissivity such as carbon black is added. However, when the film is thickened, the conductivity required to ensure spot weldability and electromagnetic wave shielding properties is reduced, and the level of conductivity required for steel sheets for electrical appliances cannot be reached. It becomes indispensable and the cost becomes high.
 一方、導電性の確保のために皮膜を薄くすると共に、放熱性確保のためにカーボンブラック量を多くすると、耐食性が大きく低下してしまうことがあった。  On the other hand, when the film is thinned to ensure conductivity and the amount of carbon black is increased to ensure heat dissipation, the corrosion resistance may be greatly reduced. *
 結局、安価であり、放熱性、導電性、耐食性の全てを満足する鋼板の開発は、困難であった。 After all, it was difficult to develop a steel sheet that is inexpensive and satisfies all of heat dissipation, conductivity, and corrosion resistance.
 本発明は、上記の現状を踏まえ、安価であり、放熱性、導電性、耐食性の全てを満足する樹脂塗装金属板の提供を課題として掲げた。 In light of the above-described present situation, the present invention has been aimed at providing a resin-coated metal plate that is inexpensive and satisfies all of heat dissipation, conductivity, and corrosion resistance.
特開2004-74145号公報JP 2004-74145 A 特開2014-111322号公報JP 2014-111322 A
 本発明の一局面は、金属板の少なくとも片面に、水系樹脂およびコロイダルシリカを含む第一層を有し、この第一層の上に、水系樹脂およびカーボンブラックを含む第二層を有する水系樹脂塗装金属板であって、上記第一層は、膜厚が0.1~0.4μmであり、樹脂成分とコロイダルシリカとの合計100質量%中、樹脂成分が70~95質量%、コロイダルシリカが5~30質量%であり、上記第二層は、膜厚が0.3~0.7μmであり、コロイダルシリカを含んでいてもよく、樹脂成分、コロイダルシリカおよびカーボンブラックの合計100質量%中、樹脂成分が50~85質量%、コロイダルシリカが0~20質量%、カーボンブラックが15~30質量%であり、上記第一層と第二層との合計膜厚が0.4~0.8μmであることを特徴とする水系樹脂塗装金属板である。 One aspect of the present invention is an aqueous resin having a first layer containing an aqueous resin and colloidal silica on at least one surface of a metal plate, and an aqueous resin and a second layer containing carbon black on the first layer. A coated metal plate, wherein the first layer has a film thickness of 0.1 to 0.4 μm, and the resin component is 70 to 95% by mass in a total of 100% by mass of the resin component and colloidal silica. The second layer has a film thickness of 0.3 to 0.7 μm and may contain colloidal silica. The total amount of the resin component, colloidal silica and carbon black is 100% by mass. Among them, the resin component is 50 to 85% by mass, the colloidal silica is 0 to 20% by mass, the carbon black is 15 to 30% by mass, and the total film thickness of the first layer and the second layer is 0.4 to 0. .8 μm An aqueous resin coated metal plate, wherein the door.
 本発明者等は、樹脂塗装金属板において、導電性の確保のために皮膜を薄くすると共に、放熱性確保のためにカーボンブラック量を多くすると、耐食性が大きく低下してしまう原因について検討した。その結果、耐食性の低下は、カーボンブラックの添加による皮膜の劣化が主原因ではなく、カーボンブラックが導電性を有しているため腐食サイトとなるためであることを突き止めた。そして、金属板とカーボンブラック含有皮膜との間に、カーボンブラックを含まない極薄の皮膜(第一層)を設けることで、耐食性を大幅に改善することに成功し、本発明を完成させた。本発明により、導電性が発現する薄さのカーボンブラック含有皮膜(第二層)を有しつつ、耐食性や放熱性にも優れた、安価な樹脂塗装金属板を提供できるようになった。 The inventors of the present invention have studied the cause of the corrosion resistance of resin-coated metal plates that are greatly reduced when the film is thinned to ensure conductivity and the amount of carbon black is increased to ensure heat dissipation. As a result, it was found that the deterioration of the corrosion resistance was not caused mainly by the deterioration of the film due to the addition of carbon black, but because it was a corrosion site because carbon black had conductivity. And, by providing an extremely thin film (first layer) that does not contain carbon black between the metal plate and the carbon black-containing film, the corrosion resistance was successfully improved, and the present invention was completed. . According to the present invention, it is possible to provide an inexpensive resin-coated metal plate that has a thin carbon black-containing film (second layer) that exhibits electrical conductivity and that is excellent in corrosion resistance and heat dissipation.
 本発明の水系樹脂塗装金属板は、金属板の少なくとも片面に、水系樹脂およびコロイダルシリカを含む第一層を有し、この第一層の上に、水系樹脂およびカーボンブラックを含む第二層を有する水系樹脂塗装金属板であって、上記第一層は、膜厚が0.1~0.4μmであり、樹脂成分とコロイダルシリカとの合計100質量%中、樹脂成分が70~95質量%、コロイダルシリカが5~30質量%であり、上記第二層は、膜厚が0.3~0.7μmであり、コロイダルシリカを含んでいてもよく、樹脂成分、コロイダルシリカおよびカーボンブラックの合計100質量%中、樹脂成分が50~85質量%、コロイダルシリカが0~20質量%、カーボンブラックが15~30質量%であり、上記第一層と第二層との合計膜厚が0.4~0.8μmであることを特徴とする。 The aqueous resin-coated metal plate of the present invention has a first layer containing an aqueous resin and colloidal silica on at least one surface of the metal plate, and a second layer containing an aqueous resin and carbon black is formed on the first layer. A water-based resin-coated metal plate having a film thickness of 0.1 to 0.4 μm, and the resin component is 70 to 95% by mass in a total of 100% by mass of the resin component and colloidal silica. The colloidal silica is 5 to 30% by mass, and the second layer has a film thickness of 0.3 to 0.7 μm and may contain colloidal silica. The total of the resin component, colloidal silica and carbon black In 100% by mass, the resin component is 50 to 85% by mass, colloidal silica is 0 to 20% by mass, carbon black is 15 to 30% by mass, and the total film thickness of the first layer and the second layer is 0.00. 4-0. It is 8 μm.
 上記構成により、安価であり、放熱性、導電性、耐食性の全てを満足する水系樹脂塗装金属板を提供することができた。 With the above configuration, it was possible to provide a water-based resin-coated metal plate that is inexpensive and satisfies all of heat dissipation, conductivity, and corrosion resistance.
 [金属板]
 本実施形態で用いられる金属板としては特に限定されず、例えば冷延鋼板、熱延鋼板、電気亜鉛めっき鋼板(EG)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、5%Al-Znめっき鋼板、55%Al-Znめっき鋼板、アルミニウム板(Al)等の各種めっき鋼板、ステンレス鋼板等の鋼板類や、公知の金属板等を全て適用することができる。
[Metal plate]
It does not specifically limit as a metal plate used by this embodiment, For example, a cold-rolled steel plate, a hot-rolled steel plate, an electrogalvanized steel plate (EG), a hot-dip galvanized steel plate (GI), an alloyed hot-dip galvanized steel plate (GA), 5% Al—Zn plated steel sheets, 55% Al—Zn plated steel sheets, various plated steel sheets such as aluminum plates (Al), steel sheets such as stainless steel sheets, known metal plates, and the like can all be applied.
 上記金属板は、耐食性向上、塗膜の密着性向上等を目的として、クロメート処理やリン酸塩処理等の表面処理が施されていてもよいが、一方、環境汚染等を考慮して、ノンクロメート処理した金属板を使用してもよく、いずれの態様も本発明の範囲内に包含される。 The metal plate may be subjected to surface treatment such as chromate treatment or phosphate treatment for the purpose of improving the corrosion resistance, improving the adhesion of the coating film, etc. A chromated metal plate may be used, and any embodiment is included within the scope of the present invention.
 [第一層]
 第一層は、水系樹脂とコロイダルシリカが必須的に含まれる。水系樹脂としては、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂が好ましく、中でもポリオレフィン系樹脂が好ましい。本実施形態で水系樹脂というのは、水分散体となっている樹脂、あるいは水溶性樹脂のことを指す。
[First layer]
The first layer essentially contains an aqueous resin and colloidal silica. As the water-based resin, polyolefin-based resins, polyurethane-based resins, and polyester-based resins are preferable, and among them, polyolefin-based resins are preferable. In the present embodiment, the aqueous resin refers to a resin that is an aqueous dispersion or a water-soluble resin.
 ポリオレフィン系樹脂としては、エチレン-不飽和カルボン酸共重合体が好ましい。エチレン-不飽和カルボン酸共重合体としては、特開2005-246953号公報や特開2006-43913号公報に記載のものを用いることができる。 As the polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer is preferable. As the ethylene-unsaturated carboxylic acid copolymer, those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
 不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸等が挙げられ、これらのうちの1種以上と、エチレンとを、公知の高温高圧重合法等で重合することにより、共重合体を得ることができる。 Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like. A copolymer can be obtained by polymerization using a legal method or the like.
 エチレンに対する不飽和カルボン酸の共重合比率は、モノマー全量を100質量%とした時に、不飽和カルボン酸が10~40質量%であることが好ましい。不飽和カルボン酸が10質量%よりも少ないと、イオンクラスターによる分子間会合の起点となるカルボキシル基が少ないため、皮膜強度効果が発揮されず、エマルジョン組成物の乳化安定性に劣るため好ましくない。より好ましい不飽和カルボン酸の下限は15質量%である。一方、不飽和カルボン酸が40質量%を超えると、第一層の耐食性や耐水性が劣ることがある。より好ましい上限は25質量%である。 The copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10 to 40% by mass of unsaturated carboxylic acid when the total amount of monomers is 100% by mass. If the unsaturated carboxylic acid content is less than 10% by mass, the carboxyl group that is the starting point of intermolecular association by ion clusters is small, so that the film strength effect is not exhibited and the emulsion composition is inferior in emulsion stability. A more preferable lower limit of the unsaturated carboxylic acid is 15% by mass. On the other hand, when unsaturated carboxylic acid exceeds 40 mass%, the corrosion resistance and water resistance of a 1st layer may be inferior. A more preferred upper limit is 25% by mass.
 上記エチレン-不飽和カルボン酸共重合体はカルボキシル基を有しているので、有機塩基や金属イオンで中和することにより、エマルション化(水分散体化)が可能となる。本実施形態では、有機塩基として、第1級、第2級、第3級アミン(好ましくはトリエチルアミン)を挙げることができる。沸点の低いアミン(好ましくは大気圧下での沸点が100℃以下のアミン;例えばトリエチルアミン)は、皮膜の耐食性をあまり低下させない。また、1価の金属イオンもアミン類に併せて用いることが好ましい。アミン類は、エチレン不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.2~0.8モル(20~80モル%)とすることが好ましい。1価の金属イオンの量は、水蒸気透過度に影響を及ぼすことがわかり、1価の金属化合物の使用量が多くなれば樹脂と水との親和性が増して、水蒸気透過度が大きくなるので、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.02~0.2モル(2~20モル%)とすることが好ましい。また、過剰なアルカリ分は耐食性劣化の原因となるため、アミン類と金属イオンの合計使用量は、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し、0.3~1.0モルの範囲とするとよい。なお、1価の金属イオンを付与するための金属化合物は、NaOH、KOH、LiOH等が好ましく、NaOHが最も性能が良く好ましい。 Since the ethylene-unsaturated carboxylic acid copolymer has a carboxyl group, it can be emulsified (aqueous dispersion) by neutralization with an organic base or metal ion. In the present embodiment, examples of the organic base include primary, secondary, and tertiary amines (preferably triethylamine). An amine having a low boiling point (preferably an amine having a boiling point of 100 ° C. or lower under atmospheric pressure; for example, triethylamine) does not significantly reduce the corrosion resistance of the film. Monovalent metal ions are also preferably used in combination with amines. The amine is preferably used in an amount of 0.2 to 0.8 mol (20 to 80 mol%) with respect to 1 mol of the carboxyl group in the ethylene unsaturated carboxylic acid copolymer. It can be seen that the amount of monovalent metal ions affects the water vapor permeability, and if the amount of monovalent metal compound used increases, the affinity between the resin and water increases, and the water vapor permeability increases. The amount is preferably 0.02 to 0.2 mol (2 to 20 mol%) based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. In addition, since excessive alkali content causes deterioration of corrosion resistance, the total amount of amines and metal ions used is 0.3 to 1 per mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. It is good to set it as the range of 0 mol. The metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
 乳化(エマルション化)に際しては、トール油脂肪酸などの界面活性剤機能を持つ化合物を適量、添加してもよい。上記のエチレン-不飽和カルボン酸共重合体は、必要により後述のカルボン酸重合体存在下で、高温(150℃程度)、高圧(5気圧程度)の反応が可能な容器内で、高速攪拌を1~6時間行えば、エマルション化する。また、親水性有機溶媒、例えば、炭素数1~5程度の低級アルコールなどを一部水に加えても構わない。 In emulsification (emulsification), an appropriate amount of a compound having a surfactant function such as tall oil fatty acid may be added. The above-mentioned ethylene-unsaturated carboxylic acid copolymer can be stirred at high speed in a container capable of high temperature (about 150 ° C.) and high pressure (about 5 atm) in the presence of the carboxylic acid polymer described below, if necessary. Emulsify after 1-6 hours. Further, a hydrophilic organic solvent such as a lower alcohol having about 1 to 5 carbon atoms may be partially added to water.
 エチレン-不飽和カルボン酸共重合体の質量平均分子量(Mw)は、ポリスチレン換算で、好ましくは1,000~10万、より好ましくは3,000~7万、さらに好ましくは5,000~3万である。このMwは、ポリスチレンを標準として用いるGPCにより測定することができる。 The mass average molecular weight (Mw) of the ethylene-unsaturated carboxylic acid copolymer is preferably 1,000 to 100,000, more preferably 3,000 to 70,000, and still more preferably 5,000 to 30,000 in terms of polystyrene. It is. This Mw can be measured by GPC using polystyrene as a standard.
 第一層には、樹脂成分としてカルボン酸重合体も用いることができる。カルボン酸重合体としては、上記エチレン-不飽和カルボン酸共重合体の合成に使用することのできるものとして例示した不飽和カルボン酸を構成単位とする重合体がいずれも使用可能である。これらの中でもアクリル酸およびマレイン酸が好ましく、マレイン酸がより好ましい。カルボン酸重合体は、不飽和カルボン酸以外の単量体に由来する構成単位を含有していても良いが、その他の単量体に由来する構成単位量は、重合体中に10質量%以下が好ましく、より好ましくは5質量%以下であり、不飽和カルボン酸のみから構成されるカルボン酸重合体がより好ましい。好ましいカルボン酸重合体として、例えばポリアクリル酸、ポリメタクリル酸、アクリル酸-マレイン酸共重合体、ポリマレイン酸等を挙げることができ、これらの中でも樹脂皮膜密着性および耐食性の観点から、ポリマレイン酸がより好ましい。ポリマレイン酸を使用することにより耐食性等が向上する正確なメカニズムは不明であるが、カルボキシル基量が多いため、樹脂皮膜と金属板との密着性が向上し、それに伴い耐食性も向上することが考えられる。但し本発明は、この推定には限定されない。本実施形態で用いるカルボン酸重合体のMwは、ポリスチレン換算で、好ましくは500~3万、より好ましくは800~1万、さらに好ましくは900~3,000、最も好ましくは1,000~2,000である。このMwは、ポリスチレンを標準として用いるGPCにより測定することができる。 In the first layer, a carboxylic acid polymer can also be used as a resin component. As the carboxylic acid polymer, any polymer having an unsaturated carboxylic acid as a constituent unit exemplified as one that can be used for the synthesis of the ethylene-unsaturated carboxylic acid copolymer can be used. Among these, acrylic acid and maleic acid are preferable, and maleic acid is more preferable. The carboxylic acid polymer may contain a constituent unit derived from a monomer other than the unsaturated carboxylic acid, but the constituent unit amount derived from the other monomer is 10% by mass or less in the polymer. More preferably, it is 5 mass% or less, and a carboxylic acid polymer composed only of an unsaturated carboxylic acid is more preferable. Preferred examples of the carboxylic acid polymer include polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer, polymaleic acid and the like. Among these, polymaleic acid is preferred from the viewpoint of resin film adhesion and corrosion resistance. More preferred. Although the exact mechanism by which the corrosion resistance is improved by using polymaleic acid is unknown, the adhesion between the resin film and the metal plate is improved due to the large amount of carboxyl groups. It is done. However, the present invention is not limited to this estimation. The Mw of the carboxylic acid polymer used in the present embodiment is preferably from 500 to 30,000, more preferably from 800 to 10,000, still more preferably from 900 to 3,000, most preferably from 1,000 to 2, in terms of polystyrene. 000. This Mw can be measured by GPC using polystyrene as a standard.
 エチレン-不飽和カルボン酸共重合体とカルボン酸重合体との含有比率は、質量比で、1,000:1~10:1、好ましくは200:1~20:1である。カルボン酸重合体の含有比率が低すぎると、オレフィン-酸共重合体とカルボン酸重合体とを組み合わせた効果が充分に発揮されず、逆にカルボン酸重合体の含有比率が過剰であると、第一層形成用塗工液中でオレフィン-酸共重合体とカルボン酸重合体とが相分離し、均一な樹脂皮膜が形成されなくなるおそれがある。 The content ratio of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is 1,000: 1 to 10: 1, preferably 200: 1 to 20: 1 in terms of mass ratio. If the content ratio of the carboxylic acid polymer is too low, the effect of combining the olefin-acid copolymer and the carboxylic acid polymer is not sufficiently exhibited. Conversely, if the content ratio of the carboxylic acid polymer is excessive, There is a possibility that the olefin-acid copolymer and the carboxylic acid polymer may be phase-separated in the first layer-forming coating solution, and a uniform resin film may not be formed.
 [コロイダルシリカ]
 コロイダルシリカを第一層に存在させると、腐食環境下において皮膜欠陥部で溶解・溶出し、pHの緩衝作用や不動態皮膜形成作用によって金属板の溶解/溶出を抑制するため、耐食性が向上する。ただし、コロイダルシリカの表面積(粒子径)によって、皮膜中への分散状態が変化し、皮膜の硬さや脆さ等の機械的物性に大きな影響を及ぼす。緻密な皮膜を形成させ、皮膜の強靱さを向上させるには、粒子径の小さいコロイダルシリカを、皮膜中に均一に分散させることが望ましく、この点で、コロイダルシリカは、平均粒子径で4~20nmであることが好ましい。20nmより大きくなると、分散性が低下する傾向にある。このため、緻密な皮膜ができず、皮膜の強靱さが不足したり、耐食性向上効果が低下するおそれがある。一方、4nm未満では、第一層形成用塗工液の保存安定性が悪化して、ゲル化するおそれがある。コロイダルシリカの平均粒子径は、4~6nmがより好ましい。シリカの平均粒子径は、平均粒子径が1~10nm程度の場合にはシアーズ法により、10~100nm程度の場合にはBET法により、測定することができる。
[Colloidal silica]
When colloidal silica is present in the first layer, it dissolves and dissolves at the film defects in a corrosive environment, and suppresses dissolution / elution of the metal plate by pH buffering and passive film formation, thus improving corrosion resistance. . However, the state of dispersion in the film changes depending on the surface area (particle diameter) of the colloidal silica, which greatly affects mechanical properties such as hardness and brittleness of the film. In order to form a dense film and improve the toughness of the film, it is desirable to uniformly disperse colloidal silica having a small particle diameter in the film. In this respect, colloidal silica has an average particle diameter of 4 to It is preferably 20 nm. When it exceeds 20 nm, the dispersibility tends to decrease. For this reason, there is a possibility that a dense film cannot be formed, and the toughness of the film is insufficient, or the corrosion resistance improving effect is lowered. On the other hand, if the thickness is less than 4 nm, the storage stability of the first layer-forming coating solution may be deteriorated and gelation may occur. The average particle size of colloidal silica is more preferably 4 to 6 nm. The average particle diameter of silica can be measured by the Sears method when the average particle diameter is about 1 to 10 nm and by the BET method when it is about 10 to 100 nm.
 コロイダルシリカは市販されており、例えば、平均粒子径4~6nmのものであれば、日産化学工業社製の「スノーテックス(登録商標)XS」を、平均粒子径10~20nmであれば、同じく日産化学工業社製の「スノーテックス(登録商標)40」、「スノーテックス(登録商標)N」、「スノーテックス(登録商標)SS」、「スノーテックス(登録商標)O」等や、ADEKA社製の「アデライト(登録商標)AT-30」、「アデライト(登録商標)AT-30A」等を使用することができる。第一層形成用塗工液は水系なので、コロイダルシリカを良好に分散させるために、塗工液のpHに合わせて、コロイダルシリカの種類を選択することが好ましい。 Colloidal silica is commercially available. For example, if it has an average particle size of 4 to 6 nm, “Snowtex (registered trademark) XS” manufactured by Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) 40", "Snowtex (registered trademark) N", "Snowtex (registered trademark) SS", "Snowtex (registered trademark) O" manufactured by Nissan Chemical Industries, Ltd., and ADEKA “Adelite (registered trademark) AT-30”, “Adelite (registered trademark) AT-30A”, and the like manufactured by the same company can be used. Since the first layer forming coating solution is aqueous, it is preferable to select the type of colloidal silica according to the pH of the coating solution in order to disperse the colloidal silica well.
 第一層中の樹脂成分(エチレン-不飽和カルボン酸共重合体とカルボン酸重合体)とコロイダルシリカは、樹脂成分とコロイダルシリカの合計を100質量%としたときに、樹脂成分が70~95質量%、コロイダルシリカが5~30質量%である。この範囲を外れると、耐食性が不足することがある。 The resin component (ethylene-unsaturated carboxylic acid copolymer and carboxylic acid polymer) and colloidal silica in the first layer have a resin component of 70 to 95 when the total of the resin component and colloidal silica is 100% by mass. % By mass and 5-30% by mass of colloidal silica. Outside this range, corrosion resistance may be insufficient.
 [シランカップリング剤]
 第一層形成用塗工液には、シランカップリング剤を含めてもよい。シランカップリング剤を用いると、金属と第一層との密着性が向上し、それに伴い耐食性も向上する。また、樹脂成分とコロイダルシリカとの結合力を向上させる効果があり、皮膜の強靱さが向上する。中でも、グリシドキシ系のシランカップリング剤が反応性が高く、耐食性向上効果が大きい。グリシジル基含有シランカップリング剤としては、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
[Silane coupling agent]
The first layer forming coating solution may contain a silane coupling agent. When a silane coupling agent is used, the adhesion between the metal and the first layer is improved, and the corrosion resistance is also improved accordingly. Moreover, there exists an effect which improves the bond strength of a resin component and colloidal silica, and the toughness of a film | membrane improves. Among them, the glycidoxy-based silane coupling agent has high reactivity and has a large effect of improving corrosion resistance. Glycidyl group-containing silane coupling agents include γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxymethyldimethoxysilane, β- (3,4-epoxycyclohexyl) Examples include ethyltrimethoxysilane.
 第一層形成用塗工液中のシランカップリング剤量は、樹脂成分とコロイダルシリカとの合計100質量部に対して、0.1~10質量部が好ましい。0.1質量部より少ないと、金属板と樹脂皮膜との密着性や、樹脂成分とコロイダルシリカとの結合力が不足して、皮膜の強靱さや耐食性が不充分となるおそれがある。ただし、10質量部を超えても、金属板と樹脂皮膜との密着性向上効果が飽和する上に、樹脂中の官能基が減少するため塗装性が低下するおそれがある。また、シランカップリング剤同士が加水分解縮合反応を起こして、塗工液の安定性が低下し、ゲル化やコロイダルシリカの沈殿を引き起こすおそれがある。より好ましいシランカップリング剤量は3~9質量部であり、さらに好ましくは5~7質量部である。 The amount of the silane coupling agent in the first layer forming coating liquid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the resin component and colloidal silica. When the amount is less than 0.1 parts by mass, the adhesion between the metal plate and the resin film and the bonding force between the resin component and colloidal silica are insufficient, and the toughness and corrosion resistance of the film may be insufficient. However, even if it exceeds 10 parts by mass, the effect of improving the adhesion between the metal plate and the resin film is saturated, and the coatability may be reduced because the functional groups in the resin are reduced. Moreover, silane coupling agents cause a hydrolysis condensation reaction, the stability of the coating liquid is lowered, and there is a possibility of causing gelation and precipitation of colloidal silica. The amount of the silane coupling agent is more preferably 3 to 9 parts by mass, and further preferably 5 to 7 parts by mass.
 [カルボジイミド基含有化合物]
 本実施形態の第一層形成用塗工液は、さらにカルボジイミド基含有化合物を含んでいても良い。カルボジイミド基は、エチレン-不飽和カルボン酸共重合体およびカルボン酸重合体中のカルボキシル基と反応する。よってカルボジイミド基含有化合物を使用することにより、第一層中のカルボキシル基量を減少させて、耐水性を向上させることができる。本実施形態において、1種または2種以上のカルボジイミド基含有化合物を使用できる。
[Carbodiimide group-containing compound]
The first layer forming coating solution of the present embodiment may further contain a carbodiimide group-containing compound. The carbodiimide group reacts with the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer. Therefore, by using a carbodiimide group-containing compound, the amount of carboxyl groups in the first layer can be reduced and water resistance can be improved. In the present embodiment, one or more carbodiimide group-containing compounds can be used.
 第一層形成用塗工液は水系であるので、水性のカルボジイミド基含有化合物が好ましい。また1分子中に複数のカルボジイミド基を含有する化合物が好ましい。1分子中に複数のカルボジイミド基を有すると、樹脂成分中のカルボキシル基との架橋反応により、耐食性等をさらに向上させることができる。 Since the first layer forming coating solution is aqueous, an aqueous carbodiimide group-containing compound is preferable. A compound containing a plurality of carbodiimide groups in one molecule is preferable. When a plurality of carbodiimide groups are contained in one molecule, corrosion resistance and the like can be further improved by a crosslinking reaction with a carboxyl group in the resin component.
 市販されているポリカルボジイミド化合物として、例えばN,N-ジシクロへキシルカルボジイミド、N,N-ジイソプロピルカルボジイミド等や、日清紡社製のポリカルボジイミド(1分子中に複数のカルボジイミド基を有する重合体)である「カルボライト(登録商標)」シリーズを挙げることができる。「カルボライト(登録商標)」のグレードとしては、水溶性の「SV-02」、「V-02」、「V-02-L2」、「V-04」やエマルジョンタイプの「E-01」、「E-02」等が好適である。 Examples of commercially available polycarbodiimide compounds are N, N-dicyclohexylcarbodiimide, N, N-diisopropylcarbodiimide and the like, and polycarbodiimides (polymers having a plurality of carbodiimide groups in one molecule) manufactured by Nisshinbo. Mention may be made of the “Carbolite®” series. “Carbolite (registered trademark)” grades include water-soluble “SV-02”, “V-02”, “V-02-L2”, “V-04” and emulsion type “E-01”. , “E-02” and the like are preferable.
 カルボジイミド基含有化合物量は、樹脂成分中のカルボキシル基の量に応じて設定する。例えば、樹脂成分の合計を100質量部とした場合、前記100質量部に対し、カルボジイミド基含有化合物量は、好ましくは0.3質量部以上、より好ましくは0.5質量部以上、さらに好ましくは8質量部以上である。一方、カルボジイミド基含有化合物量が過剰になると、エチレン-不飽和カルボン酸共重合体とカルボン酸重合体の組合せの効果が低下する。また水系の第一層形成用塗工液中で水性カルボジイミド基含有化合物を過剰に使用すると、耐水性および耐食性に悪影響を及ぼし得る。このような観点から、カルボジイミド基含有化合物量は、前記100質量部に対し、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは16質量部以下である。 The amount of the carbodiimide group-containing compound is set according to the amount of carboxyl groups in the resin component. For example, when the total of the resin components is 100 parts by mass, the amount of the carbodiimide group-containing compound is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, further preferably 100 parts by mass. It is 8 parts by mass or more. On the other hand, when the amount of the carbodiimide group-containing compound is excessive, the effect of the combination of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is lowered. Moreover, when an aqueous carbodiimide group-containing compound is excessively used in the aqueous first layer forming coating solution, it may adversely affect water resistance and corrosion resistance. From such a viewpoint, the amount of the carbodiimide group-containing compound is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 16 parts by mass or less with respect to 100 parts by mass.
 第一層形成用塗工液は、固形分を15~25質量%程度とすることが好ましい。第一層の膜厚は、0.1~0.4μmが好ましく、さらに好ましくは0.2~0.3μmである。0.1μmよりも薄いと耐食性が不足する。また、0.4μmを超えて厚くしても耐食性改良効果が飽和する。第一層形成用塗工液には、本発明の効果を阻害しない範囲で、ワックス、架橋剤、希釈剤、皮張り防止剤、界面活性剤、乳化剤、分散剤、レベリング剤、消泡剤、浸透剤、造膜助剤、染料、顔料、増粘剤、潤滑剤等を含有させることもできる。 The first layer forming coating solution preferably has a solid content of about 15 to 25% by mass. The thickness of the first layer is preferably 0.1 to 0.4 μm, more preferably 0.2 to 0.3 μm. If it is thinner than 0.1 μm, the corrosion resistance is insufficient. Further, even if the thickness exceeds 0.4 μm, the corrosion resistance improving effect is saturated. In the first layer forming coating solution, a wax, a crosslinking agent, a diluent, an anti-skinning agent, a surfactant, an emulsifier, a dispersant, a leveling agent, an antifoaming agent, as long as the effect of the present invention is not impaired Penetration agents, film-forming aids, dyes, pigments, thickeners, lubricants, and the like can also be included.
 [第二層]
 第二層には樹脂成分およびカーボンブラックが含まれる。このうちカーボンブラックは、放熱性発現のために添加されている。カーボンブラックとしては特に限定されないが、例えば、御国色素社製のSAブラックDY-6等を使用することが推奨される。カーボンブラックは、第二層を構成する樹脂成分およびカーボンブラック(後述するなコロイダルシリカを含む場合はここにコロイダルシリカも含む)を100質量%とした場合、15~30質量%とすることが好ましく、より好ましくは20~30質量%で、さらに好ましくは25~30質量%である。カーボンブラック量が少ないと、充分な放熱性を発揮することができない。30質量%を超えてカーボンブラックを配合すると、耐食性が低下する傾向にあるため、好ましくない。なお、本実施形態における放熱性とは、フーリエ変換赤外分光光度計(日本電子社製、JIR-5500)を用いて、樹脂塗装金属板を100℃に加熱したときの波長4.5~15.4μmの試料および黒体の分光放射強度を測定し、試料の分光放射強度を黒体の分光放射強度で除した値を指標とした。放射率は0.3以上が好ましい。放射率のより詳細な測定方法は後述する。
[Second layer]
The second layer includes a resin component and carbon black. Among these, carbon black is added for heat dissipation. The carbon black is not particularly limited. For example, it is recommended to use SA black DY-6 manufactured by Mikuni Dye Co., Ltd. The carbon black is preferably 15 to 30% by mass when the resin component constituting the second layer and the carbon black (including colloidal silica described later also includes colloidal silica) are 100% by mass. More preferably, it is 20 to 30% by mass, and further preferably 25 to 30% by mass. If the amount of carbon black is small, sufficient heat dissipation cannot be exhibited. If carbon black is added in an amount exceeding 30% by mass, the corrosion resistance tends to decrease, which is not preferable. The heat dissipation in this embodiment is a wavelength of 4.5 to 15 when a resin-coated metal plate is heated to 100 ° C. using a Fourier transform infrared spectrophotometer (manufactured by JEOL Ltd., JIR-5500). The spectral radiant intensity of a 4 μm sample and a black body was measured, and the value obtained by dividing the spectral radiant intensity of the sample by the spectral radiant intensity of the black body was used as an index. The emissivity is preferably 0.3 or more. A more detailed method for measuring the emissivity will be described later.
 第二層を形成する樹脂としては、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂のいずれか一つ以上が好ましい。ポリオレフィン系樹脂としては、第一層で好適なものとして例示したポリオレフィン系樹脂が使用できる。ポリウレタン系樹脂としては、例えば、ADEKA社製のアデカボンタイター(登録商標;水系ポリウレタン)シリーズが用いられる。また、ポリエステル系樹脂としては、また、例えば、東洋紡社製のバイロナール(登録商標;水分散型ポリエステル)シリーズを用いることができる。 As the resin forming the second layer, any one or more of polyolefin resin, polyurethane resin, and polyester resin is preferable. As the polyolefin resin, polyolefin resins exemplified as suitable for the first layer can be used. As the polyurethane resin, for example, Adekabon titer (registered trademark; water-based polyurethane) series manufactured by ADEKA is used. Moreover, as a polyester-type resin, the Toyobo Co., Ltd. baironal (trademark; water-dispersed polyester) series can be used, for example.
 第二層には、コロイダルシリカを配合しなくてもよいが、皮膜の硬さを向上させて耐食性を高めるには、コロイダルシリカを20質量%以下の範囲で第二層に含有させることが好ましい。20質量%を超えてシリカを用いると、耐食性が低下するおそれがある。よって、樹脂成分と、コロイダルシリカと、カーボンブラックの合計量を100質量%としたとき、樹脂成分は50~85質量%、コロイダルシリカ0~20質量%、カーボンブラックは15~30質量%とすることが好ましい。 Colloidal silica may not be added to the second layer. However, in order to improve the hardness of the film and improve the corrosion resistance, it is preferable to contain colloidal silica in the range of 20% by mass or less. . When silica is used in excess of 20% by mass, the corrosion resistance may be reduced. Therefore, when the total amount of the resin component, colloidal silica, and carbon black is 100% by mass, the resin component is 50 to 85% by mass, the colloidal silica is 0 to 20% by mass, and the carbon black is 15 to 30% by mass. It is preferable.
 第二層形成用塗工液は、固形分を15~25質量%程度とすることが好ましい。第一層形成用塗工液に配合した各種成分を、第二層形成用塗工液に配合しても構わない。第二層の膜厚は0.3~0.7μmとすることが好ましく、より好ましくは0.4~0.7μmである。0.3μmより薄いと放熱性が不足するが、0.7μmを超えても、放熱効果が飽和する。また、第一層と第二層の合計膜厚は、0.4~0.8μmとする。0.8μmを超えると導電性不足となる。 The second layer forming coating solution preferably has a solid content of about 15 to 25% by mass. You may mix | blend the various components mix | blended with the coating liquid for 1st layer formation in the coating liquid for 2nd layer formation. The thickness of the second layer is preferably 0.3 to 0.7 μm, more preferably 0.4 to 0.7 μm. If it is thinner than 0.3 μm, the heat dissipation is insufficient, but if it exceeds 0.7 μm, the heat dissipation effect is saturated. The total film thickness of the first layer and the second layer is 0.4 to 0.8 μm. If it exceeds 0.8 μm, the conductivity is insufficient.
 次に、赤外線積分放射率について説明する。 Next, the infrared integrated emissivity will be described.
 赤外線積分放射率とは、換言すれば、赤外線(熱エネルギー)の放出し易さ(吸収し易さ)を意味する。従って、赤外線積分放射率が高い程、放出(吸収)される熱エネルギー量は大きくなることを示す。例えば物体(本実施形態では樹脂塗装金属板)に与えられた熱エネルギーを100%放射する場合には、赤外線積分放射率は1となる。 In other words, infrared integrated emissivity means the ease of releasing (easy absorption) of infrared (thermal energy). Therefore, the higher the infrared integrated emissivity, the greater the amount of heat energy released (absorbed). For example, when 100% of the thermal energy given to an object (in this embodiment, a resin-coated metal plate) is emitted, the infrared integrated emissivity is 1.
 なお、本実施形態では、100℃に加熱したときの赤外線積分放射率を定めている。これは、本実施形態における塗膜積層体金属板が電気機器用途(部材等によっても相違するが、通常の雰囲気温度は概ね50~70℃で、最高で約100℃)に適用されることを考慮し、当該実用レベルの温度と一致させるべく、加熱温度を100℃に定めたものである。 In this embodiment, the infrared integrated emissivity when heated to 100 ° C. is determined. This is because the coated laminate metal plate in the present embodiment is applied to electrical equipment applications (although it differs depending on the members, etc., the normal atmospheric temperature is approximately 50 to 70 ° C., and maximum is about 100 ° C.). In consideration of this, the heating temperature is set to 100 ° C. in order to match the temperature of the practical level.
 本実施形態における赤外線積分放射率の測定方法は以下の通りである。
装置:日本電子社製「JIR-5500型フーリエ変換赤外分光光度計」及び放射測定ユニット「IRR-200」
測定波長範囲:4.5~15.4μm
測定温度:試料の加熱温度を100℃に設定する
積算回数:200回
分解能:16cm-1
The measuring method of the infrared integrated emissivity in this embodiment is as follows.
Equipment: “JIR-5500 type Fourier transform infrared spectrophotometer” manufactured by JEOL Ltd. and radiation measurement unit “IRR-200”
Measurement wavelength range: 4.5 to 15.4 μm
Measurement temperature: set the sample heating temperature to 100 ° C. Integration count: 200 times Resolution: 16 cm −1
 上記装置を用い、赤外線波長域(波長:4.5~15.4μm)における試料の分光放射強度(実測値)を各々測定した。なお、上記試料の実測値は、バックグラウンドの放射強度及び装置関数が加算/付加された数値として測定される為、これらを補正する目的で、放射率測定プログラム[日本電子社製放射率測定プログラム]を用い、積分放射率を算出した。 Using the above apparatus, the spectral radiant intensity (measured value) of the sample in the infrared wavelength region (wavelength: 4.5 to 15.4 μm) was measured. In addition, since the measured value of the above sample is measured as a numerical value obtained by adding / adding the background radiation intensity and the instrument function, an emissivity measurement program [JEOL emissivity measurement program manufactured by JEOL Ltd.] ] To calculate the integral emissivity.
 算出方法の詳細は以下の通りである。 Details of the calculation method are as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式中、
ε(λ):波長λにおける試料の分光放射率(%)
E(T):温度T(℃)における試料の積分放射率(%)
M(λ,T):波長λ、温度T(℃)における試料の分光放射強度(実測値)
A(λ):装置関数
KFB(ν):波長νにおける固定バックグラウンド(試料によって変化しないバックグラウンド)の分光放射強度
KTB(λ,TTB):波長λ、温度TTB(℃)におけるトラップ黒体の分光放射強度
KB(λ,T):波長λ、温度T(℃)における黒体の分光放射強度(ブランクの理論式からの計算値)
λ1,λ2:積分する波長の範囲
をそれぞれ意味する。
Where
ε (λ): Spectral emissivity of sample at wavelength λ (%)
E (T): integrated emissivity (%) of sample at temperature T (° C.)
M (λ, T): Spectral radiant intensity of the sample at wavelength λ and temperature T (° C.) (actual measurement value)
A (λ): Instrument function KFB (ν): Spectral radiant intensity KTB (λ, TTB) of fixed background (background that does not vary with the sample) at wavelength ν: Trap black body at wavelength λ, temperature TTB (° C.) Spectral radiant intensity KB (λ, T): Spectral radiant intensity of black body at wavelength λ and temperature T (° C) (calculated value from blank theoretical formula)
λ1, λ2: Means the range of wavelengths to be integrated.
 ここで、上記A(λ:装置関数)、及び上記KFB(ν:固定バックグラウンドの分光放射強度)は、2つの黒体炉(80℃、160℃)の分光放射強度の実測値、及び当該温度域における黒体の分光放射強度(ブランクの理論式からの計算値)に基づき、下記式によって算出したものである。 Here, A (λ: instrument function) and KFB (ν: spectral radiant intensity of fixed background) are measured values of spectral radiant intensity of two blackbody furnaces (80 ° C., 160 ° C.), and Based on the spectral radiant intensity of the black body in the temperature range (calculated value from the theoretical formula of the blank), it is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式中、
M160℃(λ,160℃):波長λにおける160℃の黒体炉の分光放射強度(実測値)
M80℃(λ,80℃):波長λにおける80℃の黒体炉の分光放射強度(実測値)
K160℃(λ,160℃):波長λにおける160℃の黒体炉の分光放射強度(ブランクの理論式からの計算値)
K80℃(λ,80℃):波長λにおける80℃の黒体炉の分光放射強度(ブランクの理論式からの計算値)
をそれぞれ意味する。
Where
M160 ° C. (λ, 160 ° C.): Spectral radiant intensity of 160 ° C. blackbody furnace at wavelength λ (actual measured value)
M80 ° C. (λ, 80 ° C.): Spectral radiation intensity of 80 ° C. blackbody furnace at wavelength λ (actual measured value)
K 160 ° C. (λ, 160 ° C.): Spectral radiant intensity of a black body furnace at a wavelength λ of 160 ° C. (calculated from the theoretical formula of the blank)
K80 ° C. (λ, 80 ° C.): Spectral radiant intensity of a black body furnace at a wavelength λ of 80 ° C. (calculated from the theoretical formula of the blank)
Means each.
 なお、積分放射率E(T=100℃)の算出に当たり、KTB(λ,TTB)を考慮しているのは、測定に当たり、試料の周囲に、水冷したトラップ黒体を配置している為である。上記トラップ黒体の設置により、変動バックグランド放射(試料によって変化するバックグラウンド放射を意味する。試料の周囲からの放射が試料表面で反射される為、試料の分光放射強度の実測値は、このバックグランド放射が加算された数値として表れる)の分光放射強度を低くコントロールすることができる。上記のトラップ黒体は、放射率0.96の疑似黒体を使用しており、前記KTB[(λ,TTB):波長λ、温度TTB(℃)におけるトラップ黒体の分光放射強度]は、以下の様にして算出する。
KTB(λ,TTB)=0.96×KB(λ,TTB)
 式中、KB(λ,TTB)は、波長λ、温度TTB(℃)における黒体の分光放射強度を意味する。
In calculating the integral emissivity E (T = 100 ° C.), KTB (λ, TTB) is taken into account because a water-cooled trap black body is arranged around the sample in measurement. is there. By installing the trap black body, variable background radiation (meaning background radiation that varies depending on the sample. Since the radiation from the periphery of the sample is reflected on the sample surface, the measured value of the spectral radiant intensity of the sample is Spectral radiation intensity (which appears as a numerical value with background radiation added) can be controlled low. The trap black body uses a pseudo black body with an emissivity of 0.96, and the KTB [(λ, TTB): spectral radiant intensity of the trap black body at a wavelength λ and a temperature TTB (° C.)] is: Calculate as follows.
KTB (λ, TTB) = 0.96 × KB (λ, TTB)
In the formula, KB (λ, TTB) means the spectral radiant intensity of a black body at a wavelength λ and a temperature TTB (° C.).
 [製造方法]
 本実施形態の水系樹脂塗装金属板は、以下の方法で製造することができる。まず、上記成分を所定の比率で混合し、攪拌器で数分攪拌することにより作製した第一層形成用塗工液を、公知の塗装方法で金属板の表面に塗布し、乾燥させる。続いて、上記成分を所定の比率で混合し、攪拌器で数分攪拌することにより第二層形成用塗工液を、公知の塗装方法で金属板の表面に塗布し、乾燥させて製造することができる。塗装方法は特に限定されないが、例えば表面を清浄化して、亜鉛めっきを施した長尺金属帯表面に、バーコーター法、ロールコーター法、スプレー法、カーテンフローコーター法等を用いて塗工液を塗工し、熱風乾燥炉を通過させて乾燥させる方法等が挙げられる。塗膜の膜厚の均一性や処理コスト、塗装効率等を総合的に勘案して実用上好ましいのは、ロールコーター法である。
[Production method]
The water-based resin-coated metal plate of this embodiment can be manufactured by the following method. First, the first layer forming coating solution prepared by mixing the above components at a predetermined ratio and stirring for several minutes with a stirrer is applied to the surface of the metal plate by a known coating method and dried. Subsequently, the above components are mixed at a predetermined ratio, and stirred for several minutes with a stirrer to apply the second layer forming coating solution to the surface of the metal plate by a known coating method, followed by drying. be able to. The coating method is not particularly limited, but for example, the coating liquid is applied to the surface of a long metal strip that has been cleaned and galvanized using the bar coater method, roll coater method, spray method, curtain flow coater method, etc. Examples of the method include coating and drying through a hot-air drying furnace. The roll coater method is preferable in practical use in consideration of film thickness uniformity, processing cost, coating efficiency, and the like.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、金属板の少なくとも片面に、水系樹脂およびコロイダルシリカを含む第一層を有し、この第一層の上に、水系樹脂およびカーボンブラックを含む第二層を有する水系樹脂塗装金属板であって、上記第一層は、膜厚が0.1~0.4μmであり、樹脂成分とコロイダルシリカとの合計100質量%中、樹脂成分が70~95質量%、コロイダルシリカが5~30質量%であり、上記第二層は、膜厚が0.3~0.7μmであり、コロイダルシリカを含んでいてもよく、樹脂成分、コロイダルシリカおよびカーボンブラックの合計100質量%中、樹脂成分が50~85質量%、コロイダルシリカが0~20質量%、カーボンブラックが15~30質量%であり、上記第一層と第二層との合計膜厚が0.4~0.8μmであることを特徴とする水系樹脂塗装金属板である。 One aspect of the present invention is an aqueous resin having a first layer containing an aqueous resin and colloidal silica on at least one surface of a metal plate, and an aqueous resin and a second layer containing carbon black on the first layer. A coated metal plate, wherein the first layer has a film thickness of 0.1 to 0.4 μm, and the resin component is 70 to 95% by mass in a total of 100% by mass of the resin component and colloidal silica. The second layer has a film thickness of 0.3 to 0.7 μm and may contain colloidal silica. The total amount of the resin component, colloidal silica and carbon black is 100% by mass. Among them, the resin component is 50 to 85% by mass, the colloidal silica is 0 to 20% by mass, the carbon black is 15 to 30% by mass, and the total film thickness of the first layer and the second layer is 0.4 to 0. .8 μm An aqueous resin coated metal plate, wherein the door.
 上記第一層は、ポリオレフィン系樹脂を含むことが好ましい。 The first layer preferably contains a polyolefin resin.
 上記第二層は、ポリオレフィン系樹脂、ポリウレタン系樹脂およびポリエステル系樹脂の少なくとも一つを含むことが好ましい。 The second layer preferably contains at least one of a polyolefin resin, a polyurethane resin, and a polyester resin.
 以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲の変更実施は本発明に含まれる。なお、特に断らない限り、部は質量部を意味する。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and modifications that do not depart from the spirit of the present invention are included in the present invention. In addition, unless otherwise indicated, a part means a mass part.
 実験例1~33
 [第一層形成用塗工液の調製]
 攪拌機、温度計、温度コントローラーを備えた乳化設備を有するオートクレイブに、エチレン-アクリル酸共重合体(ダウケミカル社製「プリマコール(登録商標)5990I」、アクリル酸由来の構成単位:20質量%、質量平均分子量(Mw):20,000、メルトインデックス:1300、酸価:150)200.0部、ポリマレイン酸水溶液(日油社製「ノンポール(登録商標)PMA-50W」、Mw:約1100(ポリスチレン換算)、50質量%品)8.0部、トリエチルアミン35.5部(エチレン-アクリル酸共重合体のカルボキシル基に対して0.63当量)、48%NaOH水溶液6.9部(エチレン-アクリル酸共重合体のカルボキシル基に対して0.15当量)、トール油脂肪酸(ハリマ化成社製「ハートールFA3」)3.5部、イオン交換水792.6部を加えて密封し、150℃および5気圧で3時間高速攪拌してから、30℃まで冷却した。
Experimental Examples 1 to 33
[Preparation of first layer forming coating solution]
To an autoclave having an emulsification facility equipped with a stirrer, a thermometer, and a temperature controller, an ethylene-acrylic acid copolymer ("Primacol (registered trademark) 5990I" manufactured by Dow Chemical Co., Ltd., a structural unit derived from acrylic acid: 20% by mass , Mass average molecular weight (Mw): 20,000, melt index: 1300, acid value: 150, 200.0 parts, polymaleic acid aqueous solution (“NOPOL (registered trademark) PMA-50W manufactured by NOF Corporation), Mw: about 1100 (Polystyrene equivalent), 50 mass% product) 8.0 parts, 35.5 parts triethylamine (0.63 equivalents relative to the carboxyl group of the ethylene-acrylic acid copolymer), 6.9 parts 48% NaOH aqueous solution (ethylene -0.15 equivalent to the carboxyl group of the acrylic acid copolymer), tall oil fatty acid ("Hartol" manufactured by Harima Kasei Co., Ltd.) A3 ") 3.5 parts, and sealed with ion exchange water 792.6 parts, after 3 hours stirred at high speed 0.99 ° C. and 5 atm, and cooled to 30 ° C..
 次いでグリシドキシ基含有シランカップリング剤(モメンティブ・パフォーマンス・マテリアルズ社製「TSL8350」、γ-グリシドキシプロピルトリメトキシシラン)10.4部、カルボジイミド基含有化合物(日清紡社製「カルボジライト(登録商標)SV-02」、ポリカルボジイミド、Mw:2,700、固形分40質量%)31.2部、イオン交換水72.8部を添加し、10分間攪拌して、エチレン-アクリル酸共重合体が乳化し、各成分と混合されたエマルションが得られた(固形分20.3質量%、JIS K6833に準じて測定;以下、ポリオレフィン樹脂水性液という。)。 Next, 10.4 parts of a glycidoxy group-containing silane coupling agent (“TSL8350” manufactured by Momentive Performance Materials, γ-glycidoxypropyltrimethoxysilane), a carbodiimide group-containing compound (“Carbodilite (registered trademark)” manufactured by Nisshinbo Co., Ltd. SV-02 ", polycarbodiimide, Mw: 2,700, solid content 40% by mass) 31.2 parts and ion-exchanged water 72.8 parts were added and stirred for 10 minutes to obtain an ethylene-acrylic acid copolymer. An emulsion emulsified and mixed with each component was obtained (solid content 20.3% by mass, measured according to JIS K6833; hereinafter referred to as aqueous polyolefin resin solution).
 上記ポリオレフィン樹脂水性液に、コロイダルシリカ(日産化学工業社製「スノーテックス(登録商標)XS」、固形分20質量%、平均粒子径(カタログ値):4~6nm)の量を表1に示したように種々変えて、イオン交換水で希釈して攪拌し、第一層形成用塗工液を得た。なお、実験例33のサンプル33は第一層にカーボンブラック(御国色素社製「SAブラックDY-6」、固形分30.5質量%)を添加した例である。 Table 1 shows the amount of colloidal silica ("Snowtex (registered trademark) XS" manufactured by Nissan Chemical Industries Ltd., solid content 20 mass%, average particle size (catalog value): 4 to 6 nm) in the aqueous polyolefin resin solution. As described above, the mixture was diluted with ion-exchanged water and stirred to obtain a coating solution for forming a first layer. Sample 33 of Experimental Example 33 is an example in which carbon black (“SA Black DY-6” manufactured by Mikuni Dye Co., Ltd., solid content: 30.5 mass%) was added to the first layer.
 [塗工]
 電気亜鉛めっき鋼板(板厚0.8mm;めっき付着量片面20g/m2ずつ)の表面に、乾燥後の膜厚が0.03~0.43μmとなるようにバーコーターにて第一層形成用塗工液を塗布し、板温90~100℃(炉温220℃×12秒)で加熱乾燥し、鋼板に第一層を形成した。
[Coating]
For forming the first layer with a bar coater on the surface of electrogalvanized steel sheet (plate thickness 0.8mm; plating coverage 20g / m2 on each side) so that the film thickness after drying is 0.03-0.43μm The coating solution was applied and dried by heating at a plate temperature of 90 to 100 ° C. (furnace temperature 220 ° C. × 12 seconds) to form a first layer on the steel plate.
 [第二層形成用塗工液と塗工]
 上記ポリオレフィン樹脂水性液に、上記コロイダルシリカと上記カーボンブラックを表1に示した量添加して、イオン交換水で希釈してよく攪拌し、第二層形成用塗工液を得た。上記第一層が形成された鋼板の第一層の上に、第二層の乾燥後の膜厚が0.28~0.9μmとなるようにバーコーターにて第二層形成用塗工液を塗布し、板温90~100℃(炉温220℃×12秒)で加熱乾燥し、鋼板上に第二層目を形成した。なお、実験例15は、第二層の樹脂としてポリエステル樹脂(東洋紡社製「バイロナール(登録商標)MD-1200」、固形分34質量%(水分散型)、Tg67℃)を用い、実験例16は、ポリウレタン樹脂(ADEKA社製「アデカボンタイター(登録商標)HUX-522」、固形分30質量%)を用いた例である。
[Second layer forming coating solution and coating]
The amount of colloidal silica and carbon black shown in Table 1 was added to the aqueous polyolefin resin solution, diluted with ion-exchanged water, and stirred well to obtain a coating solution for forming a second layer. On the first layer of the steel sheet on which the first layer has been formed, a coating solution for forming the second layer with a bar coater so that the thickness of the second layer after drying is 0.28 to 0.9 μm. Was applied and dried at a plate temperature of 90 to 100 ° C. (furnace temperature 220 ° C. × 12 seconds) to form a second layer on the steel plate. In Experimental Example 15, a polyester resin (“Vironal (registered trademark) MD-1200, manufactured by Toyobo Co., Ltd., solid content: 34 mass% (water dispersion type), Tg 67 ° C.)” was used as the second layer resin. Is an example using a polyurethane resin (“ADEKA BONTITER (registered trademark) HUX-522” manufactured by ADEKA, solid content of 30% by mass).
 実験例34
 ポリエステル樹脂(東洋紡社製「バイロナール(登録商標)MD-1200」、固形分34質量%(水分散型)、Tg67℃)80質量%(固形分)に、上記コロイダルシリカを20質量%(固形分)配合し、イオン交換水で希釈して攪拌した後、乾燥後の膜厚が0.27μmとなるようにバーコーターで鋼板に塗布し、板温90~100℃(炉温220℃×12秒)で加熱乾燥し、鋼板上に第一層を形成した。
Experimental Example 34
Polyester resin (“Vironal (registered trademark) MD-1200, manufactured by Toyobo Co., Ltd.), solid content 34% by mass (water dispersion type, Tg 67 ° C.) 80% by mass (solid content), and the colloidal silica 20% by mass (solid content) ) After mixing, diluting with ion-exchanged water and stirring, apply to the steel plate with a bar coater so that the film thickness after drying is 0.27 μm, plate temperature 90-100 ° C. (furnace temperature 220 ° C. × 12 seconds) The first layer was formed on the steel plate.
 上記で得たポリオレフィン樹脂水性液を用い、固形分換算で、ポリオレフィン樹脂70質量%、上記コロイダルシリカ5質量%、上記カーボンブラック25質量%となるように配合し、イオン交換水で希釈して攪拌し、第二層形成用塗工液を得た。上記第一層が形成された鋼板の第一層の上に、乾燥後の第二層の膜厚が0.48μmとなるように第二層形成用塗工液をバーコーターで塗布し、板温90~100℃(炉温220℃×12秒)で加熱乾燥し、鋼板上に第二層目を形成した。 Using the aqueous polyolefin resin solution obtained above, blended so as to be 70% by mass of polyolefin resin, 5% by mass of colloidal silica, and 25% by mass of carbon black in terms of solid content, and diluted with ion-exchanged water and stirred. And the coating liquid for 2nd layer formation was obtained. On the first layer of the steel sheet on which the first layer is formed, a coating solution for forming a second layer is applied with a bar coater so that the thickness of the second layer after drying is 0.48 μm. Heat drying was performed at a temperature of 90 to 100 ° C. (furnace temperature 220 ° C. × 12 seconds) to form a second layer on the steel plate.
 実験例35
 ポリウレタン樹脂(ADEKA社製「アデカボンタイター(登録商標)HUX-522」、固形分30質量%)に、上記コロイダルシリカを、固形分換算でポリウレタン樹脂80質量%。コロイダルシリカ20質量%となるように配合し、イオン交換水で希釈して攪拌し、第一層形成用塗工液を得た。乾燥後の膜厚が0.27μmとなるようにバーコーターで第一層形成用塗工液を鋼板に塗布し、板温90~100℃(炉温220℃×12秒)で加熱乾燥し、鋼板上に第一層を形成した。
Experimental Example 35
Polyurethane resin (“ADEKA BONTITER (registered trademark) HUX-522” manufactured by ADEKA Co., Ltd., solid content: 30% by mass) and the above colloidal silica in 80% by mass of polyurethane resin in terms of solid content. It mix | blended so that it might become 20 mass% of colloidal silica, diluted with ion-exchange water, and stirred, and the coating liquid for 1st layer formation was obtained. The first layer forming coating solution is applied to the steel plate with a bar coater so that the film thickness after drying is 0.27 μm, and is heated and dried at a plate temperature of 90 to 100 ° C. (furnace temperature 220 ° C. × 12 seconds). A first layer was formed on the steel plate.
 上記第一層が形成された鋼板の第一層の上に、乾燥後の第二層の膜厚が0.43μmとなるようにバーコーターで第二層形成用塗工液を塗布した以外は、実験例34と同様にして、鋼板上に第二層目を形成した。 Except for applying the second layer forming coating solution with a bar coater on the first layer of the steel sheet on which the first layer is formed so that the thickness of the second layer after drying is 0.43 μm. In the same manner as in Experimental Example 34, a second layer was formed on the steel plate.
 上記各樹脂塗装金属板(サンプル1~35)について、下記評価基準にて、耐食性、導電性、放射率を評価した。 The corrosion resistance, conductivity, and emissivity of each of the resin-coated metal plates (samples 1 to 35) were evaluated according to the following evaluation criteria.
 [耐食性]
 JIS Z2371に準じて、35℃の雰囲気下で5%の塩水噴霧試験を実施し、表面の白錆発生率で評価した。
 第一層がポリオレフィン樹脂の場合、白錆発生率が10%を超えた場合を×、10%以下の場合を○とした。
 第一層がポリエステル樹脂またはポリウレタン樹脂の場合は、白錆発生率が20%を超えた場合を×、20%以下の場合を○とした。
[Corrosion resistance]
According to JIS Z2371, a 5% salt spray test was performed in an atmosphere of 35 ° C., and the surface white rust generation rate was evaluated.
When the first layer was a polyolefin resin, the case where the white rust occurrence rate exceeded 10% was rated as x, and the case where it was 10% or less was marked as ◯.
When the first layer was a polyester resin or a polyurethane resin, the case where the white rust occurrence rate exceeded 20% was evaluated as x, and the case where it was 20% or less was evaluated as ◯.
 [放射率]
 前記したように、フーリエ変換赤外分光光度計(日本電子社製、JIR-5500)を用いて、樹脂塗装金属板を100℃に加熱したときの波長4.5~15.4μmの試料および黒体の分光放射強度を測定し、試料の分光放射強度を黒体の分光放射強度で除した値を指標とした。放射率が0.3以上を○、0.3未満を×とした。
[Emissivity]
As described above, using a Fourier transform infrared spectrophotometer (JIR-5500, manufactured by JEOL Ltd.), when the resin-coated metal plate is heated to 100 ° C., the sample having a wavelength of 4.5 to 15.4 μm and black The spectral radiant intensity of the body was measured, and the value obtained by dividing the spectral radiant intensity of the sample by the spectral radiant intensity of the black body was used as an index. An emissivity of 0.3 or more was evaluated as ◯, and an emissivity of less than 0.3 was evaluated as x.
 [導電性]
 テスターを用いて、端子を試料表面で滑らすことで電気抵抗値を測定し、1000Ω未満を○、1000Ω以上を×とした。
[Conductivity]
Using a tester, the electrical resistance value was measured by sliding the terminal on the surface of the sample.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 この出願は、2016年3月17日に出願された日本国特許出願特願2016-054212を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2016-054212 filed on Mar. 17, 2016, the contents of which are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明により、安価であり、放熱性、導電性、耐食性の全てを満足する水系樹脂塗装金属板を提供できた。本発明の水系樹脂塗装金属板は、家庭用電化製品の筐体や内装・外装部品、金属製家具等の外板材、建築材料等に用いることができる。
 

 
According to the present invention, it is possible to provide a water-based resin-coated metal plate that is inexpensive and satisfies all of heat dissipation, conductivity, and corrosion resistance. The water-based resin-coated metal plate of the present invention can be used for casings and interior / exterior parts of household electrical appliances, outer plate materials such as metal furniture, and building materials.


Claims (3)

  1.  金属板の少なくとも片面に、水系樹脂およびコロイダルシリカを含む第一層を有し、この第一層の上に、水系樹脂およびカーボンブラックを含む第二層を有する水系樹脂塗装金属板であって、
     上記第一層は、膜厚が0.1~0.4μmであり、樹脂成分とコロイダルシリカとの合計100質量%中、樹脂成分が70~95質量%、コロイダルシリカが5~30質量%であり、
     上記第二層は、膜厚が0.3~0.7μmであり、コロイダルシリカを含んでいてもよく、樹脂成分、コロイダルシリカおよびカーボンブラックの合計100質量%中、樹脂成分が50~85質量%、コロイダルシリカが0~20質量%、カーボンブラックが15~30質量%であり、
     上記第一層と第二層との合計膜厚が0.4~0.8μmであることを特徴とする水系樹脂塗装金属板。
    A water-based resin-coated metal plate having a first layer containing a water-based resin and colloidal silica on at least one surface of the metal plate, and having a second layer containing a water-based resin and carbon black on the first layer,
    The first layer has a thickness of 0.1 to 0.4 μm, and the resin component is 70 to 95% by mass and the colloidal silica is 5 to 30% by mass in a total of 100% by mass of the resin component and colloidal silica. Yes,
    The second layer has a film thickness of 0.3 to 0.7 μm and may contain colloidal silica, and the resin component is 50 to 85 mass in a total of 100 mass% of the resin component, colloidal silica and carbon black. %, Colloidal silica is 0 to 20% by mass, carbon black is 15 to 30% by mass,
    A water-based resin-coated metal sheet, wherein a total film thickness of the first layer and the second layer is 0.4 to 0.8 μm.
  2.  上記第一層がポリオレフィン系樹脂を含む、請求項1に記載の水系樹脂塗装金属板。 The water-based resin-coated metal plate according to claim 1, wherein the first layer contains a polyolefin-based resin.
  3.  上記第二層は、ポリオレフィン系樹脂、ポリウレタン系樹脂およびポリエステル系樹脂の少なくとも一つを含む、請求項1または2に記載の水系樹脂塗装金属板。

     
    The said 2nd layer is a water-system resin coating metal plate of Claim 1 or 2 containing at least one of polyolefin resin, polyurethane resin, and polyester resin.

PCT/JP2017/006159 2016-03-17 2017-02-20 Water-based-resin-coated metal plate WO2017159224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054212 2016-03-17
JP2016054212A JP2017165026A (en) 2016-03-17 2016-03-17 Aqueous resin-coated metal plate

Publications (1)

Publication Number Publication Date
WO2017159224A1 true WO2017159224A1 (en) 2017-09-21

Family

ID=59851877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006159 WO2017159224A1 (en) 2016-03-17 2017-02-20 Water-based-resin-coated metal plate

Country Status (3)

Country Link
JP (1) JP2017165026A (en)
TW (1) TW201738328A (en)
WO (1) WO2017159224A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531450A (en) * 1991-07-29 1993-02-09 Nippon Steel Corp Color coated surface-treated steel sheet
WO2011122326A1 (en) * 2010-03-31 2011-10-06 株式会社神戸製鋼所 Black metal sheet
JP2014015037A (en) * 2012-06-11 2014-01-30 Kobe Steel Ltd Metal sheet coated with black thin film
JP2014184709A (en) * 2013-02-22 2014-10-02 Kobe Steel Ltd Water-based resin coating laminated metal plate
JP2015085561A (en) * 2013-10-29 2015-05-07 株式会社神戸製鋼所 Black coated metal plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531450A (en) * 1991-07-29 1993-02-09 Nippon Steel Corp Color coated surface-treated steel sheet
WO2011122326A1 (en) * 2010-03-31 2011-10-06 株式会社神戸製鋼所 Black metal sheet
JP2014015037A (en) * 2012-06-11 2014-01-30 Kobe Steel Ltd Metal sheet coated with black thin film
JP2014184709A (en) * 2013-02-22 2014-10-02 Kobe Steel Ltd Water-based resin coating laminated metal plate
JP2015085561A (en) * 2013-10-29 2015-05-07 株式会社神戸製鋼所 Black coated metal plate

Also Published As

Publication number Publication date
TW201738328A (en) 2017-11-01
JP2017165026A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP5216868B2 (en) Steel sheet and steel sheet surface treatment composition
TWI674197B (en) Coated galvanized steel sheet
US20070166466A1 (en) Water-based heat-resistant coating composition and process for applicant thereof
TWI669415B (en) Metal surface treatment agent for galvanized steel, coating method and coated steel
TWI674191B (en) Coated galvanized steel sheet
JP6073155B2 (en) Thin black metal sheet
JP2014237880A (en) Aqueous metal surface treatment agent
JP6014005B2 (en) Black painted metal plate
JP6140586B2 (en) Water-based resin coating laminated metal sheet
KR101372747B1 (en) Resin-coated steel sheet having superior formability and resin composition used therefor
JPWO2015029828A1 (en) Electrical steel sheet with insulating coating, method for producing the same, and coating agent for forming insulating coating
WO2017159224A1 (en) Water-based-resin-coated metal plate
KR101069950B1 (en) Steel Sheet Having Superior Electro-Conductivity and Resin Composition Therefor
JP2009061608A (en) Resin-coated metallic plate having excellent roll formability
JP2017170882A (en) Resin-coated galvanized steel sheet
WO2017150067A1 (en) Surface-treated galvanized steel sheet having excellent appearance
CN110462100B (en) Coated galvanized steel sheet
WO2017163699A1 (en) Resin coated galvanized steel sheet
JP2004307755A (en) Rust prevention coating agent and laminated metal material
KR101091339B1 (en) Steel Sheet Having Superior Electro-Conductivity and Heat-Dissipating
CN103481584A (en) Thin-black-layer-coated metal sheet
WO2013083294A2 (en) Organic coated steel substrate
CN110462101B (en) Coated galvanized steel sheet
JP2020049797A (en) Coated galvanized steel plate

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766231

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766231

Country of ref document: EP

Kind code of ref document: A1