JP2009061608A - Resin-coated metallic plate having excellent roll formability - Google Patents

Resin-coated metallic plate having excellent roll formability Download PDF

Info

Publication number
JP2009061608A
JP2009061608A JP2007229395A JP2007229395A JP2009061608A JP 2009061608 A JP2009061608 A JP 2009061608A JP 2007229395 A JP2007229395 A JP 2007229395A JP 2007229395 A JP2007229395 A JP 2007229395A JP 2009061608 A JP2009061608 A JP 2009061608A
Authority
JP
Japan
Prior art keywords
parts
mass
resin
carboxylic acid
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007229395A
Other languages
Japanese (ja)
Other versions
JP4810515B2 (en
Inventor
Tadashige Nakamoto
忠繁 中元
Yoshiaki Shinohara
可亮 篠原
Tatsuhiko Iwa
辰彦 岩
Noriyuki Kikuchi
紀行 菊池
Yasunori Terunuma
泰則 照沼
Mikio Akimoto
幹夫 秋本
Takashi Muramatsu
隆司 村松
Kazuo Nobuchika
一雄 信近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007229395A priority Critical patent/JP4810515B2/en
Priority to CN2008101450113A priority patent/CN101381540B/en
Priority to TW097129413A priority patent/TWI437055B/en
Priority to KR1020080087186A priority patent/KR100985688B1/en
Publication of JP2009061608A publication Critical patent/JP2009061608A/en
Application granted granted Critical
Publication of JP4810515B2 publication Critical patent/JP4810515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin-coated metallic plate which does not cause troubles in a roll forming while having characteristics such as corrosion resistance required for the resin-coated metallic plate. <P>SOLUTION: The resin-coated metallic plate includes a resin film that is obtained from a surface treatment composition. In the resin-coated metallic plate having excellent roll formability, the surface treatment composition comprises, by pass: 60-95 parts of a non-organic component composed of lithium silicate and colloidal silica; and 5-40 parts of a resin component which contains 1-9 parts of oxazoline group containing copolymer based on total 100 parts of olefine-α,β-unsaturated carboxylic acid copolymer and α,β-unsaturated carboxylic acid polymer. In addition, the surface treatment composition further comprises: 7-35 parts of a glycidyl group containing silane coupling agent and 0.5-7 parts of methavanadate based on total 100 parts of the non-organic component and the resin component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車、家電製品、建材等に用いられる樹脂塗装金属板に関し、詳しくは、特に、耐食性とロール成形性に優れた樹脂塗装金属板に関するものである。   The present invention relates to a resin-coated metal plate used for automobiles, home appliances, building materials, and the like, and particularly relates to a resin-coated metal plate particularly excellent in corrosion resistance and roll formability.

建材等には、耐食性の観点から、電気亜鉛めっき鋼板や溶融亜鉛めっき鋼板等の亜鉛系めっき鋼板が用いられる。従来は、より一層の耐食性の向上を目的として、亜鉛系めっき鋼板上にクロメート処理を施していたが、近年の環境意識の高まりから、クロメート処理を施さない鋼板の需要が増大している。   From the viewpoint of corrosion resistance, zinc-based plated steel sheets such as electrogalvanized steel sheets and hot-dip galvanized steel sheets are used for building materials. Conventionally, chromate treatment has been applied to zinc-based plated steel sheets for the purpose of further improving corrosion resistance. However, due to the recent increase in environmental awareness, demand for steel sheets not subjected to chromate treatment is increasing.

このようなクロメート処理に代わる耐食性向上手段として、例えば特許文献1は、α,β−エチレン性不飽和カルボン酸およびオレフィンの共重合体エマルションと架橋剤とを含有する金属用表面処理剤を提案している。また特許文献2は、カルボキシル基含有樹脂と、無機シリケートとを含有する表面処理剤、およびそれから得られる表面処理鋼板を提案している。しかし最近では、クロメート処理を施さない樹脂塗装鋼板に対しても、より高度な耐食性が要求されるようになってきており、樹脂塗装金属板の分野では、耐食性を向上させる手段が絶えず求められている。   For example, Patent Document 1 proposes a metal surface treatment agent containing a copolymer emulsion of an α, β-ethylenically unsaturated carboxylic acid and an olefin and a cross-linking agent as means for improving corrosion resistance in place of such chromate treatment. ing. Patent Document 2 proposes a surface treatment agent containing a carboxyl group-containing resin and an inorganic silicate, and a surface-treated steel sheet obtained therefrom. Recently, however, even higher levels of corrosion resistance have been demanded for resin-coated steel sheets not subjected to chromate treatment. In the field of resin-coated metal sheets, means for improving corrosion resistance are constantly being sought. Yes.

ところで、樹脂塗装金属板は、用途に応じて加工して成形される。例えば、長尺断面材の製造に適しているロール成形法は、一列に並んだ複数組のロール間に連続的に金属板を通過させ、順次に成形加工を行って、平板から目的の断面形状の成形品に加工する方法である。ロール成形に際しては、潤滑性を確保すると共に加工熱を冷却するため、クーラント液が金属板表面に供給される。このクーラント液は、成形品を切断する工程の前に水切りパッドで金属板表面を拭うことで除去される(水切り工程)。   By the way, the resin-coated metal plate is processed and molded according to the application. For example, the roll forming method suitable for the production of long cross-section materials is to pass a metal plate continuously between a plurality of sets of rolls arranged in a row, and sequentially perform the forming process, from the flat plate to the desired cross-sectional shape It is a method of processing into a molded product. In roll forming, a coolant is supplied to the surface of the metal plate in order to ensure lubricity and to cool the processing heat. This coolant liquid is removed by wiping the surface of the metal plate with a draining pad before the step of cutting the molded product (draining step).

上記ロール成形(成形速度約20〜80m/分)のような面圧の高い過酷な加工を行う場合、樹脂塗装金属板の樹脂皮膜の加工性が劣っていると、樹脂皮膜が金属板表面から少しだけ剥がれてしまう(皮膜カス)ことがある。この皮膜カスは、クーラント液の受槽に導入されることとなるが、樹脂皮膜は比重が約1と軽いため、クーラント液受槽の底に沈降することなく、液中を浮遊する。クーラント液の循環使用システムには、通常フィルターが備え付けられているが、亜鉛めっきの剥離小片をキャッチすることを目的とするフィルターであるために、上記樹脂皮膜カスをキャッチできるほどフィルターの目が細かくなく、皮膜カスは繰り返し使用されるクーラント液に随伴してしまう。その結果、水切り工程で水切りパッド表面に次第に皮膜カスが堆積し、この堆積した皮膜カスと成形品表面との間に摩擦が生じて異音が発生したり、成形品が水切りパッド部分を均一な走行速度で通り抜けることができなくなって、製品の形状や寸法に狂いが生じ、歩留まりが悪くなるという問題があった。
特開2005−220237号公報 特開2000−282254号公報
When performing severe processing with high surface pressure such as the above roll forming (molding speed of about 20 to 80 m / min), if the processability of the resin film of the resin-coated metal plate is inferior, the resin film is removed from the surface of the metal plate. It may peel off slightly (film residue). Although this film residue is introduced into the coolant tank, the resin film has a specific gravity as low as about 1 and therefore floats in the liquid without sinking to the bottom of the coolant tank. The coolant circulation system is usually equipped with a filter, but the filter is designed to catch galvanized strips, so the filter is fine enough to catch the resin film residue. In other words, the film residue accompanies the coolant liquid that is repeatedly used. As a result, film residue gradually accumulates on the surface of the draining pad in the draining process, and friction is generated between the deposited film residue and the surface of the molded product, or abnormal noise is generated, or the molded product uniformly distributes the drained pad portion. There is a problem in that it is impossible to pass through at the traveling speed, the shape and dimensions of the product are distorted, and the yield is deteriorated.
JP 2005-220237 A JP 2000-282254 A

そこで本発明では、耐食性等の樹脂塗装金属板に要求される特性を備えつつ、しかも上記したようなロール成形に際してのトラブルを起こさない樹脂塗装金属板を提供することを課題として掲げた。   Therefore, the present invention has been made to provide a resin-coated metal plate that has the characteristics required for a resin-coated metal plate such as corrosion resistance, and that does not cause troubles in roll forming as described above.

上記課題を解決した本発明のロール成形性に優れた樹脂塗装金属板は、表面処理組成物から得られる樹脂皮膜を備えた樹脂塗装金属板であって、表面処理組成物が、ケイ酸リチウムおよびコロイダルシリカからなる無機成分を60〜95質量部と、オレフィン−α,β−不飽和カルボン酸共重合体およびα,β−不飽和カルボン酸重合体の合計100質量部に対し、オキサゾリン基含有共重合体を1〜9質量部含有する樹脂成分を5〜40質量部含有すると共に、無機成分と樹脂成分との合計100質量部に対し、さらに、グリシジル基含有シランカップリング剤7〜35質量部とメタバナジン酸塩0.5〜7質量部を含有することを特徴とする。   The resin-coated metal plate excellent in roll formability of the present invention that has solved the above problems is a resin-coated metal plate provided with a resin film obtained from the surface treatment composition, wherein the surface treatment composition comprises lithium silicate and 60 to 95 parts by mass of the inorganic component made of colloidal silica and 100 parts by mass of the total of the olefin-α, β-unsaturated carboxylic acid copolymer and α, β-unsaturated carboxylic acid polymer, While containing 5 to 40 parts by mass of the resin component containing 1 to 9 parts by mass of the polymer, further 7 to 35 parts by mass of the glycidyl group-containing silane coupling agent with respect to 100 parts by mass in total of the inorganic component and the resin component. And 0.5-7 parts by mass of metavanadate.

上記表面処理組成物中のケイ酸リチウムとコロイダルシリカが、質量比率で95:5〜80:20であること、コロイダルシリカの表面積平均粒子径が4〜20nmであること、表面処理組成物中のオレフィン−α,β−不飽和カルボン酸共重合体およびα,β−不飽和カルボン酸重合体の合計を100質量部とした場合、この100質量部に対し、さらに、カルボジイミド基含有化合物を0.1〜30質量部の比率で含有していること、樹脂皮膜の付着量が乾燥質量で0.1〜1g/m2であることは、いずれも本発明の好適な実施態様である。 The lithium silicate and colloidal silica in the surface treatment composition are 95: 5 to 80:20 in mass ratio, the surface area average particle diameter of the colloidal silica is 4 to 20 nm, When the total of the olefin-α, β-unsaturated carboxylic acid copolymer and the α, β-unsaturated carboxylic acid polymer is 100 parts by mass, the carbodiimide group-containing compound is further added in an amount of 0. It is a suitable embodiment of this invention that it contains in the ratio of 1-30 mass parts, and the adhesion amount of a resin film is 0.1-1 g / m < 2 > by dry mass.

本発明では、樹脂皮膜を特定の成分を最適量で組み合わせた表面処理組成物から得ているため、得られる樹脂皮膜は耐食性等の特性に優れると共に、皮膜カスの発生量の少ない良好なロール成形性をも発現する。また、樹脂皮膜中の無機成分の量が多く、皮膜の比重が従来の有機樹脂リッチな皮膜に比べ2〜3倍程度に増大したことから、皮膜カスがわずかに発生しても、クーラント液受槽の底部に沈降するようになった。その結果、水切りパッド表面の皮膜カスの堆積がほとんど起こらなくなり、長期間、高い歩留まりでロール成形ができるようになった。   In the present invention, since the resin film is obtained from a surface treatment composition in which specific components are combined in an optimum amount, the resulting resin film has excellent properties such as corrosion resistance and good roll forming with less generation of film residue. Also expresses sex. In addition, the amount of inorganic components in the resin film is large, and the specific gravity of the film has increased by about 2 to 3 times compared to the conventional organic resin-rich film. Sedimentation began to settle at the bottom. As a result, film accumulation on the surface of the draining pad hardly occurred, and roll forming can be performed at a high yield for a long period of time.

本発明者等は、優れた耐食性を有する樹脂皮膜を形成し得る表面処理組成物を見出し、既に出願している(特願2007−56966号)。本発明者等は、この表面処理組成物の優れた耐食性や上塗り塗膜密着性(塗装性)を維持したまま、ロール成形性を高めることを目的として鋭意検討した結果、本願発明に到達したものである。以下、詳細に説明する。なお、本発明の皮膜は無機成分が樹脂成分よりもかなり多く含まれるものであるが、樹脂成分も含まれており、当該分野においては「樹脂皮膜」ということが多いので、本発明でも「樹脂皮膜」という用語を用いた。   The present inventors have found a surface treatment composition capable of forming a resin film having excellent corrosion resistance and have already filed an application (Japanese Patent Application No. 2007-56966). As a result of intensive studies aimed at improving roll formability while maintaining the excellent corrosion resistance and top coat adhesion (paintability) of this surface treatment composition, the present inventors have reached the present invention. It is. This will be described in detail below. In addition, although the film of the present invention contains an inorganic component considerably more than the resin component, it also includes a resin component, and in this field, it is often referred to as “resin film”. The term “film” was used.

本発明は、表面処理組成物から得られる樹脂皮膜を備えた樹脂塗装金属板に関するものであり、その特徴は表面処理組成物の各成分にある。   The present invention relates to a resin-coated metal plate provided with a resin film obtained from a surface treatment composition, and the characteristics thereof are in each component of the surface treatment composition.

無機成分
本発明の表面処理組成物は、ケイ酸リチウムとコロイダルシリカからなる無機成分を含む。ケイ酸リチウムは造膜性に優れており、耐食性、加工性および塗装性に優れた皮膜を形成する作用を有している。また皮膜の比重を高めて、皮膜カスの沈降を促進する。ケイ酸リチウム(リチウムシリケート)としては、例えば、日産化学工業社から、リチウムシリケート35(SiO2/Li2Oがモル比で3.5)、リチウムシリケート45(SiO2/Li2Oがモル比で4.5)、リチウムシリケート75(SiO2/Li2Oがモル比で7.5)が市販されている。SiO2/Li2Oがモル比で3.5〜7.5の範囲であれば、耐水性と造膜性を両立できるため、好ましい。
Inorganic Component The surface treatment composition of the present invention includes an inorganic component composed of lithium silicate and colloidal silica. Lithium silicate is excellent in film forming property and has an action of forming a film excellent in corrosion resistance, workability and paintability. In addition, the specific gravity of the film is increased to promote sedimentation of the film residue. As lithium silicate (lithium silicate), for example, from Nissan Chemical Industries, lithium silicate 35 (SiO 2 / Li 2 O is 3.5 in molar ratio), lithium silicate 45 (SiO 2 / Li 2 O is molar ratio) 4.5) and lithium silicate 75 (SiO 2 / Li 2 O is 7.5 in molar ratio) is commercially available. When the molar ratio of SiO 2 / Li 2 O is in the range of 3.5 to 7.5, it is preferable because both water resistance and film forming property can be achieved.

コロイダルシリカは、腐食環境下において皮膜欠陥部で溶解・溶出し、pHの緩衝作用や不動態皮膜形成作用によって金属板の溶解/溶出を抑制するため、耐食性が向上する。これらの効果を充分に発揮させるためには、コロイダルシリカの表面積(粒子径)が、表面積平均粒子径で4〜20nmであることが好ましい。20nmより大きくなると、表面積自体が小さくなって耐食性向上効果が低下するおそれがある。その他にも、分散性や、耐アルカリ性、樹脂皮膜密着性も低下するおそれがある。一方、4nm未満では、表面処理組成物の保存安定性が悪化して、ゲル化するおそれがある。コロイダルシリカが小さすぎても、耐食性向上効果も飽和し、逆にシリカの活性が高くなりすぎて、表面処理組成物がゲル化し、良好な樹脂皮膜が形成されないおそれがある。コロイダルシリカの表面積平均粒子径は、4〜6nmがより好ましい。シリカの表面積平均粒子径は、平均粒子径が1〜10nm程度の場合にはシアーズ法により、10〜100nm程度の場合にはBET法により、測定することができる。   Colloidal silica dissolves and elutes at a film defect in a corrosive environment and suppresses dissolution / elution of the metal plate by a pH buffering action or a passive film forming action, thereby improving the corrosion resistance. In order to sufficiently exhibit these effects, the surface area (particle diameter) of colloidal silica is preferably 4 to 20 nm in terms of surface area average particle diameter. If it is larger than 20 nm, the surface area itself becomes small and the effect of improving corrosion resistance may be reduced. In addition, the dispersibility, alkali resistance, and resin film adhesion may be reduced. On the other hand, if the thickness is less than 4 nm, the storage stability of the surface treatment composition may be deteriorated and gelation may occur. Even if the colloidal silica is too small, the effect of improving the corrosion resistance is saturated, and conversely, the activity of the silica becomes too high, and the surface treatment composition may gel and a good resin film may not be formed. As for the surface area average particle diameter of colloidal silica, 4-6 nm is more preferable. The surface area average particle diameter of silica can be measured by the Sears method when the average particle diameter is about 1 to 10 nm and by the BET method when it is about 10 to 100 nm.

コロイダルシリカは市販されており、例えば、表面積平均粒子径4〜6nmのものであれば、日産化学工業社製の「スノーテックス(登録商標)XS」を、表面積平均粒子径10〜20nmであれば、同じく日産化学工業社製の「スノーテックス(登録商標)40」、「スノーテックス(登録商標)N」、「スノーテックス(登録商標)SS」、「スノーテックス(登録商標)O」等や、ADEKA社製の「アデライト(登録商標)AT−30」、「アデライト(登録商標)AT−30A」等を使用することができる。樹脂皮膜の形成に使用する表面処理組成物が水系である場合、コロイダルシリカを良好に分散させるために、表面処理組成物のpHに合わせて、コロイダルシリカの種類を選択することが好ましい。   Colloidal silica is commercially available. For example, if it has a surface area average particle size of 4 to 6 nm, “Snowtex (registered trademark) XS” manufactured by Nissan Chemical Industries, Ltd. can be used. Also, "Snowtex (registered trademark) 40", "Snowtex (registered trademark) N", "Snowtex (registered trademark) SS", "Snowtex (registered trademark) O", etc., also manufactured by Nissan Chemical Industries, "Adelite (registered trademark) AT-30", "Adelite (registered trademark) AT-30A" manufactured by ADEKA, etc. can be used. When the surface treatment composition used for forming the resin film is aqueous, it is preferable to select the type of colloidal silica according to the pH of the surface treatment composition in order to disperse the colloidal silica well.

ケイ酸リチウムとコロイダルシリカからなる無機成分は、後述する樹脂成分との合計100質量部中、60〜95質量部とする。無機成分の量が60質量部よりも少ないと、樹脂皮膜の硬度が不足し、薄膜化が困難となる。また、皮膜の比重もさほど増大しないため、皮膜カスをクーラント液受槽の中で沈降させることができなくなって、水切りパッド表面への堆積を抑制する効果が不足し、結果として操業性や製品形状を悪化させるため好ましくない。しかし、無機成分量が95質量部を超えると、樹脂成分が不足して、表面処理組成物のレベリング性が劣化して、金属板への塗布作業の際にハジキが発生する等のトラブルを招き、正常な皮膜が形成できない。また、皮膜が硬くなりすぎて、脆くなり、耐食性等が劣化する。無機成分と樹脂成分との合計100質量部中、無機成分が80〜95質量部であることがより好ましく、85〜90質量部がさらに好ましい。   The inorganic component consisting of lithium silicate and colloidal silica is 60 to 95 parts by mass in a total of 100 parts by mass with the resin component described later. When the amount of the inorganic component is less than 60 parts by mass, the hardness of the resin film is insufficient and it is difficult to reduce the thickness. In addition, since the specific gravity of the film does not increase so much, it becomes impossible to settle the film residue in the coolant bath, and the effect of suppressing the accumulation on the surface of the draining pad is insufficient, resulting in operability and product shape. It is not preferable because it deteriorates. However, when the amount of the inorganic component exceeds 95 parts by mass, the resin component is insufficient, the leveling property of the surface treatment composition is deteriorated, and troubles such as repelling occur during the application work to the metal plate are caused. A normal film cannot be formed. Further, the film becomes too hard and brittle, and the corrosion resistance and the like deteriorate. In a total of 100 parts by mass of the inorganic component and the resin component, the inorganic component is more preferably 80 to 95 parts by mass, and even more preferably 85 to 90 parts by mass.

無機成分におけるケイ酸リチウムとコロイダルシリカの比率としては、95:5〜80:20(質量比)が好ましい。すなわち、無機成分100質量%中、ケイ酸リチウムが80〜95質量%であることが好ましい。ケイ酸リチウムが80質量%より少ないと、ケイ酸リチウムの造膜作用が不充分となり、コロイダルシリカ量が過剰となるため皮膜硬度も増大して脆い皮膜となって、ロール成形において皮膜剥離量が増大してしまうおそれがある。逆にケイ酸リチウムが95質量%を超えると、コロイダルシリカ量が不足するので、耐食性が不充分となるおそれがある。   The ratio of lithium silicate to colloidal silica in the inorganic component is preferably 95: 5 to 80:20 (mass ratio). That is, it is preferable that lithium silicate is 80-95 mass% in 100 mass% of inorganic components. When lithium silicate is less than 80% by mass, the film forming action of lithium silicate becomes insufficient, and the amount of colloidal silica becomes excessive, so that the film hardness increases and a brittle film is formed. May increase. On the contrary, when lithium silicate exceeds 95 mass%, since the amount of colloidal silica is insufficient, corrosion resistance may be insufficient.

樹脂成分
本発明で用いられる表面処理組成物は、上記無機成分に加えて、オレフィン−α,β−不飽和カルボン酸共重合体(以下、「オレフィン−酸共重合体」と省略することがある。)と、α,β−不飽和カルボン酸重合体(以下、「カルボン酸重合体」と省略することがある。)と、これらと架橋することができるオキサゾリン基含有共重合体とを含有する樹脂成分を含むものである。なお、本発明における「α,β−不飽和カルボン酸」には、後述する中和剤でカルボキシル基の一部が中和された「α,β−不飽和カルボン酸塩」も含まれる。
Resin Component The surface treatment composition used in the present invention may be abbreviated as olefin-α, β-unsaturated carboxylic acid copolymer (hereinafter referred to as “olefin-acid copolymer”) in addition to the inorganic component. ), An α, β-unsaturated carboxylic acid polymer (hereinafter sometimes abbreviated as “carboxylic acid polymer”), and an oxazoline group-containing copolymer capable of crosslinking with these. A resin component is included. The “α, β-unsaturated carboxylic acid” in the present invention also includes “α, β-unsaturated carboxylic acid salts” in which a part of the carboxyl group is neutralized with a neutralizing agent described later.

本発明における「オレフィン−α,β−不飽和カルボン酸共重合体」または「オレフィン−酸共重合体」とは、オレフィンとα,β−不飽和カルボン酸との共重合体であって、オレフィン由来の構成単位が、共重合体中に50質量%以上(即ちα,β−不飽和カルボン酸由来の構成単位が50質量%以下)であるものを意味し、「α,β−不飽和カルボン酸重合体」または「カルボン酸重合体」とは、α,β−不飽和カルボン酸を単量体として得られる重合体(共重合体も含む)であって、α,β−不飽和カルボン酸由来の構成単位が重合体中に90質量%以上であるものを意味する。   The “olefin-α, β-unsaturated carboxylic acid copolymer” or “olefin-acid copolymer” in the present invention is a copolymer of an olefin and an α, β-unsaturated carboxylic acid, This means that the constituent unit derived from the copolymer is 50% by mass or more (that is, the constituent unit derived from α, β-unsaturated carboxylic acid is 50% by mass or less), “α, β-unsaturated carboxylic acid”. The “acid polymer” or “carboxylic acid polymer” is a polymer (including a copolymer) obtained using an α, β-unsaturated carboxylic acid as a monomer, and is an α, β-unsaturated carboxylic acid. It means that the derived structural unit is 90% by mass or more in the polymer.

オレフィン−酸共重合体およびカルボン酸重合体の双方を含有する組成物で表面処理することにより、樹脂塗装金属板の耐食性が向上する正確なメカニズムは不明であるが、これら双方を後述するオキサゾリン基含有共重合体と併用することによって、緻密な樹脂皮膜が形成されて、水および酸素の透過が効果的に抑制されたためであると推定することができる。但し本発明は、この推定には限定されない。   The exact mechanism by which the corrosion resistance of the resin-coated metal sheet is improved by surface treatment with a composition containing both an olefin-acid copolymer and a carboxylic acid polymer is unknown, but both of these are described below as oxazoline groups. By using together with the containing copolymer, it can be presumed that a dense resin film was formed and the permeation of water and oxygen was effectively suppressed. However, the present invention is not limited to this estimation.

本発明で用いるオレフィン−酸共重合体は、オレフィンとα,β−不飽和カルボン酸とを既知の方法で共重合させることにより製造でき、また市販されている。本発明において、1種または2種以上のオレフィン−酸共重合体を使用することができる。   The olefin-acid copolymer used in the present invention can be produced by copolymerizing an olefin and an α, β-unsaturated carboxylic acid by a known method, and is commercially available. In the present invention, one or more olefin-acid copolymers can be used.

オレフィン−酸共重合体の製造に使用できるオレフィンには、特に限定は無いが、エチレン、プロピレン等が好ましく、エチレンがより好ましい。オレフィン−酸共重合体として、オレフィン構成単位が、1種のオレフィンのみに由来するもの、または2種以上のオレフィンから由来するもののいずれも使用することができる。   Although there is no limitation in particular in the olefin which can be used for manufacture of an olefin-acid copolymer, ethylene, propylene, etc. are preferable and ethylene is more preferable. As the olefin-acid copolymer, any one in which the olefin structural unit is derived from only one olefin or from two or more olefins can be used.

オレフィン−酸共重合体の製造に使用できるα,β−不飽和カルボン酸にも、特に限定はないが、例えばアクリル酸、メタクリル酸、クロトン酸、イソクロトン酸等のモノカルボン酸、マレイン酸、フマル酸、イタコン酸等のジカルボン酸等を挙げることができる。これらの中でもアクリル酸が好ましい。オレフィン−酸共重合体として、α,β−不飽和カルボン酸の構成単位が、1種のα,β−不飽和カルボン酸のみに由来するもの、または2種以上のα,β−不飽和カルボン酸から由来するもののいずれも使用することができる。   The α, β-unsaturated carboxylic acid that can be used for the production of the olefin-acid copolymer is not particularly limited, and examples thereof include monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and isocrotonic acid, maleic acid, and fumaric acid. Examples thereof include dicarboxylic acids such as acid and itaconic acid. Among these, acrylic acid is preferable. As the olefin-acid copolymer, the constituent unit of α, β-unsaturated carboxylic acid is derived from only one kind of α, β-unsaturated carboxylic acid, or two or more kinds of α, β-unsaturated carboxylic acid. Any of those derived from acids can be used.

本発明で用いるオレフィン−酸共重合体は、本発明の効果である耐食性等に悪影響を及ぼさない範囲で、その他の単量体に由来する構成単位を有していても良い。オレフィン−酸共重合体中において、その他の単量体に由来する構成単位量は、好ましくは10質量%以下、より好ましくは5質量%以下であり、最も好ましいオレフィン−酸共重合体は、オレフィン−およびα,β−不飽和カルボン酸のみから構成されるものである。好ましいオレフィン−酸共重合体として、エチレン−アクリル酸共重合体が挙げられる。   The olefin-acid copolymer used in the present invention may have structural units derived from other monomers as long as they do not adversely affect the corrosion resistance and the like, which are the effects of the present invention. In the olefin-acid copolymer, the amount of structural units derived from other monomers is preferably 10% by mass or less, more preferably 5% by mass or less, and the most preferable olefin-acid copolymer is an olefin. It is composed only of-and α, β-unsaturated carboxylic acid. A preferred olefin-acid copolymer is an ethylene-acrylic acid copolymer.

オレフィン−酸共重合体中のα,β−不飽和カルボン酸は、樹脂皮膜と金属板との密着性を向上させるため、および架橋の反応基となるカルボキシル基の量を確保するために用いられる。共重合体中のα,β−不飽和カルボン酸量は、好ましくは5質量%以上、より好ましくは10質量%以上である。しかしα,β−不飽和カルボン酸が過剰になると、耐食性および耐アルカリ性が低下するおそれがあるため、好ましくは30質量%以下、より好ましくは25質量%以下である。   The α, β-unsaturated carboxylic acid in the olefin-acid copolymer is used to improve the adhesion between the resin film and the metal plate, and to secure the amount of carboxyl groups that are reactive groups for crosslinking. . The amount of α, β-unsaturated carboxylic acid in the copolymer is preferably 5% by mass or more, more preferably 10% by mass or more. However, if the α, β-unsaturated carboxylic acid is excessive, the corrosion resistance and alkali resistance may be lowered. Therefore, the amount is preferably 30% by mass or less, more preferably 25% by mass or less.

本発明で用いるオレフィン−酸共重合体の質量平均分子量(Mw)は、ポリスチレン換算で、好ましくは1,000〜10万、より好ましくは3,000〜7万、さらに好ましくは5,000〜3万である。このMwは、ポリスチレンを標準として用いるGPCにより測定することができる。   The mass average molecular weight (Mw) of the olefin-acid copolymer used in the present invention is preferably 1,000 to 100,000, more preferably 3,000 to 70,000, and still more preferably 5,000 to 3, in terms of polystyrene. Ten thousand. This Mw can be measured by GPC using polystyrene as a standard.

カルボン酸重合体としては、1種または2種以上のα,β−不飽和カルボン酸の単独重合体若しくは共重合体、またはさらに他の単量体を共重合させた共重合体のいずれも使用することができる。このようなカルボン酸重合体は、既知の方法で製造でき、また市販されている。本発明において、1種または2種以上のカルボン酸重合体を使用できる。   As the carboxylic acid polymer, either a homopolymer or copolymer of one or more α, β-unsaturated carboxylic acids, or a copolymer obtained by copolymerizing another monomer is used. can do. Such carboxylic acid polymers can be produced by known methods and are commercially available. In the present invention, one or more carboxylic acid polymers can be used.

カルボン酸重合体の製造に使用できるα,β−不飽和カルボン酸には、上記オレフィン−酸共重合体の合成に使用することのできるものとして例示したα,β−不飽和カルボン酸がいずれも使用可能である。これらの中でもアクリル酸およびマレイン酸が好ましく、マレイン酸がより好ましい。   Examples of the α, β-unsaturated carboxylic acid that can be used for the production of the carboxylic acid polymer include the α, β-unsaturated carboxylic acids exemplified as those that can be used for the synthesis of the olefin-acid copolymer. It can be used. Among these, acrylic acid and maleic acid are preferable, and maleic acid is more preferable.

カルボン酸重合体は、α,β−不飽和カルボン酸以外の単量体に由来する構成単位を含有していても良いが、その他の単量体に由来する構成単位量は、重合体中に10質量%以下、好ましくは5質量%以下であり、α,β−不飽和カルボン酸のみから構成されるカルボン酸重合体がより好ましい。   The carboxylic acid polymer may contain a constitutional unit derived from a monomer other than the α, β-unsaturated carboxylic acid, but the amount of the constitutional unit derived from the other monomer is contained in the polymer. A carboxylic acid polymer composed of only an α, β-unsaturated carboxylic acid is more preferably 10% by mass or less, preferably 5% by mass or less.

好ましいカルボン酸重合体として、例えばポリアクリル酸、ポリメタクリル酸、アクリル酸−マレイン酸共重合体、ポリマレイン酸等を挙げることができ、これらの中でも塗膜密着性、樹脂皮膜密着性および耐食性の観点から、ポリマレイン酸がより好ましい。ポリマレイン酸を使用することにより耐食性等が向上する正確なメカニズムは不明であるが、カルボキシル基量が多いため、樹脂皮膜と金属板との密着性が向上し、それに伴い耐食性も向上することが考えられる。但し本発明は、この推定には限定されない。   Preferred carboxylic acid polymers include, for example, polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer, polymaleic acid and the like. Among these, coating film adhesion, resin film adhesion, and corrosion resistance viewpoints Therefore, polymaleic acid is more preferable. Although the exact mechanism by which the corrosion resistance is improved by using polymaleic acid is unknown, the adhesion between the resin film and the metal plate is improved due to the large amount of carboxyl groups. It is done. However, the present invention is not limited to this estimation.

本発明で用いるカルボン酸重合体のMwは、ポリスチレン換算で、好ましくは500〜3万、より好ましくは800〜1万、さらに好ましくは900〜3,000、最も好ましくは1,000〜2,000である。このMwは、ポリスチレンを標準として用いるGPCにより測定することができる。   Mw of the carboxylic acid polymer used in the present invention is preferably 500 to 30,000, more preferably 800 to 10,000, still more preferably 900 to 3,000, and most preferably 1,000 to 2,000 in terms of polystyrene. It is. This Mw can be measured by GPC using polystyrene as a standard.

表面処理組成物中のオレフィン−酸共重合体とカルボン酸重合体との含有比率は、1,000:1〜10:1、好ましくは200:1〜20:1、より好ましくは100:1〜100:3である。カルボン酸重合体の含有比率が低すぎると、オレフィン−酸共重合体とカルボン酸重合体とを組み合わせた効果が充分に発揮されず、逆にカルボン酸重合体の含有比率が過剰であると、表面処理組成物中でオレフィン−酸共重合体とカルボン酸重合体とが相分離し、均一な樹脂皮膜が形成されなくなるおそれや、耐アルカリ性が低下する可能性が生ずるからである。   The content ratio of the olefin-acid copolymer and the carboxylic acid polymer in the surface treatment composition is 1,000: 1 to 10: 1, preferably 200: 1 to 20: 1, more preferably 100: 1. 100: 3. When the content ratio of the carboxylic acid polymer is too low, the effect of combining the olefin-acid copolymer and the carboxylic acid polymer is not sufficiently exhibited. Conversely, when the content ratio of the carboxylic acid polymer is excessive, This is because the olefin-acid copolymer and the carboxylic acid polymer are phase-separated in the surface treatment composition, so that a uniform resin film may not be formed, and the alkali resistance may be lowered.

上記樹脂成分には、オキサゾリン基含有共重合体も含まれる。オキサゾリン基含有共重合体は、そのオキサゾリン基が、上記オレフィン−酸共重合体やカルボン酸重合体の有するカルボキシル基と架橋反応して、緻密な硬い皮膜を形成し、ロール成形時の皮膜剥離量を低減すると共に、基材や上塗り塗膜との密着性を高める作用を有する。また、オキサゾリン基とカルボキシル基の反応は常温でも進行するので、表面処理組成物の塗工後の乾燥温度を低くできるというメリットがある。さらに、オキサゾリン基含有共重合体を添加しても表面処理組成物の流動性(粘度)や濡れ性を劣化させることがなく、機械的安定性も良好である。   The resin component includes an oxazoline group-containing copolymer. The oxazoline group-containing copolymer forms a dense hard film by crosslinking reaction of the oxazoline group with the carboxyl group of the olefin-acid copolymer or carboxylic acid polymer. And has the effect of increasing the adhesion to the substrate and the top coat film. Further, since the reaction between the oxazoline group and the carboxyl group proceeds even at room temperature, there is an advantage that the drying temperature after coating the surface treatment composition can be lowered. Furthermore, even if an oxazoline group-containing copolymer is added, the fluidity (viscosity) and wettability of the surface treatment composition are not deteriorated, and the mechanical stability is also good.

オキサゾリン基含有共重合体としては、主鎖がスチレン/アクリルである日本触媒社製の「エポクロス(登録商標)」が好適である。特に、エマルジョンタイプの「エポクロス(登録商標)K」シリーズが好ましく、グレードとしては、K−2010E(Tg:−50℃)、K−2020E(Tg:0℃)およびK−2030E(Tg:50℃)がある。硬い皮膜を得るには、エポクロスK−2030Eが最も好ましい。   As the oxazoline group-containing copolymer, “Epocross (registered trademark)” manufactured by Nippon Shokubai Co., Ltd. whose main chain is styrene / acryl is suitable. In particular, the emulsion type “Epocross (registered trademark) K” series is preferable, and the grades are K-2010E (Tg: −50 ° C.), K-2020E (Tg: 0 ° C.) and K-2030E (Tg: 50 ° C.). ) Epocros K-2030E is most preferable for obtaining a hard film.

樹脂成分においては、樹脂皮膜の硬度を向上させるために、オレフィン−酸共重合体とカルボン酸重合体との合計100質量部に対して、オキサゾリン基含有共重合体は1〜9質量部とする。好ましい下限は2質量部、より好ましい下限は3質量部である。オキサゾリン基含有共重合体が9質量部を超えると、皮膜硬度を向上させる効果が飽和し、また塗装性が低下する。好ましい上限は6質量部、より好ましい上限は4質量部である。   In the resin component, in order to improve the hardness of the resin film, the oxazoline group-containing copolymer is 1 to 9 parts by mass with respect to a total of 100 parts by mass of the olefin-acid copolymer and the carboxylic acid polymer. . A preferable lower limit is 2 parts by mass, and a more preferable lower limit is 3 parts by mass. When the amount of the oxazoline group-containing copolymer exceeds 9 parts by mass, the effect of improving the film hardness is saturated and the paintability is deteriorated. A preferable upper limit is 6 parts by mass, and a more preferable upper limit is 4 parts by mass.

上記したように、樹脂成分には、オレフィン−酸共重合体、カルボン酸重合体およびオキサゾリン基含有共重合体が含まれる。無機成分60〜95質量部に対し、樹脂成分は40〜5質量部で、両者の合計は100質量部である。樹脂成分の量が40質量部を超えると、無機成分量が少なくなって樹脂皮膜の硬度が不足し、薄膜化が困難となる。また、皮膜の比重もさほど増大しないため、皮膜カスをクーラント液受槽の中で沈降させることができなくなって、水切りパッド表面への堆積を抑制する効果が不足し、結果として操業性や製品形状を悪化させるため好ましくない。しかし、樹脂成分が5質量部より少ないと、表面処理組成物のレベリング性が劣化して、金属板への塗布作業の際にハジキが発生する等のトラブルを招き、正常な皮膜が形成できない。また、皮膜が硬くなりすぎて、脆くなり、耐食性等が劣化する。無機成分と樹脂成分との合計100質量部中、樹脂成分が5〜20質量部であることがより好ましく、10〜15質量部がさらに好ましい。   As described above, the resin component includes an olefin-acid copolymer, a carboxylic acid polymer, and an oxazoline group-containing copolymer. A resin component is 40-5 mass parts with respect to 60-95 mass parts of inorganic components, and the sum total of both is 100 mass parts. When the amount of the resin component exceeds 40 parts by mass, the amount of the inorganic component is decreased, the hardness of the resin film is insufficient, and it becomes difficult to reduce the thickness. In addition, since the specific gravity of the film does not increase so much, it becomes impossible to settle the film residue in the coolant bath, and the effect of suppressing the accumulation on the surface of the draining pad is insufficient, resulting in operability and product shape. It is not preferable because it deteriorates. However, when the resin component is less than 5 parts by mass, the leveling property of the surface treatment composition is deteriorated, causing troubles such as occurrence of repellency when applied to a metal plate, and a normal film cannot be formed. Further, the film becomes too hard and brittle, and the corrosion resistance and the like deteriorate. In a total of 100 parts by mass of the inorganic component and the resin component, the resin component is more preferably 5 to 20 parts by mass, and further preferably 10 to 15 parts by mass.

本発明の表面処理組成物には、さらにグリシジル基含有シランカップリング剤が含まれる。シランカップリング剤を用いると、金属と樹脂皮膜との密着性が向上し、それに伴い耐食性も向上する。特に、グリシジル基含有シランカップリング剤は反応性が高く、耐食性や耐アルカリ性の向上効果が大きい。また、本発明の表面処理組成物には、金属板の表面のエッチングを目的とした酸性化合物(例えばリン酸化合物、硝酸化合物およびフッ素化合物)を含有させる必要はない。金属板の表面をエッチングしなくても、シランカップリング剤により樹脂皮膜密着性を向上させ得るからである。エッチングを目的とした酸性化合物を含有しない表面処理組成物は、安定性が向上して、良好な樹脂皮膜を形成することができる。さらに、シランカップリング剤を添加しておくと、表面処理組成物をスプレーリンガー方式(表面処理組成物を金属板の表面にスプレーした後、ロールで絞る塗布方法)で循環使用した場合に、組成物中の界面活性剤に起因する発泡を抑制する効果も発現する。   The surface treatment composition of the present invention further contains a glycidyl group-containing silane coupling agent. When a silane coupling agent is used, the adhesion between the metal and the resin film is improved, and the corrosion resistance is also improved accordingly. In particular, a glycidyl group-containing silane coupling agent has high reactivity and has a large effect of improving corrosion resistance and alkali resistance. Moreover, the surface treatment composition of the present invention does not need to contain an acidic compound (for example, a phosphoric acid compound, a nitric acid compound, and a fluorine compound) for the purpose of etching the surface of the metal plate. This is because the adhesion of the resin film can be improved by the silane coupling agent without etching the surface of the metal plate. The surface treatment composition not containing an acidic compound for the purpose of etching has improved stability and can form a good resin film. Furthermore, when a silane coupling agent is added, the composition is used when the surface treatment composition is used in a circulating manner by a spray ringer method (application method in which the surface treatment composition is sprayed on the surface of the metal plate and then squeezed with a roll). The effect which suppresses the foaming resulting from the surfactant in a thing also expresses.

グリシジル基含有シランカップリング剤としては、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。   Glycidyl group-containing silane coupling agents include γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxymethyldimethoxysilane, β- (3,4-epoxycyclohexyl) Examples include ethyltrimethoxysilane.

表面処理組成物中のシランカップリング剤量は、無機成分と樹脂成分との合計100質量部に対して、7質量部以上、好ましくは9質量部以上、より好ましくは11質量部以上であり、35質量部以下、好ましくは30質量部以下、より好ましくは25質量部以下である。シランカップリング剤量が7質量部未満であると、樹脂皮膜密着性および耐食性が低下してしまう。ただし、35質量部を超えると、表面処理組成物の安定性が低下し、ゲル化やコロイダルシリカの沈殿を引き起こす上に、コストアップの要因となる。   The amount of the silane coupling agent in the surface treatment composition is 7 parts by mass or more, preferably 9 parts by mass or more, more preferably 11 parts by mass or more, with respect to 100 parts by mass in total of the inorganic component and the resin component. 35 parts by mass or less, preferably 30 parts by mass or less, more preferably 25 parts by mass or less. When the amount of the silane coupling agent is less than 7 parts by mass, the resin film adhesion and the corrosion resistance are lowered. However, when it exceeds 35 parts by mass, the stability of the surface treatment composition is lowered, causing gelation and precipitation of colloidal silica, and increasing the cost.

本発明の表面処理組成物には、さらにメタバナジン酸塩が含まれる。メタバナジン酸塩もコロイダルシリカと同様に溶出することによって金属板の溶解・溶出を抑制し、耐食性を高める効果を有する。メタバナジン酸塩は、特に、疵部や端面の耐食性向上効果を発揮する。この効果を有効に発揮させるためには、無機成分と樹脂成分の合計100質量部に対し、メタバナジン酸塩を0.5〜7質量部用いるとよい。0.5質量部より少ないと、耐食性向上効果が不充分となるが、7質量部を超えて添加しても耐食性向上効果が飽和する上に、塗膜密着性および樹脂皮膜密着性が低下し、また表面処理組成物の安定性も悪化する。メタバナジン酸塩量は、4〜6質量部がより好ましい。なお、このメタバナジン酸塩の好適量は、V元素換算量である。   The surface treatment composition of the present invention further contains metavanadate. Metavanadate is also eluted like colloidal silica, thereby suppressing the dissolution / elution of the metal plate and improving the corrosion resistance. Metavanadate particularly exhibits an effect of improving the corrosion resistance of the buttocks and end faces. In order to exhibit this effect effectively, it is good to use 0.5-7 mass parts of metavanadates with respect to a total of 100 mass parts of an inorganic component and a resin component. If the amount is less than 0.5 parts by mass, the effect of improving the corrosion resistance becomes insufficient, but even if added in excess of 7 parts by mass, the effect of improving the corrosion resistance is saturated, and the coating film adhesion and the resin film adhesion are reduced. Moreover, the stability of the surface treatment composition is also deteriorated. As for the amount of metavanadate, 4-6 mass parts is more preferable. In addition, the suitable amount of this metavanadate is a V element conversion amount.

メタバナジン酸塩としては、メタバナジン酸ナトリウム(NaVO3)、メタバナジン酸アンモニウム(NH4VO3)、メタバナジン酸カリウム(KVO3)等を挙げることができ、これらの1種または2種以上を使用できる。これらのメタバナジン酸塩は市販されており、容易に入手することができる。 Examples of the metavanadate include sodium metavanadate (NaVO 3 ), ammonium metavanadate (NH 4 VO 3 ), and potassium metavanadate (KVO 3 ), and one or more of these can be used. These metavanadates are commercially available and can be easily obtained.

本発明の表面処理組成物は、さらにカルボジイミド基含有化合物を含んでいても良い。カルボジイミド基は、オレフィン−酸共重合体およびカルボン酸重合体中のカルボキシル基と反応する。よってカルボジイミド基含有化合物を使用することにより、樹脂皮膜中のカルボキシル基量を減少させて、耐アルカリ性を向上させることができる。本発明において、1種または2種以上のカルボジイミド基含有化合物を使用できる。   The surface treatment composition of the present invention may further contain a carbodiimide group-containing compound. A carbodiimide group reacts with a carboxyl group in an olefin-acid copolymer and a carboxylic acid polymer. Therefore, by using a carbodiimide group-containing compound, the amount of carboxyl groups in the resin film can be reduced and the alkali resistance can be improved. In the present invention, one or more carbodiimide group-containing compounds can be used.

カルボジイミド基含有化合物は、イソシアネート類、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、水添キシリレンジイソシアネート(HXDI)、4,4−ジフェニルメタンジイソシアネート(MDI)またはトリレンジイソシアネート(TDI)等をカルボジイミド化触媒の存在下で加熱することにより製造することができ、また変性により水性(水溶性、水乳化性または水分散性)にすることができる。表面処理組成物が水系である場合、水性のカルボジイミド基含有化合物が好ましい。また1分子中に複数のカルボジイミド基を含有する化合物が好ましい。1分子中に複数のカルボジイミド基を有すると、樹脂成分中のカルボキシル基との架橋反応により、耐食性等をさらに向上させることができる。   Carbodiimide group-containing compounds include isocyanates such as hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), hydrogenated xylylene diisocyanate (HXDI), 4,4-diphenylmethane diisocyanate (MDI), and tolylene diisocyanate (TDI). Can be produced by heating in the presence of a carbodiimidization catalyst, and can be made aqueous (water-soluble, water-emulsifiable or water-dispersible) by modification. When the surface treatment composition is aqueous, an aqueous carbodiimide group-containing compound is preferable. A compound containing a plurality of carbodiimide groups in one molecule is preferable. When a plurality of carbodiimide groups are contained in one molecule, corrosion resistance and the like can be further improved by a crosslinking reaction with a carboxyl group in the resin component.

市販されているポリカルボジイミド化合物として、例えばN,N−ジシクロへキシルカルボジイミド、N,N−ジイソプロピルカルボジイミド等や、日清紡社製のポリカルボジイミド(1分子中に複数のカルボジイミド基を有する重合体)である「カルボライト(登録商標)」シリーズを挙げることができる。「カルボライト(登録商標)」のグレードとしては、水溶性の「SV−02」、「V−02」、「V−02−L2」、「V−04」やエマルジョンタイプの「E−01」、「E−02」等が好適である。   Examples of commercially available polycarbodiimide compounds include N, N-dicyclohexylcarbodiimide, N, N-diisopropylcarbodiimide and the like, and polycarbodiimides (polymers having a plurality of carbodiimide groups in one molecule). Mention may be made of the “Carbolite®” series. The grades of “Carbolite (registered trademark)” include water-soluble “SV-02”, “V-02”, “V-02-L2”, “V-04” and emulsion type “E-01”. , “E-02” and the like are preferable.

カルボジイミド基含有化合物量は、架橋相手であるオレフィン−酸共重合体とカルボン酸重合体の量に応じて設定する。すなわち、オレフィン−酸共重合体とカルボン酸重合体の合計を100質量部とした場合、前記100質量部に対し、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは8質量部以上である。一方、カルボジイミド基含有化合物量が過剰になると、オレフィン−酸共重合体およびカルボン酸重合体の組合せの効果が低下する。また水系の表面処理組成物中で水性カルボジイミド基含有化合物を過剰に使用すると、耐水性および耐食性に悪影響を及ぼし得る。このような観点から、カルボジイミド基含有化合物量は、前記100質量部に対し、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは16質量部以下である。   The amount of the carbodiimide group-containing compound is set according to the amounts of the olefin-acid copolymer and carboxylic acid polymer which are crosslinking partners. That is, when the total of the olefin-acid copolymer and the carboxylic acid polymer is 100 parts by mass, the amount is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and more preferably 100 parts by mass. Preferably it is 8 mass parts or more. On the other hand, when the amount of the carbodiimide group-containing compound is excessive, the effect of the combination of the olefin-acid copolymer and the carboxylic acid polymer is lowered. Further, when an aqueous carbodiimide group-containing compound is excessively used in an aqueous surface treatment composition, it may adversely affect water resistance and corrosion resistance. From such a viewpoint, the amount of the carbodiimide group-containing compound is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 16 parts by mass or less with respect to 100 parts by mass.

本発明の表面処理組成物は、本発明の効果を阻害しない範囲で、ワックス、架橋剤、希釈剤、皮張り防止剤、界面活性剤、乳化剤、分散剤、レベリング剤、消泡剤、浸透剤、造膜助剤、染料、顔料、増粘剤、潤滑剤等を含有することもできる。   The surface treatment composition of the present invention is a wax, a cross-linking agent, a diluent, an anti-skinning agent, a surfactant, an emulsifier, a dispersant, a leveling agent, an antifoaming agent, and a penetrating agent as long as the effects of the present invention are not impaired. , Film-forming aids, dyes, pigments, thickeners, lubricants and the like can also be contained.

本発明の表面処理組成物は、金属板の表面に塗布することができる溶剤系組成物または水系組成物のいずれでも良いが、環境上の問題から、水系組成物であることが好ましい。表面処理組成物は、有機溶剤(溶剤系組成物の場合)または水、好ましくは脱イオン水(水系組成物の場合)、オレフィン−酸共重合体、カルボン酸重合体、ケイ酸リチウム、コロイダルシリカ、シランカップリング剤、メタバナジン酸塩、オキサゾリン基含有共重合体、必要に応じてカルボジイミド基含有化合物またはその他の成分を所定量配合して撹拌することによって調製することができる。   The surface treatment composition of the present invention may be either a solvent-based composition or an aqueous composition that can be applied to the surface of a metal plate, but is preferably an aqueous composition from the viewpoint of environmental problems. The surface treatment composition is an organic solvent (in the case of a solvent-based composition) or water, preferably deionized water (in the case of an aqueous composition), an olefin-acid copolymer, a carboxylic acid polymer, lithium silicate, colloidal silica. , A silane coupling agent, a metavanadate, an oxazoline group-containing copolymer, and, if necessary, a carbodiimide group-containing compound or other components may be blended in a predetermined amount and stirred.

表面処理組成物を調製する際には、オレフィン−酸共重合体とカルボン酸重合体の乳化物(エマルション)に、シランカップリング剤の一部とカルボジイミド基含有化合物を添加し、これらの混合物を調製しておき、これに、ケイ酸リチウム、コロイダルシリカ、残りのグリシジル基含有シランカップリング剤、メタバナジン酸塩、オキサゾリン基含有共重合体を、この順で添加するのが好ましい。オレフィン−酸共重合体およびカルボン酸重合体に、オキサゾリン基含有共重合体を直接添加混合すると、ゲル化することがあり、またシランカップリング剤よりも先にメタバナジン酸塩を添加すると、シランカップリング剤の反応が抑制されることがある。また、シランカップリング剤は、上記のように二度以上に分けて添加することが好ましい。先に添加するシランカップリング剤は、エマルション粒子の微細化や、その結果としての樹脂皮膜の緻密さ向上に寄与し、後に添加するシランカップリング剤は金属板との密着性確保と、皮膜特性の向上に寄与するからである。   When preparing a surface treatment composition, a part of a silane coupling agent and a carbodiimide group-containing compound are added to an emulsion (emulsion) of an olefin-acid copolymer and a carboxylic acid polymer, and these mixtures are added. It is preferable to prepare and add lithium silicate, colloidal silica, the remaining glycidyl group-containing silane coupling agent, metavanadate, and oxazoline group-containing copolymer in this order. When an oxazoline group-containing copolymer is directly added to and mixed with an olefin-acid copolymer and a carboxylic acid polymer, gelation may occur, and when a metavanadate is added prior to the silane coupling agent, The reaction of the ring agent may be suppressed. The silane coupling agent is preferably added in two or more portions as described above. The silane coupling agent added first contributes to the refinement of the emulsion particles and the resulting improvement in the density of the resin film. The silane coupling agent added later ensures adhesion to the metal plate and film characteristics. It is because it contributes to the improvement of.

上記成分の撹拌の際には加熱しても良い。特にオレフィン−酸共重合体をカルボン酸重合体の存在下で乳化する際には、加熱することが好ましい。ただし、オキサゾリン基含有共重合体を配合した後は加熱しない方がよい。オキサゾリン基含有共重合体と、オレフィン−酸共重合体およびカルボン酸重合体との反応により、表面処理組成物がゲル化するのを回避するためである。   You may heat at the time of stirring the said component. In particular, when the olefin-acid copolymer is emulsified in the presence of a carboxylic acid polymer, it is preferably heated. However, it is better not to heat after blending the oxazoline group-containing copolymer. This is to avoid the gelation of the surface treatment composition due to the reaction of the oxazoline group-containing copolymer, the olefin-acid copolymer, and the carboxylic acid polymer.

水系の表面処理組成物を製造する場合、樹脂成分の主成分であるオレフィン−酸共重合体を乳化させることが好ましい。オレフィン−酸共重合体は、乳化剤を使用したり、共重合体中のカルボキシル基を中和することにより、乳化させることができる。乳化剤を使用すると、オレフィン−酸共重合体の水性エマルションの平均粒子径を小さくすることができ、造膜性、およびそれにより樹脂皮膜の緻密さ等を向上させることができる。   When producing an aqueous surface treatment composition, it is preferable to emulsify the olefin-acid copolymer which is the main component of the resin component. The olefin-acid copolymer can be emulsified by using an emulsifier or neutralizing a carboxyl group in the copolymer. If an emulsifier is used, the average particle diameter of the aqueous emulsion of an olefin-acid copolymer can be reduced, and the film-forming property and thereby the density of the resin film can be improved.

ただし、オレフィン−酸共重合体中のカルボキシル基を中和して乳化する方が好ましい。カルボキシル基を中和して乳化することにより、乳化剤の使用量を低減でき、または乳化剤を使用せずに済み、樹脂皮膜の耐水性および耐食性への乳化剤による悪影響を減らす、または無くすことができるからである。オレフィン−酸共重合体中のカルボキシル基を中和する場合、カルボキシル基に対して、好ましくは0.5〜0.95当量程度、より好ましくは0.6〜0.8当量程度の塩基を用いることが好ましい。中和度が少なすぎると、乳化性があまり向上せず、一方、中和度が大きすぎると、オキサゾリン基含有共重合体等と反応するカルボキシル基量が減少して、耐食性等に悪影響が出る場合があり、またオレフィン−酸共重合体を含む組成物の粘度が、高くなりすぎることがある。   However, it is preferable to neutralize and emulsify the carboxyl group in the olefin-acid copolymer. By neutralizing and emulsifying carboxyl groups, the amount of emulsifier used can be reduced, or no emulsifier can be used, and the adverse effect of the emulsifier on the water resistance and corrosion resistance of the resin film can be reduced or eliminated. It is. When neutralizing the carboxyl group in the olefin-acid copolymer, a base of preferably about 0.5 to 0.95 equivalent, more preferably about 0.6 to 0.8 equivalent is used with respect to the carboxyl group. It is preferable. If the degree of neutralization is too small, the emulsifying property will not be improved so much. On the other hand, if the degree of neutralization is too large, the amount of carboxyl groups that react with the oxazoline group-containing copolymer will decrease, resulting in an adverse effect on corrosion resistance and the like. In some cases, the viscosity of the composition containing the olefin-acid copolymer may be too high.

中和のための塩基として、例えばアルカリ金属およびアルカリ土類金属の水酸化物(例えばNaOH、KOH、Ca(OH)2等、好ましくはNaOH)よりなる群から構成される強塩基、アンモニア水、第1級、第2級、第3級アミン(好ましくはトリエチルアミン)を挙げることができる。NaOH等の強塩基を用いると、乳化性は向上するが、多すぎると樹脂皮膜の耐食性が低下するおそれがある。一方、沸点の低いアミン(好ましくは大気圧下での沸点が100℃以下のアミン;例えばトリエチルアミン)は、樹脂皮膜の耐食性をあまり低下させない。この理由として、表面処理組成物を塗布した後、加熱乾燥して樹脂皮膜を形成する際に、低沸点アミンが揮発すること等が考えられる。しかし、アミンは乳化性の向上効果が小さいので、前記強塩基とアミンとを組合せて中和することが好ましい。最適な組み合わせは、NaOHとトリエチルアミンとの組合せである。強塩基とアミンとを組み合わせて用いる場合、オレフィン−酸共重合体のカルボキシル基量に対して、強塩基は0.01〜0.3当量程度使用し、アミンは0.4〜0.8当量程度使用するのが好ましい。 As a base for neutralization, for example, a strong base composed of a group consisting of hydroxides of alkali metals and alkaline earth metals (for example, NaOH, KOH, Ca (OH) 2 etc., preferably NaOH), aqueous ammonia, There may be mentioned primary, secondary and tertiary amines (preferably triethylamine). If a strong base such as NaOH is used, the emulsifying property is improved, but if it is too much, the corrosion resistance of the resin film may be lowered. On the other hand, an amine having a low boiling point (preferably an amine having a boiling point of 100 ° C. or lower under atmospheric pressure; for example, triethylamine) does not significantly reduce the corrosion resistance of the resin film. The reason for this may be that the low boiling point amine volatilizes when a resin film is formed by heating and drying after applying the surface treatment composition. However, since an amine has a small effect of improving emulsifiability, it is preferable to neutralize by combining the strong base and the amine. The optimal combination is a combination of NaOH and triethylamine. When a strong base and an amine are used in combination, the strong base is used in an amount of about 0.01 to 0.3 equivalents and the amine is used in an amount of 0.4 to 0.8 equivalents relative to the amount of carboxyl groups of the olefin-acid copolymer. It is preferable to use a degree.

水系の表面処理組成物を用いる場合、界面張力を低下させ、金属板への濡れ性を向上させるために、少量の有機溶剤を配合しても良い。このための有機溶剤としては、例えばメタノール、エタノール、イソプロパノール、ブタノール類、ヘキサノール、2−エチルヘキサノール、エチレングリコールエチルエーテル、エチレングリコールブチルエーテル、ジエチレングリコール、プロピレングリコール等を挙げることができる。   When an aqueous surface treatment composition is used, a small amount of an organic solvent may be added in order to reduce the interfacial tension and improve the wettability to the metal plate. Examples of the organic solvent for this purpose include methanol, ethanol, isopropanol, butanols, hexanol, 2-ethylhexanol, ethylene glycol ethyl ether, ethylene glycol butyl ether, diethylene glycol, propylene glycol and the like.

表面処理組成物の固形分には、特に限定は無く、金属板への表面処理組成物の塗布方法にあわせて調整すれば良い。表面処理組成物の固形分は、一般に5〜20質量%程度であり、例えばスプレーリンガー法(表面処理組成物を金属板の表面にスプレーした後、ロールで絞る塗布方法)により塗布する場合、10〜18質量%程度が好適である。   There is no limitation in particular in solid content of a surface treatment composition, What is necessary is just to adjust according to the application | coating method of the surface treatment composition to a metal plate. The solid content of the surface treatment composition is generally about 5 to 20% by mass. For example, when the surface treatment composition is applied by a spray ringer method (an application method in which the surface treatment composition is sprayed on the surface of the metal plate and then squeezed with a roll), 10 About -18 mass% is suitable.

本発明で用いる金属板には、特に限定は無く、例えば非めっき冷延鋼板、溶融亜鉛めっき鋼板(GI)、溶融合金化亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)、アルミ板およびチタン板等を挙げることができる。これらの中でも、クロメート処理が行われていない溶融亜鉛めっき鋼板(GI)や溶融合金化亜鉛めっき鋼板(GA)に本発明を適用するのが好ましい。   There is no limitation in particular in the metal plate used by this invention, For example, a non-plating cold-rolled steel plate, hot-dip galvanized steel plate (GI), hot-dip galvanized steel plate (GA), electrogalvanized steel plate (EG), an aluminum plate, and A titanium plate etc. can be mentioned. Among these, it is preferable to apply this invention to the hot dip galvanized steel plate (GI) and the hot galvannealed steel plate (GA) which are not chromated.

本発明において、金属板上に樹脂皮膜を形成する方法および条件には特に限定は無く、既知の塗布方法で、表面処理組成物を金属板表面の片面または両面に塗布し、加熱乾燥することにより樹脂塗装金属板を製造することができる。表面処理組成物の塗布方法として、例えばカーテンフローコーター法、ロールコーター法、スプレー法、スプレーリンガー法等を挙げることができ、これらの中でも、コスト等の観点からスプレーリンガー法が好ましい。また加熱乾燥条件にも特に限定は無く、加熱乾燥温度として50〜120℃程度、好ましくは70〜90℃程度を例示することができる。あまりに高い加熱乾燥温度は、樹脂皮膜が劣化するので好ましくない。   In the present invention, the method and conditions for forming the resin film on the metal plate are not particularly limited, and the surface treatment composition is applied to one or both surfaces of the metal plate surface by a known coating method, followed by heating and drying. A resin-coated metal plate can be manufactured. Examples of the method for applying the surface treatment composition include a curtain flow coater method, a roll coater method, a spray method, and a spray ringer method. Among these, the spray ringer method is preferable from the viewpoint of cost and the like. Moreover, there is no limitation in particular also in heat drying conditions, As heat drying temperature, about 50-120 degreeC, Preferably about 70-90 degreeC can be illustrated. An excessively high heat drying temperature is not preferable because the resin film deteriorates.

樹脂塗装金属板における樹脂皮膜の付着量は、乾燥質量で、好ましくは0.1〜1g/m2、より好ましくは0.3〜0.6g/m2である。付着量が少なすぎると、金属板表面を覆うことが困難となり、ロール成形性や耐食性が大きく損なわれる。一方、付着量が多くなれば、ロール成形性や耐食性は良好となるが、ロール成形時に剥離する皮膜量が増加するため、水切りパッドへの皮膜カスの堆積量が増加して、トラブルの原因となるおそれがあって好ましくない。本発明の樹脂皮膜は、無機成分を多く含み、比重が大きい。このため、樹脂成分リッチな従来の樹脂皮膜に比べ、付着量が同じでも薄膜化に成功している。このことも、皮膜カスの低減に寄与している。 The adhesion amount of the resin film on the resin-coated metal plate is preferably 0.1 to 1 g / m 2 , more preferably 0.3 to 0.6 g / m 2 in terms of dry mass. When the adhesion amount is too small, it becomes difficult to cover the surface of the metal plate, and roll formability and corrosion resistance are greatly impaired. On the other hand, if the amount of adhesion increases, roll formability and corrosion resistance will be good, but the amount of film peeled off during roll forming will increase, so the amount of film residue deposited on the draining pad will increase, causing trouble. This is not preferable. The resin film of the present invention contains many inorganic components and has a large specific gravity. For this reason, compared with the conventional resin film rich in the resin component, even if the adhesion amount is the same, it has succeeded in thinning. This also contributes to the reduction of film residue.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

なお、実施例で用いた特性評価方法は、以下の通りである。   The characteristic evaluation method used in the examples is as follows.

[ロール成形性]
ロール成形性を調べるために、樹脂塗装金属板を40mm×300mmにカットし、長手方向200mmについてベンダーで90度にV曲げを施した。端部100mmはチャックにセットするため曲げずに残した。この試料を垂直に引張試験機にセットし、V曲げ部内側の上端に先端半径R=1mmの凸部を有する治具を当接させ、V曲げ部背面に平板ダイスを当接させ、治具に2940N(300kgf)の負荷を水平方向にかけつつ、試料を上方へ300mm/minで引き抜いた。治具に付いた皮膜をセロハンテープ(ニチバン社製;「セロテープ(登録商標)品番No.405」以下、単にテープという)を貼付してから剥離することで採取すると共に、V曲げ摺動部にもテープを貼付してから剥離して、摺動部から剥離した皮膜を採取した。両方のテープを塩酸と同量の純水との混合液(1+1)に加熱溶解させた。この試料溶液を用いて、誘導結合プラズマ(ICP)発光分析法でZn元素の定量分析を実施し、下記基準で評価した。なお、皮膜成分であるSi元素の分析は剥離の絶対量が少なく、分析感度が不足して誤差を生じやすいため、実施しなかった。また、このロール成形性の評価方法は、実機でのロール成形性と相関性が高いことが本発明者らによって確認されている。
◎:試料溶液中のZn濃度2mg/l未満
○:試料溶液中のZn濃度2mg/l以上、5mg/l未満
△:試料溶液中のZn濃度5mg/l以上、10mg/l未満
×:試料溶液中のZn濃度10mg/l以上
[Roll formability]
In order to examine the roll formability, the resin-coated metal plate was cut into 40 mm × 300 mm, and V-bent was performed at 90 degrees with a bender in a longitudinal direction of 200 mm. The end 100 mm was left unbent for setting on the chuck. This sample is set vertically in a tensile tester, a jig having a convex portion with a tip radius R = 1 mm is brought into contact with the upper end inside the V-bending part, and a flat plate die is brought into contact with the back surface of the V-bending part. The sample was pulled upward at 300 mm / min while applying a load of 2940 N (300 kgf) to the horizontal direction. The film attached to the jig is collected by attaching cellophane tape (manufactured by Nichiban Co., Ltd .; “Cellotape (registered trademark) product number No. 405” or less, simply referred to as tape) and then peeling off, and is applied to the V-bending sliding part. Also, the film was peeled off after applying the tape, and the film peeled off from the sliding part was collected. Both tapes were dissolved by heating in a mixed solution (1 + 1) of hydrochloric acid and the same amount of pure water. Using this sample solution, quantitative analysis of Zn element was performed by inductively coupled plasma (ICP) emission spectrometry, and the following criteria were evaluated. The analysis of the Si element, which is a film component, was not performed because the absolute amount of peeling was small and the analysis sensitivity was insufficient and an error was likely to occur. In addition, the present inventors have confirmed that this roll formability evaluation method is highly correlated with roll formability in an actual machine.
A: Zn concentration in sample solution is less than 2 mg / l. O: Zn concentration in sample solution is 2 mg / l or more and less than 5 mg / l. Δ: Zn concentration in sample solution is 5 mg / l or more and less than 10 mg / l. Zn concentration of 10mg / l or more

[平板耐食性]
JIS Z2371に基づいて塩水噴霧試験を実施して、白錆発生率(100×白錆が発生した面積/供試材の全面積)が5%になるまでの時間を測定した。
[Flat corrosion resistance]
A salt spray test was carried out based on JIS Z2371, and the time until the white rust occurrence rate (100 × area where white rust occurred / total area of the test material) reached 5% was measured.

[クロスカット耐食性]
疵部の耐食性を調べるため、供試材にカッターナイフでクロスカットを入れ、JIS Z2371に基づいて塩水噴霧試験を実施して、白錆発生率が10%になるまでの時間を測定した。
[Cross-cut corrosion resistance]
In order to investigate the corrosion resistance of the buttocks, a cross cut was put into the test material with a cutter knife, a salt spray test was performed based on JIS Z2371, and the time until the white rust occurrence rate reached 10% was measured.

[JASOサイクル試験での耐食性]
JIS H8502に基づき、JASOサイクル試験を行った。1サイクルは、塩水噴霧(温度35℃×2時間)→乾燥(温度35℃×湿度30%以下×4時間)→湿潤(温度50℃×湿度95%以上×2時間)である(それぞれ移行時間を含む。)。15サイクル実施した後に、白錆発生率を下記基準で評価した。
◎:白錆発生率5%未満
○:白錆発生率5%以上〜10%未満
△:白錆発生率10%以上〜20%未満
×:白錆発生率20%以上
[Corrosion resistance in JASO cycle test]
A JASO cycle test was conducted based on JIS H8502. 1 cycle is salt spray (temperature 35 ° C. × 2 hours) → drying (temperature 35 ° C. × humidity 30% or less × 4 hours) → wetting (temperature 50 ° C. × humidity 95% or more × 2 hours) (each transition time) including.). After carrying out 15 cycles, the white rust occurrence rate was evaluated according to the following criteria.
◎: White rust occurrence rate of less than 5% ○: White rust occurrence rate of 5% to less than 10% △: White rust occurrence rate of 10% to less than 20% ×: White rust occurrence rate of 20% or more

[塗膜密着性]
樹脂塗装金属板に、アクリル系塗料(上塗り)を乾燥後の塗膜厚が20μmになるようにバーコート塗装を実施し、160℃で20分間焼き付けて、後塗装を行った。続いて、この供試材を沸騰水に1時間浸漬した後、取り出して1時間放置した後に、カッターナイフで1mm升目の碁盤目を100升刻み、これにテープ剥離試験を実施して、塗膜の残存升目数によって塗膜密着性を下記基準で評価した。
◎:塗膜残存率100%
○:塗膜残存率 99%以下〜90%以上
△:塗膜残存率 89%以下〜80%以上
×:塗膜残存率 79%以下
[Coating film adhesion]
Bar coating was applied to a resin-coated metal plate so that the coating thickness after drying the acrylic paint (top coating) was 20 μm, followed by baking at 160 ° C. for 20 minutes for post-coating. Subsequently, after immersing this test material in boiling water for 1 hour, taking it out and leaving it to stand for 1 hour, 100 mm of a 1 mm square grid was cut with a cutter knife, and a tape peeling test was carried out on this. The coating film adhesion was evaluated according to the following criteria based on the number of remaining squares.
A: Coating film remaining rate 100%
○: Coating film remaining rate 99% or less to 90% or more Δ: Coating film remaining rate 89% or less to 80% or more ×: Coating film remaining rate 79% or less

実施例1
攪拌機、温度計、温度コントローラーを備えた内容量1.0Lの乳化設備を有するオートクレイブに、エチレン−アクリル酸共重合体(ダウケミカル社製「プリマコール(登録商標)5990I」、アクリル酸由来の構成単位:20質量%、質量平均分子量(Mw):20,000、メルトインデックス:1300、酸価:150)200.0g、ポリマレイン酸水溶液(日本油脂社製「ノンポール(登録商標)PMA−50W」、Mw:約1100(ポリスチレン換算)、50質量%品)8.0g、トリエチルアミン35.5g(エチレン−アクリル酸共重合体のカルボキシル基に対して0.63当量)、48%NaOH水溶液6.9g(エチレン−アクリル酸共重合体のカルボキシル基に対して0.15当量)、トール油脂肪酸(ハリマ化成社製「ハートールFA3」)3.5g、イオン交換水792.6gを加えて密封し、150℃および5気圧で3時間高速攪拌してから、30℃まで冷却した。次いでグリシジル基含有シランカップリング剤(モメンティブ・パフォーマンス・マテリアルズ(旧社名:GE東芝シリコーン)社製「TSL8350」、γ−グリシドキシプロピルトリメトキシシラン)10.4g、カルボジイミド基含有化合物(日清紡社製「カルボジライト(登録商標)SV−02」、ポリカルボジイミド、Mw:2,700、固形分40質量%)31.2g、イオン交換水72.8gを添加し、10分間攪拌して、エマルションNo.1を調製した(固形分20.3質量%、JIS K6833に準じて測定)。
Example 1
To an autoclave having an emulsification facility with an internal capacity of 1.0 L equipped with a stirrer, a thermometer and a temperature controller, an ethylene-acrylic acid copolymer ("Primacol (registered trademark) 5990I" manufactured by Dow Chemical Co., Ltd.), derived from acrylic acid Structural unit: 20% by mass, mass average molecular weight (Mw): 20,000, melt index: 1300, acid value: 150) 200.0 g, polymaleic acid aqueous solution (Non-Paul (registered trademark) PMA-50W manufactured by NOF Corporation) , Mw: about 1100 (polystyrene conversion), 50% by mass product) 8.0 g, triethylamine 35.5 g (0.63 equivalent to the carboxyl group of the ethylene-acrylic acid copolymer), 6.9 g of 48% NaOH aqueous solution (0.15 equivalent to the carboxyl group of the ethylene-acrylic acid copolymer), tall oil fatty acid (harima Narusha made "HARTALL FA3") 3.5 g, and sealed with ion exchange water 792.6G, after 3 hours stirred at high speed 0.99 ° C. and 5 atm, and cooled to 30 ° C.. Next, 10.4 g of glycidyl group-containing silane coupling agent (Momentive Performance Materials (former name: GE Toshiba Silicone) “TSL8350”, γ-glycidoxypropyltrimethoxysilane), carbodiimide group-containing compound (Nisshinbo Co., Ltd.) “Carbodilite (registered trademark) SV-02” manufactured by Polycarbodiimide, Mw: 2,700, solid content 40 mass%) 31.2 g and ion-exchanged water 72.8 g were added and stirred for 10 minutes. 1 (solid content 20.3% by mass, measured according to JIS K6833).

SiO2/Li2Oモル比が4.5のケイ酸リチウム(日産化学工業社製「リチウムシリケート45」)と、コロイダルシリカ(日産化学工業社製「スノーテックス(登録商標)XS」、表面積平均粒子径(カタログ値):4〜6nm)とを、質量比で90:10となるように混合して、無機成分を調製した。 Lithium silicate having a SiO 2 / Li 2 O molar ratio of 4.5 (“Lithium silicate 45” manufactured by Nissan Chemical Industries) and colloidal silica (“Snowtex (registered trademark) XS” manufactured by Nissan Chemical Industries, Ltd.), surface area average The particle size (catalog value): 4 to 6 nm) was mixed so that the mass ratio was 90:10 to prepare an inorganic component.

エマルションNo.1に上記無機成分を添加し、両者をよく混合した後、グリシジル基含有シランカップリング剤(信越化学社製「KBM403」、γ−グリシドキシプロピルトリエトキシシラン)、次いで、メタバナジン酸ナトリウム(新興化学工業社製「メタバナジン酸ソーダ」)を加えた。この混合物に、さらに、オキサゾリン基含有共重合体(日本触媒社製「エポクロス(登録商標)K−2030E」、固形分40質量%)を加え、表面処理組成物No.1を調製した。   Emulsion No. After adding the above inorganic components to 1 and mixing them well, a glycidyl group-containing silane coupling agent (“KBM403” manufactured by Shin-Etsu Chemical Co., Ltd., γ-glycidoxypropyltriethoxysilane), then sodium metavanadate (Emerging) "Sodium metavanadate" manufactured by Chemical Industry Co., Ltd.) was added. To this mixture, an oxazoline group-containing copolymer (“Epocross (registered trademark) K-2030E” manufactured by Nippon Shokubai Co., Ltd., solid content: 40% by mass) was further added. 1 was prepared.

なお、表1中の樹脂成分の量は、エマルションNo.1中の全固形分と、オキサゾリン基含有共重合体との混合物の量に相当する。オキサゾリン基含有共重合体は、エチレン−アクリル酸共重合体とポリマレイン酸の合計量100質量部に対し、5質量部添加した。無機成分と樹脂成分の合計100質量部に対し、グリシジル基含有シランカップリング剤(信越化学社製「KBM403」)が15質量部、メタバナジン酸ナトリウムが5質量部となるようにそれぞれ添加した。   The amount of the resin component in Table 1 is the emulsion No. This corresponds to the amount of the mixture of the total solid content in 1 and the oxazoline group-containing copolymer. The oxazoline group-containing copolymer was added in an amount of 5 parts by mass with respect to 100 parts by mass of the total amount of the ethylene-acrylic acid copolymer and polymaleic acid. A total of 100 parts by mass of the inorganic component and the resin component was added so that the glycidyl group-containing silane coupling agent (“KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) was 15 parts by mass and sodium metavanadate was 5 parts by mass.

金属板として、アルカリ脱脂した溶融亜鉛めっき鋼板(Zn付着量45g/m2)を使用し、鋼板の表面に表面処理組成物No.1をバーコート(バーNo.3)にて塗布し、板温90℃で約12秒加熱乾燥して、樹脂皮膜付着量が0.5g/m2の樹脂塗装金属板No.1を製造した。 As the metal plate, an alkali degreased hot dip galvanized steel plate (Zn adhesion amount 45 g / m 2 ) was used. 1 was applied to by a bar coating (bar No.3), and about 12 seconds heat dried at a sheet temperature 90 ° C., the resin film coating weight of the resin coated metal sheet of 0.5 g / m 2 No. 1 was produced.

実施例2〜8と比較例1〜4
無機成分と樹脂成分の比率を表1に示したように変えた以外は実施例1と同様にして、表面処理組成物No.2〜12を調製し、樹脂塗装金属板No.2〜12を製造した。樹脂塗装金属板No.2〜8は実施例2〜8、樹脂塗装金属板No.9〜12は、無機成分と樹脂成分との質量比が本発明の請求項1の要件を外れている比較例1〜4である。評価結果を表1に併記した。
Examples 2-8 and Comparative Examples 1-4
In the same manner as in Example 1 except that the ratio of the inorganic component and the resin component was changed as shown in Table 1, the surface treatment composition No. 2 to 12 were prepared, and the resin-coated metal plate No. 2-12 were produced. Resin coated metal plate No. 2 to 8 are Examples 2 to 8, resin-coated metal plate Nos. 9 to 12 are Comparative Examples 1 to 4 in which the mass ratio between the inorganic component and the resin component deviates from the requirement of claim 1 of the present invention. The evaluation results are also shown in Table 1.

Figure 2009061608
Figure 2009061608

実施例9〜13と比較例5〜7
エマルションNo.1中のエチレン−アクリル酸共重合体とポリマレイン酸の合計100質量部(固形分)に対するオキサゾリン基含有共重合体の量を表2に示したように変更した。無機成分と樹脂成分の比率は90質量部:10質量部の一定とした。それ以外は実施例1と同様にして樹脂塗装金属板を製造した。評価結果を表2に示した。
Examples 9-13 and Comparative Examples 5-7
Emulsion No. As shown in Table 2, the amount of the oxazoline group-containing copolymer relative to 100 parts by mass (solid content) of the ethylene-acrylic acid copolymer and polymaleic acid in 1 was changed. The ratio of the inorganic component and the resin component was constant at 90 parts by mass: 10 parts by mass. Otherwise, a resin-coated metal plate was produced in the same manner as in Example 1. The evaluation results are shown in Table 2.

Figure 2009061608
Figure 2009061608

実施例14〜20と比較例8〜11
無機成分と樹脂成分の比率を90質量部:10質量部とし、両者の合計100質量部(固形分)に対する後添加のグリシジル基含有シランカップリング剤(信越化学社製「KBM403」)の量を表3に示したように変更した。それ以外は実施例1と同様にして樹脂塗装金属板を製造した。評価結果を表3に示した。
Examples 14-20 and Comparative Examples 8-11
The ratio of the inorganic component and the resin component is 90 parts by mass: 10 parts by mass, and the amount of the post-added glycidyl group-containing silane coupling agent (“KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) relative to the total of 100 parts by mass (solid content) of both Changes were made as shown in Table 3. Otherwise, a resin-coated metal plate was produced in the same manner as in Example 1. The evaluation results are shown in Table 3.

Figure 2009061608
Figure 2009061608

実施例21〜29と比較例12〜15
無機成分と樹脂成分の比率を90質量部:10質量部とし、両者の合計100質量部(固形分)に対するメタバナジン酸塩の種類と量を表4に示したように変更した。それ以外は実施例1と同様にして樹脂塗装金属板を製造した。評価結果を表4に示した。
Examples 21-29 and Comparative Examples 12-15
The ratio of the inorganic component and the resin component was 90 parts by mass: 10 parts by mass, and the type and amount of metavanadate with respect to 100 parts by mass (solid content) of both were changed as shown in Table 4. Otherwise, a resin-coated metal plate was produced in the same manner as in Example 1. The evaluation results are shown in Table 4.

Figure 2009061608
Figure 2009061608

実施例30〜33と参考例1〜3
無機成分中のケイ酸リチウムとコロイダルシリカの量比を表5に示したように変更した。無機成分と樹脂成分の比率は90質量部:10質量部の一定とした。それ以外は実施例1と同様にして樹脂塗装金属板を製造した。実施例30〜33は、ケイ酸リチウムとコロイダルシリカの量比が本発明の好ましい範囲を満たす例であり、参考例1〜3は、ケイ酸リチウムとコロイダルシリカの量比が本発明の好ましい範囲から外れる例である。
Examples 30 to 33 and Reference Examples 1 to 3
The amount ratio of lithium silicate and colloidal silica in the inorganic component was changed as shown in Table 5. The ratio of the inorganic component and the resin component was constant at 90 parts by mass: 10 parts by mass. Otherwise, a resin-coated metal plate was produced in the same manner as in Example 1. Examples 30 to 33 are examples in which the amount ratio of lithium silicate to colloidal silica satisfies the preferred range of the present invention, and in Reference Examples 1 to 3, the amount ratio of lithium silicate to colloidal silica is the preferred range of the present invention. This is an example that deviates from the above.

Figure 2009061608
Figure 2009061608

実施例34〜35と参考例4〜5
無機成分中のコロイダルシリカの表面積平均粒子径(nm)を表6に示したように変更した。無機成分と樹脂成分の比率は90質量部:10質量部の一定とした。それ以外は実施例1と同様にして樹脂塗装金属板を製造した。実施例34〜35は、コロイダルシリカの表面積平均粒子径が本発明の好ましい範囲を満たす例であり、参考例4〜5は、表面積平均粒子径が本発明の好ましい範囲から外れる例である。なお参考例4のコロイダルシリカは、日産化学工業社製「スノーテックス(登録商標)XL」であり、参考例5のコロイダルシリカは、日産化学工業社製「スノーテックス(登録商標)ZL」である。
Examples 34 to 35 and Reference Examples 4 to 5
The surface area average particle diameter (nm) of colloidal silica in the inorganic component was changed as shown in Table 6. The ratio of the inorganic component and the resin component was constant at 90 parts by mass: 10 parts by mass. Otherwise, a resin-coated metal plate was produced in the same manner as in Example 1. Examples 34 to 35 are examples in which the surface area average particle diameter of colloidal silica satisfies the preferable range of the present invention, and Reference Examples 4 to 5 are examples in which the surface area average particle diameter deviates from the preferable range of the present invention. The colloidal silica of Reference Example 4 is “Snowtex (registered trademark) XL” manufactured by Nissan Chemical Industries, Ltd. The colloidal silica of Reference Example 5 is “Snowtex (registered trademark) ZL” manufactured by Nissan Chemical Industries, Ltd. .

Figure 2009061608
Figure 2009061608

実施例36〜43と参考例6〜8
無機成分と樹脂成分の比率を90質量部:10質量部の一定とし、樹脂皮膜の付着量を表7に示したように変更した以外は実施例1と同様にして樹脂塗装金属板を製造した。実施例36〜43は、皮膜の付着量が本発明の好ましい範囲を満たす例であり、参考例6〜8は皮膜付着量が本発明の好ましい範囲から外れる例である。なお合金化溶融Znめっき鋼板の亜鉛付着量は45g/m2であり、実施例1と同様アルカリ脱脂してから用いた。
Examples 36-43 and Reference Examples 6-8
A resin-coated metal plate was produced in the same manner as in Example 1 except that the ratio of the inorganic component to the resin component was constant at 90 parts by mass and 10 parts by mass, and the amount of the resin film adhered was changed as shown in Table 7. . Examples 36 to 43 are examples in which the coating amount satisfies the preferable range of the present invention, and Reference Examples 6 to 8 are examples in which the coating amount deviates from the preferable range of the present invention. In addition, the zinc adhesion amount of the alloyed hot-dip Zn-plated steel sheet was 45 g / m 2 and was used after alkali degreasing as in Example 1.

Figure 2009061608
Figure 2009061608

実施例44〜46と参考例9〜10
無機成分と樹脂成分の比率を90質量部:10質量部の一定とし、ケイ酸リチウムのSiO2/Li2Oモル比を表8に示したように変更した以外は実施例1と同様にして樹脂塗装金属板を製造した。実施例44〜46は、SiO2/Li2Oモル比が本発明の好ましい範囲を満たす例であり、参考例9〜10は、SiO2/Li2Oモル比が本発明の好ましい範囲から外れる例である。なお、SiO2/Li2Oモル比が2.6と8.0のものはメーカー試作品であり、市販はされていない。
Examples 44 to 46 and Reference Examples 9 to 10
The ratio of the inorganic component and the resin component was constant at 90 parts by mass: 10 parts by mass, and the SiO 2 / Li 2 O molar ratio of lithium silicate was changed as shown in Table 8 in the same manner as in Example 1. A resin-coated metal plate was produced. Examples 44 to 46 are examples in which the SiO 2 / Li 2 O molar ratio satisfies the preferable range of the present invention, and in Reference Examples 9 to 10, the SiO 2 / Li 2 O molar ratio deviates from the preferable range of the present invention. It is an example. It should be noted that the SiO 2 / Li 2 O molar ratio is 2.6 and 8.0 of those is a manufacturer prototype, commercially available have not been.

Figure 2009061608
Figure 2009061608

表1〜8から明らかなように、本発明の実施例は、ロール成形性に優れ、耐食性も良好であり、塗膜密着性にも優れていた。   As is clear from Tables 1 to 8, the examples of the present invention were excellent in roll formability, good corrosion resistance, and excellent coating film adhesion.

本発明の樹脂塗装金属板は、耐食性とロール成形性に優れているので、自動車、家電製品、建材等に好適に用いることができる。   Since the resin-coated metal plate of the present invention is excellent in corrosion resistance and roll formability, it can be suitably used for automobiles, home appliances, building materials and the like.

Claims (5)

表面処理組成物から得られる樹脂皮膜を備えた樹脂塗装金属板であって、
表面処理組成物が、ケイ酸リチウムおよびコロイダルシリカからなる無機成分を60〜95質量部と、オレフィン−α,β−不飽和カルボン酸共重合体およびα,β−不飽和カルボン酸重合体の合計100質量部に対し、オキサゾリン基含有共重合体を1〜9質量部含有する樹脂成分を5〜40質量部含有すると共に、
無機成分と樹脂成分との合計100質量部に対し、さらに、グリシジル基含有シランカップリング剤7〜35質量部とメタバナジン酸塩0.5〜7質量部を含有することを特徴とするロール成形性に優れた樹脂塗装金属板。
A resin-coated metal plate provided with a resin film obtained from a surface treatment composition,
60 to 95 parts by mass of an inorganic component composed of lithium silicate and colloidal silica, and a total of olefin-α, β-unsaturated carboxylic acid copolymer and α, β-unsaturated carboxylic acid polymer While containing 5 to 40 parts by mass of a resin component containing 1 to 9 parts by mass of an oxazoline group-containing copolymer with respect to 100 parts by mass,
Roll formability characterized by further containing 7 to 35 parts by mass of a glycidyl group-containing silane coupling agent and 0.5 to 7 parts by mass of metavanadate with respect to 100 parts by mass in total of the inorganic component and the resin component. Excellent resin-coated metal plate.
上記表面処理組成物中のケイ酸リチウムとコロイダルシリカは、質量比率で95:5〜80:20である請求項1に記載の樹脂塗装金属板。   The resin-coated metal plate according to claim 1, wherein the lithium silicate and colloidal silica in the surface treatment composition have a mass ratio of 95: 5 to 80:20. 上記コロイダルシリカの表面積平均粒子径が、4〜20nmである請求項1または2に記載の樹脂塗装金属板。   The resin-coated metal sheet according to claim 1 or 2, wherein the colloidal silica has a surface area average particle diameter of 4 to 20 nm. 上記表面処理組成物が、該組成物中のオレフィン−α,β−不飽和カルボン酸共重合体およびα,β−不飽和カルボン酸重合体の合計を100質量部としたときに、この100質量部に対し、さらに、カルボジイミド基含有化合物を0.1〜30質量部の比率で含有する請求項1〜3のいずれかに記載の樹脂塗装金属板。   When the surface treatment composition is 100 parts by mass when the total of the olefin-α, β-unsaturated carboxylic acid copolymer and α, β-unsaturated carboxylic acid polymer in the composition is 100 parts by mass. The resin-coated metal plate according to any one of claims 1 to 3, further comprising a carbodiimide group-containing compound at a ratio of 0.1 to 30 parts by mass with respect to parts. 上記樹脂皮膜の付着量は、乾燥質量で0.1〜1g/m2である請求項1〜4のいずれかに記載の樹脂塗装金属板。 The resin-coated metal sheet according to any one of claims 1 to 4, wherein an adhesion amount of the resin film is 0.1 to 1 g / m 2 in terms of dry mass.
JP2007229395A 2007-09-04 2007-09-04 Resin-coated metal plate with excellent roll formability Expired - Fee Related JP4810515B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007229395A JP4810515B2 (en) 2007-09-04 2007-09-04 Resin-coated metal plate with excellent roll formability
CN2008101450113A CN101381540B (en) 2007-09-04 2008-08-01 Resin coating metal plate with excellent roller formability
TW097129413A TWI437055B (en) 2007-09-04 2008-08-01 Resin-coated metal plate excellent in roll forming property
KR1020080087186A KR100985688B1 (en) 2007-09-04 2008-09-04 Resin-coated metal plate excellent in roll forming property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229395A JP4810515B2 (en) 2007-09-04 2007-09-04 Resin-coated metal plate with excellent roll formability

Publications (2)

Publication Number Publication Date
JP2009061608A true JP2009061608A (en) 2009-03-26
JP4810515B2 JP4810515B2 (en) 2011-11-09

Family

ID=40461603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229395A Expired - Fee Related JP4810515B2 (en) 2007-09-04 2007-09-04 Resin-coated metal plate with excellent roll formability

Country Status (4)

Country Link
JP (1) JP4810515B2 (en)
KR (1) KR100985688B1 (en)
CN (1) CN101381540B (en)
TW (1) TWI437055B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092837A (en) * 2009-10-28 2011-05-12 Kobe Steel Ltd Metal plate coated with resin
JPWO2015152187A1 (en) * 2014-04-04 2017-04-13 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent for galvanized steel, coating method and coated steel
TWI659831B (en) * 2016-03-30 2019-05-21 神戶製鋼所股份有限公司 Non-condensing thermoplastic resin followed by chemically treated metal plate, non-condensed thermoplastic resin followed by surface-treated metal plate, composite material, and manufacturing method of non-condensed thermoplastic resin followed by chemically treated metal plate
KR20190068551A (en) * 2016-10-14 2019-06-18 시쓰리나노 인크 Stabilized sparse metal conductive films and solutions for the delivery of stabilizing compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250405B2 (en) * 2014-01-09 2017-12-20 株式会社神戸製鋼所 Resin-coated metal plate and fin material for heat exchanger comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330638A (en) * 1991-04-30 1992-11-18 Sony Corp Production of magnetic disk
JPH10140370A (en) * 1996-11-07 1998-05-26 Kobe Steel Ltd Surface-treated metallic sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102241A (en) * 1991-09-12 1995-04-18 Dainippon Toryo Co Ltd Sealer for porous inorganic substrate
US5574083A (en) * 1993-06-11 1996-11-12 Rohm And Haas Company Aromatic polycarbodiimide crosslinkers
ES2220446T3 (en) * 1999-03-18 2004-12-16 Akzo Nobel Coatings International B.V. COMPOSITION OF COATING FOR METAL SUBSTRATES.
KR100489663B1 (en) * 2002-12-21 2005-05-17 주식회사 디피아이 Aqueous Inorganic Transparent Paint Composition
TW200502432A (en) * 2003-07-08 2005-01-16 Nippon Paint Co Ltd Inorganic-organic composite-treated zinc-plated steel sheet
JP4197487B2 (en) 2003-11-28 2008-12-17 株式会社神戸製鋼所 Resin film laminated metal plate with excellent lubricity and alkali film removal
JP4596122B2 (en) 2004-02-06 2010-12-08 株式会社神戸製鋼所 Metal surface treatment containing water-based resin emulsion
JP4398827B2 (en) * 2004-02-06 2010-01-13 株式会社神戸製鋼所 Resin coated metal plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330638A (en) * 1991-04-30 1992-11-18 Sony Corp Production of magnetic disk
JPH10140370A (en) * 1996-11-07 1998-05-26 Kobe Steel Ltd Surface-treated metallic sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092837A (en) * 2009-10-28 2011-05-12 Kobe Steel Ltd Metal plate coated with resin
JPWO2015152187A1 (en) * 2014-04-04 2017-04-13 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent for galvanized steel, coating method and coated steel
TWI659831B (en) * 2016-03-30 2019-05-21 神戶製鋼所股份有限公司 Non-condensing thermoplastic resin followed by chemically treated metal plate, non-condensed thermoplastic resin followed by surface-treated metal plate, composite material, and manufacturing method of non-condensed thermoplastic resin followed by chemically treated metal plate
KR20190068551A (en) * 2016-10-14 2019-06-18 시쓰리나노 인크 Stabilized sparse metal conductive films and solutions for the delivery of stabilizing compounds
JP2019537820A (en) * 2016-10-14 2019-12-26 シー3ナノ・インコーポレイテッドC3Nano Inc. Stabilized thin spread metal conductive film and solution for supply of stabilizing compound
JP7041674B2 (en) 2016-10-14 2022-03-24 シー3ナノ・インコーポレイテッド Stabilized, thinly spread metal conductive film, and solution for the supply of stabilizing compounds
KR102502830B1 (en) 2016-10-14 2023-02-22 시쓰리나노 인크 Solutions for the delivery of stabilized sparse metal conductive films and stabilizing compounds

Also Published As

Publication number Publication date
TW200927848A (en) 2009-07-01
KR100985688B1 (en) 2010-10-05
CN101381540A (en) 2009-03-11
JP4810515B2 (en) 2011-11-09
KR20090024649A (en) 2009-03-09
CN101381540B (en) 2011-04-27
TWI437055B (en) 2014-05-11

Similar Documents

Publication Publication Date Title
KR101070966B1 (en) Surface-treated metal material and metal surface treating agent
JP5185911B2 (en) Resin coated metal plate
TWI473906B (en) Surface-treated metal sheet having excellent corrosion resistance and conductivity
JP4330638B2 (en) Resin-coated metal plate and surface treatment composition for producing the same
CN105814236B (en) The preparation method of surface treating agent for metallic materials, surface-treated metal material
JP6923433B2 (en) Painted galvanized steel sheet
JP6923432B2 (en) Painted galvanized steel sheet
JP4810515B2 (en) Resin-coated metal plate with excellent roll formability
KR100985627B1 (en) Resin-coated metal plate and surface treatment composition for producing same
JP5808626B2 (en) Chemical conversion treated steel sheet and method for producing the same
JP5469577B2 (en) Chemical conversion treated steel sheet and method for producing the same
JP7112350B2 (en) Painted galvanized steel sheet
JP5503165B2 (en) Resin-coated metal plate with excellent film peeling resistance during roll forming
CN108699704B (en) Surface-treated zinc-based steel sheet having excellent appearance
JP6946377B2 (en) Resin coated metal plate
JP2016175257A (en) Resin coated metal plate
WO2019188460A1 (en) Coated galvanized steel sheet
KR20190039548A (en) Surface-treated metal plate, and method of manufacturing surface-treated metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4810515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees