WO2017159121A1 - Valve timing control device for internal combustion engine and method for attaching valve timing control device - Google Patents

Valve timing control device for internal combustion engine and method for attaching valve timing control device Download PDF

Info

Publication number
WO2017159121A1
WO2017159121A1 PCT/JP2017/004329 JP2017004329W WO2017159121A1 WO 2017159121 A1 WO2017159121 A1 WO 2017159121A1 JP 2017004329 W JP2017004329 W JP 2017004329W WO 2017159121 A1 WO2017159121 A1 WO 2017159121A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
valve timing
timing control
control device
housing
Prior art date
Application number
PCT/JP2017/004329
Other languages
French (fr)
Japanese (ja)
Inventor
邦長 初谷
佐藤 健治
厳典 市野澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201780010231.2A priority Critical patent/CN108603422B/en
Priority to JP2018505337A priority patent/JP6685382B2/en
Priority to US16/084,688 priority patent/US20190085735A1/en
Publication of WO2017159121A1 publication Critical patent/WO2017159121A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34456Locking in only one position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/01Tools for producing, mounting or adjusting, e.g. some part of the distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/02Initial camshaft settings

Definitions

  • the present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening and closing timing of an intake valve and an exhaust valve according to the engine operating state, and a method for mounting the valve timing control device.
  • Patent Document 1 As a conventional valve timing control device for an internal combustion engine, one described in Patent Document 1 below is known.
  • This valve timing control device includes a cylindrical housing to which a rotational force is transmitted from a crankshaft, and a vane rotor having a cylindrical rotor provided inside the housing and bolted to the camshaft by a cam bolt. ing. And the opening / closing timing (valve timing) of the intake valve or the exhaust valve is variably controlled by changing the relative rotational phase of the vane rotor with respect to the housing.
  • the valve timing control device has a plurality of rectangular grooves formed on the inner peripheral wall on the opposite side of the rotor camshaft.
  • Each of the grooves is formed so that a protrusion of a holding tool that restricts the rotation of the rotor can be engaged when fastening the bolt, and each contact surface that contacts the protrusion is substantially in the radial direction of the rotor. It is formed in a planar shape along.
  • the present invention has been devised in view of the above-described conventional technical problems, and suppresses the deformation associated with the rotation suppression while suppressing the rotation of the vane rotor when the vane rotor is bolted to the camshaft. It is an object of the present invention to provide an obtained valve timing control device and a mounting method of the valve timing control device.
  • the present invention includes a housing to which rotational force is transmitted from a crankshaft, a vane rotor provided inside the housing and having a cylindrical rotor fastened and fixed to the camshaft by cam bolts, and the rotor opposite to the camshaft. And a groove portion having one side surface opposite to the fastening direction of the cam bolt, and the one side surface is a rotation axis of the vane rotor and an inner circumferential end of the one side of the rotor. An end edge on the outer peripheral side of the one side surface is opposite to a fastening direction side of the cam bolt from a virtual surface formed by connecting the edge.
  • FIG. 5 is an overall configuration diagram showing the valve timing control device according to the first embodiment of the present invention, taken along line AA in FIG. 4. It is a disassembled perspective view of the valve timing control device. It is a perspective view of the valve timing control device. It is a front view of the valve timing control device showing the state in which the valve timing is controlled to the retard side, with the front plate removed. It is a front view of the valve timing control device showing the state in which the valve timing is controlled to the advance side, with the front plate removed. It is an enlarged view of the support line B part of FIG. It is a front view of the valve timing control device. It is a principal part enlarged view which shows the groove part of the vane rotor which concerns on this embodiment.
  • FIG. 1 is a front view of a holding tool
  • FIG. 2 is a side view of a holding tool.
  • FIG. 2 is a figure which shows the 1st process at the time of attaching a valve timing control apparatus to a camshaft.
  • FIG. 2 is a figure which shows the 2nd process and 3rd process at the time of attaching a valve timing control apparatus to a camshaft.
  • It is the schematic which shows the rotational force which arises between a vane rotor and a holding tool in a 3rd process, and the reaction force of this rotational force with a vector.
  • It is a principal part enlarged view which shows the groove part of the valve timing control apparatus which concerns on 2nd Embodiment of this invention.
  • valve timing control device for an internal combustion engine according to the present invention
  • the valve timing control device is applied to the intake valve side of the internal combustion engine.
  • the valve timing control device according to the present embodiment is provided so as to be rotatable relative to the sprocket 1 and a sprocket 1 that is rotationally driven via a timing chain by a crankshaft (not shown).
  • a camshaft 2 a phase conversion mechanism 3 disposed between the sprocket 1 and the camshaft 2 for converting the relative rotational phases of the two 1 and 2, and the phase conversion mechanism 3 operated based on hydraulic supply / discharge.
  • a hydraulic circuit 4 to be operated.
  • the sprocket 1 is integrally formed with a housing body 11 to be described later, and integrally has a plurality of gear portions 1a around which the timing chain is wound.
  • the camshaft 2 is rotatably supported by a cylinder head (not shown) via a cam bearing, and opens an intake valve (not shown) against a spring force of a valve spring at a predetermined axial position on the outer peripheral surface.
  • a plurality of drive cams having a cam profile of the shape are integrally provided, and a bolt hole 6 into which the cam bolt 5 is inserted and screwed is formed in the inner axial direction of the one end portion 2a.
  • the cam bolt 5 is formed on a hexagonal head portion 5a, a shaft portion 5c integrally provided at one end portion of the head portion 5a via a flange-shaped seat portion 5b, and an outer periphery of a tip portion of the shaft portion 5c.
  • the screw hole 5d is screwed into the bolt hole 6 by rotating in the clockwise direction in FIG. 7 (hereinafter referred to as the bolt fastening direction D). It comes to wear.
  • the bolt hole 6 is formed with a female screw part 6a into which the male screw part 5d of the cam bolt 5 is screwed on the bottom side, and a part on the opening side of the female screw part 6a is larger than the outer diameter of the shaft part 5c.
  • An annular oil passage 27c which is a part of a retarding passage 27 described later, is formed between the inner peripheral surface of the bolt hole 6 and the outer peripheral surface of the shaft portion 5c.
  • the phase conversion mechanism 3 is disposed on the one end 2a side of the camshaft 2, and is fixed to the housing 7 having an operation chamber therein and the one end 2a of the camshaft 2,
  • a vane rotor 8 housed in a housing 7 so as to be relatively rotatable, four first to fourth shoes 15a to 15d integrally having the working chamber on an inner peripheral surface of a housing body 11 (to be described later) of the housing 7 and the vane rotor 8
  • the housing 7 includes a substantially cylindrical housing body 11 having both axial ends open, a front plate 12 that closes the front end opening of the housing body 11, and a rear plate 13 that closes the rear end opening of the housing body 11. It is equipped with.
  • the housing body 11, the front plate 12, and the rear plate 13 are fastened together by four bolts 14 penetrating through bolt insertion holes 16 and the like, which will be described later, and are integrally coupled.
  • the housing body 11 is integrally formed of a sintered metal material, and the sprocket 1 is integrally provided at a substantially central position in the axial direction of the outer periphery, and the four main bodies 11 are disposed at substantially equal intervals in the circumferential direction of the inner peripheral surface.
  • First to fourth shoes 15a to 15d are integrally projected inward.
  • Each of these shoes 15a to 15d is formed in a substantially trapezoidal shape when viewed from the front, and is formed with a bolt insertion hole 16 through which each bolt 14 is inserted along the direction of the internal axis.
  • Each of the shoes 15a to 15d has a seal groove formed at the tip portion along the axial direction of the housing body 11, and is substantially in sliding contact with the outer peripheral surface of the rotor 20 described later in each seal groove.
  • a U-shaped sealing member 17 is accommodated.
  • a positioning groove 11a having a U-shaped cross section is formed along the axial direction on the outer peripheral surface of the housing body 11 to be used for positioning the housing body 11 and the rear plate 13 in the circumferential direction.
  • the front plate 12 is formed in a disk shape by press-molding a metal plate, and a comparatively large-diameter through-hole 12a through which a cylindrical portion 23 of the rotor 20 described later is inserted with a predetermined gap is formed at the center position. .
  • the front plate 12 is formed with four bolt holes 12b through which the respective bolts 14 are inserted at circumferentially equidistant positions on the outer peripheral side.
  • a circular seating surface 12d on which the head portion 14a of each bolt 14 is seated is recessed in the vicinity of the hole edge on the outer end surface 12c side of each bolt hole 12b.
  • a pin 18 with an umbrella is press-fitted and fixed from the axial direction on the outer peripheral side of the outer end surface 12c of the front plate 12.
  • the pin 18 with an umbrella includes a pin main body 18a formed in a substantially columnar shape, and a disk-shaped umbrella portion 18b integrally provided at an end of the pin main body 18a opposite to the press-fitting side. Yes.
  • the pin main body 18a is configured to lock the second locking end 45c by winding a second locking end 45c of a spiral spring 45 described later on the outer peripheral surface.
  • the umbrella portion 18b has a diameter that covers almost the entire axial end surface of the second locking end portion 45c wound around the pin body 18a, whereby the second locking end portion 45c of the spiral spring 45 is provided. Is prevented from dropping from the pin body 18a to the front of the device.
  • the rear plate 13 is formed of a sintered metal material, and a support hole 13 a that rotatably supports the one end 2 a of the camshaft 2 is formed through the center.
  • Four female screw holes 13b into which male screw parts 14c formed on the outer peripheral surface of the tip part of the shaft part 14b of each bolt 14 are screwed are formed at circumferentially equidistant positions on the outer peripheral side.
  • a columnar positioning that positions the housing main body 11 and the rear plate 13 in the rotational direction by engaging with the positioning groove 11 a of the housing main body 11 on the outer peripheral portion of the rear plate 13.
  • the pin 19 is press-fitted and fixed.
  • the vane rotor 8 is integrally formed of, for example, a sintered metal material, and, as shown in FIGS. 1 to 4, a cylindrical rotor 20 fixed to the camshaft 2 by a cam bolt 5 and a circle on the outer peripheral surface of the rotor 20. It is mainly composed of four first to fourth vanes 21a to 21d protruding radially at substantially equal intervals in the circumferential direction.
  • the rotor 20 has a bolt hole 20 a through which the shaft portion 5 c of the cam bolt 5 is inserted at a substantially central position.
  • An annular passage 27d which is a part of a retarding passage 27 described later, is partitioned between the inner peripheral surface of the rotor 20 and the outer peripheral surface of the shaft portion 5c.
  • the rotor 20 has a circular seating surface 20c in which the seat 5b of the cam bolt 5 is seated at the center of the front end surface 20b on the front plate 12 side.
  • a circular concave fitting hole 20d is formed at the center of the rear end surface of the rotor 20 on the rear plate 13 side.
  • the fitting hole 20d has an inner diameter that is slightly larger than the outer diameter of the tip of the one end portion 2a of the camshaft 2, and can be fitted to the one end portion 2a.
  • a pin hole 20e having a circular cross section is formed at a predetermined position on the outer peripheral side of the bottom surface of the fitting hole 20d.
  • one end of a cylindrical pin member 22 is inserted and disposed in the pin hole 20e.
  • the pin member 22 is interposed between the pin hole 20e and the pin groove 2b formed in the outer peripheral portion of the tip end surface 2a of the camshaft 2, so that the relative rotational position of the rotor 20 with respect to the camshaft 2 is achieved. Is to be positioned.
  • the cylindrical portion 23 is integrally formed with the rotor 20 by sintering and is formed in a substantially cylindrical shape having the same axis as the rotor 20. Further, the cylindrical portion 23 protrudes to the outside of the housing 7 through the through hole 12a of the front plate 12 so that the head portion 5a of the cam bolt 5 is accommodated therein.
  • the cylindrical portion 23 is provided with a locking groove 24 which is a locking portion for locking a first locking end 45b of a spiral spring 45 described later.
  • the locking groove 24 is formed in a rectangular shape extending in the axial direction from the distal end surface to the proximal end side at a predetermined position in the circumferential direction of the cylindrical portion 23.
  • the locking groove 24 has a side surface 24a on the side where the first locking end 45b is locked, of a pair of opposing side surfaces facing each other along the circumferential direction of the cylindrical portion 23, and is formed in an arcuate shape. ing.
  • annular groove 25 having a rectangular cross section is formed over substantially the entire circumferential direction at a substantially central position in the axial direction of the outer peripheral surface of the cylindrical portion 23.
  • the annular groove 25 accommodates and holds a part of the inner peripheral side of the spiral spring 45 therein, thereby preventing the inner peripheral side of the spiral spring 45 from dropping from the apparatus.
  • each of the first to fourth vanes 21a to 21d is disposed between the shoes 15a to 15d, and in the seal groove formed on each arcuate outer peripheral surface.
  • a substantially U-shaped seal member 26 slidably contacting the inner peripheral surface of the housing body 11 is accommodated.
  • the first vane 21a is formed with the maximum width, and the other three second to fourth vanes 21b to 21d are formed with the same width smaller than the first vane 21a. .
  • the other vanes 21b to 21d other than the first vane 21a may be any shoe facing in the circumferential direction even when the first vane 21a is in contact with the first and second shoes 15a and 15b. No contact with 15a to 15d.
  • the contact accuracy between the first vane 21a and the first and second shoes 15a, 15b is improved, and the supply speed of the hydraulic pressure to each of the retard and advance hydraulic chambers 9 and 10 is increased, thereby causing the vane rotor 8 to move.
  • the rotational responsiveness in the forward / reverse direction becomes higher.
  • Each retard hydraulic chamber 9 and each advance hydraulic chamber 10 communicate with the hydraulic circuit 4 via a retard communication hole 9a and an advance communication hole 10a formed in the rotor 20 along the radial direction. is doing.
  • the hydraulic circuit 4 supplies hydraulic oil to the retard and advance hydraulic chambers 9 and 10, discharges the hydraulic oil in the retard and advance hydraulic chambers 9 and 10, and the retard and advance hydraulic chambers.
  • each of the retarding passages 27 communicating with the retarding hydraulic chambers 9 through the retarding-side communication holes 9a
  • An advance oil passage 28 communicating with each advance hydraulic chamber 10 through the advance side communication hole 10a
  • a supply passage 29 through which hydraulic oil for supplying to each retard and advance hydraulic chamber 9, 10 flows.
  • An electromagnetic switching valve 31 that is a hydraulic control valve that selectively switches the communication state of the drain passage 30 is mainly configured.
  • the retarding passage 27 includes a retarding passage portion 27a communicating with a passage port (not shown) of the electromagnetic switching valve 31, a retarding passage hole 27b formed through the camshaft 2 along the radial direction, and a bolt hole. 6 and the annular oil passage 27c formed between the inner peripheral surface of the cam bolt 5 and the outer peripheral surface of the shaft portion 5c, and between the inner peripheral surface of the rotor 20 and the outer peripheral surface of the shaft portion 5c. It is formed as a series of passages including an annular passage 27d communicating with the corner side communication hole 9a.
  • the advance passage 28 includes an advance passage portion 28a that communicates with a supply port (not shown) of the electromagnetic switching valve 31, an advance passage hole 28b that is formed through the cam shaft 2 along the radial direction, and a cam shaft. 2 and the rotor 20, and is formed as a series of passages provided with four axial oil holes 28c communicating with the respective advance side communication holes 10a.
  • the supply passage 29 has an upstream end communicating with an oil pan 33 via an oil strainer 32, and a downstream end communicating with a drain port (not shown) of the electromagnetic switching valve 31.
  • the supply passage 29 has an oil pump 34 in the middle of the flow path, and the hydraulic oil sucked from the oil pan 33 by the oil pump 34 is discharged to the electromagnetic switching valve 31 side.
  • the drain passage 30 communicates with the passage port (not shown) of the electromagnetic switching valve 31 at the upstream end, and communicates with the oil pan 33 at the downstream end.
  • the electromagnetic switching valve 31 is a three-position four-port switching valve, and is provided with a spool valve body outside the figure that is slidable in the axial direction within the valve body by an electronic controller outside the figure. Is moved in the front-rear direction so that the supply passage 29 and one of the oil passages 27 and 28 communicate with one oil passage 27 (28) and at the same time the drain passage 30 and the other oil passage 28 (27) communicate with each other. Alternatively, the communication between the passages 27 to 30 is blocked.
  • the electronic controller includes information from various sensors such as a crank angle sensor, an air flow meter, an engine water temperature sensor, a throttle valve opening sensor, and a cam angle sensor that detects the current rotational phase of the camshaft 2 by an internal computer.
  • a signal is input to detect the current engine operating state.
  • an appropriate control pulse current is output to the electromagnetic coil of the electromagnetic switching valve 31 to control the movement position of the spool valve body, thereby switching the communication between the passages 27-30. It comes to control.
  • a lock mechanism 35 that restrains the vane rotor 8 to the most retarded position with respect to the housing 7 is provided.
  • the lock mechanism 35 is slidably accommodated in a sliding hole 36 formed in the first vane 21a so as to penetrate along the axial direction. Then, a lock pin 37 provided so as to be movable forward and backward with respect to the rear plate 13 side and a small-diameter portion 37a (to be described later) of the lock pin 37 are engaged with each other by being engaged with a vane rotor.
  • 8 is mainly composed of a lock hole 38 for locking 8 and an engagement / disengagement mechanism for engaging or releasing the small diameter portion 37a of the lock pin 37 with respect to the lock hole 38 in accordance with the starting state of the engine.
  • the sliding hole 36 has an inner peripheral surface formed in a step diameter shape, and has a small diameter hole portion 36a on the rear plate 13 side and a large diameter hole portion 36b on the front plate 12 side.
  • an annular first step portion 36c is formed between the small diameter hole portion 36a and the large diameter hole portion 36b.
  • the lock pin 37 has a small-diameter portion 37a on the rear plate 13 side (tip side) and a large-diameter hole.
  • An annular second step portion 37c is formed between the small diameter portion 37a and the large diameter portion 37b.
  • a circular concave spring accommodating groove 37d is formed along the inner axial direction.
  • the lock hole 38 is disposed and formed at a predetermined position in the circumferential direction of the rear plate 13 such that the relative conversion angle between the housing 7 and the vane rotor 8 becomes the most advanced angle when the lock pin 37 is engaged.
  • the lock hole 38 has an inner diameter larger than the outer diameter of the small-diameter portion 37a of the lock pin 37, and an annular ring member 39 into which the small-diameter portion 37a of the lock pin 37 can be inserted into the inner peripheral surface. Is inserted.
  • the ring member 39 is made of an abrasion-resistant material, and even when the inner peripheral surface repeatedly contacts the outer peripheral surface of the small-diameter portion 37a of the lock pin 37 as the lock pin 37 is engaged and disengaged, the wear or the like Is to be suppressed.
  • the engagement / disengagement mechanism is supplied into the coil spring 40, which is elastically mounted between the inner end surface of the front plate 12 and the bottom surface of the spring accommodating groove 37d of the lock pin 37, and constantly urges the lock pin 37 in the advance direction.
  • the first and second pressure chambers 41 and 42 move the lock pin 37 in the backward direction based on the hydraulic pressure.
  • the coil spring 40 moves the lock pin 37 forward by the spring force so that the tip of the small diameter portion 37a of the lock pin 37 is moved into the lock hole 38.
  • the vane rotor 8 is locked with respect to the housing 7 by being engaged therewith.
  • the first pressure chamber 41 is an annular space defined between the first stepped portion 36c of the sliding hole 36 and the second stepped portion 37c of the lock pin 37, and is formed through the peripheral wall. It communicates with the retarded hydraulic chamber 9 separated by the first vane 21a through one oil passage 43 (see FIG. 4). Further, when hydraulic oil is supplied to the first pressure chamber 41, the hydraulic pressure of the hydraulic oil is applied to the second step portion 37 c of the lock pin 37 to urge the lock pin 37 in the backward direction. It is supposed to be.
  • the second pressure chamber 42 is formed as a cylindrical space having a smaller diameter than the small diameter portion 37a of the lock pin 37 on the bottom surface of the lock hole 38, and through a long groove-like second oil passage 44 formed in the peripheral wall. It communicates with the advance hydraulic chamber 10 separated by the first vane 21a (see FIG. 4). Further, when hydraulic oil is supplied to the second pressure chamber 42, the hydraulic pressure of the hydraulic oil is applied to the distal end surface of the lock pin 37 to urge the lock pin 37 in the backward direction. It has become.
  • a spiral spring 45 which is a biasing member that biases the vane rotor 8 in the advance direction with respect to the housing 7, is provided on the outer end surface 12 c of the front plate 12. It has been.
  • the spiral spring 45 is formed by winding flat rectangular lines having a substantially rectangular cross section on substantially the same plane so that the surfaces in the longitudinal direction face each other, and gradually increases in diameter from the inner peripheral side to the outer peripheral side.
  • the spiral spring main body 45a has a part of the innermost peripheral portion on the first locking end portion 45b side accommodated in the annular groove 25 formed in the cylindrical portion 23, and a second locking end portion.
  • the outermost peripheral portion on the 45c side is supported by a support pin 46 (see FIG. 3) that is press-fitted and fixed to the outer end surface 12c of the front plate 12.
  • the support pin 46 supports the outermost peripheral portion of the spiral spring 45 so that the spiral spring 45 can perform a stable biasing operation between the housing 7 and the vane rotor 8, and the spiral spring 45 has a reduced diameter.
  • the first locking end portion 45 b is locked and fixed to one side surface 24 a of the locking groove 24 while being engaged with the locking groove 24 of the cylindrical portion 23.
  • the second locking end portion 45c is locked and fixed to the outer peripheral surface of the pin body 18a of the pin 18 with the umbrella provided on the outer end surface 12c of the front plate 12.
  • the spiral spring 45 urges the vane rotor 8 in the advance direction with respect to the housing 7 as described above. This urging force positively rotates the vane rotor 8 to the advance side. It is not strong and is set to such an extent that it can be balanced with negative alternating torque (alternating torque that rotates the vane rotor 8 to the retard side) generated in the camshaft 2 during engine operation.
  • phase conversion of the vane rotor 8 is performed only by the hydraulic pressure supplied to the respective retard and advance hydraulic chambers 9 and 10, and the urging by the spiral spring 45 is used to maintain the phase of the vane rotor 8. It is an auxiliary one.
  • the cylindrical portion 23 has a U-shape that is a tool engaging portion into which an engaging protrusion 54 of a holding tool 52 described later is engaged when fastening a bolt.
  • Three groove portions 47 are provided at circumferentially equidistant positions.
  • each groove 47 is a side surface 47 a that is a first contact surface provided on the side opposite to the bolt fastening direction D, and a second contact surface that faces the side surface 47 a.
  • the other side surface 47b and the circular-arc-shaped bottom surface 47c which connects both side surface 47a, 47b are provided.
  • the one side surface 47a is formed by connecting the rotation axis O of the vane rotor 8 and the edge 47d on the inner peripheral side of the cylindrical portion 23 (rotor 20) of the one side surface 47a.
  • it is formed in a flat shape that is inclined to the opposite side.
  • the edge 47f on the outer peripheral side of the cylindrical portion 23 (the rotor 20) of the one side surface 47a is provided on the opposite side to the bolt fastening direction D with respect to the first virtual surface S1.
  • the other side surface 47b is compared with the second virtual surface S2 formed by connecting the rotation axis O of the vane rotor 8 and the edge 47e on the inner peripheral side of the cylindrical portion 23 (rotor 20) of the other side surface 47b. It is formed in a flat shape inclined in the bolt fastening direction D. In other words, the edge 47g on the outer peripheral side of the cylindrical portion 23 (rotor 20) on the other side surface 47b is provided on the bolt fastening direction D side with respect to the second virtual surface S2.
  • each groove portion 47 is formed in a C shape in a front view in which the width (groove width) in the circumferential direction of the cylindrical portion 23 gradually increases from the inner peripheral side to the outer peripheral side of the cylindrical portion 23.
  • each groove portion 47 is formed so that the groove depth is slightly shorter than the axial length of the cylindrical portion 23, and the bottom surface 47 c is slightly forward of the apparatus than the front end surface 20 b of the rotor 20. In other words, it is positioned closer to the distal end portion 23a of the cylindrical portion 23.
  • the above-described locking groove 24 is configured such that the formation position of the cylindrical portion 23 in the circumferential direction is determined based on the relative relationship with each groove portion 47.
  • the locking groove 24 is disposed between specific adjacent groove portions 47, 47 in the circumferential direction of the cylindrical portion 23. 23 is slightly deviated in the direction opposite to the bolt fastening direction D from the intermediate position P0 between both groove portions 47, 47 in the circumferential direction.
  • a hexagon wrench 51 (see FIG. 11) which is a general bolt fastening tool having a fitting portion 51a fitted to the hexagonal head 5a of the cam bolt 5 at the end, and the hexagon wrench 51 And a holding tool 52 for holding the vane rotor 8 when performing the fastening operation.
  • the holding tool 52 is integrally formed of a metal material, and has a cylindrical base portion 53 and three engagement members protruding from one end surface in the axial direction of the base portion 53. It is comprised from the entrance protrusion 54 and the holding part 55 extended from the outer peripheral surface of the base 53.
  • the base 53 is formed to have substantially the same diameter as the cylindrical portion 23 of the vane rotor 8, and an insertion hole 53 a that is a hole through which a hexagon wrench 51 that engages with the head 5 a of the cam bolt 5 can be inserted. Yes.
  • each engaging protrusion 54 is arranged at a substantially equal interval in the circumferential direction of the base 53 and is formed in a shape corresponding to each groove 47 of the cylindrical portion 23. It is possible to engage with each groove 47.
  • the engaging protrusion 54 is formed in a substantially fan shape when viewed from the front.
  • the engaging protrusion 54 is formed on the first locking surface 54 a facing the one side surface 47 a of the groove portion 47 and the other side surface 47 b of the groove portion 47 when engaging with the groove portion 47. And an opposing second locking surface 54b.
  • valve timing control device in a state where members other than the spiral spring 45 are assembled in advance is inserted into the camshaft 2 from the axial direction.
  • the fitting hole 20d of the rotor 20 is fitted to the one end 2a of the two.
  • the vane rotor 8 is restrained to the most retarded position with respect to the housing 7 by the lock pin 37 engaging with the lock hole 38, and the pin member 22 is positioned in the circumferential direction with respect to the camshaft 2. It has come to be.
  • the engaging projections 54 of the holding tool 52 are arranged in the cylinder direction along the axial direction of the cam bolt 5. It is made to engage in each groove part 47 of the part 23 from an axial direction.
  • the fitting portion 51a at the tip of the hexagon wrench 51 is inserted into the insertion hole 53a of the holding tool 52 and fitted into the head portion 5a of the cam bolt 5, and then the holding portion of the holding tool 52 is held.
  • the hexagon wrench 51 is rotated in the bolt fastening direction D while gripping 55.
  • the vane rotor 8 tries to rotate in the bolt fastening direction D by being brought into sliding contact with the seat portion 5b of the rotating cam bolt 5 and being rotated by the seat portion 5b.
  • the first locking surface 54 a of each engaging protrusion 54 of the holding tool 52 fixed by gripping is in contact with one side surface 47 a of each groove portion 47, so that the rotation is suppressed.
  • a large shearing force does not act on the outer peripheral surface of the pin member 22 interposed between the vane rotor 8 and the camshaft 2 or the outer peripheral surface of the lock pin 37 engaged in the lock hole 38. Therefore, the deformation of the pins 22 and 37 can be suppressed.
  • the electronic controller (not shown) appropriately passes a control current through the coil of the electromagnetic switching valve 31 according to the operating state of the engine.
  • the communication state of ⁇ 30 is switched.
  • the relative hydraulic phase of the vane rotor 8 with respect to the housing 7 (sprocket 1) is changed as shown in FIG. 4 by changing the hydraulic relationship between each retarded hydraulic chamber 9 and each advanced hydraulic chamber 10.
  • the valve timing of the engine is changed by being converted into the most retarded phase shown and the most advanced phase shown in FIG.
  • valve timing control device of the present embodiment during the engine operation, the communication of the passages 27 to 30 is blocked by the electromagnetic switching valve 31 to operate inside the retard hydraulic chamber 9 and the advance hydraulic chamber 10, respectively.
  • the valve timing of the engine can be maintained at a desired phase.
  • the spiral spring 45 that biases the vane rotor 8 in the advance direction with respect to the housing 7 since the spiral spring 45 that biases the vane rotor 8 in the advance direction with respect to the housing 7 is provided, the negative force generated in the camshaft 2 during engine operation by the spring force of the spiral spring 45 is provided. Since the balance with the alternating torque can be easily taken, the valve timing can be easily and accurately maintained.
  • the spiral spring 45 is used as the biasing member provided for this phase maintenance, the axial length is remarkably shortened compared with the case where a torsion spring or the like is used. Can be made compact.
  • the engaging protrusions 54 of the holding tool 52 are engaged with the groove portions 47 of the vane rotor 8 to suppress the rotation of the vane rotor 8 when the bolts are tightened. 12
  • the rotational force F1 of the vane rotor 8 is suppressed by the first locking surfaces 54a of the respective engaging protrusions 54, and at the same time, a reaction force (load) F2 equivalent to the rotational force F1 is applied to each groove portion 47. Acting on one side surface 47a.
  • the vane rotor 8 may be deformed to expand in the outer direction by the reaction force F2, but in this embodiment, as described above. Since the one side surface 47a of each groove portion 47 is formed so as to be inclined in the direction opposite to the bolt fastening direction D as compared with the first virtual surface S1, the reaction force F2 is a vector component F2 in the inner diameter direction of the vane rotor 8. With the rad , the vane rotor 8 acts so as to be restrained inwardly with respect to each side surface 47a.
  • each groove part 47 is formed in the comparatively thin (low-rigidity) cylindrical part 23 used for latching of the spiral spring 45 in the vane rotor 8. It is particularly useful in the device.
  • the cylindrical portion 23 is formed thick to improve the strength, or the cylindrical portion 23 is formed of another member having high rigidity.
  • the former has a problem of an increase in the weight of the apparatus due to the thickening of the cylindrical portion 23, and the latter has a problem that the assembling work becomes complicated due to an increase in the number of parts.
  • the rotor 20 and the cylindrical portion 23 are integrally formed, and the reaction force F2 is received by devising the action direction of the reaction force F2.
  • the deformation of the cylindrical portion 23 based on the reaction force F2 can be suppressed without increasing the weight or the number of parts.
  • the locking groove 24 that is locked by the first locking end 45b of the spiral spring 45 is provided in a portion that does not interfere with each circumferential groove 47 of the cylindrical portion 23, so that the bolt During the fastening operation, the problem that the locking groove 24 interferes with the holding tool 52 does not occur, and the workability related to the bolt fastening is not impaired.
  • the disposition position P1 of the locking groove 24 is set on the opposite side to the bolt fastening direction D from the circumferential intermediate position P0 between the two specific groove portions 47, 47 in the cylindrical portion 23. It was biased in the direction.
  • the other side surface 47b of each of the groove portions 47 is formed in a flat shape that is inclined in the bolt fastening direction D as compared with the second virtual surface S2, so that a failure occurs in the valve timing control device.
  • the reaction force F4 of the rotational force F3 generated in the vane rotor 8 with the loosening operation of the cam bolt 5 is allowed to have an inner diameter direction of the vector component F4 rad of the vane rotor 8.
  • the reaction force F4 acts so as to be restrained inward with respect to the cylindrical portion 23, the diameter expansion deformation of the vane rotor 8 can be suppressed even when the cam bolt 5 is removed.
  • each groove 47 is formed to have a groove depth such that the bottom surface 47c is closer to the tip 23a of the cylindrical portion 23 than the front end surface 20b of the rotor 20, and therefore each groove 47 is a rotor. 20 does not reach the inside of the groove 20, and the formability of each groove 47 is good.
  • FIG. 13 shows a second embodiment of the present invention.
  • the basic configuration is the same as that of the first embodiment, but the shape of the other side surface 47b of each groove 47 is changed.
  • the valve timing control device is not a device that is repeatedly attached to and detached from the camshaft 2, but a device that maintains its state for a long period of time once it is attached. Further, the rotational force F3 generated in the vane rotor 8 when the cam bolt 5 is removed tends to be smaller than the rotational force F1 generated in the vane rotor 8 when the bolt is fastened.
  • the other side surface 47b of each groove portion 47 is formed in a planar shape that is inclined to the opposite side to the bolt fastening direction D as compared with the second virtual surface S2.
  • the vane rotor 8 may be slightly deformed in the diameter-expanding direction, but the groove width of the groove portion 47 (in the circumferential direction of the cylindrical portion 23) is larger than that of the valve timing control device of the first embodiment.
  • the length of the cylindrical portion 23 is narrowed, and a wide cross-sectional area of the cylindrical portion 23 can be secured. Therefore, the strength of the cylindrical portion 23 can be improved. As a result, the deformation of the vane rotor 8 at the time of bolt fastening can be further suppressed.
  • each groove portion 47 is provided in the cylindrical portion 23 of the rotor 20, but it is also possible to eliminate the cylindrical portion 23 and provide each groove portion 47 in the front end surface 20b of the rotor 20.
  • the cylindrical portion 23 is provided on the front end surface 20 b of the rotor 20, and the engaging protrusions 54 of the holding tool 52 are engaged with the groove portions 47 formed on the front end surface of the cylindrical portion 23.
  • the rotation of the vane rotor 8 is suppressed.
  • the cylindrical portion 23 is abolished, a plurality of protrusions are provided on the front end surface 20b of the rotor 20, and the engaging protrusions 54 of the holding tool 52 are inserted between the protrusions.
  • the rotation of the vane rotor 8 may be suppressed by locking one side surface formed on the bolt fastening direction D side of each protrusion to the first locking surface 54a of the insertion protrusion 54.
  • valve timing control device for an internal combustion engine and a method for mounting the valve timing control device based on the embodiments described above, for example, the following modes can be considered.
  • a valve timing control device for an internal combustion engine includes a housing to which a rotational force is transmitted from a crankshaft, and a cylindrical rotor provided inside the housing and fastened and fixed to the camshaft by a cam bolt.
  • the vane rotor is provided at an end opposite to the camshaft, and has a cylindrical tube portion extending to the outside of the housing, and the groove portion is , Provided in the cylindrical portion.
  • valve timing control device in any one of the aspects of the valve timing control device of the internal combustion engine, one end is locked to the cylindrical part and the other end is between the cylindrical part and the housing.
  • a biasing member that is locked to the housing and biases the vane rotor to one side in the rotational direction with respect to the housing is provided, and a plurality of the groove portions are provided along a circumferential direction of the cylindrical portion.
  • the valve timing of the internal combustion engine is characterized in that a locking groove for locking one end of the urging member is formed in a portion of the cylindrical portion between a specific pair of adjacent groove portions. Control device.
  • the locking groove is more than a circumferential intermediate position between the specific pair of adjacent groove portions in the cylindrical portion. It is biased to the opposite side with respect to the fastening direction of the cam bolt.
  • the groove portion has another side surface provided to face the one side surface, and the other side surface is formed of the vane rotor.
  • the edge on the outer peripheral side of the one side surface is in the fastening direction of the cam bolt, rather than the virtual surface formed by connecting the rotation axis and the edge on the inner peripheral side of the cylindrical portion on the other side surface.
  • the groove portion has another side surface provided to face the one side surface, and the other side surface is formed of the vane rotor.
  • the edge on the outer peripheral side of the one side surface is on the opposite side of the fastening direction of the cam bolt from the virtual surface formed by connecting the rotation axis and the edge on the inner peripheral side of the cylindrical portion on the other side surface.
  • the bottom surface of the groove portion is disposed at a position closer to the cylindrical portion than an end surface of the rotor on the side opposite to the cam shaft. ing.
  • the bottom surface of the groove is formed in an arcuate shape.
  • the biasing member is a spiral spring.
  • the cylindrical portion is integrally formed with the rotor by sintering.
  • a rotational force is transmitted from a crankshaft, a housing having a working chamber therein, a housing provided inside the housing, and fastened and fixed to the camshaft by a cam bolt.
  • a biasing member that biases one side in the rotational direction, and a holding tool that is provided at the tip of the extending portion and restricts the rotation of the rotor when the cam bolt is fastened.
  • a plurality of the groove portions are provided along a circumferential direction of the extension portion, and the adjacent one of the extension portions is adjacent to the extension portion.
  • a locking groove for locking one end of the urging member is formed at a portion between the pair of grooves.
  • the locking groove is a circumferential direction between the specific pair of adjacent groove portions in the extending portion. It is biased to the opposite side to the fastening direction of the cam bolt from the center position.
  • the extending portion is integrally formed with the rotor by sintering.
  • the valve timing control device for an internal combustion engine is provided with a housing having a working chamber therein, in which rotational force is transmitted from the crankshaft, and is fastened and fixed to the camshaft by cam bolts
  • the cam bolt is inclined to the opposite side to the fastening direction of the cam bolt.
  • a method for mounting a valve timing control device for an internal combustion engine includes a housing in which a rotational force is transmitted from a crankshaft and having a working chamber therein, and a camshaft provided by a cam bolt. And a vane rotor provided on the outer peripheral side of the rotor and having a vane that separates the working chamber into a retarded working chamber and an advanced working chamber, and opposite to the camshaft of the rotor A tool engaging portion having one side surface provided on an end surface on the side and opposed to a direction opposite to a direction in which the cam bolt is fastened, wherein the one side surface is a rotating shaft of the vane rotor and the rotor on the one side surface.
  • a method for attaching a timing control device comprising: a step of bringing an end face of the rotor into contact with an end face of the camshaft; an engaging protrusion engageable with the tool engaging portion; and a fastening tool for fastening the cam bolt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

The present invention is provided with: a housing 7 to which a rotational force is transmitted from a crankshaft; a vane rotor 8 which is provided inside the housing and has a cylindrical rotor 20 that is fastened and fixed to a camshaft 2 by a cam bolt 5; and a groove part 47 which is provided on a leading surface of a cylindrical part 23 of the rotor and has one lateral surface 47a located opposite to a fastening direction of the cam bolt. The lateral surface is formed so as to be inclined on the side opposite to the fastening direction of the cam bolt when compared to a first virtual plane S1 formed by connecting a rotary shaft center O of the vane rotor and an edge 47d of the lateral surface on the inner periphery side of the rotor. Accordingly, rotation of the vane rotor generated when fastening the vane rotor to the camshaft by the cam bolt can be arrested, while deformation due to the inhibition of rotation can also be reduced.

Description

内燃機関のバルブタイミング制御装置及び該バルブタイミング制御装置の取付方法Valve timing control device for internal combustion engine and method for mounting the valve timing control device
 本発明は、吸気弁や排気弁の開閉タイミングを機関運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置及び該バルブタイミング制御装置の取付方法に関する。 The present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening and closing timing of an intake valve and an exhaust valve according to the engine operating state, and a method for mounting the valve timing control device.
 従来の内燃機関のバルブタイミング制御装置としては、以下の特許文献1に記載されたものが知られている。 As a conventional valve timing control device for an internal combustion engine, one described in Patent Document 1 below is known.
 このバルブタイミング制御装置は、クランクシャフトから回転力が伝達される円筒状のハウジングと、該ハウジングの内部に設けられ、カムボルトによってカムシャフトにボルト締結される円筒状のロータを有するベーンロータと、を備えている。
そして、前記ハウジングに対するベーンロータの相対回転位相を変更することにより、吸気弁あるいは排気弁の開閉タイミング(バルブタイミング)を可変制御するようになっている。
This valve timing control device includes a cylindrical housing to which a rotational force is transmitted from a crankshaft, and a vane rotor having a cylindrical rotor provided inside the housing and bolted to the camshaft by a cam bolt. ing.
And the opening / closing timing (valve timing) of the intake valve or the exhaust valve is variably controlled by changing the relative rotational phase of the vane rotor with respect to the housing.
 また、バルブタイミング制御装置は、ロータのカムシャフトと反対側の内周壁に矩形状の溝部が複数形成されている。この各溝部は、ボルト締結の際にロータの回動を規制する保持工具の突起部を係入可能に形成されていると共に、該突起部と当接する各当接面が前記ロータのほぼ径方向に沿った平面状に形成されている。 Also, the valve timing control device has a plurality of rectangular grooves formed on the inner peripheral wall on the opposite side of the rotor camshaft. Each of the grooves is formed so that a protrusion of a holding tool that restricts the rotation of the rotor can be engaged when fastening the bolt, and each contact surface that contacts the protrusion is substantially in the radial direction of the rotor. It is formed in a planar shape along.
 ロータは、前記ボルト締結時に前記カムボルトの頭部と摺接することによってボルト締結方向へ回動しようとした場合であっても、この回動に際する回転力が前記各溝部内に係入された前記保持工具の各突起部によって抑えられることから、該回動が抑制されるようになっている。 Even when the rotor tries to rotate in the bolt fastening direction by slidingly contacting the head of the cam bolt when the bolt is tightened, the rotational force at the time of the rotation is engaged in each groove portion. Since it is restrained by the projections of the holding tool, the rotation is restrained.
特開平10-317923号公報JP 10-317923 A
 しかしながら、前記ロータは、前述したように、ボルト締結時に生じる回転力が保持工具の各突起部によって抑えられる一方、該各突起部から前記各溝部の当接面に対して前記回転力と同等の反力が作用することとなる。そして、この反力は、各当接面に対して垂直に作用し、反力によってベーンロータが外側方向へ押し広げられて拡径変形してしまうおそれがあった。 However, as described above, in the rotor, the rotational force generated at the time of bolt tightening is suppressed by each protrusion of the holding tool, while the rotation force is equivalent to the rotation force from each protrusion to the contact surface of each groove. Reaction force will act. This reaction force acts perpendicularly to each contact surface, and there is a possibility that the vane rotor is pushed outward by the reaction force and deformed in diameter.
 本発明は、前記従来の技術的課題に鑑みて案出されたもので、カムシャフトにベーンロータをボルト締結する際の該ベーンロータの回動を抑制しつつ、該回動抑制に伴う変形を抑制し得るバルブタイミング制御装置及び該バルブタイミング制御装置の取付方法を提供することを目的としている。 The present invention has been devised in view of the above-described conventional technical problems, and suppresses the deformation associated with the rotation suppression while suppressing the rotation of the vane rotor when the vane rotor is bolted to the camshaft. It is an object of the present invention to provide an obtained valve timing control device and a mounting method of the valve timing control device.
 本発明は、クランクシャフトから回転力が伝達されるハウジングと、該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータを有するベーンロータと、前記ロータの前記カムシャフトと反対側の端面に設けられ、前記カムボルトの締結方向と反対側の一側面を有する溝部と、を備え、前記一側面は、前記ベーンロータの回転軸心と前記一側面の前記ロータにおける内周側の端縁とを結んで形成される仮想面よりも、前記一側面の外周側の端縁が前記カムボルトの締結方向側に対して反対側であることを特徴としている。 The present invention includes a housing to which rotational force is transmitted from a crankshaft, a vane rotor provided inside the housing and having a cylindrical rotor fastened and fixed to the camshaft by cam bolts, and the rotor opposite to the camshaft. And a groove portion having one side surface opposite to the fastening direction of the cam bolt, and the one side surface is a rotation axis of the vane rotor and an inner circumferential end of the one side of the rotor. An end edge on the outer peripheral side of the one side surface is opposite to a fastening direction side of the cam bolt from a virtual surface formed by connecting the edge.
 本発明によれば、カムシャフトにベーンロータをボルト締結する際の該ベーンロータの回動を抑制しつつ、該回動抑制に伴う変形を抑制することができる。 According to the present invention, it is possible to suppress deformation due to the rotation suppression while suppressing the rotation of the vane rotor when the vane rotor is bolted to the camshaft.
本発明の第1実施形態に係るバルブタイミング制御装置を図4のA-A線で断面して示す全体構成図である。FIG. 5 is an overall configuration diagram showing the valve timing control device according to the first embodiment of the present invention, taken along line AA in FIG. 4. 同バルブタイミング制御装置の分解斜視図である。It is a disassembled perspective view of the valve timing control device. 同バルブタイミング制御装置の斜視図である。It is a perspective view of the valve timing control device. バルブタイミングを遅角側に制御した状態を、フロントプレートを外して示す同バルブタイミング制御装置の正面図である。It is a front view of the valve timing control device showing the state in which the valve timing is controlled to the retard side, with the front plate removed. バルブタイミングを進角側に制御した状態を、フロントプレートを外して示す同バルブタイミング制御装置の正面図である。It is a front view of the valve timing control device showing the state in which the valve timing is controlled to the advance side, with the front plate removed. 図1の支持線B部の拡大図である。It is an enlarged view of the support line B part of FIG. 同バルブタイミング制御装置の正面図である。It is a front view of the valve timing control device. 本実施形態に係るベーンロータの溝部を示す要部拡大図である。It is a principal part enlarged view which shows the groove part of the vane rotor which concerns on this embodiment. バルブタイミング制御装置をカムシャフトに組み付ける際に用いられる保持工具を示す図であって、(A)は保持工具の正面図、(B)は保持工具の側面図である。It is a figure which shows the holding tool used when a valve timing control apparatus is assembled | attached to a cam shaft, Comprising: (A) is a front view of a holding tool, (B) is a side view of a holding tool. バルブタイミング制御装置をカムシャフトに組み付ける際の第1工程を示す図である。It is a figure which shows the 1st process at the time of attaching a valve timing control apparatus to a camshaft. バルブタイミング制御装置をカムシャフトに組み付ける際の第2工程及び第3工程を示す図である。It is a figure which shows the 2nd process and 3rd process at the time of attaching a valve timing control apparatus to a camshaft. 第3工程においてベーンロータと保持工具との間に生じる回転力及び該回転力の反力をベクトルにて示す概略図である。It is the schematic which shows the rotational force which arises between a vane rotor and a holding tool in a 3rd process, and the reaction force of this rotational force with a vector. 本発明の第2実施形態に係るバルブタイミング制御装置の溝部を示す要部拡大図である。It is a principal part enlarged view which shows the groove part of the valve timing control apparatus which concerns on 2nd Embodiment of this invention.
 以下、本発明に係る内燃機関のバルブタイミング制御装置の各実施形態を図面に基づいて詳述する。なお、各実施形態では、前記バルブタイミング制御装置を内燃機関の吸気弁側に適用したものを示している。
〔第1実施形態〕
 本実施形態に係るバルブタイミング制御装置は、図1に示すように、図外のクランクシャフトによってタイミングチェーンを介して回転駆動されるスプロケット1と、該スプロケット1に対して相対回転可能に設けられたカムシャフト2と、スプロケット1とカムシャフト2との間に配置されて、該両者1,2の相対回転位相を変換する位相変換機構3と、該位相変換機構3を油圧の給排に基づき作動させる油圧回路4と、を備えている。
Hereinafter, embodiments of a valve timing control device for an internal combustion engine according to the present invention will be described in detail with reference to the drawings. In each embodiment, the valve timing control device is applied to the intake valve side of the internal combustion engine.
[First Embodiment]
As shown in FIG. 1, the valve timing control device according to the present embodiment is provided so as to be rotatable relative to the sprocket 1 and a sprocket 1 that is rotationally driven via a timing chain by a crankshaft (not shown). A camshaft 2, a phase conversion mechanism 3 disposed between the sprocket 1 and the camshaft 2 for converting the relative rotational phases of the two 1 and 2, and the phase conversion mechanism 3 operated based on hydraulic supply / discharge. And a hydraulic circuit 4 to be operated.
 前記スプロケット1は、後述するハウジング本体11と一体形成されていると共に、外周に前記タイミングチェーンが巻回される複数の歯車部1aを一体に有している。 The sprocket 1 is integrally formed with a housing body 11 to be described later, and integrally has a plurality of gear portions 1a around which the timing chain is wound.
 前記カムシャフト2は、図外のシリンダヘッドにカム軸受を介して回転自在に支持され、外周面の軸方向所定位置に図外の吸気弁をバルブスプリングのばね力に抗して開作動させる卵形のカムプロフィールを有する複数の駆動カムが一体に設けられていると共に、一端部2aの内部軸心方向にカムボルト5が挿入螺着されるボルト穴6が形成されている。 The camshaft 2 is rotatably supported by a cylinder head (not shown) via a cam bearing, and opens an intake valve (not shown) against a spring force of a valve spring at a predetermined axial position on the outer peripheral surface. A plurality of drive cams having a cam profile of the shape are integrally provided, and a bolt hole 6 into which the cam bolt 5 is inserted and screwed is formed in the inner axial direction of the one end portion 2a.
 前記カムボルト5は、六角状の頭部5aと、該頭部5aの一端部にフランジ状の座部5bを介して一体に設けられた軸部5cと、該軸部5cの先端部外周に形成された雄ねじ部5dと、を備え、後述するバルブタイミング制御装置の取付作業工程において、図7中の時計方向(以下、ボルト締結方向Dと呼ぶ。)へ回動することによりボルト穴6に螺着するようになっている。 The cam bolt 5 is formed on a hexagonal head portion 5a, a shaft portion 5c integrally provided at one end portion of the head portion 5a via a flange-shaped seat portion 5b, and an outer periphery of a tip portion of the shaft portion 5c. In the mounting operation process of the valve timing control device to be described later, the screw hole 5d is screwed into the bolt hole 6 by rotating in the clockwise direction in FIG. 7 (hereinafter referred to as the bolt fastening direction D). It comes to wear.
 前記ボルト穴6は、底部側にカムボルト5の雄ねじ部5dが螺着する雌ねじ部6aが形成されていると共に、該雌ねじ部6aよりも開口部側の部位が、軸部5cの外径よりも大きく形成され、ボルト穴6の内周面と軸部5cの外周面との間に後述する遅角通路27の一部である環状油路27cを隔成している。 The bolt hole 6 is formed with a female screw part 6a into which the male screw part 5d of the cam bolt 5 is screwed on the bottom side, and a part on the opening side of the female screw part 6a is larger than the outer diameter of the shaft part 5c. An annular oil passage 27c, which is a part of a retarding passage 27 described later, is formed between the inner peripheral surface of the bolt hole 6 and the outer peripheral surface of the shaft portion 5c.
 前記位相変換機構3は、図1~図4に示すように、カムシャフト2の一端部2a側に配置され、内部に作動室を有するハウジング7と、カムシャフト2の一端部2aに固定され、ハウジング7内に相対回転自在に収容されたベーンロータ8と、前記作動室をハウジング7の後述するハウジング本体11の内周面に一体に有する4つの第1~第4シュー15a~15dとベーンロータ8の後述する4枚のベーン21a~21dとによって仕切られたそれぞれ4つの遅角作動室である遅角油圧室9及び進角作動室である進角油圧室10と、を備えている。 As shown in FIGS. 1 to 4, the phase conversion mechanism 3 is disposed on the one end 2a side of the camshaft 2, and is fixed to the housing 7 having an operation chamber therein and the one end 2a of the camshaft 2, A vane rotor 8 housed in a housing 7 so as to be relatively rotatable, four first to fourth shoes 15a to 15d integrally having the working chamber on an inner peripheral surface of a housing body 11 (to be described later) of the housing 7 and the vane rotor 8 There are provided four retard hydraulic chambers 9 which are partitioned by four vanes 21a to 21d, which will be described later, and an advanced hydraulic chamber 10 which is an advanced hydraulic chamber.
 前記ハウジング7は、軸方向両端が開口されたほぼ円筒状のハウジング本体11と、該ハウジング本体11の前端開口を閉塞するフロントプレート12と、ハウジング本体11の後端開口を閉塞するリアプレート13と、を備えている。これらハウジング本体11とフロントプレート12及びリアプレート13は、後述する各ボルト挿通孔16などを貫通する4本のボルト14によって共締めされて一体的に結合されている。 The housing 7 includes a substantially cylindrical housing body 11 having both axial ends open, a front plate 12 that closes the front end opening of the housing body 11, and a rear plate 13 that closes the rear end opening of the housing body 11. It is equipped with. The housing body 11, the front plate 12, and the rear plate 13 are fastened together by four bolts 14 penetrating through bolt insertion holes 16 and the like, which will be described later, and are integrally coupled.
 前記ハウジング本体11は、焼結金属材によって一体に形成され、外周の軸方向ほぼ中央位置にスプロケット1が一体に設けられていると共に、内周面の円周方向ほぼ等間隔位置に前記4つの第1~第4シュー15a~15dが内方へ一体に突設されている。 The housing body 11 is integrally formed of a sintered metal material, and the sprocket 1 is integrally provided at a substantially central position in the axial direction of the outer periphery, and the four main bodies 11 are disposed at substantially equal intervals in the circumferential direction of the inner peripheral surface. First to fourth shoes 15a to 15d are integrally projected inward.
 これら各シュー15a~15dは、正面視ほぼ台形状に形成されていると共に、それぞれ内部軸方向に沿って各ボルト14が挿通するボルト挿通孔16が貫通形成されている。また、前記各シュー15a~15dは、それぞれ先端部にハウジング本体11の軸方向に沿ってシール溝が形成されていると共に、該各シール溝内に、後述するロータ20の外周面に摺接するほぼコ字形状のシール部材17が収容されている。 Each of these shoes 15a to 15d is formed in a substantially trapezoidal shape when viewed from the front, and is formed with a bolt insertion hole 16 through which each bolt 14 is inserted along the direction of the internal axis. Each of the shoes 15a to 15d has a seal groove formed at the tip portion along the axial direction of the housing body 11, and is substantially in sliding contact with the outer peripheral surface of the rotor 20 described later in each seal groove. A U-shaped sealing member 17 is accommodated.
 また、前記ハウジング本体11の外周面には、該ハウジング本体11とリアプレート13との円周方向の位置決めに供される断面U字状の位置決め溝11aが軸方向に沿って形成されている。 Further, a positioning groove 11a having a U-shaped cross section is formed along the axial direction on the outer peripheral surface of the housing body 11 to be used for positioning the housing body 11 and the rear plate 13 in the circumferential direction.
 前記フロントプレート12は、金属板をプレス成形することにより円盤状に形成され、中央位置に後述するロータ20の筒部23が所定隙間をもって挿通する比較大径な貫通孔12aが穿設されている。 The front plate 12 is formed in a disk shape by press-molding a metal plate, and a comparatively large-diameter through-hole 12a through which a cylindrical portion 23 of the rotor 20 described later is inserted with a predetermined gap is formed at the center position. .
 また、前記フロントプレート12は、外周側の円周方向等間隔位置に各ボルト14が挿通する4つのボルト孔12bが貫通形成されている。この各ボルト孔12bの外端面12c側の孔縁近傍には、前記各ボルト14の頭部14aが着座する円形状の着座面12dが凹設されている。これにより、前記各ボルト14によるハウジング7の締結時に、各頭部14aが外端面12cよりも前方へ突出しないようになっている。 Further, the front plate 12 is formed with four bolt holes 12b through which the respective bolts 14 are inserted at circumferentially equidistant positions on the outer peripheral side. A circular seating surface 12d on which the head portion 14a of each bolt 14 is seated is recessed in the vicinity of the hole edge on the outer end surface 12c side of each bolt hole 12b. As a result, when the housing 7 is fastened by the bolts 14, the heads 14a do not protrude forward from the outer end surface 12c.
 さらに、前記フロントプレート12の外端面12cの外周側には、図1~図3に示すように、傘付ピン18が軸方向から圧入固定されている。 Further, as shown in FIGS. 1 to 3, a pin 18 with an umbrella is press-fitted and fixed from the axial direction on the outer peripheral side of the outer end surface 12c of the front plate 12.
 この傘付ピン18は、ほぼ円柱状に形成されたピン本体18aと、該ピン本体18aの圧入側と反対側の端部に一体に設けられた円板状の傘部18bと、を備えている。 The pin 18 with an umbrella includes a pin main body 18a formed in a substantially columnar shape, and a disk-shaped umbrella portion 18b integrally provided at an end of the pin main body 18a opposite to the press-fitting side. Yes.
 前記ピン本体18aは、外周面に後述する渦巻ばね45の第2係止端部45cを巻回させることにより該第2係止端部45cを係止するようになっている。 The pin main body 18a is configured to lock the second locking end 45c by winding a second locking end 45c of a spiral spring 45 described later on the outer peripheral surface.
 傘部18bは、ピン本体18aに巻回された第2係止端部45cの軸方向端面のほぼ全体を覆うような径を有し、これによって、渦巻ばね45の第2係止端部45cがピン本体18aから装置前方へ脱落するのを抑制している。 The umbrella portion 18b has a diameter that covers almost the entire axial end surface of the second locking end portion 45c wound around the pin body 18a, whereby the second locking end portion 45c of the spiral spring 45 is provided. Is prevented from dropping from the pin body 18a to the front of the device.
 リアプレート13は、図1及び図2に示すように、焼結金属材によって形成され、中央に前記カムシャフト2の一端部2aを回転自在に支持する支持孔13aが貫通形成されていると共に、外周側の円周方向等間隔位置には、各ボルト14の軸部14bの先端部外周面に形成された雄ねじ部14cが螺着する4つの雌ねじ孔13bが形成されている。 As shown in FIGS. 1 and 2, the rear plate 13 is formed of a sintered metal material, and a support hole 13 a that rotatably supports the one end 2 a of the camshaft 2 is formed through the center. Four female screw holes 13b into which male screw parts 14c formed on the outer peripheral surface of the tip part of the shaft part 14b of each bolt 14 are screwed are formed at circumferentially equidistant positions on the outer peripheral side.
 また、リアプレート13の外周部には、図2に示すように、ハウジング本体11の位置決め溝11aに係入することで該ハウジング本体11とリアプレート13の回転方向の位置決めを行う円柱状の位置決めピン19が圧入固定されている。 Further, as shown in FIG. 2, a columnar positioning that positions the housing main body 11 and the rear plate 13 in the rotational direction by engaging with the positioning groove 11 a of the housing main body 11 on the outer peripheral portion of the rear plate 13. The pin 19 is press-fitted and fixed.
 ベーンロータ8は、例えば焼結金属材によって一体に形成され、図1~図4に示すように、カムボルト5によってカムシャフト2に固定された円筒状のロータ20と、該ロータ20の外周面の円周方向ほぼ等間隔位置に放射状に突設された4枚の第1~第4ベーン21a~21dと、から主として構成されている。 The vane rotor 8 is integrally formed of, for example, a sintered metal material, and, as shown in FIGS. 1 to 4, a cylindrical rotor 20 fixed to the camshaft 2 by a cam bolt 5 and a circle on the outer peripheral surface of the rotor 20. It is mainly composed of four first to fourth vanes 21a to 21d protruding radially at substantially equal intervals in the circumferential direction.
 ロータ20は、図1に示すように、ほぼ中央位置にカムボルト5の軸部5cが挿通するボルト孔20aが貫通形成されている。また、ロータ20の内周面と軸部5cの外周面との間には、後述する遅角通路27の一部である環状通路27dを仕切られている。 As shown in FIG. 1, the rotor 20 has a bolt hole 20 a through which the shaft portion 5 c of the cam bolt 5 is inserted at a substantially central position. An annular passage 27d, which is a part of a retarding passage 27 described later, is partitioned between the inner peripheral surface of the rotor 20 and the outer peripheral surface of the shaft portion 5c.
 また、ロータ20は、フロントプレート12側の前端面20b中央部に前記カムボルト5の座部5bが着座する円形状の着座面20cが凹設されている。 Further, the rotor 20 has a circular seating surface 20c in which the seat 5b of the cam bolt 5 is seated at the center of the front end surface 20b on the front plate 12 side.
 さらに、前記ロータ20のリアプレート13側の後端面中央部には、円形凹状の嵌合穴20dが形成されている。この嵌合穴20dは、内径がカムシャフト2の一端部2a先端の外径よりも僅かに大きく形成されており、該一端部2aと嵌合可能となっている。 Furthermore, a circular concave fitting hole 20d is formed at the center of the rear end surface of the rotor 20 on the rear plate 13 side. The fitting hole 20d has an inner diameter that is slightly larger than the outer diameter of the tip of the one end portion 2a of the camshaft 2, and can be fitted to the one end portion 2a.
 また、嵌合穴20dの底面外周側の所定位置には、図10に示すように、断面円形状のピン穴20eが形成されている。また、このピン穴20eの内部には、円柱状のピン部材22の一端部が挿入配置されている。このピン部材22は、ピン穴20eとカムシャフト2の一端部2aの先端面外周部に形成されたピン溝2bとの間に介装されることにより、カムシャフト2に対するロータ20の相対回転位置を位置決めするようになっている。 Also, as shown in FIG. 10, a pin hole 20e having a circular cross section is formed at a predetermined position on the outer peripheral side of the bottom surface of the fitting hole 20d. In addition, one end of a cylindrical pin member 22 is inserted and disposed in the pin hole 20e. The pin member 22 is interposed between the pin hole 20e and the pin groove 2b formed in the outer peripheral portion of the tip end surface 2a of the camshaft 2, so that the relative rotational position of the rotor 20 with respect to the camshaft 2 is achieved. Is to be positioned.
 さらに、ロータ20の前端面20bには、図1~図3に示すように、ロータ20の軸方向に沿って延びる延設部である筒部23が突設されている。 Furthermore, as shown in FIGS. 1 to 3, a cylindrical portion 23, which is an extending portion extending along the axial direction of the rotor 20, is projected from the front end surface 20 b of the rotor 20.
 この筒部23は、ロータ20と焼結により一体成形されていると共に、該ロータ20と軸心を同じくするほぼ円筒状に形成されている。また、筒部23は、先端部23a側がフロントプレート12の貫通孔12aを介してハウジング7の外部へ突出しており、内部にカムボルト5の頭部5aを収容するようになっている。 The cylindrical portion 23 is integrally formed with the rotor 20 by sintering and is formed in a substantially cylindrical shape having the same axis as the rotor 20. Further, the cylindrical portion 23 protrudes to the outside of the housing 7 through the through hole 12a of the front plate 12 so that the head portion 5a of the cam bolt 5 is accommodated therein.
 また、筒部23には、後述する渦巻ばね45の第1係止端部45bが係止される係止部である係止溝24が設けられている。この係止溝24は、図2~図4に示すように、筒部23の円周方向所定位置でかつ、先端面から基端側へ軸方向に沿って延びる矩形状に形成されている。また、係止溝24は、筒部23の円周方向に沿って対向する一対の対向側面のうち、第1係止端部45bが係止する側の一側面24aが円弧面状に形成されている。 Further, the cylindrical portion 23 is provided with a locking groove 24 which is a locking portion for locking a first locking end 45b of a spiral spring 45 described later. As shown in FIGS. 2 to 4, the locking groove 24 is formed in a rectangular shape extending in the axial direction from the distal end surface to the proximal end side at a predetermined position in the circumferential direction of the cylindrical portion 23. The locking groove 24 has a side surface 24a on the side where the first locking end 45b is locked, of a pair of opposing side surfaces facing each other along the circumferential direction of the cylindrical portion 23, and is formed in an arcuate shape. ing.
 さらに、筒部23の外周面の軸方向ほぼ中央位置には、断面矩形状の環状溝25が円周方向ほぼ全域に亘って形成されている。この環状溝25は、内部に渦巻ばね45の内周側の一部を収容保持することにより、該渦巻ばね45の内周側が装置から脱落するのを抑制するようになっている。 Furthermore, an annular groove 25 having a rectangular cross section is formed over substantially the entire circumferential direction at a substantially central position in the axial direction of the outer peripheral surface of the cylindrical portion 23. The annular groove 25 accommodates and holds a part of the inner peripheral side of the spiral spring 45 therein, thereby preventing the inner peripheral side of the spiral spring 45 from dropping from the apparatus.
 第1~第4ベーン21a~21dは、図2及び図4に示すように、それぞれが各シュー15a~15dの間に配置されていると共に、それぞれの円弧状外周面に形成されたシール溝内に、ハウジング本体11の内周面に摺接するほぼコ字形状のシール部材26がそれぞれ収容されている。 As shown in FIGS. 2 and 4, each of the first to fourth vanes 21a to 21d is disposed between the shoes 15a to 15d, and in the seal groove formed on each arcuate outer peripheral surface. In addition, a substantially U-shaped seal member 26 slidably contacting the inner peripheral surface of the housing body 11 is accommodated.
 また、各ベーン21a~21dは、第1ベーン21aが最大幅に形成され、他の3枚の第2~第4ベーン21b~21dが第1ベーン21aよりも小さい同一の幅に形成されている。 In each vane 21a to 21d, the first vane 21a is formed with the maximum width, and the other three second to fourth vanes 21b to 21d are formed with the same width smaller than the first vane 21a. .
 第1ベーン21aは、ベーンロータ8が図4に示す最大反時計方向へ回転した際に、一側面が第1シュー15aの対向側面に当接してハウジング7に対する最大遅角側の相対回転位置が規制されている。第1ベーン21aは、ベーンロータ8が図4に示す最大時計方向へ回転した際に、他側面が第2シュー15bの対向側面に当接して最大進角側の相対回転位置が規制されるようになっている。 When the vane rotor 8 rotates in the maximum counterclockwise direction shown in FIG. 4, the first vane 21 a is in contact with the opposite side surface of the first shoe 15 a and the relative rotational position on the maximum retard angle side with respect to the housing 7 is restricted. Has been. When the vane rotor 8 rotates in the maximum clockwise direction shown in FIG. 4, the first vane 21 a comes into contact with the opposite side surface of the second shoe 15 b so that the relative rotation position on the maximum advance angle side is regulated. It has become.
 なお、前記第1ベーン21aを除く他のベーン21b~21dは、第1ベーン21aが第1,第2シュー15a,15bと当接した状態であっても、円周方向で対向するいずれのシュー15a~15dに当接することがない。これにより、第1ベーン21aと第1,第2シュー15a,15bとの当接精度が向上すると共に、各遅角,進角油圧室9,10への油圧の供給速度が速くなってベーンロータ8の正逆方向の回転応答性が高くなる。 The other vanes 21b to 21d other than the first vane 21a may be any shoe facing in the circumferential direction even when the first vane 21a is in contact with the first and second shoes 15a and 15b. No contact with 15a to 15d. As a result, the contact accuracy between the first vane 21a and the first and second shoes 15a, 15b is improved, and the supply speed of the hydraulic pressure to each of the retard and advance hydraulic chambers 9 and 10 is increased, thereby causing the vane rotor 8 to move. The rotational responsiveness in the forward / reverse direction becomes higher.
 各遅角油圧室9と各進角油圧室10は、ロータ20の内部に径方向に沿って形成された遅角側連通孔9aと進角側連通孔10aを介して油圧回路4にそれぞれ連通している。 Each retard hydraulic chamber 9 and each advance hydraulic chamber 10 communicate with the hydraulic circuit 4 via a retard communication hole 9a and an advance communication hole 10a formed in the rotor 20 along the radial direction. is doing.
 油圧回路4は、各遅角,進角油圧室9,10に対する作動油の供給や、各遅角,進角油圧室9,10内の作動油の排出、及び各遅角,進角油圧室9,10内の作動油の保持を選択的に行うもので、図1に示すように、各遅角側連通孔9aを介して各遅角油圧室9に連通する遅角通路27と、各進角側連通孔10aを介して各進角油圧室10に連通する進角油通路28と、各遅角,進角油圧室9,10に供給するための作動油が通流する供給通路29と、各遅角,進角油圧室9,10から排出された作動油が通流するドレン通路30と、機関の運転状態等に応じて遅角,進角通路27,28に対する供給通路29及びドレン通路30の連通状態を選択的に切り換える油圧制御弁である電磁切換弁31と、から主として構成されている。 The hydraulic circuit 4 supplies hydraulic oil to the retard and advance hydraulic chambers 9 and 10, discharges the hydraulic oil in the retard and advance hydraulic chambers 9 and 10, and the retard and advance hydraulic chambers. As shown in FIG. 1, each of the retarding passages 27 communicating with the retarding hydraulic chambers 9 through the retarding-side communication holes 9a, An advance oil passage 28 communicating with each advance hydraulic chamber 10 through the advance side communication hole 10a, and a supply passage 29 through which hydraulic oil for supplying to each retard and advance hydraulic chamber 9, 10 flows. A drain passage 30 through which the hydraulic oil discharged from the respective retard and advance hydraulic chambers 9 and 10 flows, a supply passage 29 for the retard and advance passages 27 and 28 according to the operating state of the engine, and the like An electromagnetic switching valve 31 that is a hydraulic control valve that selectively switches the communication state of the drain passage 30 is mainly configured.
 遅角通路27は、電磁切換弁31の図外の通路ポートに連通する遅角通路部27aと、カムシャフト2の内部に径方向に沿って貫通形成された遅角通路孔27bと、ボルト穴6の内周面とカムボルト5の軸部5cの外周面との間に形成された環状油路27cと、ロータ20の内周面と軸部5cの外周面との間に形成されて各遅角側連通孔9aと連通する環状通路27dと、を備えた一連の通路として形成されている。 The retarding passage 27 includes a retarding passage portion 27a communicating with a passage port (not shown) of the electromagnetic switching valve 31, a retarding passage hole 27b formed through the camshaft 2 along the radial direction, and a bolt hole. 6 and the annular oil passage 27c formed between the inner peripheral surface of the cam bolt 5 and the outer peripheral surface of the shaft portion 5c, and between the inner peripheral surface of the rotor 20 and the outer peripheral surface of the shaft portion 5c. It is formed as a series of passages including an annular passage 27d communicating with the corner side communication hole 9a.
 進角通路28は、電磁切換弁31の図外の供給ポートに連通する進角通路部28aと、カムシャフト2の内部に径方向に沿って貫通形成された進角通路孔28bと、カムシャフト2とロータ20とに跨って形成されると共に、各進角側連通孔10aのそれぞれに連通する4つの軸方向油孔28cと、を備えた一連の通路として形成されている。 The advance passage 28 includes an advance passage portion 28a that communicates with a supply port (not shown) of the electromagnetic switching valve 31, an advance passage hole 28b that is formed through the cam shaft 2 along the radial direction, and a cam shaft. 2 and the rotor 20, and is formed as a series of passages provided with four axial oil holes 28c communicating with the respective advance side communication holes 10a.
 供給通路29は、上流端がオイルストレーナ32を介してオイルパン33に連通している一方、下流端が電磁切換弁31の図外のドレンポートに連通している。また、前記供給通路29は、流路の途中にオイルポンプ34を有しており、該オイルポンプ34によってオイルパン33から吸入した作動油を電磁切換弁31側へ吐出するようになっている。 The supply passage 29 has an upstream end communicating with an oil pan 33 via an oil strainer 32, and a downstream end communicating with a drain port (not shown) of the electromagnetic switching valve 31. The supply passage 29 has an oil pump 34 in the middle of the flow path, and the hydraulic oil sucked from the oil pan 33 by the oil pump 34 is discharged to the electromagnetic switching valve 31 side.
 ドレン通路30は、上流端が電磁切換弁31の図外の通路ポートに連通している一方、下流端がオイルパン33に連通している。 The drain passage 30 communicates with the passage port (not shown) of the electromagnetic switching valve 31 at the upstream end, and communicates with the oil pan 33 at the downstream end.
 電磁切換弁31は、図1に示すように、3位置4ポート切換弁であって、図外の電子コントローラによって、バルブボディ内に軸方向へ摺動自在に設けられた図外のスプール弁体を前後方向に移動させて、供給通路29と各油通路27,28のうち一方の油通路27(28)と連通させると同時にドレン通路30と他方の油通路28(27)とを連通させるか、あるいは各通路27~30間の連通を遮断するようになっている。 As shown in FIG. 1, the electromagnetic switching valve 31 is a three-position four-port switching valve, and is provided with a spool valve body outside the figure that is slidable in the axial direction within the valve body by an electronic controller outside the figure. Is moved in the front-rear direction so that the supply passage 29 and one of the oil passages 27 and 28 communicate with one oil passage 27 (28) and at the same time the drain passage 30 and the other oil passage 28 (27) communicate with each other. Alternatively, the communication between the passages 27 to 30 is blocked.
 電子コントローラは、内部のコンピュータが図外のクランク角センサやエアフローメータ、機関水温センサ、スロットルバルブ開度センサ及びカムシャフト2の現在の回転位相を検出するカム角センサなどの各種センサ類からの情報信号を入力して現在の機関運転状態を検出する。そして、この検出した機関運転状態に基づき、電磁切換弁31の電磁コイルに適切な制御パルス電流を出力してスプール弁体の移動位置を制御することにより、各通路27~30間の連通を切り換え制御するようになっている。 The electronic controller includes information from various sensors such as a crank angle sensor, an air flow meter, an engine water temperature sensor, a throttle valve opening sensor, and a cam angle sensor that detects the current rotational phase of the camshaft 2 by an internal computer. A signal is input to detect the current engine operating state. Based on the detected engine operating state, an appropriate control pulse current is output to the electromagnetic coil of the electromagnetic switching valve 31 to control the movement position of the spool valve body, thereby switching the communication between the passages 27-30. It comes to control.
 また、第1ベーン21aとリアプレート13との間には、ハウジング7に対してベーンロータ8を最遅角位置に拘束するロック機構35が設けられている。 Also, between the first vane 21 a and the rear plate 13, a lock mechanism 35 that restrains the vane rotor 8 to the most retarded position with respect to the housing 7 is provided.
 このロック機構35は、図4及び図6に示すように、第1ベーン21aの内部に軸方向に沿って貫通形成された摺動用孔36と、該摺動用孔36内に摺動自在に収容されて、リアプレート13側に対して進退自在に設けられたロックピン37と、リアプレート13の径方向ほぼ中央所定位置に形成され、ロックピン37の後述する小径部37aが係合してベーンロータ8をロックするロック穴38と、機関の始動状態に応じてロックピン37の小径部37aをロック穴38に係合あるいは係合を解除する係脱機構と、から主として構成されている。 As shown in FIGS. 4 and 6, the lock mechanism 35 is slidably accommodated in a sliding hole 36 formed in the first vane 21a so as to penetrate along the axial direction. Then, a lock pin 37 provided so as to be movable forward and backward with respect to the rear plate 13 side and a small-diameter portion 37a (to be described later) of the lock pin 37 are engaged with each other by being engaged with a vane rotor. 8 is mainly composed of a lock hole 38 for locking 8 and an engagement / disengagement mechanism for engaging or releasing the small diameter portion 37a of the lock pin 37 with respect to the lock hole 38 in accordance with the starting state of the engine.
 摺動用孔36は、特に図6に示すように、内周面が段差径状に形成されて、リアプレート13側の小径孔部36aとフロントプレート12側の大径孔部36bとを有していると共に、該小径孔部36aと大径孔部36bとの間に円環状の第1段差部36cが形成されている。 As shown in FIG. 6 in particular, the sliding hole 36 has an inner peripheral surface formed in a step diameter shape, and has a small diameter hole portion 36a on the rear plate 13 side and a large diameter hole portion 36b on the front plate 12 side. In addition, an annular first step portion 36c is formed between the small diameter hole portion 36a and the large diameter hole portion 36b.
 ロックピン37は、外周面が段差径状に形成され、摺動用孔36の小径孔部36a内に摺動自在に収容されたリアプレート13側(先端側)の小径部37aと、大径孔部36b内に摺動自在に収容されたフロントプレート12側の大径部37bと、を有している。また、該小径部37aと大径部37bとの間には、円環状の第2段差部37cが形成されている。ロックピン37のフロントプレート12側の後端面には、内部軸方向に沿って円形凹状のスプリング収容溝37dが形成されている。 The lock pin 37 has a small-diameter portion 37a on the rear plate 13 side (tip side) and a large-diameter hole. A large-diameter portion 37b on the front plate 12 side that is slidably accommodated in the portion 36b. An annular second step portion 37c is formed between the small diameter portion 37a and the large diameter portion 37b. On the rear end surface of the lock pin 37 on the front plate 12 side, a circular concave spring accommodating groove 37d is formed along the inner axial direction.
 ロック穴38は、ロックピン37が係合した場合にハウジング7とベーンロータ8の相対変換角度が最進角となるようなリアプレート13の円周方向所定位置に配置形成されている。 The lock hole 38 is disposed and formed at a predetermined position in the circumferential direction of the rear plate 13 such that the relative conversion angle between the housing 7 and the vane rotor 8 becomes the most advanced angle when the lock pin 37 is engaged.
 また、ロック穴38は、内径がロックピン37の小径部37aの外径よりも大きく形成されていると共に、内周面にはロックピン37の小径部37aを挿通可能な円環状のリング部材39が嵌着されている。このリング部材39は、耐摩耗性材料によって形成されており、ロックピン37の係脱に伴って内周面がロックピン37の小径部37a外周面と繰り返し摺接した場合であっても摩耗等が抑制されるようになっている。 The lock hole 38 has an inner diameter larger than the outer diameter of the small-diameter portion 37a of the lock pin 37, and an annular ring member 39 into which the small-diameter portion 37a of the lock pin 37 can be inserted into the inner peripheral surface. Is inserted. The ring member 39 is made of an abrasion-resistant material, and even when the inner peripheral surface repeatedly contacts the outer peripheral surface of the small-diameter portion 37a of the lock pin 37 as the lock pin 37 is engaged and disengaged, the wear or the like Is to be suppressed.
 係脱機構は、フロントプレート12の内端面とロックピン37のスプリング収容溝37d底面との間に弾装されて該ロックピン37を進出方向へ常時付勢するコイルスプリング40と、内部に供給される油圧に基づきロックピン37を後退方向へ移動させる第1,第2圧力室41,42と、を備えている。 The engagement / disengagement mechanism is supplied into the coil spring 40, which is elastically mounted between the inner end surface of the front plate 12 and the bottom surface of the spring accommodating groove 37d of the lock pin 37, and constantly urges the lock pin 37 in the advance direction. The first and second pressure chambers 41 and 42 move the lock pin 37 in the backward direction based on the hydraulic pressure.
 コイルスプリング40は、ベーンロータ8がハウジング7に対して最大遅角位置に相対回転した場合に、そのばね力によってロックピン37を進出移動させて該ロックピン37の小径部37a先端をロック穴38内に係入させることにより、ハウジング7に対してベーンロータ8をロックさせるようになっている。 When the vane rotor 8 rotates relative to the housing 7 at the maximum retarded angle position, the coil spring 40 moves the lock pin 37 forward by the spring force so that the tip of the small diameter portion 37a of the lock pin 37 is moved into the lock hole 38. The vane rotor 8 is locked with respect to the housing 7 by being engaged therewith.
 第1圧力室41は、摺動用孔36の第1段差部36cとロックピン37の第2段差部37cとの間に隔成された円環状の空間であって、周壁に貫通形成された第1油路43を介して第1ベーン21aによって隔成された遅角油圧室9に連通している(図4参照)。また、前記第1圧力室41は、内部に作動油が供給されると、この作動油の油圧をロックピン37の第2段差部37cに作用させて、該ロックピン37を後退方向へ付勢するようになっている。 The first pressure chamber 41 is an annular space defined between the first stepped portion 36c of the sliding hole 36 and the second stepped portion 37c of the lock pin 37, and is formed through the peripheral wall. It communicates with the retarded hydraulic chamber 9 separated by the first vane 21a through one oil passage 43 (see FIG. 4). Further, when hydraulic oil is supplied to the first pressure chamber 41, the hydraulic pressure of the hydraulic oil is applied to the second step portion 37 c of the lock pin 37 to urge the lock pin 37 in the backward direction. It is supposed to be.
 第2圧力室42は、ロック穴38の底面にロックピン37の小径部37aよりも小径な円柱状空間として形成されていると共に、周壁に形成された長溝状の第2油路44を介して第1ベーン21aによって隔成された進角油圧室10に連通している(図4参照)。また、前記第2圧力室42は、内部に作動油が供給されると、この作動油の油圧をロックピン37の先端面に作用させて、該ロックピン37を後退方向へ付勢するようになっている。 The second pressure chamber 42 is formed as a cylindrical space having a smaller diameter than the small diameter portion 37a of the lock pin 37 on the bottom surface of the lock hole 38, and through a long groove-like second oil passage 44 formed in the peripheral wall. It communicates with the advance hydraulic chamber 10 separated by the first vane 21a (see FIG. 4). Further, when hydraulic oil is supplied to the second pressure chamber 42, the hydraulic pressure of the hydraulic oil is applied to the distal end surface of the lock pin 37 to urge the lock pin 37 in the backward direction. It has become.
 また、フロントプレート12の外端面12cには、図1~図3及び図7に示すように、ベーンロータ8をハウジング7に対して進角方向へ付勢する付勢部材である渦巻ばね45が設けられている。 Further, as shown in FIGS. 1 to 3 and 7, a spiral spring 45, which is a biasing member that biases the vane rotor 8 in the advance direction with respect to the housing 7, is provided on the outer end surface 12 c of the front plate 12. It has been.
 この渦巻ばね45は、断面ほぼ長方形状の扁平な角線を長手方向の面が対向するようにほぼ同一平面上に巻回させてなるもので、内周側から外周側にかけて徐々に拡径する渦巻ばね本体45aと、該渦巻ばね本体45aの内周側の一端部を径方向内側に折曲させた第1係止端部45bと、渦巻ばね本体45aの外周側の他端部を径方向外側に半円フック状に湾曲させた第2係止端部45cと、から構成されている。 The spiral spring 45 is formed by winding flat rectangular lines having a substantially rectangular cross section on substantially the same plane so that the surfaces in the longitudinal direction face each other, and gradually increases in diameter from the inner peripheral side to the outer peripheral side. A spiral spring main body 45a, a first locking end 45b in which one end portion on the inner peripheral side of the spiral spring main body 45a is bent radially inward, and a second end portion on the outer peripheral side of the spiral spring main body 45a in the radial direction And a second locking end portion 45c curved outwardly in a semicircular hook shape.
 渦巻ばね本体45aは、第1係止端部45b側の最内周部の一部が、筒部23に形成された環状溝25の内部に収容配置されていると共に、第2係止端部45c側の最外周部が、フロントプレート12の外端面12cに圧入固定されたサポートピン46(図3参照)によって支持されている。このサポートピン46は、渦巻ばね45の最外周部を支持することで該渦巻ばね45がハウジング7とベーンロータ8との間で安定した付勢動作を行えるようにすると共に、渦巻ばね45が縮径方向へ変形した際に、該渦巻ばね45のサポートピン46当接位置から第2係止端部45cの間に生じるトルクを増大させるようになっている。 The spiral spring main body 45a has a part of the innermost peripheral portion on the first locking end portion 45b side accommodated in the annular groove 25 formed in the cylindrical portion 23, and a second locking end portion. The outermost peripheral portion on the 45c side is supported by a support pin 46 (see FIG. 3) that is press-fitted and fixed to the outer end surface 12c of the front plate 12. The support pin 46 supports the outermost peripheral portion of the spiral spring 45 so that the spiral spring 45 can perform a stable biasing operation between the housing 7 and the vane rotor 8, and the spiral spring 45 has a reduced diameter. When deformed in the direction, the torque generated between the contact position of the support pin 46 of the spiral spring 45 and the second locking end 45c is increased.
 第1係止端部45bは、筒部23の係止溝24に係入しつつ、該係止溝24の一側面24aに係止固定されている。一方、第2係止端部45cは、フロントプレート12の外端面12cに設けられた傘付ピン18のピン本体18a外周面に係止固定されている。 The first locking end portion 45 b is locked and fixed to one side surface 24 a of the locking groove 24 while being engaged with the locking groove 24 of the cylindrical portion 23. On the other hand, the second locking end portion 45c is locked and fixed to the outer peripheral surface of the pin body 18a of the pin 18 with the umbrella provided on the outer end surface 12c of the front plate 12.
 かかる構成により、渦巻ばね45は、前述したようにベーンロータ8をハウジング7に対して進角方向へ付勢することとなるが、この付勢力はベーンロータ8を積極的に進角側に回転させるといった強力なものではなく、機関運転時においてカムシャフト2に発生する負の交番トルク(ベーンロータ8を遅角側に回転させる交番トルク)と釣り合いが取れる程度に設定されている。 With this configuration, the spiral spring 45 urges the vane rotor 8 in the advance direction with respect to the housing 7 as described above. This urging force positively rotates the vane rotor 8 to the advance side. It is not strong and is set to such an extent that it can be balanced with negative alternating torque (alternating torque that rotates the vane rotor 8 to the retard side) generated in the camshaft 2 during engine operation.
 すなわち、ベーンロータ8の位相変換は、あくまで各遅角,進角油圧室9,10に供給される油圧によって行われるものであって、渦巻ばね45による付勢はベーンロータ8の位相保持に供される補助的なものとなっている。 In other words, the phase conversion of the vane rotor 8 is performed only by the hydraulic pressure supplied to the respective retard and advance hydraulic chambers 9 and 10, and the urging by the spiral spring 45 is used to maintain the phase of the vane rotor 8. It is an auxiliary one.
 そして、筒部23には、図2~図4、図7及び図8に示すように、ボルト締結の際に後述する保持工具52の係入突起54が係入する工具係入部であるU字状の溝部47が円周方向等間隔位置に3つ設けられている。 As shown in FIGS. 2 to 4, 7, and 8, the cylindrical portion 23 has a U-shape that is a tool engaging portion into which an engaging protrusion 54 of a holding tool 52 described later is engaged when fastening a bolt. Three groove portions 47 are provided at circumferentially equidistant positions.
 この各溝部47は、図7に示すように、ボルト締結方向Dと反対側に設けられた第1当接面である一側面47aと、該一側面47aと対向する第2当接面である他側面47bと、両側面47a,47bを接続する円弧面状の底面47cと、を備えている。 As shown in FIG. 7, each groove 47 is a side surface 47 a that is a first contact surface provided on the side opposite to the bolt fastening direction D, and a second contact surface that faces the side surface 47 a. The other side surface 47b and the circular-arc-shaped bottom surface 47c which connects both side surface 47a, 47b are provided.
 一側面47aは、図8に示すように、ベーンロータ8の回転軸心Oと一側面47aの筒部23(ロータ20)内周側の端縁47dとを結んで形成される第1仮想面S1と比較して、ボルト締結方向Dと反対側へ傾斜する平面状に形成されている。換言すれば、一側面47aの筒部23(ロータ20)の外周側の端縁47fが第1仮想面S1よりも、ボルト締結方向Dに対して反対側に設けられている。 As shown in FIG. 8, the one side surface 47a is formed by connecting the rotation axis O of the vane rotor 8 and the edge 47d on the inner peripheral side of the cylindrical portion 23 (rotor 20) of the one side surface 47a. In comparison with the bolt fastening direction D, it is formed in a flat shape that is inclined to the opposite side. In other words, the edge 47f on the outer peripheral side of the cylindrical portion 23 (the rotor 20) of the one side surface 47a is provided on the opposite side to the bolt fastening direction D with respect to the first virtual surface S1.
 一方、他側面47bは、ベーンロータ8の回転軸心Oと他側面47bの筒部23(ロータ20)内周側の端縁47eとを結んで形成される第2仮想面S2と比較して、ボルト締結方向Dへ傾斜する平面状に形成されている。換言すれば、他側面47bの筒部23(ロータ20)の外周側の端縁47gが第2仮想面S2よりも、ボルト締結方向D側に設けられている。 On the other hand, the other side surface 47b is compared with the second virtual surface S2 formed by connecting the rotation axis O of the vane rotor 8 and the edge 47e on the inner peripheral side of the cylindrical portion 23 (rotor 20) of the other side surface 47b. It is formed in a flat shape inclined in the bolt fastening direction D. In other words, the edge 47g on the outer peripheral side of the cylindrical portion 23 (rotor 20) on the other side surface 47b is provided on the bolt fastening direction D side with respect to the second virtual surface S2.
 すなわち、各溝部47は、筒部23円周方向の幅長さ(溝幅)が該筒部23の内周側から外周側に向かって漸次拡大する正面視ハ字形状に形成されている。 That is, each groove portion 47 is formed in a C shape in a front view in which the width (groove width) in the circumferential direction of the cylindrical portion 23 gradually increases from the inner peripheral side to the outer peripheral side of the cylindrical portion 23.
 また、各溝部47は、特に図10に示すように、その溝深さが筒部23の軸方向長さよりも僅かに短く形成され、底面47cがロータ20の前端面20bよりも僅かに装置前方、つまり筒部23の先端部23a寄りに位置するようになっている。 In addition, as shown in FIG. 10 in particular, each groove portion 47 is formed so that the groove depth is slightly shorter than the axial length of the cylindrical portion 23, and the bottom surface 47 c is slightly forward of the apparatus than the front end surface 20 b of the rotor 20. In other words, it is positioned closer to the distal end portion 23a of the cylindrical portion 23.
 また、前述した係止溝24は、各溝部47との相対関係に基づき筒部23の円周方向における形成位置が決定されるようになっている。 Further, the above-described locking groove 24 is configured such that the formation position of the cylindrical portion 23 in the circumferential direction is determined based on the relative relationship with each groove portion 47.
 すなわち、係止溝24は、図8に示すように、筒部23の円周方向における特定の隣り合う溝部47,47間に配置されることとなるが、その配設位置P1は、筒部23の円周方向における両溝部47,47間の中間位置P0よりもボルト締結方向Dと反対側の方向へ僅かに偏倚するようになっている。
〔バルブタイミング制御装置の取付方法〕
 バルブタイミング制御装置は、前述したように、カムシャフト2に対してカムボルト5によって締結されて取り付けられる。この締結作業にあたっては、端部にカムボルト5の六角状の頭部5aと嵌合する嵌合部51aを有する一般的なボルト締結工具である六角レンチ51(図11参照)と、該六角レンチ51によって締結作業を行う際にベーンロータ8を保持する保持工具52と、が用いられる。
That is, as shown in FIG. 8, the locking groove 24 is disposed between specific adjacent groove portions 47, 47 in the circumferential direction of the cylindrical portion 23. 23 is slightly deviated in the direction opposite to the bolt fastening direction D from the intermediate position P0 between both groove portions 47, 47 in the circumferential direction.
[Attaching method of valve timing control device]
The valve timing control device is fastened and attached to the camshaft 2 by the cam bolt 5 as described above. In this fastening operation, a hexagon wrench 51 (see FIG. 11) which is a general bolt fastening tool having a fitting portion 51a fitted to the hexagonal head 5a of the cam bolt 5 at the end, and the hexagon wrench 51 And a holding tool 52 for holding the vane rotor 8 when performing the fastening operation.
 保持工具52は、図9(A),(B)に示すように、金属材料によって一体に形成され、円筒状の基部53と、該基部53の軸方向一端面に突設された3つの係入突起54と、基部53の外周面から延出する把持部55と、から構成されている。 As shown in FIGS. 9A and 9B, the holding tool 52 is integrally formed of a metal material, and has a cylindrical base portion 53 and three engagement members protruding from one end surface in the axial direction of the base portion 53. It is comprised from the entrance protrusion 54 and the holding part 55 extended from the outer peripheral surface of the base 53.
 基部53は、ベーンロータ8の筒部23とほぼ同一径に形成されていると共に、カムボルト5の頭部5aに係着する六角レンチ51を挿通可能な孔部である挿通孔53aが貫通形成されている。 The base 53 is formed to have substantially the same diameter as the cylindrical portion 23 of the vane rotor 8, and an insertion hole 53 a that is a hole through which a hexagon wrench 51 that engages with the head 5 a of the cam bolt 5 can be inserted. Yes.
 各係入突起54は、図9(A)に示すように、基部53の円周方向ほぼ等間隔位置に配置されていると共に、それぞれ筒部23の各溝部47と対応する形状に形成されており、該各溝部47に対して係入可能となっている。 As shown in FIG. 9A, each engaging protrusion 54 is arranged at a substantially equal interval in the circumferential direction of the base 53 and is formed in a shape corresponding to each groove 47 of the cylindrical portion 23. It is possible to engage with each groove 47.
 すなわち、係入突起54は、正面視ほぼ扇状に形成されており、溝部47への係入時に該溝部47の一側面47aに対向する第1係止面54aと、溝部47の他側面47bに対向する第2係止面54bと、を備えている。 That is, the engaging protrusion 54 is formed in a substantially fan shape when viewed from the front. The engaging protrusion 54 is formed on the first locking surface 54 a facing the one side surface 47 a of the groove portion 47 and the other side surface 47 b of the groove portion 47 when engaging with the groove portion 47. And an opposing second locking surface 54b.
 次に、バルブタイミング制御装置のカムシャフト2に対する取付作業を、図10~図12に基づいて工程別に説明する。 Next, the operation of attaching the valve timing control device to the camshaft 2 will be described step by step with reference to FIGS.
 まず、第1工程として、図10に示すように、予め渦巻ばね45以外の部材がアセンブリされた状態の前記バルブタイミング制御装置を、カムシャフト2に対して軸方向から挿入して、該カムシャフト2の一端部2aにロータ20の嵌合穴20dを嵌合させる。 First, as a first step, as shown in FIG. 10, the valve timing control device in a state where members other than the spiral spring 45 are assembled in advance is inserted into the camshaft 2 from the axial direction. The fitting hole 20d of the rotor 20 is fitted to the one end 2a of the two.
 このとき、前記ベーンロータ8は、ロックピン37がロック穴38に係合することによりハウジング7に対して最遅角位置に拘束されると共に、ピン部材22によってカムシャフト2に対する円周方向の位置決めがされるようになっている。 At this time, the vane rotor 8 is restrained to the most retarded position with respect to the housing 7 by the lock pin 37 engaging with the lock hole 38, and the pin member 22 is positioned in the circumferential direction with respect to the camshaft 2. It has come to be.
 次に、第2工程として、カムシャフト2のボルト穴6にカムボルト5を挿入した後、図11に示すように、該カムボルト5の軸方向に沿って保持工具52の各係入突起54を筒部23の各溝部47に軸方向から係入させる。 Next, as a second step, after inserting the cam bolt 5 into the bolt hole 6 of the camshaft 2, as shown in FIG. 11, the engaging projections 54 of the holding tool 52 are arranged in the cylinder direction along the axial direction of the cam bolt 5. It is made to engage in each groove part 47 of the part 23 from an axial direction.
 続いて、第3工程として、六角レンチ51先端の嵌合部51aを、保持工具52の挿通孔53a内に挿通させ、カムボルト5の頭部5aに嵌合させた後、保持工具52の把持部55を把持しつつ六角レンチ51をボルト締結方向Dへ回転させる。 Subsequently, as a third step, the fitting portion 51a at the tip of the hexagon wrench 51 is inserted into the insertion hole 53a of the holding tool 52 and fitted into the head portion 5a of the cam bolt 5, and then the holding portion of the holding tool 52 is held. The hexagon wrench 51 is rotated in the bolt fastening direction D while gripping 55.
 このとき、ベーンロータ8は、図12に示すように、回転するカムボルト5の座部5bと摺接することにより、該座部5bに連れ回されるかたちでボルト締結方向Dに回動しようとする。しかし、把持により固定された保持工具52の各係入突起54の第1係止面54aが各溝部47の一側面47aに当接することによって回動が抑制されるようになっている。この結果、ベーンロータ8とカムシャフト2との間に介装されたピン部材22の外周面や、ロック穴38内に係入されたロックピン37の外周面に大きなせん断力が作用することがなくなることから、該各ピン22,37の変形を抑制することができる。 At this time, as shown in FIG. 12, the vane rotor 8 tries to rotate in the bolt fastening direction D by being brought into sliding contact with the seat portion 5b of the rotating cam bolt 5 and being rotated by the seat portion 5b. However, the first locking surface 54 a of each engaging protrusion 54 of the holding tool 52 fixed by gripping is in contact with one side surface 47 a of each groove portion 47, so that the rotation is suppressed. As a result, a large shearing force does not act on the outer peripheral surface of the pin member 22 interposed between the vane rotor 8 and the camshaft 2 or the outer peripheral surface of the lock pin 37 engaged in the lock hole 38. Therefore, the deformation of the pins 22 and 37 can be suppressed.
 そして、カムボルト5の雄ねじ部5dをボルト穴6の雌ねじ部6aに完全に螺着させた後、第4工程としてフロントプレート12の外端面12c側に渦巻ばね45を取り付けることにより、バルブタイミング制御装置のカムシャフト2に対する取付作業が完了する。 Then, after the male screw portion 5d of the cam bolt 5 is completely screwed into the female screw portion 6a of the bolt hole 6, as a fourth step, the spiral spring 45 is attached to the outer end surface 12c side of the front plate 12, thereby providing a valve timing control device. The mounting operation for the camshaft 2 is completed.
 なお、バルブタイミング制御装置をカムシャフト2から取り外す場合には、前述した取付作業工程と逆順の工程により取り外し作業が行われる。この場合は、保持工具52の各係入突起54の第2係止面54bが各溝部47の他側面47aに当接することで、ベーンロータ8のカムボルト5を緩める方向(ボルト締結方向Dと反対方向)への回動が抑制されるようになっている。この結果、バルブタイミング制御装置の取り外し作業時においても、ピン部材22やロックピン37の変形を抑制することができる。
〔本実施形態の作用効果〕
 前述の構成から、本実施形態のバルブタイミング制御装置によれば、機関の運転状態に応じて図外の電子コントローラが電磁切換弁31のコイルに制御電流を適宜通流させることにより、各通路27~30の連通状態が切り換えられる。そして、この連通状態の切り換えに基づき、各遅角油圧室9及び各進角油圧室10の油圧関係が変更されることをもって、ハウジング7(スプロケット1)に対するベーンロータ8の相対回転位相が図4に示す最遅角位相や図5に示す最進角位相に変換されて、機関のバルブタイミングが変更されることとなる。
In addition, when removing a valve timing control apparatus from the camshaft 2, removal work is performed by the process reverse to the attachment work process mentioned above. In this case, the second locking surface 54b of each engaging projection 54 of the holding tool 52 abuts against the other side surface 47a of each groove portion 47 so that the cam bolt 5 of the vane rotor 8 is loosened (the direction opposite to the bolt fastening direction D). ) Is suppressed. As a result, deformation of the pin member 22 and the lock pin 37 can be suppressed even when the valve timing control device is removed.
[Effects of this embodiment]
From the above-described configuration, according to the valve timing control device of the present embodiment, the electronic controller (not shown) appropriately passes a control current through the coil of the electromagnetic switching valve 31 according to the operating state of the engine. The communication state of ~ 30 is switched. Then, based on the switching of the communication state, the relative hydraulic phase of the vane rotor 8 with respect to the housing 7 (sprocket 1) is changed as shown in FIG. 4 by changing the hydraulic relationship between each retarded hydraulic chamber 9 and each advanced hydraulic chamber 10. The valve timing of the engine is changed by being converted into the most retarded phase shown and the most advanced phase shown in FIG.
 また、本実施形態のバルブタイミング制御装置では、機関運転時に電磁切換弁31によって各通路27~30の連通を遮断して、各遅角油圧室9と各進角油圧室10の内部にそれぞれ作動油が供給された状態を維持することにより、機関のバルブタイミングを所望の位相に保持することができる。 Further, in the valve timing control device of the present embodiment, during the engine operation, the communication of the passages 27 to 30 is blocked by the electromagnetic switching valve 31 to operate inside the retard hydraulic chamber 9 and the advance hydraulic chamber 10, respectively. By maintaining the state in which the oil is supplied, the valve timing of the engine can be maintained at a desired phase.
 特に、本実施形態では、ベーンロータ8をハウジング7に対して進角方向へ付勢する渦巻ばね45を設けたことから、該渦巻ばね45のばね力によって機関運転時にカムシャフト2に発生する負の交番トルクとのバランスが容易に取れるため、バルブタイミングを容易かつ精度良く保持することができる。 In particular, in this embodiment, since the spiral spring 45 that biases the vane rotor 8 in the advance direction with respect to the housing 7 is provided, the negative force generated in the camshaft 2 during engine operation by the spring force of the spiral spring 45 is provided. Since the balance with the alternating torque can be easily taken, the valve timing can be easily and accurately maintained.
 また、本実施形態では、この位相保持に供される付勢部材として渦巻ばね45を用いたことから、トーションスプリング等を用いる場合と比べて軸方向の幅長さが格段に短くなるため、装置のコンパクト化を図ることができる。 Further, in the present embodiment, since the spiral spring 45 is used as the biasing member provided for this phase maintenance, the axial length is remarkably shortened compared with the case where a torsion spring or the like is used. Can be made compact.
 そして、本実施形態では、バルブタイミング制御装置のカムシャフト2への取付作業時におけるベーンロータ8の変形を抑制するようにした。 And in this embodiment, it was made to suppress the deformation | transformation of the vane rotor 8 at the time of the attachment operation | work to the cam shaft 2 of a valve timing control apparatus.
 本実施形態のような、ベーンロータ8の各溝部47に保持工具52の各係入突起54を係入させてボルト締結時のベーンロータ8の回動を抑制するバルブタイミング制御装置にあっては、図12に示すように、各係入突起54の第1係止面54aによってベーンロータ8の回転力F1が抑えられる一方、これと同時に該回転力F1と同等の反力(荷重)F2が各溝部47の一側面47aに作用する。 In the valve timing control apparatus as shown in the present embodiment, the engaging protrusions 54 of the holding tool 52 are engaged with the groove portions 47 of the vane rotor 8 to suppress the rotation of the vane rotor 8 when the bolts are tightened. 12, the rotational force F1 of the vane rotor 8 is suppressed by the first locking surfaces 54a of the respective engaging protrusions 54, and at the same time, a reaction force (load) F2 equivalent to the rotational force F1 is applied to each groove portion 47. Acting on one side surface 47a.
 このとき、前記反力F2がベーンロータ8外径方向へのベクトル成分を有すると、ベーンロータ8が反力F2によって外側方向へ拡径変形してしまうおそれがあるが、本実施形態では、前述したように各溝部47の一側面47aを第1仮想面S1と比較してボルト締結方向Dと反対側へ傾斜するように形成したことから、反力F2が、ベーンロータ8の内径方向へのベクトル成分F2radを有することとなって、各一側面47aに対してベーンロータ8を内側方向へ抑え込むように作用する。 At this time, if the reaction force F2 has a vector component in the direction of the outer diameter of the vane rotor 8, the vane rotor 8 may be deformed to expand in the outer direction by the reaction force F2, but in this embodiment, as described above. Since the one side surface 47a of each groove portion 47 is formed so as to be inclined in the direction opposite to the bolt fastening direction D as compared with the first virtual surface S1, the reaction force F2 is a vector component F2 in the inner diameter direction of the vane rotor 8. With the rad , the vane rotor 8 acts so as to be restrained inwardly with respect to each side surface 47a.
 これにより、ボルト締結時においてベーンロータ8が反力F2に基づいて外側方向へ押し広げられることが抑制されることから、ベーンロータ8の拡径変形を効果的に抑制できる。 This prevents the vane rotor 8 from being expanded outwardly based on the reaction force F2 when the bolt is fastened, so that the diameter expansion deformation of the vane rotor 8 can be effectively suppressed.
 したがって、本実施形態によれば、カムシャフト2にベーンロータ8をボルト締結する際のベーンロータ8の回動を抑制しつつ、該回動抑制に際するベーンロータ8の変形をも抑制することができる。 Therefore, according to the present embodiment, it is possible to suppress the deformation of the vane rotor 8 when the rotation of the vane rotor 8 is suppressed while suppressing the rotation of the vane rotor 8 when the vane rotor 8 is bolted to the camshaft 2.
 なお、前述の作用効果は、ベーンロータ8のうち、渦巻ばね45の係止に供される比較的薄肉(低剛性)な筒部23に各溝部47が形成されている本実施形態のバルブタイミング制御装置において特に有用である。 In addition, the above-mentioned effect is the valve timing control of this embodiment in which each groove part 47 is formed in the comparatively thin (low-rigidity) cylindrical part 23 used for latching of the spiral spring 45 in the vane rotor 8. It is particularly useful in the device.
 また、前記筒部23の強度が懸念される場合にあっては、該筒部23を厚肉に形成して強度を向上させたり、筒部23を高い剛性を有する別部材によって形成したりするといった方法も採れるが、前者は筒部23の厚肉化による装置の重量増加が問題となり、後者は部品点数の増加に伴う組付作業の煩雑化が問題となる。 When the strength of the cylindrical portion 23 is concerned, the cylindrical portion 23 is formed thick to improve the strength, or the cylindrical portion 23 is formed of another member having high rigidity. However, the former has a problem of an increase in the weight of the apparatus due to the thickening of the cylindrical portion 23, and the latter has a problem that the assembling work becomes complicated due to an increase in the number of parts.
 これに対して、本実施形態は、前記ロータ20と筒部23とを一体成形しつつ、あくまで反力F2の作用方向を工夫することにより該反力F2を受けるものであることから、装置の重量や部品点数を増加させることなく反力F2に基づく筒部23の変形を抑制することができる。 On the other hand, in the present embodiment, the rotor 20 and the cylindrical portion 23 are integrally formed, and the reaction force F2 is received by devising the action direction of the reaction force F2. The deformation of the cylindrical portion 23 based on the reaction force F2 can be suppressed without increasing the weight or the number of parts.
 また、本実施形態では、渦巻ばね45の第1係止端部45bが係止する係止溝24を、筒部23の円周方向の各溝部47と干渉しない部位に設けたことから、ボルト締結作業時において、係止溝24が保持工具52と干渉するといった問題が生じず、ボルト締結に係る作業性を損なうことがない。 In the present embodiment, the locking groove 24 that is locked by the first locking end 45b of the spiral spring 45 is provided in a portion that does not interfere with each circumferential groove 47 of the cylindrical portion 23, so that the bolt During the fastening operation, the problem that the locking groove 24 interferes with the holding tool 52 does not occur, and the workability related to the bolt fastening is not impaired.
 さらに、本実施形態では、前記係止溝24の配設位置P1を、筒部23における特定の2つの溝部47,47の間の円周方向中間位置P0よりもボルト締結方向Dと反対側の方向へ偏倚するようにした。これにより、図12に示すように、筒部23の特定の溝部47,47の間の肉部23b,23cのうち、保持工具52の係入突起54から反力F2を受ける側(ボルト締結方向D側)の肉部23bの断面積が広く確保されることから、ベーンロータ8の反力F2に対する強度が大きく低下することがない。この結果、たとえ係止溝24を設けたとしても反力F2に十分に対抗することができる。 Furthermore, in this embodiment, the disposition position P1 of the locking groove 24 is set on the opposite side to the bolt fastening direction D from the circumferential intermediate position P0 between the two specific groove portions 47, 47 in the cylindrical portion 23. It was biased in the direction. As a result, as shown in FIG. 12, of the meat portions 23 b and 23 c between the specific groove portions 47 and 47 of the cylinder portion 23, the side that receives the reaction force F <b> 2 from the engaging protrusion 54 of the holding tool 52 (the bolt fastening direction). Since the cross-sectional area of the meat portion 23b on the (D side) is ensured widely, the strength of the vane rotor 8 against the reaction force F2 does not greatly decrease. As a result, even if the locking groove 24 is provided, it can sufficiently counter the reaction force F2.
 また、本実施形態では、前記各溝部47の他側面47bを、第2仮想面S2と比較してボルト締結方向Dへ傾斜する平面状に形成したことから、前記バルブタイミング制御装置に故障が生じてカムシャフト2から取り外す場合等において、カムボルト5の緩め動作に伴いベーンロータ8に発生する回転力F3の反力F4が、ベーンロータ8の内径方向のベクトル成分F4radを有することとなる。これにより、前記反力F4が筒部23に対して内側方向へ抑え込むように作用することから、カムボルト5の取り外し時においてもベーンロータ8の拡径変形を抑制することができる。 Further, in the present embodiment, the other side surface 47b of each of the groove portions 47 is formed in a flat shape that is inclined in the bolt fastening direction D as compared with the second virtual surface S2, so that a failure occurs in the valve timing control device. in such case be removed from the cam shaft 2 Te, the reaction force F4 of the rotational force F3 generated in the vane rotor 8 with the loosening operation of the cam bolt 5 is allowed to have an inner diameter direction of the vector component F4 rad of the vane rotor 8. Thereby, since the reaction force F4 acts so as to be restrained inward with respect to the cylindrical portion 23, the diameter expansion deformation of the vane rotor 8 can be suppressed even when the cam bolt 5 is removed.
 さらに、本実施形態では、前記各溝部47を、底面47cがロータ20の前端面20bよりも筒部23の先端部23a寄りとなるような溝深さに形成したことから、各溝部47がロータ20の内部に及んでおらず、各溝部47の成形性が良い。 Furthermore, in the present embodiment, each groove 47 is formed to have a groove depth such that the bottom surface 47c is closer to the tip 23a of the cylindrical portion 23 than the front end surface 20b of the rotor 20, and therefore each groove 47 is a rotor. 20 does not reach the inside of the groove 20, and the formability of each groove 47 is good.
 また、本実施形態では、前記各溝部47の底面47cを円弧状に形成したことから、ボルト締結時において筒部23に反力F2が作用した場合における筒部23の特定の部位への応力集中が生じにくくなるため、該筒部23の変形をより一層抑制することができる。
〔第2実施形態〕
 図13は本発明の第2実施形態を示し、基本構成は第1実施形態と同様であるが、前記各溝部47の他側面47bの形状を変更したものである。
In the present embodiment, since the bottom surface 47c of each groove 47 is formed in an arc shape, the stress concentration on a specific part of the cylinder 23 when the reaction force F2 is applied to the cylinder 23 at the time of bolt fastening. Therefore, deformation of the cylindrical portion 23 can be further suppressed.
[Second Embodiment]
FIG. 13 shows a second embodiment of the present invention. The basic configuration is the same as that of the first embodiment, but the shape of the other side surface 47b of each groove 47 is changed.
 基本的に、前記バルブタイミング制御装置は、カムシャフト2に対して繰り返し脱着されるようなものではなく、一度取り付ければ長期間に亘ってその状態が維持されるような装置である。また、ボルト締結時にベーンロータ8に発生する回転力F1と比較して、カムボルト5の取り外し時にベーンロータ8に発生する回転力F3は小さい傾向にある。 Basically, the valve timing control device is not a device that is repeatedly attached to and detached from the camshaft 2, but a device that maintains its state for a long period of time once it is attached. Further, the rotational force F3 generated in the vane rotor 8 when the cam bolt 5 is removed tends to be smaller than the rotational force F1 generated in the vane rotor 8 when the bolt is fastened.
 これらの実情を鑑み、本実施形態では、前記各溝部47の他側面47bを、前記第2仮想面S2と比較してボルト締結方向Dと反対側へ傾斜する平面状に形成した。 In view of these circumstances, in this embodiment, the other side surface 47b of each groove portion 47 is formed in a planar shape that is inclined to the opposite side to the bolt fastening direction D as compared with the second virtual surface S2.
 これにより、カムボルト5を緩める際に僅かながらベーンロータ8が拡径方向へ変形する可能性はあるものの、前記第1実施形態のバルブタイミング制御装置よりも溝部47の溝幅(筒部23円周方向の長さ)が狭くなって筒部23の断面積が広く確保できることから、該筒部23の強度を向上させることができる。この結果、ボルト締結時におけるベーンロータ8の変形をより一層抑制することができる。 Thereby, when the cam bolt 5 is loosened, the vane rotor 8 may be slightly deformed in the diameter-expanding direction, but the groove width of the groove portion 47 (in the circumferential direction of the cylindrical portion 23) is larger than that of the valve timing control device of the first embodiment. The length of the cylindrical portion 23 is narrowed, and a wide cross-sectional area of the cylindrical portion 23 can be secured. Therefore, the strength of the cylindrical portion 23 can be improved. As a result, the deformation of the vane rotor 8 at the time of bolt fastening can be further suppressed.
 他の作用効果は、第1実施形態と同じである。 Other functions and effects are the same as those in the first embodiment.
 本発明は、前記各実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲で構成を変更することも可能である。 The present invention is not limited to the configuration of each of the embodiments described above, and the configuration can be changed without departing from the spirit of the invention.
 例えば、前記各実施形態では、ロータ20の筒部23に各溝部47を設けることとしたが、筒部23を廃止してロータ20の前端面20bに各溝部47を設けることも可能である。 For example, in each of the embodiments described above, each groove portion 47 is provided in the cylindrical portion 23 of the rotor 20, but it is also possible to eliminate the cylindrical portion 23 and provide each groove portion 47 in the front end surface 20b of the rotor 20.
 また、前記各実施形態では、ロータ20の前端面20bに筒部23を設けると共に、該筒部23の先端面に形成された各溝部47に保持工具52の各係入突起54を係入させることでベーンロータ8の回動を抑制している。しかし、筒部23を廃止すると共に、ロータ20の前端面20bに複数の突起部を突設し、該各突起部の間に保持工具52の各係入突起54を係入させ、該各係入突起54の第1係止面54aに前記各突起部のボルト締結方向D側に形成された一側面を係止させることによってベーンロータ8の回動を抑制してもよい。 In each of the above embodiments, the cylindrical portion 23 is provided on the front end surface 20 b of the rotor 20, and the engaging protrusions 54 of the holding tool 52 are engaged with the groove portions 47 formed on the front end surface of the cylindrical portion 23. Thus, the rotation of the vane rotor 8 is suppressed. However, the cylindrical portion 23 is abolished, a plurality of protrusions are provided on the front end surface 20b of the rotor 20, and the engaging protrusions 54 of the holding tool 52 are inserted between the protrusions. The rotation of the vane rotor 8 may be suppressed by locking one side surface formed on the bolt fastening direction D side of each protrusion to the first locking surface 54a of the insertion protrusion 54.
 以上説明した各実施形態に基づく内燃機関のバルブタイミング制御装置及び該バルブタイミング制御装置の取付方法としては、例えば、以下に述べる態様のものが考えられる。 As a valve timing control device for an internal combustion engine and a method for mounting the valve timing control device based on the embodiments described above, for example, the following modes can be considered.
 内燃機関のバルブタイミング制御装置は、その一つの態様において、クランクシャフトから回転力が伝達されるハウジングと、該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータを有するベーンロータと、前記ロータの前記カムシャフトと反対側の端面に設けられ、前記カムボルトの締結方向と反対側の一側面を有する溝部と、を備え、前記一側面は、前記ベーンロータの回転軸心と前記一側面の前記ロータにおける内周側の端縁とを結んで形成される仮想面よりも、前記一側面の外周側の端縁が前記カムボルトの締結方向に対して反対側にある。 In one embodiment, a valve timing control device for an internal combustion engine includes a housing to which a rotational force is transmitted from a crankshaft, and a cylindrical rotor provided inside the housing and fastened and fixed to the camshaft by a cam bolt. A vane rotor, and a groove portion provided on an end surface of the rotor opposite to the camshaft and having a side surface opposite to a fastening direction of the cam bolt, and the one side surface includes a rotation axis of the vane rotor and the The edge on the outer peripheral side of the one side surface is on the opposite side to the fastening direction of the cam bolt than the imaginary surface formed by connecting the inner peripheral edge of the rotor on the one side surface.
 前記内燃機関のバルブタイミング制御装置の好ましい態様において、前記ベーンロータは、前記カムシャフトと反対側の端部に設けられ、前記ハウジングの外部へ延出した円筒状の筒部を有し、前記溝部は、前記筒部に設けられている。 In a preferred aspect of the valve timing control device of the internal combustion engine, the vane rotor is provided at an end opposite to the camshaft, and has a cylindrical tube portion extending to the outside of the housing, and the groove portion is , Provided in the cylindrical portion.
 別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記筒部と前記ハウジングとの間には、前記筒部に一端部が係止される一方、他端部が前記ハウジングに係止され、前記ベーンロータを前記ハウジングに対して回転方向一方側に付勢する付勢部材が設けられ、前記溝部は、前記筒部の円周方向に沿って複数設けられていると共に、前記筒部のうち、特定の隣り合う一対の溝部の間の部位には、前記付勢部材の一端部が係止する係止溝が形成されていることを特徴とする内燃機関のバルブタイミング制御装置。 In another preferred aspect, in any one of the aspects of the valve timing control device of the internal combustion engine, one end is locked to the cylindrical part and the other end is between the cylindrical part and the housing. A biasing member that is locked to the housing and biases the vane rotor to one side in the rotational direction with respect to the housing is provided, and a plurality of the groove portions are provided along a circumferential direction of the cylindrical portion. The valve timing of the internal combustion engine is characterized in that a locking groove for locking one end of the urging member is formed in a portion of the cylindrical portion between a specific pair of adjacent groove portions. Control device.
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記係止溝は、前記筒部における前記特定の隣り合う一対の溝部の間の円周方向中間位置よりも前記カムボルトの締結方向に対して反対側に偏倚している。 In still another preferred aspect, in any one of the aspects of the valve timing control device for the internal combustion engine, the locking groove is more than a circumferential intermediate position between the specific pair of adjacent groove portions in the cylindrical portion. It is biased to the opposite side with respect to the fastening direction of the cam bolt.
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記溝部は、前記一側面と対向して設けられた他側面を有し、前記他側面は、前記ベーンロータの回転軸心と前記他側面の前記筒部における内周側の端縁とを結んで形成される仮想面よりも、前記一側面の外周側の端縁が前記カムボルトの締結方向にある。 In still another preferred aspect, in any one of the aspects of the valve timing control device of the internal combustion engine, the groove portion has another side surface provided to face the one side surface, and the other side surface is formed of the vane rotor. The edge on the outer peripheral side of the one side surface is in the fastening direction of the cam bolt, rather than the virtual surface formed by connecting the rotation axis and the edge on the inner peripheral side of the cylindrical portion on the other side surface.
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記溝部は、前記一側面と対向して設けられた他側面を有し、前記他側面は、前記ベーンロータの回転軸心と前記他側面の前記筒部における内周側の端縁とを結んで形成される仮想面よりも、前記一側面の外周側の端縁が前記カムボルトの締結方向と反対側にある。 In still another preferred aspect, in any one of the aspects of the valve timing control device of the internal combustion engine, the groove portion has another side surface provided to face the one side surface, and the other side surface is formed of the vane rotor. The edge on the outer peripheral side of the one side surface is on the opposite side of the fastening direction of the cam bolt from the virtual surface formed by connecting the rotation axis and the edge on the inner peripheral side of the cylindrical portion on the other side surface. .
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記溝部の底面は、前記ロータの前記カムシャフトと反対側の端面よりも前記筒部寄りの位置に配置されている。 According to still another preferred aspect, in any one of the aspects of the valve timing control device of the internal combustion engine, the bottom surface of the groove portion is disposed at a position closer to the cylindrical portion than an end surface of the rotor on the side opposite to the cam shaft. ing.
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記溝部の前記底面は、円弧面状に形成されている。 In still another preferred aspect, in any one of the aspects of the valve timing control device of the internal combustion engine, the bottom surface of the groove is formed in an arcuate shape.
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記付勢部材は、渦巻状のばねである。 In still another preferred aspect, in any one of the aspects of the valve timing control device of the internal combustion engine, the biasing member is a spiral spring.
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記筒部は、前記ロータと焼結により一体成形されている。 In still another preferred aspect, in any of the aspects of the valve timing control device for the internal combustion engine, the cylindrical portion is integrally formed with the rotor by sintering.
 また、内燃機関のバルブタイミング制御装置は、別の観点から、クランクシャフトから回転力が伝達され、内部に作動室を有するハウジングと、該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータ及び該ロータの外周側に設けられて前記作動室を遅角作動室と進角作動室に隔成するベーンを有するベーンロータと、前記ロータの前記カムシャフトと反対側の端部に設けられ、前記ハウジングの外部へ延設された延設部と、該延設部に一端部が係止される一方、他端部が前記ハウジングに係止され、前記ベーンロータを前記ハウジングに対して回転方向一方側に付勢する付勢部材と、前記延設部の先端部に設けられ、前記カムボルトの締結時に前記ロータの回転を規制する保持工具が当接する第1当接面を有する溝部と、を備え、前記第1当接面は、前記ロータの回転を規制する際に前記保持工具から受ける荷重のベクトルが、前記ロータ内径方向の成分を有するように形成されている。 In another aspect of the valve timing control device for an internal combustion engine, a rotational force is transmitted from a crankshaft, a housing having a working chamber therein, a housing provided inside the housing, and fastened and fixed to the camshaft by a cam bolt. A cylindrical rotor, a vane rotor provided on an outer peripheral side of the rotor and having a vane that divides the working chamber into a retarded working chamber and an advanced working chamber, and an end of the rotor opposite to the camshaft An extending portion extending to the outside of the housing, and one end portion of the extending portion being locked to the extending portion, the other end portion being locked to the housing, and the vane rotor to the housing A biasing member that biases one side in the rotational direction, and a holding tool that is provided at the tip of the extending portion and restricts the rotation of the rotor when the cam bolt is fastened. A groove portion having one abutment surface, wherein the first abutment surface is formed such that a vector of a load received from the holding tool when regulating the rotation of the rotor has a component in the rotor inner diameter direction. Has been.
 前記別の観点からみた内燃機関のバルブタイミング制御装置の好ましい態様において、前記溝部は、前記延設部の周方向に沿って複数設けられていると共に、前記延設部のうち、特定の隣り合う一対の溝部の間の部位には、前記付勢部材の一端部が係止する係止溝が形成されている。 In a preferred embodiment of the valve timing control device for an internal combustion engine as seen from another viewpoint, a plurality of the groove portions are provided along a circumferential direction of the extension portion, and the adjacent one of the extension portions is adjacent to the extension portion. A locking groove for locking one end of the urging member is formed at a portion between the pair of grooves.
 別の好ましい態様では、前記別の観点からみた内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記係止溝は、前記延設部における前記特定の隣り合う一対の溝部の間の周方向中央位置よりも前記カムボルトの締結方向に対して反対側に偏倚している。 In another preferred embodiment, in any one of the aspects of the valve timing control device for an internal combustion engine as viewed from another viewpoint, the locking groove is a circumferential direction between the specific pair of adjacent groove portions in the extending portion. It is biased to the opposite side to the fastening direction of the cam bolt from the center position.
 さらに別の好ましい態様では、前記別の観点からみた内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記延設部は前記ロータと焼結により一体成形されている。 In still another preferred aspect, in any one of the aspects of the valve timing control device for an internal combustion engine as seen from another viewpoint, the extending portion is integrally formed with the rotor by sintering.
 また、さらに別の観点から、内燃機関のバルブタイミング制御装置は、クランクシャフトから回転力が伝達され、内部に作動室を有するハウジングと、該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータ及び該ロータの外周側に設けられて前記作動室を遅角作動室と進角作動室に隔成するベーンを有するベーンロータと、前記ロータの前記カムシャフトと反対側の端面に設けられた突起部と、を備え、前記突起部は、前記カムボルトの締結方向側の部位に一側面を有し、該一側面は、前記ベーンロータの回転軸心と前記の前記ロータ内周側の端縁とを結んで形成される仮想面と比較して、前記カムボルトの締結方向と反対側へ傾斜している。 Further, from another point of view, the valve timing control device for an internal combustion engine is provided with a housing having a working chamber therein, in which rotational force is transmitted from the crankshaft, and is fastened and fixed to the camshaft by cam bolts A cylindrical rotor, a vane rotor provided on an outer peripheral side of the rotor and having a vane that divides the working chamber into a retarded working chamber and an advanced working chamber, and an end surface of the rotor opposite to the camshaft A projection portion provided on the cam bolt, the projection portion having one side surface at a portion on a fastening direction side of the cam bolt, and the one side surface is a rotation axis of the vane rotor and the rotor inner peripheral side. Compared to a virtual surface formed by connecting the end edges of the cam bolt, the cam bolt is inclined to the opposite side to the fastening direction of the cam bolt.
 また、さらに別の観点から、内燃機関のバルブタイミング制御装置の取付方法は、クランクシャフトから回転力が伝達され、内部に作動室を有するハウジングと、該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータ及び該ロータの外周側に設けられて前記作動室を遅角作動室と進角作動室に隔成するベーンを有するベーンロータと、前記ロータの前記カムシャフトと反対側の端面に設けられ、前記カムボルトを締結する方向と反対側の方向に対向する一側面を有する工具係入部と、を備え、前記一側面が、前記ベーンロータの回転軸と前記一側面の前記ロータにおける内周側の端縁とを結んで形成される仮想面と比較して、前記カムボルトの締結方向と反対側へ傾斜している内燃機関のバルブタイミング制御装置の取付方法であって、前記ロータの端面を前記カムシャフトの端面に接触させる工程と、前記工具係入部に係入可能な係入突起と、前記カムボルトの締結を行う締結工具が挿通可能な孔部と、を有する保持工具を前記工具係入部に係入する工程と、前記保持工具の前記孔部に前記締結工具を挿通し、該締結工具によって前記カムボルトを締結する工程と、を有する。 Further, from another viewpoint, a method for mounting a valve timing control device for an internal combustion engine includes a housing in which a rotational force is transmitted from a crankshaft and having a working chamber therein, and a camshaft provided by a cam bolt. And a vane rotor provided on the outer peripheral side of the rotor and having a vane that separates the working chamber into a retarded working chamber and an advanced working chamber, and opposite to the camshaft of the rotor A tool engaging portion having one side surface provided on an end surface on the side and opposed to a direction opposite to a direction in which the cam bolt is fastened, wherein the one side surface is a rotating shaft of the vane rotor and the rotor on the one side surface. The internal combustion engine valve is inclined to the opposite side to the fastening direction of the cam bolt in comparison with a virtual plane formed by connecting the inner peripheral edge of the cam bolt. A method for attaching a timing control device, comprising: a step of bringing an end face of the rotor into contact with an end face of the camshaft; an engaging protrusion engageable with the tool engaging portion; and a fastening tool for fastening the cam bolt. A step of engaging a holding tool having a possible hole portion into the tool engaging portion, and a step of inserting the fastening tool into the hole portion of the holding tool and fastening the cam bolt with the fastening tool. Have.

Claims (10)

  1.  クランクシャフトから回転力が伝達されるハウジングと、
     該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータを有するベーンロータと、
     前記ロータの前記カムシャフトと反対側の端面に設けられ、前記カムボルトの締結方向と反対側の一側面を有する溝部と、
     を備え、
     前記一側面は、前記ベーンロータの回転軸心と前記一側面の前記ロータにおける内周側の端縁と、を結んで形成される仮想面よりも、前記一側面の外周側の端縁が前記カムボルトの締結方向に対して反対側にあることを特徴とする内燃機関のバルブタイミング制御装置。
    A housing to which rotational force is transmitted from the crankshaft;
    A vane rotor provided inside the housing and having a cylindrical rotor fastened and fixed to the camshaft by a cam bolt;
    A groove portion provided on an end surface of the rotor opposite to the cam shaft, and having a side surface opposite to a fastening direction of the cam bolt;
    With
    The one side is connected to the cam bolt by an outer peripheral edge of the one side surface than a virtual surface formed by connecting the rotation axis of the vane rotor and the inner peripheral edge of the one side rotor. A valve timing control device for an internal combustion engine, wherein the valve timing control device is on the opposite side to the fastening direction.
  2.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記ベーンロータは、前記カムシャフトと反対側の端部に設けられ、前記ハウジングの外部へ延出した円筒状の筒部を有し、
     前記溝部は、前記筒部に設けられていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control apparatus for an internal combustion engine according to claim 1,
    The vane rotor is provided at an end opposite to the camshaft and has a cylindrical tube portion extending to the outside of the housing,
    The valve timing control device for an internal combustion engine, wherein the groove portion is provided in the cylindrical portion.
  3.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記筒部と前記ハウジングとの間には、前記筒部に一端部が係止される一方、他端部が前記ハウジングに係止され、前記ベーンロータを前記ハウジングに対して回転方向一方側に付勢する付勢部材が設けられ、
     前記溝部は、前記筒部の円周方向に沿って複数設けられていると共に、
     前記筒部のうち、特定の隣り合う一対の溝部の間の部位には、前記付勢部材の一端部が係止する係止溝が形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 2,
    Between the tube portion and the housing, one end portion is locked to the tube portion, and the other end portion is locked to the housing, and the vane rotor is attached to one side in the rotation direction with respect to the housing. A biasing member is provided,
    A plurality of the groove portions are provided along the circumferential direction of the cylindrical portion,
    A valve timing control for an internal combustion engine, wherein a locking groove for locking one end of the urging member is formed in a portion of the cylindrical portion between a pair of specific adjacent groove portions. apparatus.
  4.  請求項3に記載の内燃機関のバルブタイミング制御装置において、
     前記係止溝は、前記筒部における前記特定の隣り合う一対の溝部の間の円周方向中間位置よりも前記カムボルトの締結方向に対して反対側に偏倚していることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control apparatus for an internal combustion engine according to claim 3,
    The internal combustion engine, wherein the locking groove is biased to an opposite side to a fastening direction of the cam bolt with respect to a circumferential intermediate position between the specific pair of adjacent groove portions in the cylindrical portion. Valve timing control device.
  5.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記溝部は、前記一側面と対向して設けられた他側面を有し、
     前記他側面は、前記ベーンロータの回転軸心と前記他側面の前記筒部における内周側の端縁とを結んで形成される仮想面よりも、前記一側面の外周側の端縁が前記カムボルトの締結方向にあることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 2,
    The groove portion has another side surface provided to face the one side surface,
    The outer side edge of the other side surface is connected to the rotation axis of the vane rotor and the inner peripheral side edge of the cylindrical portion of the other side surface. A valve timing control device for an internal combustion engine, characterized by being in the fastening direction of
  6.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記溝部は、前記一側面と対向して設けられた他側面を有し、
     前記他側面は、前記ベーンロータの回転軸心と前記他側面の前記筒部における内周側の端縁とを結んで形成される仮想面よりも、前記一側面の外周側の端縁が前記カムボルトの締結方向と反対側にあることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 2,
    The groove portion has another side surface provided to face the one side surface,
    The outer side edge of the other side surface is connected to the rotation axis of the vane rotor and the inner peripheral side edge of the cylindrical portion of the other side surface. A valve timing control device for an internal combustion engine, wherein the valve timing control device is on the opposite side to the fastening direction.
  7.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記筒部は、前記ロータと焼結により一体成形されていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 2,
    The valve timing control device for an internal combustion engine, wherein the cylindrical portion is integrally formed with the rotor by sintering.
  8.  クランクシャフトから回転力が伝達され、内部に作動室を有するハウジングと、
     該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータ及び該ロータの外周側に設けられて前記作動室を遅角作動室と進角作動室に隔成するベーンを有するベーンロータと、
     前記ロータの前記カムシャフトと反対側の端部に設けられ、前記ハウジングの外部へ延設された延設部と、
     一端部が前記延設部に係止される一方、他端部が前記ハウジングに係止され、前記ベーンロータを前記ハウジングに対して回転方向一方側に付勢する付勢部材と、
     前記延設部の先端部に設けられ、前記カムボルトの締結時に前記ロータの回転を規制する保持工具が当接する第1当接面を有する溝部と、
     を備え、
     前記第1当接面は、前記ロータの回転を規制する際に前記保持工具から受ける荷重のベクトルが、前記ロータの内径方向の成分を有するように形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    A housing in which a rotational force is transmitted from the crankshaft and has a working chamber inside;
    A cylindrical rotor provided inside the housing and fastened and fixed to the camshaft by a cam bolt, and a vane provided on the outer peripheral side of the rotor and separating the working chamber into a retarded working chamber and an advanced working chamber. A vane rotor having,
    An extended portion provided at an end of the rotor opposite to the camshaft and extending to the outside of the housing;
    One end portion is locked to the extending portion, the other end portion is locked to the housing, and a biasing member that biases the vane rotor to one side in the rotational direction with respect to the housing;
    A groove portion having a first abutting surface that is provided at a distal end portion of the extending portion and abuts with a holding tool that regulates rotation of the rotor when the cam bolt is fastened;
    With
    The first contact surface is formed so that a vector of a load received from the holding tool when regulating the rotation of the rotor has a component in an inner diameter direction of the rotor. Valve timing control device.
  9.  クランクシャフトから回転力が伝達され、内部に作動室を有するハウジングと、
     該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータ及び該ロータの外周側に設けられて前記作動室を遅角作動室と進角作動室に隔成するベーンを有するベーンロータと、
     前記ロータの前記カムシャフトと反対側の端面に設けられた突起部と、
     を備え、
     前記突起部は、前記カムボルトの締結方向側の部位に一側面を有し、
     該一側面は、前記ベーンロータの回転軸心と前記の前記ロータ内周側の端縁とを結んで形成される仮想面と比較して、前記カムボルトの締結方向と反対側へ傾斜していることを特徴とする内燃機関のバルブタイミング制御装置。
    A housing in which a rotational force is transmitted from the crankshaft and has a working chamber inside;
    A cylindrical rotor provided inside the housing and fastened and fixed to the camshaft by a cam bolt, and a vane provided on the outer peripheral side of the rotor and separating the working chamber into a retarded working chamber and an advanced working chamber. A vane rotor having,
    A protrusion provided on the end surface of the rotor opposite to the camshaft;
    With
    The protrusion has one side surface at a portion on the fastening direction side of the cam bolt,
    The one side surface is inclined to the side opposite to the fastening direction of the cam bolt as compared with a virtual surface formed by connecting the rotation axis of the vane rotor and the edge on the inner peripheral side of the rotor. An internal combustion engine valve timing control device.
  10.  クランクシャフトから回転力が伝達され、内部に作動室を有するハウジングと、
     該ハウジングの内部に設けられ、カムボルトによってカムシャフトに締結固定される円筒状のロータ及び該ロータの外周側に設けられて前記作動室を遅角作動室と進角作動室に隔成するベーンを有するベーンロータと、
     前記ロータの前記カムシャフトと反対側の端面に設けられ、前記カムボルトを締結する方向と反対側の方向に対向する一側面を有する工具係入部と、
     を備え、
     前記一側面が、前記ベーンロータの回転軸と前記一側面の前記ロータにおける内周側の端縁とを結んで形成される仮想面と比較して、前記カムボルトの締結方向と反対側へ傾斜している内燃機関のバルブタイミング制御装置の取付方法であって、
     前記ロータの端面を前記カムシャフトの端面に接触させる工程と、
     前記工具係入部に係入可能な係入突起と、前記カムボルトの締結を行う締結工具が挿通可能な孔部と、を有する保持工具を前記工具係入部に係入する工程と、
     前記保持工具の前記孔部に前記締結工具を挿通し、前記保持工具の回転を規制しつつ前記締結工具によって前記カムボルトを締結する工程と、
     を有することを特徴とする内燃機関のバルブタイミング制御装置の取付方法。
    A housing in which a rotational force is transmitted from the crankshaft and has a working chamber inside;
    A cylindrical rotor provided inside the housing and fastened and fixed to the camshaft by a cam bolt, and a vane provided on the outer peripheral side of the rotor and separating the working chamber into a retarded working chamber and an advanced working chamber. A vane rotor having,
    A tool engagement portion provided on an end surface of the rotor opposite to the camshaft and having one side surface facing a direction opposite to a direction of fastening the cam bolt;
    With
    The one side surface is inclined to the opposite side to the fastening direction of the cam bolt, compared to a virtual surface formed by connecting the rotating shaft of the vane rotor and the inner peripheral edge of the rotor on the one side surface. An internal combustion engine valve timing control device mounting method comprising:
    Contacting the end face of the rotor with the end face of the camshaft;
    A step of engaging a holding tool having an engagement protrusion capable of being engaged with the tool engagement portion and a hole portion through which a fastening tool for fastening the cam bolt is inserted into the tool engagement portion;
    Inserting the fastening tool through the hole of the holding tool, and fastening the cam bolt with the fastening tool while restricting rotation of the holding tool;
    A method for mounting a valve timing control device for an internal combustion engine, comprising:
PCT/JP2017/004329 2016-03-15 2017-02-07 Valve timing control device for internal combustion engine and method for attaching valve timing control device WO2017159121A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780010231.2A CN108603422B (en) 2016-03-15 2017-02-07 Valve timing control device for internal combustion engine and method of mounting the valve timing control device
JP2018505337A JP6685382B2 (en) 2016-03-15 2017-02-07 Valve timing control device for internal combustion engine and method for mounting the valve timing control device
US16/084,688 US20190085735A1 (en) 2016-03-15 2017-02-07 Valve timing control device for internal combustion engine and method for attaching valve timing control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-050822 2016-03-15
JP2016050822 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017159121A1 true WO2017159121A1 (en) 2017-09-21

Family

ID=59850225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004329 WO2017159121A1 (en) 2016-03-15 2017-02-07 Valve timing control device for internal combustion engine and method for attaching valve timing control device

Country Status (4)

Country Link
US (1) US20190085735A1 (en)
JP (1) JP6685382B2 (en)
CN (1) CN108603422B (en)
WO (1) WO2017159121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200056518A1 (en) * 2017-01-05 2020-02-20 Mitsubishi Electric Corporation Variable valve timing device and assembly method of variable valve timing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140305B (en) * 2018-11-01 2024-02-02 博格华纳公司 Cam phaser camshaft coupling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317923A (en) * 1997-05-23 1998-12-02 Denso Corp Valve timing controller for internal combustion engine
JP2006118509A (en) * 2004-10-22 2006-05-11 Ina-Schaeffler Kg Camshaft adjusting device in internal combustion engine and its assembly tool
US20120298058A1 (en) * 2011-05-27 2012-11-29 Delphi Technologies, Inc. System for attaching a camshaft phaser to a camshaft

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177197B2 (en) * 2003-08-08 2008-11-05 株式会社日立製作所 Valve timing control device for internal combustion engine
JP5046015B2 (en) * 2007-09-19 2012-10-10 アイシン精機株式会社 Valve timing control device
JP5382440B2 (en) * 2009-09-25 2014-01-08 アイシン精機株式会社 Valve timing control device
CN201972754U (en) * 2011-04-14 2011-09-14 绵阳富临精工机械股份有限公司 Straight pin type locking device for phaser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317923A (en) * 1997-05-23 1998-12-02 Denso Corp Valve timing controller for internal combustion engine
JP2006118509A (en) * 2004-10-22 2006-05-11 Ina-Schaeffler Kg Camshaft adjusting device in internal combustion engine and its assembly tool
US20120298058A1 (en) * 2011-05-27 2012-11-29 Delphi Technologies, Inc. System for attaching a camshaft phaser to a camshaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200056518A1 (en) * 2017-01-05 2020-02-20 Mitsubishi Electric Corporation Variable valve timing device and assembly method of variable valve timing device
US10876435B2 (en) * 2017-01-05 2020-12-29 Mitsubishi Electric Corporation Variable valve timing device and assembly method of variable valve timing device

Also Published As

Publication number Publication date
CN108603422B (en) 2020-07-28
JPWO2017159121A1 (en) 2019-01-10
CN108603422A (en) 2018-09-28
JP6685382B2 (en) 2020-04-22
US20190085735A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
JP5739168B2 (en) Valve timing control device for internal combustion engine
JP5357137B2 (en) Valve timing control device for internal combustion engine
JP6091115B2 (en) Valve timing control device for internal combustion engine and method for manufacturing the same
US8955479B2 (en) Variable valve timing control apparatus of internal combustion engine and method for assembling the same
WO2017159121A1 (en) Valve timing control device for internal combustion engine and method for attaching valve timing control device
JP4170370B2 (en) Valve timing control device for internal combustion engine
JP4626819B2 (en) Valve timing control device
US9506378B2 (en) Variable valve timing control apparatus of internal combustion engine
JP6514602B2 (en) Valve timing control system for internal combustion engine
JP2006322323A (en) Valve timing controller of internal combustion engine
US6935291B2 (en) Variable valve timing controller
US10954828B2 (en) Variable camshaft phaser with magnetic locking cover bushing
JP3284927B2 (en) Variable valve timing mechanism for internal combustion engine
WO2017119234A1 (en) Internal-combustion engine valve timing control device
JP2009209821A (en) Valve-timing regulator
WO2018101155A1 (en) Valve timing control device for internal combustion engine
US10480424B2 (en) Internal-combustion engine valve timing control apparatus
JP4138414B2 (en) Valve timing control device for internal combustion engine
WO2019167377A1 (en) Valve timing control device for internal combustion engine
JP5322809B2 (en) Valve timing adjustment device
WO2020059313A1 (en) Valve timing control device for internal combustion engine
JP2007120370A (en) Valve timing control device for internal combustion engine
JP2020193583A (en) Valve timing control device of internal combustion engine
JP2021004581A (en) Valve timing control device of internal combustion engine
JP2006090140A (en) Valve timing control device of internal combustion engine and its installation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505337

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766129

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766129

Country of ref document: EP

Kind code of ref document: A1