WO2017159097A1 - Positioning device, airtight container, and vacuum chamber - Google Patents

Positioning device, airtight container, and vacuum chamber Download PDF

Info

Publication number
WO2017159097A1
WO2017159097A1 PCT/JP2017/003553 JP2017003553W WO2017159097A1 WO 2017159097 A1 WO2017159097 A1 WO 2017159097A1 JP 2017003553 W JP2017003553 W JP 2017003553W WO 2017159097 A1 WO2017159097 A1 WO 2017159097A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
support member
rotating member
rotating
respect
Prior art date
Application number
PCT/JP2017/003553
Other languages
French (fr)
Japanese (ja)
Inventor
淳 宮脇
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2017159097A1 publication Critical patent/WO2017159097A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material

Definitions

  • a member and the second rotating member are rotatably supported around a second axis which is a central axis of the second rotating member, and the second axis is inclined by a first angle with respect to the first axis
  • a second support member fixed to the first rotation member so as to intersect the first axis, and a second support member that rotates the second rotation member about the second axis relative to the second support member.
  • a second rotation mechanism including two drive devices, and being fixed to the second rotation member, In which and a third supporting member for supporting the elephant was on the third axis passing through the intersection of the second angle inclined by above said first axis the second axis relative to said second axis.
  • first, second and third rotation mechanisms may be hollow type rotation introduction machines.
  • a stage 17 (see FIG. 1) that supports the sample S irradiated with the radiated light from the high-intensity radiant light source 2 incident on the incident portion 11 is disposed inside the container body 15.
  • the stage 17 is arranged so that the irradiation point (light emission point) of the radiated light on the sample S supported on the stage 17 substantially intersects with the rotation axis 3a of the spectrometer 3 (so as to substantially coincide with the point O in FIG. 2).
  • a vacuum pump (not shown) for sucking the air inside the container body 15 is connected to the container body 15, and the inside of the container body 15 is kept in an ultrahigh vacuum state during measurement by the soft X-ray emission spectroscopy system 1. It is.
  • the positioning device 20 includes a first rotation mechanism 21, a second rotation mechanism 22, and a third rotation mechanism 23, all of which are hollow rotation introduction machines.
  • the first drive device 215 includes a first drive motor (stepping motor) M1 and a worm gear mechanism 216 including a worm (screw gear) 217 and a worm wheel (helical gear) 218, as shown in FIG.
  • the worm 217 of the worm gear mechanism 216 is coupled to rotate integrally with the rotor of the first drive motor M1.
  • the worm wheel 218 is fixed coaxially to the first rotating member 210 via a plurality of bolts on the back surface (lower surface in FIG. 2) of the flange portion 210b of the first rotating member 210.
  • the components of the first driving device 215 are disposed outside the vacuum chamber 10, that is, outside the O-ring 213 and the first support member 211.
  • the third rotating mechanism 23 is formed in a cylindrical shape (cylindrical shape) with the emitting portion 12 as an object (third rotating member) formed of a metal such as stainless steel and a metal such as stainless steel.
  • the third support member 231 and the third driving device 235 are included.
  • the emitting portion 12 includes a short cylindrical tubular portion 12a, an annular flange portion 12b extending radially outward from one end of the tubular portion 12a, and a central hole 12o for allowing light to pass therethrough.
  • the bellows 4 described above can be connected to the flange portion 12b via a bolt (not shown).
  • the output part 12 is comprised so that the collector 5 (refer FIG. 2) can be coaxially mounted in the center hole 12o.
  • the emitting portion 12 is inclined by the second angle ⁇ 2 with respect to the second shaft rod by the third support member 231 so that the flange portion 12 b is exposed to the outside of the vacuum chamber 10.
  • a third axis ⁇ passing through the intersection point O with the second shaft ⁇ is coaxially supported and rotatably supported around the third axis ⁇ .
  • the first support member 211 and the container body 15 are covered from above by the shell portion 210 c of the first rotating member 210, the top plate portion 220 b of the second rotating member 220, the third supporting member 231, and the emitting portion 12.
  • the narrow space defined between the emitting portion 12 and the third support member 231 in the radial direction and between the two O-rings 233 in the axial direction has the third support member 231.
  • the auxiliary vacuum pump is connected through a formed suction passage (not shown).
  • the space is evacuated (roughly evacuated) by the auxiliary vacuum pump, thereby satisfactorily suppressing air from flowing into the container main body 15 through the gap between the emitting portion 12 and the third support member 231. It becomes possible.
  • the rotation angle of the first rotating member 210 around the first shaft rod is “ ⁇ ”
  • the rotation angle of the second rotating member 220 around the second shaft rod is “ ⁇ ”
  • the rotation angle of the emitting portion 12 around the third axis ⁇ is “ ⁇ ”.
  • the azimuth from the X axis of the point on the sphere centered on the intersection O is “ ⁇ ”
  • the elevation from the XY plane is “ ⁇ ”.
  • the first driving device 215 can freely rotate the first rotating member 210 with respect to the first support member 211 in both the forward direction and the reverse direction around the first shaft rod.
  • the second driving device 225 can freely rotate the second rotating member 220 relative to the second support member 221 in both the forward and reverse directions around the second shaft rod. Composed.

Abstract

A positioning device 20 for a vacuum chamber 10 comprises: a first rotary member 210; a first support member 211 which supports the first rotary member 210 so as to be rotatable about a first axis A; a first drive device 215 which rotates the first rotary member 210; a second rotary member 220; a second support member 221 which supports the second rotary member 220 so as to be rotatable about a second axis B, and which is fixed to the first rotary member 210 such that the second axis B intersects with the first axis A so as to be inclined only by a first angle Δ1 with respect to the first axis A; a second drive device 225 which rotates the second rotary member 220; and a third support member 231 which is fixed to the second rotary member 220, and which supports an output part 12 on a third axis τ that passes through an intersection O between the first axis A and the second axis B so as to be inclined only by a second angle Δ2 with respect to the second axis B.

Description

位置決め装置、密閉容器、および真空チャンバPositioning device, sealed container, and vacuum chamber
   本開示の発明は、対象物を3次元空間で位置決めする位置決め装置、それを備えた密閉容器、および真空チャンバに関する。 The invention of the present disclosure relates to a positioning device that positions an object in a three-dimensional space, a sealed container including the positioning device, and a vacuum chamber.
   従来、物質の電子状態を調べるための手法として、X線を用いた軟X線発光分光法が知られており、近年では、高輝度放射光源の登場により、様々な分野において用いられるようになってきている。かかる軟X線発光分光法によれば、光散乱の運動量保存則を用いることで固体中の素励起のエネルギー分散を観測することが可能となる。このため、軟X線発光の出射角分布を捉えるために、測定に際して大型の分光器を旋回させることも行われている(例えば、非特許文献1参照)。非特許文献1に記載された軟X線発光分光システムにおいて、分光器は、設置面と直交する方向に延びる回転軸の周りに30°から150°の範囲で旋回可能なおよそ15mのアームに搭載されており、試料が配置される真空チャンバの発光出射部に接続される。また、真空チャンバには、分光器に接続される発光出射部の2次元平面内における回動を許容しつつ、当該真空チャンバ内を真空状態に維持するための真空ベルトが設けられている。 Conventionally, soft X-ray emission spectroscopy using X-rays is known as a method for investigating the electronic state of a substance, and in recent years, it has been used in various fields due to the advent of high-intensity radiation light sources. It is coming. According to such soft X-ray emission spectroscopy, it is possible to observe the energy dispersion of elementary excitation in a solid by using the momentum conservation law of light scattering. For this reason, in order to capture the emission angle distribution of soft X-ray emission, a large spectroscope is swung during measurement (for example, see Non-Patent Document 1). In the soft X-ray emission spectroscopy system described in Non-Patent Document 1, the spectrometer is mounted on an arm of approximately 15 m that can be swung in a range of 30 ° to 150 ° around a rotation axis extending in a direction perpendicular to the installation surface. And is connected to a light emission emitting portion of a vacuum chamber in which a sample is arranged. Further, the vacuum chamber is provided with a vacuum belt for maintaining the inside of the vacuum chamber in a vacuum state while allowing rotation of the light emitting and emitting portion connected to the spectrometer in a two-dimensional plane.
   上記非特許文献1に記載された真空チャンバの真空ベルトは、出射部の回動に応じて一側から繰り出されると共に他側で巻き取られるベルト状のシール部材を用いたものと考えられ、かかる真空ベルトを真空チャンバに設けても、真空チャンバの内部を良好な真空状態に保つことが困難となるおそれがある。また、特許文献1の真空チャンバでは、発光出射部が2次元平面内で回動可能とされているが、対象物としての発光出射部を3次元空間で位置決め可能にすることで、軟X線発光分光システム全体における位置調整の幅を大きくして、測定性能をより向上させることができるであろう。 The vacuum belt of the vacuum chamber described in Non-Patent Document 1 is considered to use a belt-like seal member that is fed from one side and wound on the other side according to the rotation of the emitting portion. Even if the vacuum belt is provided in the vacuum chamber, it may be difficult to maintain a good vacuum inside the vacuum chamber. Moreover, in the vacuum chamber of patent document 1, although the light emission emission part can be rotated in a two-dimensional plane, by making the light emission emission part as a target object positionable in three-dimensional space, soft X-ray It would be possible to increase the range of position adjustment in the entire emission spectroscopic system to further improve the measurement performance.
   そこで、本開示の発明は、対象物を3次元空間で精度よく位置決めすることができる位置決め装置、少なくとも一部が外部に露出する対象物を3次元空間で精度よく位置決めすると共に内部を良好な密閉状態に保つことができる密閉容器、および少なくとも一部が外部に露出する出射部を3次元空間で精度よく位置決めすると共に内部を良好な真空状態に保つことができる真空チャンバの提供を主目的とする。 Accordingly, the invention of the present disclosure is a positioning device capable of accurately positioning an object in a three-dimensional space, and accurately positioning an object in which at least a part is exposed to the outside in a three-dimensional space and having a good internal seal. The main object of the present invention is to provide a sealed container that can be kept in a state, and a vacuum chamber that can accurately position an emission part, at least a portion of which is exposed to the outside, in a three-dimensional space and can keep the inside in a good vacuum state. .
   本開示の位置決め装置は、対象物を3次元空間で位置決めする位置決め装置であって、第1回転部材と、前記第1回転部材を該第1回転部材の中心軸である第1軸の周りに回転自在に支持する第1支持部材と、前記第1回転部材を前記第1支持部材に対して前記第1軸の周りに回転させる第1駆動装置とを含む第1回転機構と、第2回転部材と、前記第2回転部材を該第2回転部材の中心軸である第2軸の周りに回転自在に支持すると共に、前記第2軸が前記第1軸に対して第1の角度だけ傾斜して該第1軸と交差するように前記第1回転部材に固定される第2支持部材と、前記第2回転部材を前記第2支持部材に対して前記第2軸の周りに回転させる第2駆動装置とを含む第2回転機構と、前記第2回転部材に固定されると共に、前記対象物を前記第2軸に対して第2の角度だけ傾斜して前記第1軸と前記第2軸との交点を通る第3軸上に支持する第3支持部材とを備えるものである。 The positioning device of the present disclosure is a positioning device that positions an object in a three-dimensional space, and includes a first rotating member and the first rotating member around a first axis that is a central axis of the first rotating member. A first rotation mechanism including a first support member rotatably supported; a first rotation mechanism that rotates the first rotation member around the first axis with respect to the first support member; and a second rotation. A member and the second rotating member are rotatably supported around a second axis which is a central axis of the second rotating member, and the second axis is inclined by a first angle with respect to the first axis A second support member fixed to the first rotation member so as to intersect the first axis, and a second support member that rotates the second rotation member about the second axis relative to the second support member. A second rotation mechanism including two drive devices, and being fixed to the second rotation member, In which and a third supporting member for supporting the elephant was on the third axis passing through the intersection of the second angle inclined by above said first axis the second axis relative to said second axis.
   かかる位置決め装置では、第1および第2駆動装置によって第1および第2回転部材を第1または第2支持部材に対して回転させることで、第3軸の延在方向における第1軸と第2軸との交点から対象物までの長さを曲率半径とする球冠の表面上に対象物を精度よく位置決めすることが可能となる。 In such a positioning device, the first and second rotating members are rotated with respect to the first or second supporting member by the first and second driving devices, whereby the first shaft and the second shaft in the extending direction of the third shaft. It becomes possible to accurately position the object on the surface of the spherical crown whose radius of curvature is the length from the intersection with the axis to the object.
   また、前記第1の角度と前記第2の角度とは、同一であってもよい。これにより、第1および第2駆動装置によって第1および第2回転部材を第1または第2支持部材に対して回転させることで、第3軸の延在方向における第1軸と第2軸との交点から対象物までの長さを曲率半径とする球冠の表面上の任意の位置に対象物を精度よく位置決めすることが可能となる。 In addition, the first angle and the second angle may be the same. Accordingly, the first and second rotating devices are rotated with respect to the first or second supporting member by the first and second driving devices, and thereby the first axis and the second axis in the extending direction of the third axis are The object can be accurately positioned at an arbitrary position on the surface of the spherical crown whose radius of curvature is the length from the intersection point to the object.
   更に、前記第3支持部材は、前記対象物を前記第3軸の周りに回転自在に支持してもよく、前記位置決め装置は、前記対象物を前記第3支持部材に対して前記第3軸の周りに回転させる第3駆動装置を更に備えてもよい。これにより、第3駆動装置によって対象物を第3支持部材に対して回転させることで、第1および第2回転部材の回転に伴って発生する対象物の第3軸の周りにおける捩れを解消したり、対象物の第3軸周りの角度を任意設定したりすることが可能となる。 Further, the third support member may support the object rotatably around the third axis, and the positioning device may support the object with respect to the third support member. You may further provide the 3rd drive device rotated to the surroundings. As a result, the torsion around the third axis of the object caused by the rotation of the first and second rotating members is eliminated by rotating the object with respect to the third support member by the third driving device. Or the angle of the object around the third axis can be arbitrarily set.
   また、本開示の密閉容器は、上記何れかの位置決め装置を備えた密閉容器であって、前記第1回転機構の前記第1支持部材が密に接合される開放端を有する容器本体と、前記第1回転部材と前記第1支持部材との間に配置された第1シール部材と、前記第2回転部材と前記第2支持部材との間に配置された第2シール部材とを備え、前記対象物は、少なくとも一部が前記密閉容器の外部に露出するように前記第3支持部材により支持されるものである。 Further, the sealed container according to the present disclosure is a sealed container including any one of the positioning devices described above, and a container body having an open end to which the first support member of the first rotation mechanism is closely joined; A first seal member disposed between the first rotating member and the first support member; and a second seal member disposed between the second rotating member and the second support member, The object is supported by the third support member so that at least a part of the object is exposed to the outside of the sealed container.
   かかる密閉容器では、第1および第2駆動装置によって第1および第2回転部材を第1または第2支持部材に対して回転させることで、少なくとも一部が外部に露出する対象物を第3軸の延在方向における第1軸と第2軸との交点から当該対象物までの長さを曲率半径とする球冠の表面上に精度よく位置決めすることが可能となる。また、上記位置決め装置では、第1駆動装置を第1支持部材よりも外側に配置すると共に、第2駆動装置を第2支持部材よりも外側に配置することができる。従って、密閉容器の内部容積を充分に確保しつつ、密閉容器全体をよりコンパクト化することが可能となる。更に、この密閉容器では、第1回転機構の第1支持部材が容器本体の開放端に密に接合され、第1回転部材と第1支持部材との間および第2回転部材と第2支持部材との間に第1または第2シール部材が配置されることから、内部を良好な密閉状態に保つことができる。また、対象物が第3支持部材によって第3軸の周りに回転自在に支持される場合には、対象物と第3支持部材との間に第3シール部材が配置されるとよい。 In such an airtight container, the first and second rotating members are rotated with respect to the first or second supporting member by the first and second driving devices, so that the object that is at least partially exposed to the outside is moved to the third shaft. It becomes possible to accurately position on the surface of the spherical crown whose radius of curvature is the length from the intersection of the first axis and the second axis in the extending direction to the object. In the positioning device, the first drive device can be disposed outside the first support member, and the second drive device can be disposed outside the second support member. Therefore, it is possible to make the entire sealed container more compact while sufficiently securing the internal volume of the sealed container. Further, in this sealed container, the first support member of the first rotation mechanism is tightly joined to the open end of the container body, and between the first rotation member and the first support member and between the second rotation member and the second support member. Since the 1st or 2nd sealing member is arrange | positioned between these, an inside can be maintained in a favorable sealed state. Further, when the object is rotatably supported around the third axis by the third support member, a third seal member may be disposed between the object and the third support member.
   本開示の真空チャンバは、放射光の入射部と、前記放射光が照射される試料を支持するステージと、前記試料からの発光を通過させる出射部とを有する真空チャンバであって、前記入射部を有すると共に少なくとも一端が開放された容器本体と、第1回転部材と、前記容器本体の開放端に密に接合されると共に前記第1回転部材を該第1回転部材の中心軸である第1軸の周りに回転自在に支持する第1支持部材と、前記第1回転部材と前記第1支持部材との間に配置された第1シール部材と、前記第1回転部材を前記第1支持部材に対して前記第1軸の周りに回転させる第1駆動装置とを含む第1回転機構と、第2回転部材と、前記第2回転部材を該第2回転部材の中心軸である第2軸の周りに回転自在に支持すると共に、前記第2軸が前記第1軸に対して第1の角度だけ傾斜して該第1軸と交差するように前記第1回転部材に密に接合される第2支持部材と、前記第2回転部材と前記第2支持部材との間に配置された第2シール部材と、前記第2回転部材を前記第2支持部材に対して前記第2軸の周りに回転させる第2駆動装置とを含む第2回転機構と、前記出射部を、少なくとも一部が前記密閉容器の外部に露出するように、前記第2軸に対して第2の角度だけ傾斜して前記第1軸と前記第2軸との交点を通る第3軸と同軸かつ前記第3軸の周りに回転自在に支持すると共に、前記第2回転部材に密に接合される第3支持部材と、前記出射部と前記第3支持部材との間に配置された第3シール部材と、前記出射部を前記第3支持部材に対して前記第3軸の周りに回転させる第3駆動装置とを含む第3回転機構とを備えるものである。 The vacuum chamber of the present disclosure is a vacuum chamber having a radiation light incident portion, a stage that supports a sample irradiated with the radiation light, and a light emission portion that allows light emission from the sample to pass therethrough. And at least one end of the container main body, a first rotating member, and a first rotating member that is closely joined to the open end of the container main body and the first rotating member is a central axis of the first rotating member. A first support member rotatably supported around an axis; a first seal member disposed between the first rotation member and the first support member; and the first rotation member as the first support member. A first rotation mechanism including a first drive device that rotates around the first axis, a second rotation member, and a second axis that is the central axis of the second rotation member. And the second shaft is rotatably supported around A second support member that is tightly joined to the first rotating member so as to be inclined by a first angle with respect to the first axis and intersect the first axis, the second rotating member, and the second A second rotation mechanism including a second seal member disposed between the support member and a second driving device configured to rotate the second rotation member around the second axis with respect to the second support member; The emission part is inclined by a second angle with respect to the second axis so that at least a part of the emission part is exposed to the outside of the sealed container, and passes through the intersection of the first axis and the second axis. A third support member that is coaxial with the third axis and rotatably supported around the third axis, and is tightly joined to the second rotation member, and between the emitting portion and the third support member The arranged third seal member and the emitting portion are rotated around the third axis with respect to the third support member. 3 is intended and a third rotating mechanism including a drive unit.
   かかる真空チャンバでは、第1および第2駆動装置によって第1および第2回転部材を第1または第2支持部材に対して回転させることで、少なくとも一部が外部に露出する出射部を第3軸の延在方向における第1軸と第2軸との交点から当該出射部までの長さを曲率半径とする球冠の表面上に精度よく位置決めすることが可能となる。更に、第3駆動装置によって出射部を第3支持部材に対して回転させることで、第1および第2回転部材の回転に伴って発生する出射部の第3軸の周りにおける捩れを解消することができる。また、この真空チャンバでは、第1回転機構の第1支持部材が容器本体の開放端に密に接合され、第1回転部材と第1支持部材との間、第2回転部材と第2支持部材との間、および対象物と第3支持部材との間に第1、第2または第3シール部材が配置されることから、内部を良好な真空状態に保つことが可能となる。更に、この真空チャンバでは、第1駆動装置を第1支持部材よりも外側に配置し、第2駆動装置を第2支持部材よりも外側に配置し、かつ第3駆動装置を第3支持部材よりも外側に配置することができる。従って、真空チャンバの内部容積を充分に確保しつつ、真空チャンバ全体をよりコンパクト化することが可能となる。 In such a vacuum chamber, the first and second rotating members are rotated with respect to the first or second supporting member by the first and second driving devices, so that the emitting portion at least a part of which is exposed to the outside is disposed on the third shaft. It becomes possible to accurately position on the surface of the spherical crown whose radius of curvature is the length from the intersection of the first axis and the second axis in the extending direction to the emission part. Further, by rotating the emitting portion with respect to the third support member by the third driving device, torsion around the third axis of the emitting portion caused by the rotation of the first and second rotating members is eliminated. Can do. Further, in this vacuum chamber, the first support member of the first rotation mechanism is tightly joined to the open end of the container body, and the second rotation member and the second support member are between the first rotation member and the first support member. Since the first, second, or third seal member is disposed between the object and the object and the third support member, the inside can be maintained in a good vacuum state. Further, in this vacuum chamber, the first drive device is disposed outside the first support member, the second drive device is disposed outside the second support member, and the third drive device is disposed from the third support member. Can also be arranged on the outside. Therefore, the entire vacuum chamber can be made more compact while sufficiently securing the internal volume of the vacuum chamber.
   また、前記出射部は、ベローズを介して分光器と連結されてもよく、前記分光器は、前記放射光の入射方向および前記第1軸の双方と直交する方向に延びる回転軸の周りに回転させられてもよい。上述のように、本開示の真空チャンバは容易にコンパクト化可能なものであることから、試料の発光点から分光器までの距離を短くし、それにより取り込み角度を大きくして分光器の測定効率を向上させることができる。 The emission unit may be connected to a spectroscope via a bellows, and the spectroscope rotates around a rotation axis extending in a direction orthogonal to both the incident direction of the radiated light and the first axis. May be allowed. As described above, since the vacuum chamber of the present disclosure can be easily made compact, the measurement efficiency of the spectrometer is reduced by shortening the distance from the light emission point of the sample to the spectrometer, thereby increasing the capture angle. Can be improved.
   更に、前記第1、第2および第3回転機構は、中空型回転導入機であってもよい。 Further, the first, second and third rotation mechanisms may be hollow type rotation introduction machines.
本開示の真空チャンバの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition of the vacuum chamber of this indication. 本開示の真空チャンバを示す断面図である。It is sectional drawing which shows the vacuum chamber of this indication. 本開示の真空チャンバを示す平面図である。It is a top view which shows the vacuum chamber of this indication. 本開示の真空チャンバにおける第1および第2回転部材並びに出射部の回転角度を示す説明図である。It is explanatory drawing which shows the rotation angle of the 1st and 2nd rotation member in the vacuum chamber of this indication, and an emission part. 本開示の真空チャンバにおける第1軸と第2軸との交点を中心とした球冠上の点の方位角および仰角を示す説明図である。It is explanatory drawing which shows the azimuth and elevation angle of the point on the spherical crown centering on the intersection of the 1st axis | shaft and 2nd axis | shaft in the vacuum chamber of this indication.
   次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。 Next, embodiments for carrying out the invention of the present disclosure will be described with reference to the drawings.
   図1は、本開示の真空チャンバの使用状態を示す概略構成図であり、図2は、真空チャンバ10を示す断面図である。同図に示す真空チャンバ10は、放射光の入射部11と、放射光が照射された試料からの発光を通過させる出射部12とを有し、高輝度放射光源2や分光器3と共に気体、液体、固体の電子状態を調べるための軟X線発光分光システム1を構成する。高輝度放射光源2は、電子を加速器により光と概ね等しい速度まで加速させると共に偏向電磁石や挿入光源により電子(電子ビーム)の進行方向を変えることにより放射光を発生させるものである。 FIG. 1 is a schematic configuration diagram illustrating a use state of a vacuum chamber according to the present disclosure, and FIG. 2 is a cross-sectional view illustrating a vacuum chamber 10. A vacuum chamber 10 shown in the figure has an incident part 11 for radiated light and an output part 12 for allowing light emitted from the sample irradiated with the radiated light to pass through. A soft X-ray emission spectroscopic system 1 for examining the electronic state of liquid and solid is configured. The high-intensity radiant light source 2 generates radiated light by accelerating electrons to a speed substantially equal to that of light by an accelerator and changing the traveling direction of electrons (electron beam) by a deflecting electromagnet or an insertion light source.
   分光器3は、図示しない回折格子やCCD等の検出器を有する。本実施形態の分光器3は、高輝度放射光源2からの放射光の入射方向(図2におけるX軸方向)と、当該入射方向に直交して軟X線発光分光システム1の設置面と平行に延びる方向(図2におけるY軸およびΑ軸方向)との双方と直交するように長手方向における一端側に定められた回転軸3a(図2における点Oを通ってZ軸方向に延びる軸)の周りの所定範囲内で正逆方向に旋回(回動)可能である。 The eyelid spectroscope 3 has a detector such as a diffraction grating or a CCD (not shown). The spectroscope 3 of the present embodiment is parallel to the installation direction of the soft X-ray emission spectroscopic system 1 orthogonal to the incident direction (X-axis direction in FIG. 2) of the radiated light from the high-intensity radiation source 2 Rotating shaft 3a (an axis extending in the Z-axis direction through point O in FIG. 2) defined on one end side in the longitudinal direction so as to be orthogonal to both the direction extending in the direction (Y-axis and vertical axis direction in FIG. 2) Can be turned (rotated) in the forward and reverse directions within a predetermined range around the.
   真空チャンバ10は、図1および図2に示すように、放射光の入射部11を有する容器本体15と、ベローズ4を介して分光器3に接続される発光の出射部12を3次元空間で位置決めするための位置決め装置20とを含む。本実施形態において、容器本体15は、ステンレス等の金属により円筒状に形成されており、複数のボルトやOリング等のシール部材を介して蓋体15cが固定される環状のフランジ部15fを有する。真空チャンバ10は、容器本体15の軸心が高輝度放射光源2からの放射光の入射方向(図2におけるX軸方向)と直交すると共に上記設置面と平行に延在するように当該設置面に対して固定される。これにより、容器本体15のフランジ部15fや蓋体15cは、設置面に対して垂直をなす。 As shown in FIGS. 1 and 2, the vacuum chamber 10 includes a container body 15 having an incident portion 11 for emitted light and an emission portion 12 for light emission connected to the spectroscope 3 through a bellows 4 in a three-dimensional space. And a positioning device 20 for positioning. In the present embodiment, the container body 15 is formed in a cylindrical shape from a metal such as stainless steel, and has an annular flange portion 15f to which the lid body 15c is fixed through a plurality of sealing members such as bolts and O-rings. . The vacuum chamber 10 has the installation surface such that the axis of the container body 15 is orthogonal to the incident direction of the radiated light from the high-intensity radiation light source 2 (X-axis direction in FIG. 2) and extends in parallel with the installation surface. Fixed against. Thereby, the flange part 15f and the lid 15c of the container main body 15 are perpendicular to the installation surface.
   また、容器本体15の内部には、入射部11に入射した高輝度放射光源2からの放射光が照射される試料Sを支持するステージ17(図1参照)が配置される。ステージ17は、当該ステージ17上に支持された試料Sにおける放射光の照射点(発光点)が上記分光器3の回転軸3aと概ね交差するように(図2における点Oに概ね一致するように)真空チャンバ10内に配置される。更に、容器本体15には、その内部の空気を吸引するための図示しない真空ポンプが接続され、軟X線発光分光システム1による測定に際しては、容器本体15の内部が超高真空状態に保たれる。位置決め装置20は、図2に示すように、何れも中空型回転導入機である第1回転機構21、第2回転機構22および第3回転機構23を有する。 In addition, a stage 17 (see FIG. 1) that supports the sample S irradiated with the radiated light from the high-intensity radiant light source 2 incident on the incident portion 11 is disposed inside the container body 15. The stage 17 is arranged so that the irradiation point (light emission point) of the radiated light on the sample S supported on the stage 17 substantially intersects with the rotation axis 3a of the spectrometer 3 (so as to substantially coincide with the point O in FIG. 2). A) in the vacuum chamber 10; Furthermore, a vacuum pump (not shown) for sucking the air inside the container body 15 is connected to the container body 15, and the inside of the container body 15 is kept in an ultrahigh vacuum state during measurement by the soft X-ray emission spectroscopy system 1. It is. As shown in FIG. 2, the positioning device 20 includes a first rotation mechanism 21, a second rotation mechanism 22, and a third rotation mechanism 23, all of which are hollow rotation introduction machines.
   第1回転機構21は、図2に示すように、ステンレス等の金属により環状に形成された第1回転部材210と、ステンレス等の金属により短尺筒状(円筒状)に形成された第1支持部材211と、第1駆動装置215とを含む。第1回転部材210は、短尺円筒状の筒状部210aと、当該筒状部210aの一端から径方向外側に延出された円環状のフランジ部210bと、フランジ部210bの表面(図2における上面)に溶接により密に(隙間なく)接合(固定)されたシェル部210cとを有する。本実施形態において、第1回転部材210のシェル部210cは、薄肉の球殻を直径と直交する第1の平面および当該第1の平面に対して第1角度Δ1だけ傾斜した第2の平面で切ったときに第1および第2の平面により挟まれる部分と同様の形状を有する。そして、図2に示すように、シェル部210cの大径の開放端は、フランジ部210bの外周に接合される。ただし、第1回転部材210(筒状部210aおよびフランジ部210b)とシェル部210cとは例えば鋳造等により一体に成形されてもよい。 As shown in FIG. 2, the first rotating mechanism 21 includes a first rotating member 210 formed in a ring shape with a metal such as stainless steel, and a first support formed in a short cylindrical shape (cylindrical shape) with a metal such as stainless steel. A member 211 and a first driving device 215 are included. The first rotating member 210 includes a short cylindrical tubular portion 210a, an annular flange portion 210b extending radially outward from one end of the tubular portion 210a, and the surface of the flange portion 210b (in FIG. 2). And a shell portion 210c joined (fixed) closely (without a gap) by welding on the upper surface. In the present embodiment, the shell portion 210c of the first rotating member 210 is a first spherical plane that is perpendicular to the diameter of the thin spherical shell and a second plane that is inclined by a first angle Δ1 with respect to the first plane. When cut, it has the same shape as the portion sandwiched between the first and second planes. And as shown in FIG. 2, the open end of the large diameter of the shell part 210c is joined to the outer periphery of the flange part 210b. However, the first rotating member 210 (the cylindrical portion 210a and the flange portion 210b) and the shell portion 210c may be integrally formed by, for example, casting.
   第1支持部材211は、第1回転部材210の筒状部210aの外径よりも僅かに大きい内径を有し、上述の容器本体15のフランジ部15fとは反対側の開放端15e(図2参照)に溶接により密に(隙間なく)接合(固定)される。更に、第1支持部材211の内周面には、それぞれOリング(第1シール部材)213が配置される2本の環状溝が軸方向に間隔をおいて形成されている。 The first support member 211 has an inner diameter slightly larger than the outer diameter of the cylindrical portion 210a of the first rotating member 210, and an open end 15e opposite to the flange portion 15f of the container body 15 described above (FIG. 2). (See)) and is joined (fixed) densely (without a gap) by welding. Furthermore, two annular grooves in which O-rings (first seal members) 213 are respectively arranged are formed on the inner peripheral surface of the first support member 211 at intervals in the axial direction.
   第1駆動装置215は、図3に示すように、第1駆動モータ(ステッピングモータ)M1と、ウォーム(ねじ歯車)217およびウォームホイール(はすば歯車)218を含むウォームギヤ機構216とを有する。ウォームギヤ機構216のウォーム217は、第1駆動モータM1のロータに一体に回転するように連結される。また、ウォームホイール218は、第1回転部材210のフランジ部210bの裏面(図2における下面)に複数のボルトを介して第1回転部材210と同軸に固定される。図2および図3からわかるように、第1駆動装置215の構成部品は、真空チャンバ10の外部、すなわちOリング213や第1支持部材211よりも外側に配置される。 The first drive device 215 includes a first drive motor (stepping motor) M1 and a worm gear mechanism 216 including a worm (screw gear) 217 and a worm wheel (helical gear) 218, as shown in FIG. The worm 217 of the worm gear mechanism 216 is coupled to rotate integrally with the rotor of the first drive motor M1. The worm wheel 218 is fixed coaxially to the first rotating member 210 via a plurality of bolts on the back surface (lower surface in FIG. 2) of the flange portion 210b of the first rotating member 210. As can be seen from FIGS. 2 and 3, the components of the first driving device 215 are disposed outside the vacuum chamber 10, that is, outside the O-ring 213 and the first support member 211.
   図2に示すように、第1回転部材210の筒状部210aは、第1支持部材211内に同軸に嵌め込まれる。また、第1回転部材210のフランジ部210bに固定されたウォームホイール218の内周面と、第1支持部材211の外周面との間には、本実施形態ではボールベアリングである軸受214が配置される。軸受214は、図2に示すように、第1支持部材211と当該第1支持部材211に図示しない複数のボルトを介して固定される環状の第1固定部材211rとにより保持される。これにより、第1回転部材210は、第1支持部材211によって当該第1回転部材210の中心軸である第1軸Αの周りに回転自在に支持される。そして、第1駆動装置215の第1駆動モータM1によりウォーム217を回転させることで、当該ウォーム217およびウォームホイール218を介して第1回転部材210を第1支持部材211および容器本体15に対して第1軸Αの周りに回転させることが可能となる。本実施形態において、第1駆動装置215は、第1回転部材210を第1軸Αの周りに正方向および逆方向の双方に第1支持部材211に対して自在に回転させることができるように構成されている。 As shown in FIG. 2, the cylindrical portion 210 a of the first rotating member 210 is fitted coaxially in the first support member 211. In addition, a bearing 214 which is a ball bearing in the present embodiment is disposed between the inner peripheral surface of the worm wheel 218 fixed to the flange portion 210b of the first rotating member 210 and the outer peripheral surface of the first support member 211. Is done. As shown in FIG. 2, the bearing 214 is held by a first support member 211 and an annular first fixing member 211r fixed to the first support member 211 via a plurality of bolts (not shown). Accordingly, the first rotating member 210 is supported by the first support member 211 so as to be rotatable around the first shaft rod that is the central axis of the first rotating member 210. Then, by rotating the worm 217 by the first drive motor M1 of the first drive device 215, the first rotation member 210 is moved with respect to the first support member 211 and the container body 15 via the worm 217 and the worm wheel 218. It can be rotated around the first shaft rod. In the present embodiment, the first driving device 215 can freely rotate the first rotating member 210 with respect to the first support member 211 in both the forward direction and the reverse direction around the first shaft rod. It is configured.
   更に、本実施形態において、第1回転部材210と第1支持部材211との径方向における間および2つのOリング213の軸方向における間に画成される狭隘な空間には、第1支持部材211に形成された図示しない吸引通路を介して上記真空ポンプとは異なる補助真空ポンプが接続される。これにより、補助真空ポンプによって当該空間を真空排気(粗引き)することで、第1回転部材210と第1支持部材211との隙間を介して容器本体15内に空気が流入するのを良好に抑制することが可能となる。 Further, in the present embodiment, the first support member is disposed in a narrow space defined between the first rotating member 210 and the first support member 211 in the radial direction and between the two O-rings 213 in the axial direction. An auxiliary vacuum pump different from the vacuum pump is connected through a suction passage (not shown) formed in 211. Thus, the space is evacuated (roughly evacuated) by the auxiliary vacuum pump, so that air can be satisfactorily introduced into the container body 15 through the gap between the first rotating member 210 and the first support member 211. It becomes possible to suppress.
   第2回転機構22は、図2に示すように、ステンレス等の金属により形成された第2回転部材220と、ステンレス等の金属により短尺筒状(円筒状)に形成された第2支持部材221と、第2駆動装置225とを含む。第2回転部材220は、短尺円筒状の筒状部220aと、円盤状の天板部220bとを有する。本実施形態において、天板部220bは、その中心が筒状部220aすなわち第2回転部材220の中心軸である第2軸Β上に位置すると共に当該第2軸Βと直交し、かつ外周部が筒状部220aの外周面よりも径方向外側に張り出すように筒状部220aと一体に形成されている。ただし、天板部220bは、筒状部220aとは別体に形成されて当該筒状部220aの一端に溶接等により密に接合(固定)されてもよい。更に、天板部220bには、楕円形状の開口220cが形成されている。 As shown in FIG. 2, the second rotating mechanism 22 includes a second rotating member 220 formed of a metal such as stainless steel, and a second support member 221 formed of a metal such as stainless steel in a short cylindrical shape (cylindrical shape). And a second driving device 225. The 2nd rotation member 220 has the short cylindrical cylindrical part 220a and the disk-shaped top-plate part 220b. In the present embodiment, the top plate portion 220b is located on the second shaft rod, the center of which is located on the cylindrical portion 220a, that is, the central axis of the second rotating member 220, and is orthogonal to the second shaft rod. Is formed integrally with the cylindrical portion 220a so as to protrude outward in the radial direction from the outer peripheral surface of the cylindrical portion 220a. However, the top plate portion 220b may be formed separately from the cylindrical portion 220a and closely joined (fixed) to one end of the cylindrical portion 220a by welding or the like. Furthermore, an elliptical opening 220c is formed in the top plate portion 220b.
   第2支持部材221は、第2回転部材220の筒状部220aの外径よりも僅かに大きい内径を有する。更に、第2支持部材221の内周面には、それぞれOリング(第2シール部材)223が配置される2本の環状溝が軸方向に間隔をおいて形成されている。図2に示すように、第2支持部材221は、第1回転機構21の第1回転部材210のシェル部210cに固定される。すなわち、第2支持部材221は、当該第2支持部材221の中心軸が第1回転部材210(および第1支持部材211)の中心軸である第1軸Αに対して上記第1角度Δ1だけ傾斜して当該第1軸Αと交差するように、シェル部210cの傾斜した小径の開放端(フランジ部210b側とは反対側の開放端)に溶接により密に(隙間なく)接合される。 The second support member 221 has an inner diameter that is slightly larger than the outer diameter of the cylindrical portion 220a of the second rotating member 220. Furthermore, two annular grooves in which O-rings (second seal members) 223 are respectively arranged are formed on the inner peripheral surface of the second support member 221 with an interval in the axial direction. As shown in FIG. 2, the second support member 221 is fixed to the shell portion 210 c of the first rotation member 210 of the first rotation mechanism 21. That is, the second support member 221 has the first angle Δ1 with respect to the first shaft rod whose center axis is the center axis of the first rotation member 210 (and the first support member 211). The shell portion 210c is joined tightly (without a gap) to the inclined small diameter open end (the open end opposite to the flange portion 210b side) of the shell portion 210c so as to incline and intersect the first shaft rod.
   第2駆動装置225は、図3に示すように、第2駆動モータ(ステッピングモータ)M2と、ウォーム(ねじ歯車)227およびウォームホイール(はすば歯車)228を含むウォームギヤ機構226とを有する。ウォームギヤ機構226のウォーム227は、第2駆動モータM2のロータに一体に回転するように連結される。また、ウォームホイール228は、第2回転部材220の天板部220bの外周部の裏面(図2における下面)に複数のボルトを介して第2回転部材220と同軸に固定される。図2および図3からわかるように、第2駆動装置225の構成部品は、真空チャンバ10の外部、すなわちOリング223や第2支持部材221よりも外側に配置される。 As shown in FIG. 3, the second drive device 225 includes a second drive motor (stepping motor) M 2 and a worm gear mechanism 226 including a worm (screw gear) 227 and a worm wheel (helical gear) 228. The worm 227 of the worm gear mechanism 226 is coupled to rotate integrally with the rotor of the second drive motor M2. The worm wheel 228 is fixed coaxially to the second rotating member 220 via a plurality of bolts on the back surface (the lower surface in FIG. 2) of the outer peripheral portion of the top plate portion 220b of the second rotating member 220. As can be seen from FIGS. 2 and 3, the components of the second driving device 225 are arranged outside the vacuum chamber 10, that is, outside the O-ring 223 and the second support member 221.
   図2に示すように、第2回転部材220の筒状部220aは、第2支持部材221内に同軸に嵌め込まれる。更に、第2回転部材220の天板部220bに固定されたウォームホイール228の内周面と、第2支持部材221の外周面との間には、本実施形態ではボールベアリングである軸受224が配置される。軸受224は、図2に示すように、第2支持部材221と当該第2支持部材221に図示しない複数のボルトを介して固定される環状の第2固定部材221rとにより保持される。これにより、第2回転部材220は、第2支持部材221によって当該第2回転部材220の中心軸である第2軸Βの周りに回転自在に支持され、当該第2軸Βは、第1軸Αに対して第1角度Δ1だけ傾斜して当該第1軸Αと交差する。そして、第2駆動装置225の第2駆動モータM2によりウォーム227を回転させることで、当該ウォーム227およびウォームホイール228を介して第2回転部材220を第2支持部材221および第1回転部材210に対して第2軸Βの周りに回転させることが可能となる。本実施形態において、第2駆動装置225は、第2回転部材220を第2軸Βの周りに正方向および逆方向の双方に第2支持部材221に対して自在に回転させることができるように構成されている。 As shown in FIG. 2, the cylindrical portion 220 a of the second rotating member 220 is fitted coaxially into the second support member 221. Further, between the inner peripheral surface of the worm wheel 228 fixed to the top plate portion 220b of the second rotating member 220 and the outer peripheral surface of the second support member 221, a bearing 224, which is a ball bearing in this embodiment, is provided. Be placed. As shown in FIG. 2, the bearing 224 is held by a second support member 221 and an annular second fixing member 221r fixed to the second support member 221 via a plurality of bolts (not shown). As a result, the second rotating member 220 is rotatably supported by the second support member 221 around the second shaft rod that is the central axis of the second rotating member 220, and the second shaft rod is supported by the first shaft. It crosses the first axis Α with a first angle Δ1 with respect to Α. Then, by rotating the worm 227 by the second drive motor M2 of the second drive device 225, the second rotation member 220 is moved to the second support member 221 and the first rotation member 210 via the worm 227 and the worm wheel 228. On the other hand, it can be rotated around the second shaft rod. In the present embodiment, the second driving device 225 can freely rotate the second rotating member 220 with respect to the second support member 221 in both the forward and reverse directions around the second shaft rod. It is configured.
   更に、本実施形態において、第2回転部材220と第2支持部材221との径方向における間および2つのOリング223の軸方向における間に画成される狭隘な空間には、第2支持部材221に形成された図示しない吸引通路を介して上記補助真空ポンプが接続される。これにより、補助真空ポンプによって当該空間を真空排気(粗引き)することで、第2回転部材220と第2支持部材221との隙間を介して容器本体15内に空気が流入するのを良好に抑制することが可能となる。また、第2回転部材220の開口220cは、その長軸が当該天板部220bの径方向に延在すると共に、その中心(長軸と短軸との交点)が、第2軸Βに対して第2角度Δ2だけ傾斜して第1軸Αと第2軸Βとの交点Oを通る直線上に位置するように天板部220bに形成される。 Further, in the present embodiment, the second support member is provided in a narrow space defined between the second rotation member 220 and the second support member 221 in the radial direction and between the two O-rings 223 in the axial direction. The auxiliary vacuum pump is connected through a suction passage (not shown) formed in 221. As a result, the space is evacuated (roughly evacuated) by the auxiliary vacuum pump so that air can flow into the container body 15 through the gap between the second rotating member 220 and the second support member 221. It becomes possible to suppress. In addition, the opening 220c of the second rotating member 220 has a long axis extending in the radial direction of the top plate portion 220b, and a center (intersection of the long axis and the short axis) of the opening 220c with respect to the second shaft rod. The top plate 220b is formed so as to be inclined on the second angle Δ2 and located on a straight line passing through the intersection point O between the first shaft Α and the second shaft Β.
   第3回転機構23は、図2に示すように、ステンレス等の金属により形成された対象物(第3回転部材)としての出射部12と、ステンレス等の金属により筒状(円筒状)に形成された第3支持部材231と、第3駆動装置235とを含む。出射部12は、短尺円筒状の筒状部12aと、当該筒状部12aの一端から径方向外側に延出された円環状のフランジ部12bと、発光を通過させるための中心孔12oとを有する。フランジ部12bには、図示しないボルトを介して上述のベローズ4を連結することができる。また、本実施形態において、出射部12は、中心孔12o内に集光器5(図2参照)を同軸に装着することができるように構成されている。 As shown in FIG. 2, the third rotating mechanism 23 is formed in a cylindrical shape (cylindrical shape) with the emitting portion 12 as an object (third rotating member) formed of a metal such as stainless steel and a metal such as stainless steel. The third support member 231 and the third driving device 235 are included. The emitting portion 12 includes a short cylindrical tubular portion 12a, an annular flange portion 12b extending radially outward from one end of the tubular portion 12a, and a central hole 12o for allowing light to pass therethrough. Have. The bellows 4 described above can be connected to the flange portion 12b via a bolt (not shown). Moreover, in this embodiment, the output part 12 is comprised so that the collector 5 (refer FIG. 2) can be coaxially mounted in the center hole 12o.
   第3支持部材231は、出射部12の筒状部12aの外径よりも僅かに大きい内径を有する。また、第3支持部材231の内周面には、それぞれOリング(第3シール部材)233が配置される2本の環状溝が軸方向に間隔をおいて形成されている。更に、第3支持部材231は、軸方向に延出された円筒状の延出部231eを有する。延出部231eの遊端部は、第3支持部材231の中心軸に対して角度(90-Δ2)をなす平面でカット
 されており、当該延出部231eは、第2回転部材220の天板部220bに形成された開口220cに嵌まり込む楕円状の開放端を有する。かかる延出部231eの開放端は、図2に示すように、開口220cに嵌め込まれると共に、天板部220bに溶接により密に(隙間なく)接合(固定)される。これにより、第3支持部材231は、当該第3支持部材231の中心軸が第2回転部材220(および第2支持部材221)の中心軸である第2軸Βに対して上記第2角度Δ2だけ傾斜して第1軸Αと第1軸Βとの交点Oを通るように、第2回転部材220の天板部220bに固定される。
The third support member 231 has an inner diameter that is slightly larger than the outer diameter of the cylindrical portion 12 a of the emitting portion 12. In addition, two annular grooves in which O-rings (third seal members) 233 are respectively disposed are formed on the inner peripheral surface of the third support member 231 with an interval in the axial direction. Further, the third support member 231 has a cylindrical extending portion 231e that extends in the axial direction. The free end of the extending portion 231 e is cut by a plane that forms an angle (90−Δ2) with respect to the central axis of the third support member 231. It has an oval open end that fits into an opening 220c formed in the plate portion 220b. As shown in FIG. 2, the open end of the extending portion 231e is fitted into the opening 220c and is joined (fixed) closely (without a gap) to the top plate portion 220b by welding. As a result, the third support member 231 has the second angle Δ2 with respect to the second shaft rod in which the central axis of the third support member 231 is the central axis of the second rotating member 220 (and the second support member 221). It is fixed to the top plate portion 220b of the second rotating member 220 so as to be inclined and pass through the intersection point O between the first shaft rod and the first shaft rod.
   第3駆動装置235は、図3に示すように、第3駆動モータ(ステッピングモータ)M3と、ウォーム(ねじ歯車)237およびウォームホイール(はすば歯車)238を含むウォームギヤ機構236とを有する。ウォームギヤ機構236のウォーム237は、第3駆動モータM3のロータに一体に回転するように連結される。また、ウォームホイール238は、出射部12のフランジ部12bの裏面(図2における下面)に複数のボルトを介して出射部12と同軸に固定される。図2および図3からわかるように、第3駆動装置235の構成部品は、真空チャンバ10の外部、すなわちOリング233や第3支持部材231よりも外側に配置される。 As shown in FIG. 3, the third drive device 235 includes a third drive motor (stepping motor) M 3 and a worm gear mechanism 236 including a worm (screw gear) 237 and a worm wheel (helical gear) 238. The worm 237 of the worm gear mechanism 236 is coupled to rotate integrally with the rotor of the third drive motor M3. Further, the worm wheel 238 is fixed to the rear surface (the lower surface in FIG. 2) of the flange portion 12b of the emission portion 12 coaxially with the emission portion 12 via a plurality of bolts. As can be seen from FIGS. 2 and 3, the components of the third driving device 235 are arranged outside the vacuum chamber 10, that is, outside the O-ring 233 and the third support member 231.
   図2に示すように、出射部12の筒状部12aは、第3支持部材231内に同軸に嵌め込まれる。また、出射部12のフランジ部12bに固定されたウォームホイール238の内周面と、第3支持部材231の外周面との間には、本実施形態ではボールベアリングである軸受234が配置される。軸受234は、図2に示すように、第3支持部材231と当該第3支持部材231に図示しない複数のボルトを介して固定される環状の第3固定部材231rとにより保持される。これにより、出射部12は、フランジ部12bが真空チャンバ10の外部に露出するように、第3支持部材231によって第2軸Βに対して上記第2角度Δ2だけ傾斜して第1軸Αと第2軸Βとの交点Oを通る第3軸Γと同軸かつ当該第3軸Γの周りに回転自在に支持される。また、第1支持部材211や容器本体15は、第1回転部材210のシェル部210c、第2回転部材220の天板部220b、第3支持部材231および出射部12により上方から覆われる。そして、第3駆動装置235の第3駆動モータM3によりウォーム237を回転させることで、当該ウォーム237およびウォームホイール238を介して出射部12を第3支持部材231および第2回転部材220に対して第3軸Γの周りに回転させることが可能となる。本実施形態において、第3駆動装置235は、出射部12を第3軸Γの周りに正方向および逆方向の双方において第3支持部材231に対して自在に回転させることができるように構成されている。 As shown in FIG. 2, the cylindrical portion 12 a of the emitting portion 12 is fitted coaxially in the third support member 231. In addition, a bearing 234 that is a ball bearing in the present embodiment is disposed between the inner peripheral surface of the worm wheel 238 fixed to the flange portion 12 b of the emitting portion 12 and the outer peripheral surface of the third support member 231. . As shown in FIG. 2, the bearing 234 is held by a third support member 231 and an annular third fixing member 231r fixed to the third support member 231 via a plurality of bolts (not shown). Accordingly, the emitting portion 12 is inclined by the second angle Δ2 with respect to the second shaft rod by the third support member 231 so that the flange portion 12 b is exposed to the outside of the vacuum chamber 10. A third axis Γ passing through the intersection point O with the second shaft Β is coaxially supported and rotatably supported around the third axis Γ. In addition, the first support member 211 and the container body 15 are covered from above by the shell portion 210 c of the first rotating member 210, the top plate portion 220 b of the second rotating member 220, the third supporting member 231, and the emitting portion 12. Then, by rotating the worm 237 by the third drive motor M3 of the third drive device 235, the emission unit 12 is moved with respect to the third support member 231 and the second rotation member 220 via the worm 237 and the worm wheel 238. It is possible to rotate around the third axis Γ. In the present embodiment, the third driving device 235 is configured to freely rotate the emitting unit 12 around the third axis Γ with respect to the third support member 231 in both the forward direction and the reverse direction. ing.
   更に、本実施形態において、出射部12と第3支持部材231との径方向における間および2つのOリング233の軸方向における間に画成される狭隘な空間には、第3支持部材231に形成された図示しない吸引通路を介して上記補助真空ポンプが接続される。これにより、補助真空ポンプによって当該空間を真空排気(粗引き)することで、出射部12と第3支持部材231との隙間を介して容器本体15内に空気が流入するのを良好に抑制することが可能となる。 Further, in the present embodiment, the narrow space defined between the emitting portion 12 and the third support member 231 in the radial direction and between the two O-rings 233 in the axial direction has the third support member 231. The auxiliary vacuum pump is connected through a formed suction passage (not shown). As a result, the space is evacuated (roughly evacuated) by the auxiliary vacuum pump, thereby satisfactorily suppressing air from flowing into the container main body 15 through the gap between the emitting portion 12 and the third support member 231. It becomes possible.
   図3に示すように、第1駆動装置215の第1駆動モータM1、第2駆動装置225の第2駆動モータM2、および第3駆動装置235の第3駆動モータM3は、CPU等を含むコンピュータである制御装置50により制御される。本実施形態の制御装置50は、第1から第3駆動モータM1,M2およびM3とは独立に分光器3の駆動装置(図示省略)を制御するように構成されている。そして、制御装置50は、分光器3を回動させる際に、当該分光器3の回動に同期して第1および第2回転部材210,220並びに出射部12が第1軸Α、第2軸Βまたは第3軸Γの周りに回転するように第1から第3駆動モータM1,M2およびM3を制御する。ただし、分光器3の回動に同期して第1から第3駆動装置215,225および235が制御されるのであれば、分光器3の駆動装置は、制御装置50以外の他の制御装置によって制御されてもよい。 As shown in FIG. 3, the first drive motor M1 of the first drive device 215, the second drive motor M2 of the second drive device 225, and the third drive motor M3 of the third drive device 235 are computers including CPUs and the like. It is controlled by the control device 50. The control device 50 of the present embodiment is configured to control the drive device (not shown) of the spectrometer 3 independently of the first to third drive motors M1, M2, and M3. When the control device 50 rotates the spectroscope 3, the first and second rotating members 210 and 220 and the emitting portion 12 are synchronized with the rotation of the spectroscope 3, and the first and second rotating members 210 and 220 The first to third drive motors M1, M2 and M3 are controlled so as to rotate around the shaft rod or the third axis Γ. However, if the first to third driving devices 215, 225, and 235 are controlled in synchronization with the rotation of the spectroscope 3, the driving device for the spectroscope 3 is controlled by a control device other than the control device 50. It may be controlled.
   ここで、図4に示すように、第1回転部材210の第1軸Αの周りの回転角度を“α”とし、第2回転部材220の第2軸Βの周りの回転角度を“β”とし、出射部12の第3軸Γの周りの回転角度を“γ”とする。更に、図5に示すように、上記交点Oを中心とした球冠上の点のX軸からの方位角(azimuth)を“θ”とし、XY平面からの仰角(elevation)を“φ”とする。この場合、第1および第2回転部材210,220の回転角度α,βと、方位角θ、仰角φ、並びに上述の第1および第2角度Δ1,Δ2との間には、次式(1)から(3)に示す関係が成立する。また、出射部12の回転角度γと方位角θ、仰角φ、並びに第1および第2角度Δ1,Δ2との間には、次式(4)に示す関係が成立する。なお、図4および図5におけるX軸、Y軸およびZ軸は、真空チャンバ10(軟X線発光分光システム1)に対して、図2に示すように設定され、真空チャンバ10の入射部11に対する放射光の入射方向は、X軸の延在方向に一致し、第1軸Αは、Y軸に一致する。また、第1および第2回転部材210,220並びに出射部12の回転方向は、図4に示す方向を正とする。更に、図4は、第1および第2回転部材210,220の回転角度α,βが0(rad)となるときの第1軸Αおよび第2軸Βを示す。 Here, as shown in FIG. 4, the rotation angle of the first rotating member 210 around the first shaft rod is “α”, and the rotation angle of the second rotating member 220 around the second shaft rod is “β”. And the rotation angle of the emitting portion 12 around the third axis Γ is “γ”. Further, as shown in FIG. 5, the azimuth from the X axis of the point on the sphere centered on the intersection O is “θ”, and the elevation from the XY plane is “φ”. To do. In this case, between the rotation angles α and β of the first and second rotating members 210 and 220, the azimuth angle θ and the elevation angle φ, and the first and second angles Δ1 and Δ2 described above, ) To (3) are established. Further, the relationship represented by the following equation (4) is established between the rotation angle γ of the emitting portion 12, the azimuth angle θ, the elevation angle φ, and the first and second angles Δ 1 and Δ 2. 4 and 5 are set as shown in FIG. 2 with respect to the vacuum chamber 10 (soft X-ray emission spectroscopy system 1), and the incident portion 11 of the vacuum chamber 10 is set. The incident direction of the radiated light with respect to X coincides with the extending direction of the X axis, and the first axis 一致 coincides with the Y axis. Further, the rotation direction of the first and second rotating members 210 and 220 and the emitting portion 12 is positive in the direction shown in FIG. Furthermore, FIG. 4 shows the first shaft rod and the second shaft rod when the rotation angles α and β of the first and second rotating members 210 and 220 are 0 (rad).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
   真空チャンバ10の位置決め装置20において、交点Oを中心とした球冠上の点の方位角θの取り得る範囲は、π/2-(Δ1+Δ2)≦θ≦π/2-|Δ1-Δ2|,π/2+|Δ1-Δ2|≦θ≦π/2+(Δ1+Δ2)となるが、連続した角度範囲内で任意の方位角θを取り得るようにするためには、Δ1=Δ2,0≦α≦2πおよび0≦β≦πと満たす必要がある。このため、真空チャンバ10では、第1角度Δ1と第2角度Δ2とが同一に定められる。また、上述のように、第1駆動装置215は、第1回転部材210を第1軸Αの周りに正方向および逆方向の双方に第1支持部材211に対して自在に回転させることができるように構成され、第2駆動装置225は、第2回転部材220を第2軸Βの周りに正方向および逆方向の双方に第2支持部材221に対して自在に回転させることができるように構成される。 In the positioning device 20 of the vacuum chamber 10, the possible range of the azimuth angle θ of the point on the spherical crown with the intersection O as the center is π / 2− (Δ1 + Δ2) ≦ θ ≦ π / 2− | Δ1−Δ2 |, π / 2 + | Δ1−Δ2 | ≦ θ ≦ π / 2 + (Δ1 + Δ2). In order to obtain an arbitrary azimuth angle θ within a continuous angle range, Δ1 = Δ2, 0 ≦ α ≦ It is necessary to satisfy 2π and 0 ≦ β ≦ π. For this reason, in the vacuum chamber 10, the first angle Δ1 and the second angle Δ2 are determined to be the same. In addition, as described above, the first driving device 215 can freely rotate the first rotating member 210 with respect to the first support member 211 in both the forward direction and the reverse direction around the first shaft rod. The second driving device 225 can freely rotate the second rotating member 220 relative to the second support member 221 in both the forward and reverse directions around the second shaft rod. Composed.
   これにより、真空チャンバ10では、第1および第2駆動装置215,225によって第1および第2回転部材210,220を第1または第2支持部材211,221に対して回転させることで、分光器3の回動に応じて、フランジ部12bが外部に露出する出射部12を第3軸Γの延在方向における上記交点Oから当該出射部12までの長さ(例えば、第3軸Γの延在方向における交点Oからフランジ部12bの端面までの距離)を曲率半径とする球冠の表面上の任意の位置に精度よく位置決めすることが可能となる。更に、第3駆動装置235によって出射部12を第3支持部材231に対して回転させることで、第1および第2回転部材210,220の回転に伴って発生する出射部12(およびベローズ4)の第3軸Γの周りにおける捩れを解消することができる。この結果、分光器3の回動に応じて出射部12をより適正な位置へと移動させて、軟X線発光分光システム1による測定をスムースに実行することが可能となる。更に、出射部12に集光器5が装着される場合には、第1から第3駆動装置215,225,235の少なくとも何れかを作動させて分光器3に対する集光器5の位置を微調整することができる。 Thus, in the vacuum chamber 10, the first and second driving members 215 and 225 rotate the first and second rotating members 210 and 220 relative to the first or second support members 211 and 221, thereby obtaining a spectrometer. 3, the length of the emitting portion 12 where the flange portion 12 b is exposed to the outside from the intersection O in the extending direction of the third axis Γ to the emitting portion 12 (for example, the extension of the third axis Γ) The distance from the intersection point O in the present direction to the end face of the flange portion 12b) can be accurately positioned at an arbitrary position on the surface of the spherical crown having a radius of curvature. Further, the emitting unit 12 (and the bellows 4) generated by the rotation of the first and second rotating members 210 and 220 by rotating the emitting unit 12 with respect to the third support member 231 by the third driving device 235. Torsion around the third axis Γ can be eliminated. As a result, it is possible to smoothly perform the measurement by the soft X-ray emission spectroscopy system 1 by moving the emission unit 12 to a more appropriate position according to the rotation of the spectrometer 3. Further, when the condenser 5 is attached to the emission unit 12, at least one of the first to third driving devices 215, 225, and 235 is operated to finely position the condenser 5 with respect to the spectrometer 3. Can be adjusted.
   また、真空チャンバ10では、第1回転機構21の第1支持部材211が容器本体15の開放端15eに密に接合され、第1回転部材210と第1支持部材211との間、第2回転部材220と第2支持部材221との間、および出射部12と第3支持部材231との間にOリング213,223または233が配置されている。これにより、第1および第2回転部材210,220並びに出射部12が回転しても、真空チャンバ10の内部を超高真空状態に保つことが可能となる。 In the vacuum chamber 10, the first support member 211 of the first rotation mechanism 21 is closely joined to the open end 15 e of the container body 15, and the second rotation is performed between the first rotation member 210 and the first support member 211. O- rings 213, 223, or 233 are disposed between the member 220 and the second support member 221 and between the emission unit 12 and the third support member 231. Thereby, even if the 1st and 2nd rotation members 210 and 220 and the radiation | emission part 12 rotate, it becomes possible to maintain the inside of the vacuum chamber 10 in an ultra-high vacuum state.
   更に、真空チャンバ10では、第1駆動装置215をOリング213や第1支持部材211よりも外側に配置し、第2駆動装置225をOリング223や第2支持部材221よりも外側に配置し、かつ第3駆動装置235をOリング213や第3支持部材231よりも外側に配置することができる。従って、真空チャンバ10の内部容積を充分に確保しつつ、真空チャンバ10の全体をよりコンパクト化することが可能となる。そして、真空チャンバ10がコンパクト化されることにより、試料Sの発光点から分光器3までの距離を短くし、それにより取り込み角度を大きくして分光器3の測定効率を向上させることができる。 Further, in the vacuum chamber 10, the first driving device 215 is disposed outside the O-ring 213 and the first support member 211, and the second driving device 225 is disposed outside the O-ring 223 and the second support member 221. In addition, the third drive device 235 can be disposed outside the O-ring 213 and the third support member 231. Therefore, the entire vacuum chamber 10 can be made more compact while sufficiently securing the internal volume of the vacuum chamber 10. Since the vacuum chamber 10 is made compact, the distance from the emission point of the sample S to the spectroscope 3 can be shortened, thereby increasing the capture angle and improving the measurement efficiency of the spectroscope 3.
   以上説明したように、本開示の真空チャンバ10では、位置決め装置20により分光器3の回動に応じて出射部12を3次元空間のより適正な位置に精度よく位置決めすると共に内部を良好な真空状態に保つことができる。なお、真空チャンバ10では、第1角度Δ1と第2角度Δ2とが同一に定められるが、これに限られるものではない。すなわち、方位角θの連続性が無くなることにはなるが、第1角度Δ1と第2角度Δ2とが互いに異なるように定められてもよい。また、真空チャンバ10の構成は、例えば空気以外の気体が封入される密閉容器に適用されてもよい。更に、上述の第1から第3駆動装置215,225および235は、ウォームギヤ機構216,226,236の代わりに、ウォームギヤ機構以外のギヤ機構や、巻き掛け伝動機構、ローラ伝動機構等を含むものであってもよい。また、真空チャンバ10の位置決め装置20は、それ自体単独で、対象物を3次元空間で位置決めする装置として用いられてもよい。 As described above, in the vacuum chamber 10 of the present disclosure, the positioning unit 20 accurately positions the emission unit 12 at a more appropriate position in the three-dimensional space according to the rotation of the spectroscope 3 and has a good vacuum inside. Can be kept in a state. In the vacuum chamber 10, the first angle Δ1 and the second angle Δ2 are determined to be the same, but the present invention is not limited to this. That is, the continuity of the azimuth angle θ is lost, but the first angle Δ1 and the second angle Δ2 may be determined to be different from each other. Further, the configuration of the vacuum chamber 10 may be applied to, for example, a sealed container in which a gas other than air is enclosed. Further, the first to third driving devices 215, 225, and 235 described above include gear mechanisms other than the worm gear mechanism, a winding transmission mechanism, a roller transmission mechanism, and the like instead of the worm gear mechanisms 216, 226, and 236. There may be. Further, the positioning device 20 of the vacuum chamber 10 may be used alone as a device for positioning an object in a three-dimensional space.
   そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。 The invention of the present disclosure is not limited to the above-described embodiment, and it goes without saying that various changes can be made within the scope of the extension of the present disclosure. Furthermore, the above-described embodiment is merely a specific form of the invention described in the Summary of Invention column, and does not limit the elements of the invention described in the Summary of Invention column.
   本開示の発明は、位置決め装置や密閉容器、真空チャンバの製造産業等において利用可能である。

 
The invention of the present disclosure can be used in the manufacturing industry of positioning devices, sealed containers, vacuum chambers, and the like.

Claims (7)

  1.    対象物を3次元空間で位置決めする位置決め装置であって、
       第1回転部材と、前記第1回転部材を該第1回転部材の中心軸である第1軸の周りに回転自在に支持する第1支持部材と、前記第1回転部材を前記第1支持部材に対して前記第1軸の周りに回転させる第1駆動装置とを含む第1回転機構と、
       第2回転部材と、前記第2回転部材を該第2回転部材の中心軸である第2軸の周りに回転自在に支持すると共に、前記第2軸が前記第1軸に対して第1の角度だけ傾斜して該第1軸と交差するように前記第1回転部材に固定される第2支持部材と、前記第2回転部材を前記第2支持部材に対して前記第2軸の周りに回転させる第2駆動装置とを含む第2回転機構と、
       前記第2回転部材に固定されると共に、前記対象物を前記第2軸に対して第2の角度だけ傾斜して前記第1軸と前記第2軸との交点を通る第3軸上に支持する第3支持部材と、
       を備える位置決め装置。
    A positioning device for positioning an object in a three-dimensional space,
    A first rotating member; a first supporting member that rotatably supports the first rotating member around a first axis that is a central axis of the first rotating member; and the first rotating member that is the first supporting member. A first rotation mechanism including a first drive device that rotates about the first axis with respect to the first axis;
    A second rotating member, and the second rotating member are rotatably supported around a second axis that is a central axis of the second rotating member, and the second axis is first with respect to the first axis. A second support member fixed to the first rotating member so as to be inclined at an angle and intersecting the first axis; and the second rotating member is arranged around the second axis with respect to the second supporting member. A second rotation mechanism including a second drive device for rotation;
    The object is fixed to the second rotating member and the object is tilted by a second angle with respect to the second axis and supported on a third axis passing through the intersection of the first axis and the second axis. A third support member that
    A positioning device comprising:
  2.    請求項1に記載の位置決め装置において、前記第1の角度と前記第2の角度とが同一である位置決め装置。 The positioning device according to claim 1, wherein the first angle and the second angle are the same.
  3.    請求項1または2に記載の位置決め装置において、
       前記第3支持部材は、前記対象物を前記第3軸の周りに回転自在に支持し、
       前記対象物を前記第3支持部材に対して前記第3軸の周りに回転させる第3駆動装置を更に備える位置決め装置。
    The positioning device according to claim 1 or 2,
    The third support member rotatably supports the object around the third axis;
    A positioning device further comprising a third driving device for rotating the object relative to the third support member around the third axis.
  4.    請求項1から3の何れか一項に記載の位置決め装置を備えた密閉容器であって、
       前記第1回転機構の前記第1支持部材が密に接合される開放端を有する容器本体と、
       前記第1回転部材と前記第1支持部材との間に配置された第1シール部材と、
       前記第2回転部材と前記第2支持部材との間に配置された第2シール部材と、
       を備え、
       前記対象物は、少なくとも一部が前記密閉容器の外部に露出するように前記第3支持部材により支持される密閉容器。
    A sealed container comprising the positioning device according to any one of claims 1 to 3,
    A container body having an open end to which the first support member of the first rotation mechanism is closely joined;
    A first seal member disposed between the first rotating member and the first support member;
    A second seal member disposed between the second rotating member and the second support member;
    With
    The sealed object is supported by the third support member so that at least a part of the object is exposed to the outside of the sealed container.
  5.    放射光の入射部と、前記放射光が照射される試料を支持するステージと、前記試料からの発光を通過させる出射部とを有する真空チャンバであって、
       前記入射部を有すると共に少なくとも一端が開放された容器本体と、
       第1回転部材と、前記容器本体の開放端に密に接合されると共に前記第1回転部材を該第1回転部材の中心軸である第1軸の周りに回転自在に支持する第1支持部材と、前記第1回転部材と前記第1支持部材との間に配置された第1シール部材と、前記第1回転部材を前記第1支持部材に対して前記第1軸の周りに回転させる第1駆動装置とを含む第1回転機構と、
       第2回転部材と、前記第2回転部材を該第2回転部材の中心軸である第2軸の周りに回転自在に支持すると共に、前記第2軸が前記第1軸に対して第1の角度だけ傾斜して該第1軸と交差するように前記第1回転部材に密に接合される第2支持部材と、前記第2回転部材と前記第2支持部材との間に配置された第2シール部材と、前記第2回転部材を前記第2支持部材に対して前記第2軸の周りに回転させる第2駆動装置とを含む第2回転機構と、
       前記出射部を、少なくとも一部が前記密閉容器の外部に露出するように、前記第2軸に対して第2の角度だけ傾斜して前記第1軸と前記第2軸との交点を通る第3軸と同軸かつ前記第3軸の周りに回転自在に支持すると共に、前記第2回転部材に密に接合される第3支持部材と、前記出射部と前記第3支持部材との間に配置された第3シール部材と、前記出射部を前記第3支持部材に対して前記第3軸の周りに回転させる第3駆動装置とを含む
     第3回転機構と、
       を備える真空チャンバ。
    A vacuum chamber having an incident part of synchrotron radiation, a stage that supports a sample irradiated with the synchrotron light, and an output part that transmits light emitted from the sample;
    A container body having the incident portion and at least one end being opened;
    A first rotating member and a first supporting member that is closely joined to the open end of the container body and that supports the first rotating member around a first axis that is a central axis of the first rotating member. A first seal member disposed between the first rotating member and the first support member; and a first seal member that rotates the first rotating member about the first axis with respect to the first support member. A first rotation mechanism including one driving device;
    A second rotating member, and the second rotating member are rotatably supported around a second axis that is a central axis of the second rotating member, and the second axis is first with respect to the first axis. A second support member that is closely joined to the first rotating member so as to be inclined by an angle and intersect the first axis; and a second supporting member that is disposed between the second rotating member and the second supporting member. A second rotation mechanism including a second seal member and a second drive device that rotates the second rotation member about the second axis with respect to the second support member;
    The exit portion is inclined by a second angle with respect to the second axis so that at least a part is exposed to the outside of the sealed container, and passes through the intersection of the first axis and the second axis. A third support member that is coaxial with the three axes and rotatably supported around the third axis, and is tightly joined to the second rotation member, and is disposed between the emitting portion and the third support member A third rotation mechanism including a third seal member formed, and a third drive device that rotates the light emitting portion around the third axis with respect to the third support member;
    A vacuum chamber comprising:
  6.    請求項5に記載の真空チャンバにおいて、
       前記出射部は、ベローズを介して分光器に連結され、
       前記分光器は、前記放射光の入射方向および前記第1軸の双方と直交する方向に延びる回転軸の周りに回転させられる真空チャンバ。
    The vacuum chamber according to claim 5,
    The emission part is connected to a spectrometer via a bellows,
    The spectrometer is a vacuum chamber that is rotated about a rotation axis that extends in a direction orthogonal to both the incident direction of the radiated light and the first axis.
  7.    請求項5または6に記載の真空チャンバにおいて、前記第1、第2および第3回転機構は、中空型回転導入機である真空チャンバ。 The vacuum chamber according to claim 5 or 6, wherein the first, second and third rotating mechanisms are hollow rotary introducers.
PCT/JP2017/003553 2016-03-17 2017-02-01 Positioning device, airtight container, and vacuum chamber WO2017159097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-053193 2016-03-17
JP2016053193A JP2017167007A (en) 2016-03-17 2016-03-17 Positioning device, sealed container and vacuum chamber

Publications (1)

Publication Number Publication Date
WO2017159097A1 true WO2017159097A1 (en) 2017-09-21

Family

ID=59851799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003553 WO2017159097A1 (en) 2016-03-17 2017-02-01 Positioning device, airtight container, and vacuum chamber

Country Status (2)

Country Link
JP (1) JP2017167007A (en)
WO (1) WO2017159097A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315448A (en) * 1991-04-15 1992-11-06 Nec Corp Method and apparatus for surface structure evaluation
JP2005114411A (en) * 2003-10-03 2005-04-28 Canon Inc Acquisition device of data related to wet angle of sample with respect to liquid
JP2012016366A (en) * 2010-07-06 2012-01-26 Orion Giken Co Ltd Surgery camera posture control device
JP2012021775A (en) * 2010-07-12 2012-02-02 Hitachi Ltd Minute sample analyzer and method
JP2013257298A (en) * 2012-06-14 2013-12-26 Fujitsu Ltd X-ray analyzer and x-ray analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315448A (en) * 1991-04-15 1992-11-06 Nec Corp Method and apparatus for surface structure evaluation
JP2005114411A (en) * 2003-10-03 2005-04-28 Canon Inc Acquisition device of data related to wet angle of sample with respect to liquid
JP2012016366A (en) * 2010-07-06 2012-01-26 Orion Giken Co Ltd Surgery camera posture control device
JP2012021775A (en) * 2010-07-12 2012-02-02 Hitachi Ltd Minute sample analyzer and method
JP2013257298A (en) * 2012-06-14 2013-12-26 Fujitsu Ltd X-ray analyzer and x-ray analysis method

Also Published As

Publication number Publication date
JP2017167007A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US9291582B2 (en) Adjustable-jaw collimator
EP2755557B1 (en) Forward- and variable-offset hoop for beam scanning
JP4723487B2 (en) XANES analysis system and method for performing X-ray absorption edge vicinity structural analysis
CA2823121C (en) Scanning device and method for back-scatter imaging with a radiation beam
US7508911B1 (en) X-ray imaging system and methods of using and forming an array of optic devices therein
US20170110212A1 (en) Support structure and highly aligned monochromatic x-ray optics for x-ray analysis engines and analyzers
JP2005515435A (en) Diffractometer and diffraction analysis method
WO2017159097A1 (en) Positioning device, airtight container, and vacuum chamber
JP6478289B2 (en) X-ray generator and X-ray analyzer
JP6309674B2 (en) Measuring chamber for compact goniometer of X-ray spectrometer
US4891516A (en) Device for axially and angularly positioning a beam or the like in a sealed chamber
JP6327960B2 (en) Irradiation field limiting device, X-ray generation unit and X-ray imaging system provided with the same
Wittry et al. X-ray crystal spectrometers and monochromators in microanalysis
JP6376698B2 (en) X-ray inspection apparatus and method for adjusting X-ray inspection apparatus
US5107524A (en) Synchrotron radiation utilizing apparatus and method for utilizing synchrotron radiation
JPH10239259A (en) Sample stage controllable sample temperature
CN219737335U (en) Arc detector mechanism and X-ray diffraction-fluorescence spectrometer
Gélebart et al. Large Solid Angle Spectrometer for Inelastic X‐ray Scattering
US20220187221A1 (en) Measurement system and method for operating a measurement system
WO2016152654A1 (en) X-ray diffraction measuring device and x-ray diffraction measuring method
WO2024011247A3 (en) Rotating hoop chopper wheel for x-ray imagers
EP3346484B1 (en) X-ray generation device and method, and sample measurement system
CN111508633A (en) Single energy X-ray radiation device
JP2001033403A (en) On-the-spot total reflection fluorescence xafs measuring device
JPH0949812A (en) Sample holder for x-ray diffractometer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766105

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766105

Country of ref document: EP

Kind code of ref document: A1