JP2005114411A - Acquisition device of data related to wet angle of sample with respect to liquid - Google Patents
Acquisition device of data related to wet angle of sample with respect to liquid Download PDFInfo
- Publication number
- JP2005114411A JP2005114411A JP2003345804A JP2003345804A JP2005114411A JP 2005114411 A JP2005114411 A JP 2005114411A JP 2003345804 A JP2003345804 A JP 2003345804A JP 2003345804 A JP2003345804 A JP 2003345804A JP 2005114411 A JP2005114411 A JP 2005114411A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- liquid
- wetting angle
- electron microscope
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、薬品などの分野における固体表面の特性を測定する装置、特に固体材料の液体に対するぬれ角に関する情報を取得する装置に関するものである。 The present invention relates to an apparatus for measuring characteristics of a solid surface in the field of medicine and the like, and more particularly, to an apparatus for acquiring information relating to a wetting angle of a solid material with respect to a liquid.
一般に試料の撥水性や撥油性は、試料表面上の液滴の接触角により評価される。この接触角とは、固体、液体、気体の3相の接触点において液体に引いた接線と固体面のなす角度のうち、液体を含む側の角度をいう。このような接触角の測定は、従来ゴニオメータ付きの光学顕微鏡を用い液滴を側面から観察することにより行っていた。しかしこの方法は、液体、気体、固体の3相の接触点を判断することが難しく、また測定対象試料の大きさにも限度があった。そこで液滴を上部から観察する方法が提案された(下記特許文献1、特許文献2)。これらの方法は、既知体積もしくは質量の液滴を試料に付着させ、この液滴の径を上部から測定し、この体積もしくは質量と測定した径の2つから接触角を算出するものである。
In general, the water repellency and oil repellency of a sample are evaluated by the contact angle of a droplet on the sample surface. This contact angle refers to the angle on the side containing the liquid among the angles formed by the tangent line drawn to the liquid and the solid surface at the contact point of the solid, liquid, and gas phases. Conventionally, such contact angle is measured by observing a droplet from the side using an optical microscope with a goniometer. However, in this method, it is difficult to determine the contact point of the three phases of liquid, gas, and solid, and there is a limit to the size of the sample to be measured. Therefore, a method for observing the droplet from above has been proposed (
また、液滴を上部から観察して液滴の径を測定するとともに、超音波距離測定手段などの非接触式距離測定手段を用いて液滴の高さを測定し、高さと径から接触角を算出する方法も提案されている(下記特許文献3)。
In addition, the droplet diameter is measured by observing the droplet from above, and the height of the droplet is measured using a non-contact distance measuring means such as an ultrasonic distance measuring means, and the contact angle is calculated from the height and diameter. There has also been proposed a method for calculating (
また、液滴をCCDカメラにより所定の角度から撮影し、その画像と撮影角度から接触角を算出する方法も提案されている(下記特許文献4)。 There has also been proposed a method of photographing a droplet from a predetermined angle with a CCD camera and calculating a contact angle from the image and the photographing angle (Patent Document 4 below).
また、蒸発等の影響を排除し、且つ均一な体積もしくは質量の液滴を試料上に一様に付着させることを目的に、液滴を結露により生成し、その高さや径を光学顕微鏡やレーザー顕微鏡、またはレーダ方式、赤外線方式、超音波方式などの非接触式距離測定手段で測定して接触角を求める方法も提案されている(下記特許文献5)。
In addition, for the purpose of eliminating the influence of evaporation, etc., and uniformly depositing droplets of uniform volume or mass on the sample, droplets are generated by condensation, and the height and diameter thereof are measured with an optical microscope or laser. There has also been proposed a method of obtaining a contact angle by measuring with a non-contact distance measuring means such as a microscope, a radar system, an infrared system, or an ultrasonic system (
さらに、固体粒子のぬれ角測定方法として、固体粒子を媒質液体中に浮かべ、横方向から顕微鏡で観察してぬれ角を算出する方法も提案されている(下記特許文献6)。
従来より化学品や薬品、食品、印刷材、界面活性剤など様々な分野で固体粒子表面の特性の測定が行われてきたが、その中でも粒子の液体に対する接触角(ぬれ角)を測定することは重要な課題となっている。 Conventionally, the characteristics of the surface of solid particles have been measured in various fields such as chemicals, medicines, foods, printing materials, surfactants, etc. Among them, the contact angle (wetting angle) of particles to the liquid should be measured. Has become an important issue.
ぬれ角の測定方法としては、粒子表面に付着した液滴のぬれ角を直接計測することが望ましいが、実際には粒子自体の径が小さくなってくると非常に困難となる。そこで、このぬれ角を間接的に測定する方法が一般的に採用されている。例えば、測定対象粒子と同一素材の平板上に微量の液滴を付着し、その接触角を測定する方法がある。しかしこの方法は、平板における接触角を測定したい粒子のぬれ角と近似したものと見なしているため、求めたぬれ角には大きな誤差を含んでいる。さらに、粒子表面が汚染されていたり、粒子表面に化学的処理をして化学修飾を施している場合などは、平板が粒子と同じ素材であってもぬれ角に大きな差が生じてしまう。従って、粒子のぬれ角を測定するには、直接粒子上の液滴のぬれ角を観察することが必要となってくる。 As a method for measuring the wetting angle, it is desirable to directly measure the wetting angle of the droplets adhering to the particle surface, but in practice it becomes very difficult when the diameter of the particle itself is reduced. Therefore, a method of indirectly measuring the wetting angle is generally employed. For example, there is a method in which a small amount of liquid droplets are deposited on a flat plate of the same material as the measurement target particle and the contact angle is measured. However, since this method regards the contact angle on the flat plate as an approximation of the wetting angle of the particle to be measured, the obtained wetting angle includes a large error. Furthermore, when the particle surface is contaminated, or when the particle surface is chemically modified by chemical treatment, a large difference occurs in the wetting angle even if the flat plate is the same material as the particle. Therefore, in order to measure the wetting angle of particles, it is necessary to directly observe the wetting angle of droplets on the particles.
しかしながら上記従来技術では、いずれもぬれ角を求めるためのパラメータを測定する段階で、その観察技術に空間分解能の限界があり、従って測定対象試料の大きさに制限が存在する。例えば、光学顕微鏡を利用している場合には、ミクロンオーダ以下の径の固体粒子表面についた液滴を正確に観察することは難しい。 However, in each of the above-described conventional techniques, at the stage of measuring the parameter for obtaining the wetting angle, the observation technique has a limit of spatial resolution, and therefore there is a limit on the size of the sample to be measured. For example, when an optical microscope is used, it is difficult to accurately observe a droplet on the surface of a solid particle having a diameter of a micron order or less.
また、均一な体積もしくは質量の液滴を試料上に一様に付着させ、且つそれを測定中は維持できる機構も必要である。 There is also a need for a mechanism that can uniformly deposit droplets of uniform volume or mass on the sample and maintain them during the measurement.
本発明は、上記従来の問題点に鑑みなされたもので、微小な固体表面の液体のぬれ角を精度よく測定することが可能な装置を提供するものである。 The present invention has been made in view of the above-described conventional problems, and provides an apparatus capable of accurately measuring the wetting angle of a liquid on a minute solid surface.
本発明は、上記課題を解決するため、本発明の試料の液体に対するぬれ角に関する情報の取得装置は、雰囲気制御が可能な試料チャンバと、前記試料チャンバ内に導入した試料を保持し、且つ導入した前記試料の温度を制御するための試料ホルダと、前記試料ホルダに保持される試料を観察するための走査型電子顕微鏡と、前記走査型電子顕微鏡の電子銃から前記試料表面に電子ビームを集中的に照射させて前記試料表面に液体が結露するための核を付与するための電子銃駆動手段とを備えたことを特徴とする。 In order to solve the above-mentioned problems, the present invention provides an apparatus for acquiring information on the wetting angle of a sample with respect to a liquid, which holds and introduces a sample chamber capable of controlling the atmosphere, and a sample introduced into the sample chamber. A sample holder for controlling the temperature of the sample, a scanning electron microscope for observing the sample held by the sample holder, and an electron beam from the electron gun of the scanning electron microscope on the sample surface And an electron gun driving means for providing a nucleus for condensing the liquid on the surface of the sample.
特に、上記構成の装置において、前記走査型電子顕微鏡は、電子銃を有する電子銃室と複数のレンズを有するレンズ室とを含む鏡筒と、試料からの反射電子を検出する反射電子検出器を備え、前記二つの室がそれぞれ個別の排気系により所定の異なる真空度に調節されることを特徴とする。 In particular, in the apparatus configured as described above, the scanning electron microscope includes a lens barrel including an electron gun chamber having an electron gun and a lens chamber having a plurality of lenses, and a reflected electron detector for detecting reflected electrons from the sample. And the two chambers are each adjusted to a predetermined different degree of vacuum by a separate exhaust system.
また、上記構成の装置において、前記試料チャンバ内の真空度が、液体成分を含むガスの導入経路のバルブと排気系の両方を制御することにより、任意の設定値に調節されることを特徴とする。 Further, in the apparatus having the above configuration, the degree of vacuum in the sample chamber is adjusted to an arbitrary set value by controlling both a valve and an exhaust system of a gas introduction path including a liquid component. To do.
また、上記構成の装置において、前記試料ホルダ上の試料温度が、加熱と冷却の両機構を外部から制御することにより、任意の設定値に調節されることを特徴とする。 In the apparatus having the above-described configuration, the sample temperature on the sample holder is adjusted to an arbitrary set value by controlling both the heating and cooling mechanisms from the outside.
また、上記構成の装置において、前記試料ホルダは、試料位置の移動に加え傾斜と回転の機構を有することを特徴とする。 In the apparatus configured as described above, the sample holder has a tilting and rotating mechanism in addition to the movement of the sample position.
また、上記構成の装置において、前記走査型電子顕微鏡の鏡筒と反射電子検出器の位置を変更し、前記鏡筒と前記反射電子検出器を前記試料表面に対向させるための手段をさらに備えたことを特徴とする。 The apparatus having the above-described configuration further includes means for changing the positions of the column and the backscattered electron detector of the scanning electron microscope so that the tube and the backscattered electron detector are opposed to the sample surface. It is characterized by that.
さらに、本発明の試料の液体に対するぬれ角に関する情報の取得方法は、雰囲気制御が可能な試料チャンバ内において、試料を保持させ、走査型電子顕微鏡の電子銃から前記試料表面に電子ビームを集中的に照射させて前記試料表面に液体が結露するための核を付与し、前記試料表面に液滴を成長させ、前記試料を走査型電子顕微鏡により観察することを特徴とする。 Further, according to the method for obtaining information on the wetting angle of the sample with respect to the liquid according to the present invention, the sample is held in a sample chamber where the atmosphere can be controlled, and an electron beam is concentrated on the sample surface from an electron gun of a scanning electron microscope. The sample is irradiated with a nucleus for condensing liquid on the sample surface, a droplet is grown on the sample surface, and the sample is observed with a scanning electron microscope.
特に、上記構成の方法において、前記試料の走査型電子顕微鏡による観察は、前記試料ホルダを傾斜及び回転させることにより任意の方向から行うことを特徴とする。 In particular, in the method having the above-described configuration, the sample is observed with a scanning electron microscope from any direction by tilting and rotating the sample holder.
また、上記構成の方法において、前記試料の走査型電子顕微鏡による観察は、前記走査型電子顕微鏡の鏡筒と前記反射電子検出器を可動式とし前記試料に任意の方向から対向させて行うことを特徴とする。 In the method of the above configuration, the observation of the sample with a scanning electron microscope is performed by making the barrel of the scanning electron microscope and the backscattered electron detector movable and facing the sample from an arbitrary direction. Features.
(作用)
本発明は上記構成により、微小なサイズの試料表面に付着した液滴を電子線を利用して観察することが可能となる。また、均一な体積もしくは質量の液滴を試料上に一様に付着させ、且つそれを測定中は維持することが可能となる。さらに、走査型電子顕微鏡の鏡筒の前記試料を臨む角度を自由に設定でき、試料表面に付着した液滴を任意の角度から観察することが可能となる。
(Function)
According to the above configuration, the present invention makes it possible to observe droplets attached to the surface of a sample having a minute size using an electron beam. In addition, it is possible to uniformly deposit a droplet having a uniform volume or mass on the sample and maintain it during the measurement. Furthermore, the angle at which the sample of the lens barrel of the scanning electron microscope faces the sample can be freely set, and the droplets adhering to the sample surface can be observed from an arbitrary angle.
本発明によれば、微小な固体表面の液体のぬれ角を精度よく測定することが可能となる。従ってトナー粒子だけでなく電気泳動表示装置に使用される泳動粒子や一般の粉体、微粒子などについても、任意の液体とのぬれ角を測定できることはいうまでもない。また、核の付与を行うことにより、様々なデバイスの表面や比較的大きな検体において、局所的微細部分におけるぬれ角の差異や分布を測定し、表面状態の均一性を評価することが可能となった。 According to the present invention, it is possible to accurately measure the wetting angle of a liquid on the surface of a minute solid. Therefore, it goes without saying that not only toner particles but also electrophoretic particles and general powders and fine particles used in electrophoretic display devices can measure the wetting angle with an arbitrary liquid. In addition, by applying nuclei, it is possible to measure the difference and distribution of the wetting angle in local fine parts on the surface of various devices and relatively large specimens, and to evaluate the uniformity of the surface state. It was.
次に、本発明の実施の形態について図面を参照して詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
(第1の実施形態)
図1は本発明の第1の実施形態を示す構成図である。
(First embodiment)
FIG. 1 is a block diagram showing a first embodiment of the present invention.
図中1は走査型電子顕微鏡の鏡筒である電子光学鏡筒、2は試料を観察する試料室(試料チャンバ)である。
In the figure,
電子光学鏡筒1の内部には、電子銃3が設置された電子銃室4と、コンデンサレンズ5、走査コイル6、非点補正装置7、対物レンズ8を有するレンズ室9が設けられている。
Inside the electron
また、試料室2の内部には、予め所定の真空度に排気された予備排気室15を介して、試料13を保持した試料ホルダ14が導入できる機構となっている。
In addition, a
電子光学鏡筒1内の電子銃室4は排気部16から排気系(図示せず)に接続され、レンズ室9は排気部17から排気系(図示せず)に接続され、それぞれ別個に各室の真空を維持することが可能である。一方、試料室2は排気部18から排気系(図示せず)に接続され、且つ、バルブを介してガス導入部20が設けられ、排気系とバルブを外部より制御することで、任意のガス雰囲気(例えば、水や有機溶媒等)で任意の真空度に維持することが可能である。
The electron gun chamber 4 in the electron
また、10,11は圧力の異なる領域を仕切り、且つ、電子ビームを通過させるオリフィスである。オリフィス10は電子銃室4とレンズ室9を、オリフィス11はレンズ室9と試料室2をそれぞれ仕切っている。通常、オリフィス11としては、対物絞りが用いられる。
さらに、オリフィス11の外側で試料に対向する面には、試料から発生する反射電子を検出するための反射電子検出器12が設置されている。
Furthermore, a
次に、試料表面のぬれ角測定方法について説明する。まず、電子銃室4、試料室2、レンズ室9の各室の真空度を調節する。電子銃室4は電子銃3により電子ビームを発生する必要があるため、排気部16から排気し、10-3Pa程度の真空度に調節する。
Next, a method for measuring the wetting angle of the sample surface will be described. First, the degree of vacuum in each of the electron gun chamber 4, the
一方、試料室2はガス導入部20を閉じ、排気部18から排気して1Pa程度の真空度に調節する。また、試料室2と電子銃室4の中間に位置するレンズ室9も排気部17から排気し、1Pa程度の真空度に調節する。
On the other hand, the
次に、予備排気室15を介して試料13を搭載した試料ホルダ14を試料室2内に導入し、電子銃3から発生する電子ビームの光軸上に試料13が位置するように調節する。なお、本実施形態では試料13として、直径1μmのトナー粒子を使用した。
Next, the
次いで、電子銃3から電子を放出させ、コンデンサレンズ5、非点補正装置7、対物レンズ8を動作させてトナー粒子上に細く絞った電子線を照射する。また、走査コイル6を駆動して電子線を偏向させ、トナー粒子表面上に電子線をスキャンする。この時、反射電子検出器12で検出した信号を電子線を走査するための信号と同期させて表示することで、トナー粒子の像が得られる。
Next, electrons are emitted from the
ガス導入部20から水分を導入して、結露させることにより試料上に液滴を付着させることもできるが、試料表面の特定の位置におけるぬれ角を測定したい場合には、目的の位置に確実に結露させるために、試料表面に結露核を付与することが望ましい。本発明ではこの核を付与する方法として、走査型電子顕微鏡の電子ビームを利用することを考え、以下にその方法を説明する。
Although it is possible to deposit liquid droplets on the sample by introducing moisture from the
1つ目の方法は、電子銃3の加速電圧を高めに設定し、試料13表面の目的の部位に電子ビームを走査させずに集中的に照射し、試料表面を削って凹部を形成する方法である。この様にして形成した凹凸部は平滑な部位よりも結露し易くなる。
The first method is a method in which the acceleration voltage of the
2つ目の方法は、電子銃3の加速電圧を低めに設定し、試料13表面の目的の部位に電子ビームを走査させずに集中的に照射し、コンタミ成分を局部的に付着させ核とする方法である。この場合、付与された核の大きさがこの核に付着される液滴よりも十分小さい場合、この核の影響を受けることなくぬれ角の測定が可能になる。
In the second method, the acceleration voltage of the
続いてガス導入部20から水分を導入して、1000Pa程度の真空度に調節する。
Subsequently, moisture is introduced from the
さらに、試料ホルダ14の温度調節機構を使用してトナー粒子の温度を低下させる。その結果、トナー粒子表面に導入ガス(水)が結露する。
Furthermore, the temperature of the toner particles is lowered using the temperature adjusting mechanism of the
試料表面の状態により、試料室2の真空度や試料の温度に最適値が存在するが、それは反射電子像を観察しながら結露を成長させ、最適な径の液滴を成長させればよい。本実施形態では径300nmの液滴を先に作製した結露核を中心に成長させた。
Depending on the state of the sample surface, there are optimum values for the degree of vacuum in the
また、液滴の観察時には試料ホルダ14の傾斜/回転機能を利用して、最適な観察方向を決定すればよい。
Further, when observing a droplet, an optimum observation direction may be determined using the tilt / rotation function of the
本実施形態では、上記の手順で直径1μmのトナー粒子表面に付着した径300nmの水滴を観察するきとができ、トナー粒子表面に付着した水滴のぬれ角を直接計測することが可能となった。 In the present embodiment, it is possible to observe a water droplet having a diameter of 300 nm attached to the surface of the toner particle having a diameter of 1 μm by the above procedure, and it becomes possible to directly measure the wetting angle of the water droplet attached to the surface of the toner particle. .
本方法によれば、デバイスなど比較的大きな検体であっても、その中の局所的微細部分におけるぬれ角の差異や分布を評価することが可能となった。 According to this method, even for a relatively large specimen such as a device, it becomes possible to evaluate the difference and distribution of the wetting angle in a local fine portion.
なお、本実施形態では水分を導入したがこれに限られるものではなく、例えば任意の溶媒を導入することにより、その溶媒のぬれ角を測定することも可能である。 In the present embodiment, moisture is introduced, but the present invention is not limited to this. For example, by introducing an arbitrary solvent, the wetting angle of the solvent can be measured.
(第2の実施形態)
図2は本発明の第2の実施形態を示す構成図である。
(Second Embodiment)
FIG. 2 is a block diagram showing a second embodiment of the present invention.
第1の実施形態との違いは、電子光学鏡筒1と反射電子検出器12が試料を中心とする球面内を移動できるような機構を持つ試料室22を採用した点であり、その他の構成は図1と同様である。
The difference from the first embodiment is that a
本実施形態では、試料や液滴を観察する際に試料ホルダ14の傾斜/回転機構が不要となるため、試料ホルダ14の機能を位置制御と温度制御に絞ることができ、構造をより単純なものにすることが可能となる。
In this embodiment, since the tilt / rotation mechanism of the
1 電子光学鏡筒
2 試料室(試料チャンバ)
3 電子銃
4 電子銃室
5 コンデンサレンズ
6 走査コイル
7 非点補正装置
8 対物レンズ
9 レンズ室
10 オリフィス
11 オリフィス(対物絞り)
12 反射電子検出器
13 試料
14 試料ホルダ
15 予備排気室
16,17,18,19 排気部
20 ガス導入部
22 試料室(試料チャンバ)
1 Electro-
DESCRIPTION OF
12
Claims (9)
前記試料ホルダに保持される試料を観察するための走査型電子顕微鏡と、
前記走査型電子顕微鏡の電子銃から前記試料表面に電子ビームを集中的に照射させて前記試料表面に液体が結露するための核を付与するための電子銃駆動手段とを備えたことを特徴とする試料の液体に対するぬれ角に関する情報の取得装置。 A sample chamber capable of controlling the atmosphere, a sample holder for holding the sample introduced into the sample chamber and controlling the temperature of the introduced sample;
A scanning electron microscope for observing the sample held in the sample holder;
An electron gun driving means for irradiating an electron beam intensively on the sample surface from the electron gun of the scanning electron microscope to give a nucleus for condensing liquid on the sample surface; An apparatus for acquiring information on the wetting angle of a sample to be liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003345804A JP2005114411A (en) | 2003-10-03 | 2003-10-03 | Acquisition device of data related to wet angle of sample with respect to liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003345804A JP2005114411A (en) | 2003-10-03 | 2003-10-03 | Acquisition device of data related to wet angle of sample with respect to liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005114411A true JP2005114411A (en) | 2005-04-28 |
Family
ID=34538965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003345804A Pending JP2005114411A (en) | 2003-10-03 | 2003-10-03 | Acquisition device of data related to wet angle of sample with respect to liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005114411A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080060000A (en) * | 2006-12-26 | 2008-07-01 | 삼성전자주식회사 | Apparatus for inspecting sample using a scanning electronic microscope |
WO2017159097A1 (en) * | 2016-03-17 | 2017-09-21 | 国立大学法人東京大学 | Positioning device, airtight container, and vacuum chamber |
-
2003
- 2003-10-03 JP JP2003345804A patent/JP2005114411A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080060000A (en) * | 2006-12-26 | 2008-07-01 | 삼성전자주식회사 | Apparatus for inspecting sample using a scanning electronic microscope |
WO2017159097A1 (en) * | 2016-03-17 | 2017-09-21 | 国立大学法人東京大学 | Positioning device, airtight container, and vacuum chamber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6418747B2 (en) | Sample preparation stage | |
US11860071B2 (en) | Lossless cryo-grid preparation by controlled sample evaporation | |
CN101266909B (en) | Information acquisition apparatus, cross section evaluating apparatus and cross section evaluating method | |
KR20050021990A (en) | Modular manipulation system for manipulating a sample under study with a microscope | |
WO2010097861A1 (en) | Charged particle beam device | |
JP2006079846A (en) | Cross section evaluation device of sample and cross section evaluation method of sample | |
CN107966464B (en) | Low temperature sample processing in charged particle microscopy | |
JP2007294365A (en) | Test piece inspection method, test piece support body, and test piece inspection device as well as test piece inspection system | |
JP4654216B2 (en) | Sample holder for charged particle beam equipment | |
JP3715956B2 (en) | Information acquisition device, sample evaluation device, and sample evaluation method | |
JP2002148159A (en) | Sample preparation method and device for it | |
US9245713B2 (en) | Charged particle beam apparatus | |
JPH0215648A (en) | Apparatus for observing cross section of fine structure element | |
US12002656B2 (en) | Operating a gas feed device for a particle beam apparatus | |
JP2005114411A (en) | Acquisition device of data related to wet angle of sample with respect to liquid | |
US20230298855A1 (en) | Method and apparatus for micromachining a sample using a focused ion beam | |
JP2004087214A (en) | Sample holder for charged particle beam device | |
TW202316082A (en) | Analyzing a sidewall of hole milled in a sample to determine thickness of a buried layer | |
JP3684106B2 (en) | Deposition equipment | |
JPH05291195A (en) | Thin film processing apparatus and its method | |
JP2007066527A (en) | Test piece observation method and charged particle beam device | |
US11837434B2 (en) | Setting position of a particle beam device component | |
US20230260744A1 (en) | Method for producing a sample on an object, computer program product, and material processing device for carrying out the method | |
US20240258068A1 (en) | Method for determining a position of an object in a beam apparatus, computer program product and beam apparatus for carrying out the method | |
JPS61104550A (en) | Transmission electron microscope with device for preparing thin films of specified minute area |