WO2016152654A1 - X-ray diffraction measuring device and x-ray diffraction measuring method - Google Patents

X-ray diffraction measuring device and x-ray diffraction measuring method Download PDF

Info

Publication number
WO2016152654A1
WO2016152654A1 PCT/JP2016/058151 JP2016058151W WO2016152654A1 WO 2016152654 A1 WO2016152654 A1 WO 2016152654A1 JP 2016058151 W JP2016058151 W JP 2016058151W WO 2016152654 A1 WO2016152654 A1 WO 2016152654A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ray
axis
ray diffraction
optical axis
Prior art date
Application number
PCT/JP2016/058151
Other languages
French (fr)
Japanese (ja)
Inventor
智也 河口
松原 英一郎
勝利 福田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2017508258A priority Critical patent/JPWO2016152654A1/en
Publication of WO2016152654A1 publication Critical patent/WO2016152654A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the present invention relates to an X-ray diffraction measurement apparatus and an X-ray diffraction measurement method.
  • X-ray diffraction measurement As an analysis method for analyzing the crystal structure, foreign matter, and defects of a sample, X-ray diffraction measurement is known in which a polycrystalline sample is irradiated with X-rays and scattered (diffraction) X-rays from the sample are observed. Yes.
  • a glass capillary rotating with a sample enclosed is irradiated with X-rays from a direction orthogonal to the rotation axis, and X-rays transmitted through the sample and diffracted are diffracted X-rays.
  • a measurement method for observing with a detection unit a measurement method for irradiating a sample rotating on a rotating table with X-rays, and observing X-rays reflected and diffracted from the sample with a diffraction X-ray detection unit, etc. (For example, refer to Patent Document 1).
  • the measurement method for rotating the glass capillary irradiates X-rays from a direction orthogonal to the rotation axis of the glass capillary, so that the observation area of the sample by the diffraction X-ray detector is large. As a result, the number of particles that diffract incident X-rays (particles satisfying the diffraction condition) in the sample increases, so that X-ray diffraction measurement can be performed with high accuracy.
  • this measurement method since a glass capillary having a diameter of about 1.0 mm or less is used, it is necessary to finely grind the sample in order to enclose the sample in the glass capillary. For this reason, for example, when a plate-like sample or the like is to be measured as it is without being finely ground, it cannot be measured by this measurement method.
  • the measurement method of rotating the sample on the above-described rotating table does not require fine crushing of the sample, so that even a plate-like sample or the like can perform X-ray diffraction measurement with its shape.
  • X-rays are irradiated onto a sample that rotates on a predetermined plane by a turntable, so the observation area of the sample by the diffraction X-ray detector is small, and the number of particles that satisfy the diffraction condition can be determined by using a glass capillary.
  • the rotating measurement method rotated on a turntable, there exists a problem that the measurement precision of X-ray diffraction measurement falls.
  • the present invention has been made in view of the above problems, and an X-ray diffraction measurement apparatus and an X-ray that can perform X-ray diffraction measurement on a sample in a desired shape and can improve the measurement accuracy.
  • the object is to provide a diffraction measurement method.
  • the X-ray diffraction measurement apparatus of the present invention rotates around a predetermined first rotation axis, thereby rotating a sample within a predetermined plane, and an X-ray with respect to the sample rotated by the sample rotating unit.
  • the X-ray source that irradiates the sample and the diffraction that detects the diffracted X-rays transmitted through the sample and diffracted by moving on an arc locus centering on a second rotation axis orthogonal to the optical axis of the X-ray
  • the first rotation axis is set to a predetermined acute angle with respect to the optical axis with the sample rotated by the sample rotation unit as a center.
  • a shaft tilting mechanism that relatively tilts at a degree.
  • the sample rotating unit rotates around a predetermined first rotation axis so that the sample rotates in a predetermined plane, and the X-ray source rotates the sample.
  • the irradiation step of irradiating the sample rotated by the unit with X-rays, and the diffracted X-ray detection unit moving on an arc locus centering on a second rotation axis orthogonal to the optical axis of the X-ray The sample rotated by the sample rotating section in a virtual plane including a detection step of detecting diffracted X-rays transmitted through the sample and diffracted, and an axis tilt mechanism including the optical axis and the second rotation axis And an axis tilting step of tilting the first rotation axis relative to the optical axis at a predetermined acute angle.
  • the sample rotating unit when a sample is irradiated with X-rays, the sample is rotated within a predetermined plane by the sample rotating unit, so that the conventional rotating table is rotated.
  • the sample can be rotated by a method similar to the method. For this reason, unlike the conventional measurement method of rotating a glass capillary, it is not necessary to finely crush the sample, so that the sample can be subjected to X-ray diffraction measurement in a desired shape.
  • the first rotation axis of the sample rotation unit is centered on the sample rotated by the sample rotation unit in the virtual plane including the optical axis of the X-ray and the second rotation axis of the diffraction X-ray detection unit by the axis tilt mechanism.
  • the optical axis can be relatively inclined at a predetermined acute angle.
  • the shaft tilt mechanism is preferably capable of adjusting the acute angle.
  • the inclination angle (acute angle) of the first rotation axis with respect to the optical axis can be appropriately adjusted according to the sample.
  • the acute angle is preferably set in an angle range of 15 to 20 °.
  • the observation region of the sample by the diffraction X-ray detection unit can be expanded as much as possible while suppressing the amount of X-ray absorption by the sample.
  • the sample is preferably in the form of a tablet.
  • the amount of X-ray absorption can be adjusted by making the sample into a tablet shape formed by mixing a diluent. .
  • X-ray diffraction measurement can be performed on a sample in a desired shape, and the measurement accuracy can be improved.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • 3 is a flowchart showing an X-ray diffraction measurement method. It is explanatory drawing which shows the observation area
  • FIG. 1 is a schematic configuration diagram showing an X-ray diffraction measurement apparatus according to an embodiment of the present invention.
  • an X-ray diffraction measurement apparatus 1 includes a sample rotating device 2 that holds a sample 10 rotatably, and an X-ray source 3 that irradiates the sample 10 held by the sample rotating device 2 with X-rays.
  • a diffraction X-ray detector 4 that detects diffracted X-rays transmitted through the sample 10 and an axis inclination that inclines the first rotation axis C1 of the sample rotating device 2 relative to the optical axis C0 of the X-ray. And a mechanism 5.
  • FIG. 2 is a front view showing the sample rotating device 2.
  • 3 is a cross-sectional view taken along the line AA in FIG. 2 and 3, the sample rotating device 2 includes a main body portion 21, a sample rotating portion 22 that can rotate with respect to the main body portion 21, and a rotation driving unit 23 that rotationally drives the sample rotating portion 22. is doing.
  • the main body portion 21 of the present embodiment has an outer shape formed in a rectangular parallelepiped shape, and has a mounting hole 21c penetrating from the front surface 21a toward the rear surface 21b.
  • the sample rotating portion 22 is rotatably supported around the first rotation axis C1 disposed on the central axis of the mounting hole 21c.
  • a connector 24 to which a power cable or the like of the rotation drive unit 23 is connected is provided on the side surface 21d of the main body unit 21.
  • the rotation drive unit 23 is composed of, for example, an electric motor, and rotates the sample rotation unit 22 with respect to the main body unit 21 at a high speed in the direction of the arrow in FIG. 2 about the first rotation axis C1.
  • the rotation speed of the sample rotating unit 22 is set to 180 rpm, for example.
  • the sample rotating portion 22 includes a cylindrical portion 22a that is rotatably supported by a mounting hole 21c of the main body portion 21 via a rolling bearing 25, and an annular plate portion 22b that is detachably attached to the cylindrical portion 22a. Have.
  • a hollow portion 22c for allowing X-rays to pass from one axial direction side (upper side in FIG. 3) to the other axial direction side (lower side in FIG. 3) is formed inside the cylindrical portion 22a.
  • a flange portion 22d is formed at one axial end portion (lower end portion in FIG. 3) of the cylindrical portion 22a.
  • An outer peripheral portion of the annular plate portion 22b is detachably attached to the flange portion 22d by a plurality of (here, four) bolts 26.
  • the annular plate portion 22b is a transparent synthetic resin member that can transmit X-rays.
  • the center of the annular plate portion 22b is disposed on the first rotation axis C1 in a state where the annular plate portion 22b is attached to the flange portion 22d.
  • the sample 10 is fixed to the center of the outer surface of the annular plate portion 22b.
  • the sample 10 of the present embodiment is made of, for example, a green compact formed by compacting a predetermined amount of fine powder, and the center thereof coincides with the center of the annular plate portion 22b, that is, the first It is fixed to the annular plate portion 22b so as to be disposed on one rotation axis C1.
  • the sample 10 is rotatably held together with the sample rotating unit 22 in a state of being arranged on the axially outer side (lower side in FIG. 3) of the hollow portion 22c of the cylindrical portion 22a.
  • the X-ray source 3 is arranged on the rear surface 21 b side of the main body 21 of the sample rotating device 2 with a predetermined distance from the rear surface 21 b in the y-axis direction.
  • the X-ray source 3 has an X-ray optical axis C0 from the rear surface 21b side of the main body 21 along the y-axis direction, the hollow portion 22c of the sample rotating portion 22, the center portion of the annular plate portion 22b, and the sample. It arrange
  • the sample 10 is rotated within a predetermined plane (the outer surface of the annular plate 22b) by rotating the sample rotating unit 22 around the first rotation axis C1 with respect to the main body 21 of the sample rotating apparatus 2. be able to. Then, the X-rays emitted from the X-ray source 3 are passed through the hollow part 22c and the annular plate part 22b of the sample rotating part 22 from the rear surface 21b side of the main body part 21 to irradiate the central part of the rotating sample 10 can do.
  • a predetermined plane the outer surface of the annular plate 22b
  • the diffracted X-ray detector 4 is arranged so as to be horizontally movable around a second rotation axis C2 orthogonal to the vertical direction (z-axis direction) with respect to the optical axis C0. Specifically, the diffracted X-ray detector 4 is arranged so as to move on an arc locus f centered on the second rotation axis C2. Thereby, the diffracted X-ray detection unit 4 detects the diffracted X-rays 12 that have been transmitted through the sample 10 and diffracted.
  • the shaft tilting mechanism 5 is composed of, for example, a goniometer stage.
  • the goniometer stage 5 includes a fixed stage 51 and a movable stage 52 that can move in the y-axis direction with respect to the fixed stage 51.
  • the sample rotating device 2 is placed and fixed on the upper surface of the movable stage 52.
  • the movable stage 52 is driven by an actuator (not shown) and moves in an arc in the y-axis direction around the sample 10 held by the sample rotating device 2.
  • the first rotation axis C1 of the sample rotating device 2 is a light beam centered on the sample 10 held by the sample rotating device 2 in a virtual plane (yz plane) including the optical axis C0 and the second rotation axis C2. It can be inclined with respect to the axis C0 at a predetermined acute angle ⁇ .
  • the goniometer stage 5 can adjust the amount of movement of the movable stage 52 in order to adjust the acute angle ⁇ in an angle range of 0 to 25 °, for example.
  • the acute angle ⁇ is preferably set in an angle range of 15 to 20 °.
  • FIG. 4 is a flowchart showing an X-ray diffraction measurement method using the X-ray diffraction measurement apparatus 1.
  • the sample 10 is attached to the sample rotating unit 22 of the sample rotating device 2 (step S1). Specifically, the sample 10 is attached to the center portion of the annular plate portion 22b of the sample rotating portion 22, and the annular plate portion 22b is fixed to the flange portion 22d of the cylindrical portion 22a with a bolt 26 (see FIGS. 2 and 3). . As a result, the sample 10 can rotate around the first rotation axis C1.
  • the sample rotating device 2 is placed and fixed on the movable stage 52 of the goniometer stage 5 (step S2). At that time, the sample rotation device 2 is fixed so that the first rotation axis C1 is disposed on the optical axis C0.
  • the goniometer stage 5 is driven to incline the first rotation axis C1 of the sample rotating device 2 by a predetermined acute angle ⁇ with respect to the optical axis C0 in the above-described virtual plane (step S3, axis inclination step). .
  • the actuator of the goniometer stage 5 is driven, and the movable stage 52 is moved in a circular arc with respect to the fixed stage 51 by a predetermined amount in the y-axis direction (the positive direction of the y-axis in FIG. 1).
  • step S4 rotation drive unit 23 of the sample rotation device 2 is driven, and the sample rotation unit 22 is rotated around the first rotation axis C1 together with the sample 10 with respect to the main body unit 21 (step S4, rotation process).
  • X-rays are emitted from the X-ray source 3, and the rotating sample 10 is irradiated with X-rays (step S5, irradiation process).
  • step S6 detection step.
  • FIGS. 5A to 5D are explanatory views showing the observation region of the sample 10 by the diffraction X-ray detector 4.
  • a reciprocal lattice spherical shell (hereinafter referred to as a reciprocal lattice spherical shell) defined by the radius of the reciprocal 1 / d of the surface interval d. .
  • FIG. 5B is a view of the reciprocal lattice spherical shell 61 and the Debye ring 63 viewed from the optical axis C0 direction with respect to the stationary sample 10.
  • the diffracted X-ray detection unit is moved on the arc locus, only a part of the Debye ring 63 is observed. 65 only included.
  • the sample 10 when the sample 10 is stationary, the number of particles satisfying the diffraction condition is small, and the X-ray diffraction measurement cannot be performed with high accuracy.
  • the sample 10 when the sample 10 is rotated, the reciprocal lattice points that can be observed on the reciprocal lattice spherical shell 61 are present on the curved surface swept by the line segment 65. The measurement accuracy can be improved.
  • FIG. 5C shows a case where the first rotation axis C1 of the sample rotating device 2 is coincident with the second rotation axis C2 of the diffraction X-ray detection unit 4, that is, the first rotation axis C1 is relative to the optical axis C0.
  • FIG. 6 is a diagram illustrating an observation region by the diffraction X-ray detection unit 4 when the two are orthogonal to each other. The observation region shown in FIG. 5C corresponds to the case of X-ray diffraction measurement in which a conventional glass capillary is rotated.
  • the reciprocal lattice points that can be observed are a band-shaped observation region 67 (region indicated by hatching in the figure) that makes one round of the equator on the reciprocal lattice spherical shell 61, and the line segment shown in FIG. Compared to 65, the observation area can be greatly expanded.
  • the first rotation axis C1 is used as the second rotation axis of the diffraction X-ray detection unit 4 as in X-ray diffraction measurement in which the glass capillary is rotated. Cannot match C2. Therefore, in the present embodiment, the first rotation axis C1 is tilted with respect to the optical axis C0 in order to expand the observation region by the diffraction X-ray detection unit 4.
  • FIG. 5D is a diagram showing an observation region of the sample 10 by the diffraction X-ray detection unit 4 of the present embodiment.
  • the observable reciprocal lattice point is more than the equator portion on the reciprocal lattice spherical shell 61.
  • a band-shaped observation region 68 (region indicated by hatching in the figure) is formed so as to include a position where the latitude is slightly shifted. Although this observation region 68 is smaller than the observation region 67 shown in FIG. 5C, it can be seen that the observation region 68 is significantly larger than the line segment 65 shown in FIG. 5B.
  • Condition A When the rotation axis of the sample is inclined 20 ° with respect to the optical axis (corresponding to this embodiment)
  • Condition B When the rotation axis of the sample is not inclined with respect to the optical axis
  • Condition C When the sample is not rotated
  • the incident light energy was changed so that particles satisfying the diffraction condition in the sample changed for each measurement.
  • the fluctuation (variation) of the diffraction intensity in each measurement is caused by the fluctuation of the number of particles due to this diffraction, that is, the measurement accuracy. Therefore, if the diffraction intensity of each measurement is constant, it means that the measurement accuracy is high.
  • FIG. 6 is a graph showing the experimental results of this verification experiment. This graph shows the relationship between the number of times of X-ray diffraction measurement under the above conditions A to C and the diffraction intensity. As shown in FIG. 6, it can be seen that the fluctuation of the diffraction intensity under the condition A is the smallest compared with the diffraction intensity under the other conditions B and C. In particular, when the conditions A and C are compared, the fluctuation in the diffraction intensity is significantly smaller in the condition A. By rotating the sample, the measurement accuracy is greatly improved compared to the measurement of the stationary sample. I understand that Further, even when the conditions A and B are compared, it can be seen from the graph that the fluctuation of the diffraction intensity is smaller in the condition A.
  • the standard deviation ⁇ of the diffraction intensity fluctuation under each of the conditions A to C is shown.
  • the standard deviation ⁇ indicates that the smaller the value, the higher the measurement accuracy.
  • the standard deviation ⁇ of condition B is 0.62%
  • the standard deviation ⁇ of condition C is 2.2%
  • the standard deviation ⁇ of condition A is 0.41%.
  • the minimum value indicates that it can be seen that it is quantitatively shown that the measurement accuracy is the highest in the case of condition A.
  • condition A it is possible to measure with an accuracy 1.5 times or more that of condition B, and with an accuracy of 5 times or more that of condition C, and the effect of this embodiment can be achieved. It really represents.
  • the error (standard deviation) ⁇ ′ due to the fluctuation of the number of measured photons, that is, photon statistics, is 0.31%.
  • the standard deviation ⁇ value of the fluctuation of the diffraction intensity of C is always greater than or equal to the standard deviation ⁇ ′ value according to photon statistics.
  • the standard deviation ⁇ (0.41%) of the condition A shows a value very close to the standard deviation ⁇ ′ (0.31%) according to the photon statistics. It can be seen that the measurement can be performed with the accuracy that is thinned to the maximum accuracy that can be reached.
  • the sample rotation device 2 rotates the sample 10 within a predetermined plane.
  • the sample can be rotated by the same method as the measurement method for rotating the rotary table. For this reason, unlike the conventional measurement method of rotating a glass capillary, it is not necessary to finely crush the sample, so that the sample can be subjected to X-ray diffraction measurement in a desired shape.
  • the sample rotation device centered on the sample 10 rotated by the sample rotation device 2 in a virtual plane including the optical axis C0 of the X-ray and the second rotation axis C2 of the diffraction X-ray detection unit 4 by the axis tilt mechanism 5.
  • the second first rotation axis C1 can be inclined at a predetermined acute angle ⁇ with respect to the optical axis C0.
  • the X-ray diffraction measurement apparatus 1 of the present embodiment uses a transmission method that detects the diffracted X-rays 12 that have been transmitted through the sample 10 and diffracted, a combination of X-ray diffraction measurement and X-ray absorption spectroscopy measurement.
  • the DAFS (Diffraction Anomalous Fine Structure) method and various X-ray resonance scattering measurements can be easily performed.
  • an X-ray diffraction measurement apparatus 1 is combined with an electrode rotation mechanism such as a slip ring, it is possible to perform measurement in situ while applying a voltage to the measurement sample.
  • the shaft tilt mechanism 5 can adjust the acute angle ⁇ , the tilt angle (sharp angle) of the first rotation axis C1 with respect to the optical axis C0 can be appropriately adjusted according to the sample 10. Further, by setting the acute angle ⁇ to an angle range of 15 to 20 °, the observation region of the sample 10 by the diffraction X-ray detector 4 is expanded as much as possible while suppressing the amount of X-ray absorption by the sample 10. be able to.
  • the present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications.
  • the sample 10 of the above embodiment is formed in a plate shape, but may be formed in any other shape.
  • a tablet sample or a device sample such as a thin laminate cell can be used as the sample 10 to be measured.
  • the amount of X-ray absorption is adjusted by making the sample into a tablet shape formed by mixing a diluent. It becomes possible. As a result, it is possible to perform accurate X-ray diffraction measurement with correction of X-ray absorption.
  • the first rotation axis C1 is tilted with respect to the optical axis C0.
  • the optical axis C0 may be tilted with respect to the first rotation axis C1.
  • the second rotation axis C2 of the diffraction X-ray detection unit 4 is arranged in the vertical direction (z-axis direction), but is arranged in the horizontal direction (x-axis direction). You may do it.
  • the axis inclination mechanism 5 for inclining the first rotation axis C1 is replaced with a goniometer stage. What is necessary is just to comprise by the turntable etc. which rotate on a horizontal surface centering on an axial direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The objective of the present invention is to provide an X-ray diffraction measuring device and an X-ray diffraction measuring method with which it is possible to perform X-ray diffraction measurement of a sample using a desired shape, and with which the measuring accuracy can be improved. An X-ray diffraction measuring device 1 is provided with: a sample rotating unit 22 which rotates about a prescribed first axis of rotation C1, thereby causing a sample 10 to rotate within a prescribed plane; an X-ray source 3 which radiates X-rays toward the rotating sample 10; a diffracted X-ray detecting unit 4 which moves along a circular arc trajectory f centered about a second axis of rotation C2 which intersects the X-ray optical axis C0 at right angles, thereby detecting diffracted X-rays 12 which have been transmitted through the sample 10 and have been diffracted; and an axis inclining mechanism 5 which causes the first axis of rotation C1 to be inclined through a prescribed acute angle θ relative to the optical axis C0, about the center of the sample 10, in a virtual plane containing the optical axis C0 and the second axis of rotation C2.

Description

X線回折測定装置及びX線回折測定方法X-ray diffraction measurement apparatus and X-ray diffraction measurement method
 本発明は、X線回折測定装置及びX線回折測定方法に関する。 The present invention relates to an X-ray diffraction measurement apparatus and an X-ray diffraction measurement method.
 試料の結晶構造、異物及び欠陥などの分析を行う分析手法として、多結晶体の試料にX線を照射し、その試料からの散乱(回折)X線を観測するX線回折測定が知られている。このようなX線回折測定には、試料を封入した状態で回転するガラスキャピラリーに対してその回転軸と直交する方向からX線を照射し、試料を透過して回折したX線を回折X線検出部により観測する測定方法や、回転台上に載置された状態で回転する試料にX線を照射し、試料から反射して回折したX線を回折X線検出部により観測する測定方法などがある(例えば、特許文献1参照)。 As an analysis method for analyzing the crystal structure, foreign matter, and defects of a sample, X-ray diffraction measurement is known in which a polycrystalline sample is irradiated with X-rays and scattered (diffraction) X-rays from the sample are observed. Yes. In such X-ray diffraction measurement, a glass capillary rotating with a sample enclosed is irradiated with X-rays from a direction orthogonal to the rotation axis, and X-rays transmitted through the sample and diffracted are diffracted X-rays. A measurement method for observing with a detection unit, a measurement method for irradiating a sample rotating on a rotating table with X-rays, and observing X-rays reflected and diffracted from the sample with a diffraction X-ray detection unit, etc. (For example, refer to Patent Document 1).
特開2003-279506号公報JP 2003-279506 A
 上記のガラスキャピラリーを回転させる測定方法は、ガラスキャピラリーの回転軸に対して直交する方向からX線を照射するので、回折X線検出部による試料の観測領域が大きい。その結果、試料において入射X線を回折する粒子(回折条件を満たす粒子)の数が多くなるので、X線回折測定を高精度に行うことができる。
 しかし、この測定方法では、直径が約1.0mm以下のガラスキャピラリーを用いるので、このガラスキャピラリーに試料を封入するために、試料を細かくすり潰す必要がある。このため、例えば板状の試料等を、細かくすり潰すことなくその形状のまま測定したい場合には、この測定方法によって測定することができない。
The measurement method for rotating the glass capillary irradiates X-rays from a direction orthogonal to the rotation axis of the glass capillary, so that the observation area of the sample by the diffraction X-ray detector is large. As a result, the number of particles that diffract incident X-rays (particles satisfying the diffraction condition) in the sample increases, so that X-ray diffraction measurement can be performed with high accuracy.
However, in this measurement method, since a glass capillary having a diameter of about 1.0 mm or less is used, it is necessary to finely grind the sample in order to enclose the sample in the glass capillary. For this reason, for example, when a plate-like sample or the like is to be measured as it is without being finely ground, it cannot be measured by this measurement method.
 一方、上記の回転台上で試料を回転させる測定方法は、試料を細かくすり潰す必要がないので、板状の試料等であってもその形状のままX線回折測定を行うことができる。しかし、この測定方法では、X線は回転台により所定平面で回転する試料に照射されるため、回折X線検出部による試料の観測領域が小さく、回折条件を満たす粒子の数は、ガラスキャピラリーを回転させる測定方法に比べて少なくなる。このため、回転台上で回転させる測定方法では、X線回折測定の測定精度が低下するという問題がある。
 本発明は、前記問題点に鑑みてなされたものであり、試料を所望の形状でX線回折測定を行うことができ、且つその測定精度を向上させることができるX線回折測定装置及びX線回折測定方法を提供することを目的としている。
On the other hand, the measurement method of rotating the sample on the above-described rotating table does not require fine crushing of the sample, so that even a plate-like sample or the like can perform X-ray diffraction measurement with its shape. However, in this measurement method, X-rays are irradiated onto a sample that rotates on a predetermined plane by a turntable, so the observation area of the sample by the diffraction X-ray detector is small, and the number of particles that satisfy the diffraction condition can be determined by using a glass capillary. Compared to the rotating measurement method. For this reason, in the measuring method rotated on a turntable, there exists a problem that the measurement precision of X-ray diffraction measurement falls.
The present invention has been made in view of the above problems, and an X-ray diffraction measurement apparatus and an X-ray that can perform X-ray diffraction measurement on a sample in a desired shape and can improve the measurement accuracy. The object is to provide a diffraction measurement method.
 本発明のX線回折測定装置は、所定の第1回転軸回りに回転することで、試料を所定平面内で回転させる試料回転部と、前記試料回転部により回転する前記試料に対してX線を照射するX線源と、X線の光軸に対して直交した第2回転軸を中心とする円弧軌跡上を移動することで、前記試料を透過して回折した回折X線を検出する回折X線検出部と、前記光軸と前記第2回転軸とを含む仮想平面において、前記試料回転部により回転する前記試料を中心として、前記第1回転軸を前記光軸に対して所定の鋭角度で相対的に傾斜させる軸傾斜機構と、を備えることを特徴とする。 The X-ray diffraction measurement apparatus of the present invention rotates around a predetermined first rotation axis, thereby rotating a sample within a predetermined plane, and an X-ray with respect to the sample rotated by the sample rotating unit. The X-ray source that irradiates the sample and the diffraction that detects the diffracted X-rays transmitted through the sample and diffracted by moving on an arc locus centering on a second rotation axis orthogonal to the optical axis of the X-ray In a virtual plane including the X-ray detection unit, the optical axis, and the second rotation axis, the first rotation axis is set to a predetermined acute angle with respect to the optical axis with the sample rotated by the sample rotation unit as a center. And a shaft tilting mechanism that relatively tilts at a degree.
 また、本発明のX線回折測定方法は、試料回転部が、所定の第1回転軸回りに回転することで、試料を所定平面内で回転させる回転工程と、X線源が、前記試料回転部により回転する前記試料に対してX線を照射する照射工程と、回折X線検出部が、X線の光軸に対して直交した第2回転軸を中心とする円弧軌跡上を移動することで、前記試料を透過して回折した回折X線を検出する検出工程と、軸傾斜機構が、前記光軸と前記第2回転軸とを含む仮想平面において、前記試料回転部により回転する前記試料を中心として、前記第1回転軸を前記光軸に対して所定の鋭角度で相対的に傾斜させる軸傾斜工程と、を含むことを特徴とする。 In the X-ray diffraction measurement method of the present invention, the sample rotating unit rotates around a predetermined first rotation axis so that the sample rotates in a predetermined plane, and the X-ray source rotates the sample. The irradiation step of irradiating the sample rotated by the unit with X-rays, and the diffracted X-ray detection unit moving on an arc locus centering on a second rotation axis orthogonal to the optical axis of the X-ray The sample rotated by the sample rotating section in a virtual plane including a detection step of detecting diffracted X-rays transmitted through the sample and diffracted, and an axis tilt mechanism including the optical axis and the second rotation axis And an axis tilting step of tilting the first rotation axis relative to the optical axis at a predetermined acute angle.
 本発明のX線回折測定装置及びX線回折測定方法によれば、試料にX線を照射する際に、試料回転部により試料を所定平面内で回転させるので、従来の回転台を回転させる測定方法と同様の方法により試料を回転させることができる。このため、従来のガラスキャピラリーを回転させる測定方法のように、試料を細かくすり潰す必要がないので、試料を所望の形状でX線回折測定を行うことができる。 According to the X-ray diffraction measurement apparatus and the X-ray diffraction measurement method of the present invention, when a sample is irradiated with X-rays, the sample is rotated within a predetermined plane by the sample rotating unit, so that the conventional rotating table is rotated. The sample can be rotated by a method similar to the method. For this reason, unlike the conventional measurement method of rotating a glass capillary, it is not necessary to finely crush the sample, so that the sample can be subjected to X-ray diffraction measurement in a desired shape.
 また、軸傾斜機構により、X線の光軸と回折X線検出部の第2回転軸とを含む仮想平面において、試料回転部により回転する試料を中心として、試料回転部の第1回転軸を上記光軸に対して所定の鋭角度で相対的に傾斜させることができる。これにより、第1回転軸が光軸に対して傾斜していない場合に比べて、回折X線検出部による試料の観測領域を拡大することができる。その結果、回折条件を満たす粒子の数を増加させることができるため、X線回折測定の測定精度を向上させることができる。 In addition, the first rotation axis of the sample rotation unit is centered on the sample rotated by the sample rotation unit in the virtual plane including the optical axis of the X-ray and the second rotation axis of the diffraction X-ray detection unit by the axis tilt mechanism. The optical axis can be relatively inclined at a predetermined acute angle. Thereby, compared with the case where the 1st axis of rotation is not inclined to the optical axis, the observation area of the sample by the diffraction X-ray detection part can be expanded. As a result, the number of particles satisfying the diffraction condition can be increased, so that the measurement accuracy of the X-ray diffraction measurement can be improved.
 前記軸傾斜機構は、前記鋭角度を調整可能であるのが好ましい。
 この場合、試料に応じて光軸に対する第1回転軸の傾斜角度(鋭角度)を適切に調整することができる。
The shaft tilt mechanism is preferably capable of adjusting the acute angle.
In this case, the inclination angle (acute angle) of the first rotation axis with respect to the optical axis can be appropriately adjusted according to the sample.
 前記鋭角度は、15~20°の角度範囲に設定されているのが好ましい。
 この場合、試料によるX線の吸収量を抑えつつ、回折X線検出部による試料の観測領域を可及的に拡大することができる。
The acute angle is preferably set in an angle range of 15 to 20 °.
In this case, the observation region of the sample by the diffraction X-ray detection unit can be expanded as much as possible while suppressing the amount of X-ray absorption by the sample.
 前記試料は錠剤形状とされているのが好ましい。
 この場合、X線の吸収量が大きい試料を測定する場合には、その試料を、希釈剤を混合して成型した錠剤形状とすることで、X線の吸収量を調整することが可能となる。その結果、X線の吸収量の補正を行った正確なX線回折測定を行うことができる。
The sample is preferably in the form of a tablet.
In this case, when measuring a sample having a large amount of X-ray absorption, the amount of X-ray absorption can be adjusted by making the sample into a tablet shape formed by mixing a diluent. . As a result, it is possible to perform accurate X-ray diffraction measurement in which the X-ray absorption amount is corrected.
 本発明によれば、試料を所望の形状でX線回折測定を行うことができ、且つその測定精度を向上させることができる。 According to the present invention, X-ray diffraction measurement can be performed on a sample in a desired shape, and the measurement accuracy can be improved.
本発明の一実施形態に係るX線回折測定装置を示す概略構成図である。It is a schematic block diagram which shows the X-ray-diffraction measuring apparatus which concerns on one Embodiment of this invention. 試料回転装置を示す正面図である。It is a front view which shows a sample rotation apparatus. 図2のA-A矢視断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. X線回折測定方法を示すフローチャートである。3 is a flowchart showing an X-ray diffraction measurement method. 回折X線検出部による試料の観測領域を示す説明図である。It is explanatory drawing which shows the observation area | region of the sample by a diffraction X-ray detection part. 検証実験の実験結果を示すグラフである。It is a graph which shows the experimental result of verification experiment.
 以下、本発明の実施の形態を図面に基づいて説明する。
 <X線回折測定装置>
 図1は、本発明の一実施形態に係るX線回折測定装置を示す概略構成図である。図1において、X線回折測定装置1は、試料10を回転可能に保持する試料回転装置2と、この試料回転装置2に保持された試料10に対してX線を照射するX線源3と、試料10を透過して回折した回折X線を検出する回折X線検出部4と、試料回転装置2の第1回転軸C1をX線の光軸C0に対して相対的に傾斜させる軸傾斜機構5とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<X-ray diffraction measurement device>
FIG. 1 is a schematic configuration diagram showing an X-ray diffraction measurement apparatus according to an embodiment of the present invention. In FIG. 1, an X-ray diffraction measurement apparatus 1 includes a sample rotating device 2 that holds a sample 10 rotatably, and an X-ray source 3 that irradiates the sample 10 held by the sample rotating device 2 with X-rays. A diffraction X-ray detector 4 that detects diffracted X-rays transmitted through the sample 10 and an axis inclination that inclines the first rotation axis C1 of the sample rotating device 2 relative to the optical axis C0 of the X-ray. And a mechanism 5.
 図2は、試料回転装置2を示す正面図である。また、図3は、図2のA-A矢視断面図である。
 図2及び図3において、試料回転装置2は、本体部21と、この本体部21に対して回転可能な試料回転部22と、この試料回転部22を回転駆動する回転駆動部23とを有している。
FIG. 2 is a front view showing the sample rotating device 2. 3 is a cross-sectional view taken along the line AA in FIG.
2 and 3, the sample rotating device 2 includes a main body portion 21, a sample rotating portion 22 that can rotate with respect to the main body portion 21, and a rotation driving unit 23 that rotationally drives the sample rotating portion 22. is doing.
 本実施形態の本体部21は、その外形が直方体状に形成されたものであり、その前面21aから後面21bに向かって貫通する取付孔21cを有している。この取付孔21cには、その中心軸上に配置された第1回転軸C1回りに試料回転部22が回転可能に支持されている。本体部21の側面21dには、回転駆動部23の電源ケーブル等が接続されるコネクタ24が設けられている。 The main body portion 21 of the present embodiment has an outer shape formed in a rectangular parallelepiped shape, and has a mounting hole 21c penetrating from the front surface 21a toward the rear surface 21b. The sample rotating portion 22 is rotatably supported around the first rotation axis C1 disposed on the central axis of the mounting hole 21c. A connector 24 to which a power cable or the like of the rotation drive unit 23 is connected is provided on the side surface 21d of the main body unit 21.
 回転駆動部23は、例えば電動モータからなり、試料回転部22を本体部21に対して、第1回転軸C1を中心として図2の矢印方向に高速で回転駆動させる。試料回転部22の回転速度は、例えば180rpmに設定されている。
 試料回転部22は、本体部21の取付孔21cに転がり軸受25を介して回転可能に支持された円筒部22aと、この円筒部22aに対して着脱自在に取り付けられた環状板部22bとを有している。
The rotation drive unit 23 is composed of, for example, an electric motor, and rotates the sample rotation unit 22 with respect to the main body unit 21 at a high speed in the direction of the arrow in FIG. 2 about the first rotation axis C1. The rotation speed of the sample rotating unit 22 is set to 180 rpm, for example.
The sample rotating portion 22 includes a cylindrical portion 22a that is rotatably supported by a mounting hole 21c of the main body portion 21 via a rolling bearing 25, and an annular plate portion 22b that is detachably attached to the cylindrical portion 22a. Have.
 円筒部22aの内側には、その軸方向一方側(図3の上側)から軸方向他方側(図3の下側)に向けてX線を通過させるための中空部22cが形成されている。円筒部22aの軸方向一端部(図3の下端部)にはフランジ部22dが形成されている。このフランジ部22dには、環状板部22bの外周部が複数(ここでは4個)のボルト26により着脱自在に取り付けられている。 A hollow portion 22c for allowing X-rays to pass from one axial direction side (upper side in FIG. 3) to the other axial direction side (lower side in FIG. 3) is formed inside the cylindrical portion 22a. A flange portion 22d is formed at one axial end portion (lower end portion in FIG. 3) of the cylindrical portion 22a. An outer peripheral portion of the annular plate portion 22b is detachably attached to the flange portion 22d by a plurality of (here, four) bolts 26.
 環状板部22bは、X線を透過可能な透明の合成樹脂製の部材である。環状板部22bの中心は、当該環状板部22bがフランジ部22dに取り付けられた状態で、第1回転軸C1上に配置される。環状板部22bの外面の中心部には、試料10が固定されている。 The annular plate portion 22b is a transparent synthetic resin member that can transmit X-rays. The center of the annular plate portion 22b is disposed on the first rotation axis C1 in a state where the annular plate portion 22b is attached to the flange portion 22d. The sample 10 is fixed to the center of the outer surface of the annular plate portion 22b.
 本実施形態の試料10は、例えば、所定量の微粉末を圧粉して円板状に形成された圧粉体からなり、その中心が環状板部22bの中心と一致するように、つまり第1回転軸C1上に配置されるように環状板部22bに固定されている。これにより、試料10は、円筒部22aの中空部22cの軸方向外側(図3の下側)に配置された状態で、試料回転部22と共に回転可能に保持されている。 The sample 10 of the present embodiment is made of, for example, a green compact formed by compacting a predetermined amount of fine powder, and the center thereof coincides with the center of the annular plate portion 22b, that is, the first It is fixed to the annular plate portion 22b so as to be disposed on one rotation axis C1. Thus, the sample 10 is rotatably held together with the sample rotating unit 22 in a state of being arranged on the axially outer side (lower side in FIG. 3) of the hollow portion 22c of the cylindrical portion 22a.
 図1に示すように、X線源3は、試料回転装置2の本体部21の後面21b側において、当該後面21bからy軸方向に所定距離をおいて配置されている。また、X線源3は、X線の光軸C0が、本体部21の後面21b側から、y軸方向に沿って試料回転部22の中空部22c、環状板部22bの中心部、及び試料回転部22に保持された試料10の中心部をそれぞれ通過する位置に配置されている。 As shown in FIG. 1, the X-ray source 3 is arranged on the rear surface 21 b side of the main body 21 of the sample rotating device 2 with a predetermined distance from the rear surface 21 b in the y-axis direction. The X-ray source 3 has an X-ray optical axis C0 from the rear surface 21b side of the main body 21 along the y-axis direction, the hollow portion 22c of the sample rotating portion 22, the center portion of the annular plate portion 22b, and the sample. It arrange | positions in the position which passes the center part of the sample 10 hold | maintained at the rotation part 22, respectively.
 以上の構成により、試料回転装置2の本体部21に対して試料回転部22を第1回転軸C1回りに回転させることで、試料10を所定平面(環状板部22bの外面)内で回転させることができる。そして、X線源3から放射されたX線を、本体部21の後面21b側から試料回転部22の中空部22c及び環状板部22bを通過させて、回転中の試料10の中心部に照射することができる。 With the above configuration, the sample 10 is rotated within a predetermined plane (the outer surface of the annular plate 22b) by rotating the sample rotating unit 22 around the first rotation axis C1 with respect to the main body 21 of the sample rotating apparatus 2. be able to. Then, the X-rays emitted from the X-ray source 3 are passed through the hollow part 22c and the annular plate part 22b of the sample rotating part 22 from the rear surface 21b side of the main body part 21 to irradiate the central part of the rotating sample 10 can do.
 図1において、回折X線検出部4は、光軸C0に対して鉛直方向(z軸方向)に直交する第2回転軸C2回りに水平移動可能に配置されている。具体的には、回折X線検出部4は、第2回転軸C2を中心とする円弧軌跡f上を移動するように配置されている。これにより、回折X線検出部4は、試料10を透過して回折した回折X線12を検出する。 In FIG. 1, the diffracted X-ray detector 4 is arranged so as to be horizontally movable around a second rotation axis C2 orthogonal to the vertical direction (z-axis direction) with respect to the optical axis C0. Specifically, the diffracted X-ray detector 4 is arranged so as to move on an arc locus f centered on the second rotation axis C2. Thereby, the diffracted X-ray detection unit 4 detects the diffracted X-rays 12 that have been transmitted through the sample 10 and diffracted.
 図1において、軸傾斜機構5は、例えばゴニオメータステージからなる。このゴニオメータステージ5は、固定ステージ51と、この固定ステージ51に対してy軸方向に移動可能な可動ステージ52とを有する。可動ステージ52の上面には、試料回転装置2が載置して固定されるようになっている。 In FIG. 1, the shaft tilting mechanism 5 is composed of, for example, a goniometer stage. The goniometer stage 5 includes a fixed stage 51 and a movable stage 52 that can move in the y-axis direction with respect to the fixed stage 51. The sample rotating device 2 is placed and fixed on the upper surface of the movable stage 52.
 可動ステージ52は、図示しないアクチュエータによって駆動され、試料回転装置2が保持している試料10を中心としてy軸方向に円弧移動する。これにより、試料回転装置2の第1回転軸C1は、光軸C0と第2回転軸C2とを含む仮想平面(yz平面)において、試料回転装置2に保持された試料10を中心として、光軸C0に対して所定の鋭角度θで傾斜させることができる。 The movable stage 52 is driven by an actuator (not shown) and moves in an arc in the y-axis direction around the sample 10 held by the sample rotating device 2. Thereby, the first rotation axis C1 of the sample rotating device 2 is a light beam centered on the sample 10 held by the sample rotating device 2 in a virtual plane (yz plane) including the optical axis C0 and the second rotation axis C2. It can be inclined with respect to the axis C0 at a predetermined acute angle θ.
 ゴニオメータステージ5は、前記鋭角度θを例えば0~25°の角度範囲で調整するために、可動ステージ52の移動量を調整できるようになっている。但し、試料10によるX線の吸収量を抑えるという観点では、前記鋭角度θは15~20°の角度範囲に設定されるのが好ましい。 The goniometer stage 5 can adjust the amount of movement of the movable stage 52 in order to adjust the acute angle θ in an angle range of 0 to 25 °, for example. However, from the viewpoint of suppressing the amount of X-ray absorption by the sample 10, the acute angle θ is preferably set in an angle range of 15 to 20 °.
 <X線回折測定方法>
 図4は、上記X線回折測定装置1を用いたX線回折測定方法を示すフローチャートである。以下、図4を参照しつつ、本実施形態のX線回折測定方法について説明する。
 まず、試料回転装置2の試料回転部22に試料10を取り付ける(ステップS1)。具体的には、試料回転部22の環状板部22bの中心部に試料10を取り付け、その環状板部22bを円筒部22aのフランジ部22dにボルト26により固定する(図2及び図3参照)。これにより、試料10は、第1回転軸回りC1回りに回転可能となる。
<X-ray diffraction measurement method>
FIG. 4 is a flowchart showing an X-ray diffraction measurement method using the X-ray diffraction measurement apparatus 1. Hereinafter, the X-ray diffraction measurement method of the present embodiment will be described with reference to FIG.
First, the sample 10 is attached to the sample rotating unit 22 of the sample rotating device 2 (step S1). Specifically, the sample 10 is attached to the center portion of the annular plate portion 22b of the sample rotating portion 22, and the annular plate portion 22b is fixed to the flange portion 22d of the cylindrical portion 22a with a bolt 26 (see FIGS. 2 and 3). . As a result, the sample 10 can rotate around the first rotation axis C1.
 次に、図1に示すように、ゴニオメータステージ5の可動ステージ52上に試料回転装置2を載置して固定する(ステップS2)。その際、試料回転装置2は、その第1回転軸C1が光軸C0上に配置されるように固定される。 Next, as shown in FIG. 1, the sample rotating device 2 is placed and fixed on the movable stage 52 of the goniometer stage 5 (step S2). At that time, the sample rotation device 2 is fixed so that the first rotation axis C1 is disposed on the optical axis C0.
 次に、ゴニオメータステージ5を駆動して、試料回転装置2の第1回転軸C1を、上述の仮想平面において光軸C0に対して所定の鋭角度θだけ傾斜させる(ステップS3、軸傾斜工程)。具体的には、ゴニオメータステージ5のアクチュエータを駆動させ、可動ステージ52を固定ステージ51に対してy軸方向(図1ではy軸の正方向)に所定量だけ円弧移動させる。 Next, the goniometer stage 5 is driven to incline the first rotation axis C1 of the sample rotating device 2 by a predetermined acute angle θ with respect to the optical axis C0 in the above-described virtual plane (step S3, axis inclination step). . Specifically, the actuator of the goniometer stage 5 is driven, and the movable stage 52 is moved in a circular arc with respect to the fixed stage 51 by a predetermined amount in the y-axis direction (the positive direction of the y-axis in FIG. 1).
 次に、試料回転装置2の回転駆動部23を駆動し、本体部21に対して試料回転部22を試料10と共に第1回転軸C1回りに回転させる(ステップS4、回転工程)。そして、X線源3からX線を放射し、回転中の試料10に対してX線を照射する(ステップS5、照射工程)。そして、試料10を透過して試料回転装置2の前方へ回折した回折X線12を回折X線検出部4により検出する(ステップS6、検出工程)。 Next, the rotation drive unit 23 of the sample rotation device 2 is driven, and the sample rotation unit 22 is rotated around the first rotation axis C1 together with the sample 10 with respect to the main body unit 21 (step S4, rotation process). Then, X-rays are emitted from the X-ray source 3, and the rotating sample 10 is irradiated with X-rays (step S5, irradiation process). Then, the diffracted X-ray 12 transmitted through the sample 10 and diffracted to the front of the sample rotating device 2 is detected by the diffracted X-ray detector 4 (step S6, detection step).
 <試料の観測領域>
 図5(a)~(d)は、回折X線検出部4による試料10の観測領域を示す説明図である。
 図5(a)において、X線回折測定では、無数の逆格子点の集合は、面間隔dの逆数1/dの半径で定義される球殻61(以下、逆格子球殻という)となる。この逆格子球殻のうち、入射X線の波長λの逆数1/λの半径で定義されるエバルト球62との交線部分(デバイリング)63のみが回折条件を満たす。このため、入射X線(光軸C0)に対して、エバルト球62の中心を頂点とする円錐の母線64方向にX線回折が観測される。
<Sample observation area>
FIGS. 5A to 5D are explanatory views showing the observation region of the sample 10 by the diffraction X-ray detector 4.
In FIG. 5A, in the X-ray diffraction measurement, an infinite number of reciprocal lattice points becomes a spherical shell 61 (hereinafter referred to as a reciprocal lattice spherical shell) defined by the radius of the reciprocal 1 / d of the surface interval d. . Of the reciprocal lattice spherical shell, only the intersection (debye ring) 63 with the Ewald sphere 62 defined by the radius of the reciprocal 1 / λ of the wavelength λ of the incident X-ray satisfies the diffraction condition. For this reason, X-ray diffraction is observed in the direction of the conical generating line 64 with the center of the Ewald sphere 62 as the apex with respect to the incident X-ray (optical axis C0).
 図5(b)は、静止している試料10に対して、逆格子球殻61及びデバイリング63を光軸C0方向から見た図である。一般的に回折X線検出部を円弧軌跡上で移動させる測定方法では、デバイリング63の一部しか観測されないため、観測できる逆格子点は、逆格子球殻61上におけるデバイリング63の線分65に含まれるもののみとなる。 FIG. 5B is a view of the reciprocal lattice spherical shell 61 and the Debye ring 63 viewed from the optical axis C0 direction with respect to the stationary sample 10. In general, in the measurement method in which the diffracted X-ray detection unit is moved on the arc locus, only a part of the Debye ring 63 is observed. 65 only included.
 したがって、試料10を静止させている場合は、回折条件を満たす粒子の数が少なく、X線回折測定を高精度に行うことができない。
 これに対して、試料10を回転させた場合には、逆格子球殻61上で観測できる逆格子点は、上記線分65が掃く曲面上に存在するので、回折条件を満たす粒子の数が増加し、測定精度を向上させることができる。
Therefore, when the sample 10 is stationary, the number of particles satisfying the diffraction condition is small, and the X-ray diffraction measurement cannot be performed with high accuracy.
On the other hand, when the sample 10 is rotated, the reciprocal lattice points that can be observed on the reciprocal lattice spherical shell 61 are present on the curved surface swept by the line segment 65. The measurement accuracy can be improved.
 図5(c)は、試料回転装置2の第1回転軸C1が回折X線検出部4の第2回転軸C2と一致している場合、つまり、第1回転軸C1が光軸C0に対して直交している場合における、回折X線検出部4による観測領域を示す図である。
 図5(c)に示す観測領域は、従来のガラスキャピラリーを回転させるX線回折測定の場合に対応している。この場合には、観測できる逆格子点は、逆格子球殻61上の赤道部分を1周した帯状の観測領域67(図中のハッチングで示す領域)となり、図5(b)に示す線分65に比べて観測領域を大幅に拡大することができる。
FIG. 5C shows a case where the first rotation axis C1 of the sample rotating device 2 is coincident with the second rotation axis C2 of the diffraction X-ray detection unit 4, that is, the first rotation axis C1 is relative to the optical axis C0. FIG. 6 is a diagram illustrating an observation region by the diffraction X-ray detection unit 4 when the two are orthogonal to each other.
The observation region shown in FIG. 5C corresponds to the case of X-ray diffraction measurement in which a conventional glass capillary is rotated. In this case, the reciprocal lattice points that can be observed are a band-shaped observation region 67 (region indicated by hatching in the figure) that makes one round of the equator on the reciprocal lattice spherical shell 61, and the line segment shown in FIG. Compared to 65, the observation area can be greatly expanded.
 しかし、本実施形態のように板状の試料10を測定する場合には、ガラスキャピラリーを回転させるX線回折測定のように、第1回転軸C1を回折X線検出部4の第2回転軸C2と一致させることはできない。そこで、本実施形態では、回折X線検出部4による観測領域を拡大するために、第1回転軸C1を光軸C0に対して傾斜させている。 However, when measuring the plate-like sample 10 as in the present embodiment, the first rotation axis C1 is used as the second rotation axis of the diffraction X-ray detection unit 4 as in X-ray diffraction measurement in which the glass capillary is rotated. Cannot match C2. Therefore, in the present embodiment, the first rotation axis C1 is tilted with respect to the optical axis C0 in order to expand the observation region by the diffraction X-ray detection unit 4.
 図5(d)は、本実施形態の回折X線検出部4による試料10の観測領域を示す図である。図5(d)に示すように、本実施形態の第1回転軸C1は光軸C0に対して傾斜しているので、観測できる逆格子点は、逆格子球殻61上の赤道部分よりも緯度が少しずれた位置を含むように1周した帯状の観測領域68(図中のハッチングで示す領域)となる。この観測領域68は、図5(c)に示す観測領域67に比べて小さいが、図5(b)に示す線分65よりも大幅に拡大しているのが分かる。 FIG. 5D is a diagram showing an observation region of the sample 10 by the diffraction X-ray detection unit 4 of the present embodiment. As shown in FIG. 5D, since the first rotation axis C1 of the present embodiment is inclined with respect to the optical axis C0, the observable reciprocal lattice point is more than the equator portion on the reciprocal lattice spherical shell 61. A band-shaped observation region 68 (region indicated by hatching in the figure) is formed so as to include a position where the latitude is slightly shifted. Although this observation region 68 is smaller than the observation region 67 shown in FIG. 5C, it can be seen that the observation region 68 is significantly larger than the line segment 65 shown in FIG. 5B.
 <検証実験>
 次に、本実施形態のX線回折測定装置1により得られる効果を検証するために、本発明者らが行った検証実験について説明する。
 この検証実験の実験方法としては、粉末X線回折に用いられる微粉末Siを試料として、その111回折線を繰り返し測定し、その回折強度を求めた。
<Verification experiment>
Next, a verification experiment performed by the present inventors in order to verify the effect obtained by the X-ray diffraction measurement apparatus 1 of the present embodiment will be described.
As an experimental method of the verification experiment, fine powder Si used for powder X-ray diffraction was used as a sample, 111 diffraction lines thereof were repeatedly measured, and the diffraction intensity was obtained.
 試料の測定は、下記3種類の条件でそれぞれ行った。
 条件A:試料の回転軸が光軸に対して20°傾斜している場合(本実施形態に相当)
 条件B:試料の回転軸が光軸に対して傾斜していない場合
 条件C:試料を回転させない場合
Samples were measured under the following three conditions.
Condition A: When the rotation axis of the sample is inclined 20 ° with respect to the optical axis (corresponding to this embodiment)
Condition B: When the rotation axis of the sample is not inclined with respect to the optical axis Condition C: When the sample is not rotated
 また、上記の繰り返し測定では、入射光エネルギーを変更し、試料中で回折条件を満たす粒子が測定毎に変わるようにした。このため、各測定での回折強度の揺らぎ(変動)は、この回折に起因する粒子数の揺らぎ、つまり測定精度に起因することになる。したがって、各測定の回折強度が一定であれば、測定精度が高い状態であることを意味する。 Also, in the above repeated measurement, the incident light energy was changed so that particles satisfying the diffraction condition in the sample changed for each measurement. For this reason, the fluctuation (variation) of the diffraction intensity in each measurement is caused by the fluctuation of the number of particles due to this diffraction, that is, the measurement accuracy. Therefore, if the diffraction intensity of each measurement is constant, it means that the measurement accuracy is high.
 図6は、本検証実験の実験結果を示すグラフである。このグラフは、上記各条件A~CのX線回折測定の測定回数と回折強度との関係を示している。
 図6に示すように、条件Aの回折強度の揺るぎは、他の条件B,Cの回折強度に比べて最も小さいのが分かる。特に、条件Aと条件Cとを比べると、条件Aの方が回折強度の揺らぎが顕著に小さくなっており、試料を回転させることで、静止試料の測定に比べて大幅に測定精度が向上していることが分かる。また、条件Aと条件Bとを比べても、条件Aの方が回折強度の揺らぎが小さくなっていることがグラフから読み取れる。
FIG. 6 is a graph showing the experimental results of this verification experiment. This graph shows the relationship between the number of times of X-ray diffraction measurement under the above conditions A to C and the diffraction intensity.
As shown in FIG. 6, it can be seen that the fluctuation of the diffraction intensity under the condition A is the smallest compared with the diffraction intensity under the other conditions B and C. In particular, when the conditions A and C are compared, the fluctuation in the diffraction intensity is significantly smaller in the condition A. By rotating the sample, the measurement accuracy is greatly improved compared to the measurement of the stationary sample. I understand that Further, even when the conditions A and B are compared, it can be seen from the graph that the fluctuation of the diffraction intensity is smaller in the condition A.
 図6のグラフ中には、回折強度の揺らぎを定量的に評価するために、各条件A~Cにおける回折強度の揺らぎの標準偏差σを示している。この標準偏差σは、その値が小さいほど測定精度が高いことを示している。
 図6に示すように、条件Bの標準偏差σは0.62%であり、条件Cの標準偏差σは2.2%であるのに対して、条件Aの標準偏差σは0.41%と最小の値を示している。すなわち、条件Aの場合に測定精度が最も高くなることが、定量的にも示されていることが分かる。しかも、条件Aの場合は、条件Bの場合に比べて1.5倍以上の精度、条件Cの場合に比べて5倍以上の精度でそれぞれ測定することができ、本実施形態の効果を如実に表している。
In the graph of FIG. 6, in order to quantitatively evaluate the diffraction intensity fluctuation, the standard deviation σ of the diffraction intensity fluctuation under each of the conditions A to C is shown. The standard deviation σ indicates that the smaller the value, the higher the measurement accuracy.
As shown in FIG. 6, the standard deviation σ of condition B is 0.62%, the standard deviation σ of condition C is 2.2%, whereas the standard deviation σ of condition A is 0.41%. And shows the minimum value. That is, it can be seen that it is quantitatively shown that the measurement accuracy is the highest in the case of condition A. Moreover, in the case of condition A, it is possible to measure with an accuracy 1.5 times or more that of condition B, and with an accuracy of 5 times or more that of condition C, and the effect of this embodiment can be achieved. It really represents.
 さらに、図6に示すように、測定した光子の数の揺らぎ、すなわち光子統計という別の要因による誤差(標準偏差)σ’は0.31%となっており、今回の検証実験における条件A~Cの回折強度の揺らぎの標準偏差σの値は、必ず光子統計による標準偏差σ’の値以上なっている。その中でも、条件Aの標準偏差σ(0.41%)は、光子統計による標準偏差σ’(0.31%)に非常に近い値を示しており、条件Aの場合は今回の検証実験で到達しうる最大精度に肉薄する精度で測定できていることが分かる。 Further, as shown in FIG. 6, the error (standard deviation) σ ′ due to the fluctuation of the number of measured photons, that is, photon statistics, is 0.31%. The standard deviation σ value of the fluctuation of the diffraction intensity of C is always greater than or equal to the standard deviation σ ′ value according to photon statistics. Among them, the standard deviation σ (0.41%) of the condition A shows a value very close to the standard deviation σ ′ (0.31%) according to the photon statistics. It can be seen that the measurement can be performed with the accuracy that is thinned to the maximum accuracy that can be reached.
 <効果について>
 以上、本実施形態のX線回折測定装置1及びX線回折測定方法によれば、試料10にX線を照射する際に、試料回転装置2により試料10を所定平面内で回転させるので、従来の回転台を回転させる測定方法と同様の方法により試料を回転させることができる。このため、従来のガラスキャピラリーを回転させる測定方法のように、試料を細かくすり潰す必要がないので、試料を所望の形状でX線回折測定を行うことができる。
<About effect>
As described above, according to the X-ray diffraction measurement device 1 and the X-ray diffraction measurement method of the present embodiment, when the sample 10 is irradiated with X-rays, the sample rotation device 2 rotates the sample 10 within a predetermined plane. The sample can be rotated by the same method as the measurement method for rotating the rotary table. For this reason, unlike the conventional measurement method of rotating a glass capillary, it is not necessary to finely crush the sample, so that the sample can be subjected to X-ray diffraction measurement in a desired shape.
 また、軸傾斜機構5により、X線の光軸C0と回折X線検出部4の第2回転軸C2とを含む仮想平面において、試料回転装置2により回転する試料10を中心として、試料回転装置2の第1回転軸C1を光軸C0に対して所定の鋭角度θで傾斜させることができる。これにより、第1回転軸C1が光軸C0に対して傾斜していない場合に比べて、回折X線検出部4による試料10の観測領域を拡大することができる。その結果、回折条件を満たす粒子の数を増加させることができるため、X線回折測定の測定精度を向上させることができる。 In addition, the sample rotation device centered on the sample 10 rotated by the sample rotation device 2 in a virtual plane including the optical axis C0 of the X-ray and the second rotation axis C2 of the diffraction X-ray detection unit 4 by the axis tilt mechanism 5. The second first rotation axis C1 can be inclined at a predetermined acute angle θ with respect to the optical axis C0. Thereby, compared with the case where the 1st rotation axis C1 is not inclined with respect to the optical axis C0, the observation area | region of the sample 10 by the diffraction X-ray detection part 4 can be expanded. As a result, the number of particles satisfying the diffraction condition can be increased, so that the measurement accuracy of the X-ray diffraction measurement can be improved.
 また、本実施形態のX線回折測定装置1は、試料10を透過して回折した回折X線12を検出する透過法を用いているので、X線回折測定とX線吸収分光測定との組み合わせであるDAFS(Diffraction Anomalous Fine Structure)法や、種々のX線共鳴散乱測定を簡便に行うことができる。さらに、X線回折測定装置1にスリップリング等による電極の回転機構を組み合わせれば、測定試料に電圧を印加しながらその場で測定を行うことも可能となる。 Further, since the X-ray diffraction measurement apparatus 1 of the present embodiment uses a transmission method that detects the diffracted X-rays 12 that have been transmitted through the sample 10 and diffracted, a combination of X-ray diffraction measurement and X-ray absorption spectroscopy measurement. The DAFS (Diffraction Anomalous Fine Structure) method and various X-ray resonance scattering measurements can be easily performed. Furthermore, if an X-ray diffraction measurement apparatus 1 is combined with an electrode rotation mechanism such as a slip ring, it is possible to perform measurement in situ while applying a voltage to the measurement sample.
 また、軸傾斜機構5は、鋭角度θを調整可能であるため、試料10に応じて光軸C0に対する第1回転軸C1の傾斜角度(鋭角度)を適切に調整することができる。
 また、鋭角度θを15~20°の角度範囲に設定することで、試料10によるX線の吸収量を抑えつつ、回折X線検出部4による試料10の観測領域を可及的に拡大することができる。
In addition, since the shaft tilt mechanism 5 can adjust the acute angle θ, the tilt angle (sharp angle) of the first rotation axis C1 with respect to the optical axis C0 can be appropriately adjusted according to the sample 10.
Further, by setting the acute angle θ to an angle range of 15 to 20 °, the observation region of the sample 10 by the diffraction X-ray detector 4 is expanded as much as possible while suppressing the amount of X-ray absorption by the sample 10. be able to.
 なお、本発明は、上記の実施形態に限定されることなく適宜変更して実施可能である。例えば、上記実施形態の試料10は、板状に形成されているが、他の任意の形状に形成されていても良い。また、測定対象の試料10として、錠剤試料や、薄型ラミネートセルなどのデバイス試料を用いることも可能である。特に、錠剤試料を用いる場合には、X線の吸収量が大きい試料であっても、その試料を、希釈剤を混合して成型した錠剤形状とすることで、X線の吸収量を調整することが可能となる。その結果、X線の吸収量の補正を行った正確なX線回折測定を行うことが可能となる。 Note that the present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications. For example, the sample 10 of the above embodiment is formed in a plate shape, but may be formed in any other shape. Further, as the sample 10 to be measured, a tablet sample or a device sample such as a thin laminate cell can be used. In particular, when a tablet sample is used, even if the sample has a large amount of X-ray absorption, the amount of X-ray absorption is adjusted by making the sample into a tablet shape formed by mixing a diluent. It becomes possible. As a result, it is possible to perform accurate X-ray diffraction measurement with correction of X-ray absorption.
 また、上記実施形態の軸傾斜機構5は、第1回転軸C1を光軸C0に対して傾斜させているが、光軸C0を第1回転軸C1に対して傾斜させるようにしても良い。さらに、上記実施形態のX線回折測定装置1は、回折X線検出部4の第2回転軸C2を鉛直方向(z軸方向)に配置しているが、水平方向(x軸方向)に配置しても良い。この場合、第1回転軸C1は水平面(xy平面)上において光軸C0に対して傾斜させることになるので、第1回転軸C1を傾斜させる軸傾斜機構5は、ゴニオメータステージに替えて、z軸方向を中心軸として水平面上で回転するターンテーブル等により構成すればよい。 In the shaft tilt mechanism 5 of the above embodiment, the first rotation axis C1 is tilted with respect to the optical axis C0. However, the optical axis C0 may be tilted with respect to the first rotation axis C1. Further, in the X-ray diffraction measurement apparatus 1 of the above embodiment, the second rotation axis C2 of the diffraction X-ray detection unit 4 is arranged in the vertical direction (z-axis direction), but is arranged in the horizontal direction (x-axis direction). You may do it. In this case, since the first rotation axis C1 is inclined with respect to the optical axis C0 on the horizontal plane (xy plane), the axis inclination mechanism 5 for inclining the first rotation axis C1 is replaced with a goniometer stage. What is necessary is just to comprise by the turntable etc. which rotate on a horizontal surface centering on an axial direction.
1 X線回折測定装置
3 X線源
4 回折X線検出部
5 軸傾斜機構
10 試料
12 回折X線
22 試料回転部
C0 光軸
C1 第1回転軸
C2 第2回転軸
f 円弧軌跡
θ 鋭角度
DESCRIPTION OF SYMBOLS 1 X-ray-diffraction measuring apparatus 3 X-ray source 4 Diffraction X-ray detection part 5 Axis tilt mechanism 10 Sample 12 Diffraction X-ray 22 Sample rotation part C0 Optical axis C1 First rotation axis C2 Second rotation axis f Circular locus θ Sharp angle

Claims (5)

  1.  所定の第1回転軸回りに回転することで、試料を所定平面内で回転させる試料回転部と、
     前記試料回転部により回転する前記試料に対してX線を照射するX線源と、
     X線の光軸に対して直交した第2回転軸を中心とする円弧軌跡上を移動することで、前記試料を透過して回折した回折X線を検出する回折X線検出部と、
     前記光軸と前記第2回転軸とを含む仮想平面において、前記試料回転部により回転する前記試料を中心として、前記第1回転軸を前記光軸に対して所定の鋭角度で相対的に傾斜させる軸傾斜機構と、
     を備えることを特徴とするX線回折測定装置。
    A sample rotating unit that rotates the sample within a predetermined plane by rotating around a predetermined first rotation axis;
    An X-ray source for irradiating the sample rotated by the sample rotating unit with X-rays;
    A diffracted X-ray detector that detects a diffracted X-ray transmitted through the sample and diffracted by moving on an arc locus centering on a second rotation axis orthogonal to the optical axis of the X-ray;
    In a virtual plane including the optical axis and the second rotation axis, the first rotation axis is relatively inclined at a predetermined acute angle with respect to the optical axis with the sample rotated by the sample rotation unit as a center. An axis tilting mechanism,
    An X-ray diffraction measurement apparatus comprising:
  2.  前記軸傾斜機構は、前記鋭角度を調整可能である請求項1に記載のX線回折測定装置。 The X-ray diffraction measuring apparatus according to claim 1, wherein the shaft tilt mechanism is capable of adjusting the acute angle.
  3.  前記鋭角度は、15~20°の角度範囲に設定されている請求項1又は2に記載のX線回折測定装置。 3. The X-ray diffraction measurement apparatus according to claim 1, wherein the acute angle is set in an angle range of 15 to 20 °.
  4.  前記試料は錠剤形状とされている請求項1~3のいずれか一項に記載のX線回折測定装置。 The X-ray diffraction measurement apparatus according to any one of claims 1 to 3, wherein the sample has a tablet shape.
  5.  試料回転部が、所定の第1回転軸回りに回転することで、試料を所定平面内で回転させる回転工程と、
     X線源が、前記試料回転部により回転する前記試料に対してX線を照射する照射工程と、
     回折X線検出部が、X線の光軸に対して直交した第2回転軸を中心とする円弧軌跡上を移動することで、前記試料を透過して回折した回折X線を検出する検出工程と、
     軸傾斜機構が、前記光軸と前記第2回転軸とを含む仮想平面において、前記試料回転部により回転する前記試料を中心として、前記第1回転軸を前記光軸に対して所定の鋭角度で相対的に傾斜させる軸傾斜工程と、
     を含むことを特徴とするX線回折測定方法。
    A rotating step of rotating the sample within a predetermined plane by rotating the sample rotating unit around a predetermined first rotation axis;
    An irradiation process in which an X-ray source irradiates the sample rotated by the sample rotating unit with X-rays;
    A detection step in which the diffracted X-ray detector detects a diffracted X-ray transmitted through the sample and diffracted by moving on an arc locus centering on a second rotation axis orthogonal to the optical axis of the X-ray. When,
    The axis tilt mechanism has a predetermined acute angle with respect to the optical axis with respect to the optical axis about the sample rotated by the sample rotating part in a virtual plane including the optical axis and the second rotational axis. An axial tilting process for relatively tilting at
    An X-ray diffraction measurement method comprising:
PCT/JP2016/058151 2015-03-24 2016-03-15 X-ray diffraction measuring device and x-ray diffraction measuring method WO2016152654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508258A JPWO2016152654A1 (en) 2015-03-24 2016-03-15 X-ray diffraction measurement apparatus and X-ray diffraction measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061574 2015-03-24
JP2015061574 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152654A1 true WO2016152654A1 (en) 2016-09-29

Family

ID=56978407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058151 WO2016152654A1 (en) 2015-03-24 2016-03-15 X-ray diffraction measuring device and x-ray diffraction measuring method

Country Status (2)

Country Link
JP (1) JPWO2016152654A1 (en)
WO (1) WO2016152654A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214747A (en) * 1988-02-24 1989-08-29 Mc Sci:Kk X-ray diffraction apparatus
JPH05322806A (en) * 1992-05-15 1993-12-07 Rigaku Corp Small-area x-ray diffraction device
JPH06229951A (en) * 1993-01-29 1994-08-19 Jeol Ltd X-ray diffraction device
JP2002039970A (en) * 2000-07-28 2002-02-06 Rigaku Corp X-ray device
JP2004294136A (en) * 2003-03-26 2004-10-21 Rigaku Corp X-ray diffraction device
JP2005265566A (en) * 2004-03-18 2005-09-29 Rigaku Corp Sample holding device and x-ray diffraction apparatus using device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214747A (en) * 1988-02-24 1989-08-29 Mc Sci:Kk X-ray diffraction apparatus
JPH05322806A (en) * 1992-05-15 1993-12-07 Rigaku Corp Small-area x-ray diffraction device
JPH06229951A (en) * 1993-01-29 1994-08-19 Jeol Ltd X-ray diffraction device
JP2002039970A (en) * 2000-07-28 2002-02-06 Rigaku Corp X-ray device
JP2004294136A (en) * 2003-03-26 2004-10-21 Rigaku Corp X-ray diffraction device
JP2005265566A (en) * 2004-03-18 2005-09-29 Rigaku Corp Sample holding device and x-ray diffraction apparatus using device

Also Published As

Publication number Publication date
JPWO2016152654A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US7206375B2 (en) Method and apparatus for implement XANES analysis
JP5612493B2 (en) Compound charged particle beam system
JP5103422B2 (en) Charged particle beam equipment
CN102714125A (en) Ion milling device, sample processing method, processing device, and sample drive mechanism
JP2022516141A (en) A method for performing non-destructive inspection of the uniformity of crystal orientation inside the diffractive device and the work.
US20210003462A1 (en) X-ray stress measurement device
US9514913B2 (en) TEM sample mounting geometry
US2805342A (en) Diffractometer
US8901510B2 (en) Particle beam device having a detector arrangement
JP2005515435A (en) Diffractometer and diffraction analysis method
WO2016152654A1 (en) X-ray diffraction measuring device and x-ray diffraction measuring method
JP2016025085A5 (en)
CN111256663B (en) Centering calibration method and device
CN215375820U (en) Flying spot scanning device for X-ray source
JP6842084B2 (en) Portable 3-axis stress measuring device
TWI357628B (en) Polarization measurement apparatus and method for
JP2007066527A (en) Test piece observation method and charged particle beam device
JP7430323B2 (en) X-ray inspection method and X-ray inspection device for cylindrical containers
JP3462910B2 (en) X-ray incident angle setting method and mechanism for grazing incidence X-ray apparatus
KR102397429B1 (en) X-ray scattering measuing apparatus
JPH11125602A (en) Method and device for analyzing foreign matter
JP5882864B2 (en) Diffusion haze value measuring method and measuring apparatus
JP2016133397A (en) X ray inspection device and adjustment method of x ray inspection device
WO2017159097A1 (en) Positioning device, airtight container, and vacuum chamber
EP4048990A1 (en) Spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508258

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768557

Country of ref document: EP

Kind code of ref document: A1