WO2017158966A1 - Electric power steering drive device - Google Patents

Electric power steering drive device Download PDF

Info

Publication number
WO2017158966A1
WO2017158966A1 PCT/JP2016/086970 JP2016086970W WO2017158966A1 WO 2017158966 A1 WO2017158966 A1 WO 2017158966A1 JP 2016086970 W JP2016086970 W JP 2016086970W WO 2017158966 A1 WO2017158966 A1 WO 2017158966A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
power
electric power
drive device
power steering
Prior art date
Application number
PCT/JP2016/086970
Other languages
French (fr)
Japanese (ja)
Inventor
公輔 中野
村上 哲
幸司 吉瀬
白木 康博
和弘 多田
穂隆 六分一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017514939A priority Critical patent/JP6444495B2/en
Publication of WO2017158966A1 publication Critical patent/WO2017158966A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements

Definitions

  • the present invention relates to a drive device for an electric power steering that applies an assist force to a vehicle steering device by the rotational force of an electric motor.
  • the electric power steering drive device includes an electric motor that generates an auxiliary torque corresponding to the steering torque of the driver applied to the steering wheel of the vehicle, and an electronic control unit that drives the electric motor.
  • the electronic control unit includes a power conversion device configured by a power switching element that supplies power to the electric motor and a control circuit that controls the power switching element, and is fixed integrally to the electric motor.
  • the electronic control unit in the conventional electric power steering drive device disclosed in Patent Document 1 is composed of a power module housing the power switching element of the power converter and a control circuit for controlling the power switching element as separate components.
  • the power module and the control circuit configured separately are electrically connected using a connector and a connection terminal.
  • the electronic control unit in the conventional electric power steering drive device disclosed in Patent Document 2 is configured by integrating a power module containing a power switching element and a control circuit using a single multilayer board.
  • power switching elements are respectively disposed on both surfaces of a single resin substrate, that is, on one surface and the other surface of the substrate, and the power conversion device is disposed on the same surface of the substrate.
  • the power switching element and the control circuit component are mixedly arranged.
  • the power switching element and the control circuit components are electrically connected by a wiring pattern made of a conductive material such as copper provided on the substrate. Therefore, a connection member such as a connector or a connection terminal for electrically connecting the power switching element and the control circuit component is not required.
  • the above-mentioned board is usually composed of a multilayer board having a through-hole penetrating the board, and under the influence of the through-hole, a component is placed on the other side which is the back side with respect to one side of the board.
  • a component is placed on the other side which is the back side with respect to one side of the board.
  • the hole diameter of the through hole in the substrate increases as the thickness of the wiring pattern formed of a copper plate or the like increases, a power system having a power switching element and a control system having a control circuit are provided.
  • the hole diameter of the through hole of the control system board can be made relatively small, whereas when the power system and the control system are configured integrally on a single board, the power system is In order to avoid a reduction in the mounting area of the control system components on the board, which requires a relatively large hole diameter, there is a problem that the board size must be increased. It was.
  • the present invention has been made to solve the above-mentioned problems in the conventional electric power steering driving apparatus, and an object thereof is to provide an electric power steering equipped with a small and low loss electronic control unit. It is said.
  • the electric power steering drive device is: An electric motor for generating an auxiliary torque corresponding to a steering torque applied to the steering system of the vehicle by the driver, and a control unit for controlling the driving of the electric motor, and assisting the driver with the auxiliary torque.
  • the electric motor includes a metal casing fixed to an end portion in the axial direction thereof,
  • the control unit is A power conversion circuit that has a plurality of power switching elements, and converts DC power from a DC power source mounted in the vehicle into AC power based on the switching operation of the power switching elements and supplies the AC power to the electric motor;
  • the multilayer substrate is A heat sink, A first region fixed to the first surface of the heat sink and at least mounted with the power switching element; A second region that is fixed to a second surface having a front-back relationship with the first surface of the heat radiating plate and on which at least a part of members constituting the control unit is mounted.
  • the heat sink is An extending portion that is exposed from at least one of the first region and the second region and extends in a direction in which the surface of the heat sink extends;
  • the extension portion is fixed to the metal casing so that at least a part thereof directly contacts the metal casing. It is characterized by that.
  • the control unit has a plurality of power switching elements, and based on the switching operation of the power switching elements, the DC power from the DC power source mounted on the vehicle is obtained. At least a part of a power conversion circuit that converts AC power to supply to the electric motor, a control unit that controls a switching operation of the power switching element, and members that configure the power conversion circuit and the control unit.
  • the multilayer substrate is fixed to the first surface of the heat dissipation plate, at least a first region where the power switching element is mounted, and the heat dissipation plate.
  • At least a part of the members constituting the control unit is fixed to a second surface that has a front-back relationship with the first surface.
  • the heat sink is exposed from at least one of the first region and the second region and extends in a direction in which the surface of the heat sink extends. Since the extension part is fixed to the metal casing so that at least a part of the extension part directly contacts the metal casing, the loss of the electronic control unit can be reduced. In addition, since the mounting area on the multilayer substrate can be increased, an electric power steering drive device that can be miniaturized can be obtained.
  • FIG. 1 is a block diagram showing a circuit configuration of an electric power steering driving apparatus according to Embodiment 1 of the present invention.
  • Fig. 1 shows a configuration example when an n-type MOSFET (Metal-Oxide-Semiconductor FIELD-EFFECT-Transistor) is used as a power switching element, and the free-wheeling diode connected in parallel to the n-type MOSFET indicates a body diode.
  • MOSFET Metal-Oxide-Semiconductor FIELD-EFFECT-Transistor
  • the electric power steering drive device 100 includes an electric motor 9 and an electronic control unit 20.
  • the electric power steering drive device 100 is electrically connected to the battery 1 mounted on the vehicle via the power connector 11, and various in-vehicle sensors such as a vehicle running speed signal from the vehicle side via the in-vehicle various sensor connector 12. 14 is input, and a steering torque signal from the torque sensor 15 is input via the torque sensor connector 13.
  • the torque sensor is provided on a steering shaft or the like of the vehicle, detects steering torque by the driver, and outputs a steering torque signal.
  • the electric motor 9 is a three-phase brushless motor, and includes, for example, a rotor 92 having field magnetic poles made of permanent magnets, and a stator 91 having three-phase armature windings made of U, V, and W phases. ing.
  • the armature winding is indicated by ⁇ connection, but it may be Y connection.
  • the brushless motor is an example, and may be an induction machine.
  • the rotation angle of the rotor 92 of the electric motor 9 (sometimes referred to as the rotation angle of the electric motor) is detected by the electronic control unit 20.
  • the rotation sensor 84 is configured by a magnetic sensor or a resolver.
  • the electronic control unit 20 includes a noise filter 2, a power supply relay unit 3 that is a switch unit that supplies and cuts off battery current, a three-phase bridge circuit 4 that constitutes a power conversion circuit, and a U-phase described later of the three-phase bridge circuit 4 Smoothing capacitors 6u, 6v, 6w connected in parallel to the phase arm, the V-phase arm and the W-phase arm, the motor relay unit 5 which is a switch means for energizing and interrupting the current to the electric motor 9, and the electric motor 9
  • a shunt resistor circuit 7 for detecting the current flowing through the armature winding, a microcomputer 81, an FET drive circuit 82, a current detection means 83, and a rotation sensor 84 are provided.
  • the shunt resistor circuit 7 includes shunt resistors 7u, 7v, and 7w described later.
  • the three-phase bridge circuit 4 includes a U-phase arm composed of a U-phase upper arm and a U-phase lower arm connected in series, a V-phase arm composed of a V-phase upper arm and a V-phase lower arm connected in series, It has a W-phase arm composed of a connected W-phase upper arm and a W-phase lower arm.
  • High-potential side FETs 41u, 41v, and 41w as power switching elements are connected to the U-phase upper arm, V-phase upper arm, and W-phase upper arm on the high potential side, respectively, and the U-phase on the low potential side Low-potential side FETs 42u, 42v, and 42w as power switching elements are connected to the lower arm, the V-phase lower arm, and the W-phase lower arm, respectively.
  • the high potential side FET 41u opens and closes between the U phase output line UL and the positive side input line PL derived from the connection point between the U phase upper arm and the U phase lower arm.
  • the high-potential side FET 41v opens and closes between the V-phase output line VL and the positive-side input line PL derived from the connection point between the V-phase upper arm and the V-phase lower arm.
  • the high-potential side FET 41w opens and closes between the W-phase output line WL and the positive-side input line PL derived from the connection point between the W-phase upper arm and the W-phase lower arm.
  • the low potential side FET 42u opens and closes between the U-phase output line UL and the negative side input line NL.
  • the low potential side FET 42v opens and closes between the V phase output line VL and the negative side input line NL.
  • the low potential side FET 42w opens and closes between the W phase output line WL and the negative side input line NL.
  • the negative phase side of the U-phase high potential side FET 41u and the positive side of the low potential side FET 42u are connected, and the U phase output line UL connected to the connection portion is the reference potential side of the U phase motor relay FET 5u of the motor relay unit 5
  • the other end of the motor relay FET 5u is connected to the U-phase winding terminal UT in the stator 91 of the electric motor 9.
  • the negative electrode side of the low potential side FET 42u and one end of the shunt resistor 7u are connected, and the other end of the shunt resistor 7u is connected to the negative electrode side of the smoothing capacitor 6u.
  • the negative phase side of the V phase high potential side FET 41v and the positive side of the low potential side FET 42v are connected, and the V phase output line VL connected to the connection portion is the reference potential side of the V phase motor relay FET 5v of the motor relay portion 5
  • the other end of the motor relay FET 5v is connected to the V-phase winding terminal VT in the stator 91 of the electric motor 9.
  • the negative electrode side of the low potential side FET 42v and one end of the shunt resistor 7v are connected, and the other end of the shunt resistor 7v is connected to the negative electrode side of the smoothing capacitor 6v.
  • the negative phase side of the W-phase high potential side FET 41w and the positive side of the low potential side FET 42w are connected, and the W phase output line WL connected to the connection portion is the reference potential side of the W phase motor relay FET 5w of the motor relay portion 5
  • the other end of the motor relay FET 5 w is connected to the W-phase winding terminal WT in the stator 91 of the electric motor 9.
  • the negative electrode side of the low potential side FET 42w and one end of the shunt resistor 7w are connected, and the other end of the shunt resistor 7w is connected to the negative electrode side of the smoothing capacitor 6w.
  • the positive side of the high potential side FETs 41u, 41v, 41w are connected to the positive side of the smoothing capacitors 6u, 6v, 6w, respectively.
  • a snubber circuit may be provided for suppressing a surge voltage when switching is performed.
  • the snubber circuit may be configured by a capacitor or a circuit in which a resistor and a capacitor are connected. Further, a snubber circuit may be provided in parallel with the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42, respectively.
  • the armature winding of the electric motor 9 is connected to the three-phase bridge circuit 4 provided in the electronic control unit 20, the rotation sensor 84 for detecting the rotation position of the rotor 92, and the shunt resistors 7u, 7v, 7w.
  • a current detection means 83 for detecting a flowing current a microcomputer 81; an FET drive circuit 82 for outputting a drive signal for controlling the operation of the FET according to a command from the microcomputer 81; a current detection means 83;
  • the FET drive circuit 82 is mounted on the integrated multilayer substrate 200 as will be described later.
  • the microcomputer 81 calculates the auxiliary torque that the electric motor 9 should output based on the steering torque signal from the torque sensor 15, and the motor current detected by the current detector 83 and the rotation detected by the rotation sensor 84. A target current for generating auxiliary torque by feeding back the rotational position of the child 92 is calculated.
  • the power relay unit 3 is composed of two power relay FETs 31 and 32 connected in series with each other, and the source terminal of the power relay FET 31 and the source terminal of the power relay FET 32 are connected.
  • the drain terminal of the power relay FET 31 is connected to the noise filter 2, and the drain terminal of the power relay FET 32 is connected to the positive side of the smoothing capacitors 6u, 6v, 6w.
  • the gate terminals of the power relay FET 31 and the power relay FET 32 are connected to the FET drive circuit 82.
  • the microcomputer 81 includes a well-known self-diagnosis function in addition to the AD converter and the PWM timer circuit, etc., and always performs self-diagnosis as to whether the system is operating normally.
  • the FET drive circuit 82 is configured to turn off all of the power relay FETs 31 and 32 of the section 3 and the motor relay FETs 5u, 5v and 5w of the motor relay section 5 and to disconnect the connection between the three-phase bridge circuit 4 and the electric motor 9. Is given a directive.
  • the FET drive circuit 82 drives the power relay FETs 31 and 32 of the power relay unit 3 and the motor relay FETs 5u, 5v, and 5w of the motor relay unit 5 based on a command from the microcomputer 81, and a power switching element.
  • the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w are driven.
  • the microcomputer 81 receives the steering torque information from the torque sensor 15 and the rotation position information of the rotor 92 of the electric motor 9 from the rotation sensor 84.
  • a travel speed signal is input as one of the various sensors 14.
  • the motor current is detected by the current detection means 83 based on the voltage values across the shunt resistors 7u, 7v, 7w, and the detected motor current is fed back to the microcomputer 81.
  • the microcomputer 81 generates a power steering rotation direction command and a current control amount corresponding to the auxiliary torque based on these information and signals, and inputs each drive signal to the FET drive circuit 82.
  • the FET drive circuit 82 generates a PWM drive signal when a power steering rotation direction command and a current control amount are input from the microcomputer 81, and the high potential side FETs 41u, 41v, 41w, which are power switching elements, and a low potential. A voltage is applied to the side FETs 42u, 42v, 42w. As a result, the electric current from the battery 1 flows to the electric motor 9 through the power connector 11, the noise filter 2, the power relay unit 3, the three-phase bridge circuit 4, and the motor relay unit 5, and a required amount of auxiliary torque is applied in the required direction. Output from the electric motor 9.
  • the motor current detected through the shunt resistor and the current detecting means is fed back to the microcomputer 81 and controlled so as to coincide with the motor current command sent from the microcomputer 81 to the FET drive circuit 52.
  • the negative sides of the smoothing capacitors 6u, 6v, 6w are not directly connected to GND. This minimizes the closed loop between the smoothing capacitors 6u, 6v, 6w and the upper and lower arms of each phase to reduce the parasitic inductance, and the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w. This is to suppress a surge voltage generated when the is switched.
  • the noise filter 2 is designed to obtain a predetermined performance by using a normal mode filter and a common mode filter together.
  • the noise filter 2 is a normal mode filter or a common mode filter.
  • both a normal mode filter and a common mode filter may be provided, or a filter that integrates the functions of the normal mode filter and the common mode filter may be used.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the electric power steering driving apparatus according to Embodiment 1 of the present invention.
  • the electric power steering driving apparatus 100 includes the block circuit configuration shown in FIG. 1 and is configured as shown in FIG.
  • a metal casing 101 having a function of a heat sink is disposed at the axially opposite output side end (upper part in FIG. 2) of the electric motor 9 constituted by a three-phase brushless motor.
  • An integrated multilayer substrate 200 is disposed in an upper portion of the body 101 in the axial direction (upper portion in FIG. 2), and smoothing capacitors 6u, 6v, 6w are disposed in an upper portion in the axial direction of the multilayer substrate 200 (upper portion in FIG. 2).
  • the noise filter 2 is disposed, and the resin case 102 is disposed on the noise filter 2 (the upper portion in FIG. 2).
  • the resin case 102 has a power system power connector 11 to which a battery 1 mounted on a vehicle as an external DC power source is connected, and a control system torque sensor to which a torque sensor 15 and various in-vehicle sensors 14 are connected.
  • Connector 13 (not shown) and in-vehicle various sensor connectors 12 (not shown) are formed integrally with resin case 102.
  • smoothing capacitors 6u, 6v, 6w electrolytic capacitors, conductive polymer capacitors, or hybrid capacitors are used.
  • a power region 23 as a first region, a control region 21 as a second region, and a heat dissipation plate 22 inserted between the power region 23 control region 21 are integrally combined.
  • the radial end portion of the heat radiating plate 22 includes an extending portion 221 that extends in a radial direction from the radial end portions of the power region 23 and the control region 21, and the extending portion 221 of the heat radiating plate 22.
  • the end surface on the motor side is in contact with the metal casing 101 having a heat sink function.
  • the heat generated in the integrated multilayer substrate 200 is transferred to the extended portion 221 of the heat radiating plate 22 and the metal casing 101.
  • the power region 23 is a multilayer substrate configured such that wiring is performed by a copper plate having a large thickness exceeding 100 [um].
  • the control region 21 is a multiphase substrate configured so that wiring is performed with a copper plate having a thin thickness of 100 [um] or less. Therefore, the layer configuration of the control region 21 and the power region 23 is not the same.
  • the numerical value of the thickness of these copper plates is an example.
  • the thickness of the copper plate currently used is different, the total thickness of the control region 21 and the power region 23 may be the same or different.
  • the heat radiating plate 22 is made of a copper plate that is the same as or thicker than the copper plate used for the wiring provided on one layer of the multilayer substrate constituting the power region 23.
  • the heat radiating plate 22 also has an effect of shielding heat from the motor side.
  • a rotation sensor 84 configured by a magnetic sensor is connected to the power region 23.
  • the magnetic sensor as the rotation sensor 84 only needs to be able to detect the magnetic pole position of the rotor 92 of the electric motor 9 and is not necessarily connected to the power region 23.
  • the power region 23 and the control region 21 are individually manufactured, and then the power region 23 and the control region 21 are fixed to both surfaces of the heat sink 22 via prepregs. To be integrated. Thereafter, the control area 21 and the power area 23 are wired.
  • the through-through hole connected only in the power region 23 does not appear on the surface layer of the control region 21 at one end thereof, so that the component mounting area of the control region 21 is increased and the size can be reduced. Further, the through-through hole connected only by the control region 21 does not appear at one end of the through-hole in the power region 23, so that the component mounting area of the power region 23 increases and the size can be reduced. Further, since the wiring in the control region 21 is composed of only a thin copper plate of 100 [um] or less per phase, there is a feature that the diameter of the through hole that is wired in the control region can be reduced.
  • the microcomputer 81 and the FET drive circuit 82 are connected to the surface layer of the control area 21.
  • the microcomputer 81 and the FET drive circuit 82 are connected by a through through hole in the control region 21.
  • the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w as power switching elements are connected to the surface layer of the power region 23. Since the gates and sources of the high-potential side FETs 41u, 41v, 41w and the low-potential side FETs 42u, 42v, 42w are connected to the FET drive circuit 82 through through holes in the power region 23, the wiring can be shortened. There can be reduced noise.
  • the first buffer member 6a is disposed in the portion 1021 of the resin case 102 where the smoothing capacitors 6u, 6v, 6w are disposed, and the noise filter 2 of the resin case 102 is disposed.
  • the second buffer member 2a is disposed in the portion 1022, and the smoothing capacitors 6u, 6v, 6w and the noise filter 2 are disposed in the predetermined portions 1021, 1022 of the resin case 102, and the smoothing capacitors 6u, 6v, 6w, the height of the noise filter 2 in the axial direction, and the terminal position are determined. Spaces are secured between the upper surfaces of the smoothing capacitors 6u, 6v, 6w and the resin case 102 in consideration of opening of the explosion-proof valve.
  • one end of the power connector 11 constituting the connecting portion with the battery 1 as an external power source and the input end 211 of the noise filter 2 are connected.
  • the connection may be welding, soldering, screwing, or press fitting.
  • the other end of the power connector 11 is connected to a connector (not shown) of the battery 1 that is an external power source.
  • the third buffer member 24 is inserted into the resin case 102.
  • the third buffer member 24 only needs to reduce the thermal resistance of the heat sink 22 and the metal casing 101 as a heat sink, and may be arranged in a ring shape or may be partially arranged.
  • the smoothing capacitors 6u, 6v, 6w and the lead wire of the noise filter 2 are passed through a predetermined through-hole provided in the integrated multilayer substrate 200 and soldered in advance to the power region 23 of the integrated multilayer substrate 200.
  • This connecting portion may be welded, soldered, screwed, or press fit.
  • the through-through hole provided in the integrated multilayer substrate 200 is provided through the control region 21, the heat sink 22 and the power region 23, and the through-through hole provided only in the control region described above. It is a separate body from the through hole provided only in the power region.
  • the smoothing capacitors 6u, 6v, 6w and the terminals of the noise filter 2 are connected to the integrated multilayer substrate 200 to which the L-shaped terminal 4b is soldered in advance, but the L-shaped terminal 4b is not provided. Alternatively, it may be soldered directly to the land of the integrated multilayer substrate 200.
  • the metal casing 101 and the resin case 102 are bonded so that the metal casing 101 and the heat dissipation plate of the integrated multilayer substrate 200 are in contact with each other.
  • the metal casing 101 as the heat sink and the resin case 102 may be joined by an adhesive, screwing, or press fitting.
  • the resin case 102 fixes the heat radiating plate 22 of the integrated multilayer substrate 200 so that the heat radiating plate 22 and the metal casing 101 are in contact with each other.
  • manufacturing tolerances actually occur.
  • the integrated multilayer substrate 200 cannot be held by the metal casing 101, and the contact thermal resistance between the heat sink 22 and the metal casing 101 increases.
  • the resin case 102 and the metal casing 101 are inserted into the heat sink 22 and the metal by inserting the third buffer member 24 between the extended portion 221 of the heat sink 22 and the resin case 102.
  • the resin case 102 is obtained by compressing and contracting the third buffer member 24 after ensuring the contact between the heat radiating plate 22 and the metal casing 101 without contacting the casing 101 before contacting the casing 101.
  • the metal casing 101 can be joined.
  • One end face (upper end face in the figure) of the smoothing capacitors 6u, 6v, 6w and the inner face of the resin case 102 are fixed and / or one end face in the axial direction of the noise filter 2 (see FIG.
  • the integrated multilayer substrate 200 and the smoothing capacitors 6u, 6v, 6w are connected. And / or a connection portion between the integrated multilayer substrate 200 and the noise filter 2 is stressed.
  • the second buffer member 2a is inserted between the inner surface of the resin case 102 and one end surface (the upper end surface in the figure) of the noise filter 2 in the axial direction.
  • the first buffer member 6a between the inner surface of the resin case 102 and one end face (upper end face in the figure) of the smoothing capacitors 6u, 6v, 6w in the axial direction, the resin case 102 and the metal casing 101 are inserted.
  • the reaction force of the second buffer member 2 a and the first buffer member 6 a is greater than the reaction force of the third buffer member 24 inserted between the resin case 102 and the extending portion 221 of the heat sink 22. It is preferable to select materials for the second buffer member 2a, the first buffer member 6a, and the third buffer member 24 so as to be smaller. Thereby, there is an effect that the above-described stress can be further alleviated.
  • the first buffer member 6a is structured so that air can easily escape, so that the explosion-proof valve provided on one end surface (upper end surface in the figure) of the smoothing capacitors 6u, 6v, 6w in the axial direction is opened. Air in the space is easily removed.
  • FIG. 3 is a schematic cross-sectional view showing the layer configuration of the power region of the integrated multilayer substrate in the electric power steering driving apparatus according to Embodiment 1 of the present invention.
  • the power region 23 is constituted by a five-layered multilayer substrate, but the present invention is not limited to this.
  • the power region 23 includes a first layer 231 as a surface layer, a second layer 232 provided below the first layer 231 via the prepreg 23a, and a first layer 231 via the prepreg 23a.
  • the third layer 233 provided below the second layer 232, the fourth layer 234 provided below the third layer 233 via the prepreg 23a, and the fourth layer 234 via the prepreg 23a.
  • a prepreg 23 a provided between the fifth layer 235 and one surface of the heat sink 22.
  • the first to fifth layers 231 to 235 are each made of a copper plate.
  • the prepreg 23a is made of a material that electrically insulates the first to fifth layers 231 to 235 and electrically separates between the fifth layer 235 and the radiator plate 22. Yes.
  • the aforementioned prepreg 23a is configured by impregnating carbon fiber or the like with a resin, for example.
  • the first layer 231 as the surface layer includes smoothing capacitors 6u, 6v, 6w, a noise filter 2, high potential side FETs 41u, 41v, 41w as power switching elements, low potential side FETs 42u, 42v, 42w, a shunt resistor 7u, 7v, 7w, and the rotation sensor 84 are connected.
  • the second layer 232 as the second layer and the third layer 233 as the third layer include an upper arm and a lower arm of each phase of the three-phase bridge circuit 4, and a motor relay in the motor relay unit 5.
  • a wiring pattern for connecting the FETs 5u, 5v, and 5w is formed.
  • a wiring pattern from the power supply relay unit 3 to the positive side of the smoothing capacitors 6u, 6v, 6w is formed.
  • a wiring pattern from the power supply relay unit 3 to the negative side of the smoothing capacitors 6u, 6v, 6w is formed.
  • a copper pin 4a1 which is a heat transfer member formed of a material having a good thermal conductivity such as copper, is disposed immediately below each of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w.
  • the end surface of the copper pin 4a1 is in direct contact with one surface (the lower surface in the figure) of the side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w.
  • the copper pin 4a1 penetrates through the first layer 231, the second layer 232, the third layer 234, and the fifth layer 235, and reaches the surface of the fifth layer on the side of the heat sink 22 side. .
  • the copper pin 4a1 conducts heat generated by the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w to the heat radiating plate 22.
  • normal thermal vias may be used.
  • the prepreg 23a inserted between the fifth layer 235 as the fifth layer and the heat sink 22 is formed of a prepreg thinner than the prepreg 23a inserted between the other layers.
  • the thermal resistance between the copper pin 4a1 and the heat sink 22 can be lowered, and the temperature rise of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w can be effectively suppressed.
  • the high-potential side FETs 41u, 41v, 41w and the low-potential side FETs 42u, 42v, 42w have a tendency to increase the on-resistance when the temperature rises. Loss can be reduced.
  • the copper pin 4a1 is configured to protrude in the direction of the heat radiating plate 22 from the surface on the heat radiating plate 22 side of the fifth layer 235 which is the fifth layer in a state where insulation is ensured, the same heat dissipation as described above. An effect is obtained.
  • the prepreg 23a inserted between the fifth layer 235 of the fifth layer and the heat radiating plate 22 is formed of a material having high thermal conductivity. As a result, the thermal resistance can be further lowered, the temperature rise can be suppressed, and the heat generation in the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w can be reduced. .
  • the in-vehicle various sensor connectors 12 connected to the in-vehicle various sensors 14 and the torque sensor connector 13 connected to the torque sensor 15 are connected to the integrated multilayer substrate 200, but in that case, are connected to the power region 23.
  • the control area surface-mounted component may be connected to the control area 21.
  • FIG. 4 is a plan view of a resin case in the electric power steering driving apparatus according to Embodiment 1 of the present invention, and includes a power connector 11 connected to the battery 1 and an in-vehicle connected to various in-vehicle sensors 14. An arrangement of various sensor connectors 12 and a torque sensor connector 13 connected to the torque sensor 15 is shown. As shown in FIG. 4, the power connector 11 is arranged in the vicinity of the top of one semicircular portion of the resin case 102, and the various in-vehicle sensor connectors 12 and the torque sensor connector 13 are arranged in the other semicircle of the resin case 102. It is arrange
  • connection between the stator 91 of the electric motor 9 and the integrated multilayer substrate 200 is performed by connecting the soldered L-shaped terminal 4b to the power region 23 of the integrated multilayer substrate 200 in advance.
  • the connection may be made by welding, screwing, or press-fit in addition to soldering.
  • the heat sink 22 can also be used for grounding (GND) of the integrated multilayer substrate 200. Since the extended portion 221 of the heat radiating plate 22 is in direct contact with the metal housing 101, it is not necessary to use a connector or a lead wire to connect the heat radiating plate 22 and the metal housing 101, and noise is reduced. Can do.
  • GND grounding
  • a part of the metal casing 101 as a heat sink is brought into contact with the first layer 231 that is a surface layer of the power region 23 via a heat dissipation sheet made of an insulating material, thereby parasitic resistance of the wiring.
  • the heat due to the loss generated in the heat can be dissipated, and the temperature rise of the wiring pattern can be suppressed.
  • the electric power steering drive apparatus can realize a low loss of the electronic control unit and can effectively use the mounting surface of the board.
  • the electric power steering drive device can be reduced in size.
  • FIG. 5 is a schematic cross-sectional view showing a configuration of an electric power steering driving apparatus according to Embodiment 2 of the present invention.
  • the circuit configuration of the electric power steering driving apparatus according to the second embodiment of the invention is the same as that shown in FIG.
  • the same reference numerals are given to components that are the same as or equivalent to the configuration shown in FIG. 2.
  • the description will focus on the parts related to the second embodiment.
  • the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w are respectively formed on the first layer 231 that is the surface layer of the power region 23 in the integrated multilayer substrate 200.
  • the copper pin 4a1 is brought into contact with one surface of the high-potential side FETs 41u, 41v, 41w and the low-potential side FETs 42u, 42v, 42w, and heat is radiated to the heat radiating plate 22 through the copper pins 4a1.
  • the high-potential side FETs 41u, 41v, 41w and the low-potential side FETs 42u, 42v, 42w are configured to dissipate heat.
  • one surface (the lower surface in the figure) of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w is a convex portion of the metal casing 101 as a heat sink.
  • the other surface (the upper surface in the figure) directly contacts the first layer 231 that is the surface layer of the power region 23 of the integrated multilayer substrate 200. ing. Therefore, one surface of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w is radiated to the metal casing 101 via the heat radiating sheet 4e, and the other surface is one via the copper pin 4a1.
  • the heat is dissipated by the heat radiating plate 22 of the body-type multilayer substrate 200, and is cooled more effectively. Normally, placing a heat sink on the upper surface of the power switching element becomes a noise source. In this configuration, since the power region 23 and the metal casing 101 face each other, the noise is low because the power switching element is brought into contact with the convex portion of the metal casing 101 that is grounded (GND).
  • the electric power steering driving apparatus embodies at least one of the following inventions.
  • An electric motor that generates an auxiliary torque corresponding to a steering torque that a driver applies to a steering system of a vehicle, and a control unit that controls driving of the electric motor, and the driver's steering is controlled by the auxiliary torque.
  • the electric motor includes a metal casing fixed to an end portion in the axial direction thereof,
  • the control unit is A power conversion circuit that has a plurality of power switching elements, and converts DC power from a DC power source mounted in the vehicle into AC power based on the switching operation of the power switching elements and supplies the AC power to the electric motor;
  • a control unit for controlling the switching operation of the power switching element;
  • the multilayer substrate is A heat sink, A first region fixed to the first surface of the heat sink and at least mounted with the power switching element; A second region that is fixed to a second surface having a front-back relationship with the first surface of the heat radiating plate and on which at least a part of members constituting the control unit is mounted.
  • the heat sink is An extending portion that is exposed from at least one of the first region and the second region and extends in a direction in which the surface of the heat sink extends;
  • the extension portion is fixed to the metal casing so that at least a part thereof directly contacts the metal casing.
  • the first region and the second region each include a plurality of layers provided with wiring patterns
  • the power switching element mounted in the first region is wired by the wiring pattern provided in the layer of the first region
  • At least a part of members constituting the control unit mounted in the second region is wired by the wiring pattern provided in the layer of the second region
  • the thickness dimension of the wiring pattern provided in at least one layer of the first region is different from the thickness dimension of the wiring pattern provided in at least one layer of the second region.
  • the electric power steering drive device according to (1) above, wherein According to the present invention, it is possible to increase the thickness of the copper layer on the surface layer of the power region, so that the loss in the wiring can be reduced.
  • the power switching element is placed on a surface layer of the plurality of layers in the first region,
  • the first region includes a heat transfer member disposed through the plurality of layers,
  • the heat transfer member is configured to transmit heat generated by the power switching element to the heat radiating plate.
  • the power switching element is configured such that a surface opposite to a surface facing the multilayer substrate is in contact with the metal casing.
  • the electric power steering drive device according to any one of (1) to (3) above, wherein: According to the present invention, the power switching element can be cooled very effectively.
  • the first region and the second region of the multilayer substrate are respectively A plurality of layers having wiring patterns; A prepreg disposed between the plurality of layers, The prepreg in the first region has a thermal conductivity higher than the thermal conductivity of the prepreg in the second region;
  • the electric power steering driving apparatus according to any one of (1) to (4) above, wherein: According to the present invention, the power switching element can be cooled more effectively.
  • An insulating cover that is fixed to the metal casing and covers at least the multilayer substrate,
  • the multilayer substrate is mounted with a smoothing capacitor and a noise filter of the power conversion circuit,
  • the cover is configured to cover the smoothing capacitor and the noise filter, and is in contact with the smoothing capacitor through a first buffer member, and is in contact with the noise filter through a second buffer member. Configured, The extending portion of the multilayer substrate is exposed from both the first region and the second region and extends in a direction in which the surface of the heat sink extends.
  • the extension portion is inserted between the metal casing and the cover, One surface of the extension part abuts on the cover via a third buffer member, The other surface forming a front-back relationship with the one surface of the extending portion is configured to directly contact the metal housing.
  • the electric power steering drive device according to any one of (1) to (5) above, wherein: According to the present invention, it is possible to relieve stress at the connection portion between the smoothing capacitor and the multilayer substrate and at the connection portion between the noise filter and the multilayer substrate.
  • the reaction force against the compression of the first buffer member and the reaction force against the compression of the second buffer member are configured to be smaller than the reaction force against the compression of the third buffer member.
  • the FET as the power switching element is configured to be able to dissipate heat from both sides, and the low-loss electric power steering is A drive device can be provided.
  • the present invention is not limited to the electric power steering drive device according to the first and second embodiments described above, and the configurations of the first and second embodiments may be combined as appropriate without departing from the spirit of the present invention. It is possible to add a part of the configuration or to omit a part of the configuration.
  • the present invention can be used in the field of electric power steering devices, and in the field of vehicles such as automobiles using the electric power steering device.
  • 100 electric power steering drive device 200 integrated multilayer board, 21 control area, 22 heat sink, 221 extension part, 23 power area, 1 battery, 2 noise filter, 3 power relay part, 31, 32 power relay FET, 4 3-phase bridge circuit, 5 motor relay section, 5u, 5v, 5w motor relay FET, 6u, 6v, 6w smoothing capacitor, 7u, 7v, 7w shunt resistor, 8 control board, 9 electric motor, 91 stator, 92 Rotor, 31 and 32, power relay FET, 6a, first buffer member, 2a, second buffer member, 24, third buffer member, 4e heat dissipation sheet, 11 power connector, 12 vehicle side signal connector, 13 for torque sensor Connector, 14 Vehicle side signal, 15 Torque sensor, 20 Electronic control unit 101, metal casing, 102 resin case, 4b, L-shaped terminal, 84 rotation sensor, 81 microcomputer, 82 FET drive circuit, 83 current detection means, 100 electric power steering drive, 41u, 41v, 41w high potential side FET , 42u, 42v,

Abstract

A multilayer substrate provided in this electric power steering drive device is provided with: a heat radiating plate; a first region which is fixed to a first surface of the heat radiating plate and to which a power switching element is mounted; and a second region which is fixed to a second surface of the heat radiating plate and to which a portion of a member constituting a control part is mounted. The heat radiating plate has an extending part that comes into direct contact with a metal housing.

Description

電動パワーステアリング駆動装置Electric power steering drive device
 この発明は、電動モータの回転力によって車両の操舵装置にアシスト力を付与する電動パワーステアリングの駆動装置に関するものである。 The present invention relates to a drive device for an electric power steering that applies an assist force to a vehicle steering device by the rotational force of an electric motor.
 周知のように、電動パワーステアリング駆動装置は、車両のハンドルに加えられた運転者の操舵トルクに応じた補助トルクを発生する電動モータと、この電動モータを駆動する電子制御ユニットとを備える。電子制御ユニットは、電動モータに電力を供給するパワースイッチング素子で構成された電力変換装置と、パワースイッチング素子を制御する制御回路とを備えており、電動モータに一体に固定される。 As is well known, the electric power steering drive device includes an electric motor that generates an auxiliary torque corresponding to the steering torque of the driver applied to the steering wheel of the vehicle, and an electronic control unit that drives the electric motor. The electronic control unit includes a power conversion device configured by a power switching element that supplies power to the electric motor and a control circuit that controls the power switching element, and is fixed integrally to the electric motor.
 特許文献1に開示された従来の電動パワーステアリング駆動装置に於ける電子制御ユニットは、電力変換装置のパワースイッチング素子を収納したパワーモジュールと、パワースイッチング素子を制御する制御回路とが別体で構成されており、別体で構成されたパワーモジュールと制御回路は、コネクタ及び接続端子を用いて電気的に接続されている。 The electronic control unit in the conventional electric power steering drive device disclosed in Patent Document 1 is composed of a power module housing the power switching element of the power converter and a control circuit for controlling the power switching element as separate components. The power module and the control circuit configured separately are electrically connected using a connector and a connection terminal.
 一方、特許文献2に開示された従来の電動パワーステアリング駆動装置に於ける電子制御ユニットは、パワースイッチング素子を収納したパワーモジュールと制御回路とを1枚の多層基板を用いて一体に構成されている。より詳しく述べれば、樹脂製の一枚の基板の両面、つまり基板の互いに表裏の関係を成す一方の面と他方の面に、パワースイッチング素子が夫々配置され、その基板の同一面に電力変換装置のパワースイッチング素子と制御回路の部品とが混在して配置される構成とされている。そして、パワースイッチング素子と制御回路の部品は、基板に設けられた銅等の導電材料からなる配線パターンにより電気的に接続される。従って、パワースイッチング素子と制御回路の部品とを電気的に接続するためのコネクタや接続端子等の接続部材は不要とされる。 On the other hand, the electronic control unit in the conventional electric power steering drive device disclosed in Patent Document 2 is configured by integrating a power module containing a power switching element and a control circuit using a single multilayer board. Yes. More specifically, power switching elements are respectively disposed on both surfaces of a single resin substrate, that is, on one surface and the other surface of the substrate, and the power conversion device is disposed on the same surface of the substrate. The power switching element and the control circuit component are mixedly arranged. The power switching element and the control circuit components are electrically connected by a wiring pattern made of a conductive material such as copper provided on the substrate. Therefore, a connection member such as a connector or a connection terminal for electrically connecting the power switching element and the control circuit component is not required.
特開2015-134598号公報JP2015-134598A 特開2014-34229号公報JP 2014-34229 A
 特許文献1に開示された従来の電動パワーステアリング駆動装置は、前述のようにパワーモジュールと制御回路とが別体で構成されているので、これ等を電気的に接続するためのコネクタや接続端子等の接続部材が必要となり、装置の小型化、省スペース化の支障となる。 In the conventional electric power steering drive device disclosed in Patent Document 1, since the power module and the control circuit are configured separately as described above, a connector and a connection terminal for electrically connecting them. A connecting member such as the above is required, which hinders downsizing and space saving of the apparatus.
 一方、特許文献2に開示された従来の電動パワーステアリング駆動装置は、比較的大電流が流れるパワースイッチング素子と比較的小電流が流れる制御回路の部品とが基板の同一面に混在して配置され、これ等が基板に設けられた配線パターンにより電気的に接続されているので、これ等を電気的接続するためのコネクタや接続端子等の接続部材を必要としない。しかしながら、通常、制御回路には端子幅がパワー系の部品の端子幅と比較して狭ピッチに構成された部品が存在しており、この狭ピッチの端子幅を有する部品の配線を行う配線パターンは、狭ピッチであるが故に厚みを大きくすることが望まれるものの基板としての制約を受けて所定値以上に厚みを大きくすることができず、従って、配線抵抗の低減には限界があり配線での発熱が大きくなるという課題があった。 On the other hand, in the conventional electric power steering driving device disclosed in Patent Document 2, a power switching element through which a relatively large current flows and a control circuit component through which a relatively small current flows are arranged on the same surface of the substrate. Since these are electrically connected by the wiring pattern provided on the substrate, connection members such as connectors and connection terminals for electrically connecting them are not required. However, there are usually parts in the control circuit whose terminal width is narrower than the terminal width of power-related parts, and the wiring pattern for wiring the parts having this narrow-pitch terminal width. Although it is desired to increase the thickness because of the narrow pitch, the thickness cannot be increased beyond a predetermined value due to restrictions on the substrate, and therefore there is a limit to reducing the wiring resistance. There was a problem that the heat generation of the was increased.
 又、前述の基板は通常、基板を貫通するスルーホールを有する多層基板で構成されており、そのスルーホールの影響を受けて、基板の一方の面に対して裏面となる他方の面に部品の実装が不可能となる領域が発生し、従って基板の一方の面に多くの部品が実装される結果、その一方の面に於ける部品実装面積が減少するのを避けるために基板の外形寸法を大きくせざるを得ないという課題があった。 Further, the above-mentioned board is usually composed of a multilayer board having a through-hole penetrating the board, and under the influence of the through-hole, a component is placed on the other side which is the back side with respect to one side of the board. In order to avoid reducing the component mounting area on one side of the board as a result of an area where mounting is impossible, and so many parts are mounted on one side of the board, There was a problem that it had to be enlarged.
 更に、前述の基板に於けるスルーホールは、銅板等で形成された配線パターンの厚さが大きくなるにつれて、穴径が大きくなるため、パワースイッチング素子を有するパワー系と制御回路を有する制御系を別邸で構成した場合には制御系の基板のスルーホールの穴径を比較的小さくできるのに対して、パワー系と制御系とを一枚の基板に一体の構成する場合には、パワー系が必要とする比較的大きな穴径のスルーホールが必要となり、基板に於ける制御系の部品の実装面積が減少することを避けるためには、基板の寸法を大きくせざるを得ないという課題があった。 Furthermore, since the hole diameter of the through hole in the substrate increases as the thickness of the wiring pattern formed of a copper plate or the like increases, a power system having a power switching element and a control system having a control circuit are provided. When configured in a separate residence, the hole diameter of the through hole of the control system board can be made relatively small, whereas when the power system and the control system are configured integrally on a single board, the power system is In order to avoid a reduction in the mounting area of the control system components on the board, which requires a relatively large hole diameter, there is a problem that the board size must be increased. It was.
 この発明は、従来の電動パワーステアリング駆動装置に於ける前述のような課題を解決するためになされたものであり、小型で低損失な電子制御ユニットを備えた電動パワーステアリングを提供することを目的としている。 The present invention has been made to solve the above-mentioned problems in the conventional electric power steering driving apparatus, and an object thereof is to provide an electric power steering equipped with a small and low loss electronic control unit. It is said.
 この発明による電動パワーステアリング駆動装置は、
 運転者が車両の操舵系に加える操舵トルクに対応した補助トルクを発生する電動モータと、前記電動モータの駆動を制御する制御ユニットとを備え、前記運転者の操舵を前記補助トルクにより補助するようにした電動パワーステアリング駆動装置であって、
 前記電動モータは、その軸方向の端部に固定された金属筐体を備え、
 前記制御ユニットは、
 複数のパワースイッチング素子を有し、前記パワースイッチング素子のスイッチング動作に基づいて、前記車両に搭載された直流電源からの直流電力を交流電力に変換して前記電動モータに供給する電力変換回路と、
 前記パワースイッチング素子のスイッチング動作を制御する制御部と、
 前記電力変換回路と前記制御部とを構成する部材のうちの少なくとも一部を搭載した多層基板と、を有し、
 前記多層基板は、
 放熱板と、
 前記放熱板の第1の面に固定され、少なくとも前記パワースイッチング素子が搭載された第1の領域と、
 前記放熱板の前記第1の面に対して表裏の関係をなす第2の面に固定され、前記制御部を構成する部材のうちの少なくとも一部が搭載された第2の領域と、を有し、
 前記放熱板は、
 前記第1の領域と前記第2の領域とのうちの少なくとも一方から露出して前記放熱板の面の延びる方向に延出された延出部を有し、
 前記延出部は、その少なくとも一部が前記金属筐体に直接当接するように前記金属筐体に固定されている、
ことを特徴とする。
The electric power steering drive device according to the present invention is:
An electric motor for generating an auxiliary torque corresponding to a steering torque applied to the steering system of the vehicle by the driver, and a control unit for controlling the driving of the electric motor, and assisting the driver with the auxiliary torque. An electric power steering drive device,
The electric motor includes a metal casing fixed to an end portion in the axial direction thereof,
The control unit is
A power conversion circuit that has a plurality of power switching elements, and converts DC power from a DC power source mounted in the vehicle into AC power based on the switching operation of the power switching elements and supplies the AC power to the electric motor;
A control unit for controlling the switching operation of the power switching element;
A multilayer board on which at least a part of members constituting the power conversion circuit and the control unit is mounted;
The multilayer substrate is
A heat sink,
A first region fixed to the first surface of the heat sink and at least mounted with the power switching element;
A second region that is fixed to a second surface having a front-back relationship with the first surface of the heat radiating plate and on which at least a part of members constituting the control unit is mounted. And
The heat sink is
An extending portion that is exposed from at least one of the first region and the second region and extends in a direction in which the surface of the heat sink extends;
The extension portion is fixed to the metal casing so that at least a part thereof directly contacts the metal casing.
It is characterized by that.
 この発明による電動パワーステアリング駆動装置によれば、前記制御ユニットは、複数のパワースイッチング素子を有し、前記パワースイッチング素子のスイッチング動作に基づいて、前記車両に搭載された直流電源からの直流電力を交流電力に変換して前記電動モータに供給する電力変換回路と、前記パワースイッチング素子のスイッチング動作を制御する制御部と、前記電力変換回路と前記制御部とを構成する部材のうちの少なくとも一部を搭載した多層基板とを有し、前記多層基板は、放熱板と、前記放熱板の第1の面に固定され、少なくとも前記パワースイッチング素子が搭載された第1の領域と、前記放熱板の前記第1の面に対して表裏の関係をなす第2の面に固定され、前記制御部を構成する部材のうちの少なくとも一部が搭載された第2の領域と、を有し、前記放熱板は、前記第1の領域と前記第2の領域とのうちの少なくとも一方から露出して前記放熱板の面の延びる方向に延出された延出部を有し、前記延出部は、その少なくとも一部が前記金属筐体に直接当接するように前記金属筐体に固定されているので、電子制御ユニットを低損失化することができ、また、多層基板に於ける実装面積を大きくすることができるため小型化することが可能な電動パワーステアリングの駆動装置をえることができる。 According to the electric power steering driving apparatus according to the present invention, the control unit has a plurality of power switching elements, and based on the switching operation of the power switching elements, the DC power from the DC power source mounted on the vehicle is obtained. At least a part of a power conversion circuit that converts AC power to supply to the electric motor, a control unit that controls a switching operation of the power switching element, and members that configure the power conversion circuit and the control unit The multilayer substrate is fixed to the first surface of the heat dissipation plate, at least a first region where the power switching element is mounted, and the heat dissipation plate. At least a part of the members constituting the control unit is fixed to a second surface that has a front-back relationship with the first surface. The heat sink is exposed from at least one of the first region and the second region and extends in a direction in which the surface of the heat sink extends. Since the extension part is fixed to the metal casing so that at least a part of the extension part directly contacts the metal casing, the loss of the electronic control unit can be reduced. In addition, since the mounting area on the multilayer substrate can be increased, an electric power steering drive device that can be miniaturized can be obtained.
この発明の実施の形態1による電動パワーステアリング駆動装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the electric power steering drive device by Embodiment 1 of this invention. この発明の実施の形態1による電動パワーステアリング駆動装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electric power steering drive device by Embodiment 1 of this invention. この発明の実施の形態1による電動パワーステアリング駆動装置に於ける、一体型多層基板のパワー領域の層構成を示す概略断面図である。It is a schematic sectional drawing which shows the layer structure of the power area | region of an integrated multilayer substrate in the electric power steering drive device by Embodiment 1 of this invention. この発明の実施の形態1による電動パワーステアリング駆動装置に於ける、樹脂ケースの平面図である。It is a top view of the resin case in the electric power steering drive device by Embodiment 1 of this invention. この発明の実施の形態2による電動パワーステアリング駆動装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electric power steering drive device by Embodiment 2 of this invention.
実施の形態1.
 以下、この発明の実施の形態1による電動パワーステアリング駆動装置について、図を用いて説明する。図1は、この発明の実施の形態1による電動パワーステアリング駆動装置の回路構成を示すブロック図である。図1では、パワースイッチング素子としてn型MOSFET(Metal-Oxide-Semiconductor FIELD-EFFECT-Transistor)を用いた場合の構成例を示しており、n型MOSFETに並列接続された還流ダイオードはボディーダイオードを示しているが、これに限定するものではない。
Embodiment 1 FIG.
Hereinafter, an electric power steering driving apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a block diagram showing a circuit configuration of an electric power steering driving apparatus according to Embodiment 1 of the present invention. Fig. 1 shows a configuration example when an n-type MOSFET (Metal-Oxide-Semiconductor FIELD-EFFECT-Transistor) is used as a power switching element, and the free-wheeling diode connected in parallel to the n-type MOSFET indicates a body diode. However, it is not limited to this.
 図1に於いて、電動パワーステアリング駆動装置100は、電動モータ9と、電子制御ユニット20とを備えている。電動パワーステアリング駆動装置100は、電源コネクタ11を介して車両に搭載されたバッテリ1に電気的に接続され、車載各種センサ用コネクタ12を介して車両側から車両の走行速度信号等の車載各種センサ14が入力され、トルクセンサ用コネクタ13を介してトルクセンサ15からの操舵トルク信号が入力される。
トルクセンサは、車両のステアリングシャフト等に設けられ、運転者による操舵トルクを検出し、操舵トルク信号を出力する。
In FIG. 1, the electric power steering drive device 100 includes an electric motor 9 and an electronic control unit 20. The electric power steering drive device 100 is electrically connected to the battery 1 mounted on the vehicle via the power connector 11, and various in-vehicle sensors such as a vehicle running speed signal from the vehicle side via the in-vehicle various sensor connector 12. 14 is input, and a steering torque signal from the torque sensor 15 is input via the torque sensor connector 13.
The torque sensor is provided on a steering shaft or the like of the vehicle, detects steering torque by the driver, and outputs a steering torque signal.
 電動モータ9は、3相ブラシレスモータで、例えば永久磁石からなる界磁磁極を備えた回転子92と、U相、V相、W相からなる三相電機子巻線を有する固定子91を備えている。図1では、電機子巻線をΔ結線で示しているがY結線でも良い。尚、ブラシレスモータは一例であって、誘導機であっても良い。 The electric motor 9 is a three-phase brushless motor, and includes, for example, a rotor 92 having field magnetic poles made of permanent magnets, and a stator 91 having three-phase armature windings made of U, V, and W phases. ing. In FIG. 1, the armature winding is indicated by Δ connection, but it may be Y connection. The brushless motor is an example, and may be an induction machine.
 電動モータ9の回転子92の回転角(電動モータの回転角と称する場合もある)は、電子制御ユニット20によって検出される。3相ブラシレスモータである電動モータ9の回転子92は、前述のように永久磁石で構成された界磁磁極を備えており、後述するように電子制御ユニット20は、その界磁磁極の動きを回転センサ84で検出することができる。回転センサ84は、磁気センサ、又はレゾルバにより構成されている。 The rotation angle of the rotor 92 of the electric motor 9 (sometimes referred to as the rotation angle of the electric motor) is detected by the electronic control unit 20. The rotor 92 of the electric motor 9, which is a three-phase brushless motor, includes a field magnetic pole made of a permanent magnet as described above. As will be described later, the electronic control unit 20 controls the movement of the field magnetic pole. It can be detected by the rotation sensor 84. The rotation sensor 84 is configured by a magnetic sensor or a resolver.
 電子制御ユニット20は、ノイズフィルタ2と、バッテリ電流を通電、遮断するスイッチ手段である電源リレー部3と、電力変換回路を構成する3相ブリッジ回路4と、3相ブリッジ回路4の後述するU相アームとV相アームとW相アームに夫々並列接続された平滑コンデンサ6u、6v、6wと、電動モータ9への電流を通電、遮断するスイッチ手段であるモータリレー部5と、電動モータ9の電機子巻線流れる電流を検出するためのシャント抵抗回路7と、マイクロコンピュータ81と、FET駆動回路82と、電流検出手段83と、回転センサ84と、を備えている。シャント抵抗回路7は、後述するシャント抵抗7u、7v、7wを備える。 The electronic control unit 20 includes a noise filter 2, a power supply relay unit 3 that is a switch unit that supplies and cuts off battery current, a three-phase bridge circuit 4 that constitutes a power conversion circuit, and a U-phase described later of the three-phase bridge circuit 4 Smoothing capacitors 6u, 6v, 6w connected in parallel to the phase arm, the V-phase arm and the W-phase arm, the motor relay unit 5 which is a switch means for energizing and interrupting the current to the electric motor 9, and the electric motor 9 A shunt resistor circuit 7 for detecting the current flowing through the armature winding, a microcomputer 81, an FET drive circuit 82, a current detection means 83, and a rotation sensor 84 are provided. The shunt resistor circuit 7 includes shunt resistors 7u, 7v, and 7w described later.
 3相ブリッジ回路4は、直列接続されたU相上アームとU相下アームとからなるU相アームと、直列接続されたV相上アームとV相下アームとからなるV相アームと、直列接続されたW相上アームとW相下アームとからなるW相アームとを有している。高電位側であるU相上アーム、V相上アーム、及びW相上アームには、パワースイッチング素子としての高電位側FET41u、41v、41wが夫々接続されており、低電位側であるU相下アーム、V相下アーム、及びW相下アームには、パワースイッチング素子としての低電位側FET42u、42v、42wが夫々接続されている。 The three-phase bridge circuit 4 includes a U-phase arm composed of a U-phase upper arm and a U-phase lower arm connected in series, a V-phase arm composed of a V-phase upper arm and a V-phase lower arm connected in series, It has a W-phase arm composed of a connected W-phase upper arm and a W-phase lower arm. High- potential side FETs 41u, 41v, and 41w as power switching elements are connected to the U-phase upper arm, V-phase upper arm, and W-phase upper arm on the high potential side, respectively, and the U-phase on the low potential side Low- potential side FETs 42u, 42v, and 42w as power switching elements are connected to the lower arm, the V-phase lower arm, and the W-phase lower arm, respectively.
 高電位側FET41uは、U相上アームとU相下アームとの接続点から導出されているU相出力線ULと正極側入力線PLとの間を開閉する。高電位側FET41vは、V相上アームとV相下アームとの接続点から導出されているV相出力線VLと正極側入力線PLとの間を開閉する。高電位側FET41wは、W相上アームとW相下アームとの接続点から導出されているW相出力線WLと正極側入力線PLとの間を開閉する。低電位側FET42uは、U相出力線ULと負極側入力線NLとの間を開閉する。低電位側FET42vは、V相出力線VLと負極側入力線NLとの間を開閉する。低電位側FET42wは、W相出力線WLと負極側入力線NLとの間を開閉する。 The high potential side FET 41u opens and closes between the U phase output line UL and the positive side input line PL derived from the connection point between the U phase upper arm and the U phase lower arm. The high-potential side FET 41v opens and closes between the V-phase output line VL and the positive-side input line PL derived from the connection point between the V-phase upper arm and the V-phase lower arm. The high-potential side FET 41w opens and closes between the W-phase output line WL and the positive-side input line PL derived from the connection point between the W-phase upper arm and the W-phase lower arm. The low potential side FET 42u opens and closes between the U-phase output line UL and the negative side input line NL. The low potential side FET 42v opens and closes between the V phase output line VL and the negative side input line NL. The low potential side FET 42w opens and closes between the W phase output line WL and the negative side input line NL.
 U相の高電位側FET41uの負極側と低電位側FET42uの正極側が接続され、その接続部に接続されたU相出力線ULがモータリレー部5のU相のモータリレー用FET5uの基準電位側に接続されており、モータリレー用FET5uの他端は、電動モータ9の固定子91に於けるU相巻線端子UTに接続されている。低電位側FET42uの負極側とシャント抵抗7uの一端が接続されており、シャント抵抗7uの他端は平滑コンデンサ6uの負極側に接続されている。 The negative phase side of the U-phase high potential side FET 41u and the positive side of the low potential side FET 42u are connected, and the U phase output line UL connected to the connection portion is the reference potential side of the U phase motor relay FET 5u of the motor relay unit 5 The other end of the motor relay FET 5u is connected to the U-phase winding terminal UT in the stator 91 of the electric motor 9. The negative electrode side of the low potential side FET 42u and one end of the shunt resistor 7u are connected, and the other end of the shunt resistor 7u is connected to the negative electrode side of the smoothing capacitor 6u.
 V相の高電位側FET41vの負極側と低電位側FET42vの正極側が接続され、その接続部に接続されたV相出力線VLがモータリレー部5のV相のモータリレー用FET5vの基準電位側に接続されており、モータリレー用FET5vの他端は、電動モータ9の固定子91に於けるV相巻線端子VTに接続されている。低電位側FET42vの負極側とシャント抵抗7vの一端が接続されており、シャント抵抗7vの他端は平滑コンデンサ6vの負極側に接続されている。 The negative phase side of the V phase high potential side FET 41v and the positive side of the low potential side FET 42v are connected, and the V phase output line VL connected to the connection portion is the reference potential side of the V phase motor relay FET 5v of the motor relay portion 5 The other end of the motor relay FET 5v is connected to the V-phase winding terminal VT in the stator 91 of the electric motor 9. The negative electrode side of the low potential side FET 42v and one end of the shunt resistor 7v are connected, and the other end of the shunt resistor 7v is connected to the negative electrode side of the smoothing capacitor 6v.
 W相の高電位側FET41wの負極側と低電位側FET42wの正極側が接続され、その接続部に接続されたW相出力線WLがモータリレー部5のW相のモータリレー用FET5wの基準電位側に接続されており、モータリレー用FET5wの他端は、電動モータ9の固定子91に於けるW相巻線端子WTに接続されている。低電位側FET42wの負極側とシャント抵抗7wの一端が接続されており、シャント抵抗7wの他端は平滑コンデンサ6wの負極側に接続されている。高電位側FET41u、41v、41wの正極側は、平滑コンデンサ6u、6v、6wの正極側に夫々接続されている。 The negative phase side of the W-phase high potential side FET 41w and the positive side of the low potential side FET 42w are connected, and the W phase output line WL connected to the connection portion is the reference potential side of the W phase motor relay FET 5w of the motor relay portion 5 The other end of the motor relay FET 5 w is connected to the W-phase winding terminal WT in the stator 91 of the electric motor 9. The negative electrode side of the low potential side FET 42w and one end of the shunt resistor 7w are connected, and the other end of the shunt resistor 7w is connected to the negative electrode side of the smoothing capacitor 6w. The positive side of the high potential side FETs 41u, 41v, 41w are connected to the positive side of the smoothing capacitors 6u, 6v, 6w, respectively.
 尚、各相の平滑コンデンサ6u、6v、6wと、各相の上アーム及び下アームに接続された高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wとの間に、FETがスイッチングしたときのサージ電圧を抑制するためのスナバ回路を設けても良い。この場合、スナバ回路は、コンデンサ、又は抵抗とコンデンサを接続した回路により構成しても良い。又、高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42と並列にそれぞれスナバ回路を設けても良い。 Between the smoothing capacitors 6u, 6v, 6w of each phase and the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w connected to the upper and lower arms of each phase, A snubber circuit may be provided for suppressing a surge voltage when switching is performed. In this case, the snubber circuit may be configured by a capacitor or a circuit in which a resistor and a capacitor are connected. Further, a snubber circuit may be provided in parallel with the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42, respectively.
 電子制御ユニット20に設けられた、3相ブリッジ回路4と、回転子92の回転位置を検出する回転センサ84と、シャント抵抗7u、7v、7wに接続されて電動モータ9の電機子巻線に流れる電流を検出する電流検出手段83と、マイクロコンピュータ81と、マイクロコンピュータ81からの指令によりFETの動作を制御する駆動信号を出力するFET駆動回路82と、電流検出手段83と、マイクロコンピュータ81と、FET駆動回路82とは、後述するように一体型多層基板200に搭載されている。 The armature winding of the electric motor 9 is connected to the three-phase bridge circuit 4 provided in the electronic control unit 20, the rotation sensor 84 for detecting the rotation position of the rotor 92, and the shunt resistors 7u, 7v, 7w. A current detection means 83 for detecting a flowing current; a microcomputer 81; an FET drive circuit 82 for outputting a drive signal for controlling the operation of the FET according to a command from the microcomputer 81; a current detection means 83; The FET drive circuit 82 is mounted on the integrated multilayer substrate 200 as will be described later.
 マイクロコンピュータ81は、トルクセンサ15からの操舵トルク信号に基づいて電動モータ9が出力すべき補助トルクを演算すると共に、電流検出手段83により検出されたモータ電流、及び回転センサ84により検出された回転子92の回転位置をフィードバックして補助トルクを発生させるための目標電流を演算する。 The microcomputer 81 calculates the auxiliary torque that the electric motor 9 should output based on the steering torque signal from the torque sensor 15, and the motor current detected by the current detector 83 and the rotation detected by the rotation sensor 84. A target current for generating auxiliary torque by feeding back the rotational position of the child 92 is calculated.
 電源リレー部3は、互いに直列接続された2個の電源リレー用FET31、32で構成されており、電源リレー用FET31のソース端子と電源リレー用FET32のソース端子が接続されている。電源リレー用FET31のドレイン端子はノイズフィルタ2に接続されており、電源リレー用FET32のドレイン端子は平滑コンデンサ6u、6v、6wの正極側に接続されている。電源リレー用FET31と電源リレー用FET32のゲート端子は、FET駆動回路82に接続されている。 The power relay unit 3 is composed of two power relay FETs 31 and 32 connected in series with each other, and the source terminal of the power relay FET 31 and the source terminal of the power relay FET 32 are connected. The drain terminal of the power relay FET 31 is connected to the noise filter 2, and the drain terminal of the power relay FET 32 is connected to the positive side of the smoothing capacitors 6u, 6v, 6w. The gate terminals of the power relay FET 31 and the power relay FET 32 are connected to the FET drive circuit 82.
 マイクロコンピュータ81は、AD変換器とPWMタイマ回路等の他に、周知の自己診断機能を含み、システムが正常に動作しているか否かを常に自己診断しており、異常が発生すると、電源リレー部3の電源リレー用FET31、32と、モータリレー部5のモータリレー用FET5u、5v、5wを全てオフし、3相ブリッジ回路4と電動モータ9との接続を遮断するようにFET駆動回路82に指令を与える。 The microcomputer 81 includes a well-known self-diagnosis function in addition to the AD converter and the PWM timer circuit, etc., and always performs self-diagnosis as to whether the system is operating normally. The FET drive circuit 82 is configured to turn off all of the power relay FETs 31 and 32 of the section 3 and the motor relay FETs 5u, 5v and 5w of the motor relay section 5 and to disconnect the connection between the three-phase bridge circuit 4 and the electric motor 9. Is given a directive.
 FET駆動回路82は、マイクロコンピュータ81からの指令に基づいて、電源リレー部3の電源リレー用FET31、32と、モータリレー部5のモータリレー用FET5u、5v、5wを駆動すると共に、パワースイッチング素子としての高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wを駆動する。 The FET drive circuit 82 drives the power relay FETs 31 and 32 of the power relay unit 3 and the motor relay FETs 5u, 5v, and 5w of the motor relay unit 5 based on a command from the microcomputer 81, and a power switching element. The high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w are driven.
 マイクロコンピュータ81には、前述のようにトルクセンサ15から操舵トルク情報、回転センサ84から電動モータ9の回転子92の回転位置の情報が夫々入力され、又、車載各種センサ用コネクタ12からは車載各種センサ14の一つとして走行速度信号が入力される。更に、シャント抵抗7u、7v、7wの両端間電圧値に基づいてモータ電流が電流検出手段83により検出され、その検出されたモータ電流がマイクロコンピュータ81にフィードバック入力される。マイクロコンピュータ81は、これらの情報、信号に基づいてパワーステアリングの回転方向指令、及び補助トルクに相当する電流制御量がそれぞれ生成され、夫々の駆動信号がFET駆動回路82に入力される。 As described above, the microcomputer 81 receives the steering torque information from the torque sensor 15 and the rotation position information of the rotor 92 of the electric motor 9 from the rotation sensor 84. A travel speed signal is input as one of the various sensors 14. Further, the motor current is detected by the current detection means 83 based on the voltage values across the shunt resistors 7u, 7v, 7w, and the detected motor current is fed back to the microcomputer 81. The microcomputer 81 generates a power steering rotation direction command and a current control amount corresponding to the auxiliary torque based on these information and signals, and inputs each drive signal to the FET drive circuit 82.
 FET駆動回路82は、マイクロコンピュータ81からパワーステアリングの回転方向指令及び電流制御量が入力されると、PWM駆動信号を生成し、パワースイッチング素子である高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wに電圧を印加する。これにより電動モータ9にはバッテリ1からの電流が、電源コネクタ11、ノイズフィルタ2、電源リレー部3、3相ブリッジ回路4、及びモータリレー部5を通じて流れ、所要方向に所要量の補助トルクが電動モータ9から出力される。 The FET drive circuit 82 generates a PWM drive signal when a power steering rotation direction command and a current control amount are input from the microcomputer 81, and the high potential side FETs 41u, 41v, 41w, which are power switching elements, and a low potential. A voltage is applied to the side FETs 42u, 42v, 42w. As a result, the electric current from the battery 1 flows to the electric motor 9 through the power connector 11, the noise filter 2, the power relay unit 3, the three-phase bridge circuit 4, and the motor relay unit 5, and a required amount of auxiliary torque is applied in the required direction. Output from the electric motor 9.
 このとき、マイクロコンピュータ81には、シャント抵抗及び電流検出手段を通じて検出されたモータ電流がフィードバックされ、マイクロコンピュータ81からFET駆動回路52に送られるモータ電流指令と一致するよう制御される。 At this time, the motor current detected through the shunt resistor and the current detecting means is fed back to the microcomputer 81 and controlled so as to coincide with the motor current command sent from the microcomputer 81 to the FET drive circuit 52.
 図1では平滑コンデンサ6u、6v、6wの負極側を直接GNDに接続していない。これは平滑コンデンサ6u、6v、6wと各相の上アーム及び下アームとの閉ループを最小限にして、寄生インダクタンスを低減し、高電位側FET41u、41v、41wと低電位側FET42u、42v、42wがスイッチングしたときに発生するサージ電圧を抑制するためである。 In FIG. 1, the negative sides of the smoothing capacitors 6u, 6v, 6w are not directly connected to GND. This minimizes the closed loop between the smoothing capacitors 6u, 6v, 6w and the upper and lower arms of each phase to reduce the parasitic inductance, and the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w. This is to suppress a surge voltage generated when the is switched.
 一般的にノイズフィルタ2の構成としては、ノーマルモードフィルタとコモンモードフィルタを併用することで所定の性能を得る設計を行うが、ノイズフィルタ2はノーマルモードフィルタのみ、又はコモンモードフィルタのみであってもよく、或いは、ノーマルモードフィルタとコモンモードフィルタの両方を設けても良く、ノーマルモードフィルタとコモンモードフィルタの機能を統合したフィルタでも良いのであって、要求仕様に応じ設計すれば良い。 In general, the noise filter 2 is designed to obtain a predetermined performance by using a normal mode filter and a common mode filter together. The noise filter 2 is a normal mode filter or a common mode filter. Alternatively, both a normal mode filter and a common mode filter may be provided, or a filter that integrates the functions of the normal mode filter and the common mode filter may be used.
 図2は、この発明の実施の形態1による電動パワーステアリング駆動装置の構成を示す概略断面図である。電動パワーステアリング駆動装置100は、前述の図1に示すブロック回路構成を備え、図2に示すように構成されている。図2に於いて、三相ブラシレスモータで構成される電動モータ9の軸方向の反出力側端部(図2の上方部)にヒートシンクの機能を有する金属筐体101が配置され、その金属筐体101の軸方向の上方部(図2の上方部)に一体型多層基板200が配置され、その多層基板200の軸方向の上方部(図2の上方部)に平滑コンデンサ6u、6v、6wとノイズフィルタ2が配置され、更にそれらの上部(図2の上部)に樹脂ケース102が配置されている。 FIG. 2 is a schematic cross-sectional view showing the configuration of the electric power steering driving apparatus according to Embodiment 1 of the present invention. The electric power steering driving apparatus 100 includes the block circuit configuration shown in FIG. 1 and is configured as shown in FIG. In FIG. 2, a metal casing 101 having a function of a heat sink is disposed at the axially opposite output side end (upper part in FIG. 2) of the electric motor 9 constituted by a three-phase brushless motor. An integrated multilayer substrate 200 is disposed in an upper portion of the body 101 in the axial direction (upper portion in FIG. 2), and smoothing capacitors 6u, 6v, 6w are disposed in an upper portion in the axial direction of the multilayer substrate 200 (upper portion in FIG. 2). The noise filter 2 is disposed, and the resin case 102 is disposed on the noise filter 2 (the upper portion in FIG. 2).
 又、樹脂ケース102には、外部の直流電源である車両に搭載されたバッテリ1が接続されるパワー系の電源コネクタ11と、トルクセンサ15と車載各種センサ14が接続される制御系のトルクセンサ用コネクタ13(図示せず)、車載各種センサ用コネクタ12(図示せず)が樹脂ケース102に一体化されて成型されている。平滑コンデンサ6u、6v、6wは、電解コンデンサ、又は導電性高分子コンデンサ、又はハイブリッドコンデンサが使用される。 The resin case 102 has a power system power connector 11 to which a battery 1 mounted on a vehicle as an external DC power source is connected, and a control system torque sensor to which a torque sensor 15 and various in-vehicle sensors 14 are connected. Connector 13 (not shown) and in-vehicle various sensor connectors 12 (not shown) are formed integrally with resin case 102. As the smoothing capacitors 6u, 6v, 6w, electrolytic capacitors, conductive polymer capacitors, or hybrid capacitors are used.
 一体型多層基板200は、第1の領域としてのパワー領域23と、第2の領域としての制御領域21と、パワー領域23制御領域21の間に挿入された放熱板22とが一体に組み合わされて構成されている。放熱板22の径方向の端部は、パワー領域23と制御領域21の径方向の端部よりも径方向に延出した延出部221を備えており、その放熱板22の延出部221のモータ側の端面がヒートシンクの機能を有する金属筐体101に接触している。一体型多層基板200で発生した熱は、放熱板22の延出部221と金属筐体101に伝熱する。 In the integrated multilayer substrate 200, a power region 23 as a first region, a control region 21 as a second region, and a heat dissipation plate 22 inserted between the power region 23 control region 21 are integrally combined. Configured. The radial end portion of the heat radiating plate 22 includes an extending portion 221 that extends in a radial direction from the radial end portions of the power region 23 and the control region 21, and the extending portion 221 of the heat radiating plate 22. The end surface on the motor side is in contact with the metal casing 101 having a heat sink function. The heat generated in the integrated multilayer substrate 200 is transferred to the extended portion 221 of the heat radiating plate 22 and the metal casing 101.
 パワー領域23は、100[um]を超える大きな厚みを有する銅板により配線が行われるように構成された多層基板である。制御領域21は、100[um]以下の薄い厚みを有する銅板で配線が行われるように構成された多相基板である。従って、制御領域21とパワー領域23の層構成は同一ではない。尚、これ等の銅板の厚さの数値は一例である。又、使用している銅板の厚みは異なるが、制御領域21とパワー領域23の全体の厚みは同じでも良いし異なっても良い。 The power region 23 is a multilayer substrate configured such that wiring is performed by a copper plate having a large thickness exceeding 100 [um]. The control region 21 is a multiphase substrate configured so that wiring is performed with a copper plate having a thin thickness of 100 [um] or less. Therefore, the layer configuration of the control region 21 and the power region 23 is not the same. In addition, the numerical value of the thickness of these copper plates is an example. Moreover, although the thickness of the copper plate currently used is different, the total thickness of the control region 21 and the power region 23 may be the same or different.
 通常、制御領域21とパワー領域23の層構成、又は厚みが異なる基板を一枚で構成すると、基板の反りが問題となる。しかし、図2の構成ではパワー領域23と制御領域21の間に放熱板22を挿入しているので大幅に基板の反りが緩和される。放熱板22は、パワー領域23を構成する多層基板の一層に設けられた配線に使用する銅板と同じか更に厚みの大きい銅板により構成されている。又、放熱板22は,モータ側からの熱を遮熱する効果もある。 Usually, when the control region 21 and the power region 23 have different layer configurations or substrates having different thicknesses, warpage of the substrate becomes a problem. However, since the heat sink 22 is inserted between the power region 23 and the control region 21 in the configuration of FIG. The heat radiating plate 22 is made of a copper plate that is the same as or thicker than the copper plate used for the wiring provided on one layer of the multilayer substrate constituting the power region 23. The heat radiating plate 22 also has an effect of shielding heat from the motor side.
 平滑コンデンサ6u、6v、6wの端子とノイズフィルタ2の端子の一つは、制御領域21と放熱板22を貫通してパワー領域23に接続されている。磁気センサにより構成された回転センサ84は、パワー領域23に接続されている。尚、回転センサ84としての磁気センサは、電動モータ9の回転子92の磁極位置を検出できれば良く、必ずしもパワー領域23へ接続する必要はない。 One of the terminals of the smoothing capacitors 6u, 6v, 6w and the noise filter 2 is connected to the power region 23 through the control region 21 and the heat sink 22. A rotation sensor 84 configured by a magnetic sensor is connected to the power region 23. The magnetic sensor as the rotation sensor 84 only needs to be able to detect the magnetic pole position of the rotor 92 of the electric motor 9 and is not necessarily connected to the power region 23.
 前述のように構成された一体型多層基板200は、パワー領域23と制御領域21を夫々個別に製作し、しかる後に放熱板22の両面にプリプレグを介してパワー領域23と制御領域21を固着して一体化させることで製作される。その後、制御領域21とパワー領域23の配線を行う。 In the integrated multilayer substrate 200 configured as described above, the power region 23 and the control region 21 are individually manufactured, and then the power region 23 and the control region 21 are fixed to both surfaces of the heat sink 22 via prepregs. To be integrated. Thereafter, the control area 21 and the power area 23 are wired.
 パワー領域23のみで結線される貫通スルーホールは、その片側端部が制御領域21の表層に現れることがないため、制御領域21の部品実装面積が増え、小型化が可能である。又、制御領域21のみで結線される貫通スルーホールは、その片側端部がパワー領域23に現れることがないため、パワー領域23の部品実装面積が増え、小型化が可能である。更に、制御領域21の配線は、1相辺り100[um]以下の薄い銅板のみで構成されるため、制御領域内を配線するスルーホールの径を小さくできる特徴もある。 The through-through hole connected only in the power region 23 does not appear on the surface layer of the control region 21 at one end thereof, so that the component mounting area of the control region 21 is increased and the size can be reduced. Further, the through-through hole connected only by the control region 21 does not appear at one end of the through-hole in the power region 23, so that the component mounting area of the power region 23 increases and the size can be reduced. Further, since the wiring in the control region 21 is composed of only a thin copper plate of 100 [um] or less per phase, there is a feature that the diameter of the through hole that is wired in the control region can be reduced.
 マイクロコンピュータ81とFET駆動回路82は、制御領域21の表層に接続されている。マイクロコンピュータ81とFET駆動回路82との接続は、制御領域21内で貫通スルーホールにより接続されている。パワースイッチング素子としての高電位側FET41u、41v、41wと低電位側FET42u、42v、42wは、パワー領域23の表層に接続されている。高電位側FET41u、41v、41w及び低電位側FET42u、42v、42wのゲート、ソース間とFET駆動回路82とはパワー領域23のスルーホールで接続されているため、配線を短くすることが可能でありノイズを低減できる。 The microcomputer 81 and the FET drive circuit 82 are connected to the surface layer of the control area 21. The microcomputer 81 and the FET drive circuit 82 are connected by a through through hole in the control region 21. The high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w as power switching elements are connected to the surface layer of the power region 23. Since the gates and sources of the high- potential side FETs 41u, 41v, 41w and the low- potential side FETs 42u, 42v, 42w are connected to the FET drive circuit 82 through through holes in the power region 23, the wiring can be shortened. There can be reduced noise.
 電動パワーステアリング駆動装置100の組立て手順としては、樹脂ケース102の平滑コンデンサ6u、6v、6wが配置される部位1021に第1の緩衝部材6aを配置し、樹脂ケース102のノイズフィルタ2が配置される部位1022に第2の緩衝部材2aを配置し、次に、平滑コンデンサ6u、6v、6wとノイズフィルタ2を、樹脂ケース102の夫々の所定の部位1021、1022に配置し、平滑コンデンサ6u、6v、6wとノイズフィルタ2の軸方向の高さ、及び端子位置を確定する。平滑コンデンサ6u、6v、6wの上面は、防爆弁の開封を考慮して、樹脂ケース102との間にスペースが確保されている。 As an assembling procedure of the electric power steering drive device 100, the first buffer member 6a is disposed in the portion 1021 of the resin case 102 where the smoothing capacitors 6u, 6v, 6w are disposed, and the noise filter 2 of the resin case 102 is disposed. The second buffer member 2a is disposed in the portion 1022, and the smoothing capacitors 6u, 6v, 6w and the noise filter 2 are disposed in the predetermined portions 1021, 1022 of the resin case 102, and the smoothing capacitors 6u, 6v, 6w, the height of the noise filter 2 in the axial direction, and the terminal position are determined. Spaces are secured between the upper surfaces of the smoothing capacitors 6u, 6v, 6w and the resin case 102 in consideration of opening of the explosion-proof valve.
 次に外部電源であるバッテリ1との接続部を構成する電源コネクタ11の一端と、ノイズフィルタ2の入力端211を接続する。その接続は溶接でも良いし、はんだ付け、ねじ止め、プレスフィットでも良い。電源コネクタ11の他端は、外部電源であるバッテリ1のコネクタ(図示せず)に接続される。 Next, one end of the power connector 11 constituting the connecting portion with the battery 1 as an external power source and the input end 211 of the noise filter 2 are connected. The connection may be welding, soldering, screwing, or press fitting. The other end of the power connector 11 is connected to a connector (not shown) of the battery 1 that is an external power source.
 一体型多層基板200を樹脂ケース102に配置する前に、第3の緩衝部材24を樹脂ケース102に挿入する。この第3の緩衝部材24は、放熱板22とヒートシンクとしての金属筐体101の熱抵抗を低減出来れば良く、リング状に配置しても良いし、部分的に配置しても良い。 Before the integrated multilayer substrate 200 is placed in the resin case 102, the third buffer member 24 is inserted into the resin case 102. The third buffer member 24 only needs to reduce the thermal resistance of the heat sink 22 and the metal casing 101 as a heat sink, and may be arranged in a ring shape or may be partially arranged.
 次に、平滑コンデンサ6u、6v、6wとノイズフィルタ2のリード線を一体型多層基板200に設けられた所定の貫通スルーホールに通し、一体型多層基板200のパワー領域23に予めはんだ付けされたL字端子4bに接続する。この接続部分は溶接でも良いし、はんだ付け、ねじ止め、プレスフィットでも良い。尚、一体型多層基板200に設けられた貫通スルーホールは、制御領域21と放熱板22とパワー領域23を貫通して設けられており、前述の制御領域のみに設けられている貫通スルーホールとパワー領域のみに設けられている貫通スルーホールとは別体である。 Next, the smoothing capacitors 6u, 6v, 6w and the lead wire of the noise filter 2 are passed through a predetermined through-hole provided in the integrated multilayer substrate 200 and soldered in advance to the power region 23 of the integrated multilayer substrate 200. Connect to L-shaped terminal 4b. This connecting portion may be welded, soldered, screwed, or press fit. The through-through hole provided in the integrated multilayer substrate 200 is provided through the control region 21, the heat sink 22 and the power region 23, and the through-through hole provided only in the control region described above. It is a separate body from the through hole provided only in the power region.
 尚、実施の形態1では、予めL字端子4bをはんだ付けした一体型多層基板200に平滑コンデンサ6u、6v、6wとノイズフィルタ2の端子を接続しているが、L字端子4bを設けずに直接一体型多層基板200のランドにはんだ付けしても良い。 In the first embodiment, the smoothing capacitors 6u, 6v, 6w and the terminals of the noise filter 2 are connected to the integrated multilayer substrate 200 to which the L-shaped terminal 4b is soldered in advance, but the L-shaped terminal 4b is not provided. Alternatively, it may be soldered directly to the land of the integrated multilayer substrate 200.
 次に、金属筐体101と一体型多層基板200の放熱板が接触するように、金属筐体101と樹脂ケース102とを接合する。ヒートシンクとしての金属筐体101と樹脂ケース102との接合は、接着剤でもよいし、ねじ止め、プレスフィットでも良い。 Next, the metal casing 101 and the resin case 102 are bonded so that the metal casing 101 and the heat dissipation plate of the integrated multilayer substrate 200 are in contact with each other. The metal casing 101 as the heat sink and the resin case 102 may be joined by an adhesive, screwing, or press fitting.
 ここで、第3の緩衝部材24の役割について詳細に説明する。理想的には、樹脂ケース102が一体型多層基板200の放熱板22を固定して放熱板22と金属筐体101とを接触させることが望ましい。しかし、実際には製作公差が生じる。図2の構成に於いては、放熱板22と金属筐体101の熱抵抗を低減することが重要である。ここで放熱板22と金属筐体101が接触する前に、樹脂ケース102と金属筐体101が接触してしまうと、放熱板22と樹脂ケース102との間に隙間が生じたり、樹脂ケース102が、一体型多層基板200を金属筐体101に押さえることができず、放熱板22と金属筐体101との接触熱抵抗が増加してしまう。 Here, the role of the third buffer member 24 will be described in detail. Ideally, it is desirable that the resin case 102 fixes the heat radiating plate 22 of the integrated multilayer substrate 200 so that the heat radiating plate 22 and the metal casing 101 are in contact with each other. However, manufacturing tolerances actually occur. In the configuration of FIG. 2, it is important to reduce the thermal resistance between the heat radiating plate 22 and the metal casing 101. If the resin case 102 and the metal casing 101 come into contact with each other before the heat radiating plate 22 and the metal casing 101 come into contact with each other, a gap may be formed between the heat radiating plate 22 and the resin case 102, or the resin case 102. However, the integrated multilayer substrate 200 cannot be held by the metal casing 101, and the contact thermal resistance between the heat sink 22 and the metal casing 101 increases.
 しかし図2に示すように、第3の緩衝部材24を放熱板22の延出部221と樹脂ケース102との間に挿入することで、樹脂ケース102と金属筐体101が放熱板22と金属筐体101とが接触するよりも先に接触することなく、放熱板22と金属筐体101の接触を確保したうえで、第3の緩衝部材24が圧縮されて収縮することで、樹脂ケース102と金属筐体101を接合することが可能になる。 However, as shown in FIG. 2, the resin case 102 and the metal casing 101 are inserted into the heat sink 22 and the metal by inserting the third buffer member 24 between the extended portion 221 of the heat sink 22 and the resin case 102. The resin case 102 is obtained by compressing and contracting the third buffer member 24 after ensuring the contact between the heat radiating plate 22 and the metal casing 101 without contacting the casing 101 before contacting the casing 101. And the metal casing 101 can be joined.
 次に、第2の緩衝部材2a、第1の緩衝部材6aの役割について詳細に説明する。平滑コンデンサ6u、6v、6wの軸方向の一方の端面(図の上端面)と樹脂ケース102の内面とが固定されていると、及び/又は、ノイズフィルタ2の軸方向の一方の端面(図の上端面)と樹脂ケース102の内面とが固定されていると、樹脂ケース102とヒートシンクとしての金属筐体101を接合したときに一体型多層基板200と平滑コンデンサ6u、6v、6wとの接続部、及び/又は、一体型多層基板200とノイズフィルタ2との接続部、にストレスがかかることになる。 Next, the role of the second buffer member 2a and the first buffer member 6a will be described in detail. One end face (upper end face in the figure) of the smoothing capacitors 6u, 6v, 6w and the inner face of the resin case 102 are fixed and / or one end face in the axial direction of the noise filter 2 (see FIG. When the resin case 102 and the metal casing 101 as a heat sink are joined, the integrated multilayer substrate 200 and the smoothing capacitors 6u, 6v, 6w are connected. And / or a connection portion between the integrated multilayer substrate 200 and the noise filter 2 is stressed.
 これに対して実施の形態1の場合のように、樹脂ケース102の内面とノイズフィルタ2の軸方向の一方の端面(図の上端面)との間に第2の緩衝部材2aを挿入し、樹脂ケース102の内面と平滑コンデンサ6u、6v、6wの軸方向の一方の端面(図の上端面)との間に第1の緩衝部材6aを挿入することで、樹脂ケース102と金属筐体101を接合させるときにこの第2の緩衝部材2aと、第1の緩衝部材6aが圧縮されて収縮し、L字端子4bとノイズフィルタ2の接続部にかかるストレスと、L字端子4bと平滑コンデンサ6u、6v、6wの接続部にかかるストレスを緩和することが可能である。 On the other hand, as in the case of the first embodiment, the second buffer member 2a is inserted between the inner surface of the resin case 102 and one end surface (the upper end surface in the figure) of the noise filter 2 in the axial direction. By inserting the first buffer member 6a between the inner surface of the resin case 102 and one end face (upper end face in the figure) of the smoothing capacitors 6u, 6v, 6w in the axial direction, the resin case 102 and the metal casing 101 are inserted. When the second buffer member 2a and the first buffer member 6a are compressed and contracted, the stress applied to the connection portion between the L-shaped terminal 4b and the noise filter 2, the L-shaped terminal 4b and the smoothing capacitor It is possible to relieve the stress applied to the connecting portions of 6u, 6v, and 6w.
 好ましくは、第2の緩衝部材2aと、第1の緩衝部材6aの反力が、樹脂ケース102と放熱板22の延出部221との間に挿入する第3の緩衝部材24の反力よりも小さくなるように、第2の緩衝部材2a、第1の緩衝部材6a、及び第3の緩衝部材24の材料を選定するのが良い。これにより、前述のストレスをより緩和することができる効果がある。 Preferably, the reaction force of the second buffer member 2 a and the first buffer member 6 a is greater than the reaction force of the third buffer member 24 inserted between the resin case 102 and the extending portion 221 of the heat sink 22. It is preferable to select materials for the second buffer member 2a, the first buffer member 6a, and the third buffer member 24 so as to be smaller. Thereby, there is an effect that the above-described stress can be further alleviated.
 又、第1の緩衝部材6aは、空気が抜けやすいような構造にすることで、平滑コンデンサ6u、6v、6wの軸方向の一方の端面(図の上端面)に設けた防爆弁が開封する空間の空気が抜け易くなる。 Further, the first buffer member 6a is structured so that air can easily escape, so that the explosion-proof valve provided on one end surface (upper end surface in the figure) of the smoothing capacitors 6u, 6v, 6w in the axial direction is opened. Air in the space is easily removed.
 次に、一体型多層基板200に於けるパワー領域23の構成について説明する。パワー領域23は、多層基板により構成されている。図3は、この発明の実施の形態1による電動パワーステアリング駆動装置に於ける、一体型多層基板のパワー領域の層構成を示す概略断面図である。図3ではパワー領域23を5層の多層基板により構成しているが、これに限るものではない。 Next, the configuration of the power region 23 in the integrated multilayer substrate 200 will be described. The power region 23 is composed of a multilayer substrate. FIG. 3 is a schematic cross-sectional view showing the layer configuration of the power region of the integrated multilayer substrate in the electric power steering driving apparatus according to Embodiment 1 of the present invention. In FIG. 3, the power region 23 is constituted by a five-layered multilayer substrate, but the present invention is not limited to this.
 図3に於いて、パワー領域23は、表層としての第1の層231と、プリプレグ23aを介して第1の層231の下に設けられた第2の層232と、プリプレグ23aを介して第2の層232の下に設けられた第3の層233と、プリプレグ23aを介して第3の層233の下に設けられた第4の層234と、プリプレグ23aを介して第4の層234の下に設けられた第5の層235と、第5の層235と放熱板22の一方の表面との間に設けられたプリプレグ23aとにより構成されている。第1の層~第5の層231~235は、夫々銅板により構成されている。プリプレグ23aは、第1の層~第5の層231~235の間を電気的に絶縁すると共に、第5の層235と放熱板22との間を電気的に絶遠する材料で構成されている。前述のプリプレグ23aは、例えば炭素繊維等に樹脂を含浸して構成されている。 In FIG. 3, the power region 23 includes a first layer 231 as a surface layer, a second layer 232 provided below the first layer 231 via the prepreg 23a, and a first layer 231 via the prepreg 23a. The third layer 233 provided below the second layer 232, the fourth layer 234 provided below the third layer 233 via the prepreg 23a, and the fourth layer 234 via the prepreg 23a. And a prepreg 23 a provided between the fifth layer 235 and one surface of the heat sink 22. The first to fifth layers 231 to 235 are each made of a copper plate. The prepreg 23a is made of a material that electrically insulates the first to fifth layers 231 to 235 and electrically separates between the fifth layer 235 and the radiator plate 22. Yes. The aforementioned prepreg 23a is configured by impregnating carbon fiber or the like with a resin, for example.
 表層としての第1の層231には、平滑コンデンサ6u、6v、6w、ノイズフィルタ2、パワースイッチング素子としての高電位側FET41u、41v、41w、低電位側FET42u、42v、42w、シャント抵抗7u、7v、7w、及び回転センサ84が接続される。 The first layer 231 as the surface layer includes smoothing capacitors 6u, 6v, 6w, a noise filter 2, high potential side FETs 41u, 41v, 41w as power switching elements, low potential side FETs 42u, 42v, 42w, a shunt resistor 7u, 7v, 7w, and the rotation sensor 84 are connected.
 2層目としての第2の層232と、3層目としての第3の層233には、3相ブリッジ回路4の各相の上アームと下アーム、及びモータリレー部5に於けるモータリレー用FET5u、5v、5wを接続する配線パターンが形成されている。 The second layer 232 as the second layer and the third layer 233 as the third layer include an upper arm and a lower arm of each phase of the three-phase bridge circuit 4, and a motor relay in the motor relay unit 5. A wiring pattern for connecting the FETs 5u, 5v, and 5w is formed.
 4層目としての第4の層234には、電源リレー部3から平滑コンデンサ6u、6v、6wの正極側への配線パターンが形成されている。5層目としての第5の層235には、電源リレー部3から平滑コンデンサ6u、6v、6wの負極側への配線パターンが形成されている。 In the fourth layer 234 as the fourth layer, a wiring pattern from the power supply relay unit 3 to the positive side of the smoothing capacitors 6u, 6v, 6w is formed. On the fifth layer 235 as the fifth layer, a wiring pattern from the power supply relay unit 3 to the negative side of the smoothing capacitors 6u, 6v, 6w is formed.
 高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wの夫々の直下には、銅等の熱良導体の材料により形成された伝熱部材である銅ピン4a1が配置され、高電位側FET41u、41v、41w、低電位側FET42u、42v、42wの片側の面(図の下側の面)に銅ピン4a1の端面が直接接触している。この銅ピン4a1は、第1の層231、第2の層232、第3の層234、及び第5の層235を貫通し、第5の層の放熱板22側の面にまで達している。銅ピン4a1は、高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wにより発生した熱を放熱板22まで伝熱する。尚、銅ピン以外に、通常のサーマルビアを用いても良い。
又、好ましくは、5層目としての第5の層235と放熱板22との間に挿入されたプリプレグ23aは、他の層の間に挿入されているプリプレグ23aより薄いプリプレグで構成される。これにより、銅ピン4a1と放熱板22との間の熱抵抗を下げることができ、高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wの温度上昇を効果的に抑えることが可能である。通常、高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wは、温度が上がるとオン抵抗が大きくなる傾向を持つため、FET4aの温度上昇を抑制することができれば、FET4aでの損失低減が可能である。
A copper pin 4a1, which is a heat transfer member formed of a material having a good thermal conductivity such as copper, is disposed immediately below each of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w. The end surface of the copper pin 4a1 is in direct contact with one surface (the lower surface in the figure) of the side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w. The copper pin 4a1 penetrates through the first layer 231, the second layer 232, the third layer 234, and the fifth layer 235, and reaches the surface of the fifth layer on the side of the heat sink 22 side. . The copper pin 4a1 conducts heat generated by the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w to the heat radiating plate 22. In addition to the copper pins, normal thermal vias may be used.
Preferably, the prepreg 23a inserted between the fifth layer 235 as the fifth layer and the heat sink 22 is formed of a prepreg thinner than the prepreg 23a inserted between the other layers. Thereby, the thermal resistance between the copper pin 4a1 and the heat sink 22 can be lowered, and the temperature rise of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w can be effectively suppressed. Is possible. Normally, the high- potential side FETs 41u, 41v, 41w and the low- potential side FETs 42u, 42v, 42w have a tendency to increase the on-resistance when the temperature rises. Loss can be reduced.
 尚、絶縁を確保した状態で銅ピン4a1を5層目である第5の層235の放熱板22側の面よりも放熱板22の方向に突出するように構成しても前述と同様の放熱効果が得られる。又、好ましくは、5層目の第5の層235と放熱板22との間の挿入するプリプレグ23aは、熱伝導の高い材料で形成するのが良い。これにより、更に熱抵抗を下げることができ、温度上昇を抑えることが可能であり、高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wでの発熱を低減することがとなる。 Even if the copper pin 4a1 is configured to protrude in the direction of the heat radiating plate 22 from the surface on the heat radiating plate 22 side of the fifth layer 235 which is the fifth layer in a state where insulation is ensured, the same heat dissipation as described above. An effect is obtained. Preferably, the prepreg 23a inserted between the fifth layer 235 of the fifth layer and the heat radiating plate 22 is formed of a material having high thermal conductivity. As a result, the thermal resistance can be further lowered, the temperature rise can be suppressed, and the heat generation in the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w can be reduced. .
 車載各種センサ14に接続される車載各種センサ用コネクタ12と、トルクセンサ15に接続されるトルクセンサ用コネクタ13は、一体型多層基板200に接続されるが、その場合、パワー領域23へ接続しても良いし、制御領域表面実装部品を制御領域21へ接続しても良い。 The in-vehicle various sensor connectors 12 connected to the in-vehicle various sensors 14 and the torque sensor connector 13 connected to the torque sensor 15 are connected to the integrated multilayer substrate 200, but in that case, are connected to the power region 23. Alternatively, the control area surface-mounted component may be connected to the control area 21.
 図4は、この発明の実施の形態1による電動パワーステアリング駆動装置に於ける、樹脂ケースの平面図であって、バッテリ1に接続される電源コネクタ11と、車載各種センサ14に接続される車載各種センサ用コネクタ12と、トルクセンサ15に接続されるトルクセンサ用コネクタ13の配置を示している。図4に示すように、電源コネクタ11は樹脂ケース102の一方の半円部のほぼ頂部近傍に配置され、車載各種センサ用コネクタ12とトルクセンサ用コネクタ13は、樹脂ケース102の他方の半円部の頂部を挟んでその両側の周縁部に夫々配置されている。 FIG. 4 is a plan view of a resin case in the electric power steering driving apparatus according to Embodiment 1 of the present invention, and includes a power connector 11 connected to the battery 1 and an in-vehicle connected to various in-vehicle sensors 14. An arrangement of various sensor connectors 12 and a torque sensor connector 13 connected to the torque sensor 15 is shown. As shown in FIG. 4, the power connector 11 is arranged in the vicinity of the top of one semicircular portion of the resin case 102, and the various in-vehicle sensor connectors 12 and the torque sensor connector 13 are arranged in the other semicircle of the resin case 102. It is arrange | positioned at the peripheral part of the both sides on both sides of the top part of a part.
 電動モータ9の固定子91と、一体型多層基板200との接続は、予め一体型多層基板200のパワー領域23に、はんだ付けされたL字端子4bを接続する。その接続は、はんだ付以外に、溶接、ねじ止め、プレスフィットにより行っても良い。 The connection between the stator 91 of the electric motor 9 and the integrated multilayer substrate 200 is performed by connecting the soldered L-shaped terminal 4b to the power region 23 of the integrated multilayer substrate 200 in advance. The connection may be made by welding, screwing, or press-fit in addition to soldering.
 放熱板22は、一体型多層基板200の接地(GND)用として使用することも可能である。放熱板22は、その延出部221が金属筐体101へ直接接触しているので、放熱板22と金属筐体101の接続にコネクタやリード線を使用する必要がなく、ノイズが低減することができる。 The heat sink 22 can also be used for grounding (GND) of the integrated multilayer substrate 200. Since the extended portion 221 of the heat radiating plate 22 is in direct contact with the metal housing 101, it is not necessary to use a connector or a lead wire to connect the heat radiating plate 22 and the metal housing 101, and noise is reduced. Can do.
 又、好ましくは、パワー領域23の表層である第1の層231に、ヒートシンクとしての金属筐体101の一部を絶縁材料で構成された放熱シートを介して接触させることで、配線の寄生抵抗で発生する損失による熱も放熱することができ、配線パターンの温度上昇を抑制することができる。 Preferably, a part of the metal casing 101 as a heat sink is brought into contact with the first layer 231 that is a surface layer of the power region 23 via a heat dissipation sheet made of an insulating material, thereby parasitic resistance of the wiring. The heat due to the loss generated in the heat can be dissipated, and the temperature rise of the wiring pattern can be suppressed.
 以上説明したように、この発明の実施の形態1による電動パワーステアリング駆動装置は、電子制御ユニットの低損失化を実現することができ、又、基板の実装面を有効に利用することができるため、電動パワーステアリング駆動装置を小型化することができる。 As described above, the electric power steering drive apparatus according to Embodiment 1 of the present invention can realize a low loss of the electronic control unit and can effectively use the mounting surface of the board. The electric power steering drive device can be reduced in size.
実施の形態2.
 次に、この発明の実施の形態2による電動パワーステアリング駆動装置について説明する。図5は、この発明の実施の形態2による電動パワーステアリング駆動装置の構成を示す概略断面図である。発明の実施の形態2による電動パワーステアリング駆動装置の回路構成は、図1と同様である。尚、図5では、図2に示した構成と同一ないし同等である構成要素には、同一の符号が付されている。ここでは、実施の形態2に関わる部分を中心に説明する。
Embodiment 2. FIG.
Next, an electric power steering driving apparatus according to Embodiment 2 of the present invention will be described. FIG. 5 is a schematic cross-sectional view showing a configuration of an electric power steering driving apparatus according to Embodiment 2 of the present invention. The circuit configuration of the electric power steering driving apparatus according to the second embodiment of the invention is the same as that shown in FIG. In FIG. 5, the same reference numerals are given to components that are the same as or equivalent to the configuration shown in FIG. 2. Here, the description will focus on the parts related to the second embodiment.
 前述の実施の形態1では、高電位側FET41u、41v、41wと、低電位側FET42u、42v、42wを、夫々一体型多層基板200に於けるパワー領域23の表層である第1の層231に配置し、これ等の高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wの片側の面に銅ピン4a1を接触させ、この銅ピン4a1を介して放熱板22へ放熱するようにしていたが、実施の形態2では、高電位側FET41u、41v、41wと、低電位側FET42u、42v、42wの両面から放熱が可能なように構成している。 In the first embodiment described above, the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w are respectively formed on the first layer 231 that is the surface layer of the power region 23 in the integrated multilayer substrate 200. The copper pin 4a1 is brought into contact with one surface of the high- potential side FETs 41u, 41v, 41w and the low- potential side FETs 42u, 42v, 42w, and heat is radiated to the heat radiating plate 22 through the copper pins 4a1. However, in the second embodiment, the high- potential side FETs 41u, 41v, 41w and the low- potential side FETs 42u, 42v, 42w are configured to dissipate heat.
 即ち、図5に於いて、高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wの一方の面(図の下方の面)は、ヒートシンクとしての金属筐体101の凸部に、絶縁物により形成された放熱シート4eを介して当接し、他方の面(図の上方の面)は直接、一体型多層基板200のパワー領域23の表層である第1の層231に当接している。従って、高電位側FET41u、41v、41w、及び低電位側FET42u、42v、42wの一方の面が放熱シート4eを介して金属筐体101に放熱され、他方の面が銅ピン4a1を介して一体型多層基板200の放熱板22により放熱され、より効果的に冷却されることになる。通常,パワースイッチング素子の上面にヒートシンク置くとノイズ源となる。この構成では,パワー領域23と,金属筐体101が対向しているために,接地(GND)された金属筐体101の凸部に,パワースイッチング素子を接触させるために低ノイズである。 That is, in FIG. 5, one surface (the lower surface in the figure) of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w is a convex portion of the metal casing 101 as a heat sink. The other surface (the upper surface in the figure) directly contacts the first layer 231 that is the surface layer of the power region 23 of the integrated multilayer substrate 200. ing. Therefore, one surface of the high potential side FETs 41u, 41v, 41w and the low potential side FETs 42u, 42v, 42w is radiated to the metal casing 101 via the heat radiating sheet 4e, and the other surface is one via the copper pin 4a1. The heat is dissipated by the heat radiating plate 22 of the body-type multilayer substrate 200, and is cooled more effectively. Normally, placing a heat sink on the upper surface of the power switching element becomes a noise source. In this configuration, since the power region 23 and the metal casing 101 face each other, the noise is low because the power switching element is brought into contact with the convex portion of the metal casing 101 that is grounded (GND).
 以上述べたこの発明の各実施の形態による電動パワーステアリング駆動装置は、少なくとも下記の何れかの発明を具体化したものである。
(1)運転者が車両の操舵系に加える操舵トルクに対応した補助トルクを発生する電動モータと、前記電動モータの駆動を制御する制御ユニットとを備え、前記運転者の操舵を前記補助トルクにより補助するようにした電動パワーステアリング駆動装置であって、
 前記電動モータは、その軸方向の端部に固定された金属筐体を備え、
 前記制御ユニットは、
 複数のパワースイッチング素子を有し、前記パワースイッチング素子のスイッチング動作に基づいて、前記車両に搭載された直流電源からの直流電力を交流電力に変換して前記電動モータに供給する電力変換回路と、
 前記パワースイッチング素子のスイッチング動作を制御する制御部と、
 前記電力変換回路と前記制御部とを構成する部材のうちの少なくとも一部を搭載した多層基板と、を有し、
 前記多層基板は、
 放熱板と、
 前記放熱板の第1の面に固定され、少なくとも前記パワースイッチング素子が搭載された第1の領域と、
 前記放熱板の前記第1の面に対して表裏の関係をなす第2の面に固定され、前記制御部を構成する部材のうちの少なくとも一部が搭載された第2の領域と、を有し、
 前記放熱板は、
 前記第1の領域と前記第2の領域とのうちの少なくとも一方から露出して前記放熱板の面の延びる方向に延出された延出部を有し、
 前記延出部は、その少なくとも一部が前記金属筐体に直接当接するように前記金属筐体に固定されている、
ことを特徴とする電動パワーステアリング駆動装置。
 この発明によれば、電子制御ユニットを低損失化することができ、また、多層基板に於ける実装面積を大きくすることができるため小型化することが可能な電動パワーステアリングの駆動装置をえることができる。
The electric power steering driving apparatus according to each embodiment of the present invention described above embodies at least one of the following inventions.
(1) An electric motor that generates an auxiliary torque corresponding to a steering torque that a driver applies to a steering system of a vehicle, and a control unit that controls driving of the electric motor, and the driver's steering is controlled by the auxiliary torque. An electric power steering drive device for assisting,
The electric motor includes a metal casing fixed to an end portion in the axial direction thereof,
The control unit is
A power conversion circuit that has a plurality of power switching elements, and converts DC power from a DC power source mounted in the vehicle into AC power based on the switching operation of the power switching elements and supplies the AC power to the electric motor;
A control unit for controlling the switching operation of the power switching element;
A multilayer board on which at least a part of members constituting the power conversion circuit and the control unit is mounted;
The multilayer substrate is
A heat sink,
A first region fixed to the first surface of the heat sink and at least mounted with the power switching element;
A second region that is fixed to a second surface having a front-back relationship with the first surface of the heat radiating plate and on which at least a part of members constituting the control unit is mounted. And
The heat sink is
An extending portion that is exposed from at least one of the first region and the second region and extends in a direction in which the surface of the heat sink extends;
The extension portion is fixed to the metal casing so that at least a part thereof directly contacts the metal casing.
An electric power steering drive device.
According to the present invention, it is possible to obtain a drive device for an electric power steering that can reduce the loss of the electronic control unit and can be downsized because the mounting area of the multilayer substrate can be increased. Can do.
(2)前記第1の領域と前記第2の領域は、夫々配線パターンが設けられた複数の層を備え、
 前記第1の領域の搭載された前記パワースイッチング素子は、前記第1の領域の層に設けられた前記配線パターンにより配線され、
 前記第2の領域に搭載された前記制御部を構成する部材のうちの少なくとも一部は、前記第2の領域の層に設けられた前記配線パターンにより配線され、
 前記第1の領域の少なくとも一つの層に設けられた前記配線パターンの厚さ寸法と、前記第2の領域の少なくとも一つの層に設けられた前記配線パターンの厚さ寸法と、は異なる値に形成されている、
ことを特徴とする上記(1)に記載の電動パワーステアリング駆動装置。
 この発明によれば、パワー領域の表層の銅板厚を厚くすることが可能であるため、配線での損失を低減できる。
(2) The first region and the second region each include a plurality of layers provided with wiring patterns,
The power switching element mounted in the first region is wired by the wiring pattern provided in the layer of the first region,
At least a part of members constituting the control unit mounted in the second region is wired by the wiring pattern provided in the layer of the second region,
The thickness dimension of the wiring pattern provided in at least one layer of the first region is different from the thickness dimension of the wiring pattern provided in at least one layer of the second region. Formed,
The electric power steering drive device according to (1) above, wherein
According to the present invention, it is possible to increase the thickness of the copper layer on the surface layer of the power region, so that the loss in the wiring can be reduced.
(3)前記パワースイッチング素子は、前記第1の領域の前記複数の層のうちの表層に載置され、
 前記第1の領域は、前記複数の層を貫通して配置された伝熱部材を備え、
 前記伝熱部材は、前記パワースイッチング素子が発生した熱を前記放熱板に伝達するように構成されている、
ことを特徴とする上記(2)に記載の電動パワーステアリング駆動装置。
 この発明によれば、パワースイッチング素子を効果的に冷却することができる。
(3) The power switching element is placed on a surface layer of the plurality of layers in the first region,
The first region includes a heat transfer member disposed through the plurality of layers,
The heat transfer member is configured to transmit heat generated by the power switching element to the heat radiating plate.
The electric power steering drive device according to (2) above, wherein
According to the present invention, the power switching element can be effectively cooled.
(4)前記パワースイッチング素子は、前記多層基板に対向する面に対して反対側の面が前記金属筐体に当接するように構成されている、
ことを特徴とする上記(1)から(3)のうちの何れか一つに記載の電動パワーステアリング駆動装置。
 この発明によれば、極めて効果的にパワースイッチング素子を冷却することができる。
(4) The power switching element is configured such that a surface opposite to a surface facing the multilayer substrate is in contact with the metal casing.
The electric power steering drive device according to any one of (1) to (3) above, wherein:
According to the present invention, the power switching element can be cooled very effectively.
(5)前記多層基板の前記第1の領域と前記第2の領域は、夫々、
 配線パターンを有する複数の層と、
 前記複数の層の間に配置されたプリプレグと、を有し、
 前記第1の領域に於ける前記プリプレグは、前記第2の領域に於ける前記プリプレグの熱伝導率よりも高い熱伝導率を備えている、
ことを特徴とする上記(1)から(4)のうちの何れか一つに記載の電動パワーステアリング駆動装置。
 この発明によれば、パワースイッチング素子をより効果的に冷却することができる。
(5) The first region and the second region of the multilayer substrate are respectively
A plurality of layers having wiring patterns;
A prepreg disposed between the plurality of layers,
The prepreg in the first region has a thermal conductivity higher than the thermal conductivity of the prepreg in the second region;
The electric power steering driving apparatus according to any one of (1) to (4) above, wherein:
According to the present invention, the power switching element can be cooled more effectively.
(6)前記金属筐体に固定され、少なくとも前記多層基板を覆う絶縁物製のカバーを備え、
 前記多層基板は、前記電力変換回路の平滑コンデンサとノイズフィルタを搭載しており、
 前記カバーは、前記平滑コンデンサと前記ノイズフィルタを覆うように構成され、且つ第1の緩衝部材を介して前記平滑コンデンサと当接し、第2の緩衝部材を介して前記ノイズフィルタと当接するように構成され、
 前記多層基板の前記延出部は、前記第1の領域と前記第2の領域との双方から露出して前記放熱板の面の延びる方向に延出され、
 前記延出部は、前記金属筐体と前記カバーとの間に挿入され、
 前記延出部の一方の面は、第3の緩衝部材を介して前記カバーに当接し、
 前記延出部の前記一方の面に対して表裏の関係をなす他方の面は、前記金属筐体に直接接触するように構成されている、
ことを特徴とする上記(1)から(5)のうちの何れか一つに記載の電動パワーステアリング駆動装置。
 この発明によれば、平滑コンデンサと多層基板との接続部、ノイズフィルタと多層基板との接続部のストレスを緩和することができる。
(6) An insulating cover that is fixed to the metal casing and covers at least the multilayer substrate,
The multilayer substrate is mounted with a smoothing capacitor and a noise filter of the power conversion circuit,
The cover is configured to cover the smoothing capacitor and the noise filter, and is in contact with the smoothing capacitor through a first buffer member, and is in contact with the noise filter through a second buffer member. Configured,
The extending portion of the multilayer substrate is exposed from both the first region and the second region and extends in a direction in which the surface of the heat sink extends.
The extension portion is inserted between the metal casing and the cover,
One surface of the extension part abuts on the cover via a third buffer member,
The other surface forming a front-back relationship with the one surface of the extending portion is configured to directly contact the metal housing.
The electric power steering drive device according to any one of (1) to (5) above, wherein:
According to the present invention, it is possible to relieve stress at the connection portion between the smoothing capacitor and the multilayer substrate and at the connection portion between the noise filter and the multilayer substrate.
(7)前記第1の緩衝部材の圧縮に対する反力と前記第2の緩衝部材の圧縮に対する反力は、前記第3の緩衝部材の圧縮に対する反力よりも小さく構成されている、
ことを特徴とする上記(6)に記載の電動パワーステアリング駆動装置。
 この発明によれば、すくなくとも平滑コンデンサと多層基板との接続部、ノイズフィルタと多層基板との接続部のストレスを緩和することができる。
(7) The reaction force against the compression of the first buffer member and the reaction force against the compression of the second buffer member are configured to be smaller than the reaction force against the compression of the third buffer member.
The electric power steering drive device according to (6) above, wherein
According to the present invention, it is possible to relieve stress at least at the connection portion between the smoothing capacitor and the multilayer substrate and at the connection portion between the noise filter and the multilayer substrate.
 以上説明したように、この発明の実施の形態2による電動パワーステアリング駆動装置によれば、パワースイッチング素子としてのFETを、その両面から放熱可能な構成とされており、低損失な電動パワーステアリングの駆動装置を提供することができる。 As described above, according to the electric power steering driving apparatus according to Embodiment 2 of the present invention, the FET as the power switching element is configured to be able to dissipate heat from both sides, and the low-loss electric power steering is A drive device can be provided.
 尚、この発明は前述の実施の形態1及び2による電動パワーステアリング駆動装置に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、実施の形態1及び2の構成を適宜組み合わせたり、その構成に一部変形を加えたり、構成を一部省略することが可能である。 The present invention is not limited to the electric power steering drive device according to the first and second embodiments described above, and the configurations of the first and second embodiments may be combined as appropriate without departing from the spirit of the present invention. It is possible to add a part of the configuration or to omit a part of the configuration.
 この発明は、電動パワーステアリング装置の分野、ひいてはその電動パワーステアリング装置を用いる自動車等の車両の分野に利用することができる。 The present invention can be used in the field of electric power steering devices, and in the field of vehicles such as automobiles using the electric power steering device.
100 電動パワーステアリング駆動装置、200 一体型多層基板、21 制御領域、22 放熱板、221 延出部、23 パワー領域、1 バッテリ、2 ノイズフィルタ、3 電源リレー部、31、32 電源リレー用FET、4 3相ブリッジ回路、5 モータリレー部、5u、5v、5w モータリレー用FET、6u、6v、6w 平滑コンデンサ、7u、7v、7w シャント抵抗、8 制御基板、9 電動モータ、91 固定子、92 回転子、31、32 電源リレーFET、6a 第1の緩衝部材、2a 第2の緩衝部材、24 第3の緩衝部材、4e 放熱シート、11 電源コネクタ、12 車両側信号用コネクタ、13 トルクセンサ用コネクタ、14 車両側信号、15 トルクセンサ、20 電子制御ユニット、101 金属筐体、102 樹脂ケース、4b L字端子、84 回転センサ、81 マイクロコンピュータ、82 FET駆動回路、83電流検出手段、100 電動パワーステアリング駆動装置、41u、41v、41w 高電位側FET、42u、42v、42w 低電位側FET、UL U相出力線、VL V相出力線、WL W相出力線、PL 正極側入力線、NL 負極側出力線、UT U相巻線端子、VT V相巻線端子、WT W相巻線端子 100 electric power steering drive device, 200 integrated multilayer board, 21 control area, 22 heat sink, 221 extension part, 23 power area, 1 battery, 2 noise filter, 3 power relay part, 31, 32 power relay FET, 4 3-phase bridge circuit, 5 motor relay section, 5u, 5v, 5w motor relay FET, 6u, 6v, 6w smoothing capacitor, 7u, 7v, 7w shunt resistor, 8 control board, 9 electric motor, 91 stator, 92 Rotor, 31 and 32, power relay FET, 6a, first buffer member, 2a, second buffer member, 24, third buffer member, 4e heat dissipation sheet, 11 power connector, 12 vehicle side signal connector, 13 for torque sensor Connector, 14 Vehicle side signal, 15 Torque sensor, 20 Electronic control unit 101, metal casing, 102 resin case, 4b, L-shaped terminal, 84 rotation sensor, 81 microcomputer, 82 FET drive circuit, 83 current detection means, 100 electric power steering drive, 41u, 41v, 41w high potential side FET , 42u, 42v, 42w Low potential side FET, UL U phase output line, VL V phase output line, WL W phase output line, PL positive side input line, NL negative side output line, UT U phase winding terminal, VT V Phase winding terminal, WT W phase winding terminal

Claims (7)

  1.  運転者が車両の操舵系に加える操舵トルクに対応した補助トルクを発生する電動モータと、前記電動モータの駆動を制御する制御ユニットとを備え、前記運転者の操舵を前記補助トルクにより補助するようにした電動パワーステアリング駆動装置であって、
     前記電動モータは、その軸方向の端部に固定された金属筐体を備え、
     前記制御ユニットは、
     複数のパワースイッチング素子を有し、前記パワースイッチング素子のスイッチング動作に基づいて、前記車両に搭載された直流電源からの直流電力を交流電力に変換して前記電動モータに供給する電力変換回路と、
     前記パワースイッチング素子のスイッチング動作を制御する制御部と、
     前記電力変換回路と前記制御部とを構成する部材のうちの少なくとも一部を搭載した多層基板と、を有し、
     前記多層基板は、
     放熱板と、
     前記放熱板の第1の面に固定され、少なくとも前記パワースイッチング素子が搭載された第1の領域と、
     前記放熱板の前記第1の面に対して表裏の関係をなす第2の面に固定され、前記制御部を構成する部材のうちの少なくとも一部が搭載された第2の領域と、を有し、
     前記放熱板は、
     前記第1の領域と前記第2の領域とのうちの少なくとも一方から露出して前記放熱板の面の延びる方向に延出された延出部を有し、
     前記延出部は、その少なくとも一部が前記金属筐体に直接当接するように前記金属筐体に固定されている、
    ことを特徴とする電動パワーステアリング駆動装置。
    An electric motor that generates an auxiliary torque corresponding to a steering torque that a driver applies to a steering system of a vehicle, and a control unit that controls driving of the electric motor are provided, and the driver's steering is assisted by the auxiliary torque. An electric power steering drive device,
    The electric motor includes a metal casing fixed to an end portion in the axial direction thereof,
    The control unit is
    A power conversion circuit that has a plurality of power switching elements, and converts DC power from a DC power source mounted in the vehicle into AC power based on the switching operation of the power switching elements and supplies the AC power to the electric motor;
    A control unit for controlling the switching operation of the power switching element;
    A multilayer board on which at least a part of members constituting the power conversion circuit and the control unit is mounted;
    The multilayer substrate is
    A heat sink,
    A first region fixed to the first surface of the heat sink and at least mounted with the power switching element;
    A second region that is fixed to a second surface having a front-back relationship with the first surface of the heat radiating plate and on which at least a part of members constituting the control unit is mounted. And
    The heat sink is
    An extending portion that is exposed from at least one of the first region and the second region and extends in a direction in which the surface of the heat sink extends;
    The extension portion is fixed to the metal casing so that at least a part thereof directly contacts the metal casing.
    An electric power steering drive device.
  2.  前記第1の領域と前記第2の領域は、夫々配線パターンが設けられた複数の層を備え、
     前記第1の領域の搭載された前記パワースイッチング素子は、前記第1の領域の層に設けられた前記配線パターンにより配線され、
     前記第2の領域に搭載された前記制御部を構成する部材のうちの少なくとも一部は、前記第2の領域の層に設けられた前記配線パターンにより配線され、
     前記第1の領域の少なくとも一つの層に設けられた前記配線パターンの厚さ寸法と、前記第2の領域の少なくとも一つの層に設けられた前記配線パターンの厚さ寸法と、は異なる値に形成されている、
    ことを特徴とする請求項1に記載の電動パワーステアリング駆動装置。
    The first region and the second region each include a plurality of layers provided with wiring patterns,
    The power switching element mounted in the first region is wired by the wiring pattern provided in the layer of the first region,
    At least a part of members constituting the control unit mounted in the second region is wired by the wiring pattern provided in the layer of the second region,
    The thickness dimension of the wiring pattern provided in at least one layer of the first region is different from the thickness dimension of the wiring pattern provided in at least one layer of the second region. Formed,
    The electric power steering drive device according to claim 1.
  3.  前記パワースイッチング素子は、前記第1の領域の前記複数の層のうちの表層に載置され、
     前記第1の領域は、前記複数の層を貫通して配置された伝熱部材を備え、
     前記伝熱部材は、前記パワースイッチング素子が発生した熱を前記放熱板に伝達するように構成されている、
    ことを特徴とする請求項2に記載の電動パワーステアリング駆動装置。
    The power switching element is placed on a surface layer of the plurality of layers in the first region,
    The first region includes a heat transfer member disposed through the plurality of layers,
    The heat transfer member is configured to transmit heat generated by the power switching element to the heat radiating plate.
    The electric power steering drive device according to claim 2, wherein
  4.  前記パワースイッチング素子は、前記多層基板に対向する面に対して反対側の面が前記金属筐体に当接するように構成されている、
    ことを特徴とする請求項1から3のうちの何れか一項に記載の電動パワーステアリング駆動装置。
    The power switching element is configured such that a surface opposite to a surface facing the multilayer substrate is in contact with the metal casing.
    The electric power steering driving device according to any one of claims 1 to 3, wherein the electric power steering driving device is provided.
  5.  前記多層基板の前記第1の領域と前記第2の領域は、夫々、
     配線パターンを有する複数の層と、
     前記複数の層の間に配置されたプリプレグと、を有し、
     前記第1の領域に於ける前記プリプレグは、前記第2の領域に於ける前記プリプレグの熱伝導率よりも高い熱伝導率を備えている、
    ことを特徴とする請求項1から4のうちの何れか一項に記載の電動パワーステアリング駆動装置。
    The first region and the second region of the multilayer substrate are respectively
    A plurality of layers having wiring patterns;
    A prepreg disposed between the plurality of layers,
    The prepreg in the first region has a thermal conductivity higher than the thermal conductivity of the prepreg in the second region;
    The electric power steering drive device according to any one of claims 1 to 4, wherein the electric power steering drive device is provided.
  6.  前記金属筐体に固定され、少なくとも前記多層基板を覆う絶縁物製のカバーを備え、
     前記多層基板は、前記電力変換回路の平滑コンデンサとノイズフィルタを搭載しており、
     前記カバーは、前記平滑コンデンサと前記ノイズフィルタを覆うように構成され、且つ第1の緩衝部材を介して前記平滑コンデンサと当接し、第2の緩衝部材を介して前記ノイズフィルタと当接するように構成され、
     前記多層基板の前記延出部は、前記第1の領域と前記第2の領域との双方から露出して前記放熱板の面の延びる方向に延出され、
     前記延出部は、前記金属筐体と前記カバーとの間に挿入され、
     前記延出部の一方の面は、第3の緩衝部材を介して前記カバーに当接し、
     前記延出部の前記一方の面に対して表裏の関係をなす他方の面は、前記金属筐体に直接接触するように構成され、
    ことを特徴とする請求項1から5のうちの何れか一項に記載の電動パワーステアリング駆動装置。
    An insulating cover that is fixed to the metal housing and covers at least the multilayer substrate;
    The multilayer substrate is mounted with a smoothing capacitor and a noise filter of the power conversion circuit,
    The cover is configured to cover the smoothing capacitor and the noise filter, and is in contact with the smoothing capacitor through a first buffer member, and is in contact with the noise filter through a second buffer member. Configured,
    The extending portion of the multilayer substrate is exposed from both the first region and the second region and extends in a direction in which the surface of the heat sink extends.
    The extension portion is inserted between the metal casing and the cover,
    One surface of the extension part abuts on the cover via a third buffer member,
    The other surface forming a front-back relationship with the one surface of the extension portion is configured to directly contact the metal casing,
    The electric power steering drive device according to any one of claims 1 to 5, wherein
  7.  前記第1の緩衝部材の圧縮に対する反力と前記第2の緩衝部材の圧縮に対する反力は、
    前記第3の緩衝部材の圧縮に対する反力よりも小さく構成されている、
    ことを特徴とする請求項6に記載の電動パワーステアリング駆動装置。
    The reaction force against the compression of the first buffer member and the reaction force against the compression of the second buffer member are:
    It is configured to be smaller than the reaction force against the compression of the third buffer member.
    The electric power steering drive device according to claim 6.
PCT/JP2016/086970 2016-03-18 2016-12-13 Electric power steering drive device WO2017158966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017514939A JP6444495B2 (en) 2016-03-18 2016-12-13 Electric power steering drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054696 2016-03-18
JP2016054696 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017158966A1 true WO2017158966A1 (en) 2017-09-21

Family

ID=59852048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086970 WO2017158966A1 (en) 2016-03-18 2016-12-13 Electric power steering drive device

Country Status (2)

Country Link
JP (1) JP6444495B2 (en)
WO (1) WO2017158966A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6271054B1 (en) * 2017-02-17 2018-01-31 三菱電機株式会社 Rotating electric machine for vehicles
WO2019070065A1 (en) * 2017-10-06 2019-04-11 日本電産株式会社 Motor module and electric power steering device
WO2019070068A1 (en) * 2017-10-06 2019-04-11 日本電産株式会社 Motor module and electric power steering device
WO2019070066A1 (en) * 2017-10-06 2019-04-11 日本電産株式会社 Motor module and electric power steering device
CN110365169A (en) * 2018-04-10 2019-10-22 株式会社电装 Driving equipment
EP3651322A1 (en) * 2018-11-06 2020-05-13 Jtekt Corporation Control device and motor device
JP2020182345A (en) * 2019-04-26 2020-11-05 三菱電機株式会社 Inverter assembly and control device integrated rotary electric machine
EP3806294A1 (en) * 2019-10-11 2021-04-14 Jtekt Corporation Motor device
WO2021069093A1 (en) * 2019-10-08 2021-04-15 Sew-Eurodrive Gmbh & Co. Kg Electric motor comprising a printed circuit board
EP3832877A4 (en) * 2019-02-12 2021-10-13 Aisin Aw Co., Ltd. Inverter unit
WO2021259718A1 (en) * 2020-06-25 2021-12-30 Robert Bosch Gmbh Electric machine, in particular electronically commutated electric motor, and a steering system comprising such an electric machine
WO2023079618A1 (en) * 2021-11-04 2023-05-11 三菱電機株式会社 Rotating electric machine device and electric power steering device
WO2023209787A1 (en) * 2022-04-26 2023-11-02 三菱電機株式会社 Electric power steering device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124216A1 (en) 2020-09-17 2022-03-17 Schaeffler Technologies AG & Co. KG Housing with a heat shield for an electric motor
DE102021123150A1 (en) 2021-09-07 2023-03-09 Nidec Corporation Electric motor with magnetic shielding integrated into the end shield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137302A (en) * 2005-11-21 2007-06-07 Mitsubishi Electric Corp Electric power steering device
JP2007237790A (en) * 2006-03-06 2007-09-20 Mitsubishi Electric Corp Electric power steering apparatus
JP2010267945A (en) * 2009-04-16 2010-11-25 Molex Inc Cooling device, electronic substrate and electronic device
JP2012152091A (en) * 2010-12-28 2012-08-09 Denso Corp Drive device
JP2016036246A (en) * 2014-07-31 2016-03-17 株式会社デンソー Driving device and electric power steering device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137302A (en) * 2005-11-21 2007-06-07 Mitsubishi Electric Corp Electric power steering device
JP2007237790A (en) * 2006-03-06 2007-09-20 Mitsubishi Electric Corp Electric power steering apparatus
JP2010267945A (en) * 2009-04-16 2010-11-25 Molex Inc Cooling device, electronic substrate and electronic device
JP2012152091A (en) * 2010-12-28 2012-08-09 Denso Corp Drive device
JP2016036246A (en) * 2014-07-31 2016-03-17 株式会社デンソー Driving device and electric power steering device using the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6271054B1 (en) * 2017-02-17 2018-01-31 三菱電機株式会社 Rotating electric machine for vehicles
JP2018133960A (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Vehicle dynamo-electric machine
CN111164864B (en) * 2017-10-06 2022-08-23 日本电产株式会社 Motor module and electric power steering apparatus
WO2019070066A1 (en) * 2017-10-06 2019-04-11 日本電産株式会社 Motor module and electric power steering device
WO2019070065A1 (en) * 2017-10-06 2019-04-11 日本電産株式会社 Motor module and electric power steering device
WO2019070068A1 (en) * 2017-10-06 2019-04-11 日本電産株式会社 Motor module and electric power steering device
CN111149284A (en) * 2017-10-06 2020-05-12 日本电产株式会社 Motor module and electric power steering apparatus
CN111164865A (en) * 2017-10-06 2020-05-15 日本电产株式会社 Motor module and electric power steering apparatus
CN111164864A (en) * 2017-10-06 2020-05-15 日本电产株式会社 Motor module and electric power steering apparatus
CN110365169A (en) * 2018-04-10 2019-10-22 株式会社电装 Driving equipment
US11363716B2 (en) 2018-11-06 2022-06-14 Jtekt Corporation Control device and motor device
JP7222221B2 (en) 2018-11-06 2023-02-15 株式会社ジェイテクト Control device and motor device
EP3651322A1 (en) * 2018-11-06 2020-05-13 Jtekt Corporation Control device and motor device
JP2020078125A (en) * 2018-11-06 2020-05-21 株式会社ジェイテクト Controller and motor device
EP3832877A4 (en) * 2019-02-12 2021-10-13 Aisin Aw Co., Ltd. Inverter unit
JP2020182345A (en) * 2019-04-26 2020-11-05 三菱電機株式会社 Inverter assembly and control device integrated rotary electric machine
WO2021069093A1 (en) * 2019-10-08 2021-04-15 Sew-Eurodrive Gmbh & Co. Kg Electric motor comprising a printed circuit board
JP7413710B2 (en) 2019-10-11 2024-01-16 株式会社ジェイテクト motor device
US11545876B2 (en) 2019-10-11 2023-01-03 Jtekt Corporation Motor device
JP2021065017A (en) * 2019-10-11 2021-04-22 株式会社ジェイテクト Motor device
EP3806294A1 (en) * 2019-10-11 2021-04-14 Jtekt Corporation Motor device
WO2021259718A1 (en) * 2020-06-25 2021-12-30 Robert Bosch Gmbh Electric machine, in particular electronically commutated electric motor, and a steering system comprising such an electric machine
WO2023079618A1 (en) * 2021-11-04 2023-05-11 三菱電機株式会社 Rotating electric machine device and electric power steering device
WO2023209787A1 (en) * 2022-04-26 2023-11-02 三菱電機株式会社 Electric power steering device

Also Published As

Publication number Publication date
JPWO2017158966A1 (en) 2018-03-22
JP6444495B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6444495B2 (en) Electric power steering drive device
JP6509359B2 (en) Integrated electric power steering apparatus and method of manufacturing the same
JP6294195B2 (en) Power converter
KR101260577B1 (en) Electric power steering apparatus and control device integrated type electric motor
JP5946962B2 (en) Power converter
US9045156B2 (en) Electric driving device and electric power steering system including the same
US9338925B2 (en) Device for controlling drive of motor for electric power steering device
EP2637285B1 (en) Electric power steering power module and electric power steering drive control device employing same
KR101788525B1 (en) Electric Driving Device and Electric Power Steering Device
JP5397417B2 (en) Semiconductor device and driving device using the same
JP4203055B2 (en) Electric power steering device
JP2017189033A (en) Drive device, and electric power steering apparatus using the same
JP7004289B2 (en) Motor control device and electric power steering device
KR20180026512A (en) Electric Driving Device and Electric Power Steering Device
JP2018061363A (en) Motor drive device, motor system and electric power steering device
US8520394B2 (en) Control device
CN111264021B (en) Electric drive device and electric power steering device
CN109964392B (en) Electric drive device and electric power steering device
CN110710087A (en) Electric drive device and electric power steering device
JP2011083063A (en) Drive controller and motor unit
JP6983338B2 (en) Electric drive

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017514939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894583

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894583

Country of ref document: EP

Kind code of ref document: A1