WO2017158940A1 - 光ファイバの製造方法 - Google Patents

光ファイバの製造方法 Download PDF

Info

Publication number
WO2017158940A1
WO2017158940A1 PCT/JP2016/085178 JP2016085178W WO2017158940A1 WO 2017158940 A1 WO2017158940 A1 WO 2017158940A1 JP 2016085178 W JP2016085178 W JP 2016085178W WO 2017158940 A1 WO2017158940 A1 WO 2017158940A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
optical fiber
slow cooling
glass
core
Prior art date
Application number
PCT/JP2016/085178
Other languages
English (en)
French (fr)
Inventor
北村 隆之
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US15/740,246 priority Critical patent/US10927033B2/en
Priority to EP16894557.4A priority patent/EP3305735B1/en
Priority to CN201680013038.XA priority patent/CN107406298A/zh
Publication of WO2017158940A1 publication Critical patent/WO2017158940A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating

Definitions

  • the present invention relates to an optical fiber manufacturing method.
  • the optical signal-to-noise ratio In order to increase the optical transmission distance and increase the optical transmission speed in an optical fiber communication system, the optical signal-to-noise ratio must be increased. Therefore, there is a demand for reduction in transmission loss of optical fibers.
  • transmission loss due to impurities contained in the optical fiber is almost reduced to the limit.
  • the main cause of the remaining transmission loss is scattering loss due to fluctuations in the structure and composition of the glass constituting the optical fiber. This is inevitable because the optical fiber is made of glass.
  • Patent Document 1 from the position where the outer diameter of the optical fiber having the core and the clad mainly composed of silica glass is smaller than 500% of the final outer diameter to the position where the temperature of the optical fiber is 1400 ° C. It is disclosed that the temperature of the heating furnace (slow cooling furnace) is set to be within ⁇ 100 ° C. with respect to the target temperature obtained by the recurrence formula in the region of 70% or more. By controlling the temperature history of the optical fiber in this way, the fictive temperature of the glass constituting the optical fiber is lowered and transmission loss is reduced.
  • the temperature of the slowly cooled optical fiber changes in the range of ⁇ 100 ° C
  • the virtual temperature of the glass that constitutes the optical fiber also changes in the same range
  • the virtual temperature that can be reached at the target temperature determined by the recurrence formula If only an optical fiber having a fictive temperature 100 ° C. higher than that is obtained, the transmission loss due to light scattering of the obtained optical fiber increases by about 0.007 dB / km.
  • an excessive capital investment to make the slow cooling furnace longer than necessary is performed, or the drawing speed is lowered more than necessary to increase productivity. May be damaged.
  • the inventor appropriately sets the temperature of the slow cooling furnace and appropriately controls the temperature difference between the fictive temperature of the glass constituting the optical fiber and the temperature of the optical fiber, thereby relaxing the structure of the glass constituting the optical fiber. It was found that transmission loss due to light scattering of the optical fiber is easily reduced.
  • the present invention intends to provide an optical fiber manufacturing method that can easily reduce the transmission loss of the optical fiber.
  • an optical fiber manufacturing method includes a drawing step of drawing an optical fiber preform in a drawing furnace, and a slow cooling of gradually cooling the optical fiber drawn in the drawing step. And in the slow cooling step, the optical fiber is passed through a plurality of slow cooling furnaces, the time constant of structural relaxation of the glass constituting the core included in the optical fiber is ⁇ (T n ), and the slow cooling
  • the temperature of the optical fiber at the time of entering the n-th slow cooling furnace from the upstream side is T n
  • the virtual temperature of the glass constituting the core at the time of entering is T fn
  • the time of entering When the fictive temperature of the glass constituting the core after the lapse of time ⁇ t is Tf , the following formula (1) is satisfied in an arbitrary period of the slow cooling step.
  • the present inventors gradually cool the optical fiber while the temperature difference between the temperature of the optical fiber and the fictive temperature of the glass constituting the core included in the optical fiber is controlled within the predetermined range. It was found that the structural relaxation of the glass constituting the glass is promoted. By promoting the structural relaxation of the glass constituting the core, the scattering loss due to fluctuations in the structure of the glass constituting the core is reduced when light is transmitted to the core, so that the transmission loss of the optical fiber is reduced. Reduced.
  • a plurality of slow cooling furnaces are used in the slow cooling process as described above, and the set temperature of each slow cooling furnace is appropriately controlled, so that the temperature of the optical fiber and the virtual temperature of the glass constituting the core included in the optical fiber are The temperature difference is easily controlled within the predetermined range. As a result, the structural relaxation of the glass constituting the core is promoted, and the transmission loss of the optical fiber is easily reduced.
  • the following formula (2) is satisfied in an arbitrary period of the slow cooling step.
  • the temperature difference (T f ⁇ T n ) between the temperature T n of the optical fiber and the fictive temperature T f of the glass constituting the core included in the optical fiber is controlled to a more suitable range.
  • the structural relaxation of the glass constituting the core included in the optical fiber is more easily promoted, and the transmission loss of the optical fiber is more easily reduced.
  • the relationship of the following formula (3) is satisfied when the set temperature of the n-th slow cooling furnace is T sn .
  • a plurality of slow cooling furnaces are used in the slow cooling process, and the set temperature of each slow cooling furnace is controlled within a predetermined range with respect to the virtual temperature of the glass constituting the core at the entrance of each slow cooling furnace, thereby The temperature difference between the temperature and the fictive temperature of the glass constituting the core included in the optical fiber is easily controlled within a predetermined range. As a result, the structural relaxation of the glass constituting the core is promoted, and the transmission loss of the optical fiber is easily reduced.
  • the effect of promoting the structural relaxation of the glass constituting the core included in the optical fiber is more easily increased, and the transmission loss of the optical fiber is increased. Is more likely to be reduced.
  • the temperature difference between the set temperature and the fictive temperature of the glass constituting the core at the entrance is higher in the slow cooling furnace provided in the downstream than the slow cooling furnace provided in the upstream. Is preferably small.
  • the present inventors have found that, when the temperature of the glass is lowered, the structural relaxation of the glass is more easily promoted if the temperature difference between the fictive temperature of the glass and the temperature of the glass is reduced. Therefore, by setting the temperature of the slow cooling furnace so that the temperature difference between the set temperature and the fictive temperature of the glass constituting the core at the entrance is smaller than that of the slow cooling furnace provided on the upstream side, The structural relaxation of the glass constituting the core can be promoted efficiently. As a result, the transmission loss of the optical fiber is easily reduced.
  • the optical fiber stays in one of the plurality of slow cooling furnaces at least at a time when the temperature of the optical fiber is in the range of 1300 ° C. or higher and 1500 ° C. or lower.
  • the fictive temperature of the glass constituting the core included in the optical fiber is easily lowered in a short time, and the transmission loss of the optical fiber is reduced. It becomes easy to be done.
  • an optical fiber manufacturing method that can easily reduce transmission loss of an optical fiber is provided.
  • FIG. 1 It is a flowchart which shows the process of the manufacturing method of the optical fiber of this invention. It is a figure which shows roughly the structure of the apparatus used for the manufacturing method of the optical fiber of this invention. It is a graph which shows the relationship between the temperature of glass, the fictive temperature of the said glass, and slow cooling time. The relationship between the temperature difference between the fictive temperature of glass and the glass temperature (T f 0 -T) and the rate of decrease of the fictive temperature of glass per unit time ((T f -T f 0 ) / ⁇ t) is schematically shown. FIG. It is a graph which shows the time change of the temperature difference of the fictive temperature of glass, and the temperature of glass.
  • FIG. 1 is a flowchart showing the steps of an optical fiber manufacturing method according to an embodiment of the present invention.
  • the optical fiber manufacturing method of the present embodiment includes a drawing process P1, a pre-cooling process P2, a slow cooling process P3, and a rapid cooling process P4.
  • FIG. 2 is a diagram schematically showing the configuration of an apparatus used in the optical fiber manufacturing method of the present embodiment.
  • the drawing process P1 is a process of drawing one end of the optical fiber preform 1P in the drawing furnace 110.
  • an optical fiber preform 1P made of glass having the same refractive index distribution as the core and clad constituting the desired optical fiber 1 is prepared.
  • the optical fiber 1 has one or a plurality of cores and a clad that surrounds the outer peripheral surface of the core without a gap.
  • the core and the cladding are each made of silica glass, and the refractive index of the core is higher than the refractive index of the cladding.
  • the cladding is made of pure silica glass.
  • the cladding is made of silica glass to which a dopant such as fluorine that lowers the refractive index is added.
  • the optical fiber preform 1P is suspended so that the longitudinal direction is vertical. Then, the optical fiber preform 1P is placed in the drawing furnace 110, and the heating unit 111 is heated to heat the lower end portion of the optical fiber preform 1P. At this time, the lower end portion of the optical fiber preform 1P is heated to, for example, 2000 ° C. to be in a molten state. Then, the glass melted from the lower end portion of the heated optical fiber preform 1P is drawn from the drawing furnace 110 at a predetermined drawing speed.
  • the pre-cooling process P2 is a process of cooling the optical fiber drawn from the drawing furnace 110 in the drawing process P1 so as to have a predetermined temperature suitable for being sent to the slow cooling furnace 121 described later.
  • the predetermined temperature of the optical fiber suitable for being sent to the slow cooling furnace 121 will be described in detail later.
  • the pre-cooling step P2 is performed by passing the optical fiber drawn in the drawing step P1 through the hollow portion of the cylindrical body 120 provided immediately below the drawing furnace 110. Is called.
  • the atmosphere in the hollow portion of the cylindrical body 120 becomes substantially the same as the atmosphere in the drawing furnace 110. Therefore, it is possible to suppress an abrupt change in the atmosphere and temperature around the optical fiber immediately after being drawn.
  • the temperature of the optical fiber sent to the slow cooling furnace 121 is mainly determined by the drawing speed and the atmosphere in the drawing furnace 110.
  • the cooling rate of the optical fiber can be further finely adjusted, and the temperature of the optical fiber entering the slow cooling furnace 121 can be easily adjusted to an appropriate range.
  • the distance between the slow cooling furnace 121 and the drawing furnace 110 and the length of the cylindrical body 120 are appropriately set. You can choose.
  • the cylindrical body 120 is comprised by the metal pipe etc., for example.
  • the cooling rate of the optical fiber may be adjusted by air-cooling the metal tube or arranging a heat insulating material around the metal tube.
  • the slow cooling step P3 is a step of gradually cooling the optical fiber drawn in the drawing step P1.
  • the temperature of the optical fiber is adjusted through the pre-cooling step P2, and is gradually cooled in the slow cooling step P3.
  • the optical fiber is passed through a plurality of slow cooling furnaces 121a, 121b, 121c, and 121d.
  • slow cooling furnace 121 when all of the slow cooling furnaces are included, or when it is not necessary to distinguish each of the slow cooling furnaces, there are cases where they are simply referred to as “slow cooling furnace 121”.
  • the number of slow cooling furnaces is not particularly limited as long as the number is slow.
  • the fact that there are a plurality of slow cooling furnaces means that there are a plurality of heat generating parts that can be set to different temperatures. For example, even if housed in one housing, it can be said that there are a plurality of slow cooling furnaces provided that a plurality of heat generating parts that can be set to different temperatures are provided.
  • the inside of the slow cooling furnace 121 is set to a predetermined temperature different from the temperature of the optical fiber entering, and the cooling rate of the optical fiber is lowered by the temperature around the optical fiber entering the slow cooling furnace 121.
  • the temperature of the optical fiber at the time of entering the slow cooling furnace is not sufficiently optimized.
  • the optical fiber may be inserted into a slow cooling furnace in a state where the temperature of the optical fiber is too high or too low. If the temperature of the optical fiber entering the slow cooling furnace is too high, the rate of relaxation of the glass structure constituting the optical fiber is very fast, so that it is almost impossible to expect the effect of slowly cooling the optical fiber. On the other hand, if the temperature of the optical fiber entering the slow cooling furnace is too low, the rate of relaxation of the glass structure that constitutes the optical fiber becomes slow, so that it may be necessary to reheat the optical fiber in the slow cooling furnace.
  • the temperature of the slow cooling furnace 121 is appropriately set, and the virtual temperature and light of the glass constituting the core included in the optical fiber.
  • the temperature difference from the fiber temperature structural relaxation of the glass constituting the core is promoted.
  • the manufacturing method of the optical fiber of this embodiment complicated calculation like the technique disclosed by the cited reference 1 mentioned above is not required at the time of manufacture.
  • the structural relaxation time constant ⁇ (T) which is considered to be due to the viscous flow of the glass, follows the Arrhenius equation. Therefore, the time constant ⁇ (T) is expressed as the following equation (5) as a function of the glass temperature T by using the constant A determined by the glass composition and the activation energy E act . Note that k B is a Boltzmann constant. (Here, T is the absolute temperature of the glass.)
  • FIG. 3 shows the relationship between the glass temperature when the glass is slowly cooled and the fictive temperature of the glass and time.
  • the horizontal axis represents time
  • the vertical axis represents temperature.
  • the solid line shows the temperature transition of the glass under a certain slow cooling condition
  • the broken line shows the transition of the fictive temperature of the glass at that time.
  • the dotted line shows the temperature transition of the glass when the cooling rate is made slower than the slow cooling condition shown by the solid line
  • the alternate long and short dash line shows the transition of the virtual temperature of the glass at that time.
  • the temperature difference between the glass temperature and the fictive temperature of the glass becomes small, and the fictive temperature of the glass becomes lower than the example described above. That is, when the glass cooling rate is made moderate, the structural relaxation of the glass is easily promoted.
  • the fictive temperature of the glass when the glass temperature is high, the glass structure relaxes quickly. However, since the fictive temperature of the glass never becomes lower than the glass temperature, the fictive temperature of the glass remains high when the glass temperature is high. That is, if the temperature of the glass is too high, there are few effects due to slow cooling. From such a viewpoint, the temperature of the optical fiber staying in the slow cooling furnace 121 is preferably 1600 ° C. or less, and more preferably 1500 ° C. or less. On the other hand, when the temperature of the glass is low, the fictive temperature decreases to a lower temperature, but the rate of decrease of the fictive temperature is slow. That is, if the glass temperature is too low, it takes time for slow cooling to sufficiently lower the fictive temperature.
  • the temperature of the optical fiber staying in the slow cooling furnace 121 is preferably 1300 ° C. or higher, and more preferably 1400 ° C. or higher. Therefore, it is preferable that the optical fiber stays in the slow cooling furnace 121 at least at a time when the temperature of the optical fiber is in the range of 1300 ° C. or higher and 1500 ° C. or lower.
  • the virtual temperature of the glass constituting the core included in the optical fiber is lowered in a short time by gradually cooling the optical fiber. The transmission loss of the optical fiber is easily reduced.
  • the structural relaxation time constant of the glass constituting the core included in the optical fiber is ⁇ (T)
  • T the temperature of the optical fiber at a certain point in the slow cooling process P3
  • T the virtual of the glass constituting the core at the certain point in time.
  • T f 0 the fictive temperature T f of the glass constituting the core after the lapse of time ⁇ t from the certain time point is expressed as the following formula (6) from the above formula (5).
  • ⁇ t is a minute time
  • T during that time is assumed to be constant.
  • the virtual temperature T f of the glass constituting the core is not only dependent on the constant tau (T) when the structural relaxation, the fictive temperature T f and the optical fiber of the glass constituting the core
  • the temperature difference (T f ⁇ T) from the temperature T depends on the temperature difference (T f 0 ⁇ T) between the fictive temperature T f 0 of the glass constituting the core and the temperature T of the optical fiber at a certain point in time. Recognize.
  • the structural relaxation time constant ⁇ (T) is the temperature difference (T f ⁇ T) between the glass fictive temperature T f and the glass temperature T when the fictive temperature is T f 0 and the glass temperature is T. Is defined as the time until 1 / e, and as the temperature difference (T f 0 ⁇ T) increases to some extent, the change in the virtual temperature T f per unit time increases.
  • T f 0 T
  • the temperature T of the optical fiber is lowered, and considering the condition that the temperature difference (T f 0 -T) between the fictive temperature T f 0 of the glass constituting the core and the temperature T of the optical fiber increases, the core is configured.
  • the time constant ⁇ (T) of the structural relaxation of the glass increases, the rate of change of the fictive temperature T f per unit time ((T f ⁇ T f 0 ) / ⁇ t) increases negatively.
  • this time Gradually increases the structural relaxation time constant ⁇ (T) of the glass constituting the core and decreases the absolute value of the fictive temperature T f change per unit time ((T f ⁇ T f 0 ) / ⁇ t). That is, when the temperature difference (T f 0 -T) between the fictive temperature T f 0 of the glass constituting the core and the temperature T of the optical fiber is a certain value as shown by the downward peak shown in the graph of FIG. It can be seen that the change in the fictive temperature per unit time ((T f ⁇ T f 0 ) / ⁇ t) takes a minimum value.
  • the glass temperature T when the fictive temperature Tf of the glass can be reduced most efficiently can be obtained.
  • the glass temperature at which the fictive temperature Tf of the glass can be reduced most efficiently may be referred to as “optimized glass temperature”, and the fictive temperature that has been reduced most efficiently is “optimized”.
  • optical temperature Sometimes called “virtual temperature”.
  • the unit time of the fictive temperature T f of the glass The hit change is the largest. That is, when considering the virtual temperature T f after a certain time ⁇ t elapses in the glass at the virtual temperature T f 0 , there exists a glass temperature T at which the virtual temperature T f can be minimized.
  • the change with time of the temperature difference (T f ⁇ T) from the fiber temperature T is obtained.
  • the slow cooling step P3 is performed immediately after the optical fiber preform is heated and melted in the drawing step P1. Assuming that the temperature T 0 of the optical fiber in the initial slow cooling (when the slow cooling time is 0 second) is 1800 ° C., the structural relaxation time of the glass constituting the core at this temperature is very less than 0.001 second. short.
  • the constant A and the activation energy E act in the above formulas (5) and (7) are described in Non-Patent Document 1 (K. Saito, et al., Journal of the American Ceramic Society, Vol. 89, pp. 65- 69 (2006)), and Non-Patent Document 2 (K. Saito, et al., Applied Physics Letters, Vol. 83, pp. 5175-5177 (2003)), and ⁇ t is 0 FIG.
  • the vertical axis represents the temperature difference (T f ⁇ T) between the fictive temperature T f of the glass constituting the core and the temperature T of the optical fiber at that time, and the horizontal axis represents the slow cooling time of the optical fiber. is there.
  • the solid line shows the result using the constant A and the activation energy E act described in Non-Patent Document 1, and the broken line uses the constant A and the activation energy E act described in Non-Patent Document 2. Results are shown. Under these conditions, the fictive temperatures of the glass constituting the core when the slow cooling time is 0.5 seconds are obtained as 1390 ° C. and 1322 ° C., respectively.
  • the temperature difference (T f -T) may be gradually increased, and the temperature difference (T f ⁇ T) may be gradually decreased in the time region after approximately 0.01 seconds from the start of the slow cooling.
  • the temperature difference (T f ⁇ T) is preferably less than 60 ° C. in all time regions, and the temperature difference (T f ⁇ T) is higher than approximately 40 ° C. and less than approximately 60 ° C. in most time regions.
  • the fictive temperature Tf of the glass constituting the core is efficiently lowered by controlling the temperature T of the optical fiber so as to maintain the temperature. Further, the time when the temperature difference (T f ⁇ T) shown in FIG. 5 becomes maximum is the constant A and the activation energy E act in the above formula (5) and the initial stage of slow cooling (when the slow cooling time is 0 second). Although it slightly depends on the temperature T 0 of the optical fiber and the fictive temperature T f 0 of the glass constituting the core, it is approximately 0.01 seconds.
  • the vertical axis represents the temperature difference (T f ⁇ T) between the value when the fictive temperature T f of the glass constituting the core becomes the minimum value and the temperature T of the optical fiber at that time, and the horizontal axis. Is the slow cooling time of the optical fiber.
  • the solid line shows the result using the constant A and the activation energy E act described in Non-Patent Document 1
  • the broken line shows the result using the constant A and the activation energy E act described in Non-Patent Document 2. Yes.
  • the temperature difference (T f ⁇ T) continues to decrease monotonically in all time regions, and the temperature T of the optical fiber is suitable for lowering the virtual temperature T f of the glass constituting the core. You can see that it is kept in range.
  • the fictive temperatures of the glass constituting the core when the slow cooling time is 0.5 seconds are determined to be 1387 ° C. and 1321 ° C., respectively, and the fictive temperature of the glass constituting the core is larger than that in the condition shown in FIG. The temperature can be further reduced.
  • Non-Patent Document 1 The values described in Non-Patent Document 1 were used for the constant A and the activation energy E act .
  • the initial temperature difference (T f ⁇ T) is large, the temperature shown on the right side of the minimum value of the change ((T f ⁇ T f 0 ) / ⁇ t) of the virtual temperature shown in the graph of FIG. Is in condition. That is, when the fictive temperature T f of the glass constituting the core is higher than the temperature T of the optical fiber, the temperature T of the optical fiber is increased to approach the fictive temperature T f and the temperature difference (T f ⁇ T) is small. The structure relaxation becomes faster. Therefore, as can be seen from FIG.
  • the temperature T of the optical fiber once rises until approximately 0.01 seconds from the start of slow cooling. Then, after the temperature difference (T f ⁇ T) becomes appropriate, the temperature T of the optical fiber decreases monotonously as in FIG.
  • the fictive temperature of the glass constituting the core at a slow cooling time of 0.5 seconds is determined to be 1389 ° C., and the fictive temperature of the glass constituting the core is lower than in the condition shown in FIG. However, this is not the case with the conditions shown in FIG.
  • the temperature difference (T f ⁇ T) between the fictive temperature of the glass constituting the core and the temperature of the optical fiber becomes appropriate. If the slow cooling process P3 is performed, the structural relaxation of the glass constituting the core can be efficiently performed by effectively using the time during which the optical fiber stays in the slow cooling furnace. That is, if the pre-cooling step P2 is performed until the temperature difference (T f ⁇ T) between the fictive temperature of the glass constituting the core and the temperature of the optical fiber is approximately 60 ° C., and then the slow cooling step P3 is started, The time that the fiber stays in the slow cooling furnace can be used effectively.
  • the temperature difference (T f ⁇ T) between the fictive temperature of the glass constituting the optical fiber and the temperature of the optical fiber is approximately
  • the core and the dopant such G e O 2 consists of doped silica glass, in any of the cladding consisting essentially of pure silica glass also or cores and consisting of substantially pure silica glass, fluorine, etc.
  • the fictive temperature can be efficiently reduced in any of the clad made of silica glass doped with the above dopant.
  • a plurality of slow cooling furnaces 121 are used from the start to the end of the slow cooling step P3, and the optical fibers are sequentially supplied to the slow cooling furnaces 121 while the temperature T gradually decreases. Enter the line. From the results shown in FIG. 5 and FIG. 6, the temperature difference (T f ⁇ T) between the temperature of the optical fiber when structural relaxation is efficiently caused by slow cooling and the fictive temperature of the glass constituting the core included in the optical fiber is It becomes smaller monotonically as the slow cooling time elapses.
  • ⁇ (T) is the time constant for structural relaxation of the glass constituting the core
  • T is the temperature of the optical fiber at a certain point in the slow cooling step P3
  • T is the virtual temperature of the glass constituting the core at the certain point.
  • f 0 where T f is the fictive temperature of the glass constituting the core after the lapse of time ⁇ t from a certain point in time, the following formula (2 ′) is preferably satisfied.
  • the temperature of the optical fiber at the time of entering the nth slow cooling furnace 121 from the upstream side is T n
  • the virtual temperature of the glass constituting the core at the time of entering the slow cooling furnace is T fn
  • the fictive temperature of the glass constituting the core after the lapse of time ⁇ t from the time of entering the slow cooling furnace is Tf , it is preferable that the following formula (2) is satisfied.
  • the temperature T of the optical fiber when entering each slow cooling furnace 121 and the said optical fiber is controlled appropriately, the temperature difference (T f ⁇ T) from the fictive temperature T f of the glass constituting the core is controlled within the predetermined range, and the structural relaxation of the glass constituting the core included in the optical fiber is more easily promoted. Become. Therefore, the transmission loss of the optical fiber is easily reduced.
  • the condition of -T) is as described above, but the transmission loss of the optical fiber can be sufficiently reduced even under the conditions described below.
  • the fictive temperature T f of the glass constituting the core included in the optical fiber and the transmission loss of the optical fiber are linked by the following relational expression.
  • the Rayleigh scattering coefficient R r is proportional to the fictive temperature T f of the glass constituting the core, and the transmission loss ⁇ T due to Rayleigh scattering is represented by the following formula (9), where the wavelength of the transmitted light is ⁇ [ ⁇ m].
  • B 4.0 ⁇ 10 ⁇ 4 dB / km / ⁇ m 4 / K.
  • T f 1.55 ⁇ m
  • the transmission loss ⁇ T due to Rayleigh scattering increases by approximately 0.001 dB / km. That is, if it is possible to suppress errors from the virtual temperature T f which is optimized to below 14 ° C., it is possible to suppress an increase in transmission loss alpha T by Rayleigh scattering to less than 0.001 dB / miles.
  • the fictive temperature T f of the glass constituting the core may be set in the annealing furnace 121 under a temperature condition that is higher than about 20 ° C. and lower than about 100 ° C.
  • the increase with respect to the scattering loss predicted from the fictive temperature T f of the glass constituting the core when the glass is cooled for 0.5 seconds at the temperature difference (T f ⁇ T) shown by the solid line in FIG. 6 is less than 0.001 dB / km.
  • the temperature difference (T f ⁇ T) when suppressed can be predicted from the recurrence formula (6). Similar to the assumption shown in FIG. 6, the fictive temperature T f 0 of the glass constituting the core of the optical fiber in the initial slow cooling (when the slow cooling time is 0 second) is 1560 ° C., and the temperature difference (T f ⁇ T) is It is assumed that the temperature gradually becomes constant during the slow cooling step P3.
  • FIG. 8 shows an increase with respect to the transmission loss expected from the fictive temperature T f of the glass constituting the core when the glass is cooled for 0.5 seconds at the temperature difference (T f ⁇ T) shown by the solid line in FIG.
  • the upper limit of the change over time of the temperature difference (T f ⁇ T) when the value is 0.001 dB / km or less is indicated by a broken line, and the lower limit is indicated by a one-dot chain line.
  • the temperature difference (T f ⁇ T) shown by the solid line in FIG. 6 is shown again by the solid line.
  • the temperature of the slow cooling furnace 121 is set so as to control the temperature history of the optical fiber so that the temperature difference (T f ⁇ T) is in a range higher than about 20 ° C. and lower than about 100 ° C.
  • Tf the temperature difference
  • the fictive temperature of the glass constituting the core is suppressed to a range that does not increase by about 14 ° C. or more.
  • the transmission loss can be suppressed to an increase of 0.001 dB / km or less with respect to the value under the optimized condition that can be reduced most.
  • the temperature difference (T f ⁇ ) between the temperature T of the optical fiber and the virtual temperature T f of the glass constituting the core included in the optical fiber is easily maintained.
  • T f ⁇ the temperature difference between the temperature T of the optical fiber and the virtual temperature T f of the glass constituting the core included in the optical fiber.
  • the temperature of the optical fiber at the time of entering the nth slow cooling furnace from the upstream side in the slow cooling step P3 is T n
  • the virtual temperature of the glass constituting the core at the time of entering the slow cooling furnace is T fn
  • the slow cooling furnace when the fictive temperature of the glass constituting the core of the time ⁇ t elapses after the time of the incoming line was T f it is preferred that the following formula (1) holds.
  • the optical fiber is inserted into the annealing furnace 121 under a temperature condition that the temperature difference (T f ⁇ T) between the fictive temperature T f of the glass constituting the core and the temperature of the optical fiber is generally higher than 20 ° C. and lower than approximately 100 ° C. Just do it.
  • the optical fiber is slowly cooled in a state where the temperature difference (T f ⁇ T) between the temperature of the optical fiber and the fictive temperature of the glass constituting the core included in the optical fiber is controlled within a predetermined range.
  • This promotes structural relaxation of the glass constituting the core.
  • the scattering loss due to fluctuations in the structure of the glass constituting the core is reduced when light is transmitted to the core, so that the transmission loss of the optical fiber is reduced. Reduced.
  • a plurality of slow cooling furnaces 121 are used in the slow cooling process P3, and predetermined with respect to the virtual temperature of the glass constituting the core in the slow cooling time until the set temperature of each slow cooling furnace 121 reaches the inlet of each slow cooling furnace 121
  • the temperature difference between the temperature of the optical fiber and the fictive temperature of the glass constituting the core included in the optical fiber can be easily controlled within a predetermined range.
  • the structural relaxation of the glass constituting the core is promoted, and the transmission loss of the optical fiber is reduced. This will be specifically described below with reference to FIG.
  • FIG. 9 is calculated from the equation (5) assuming that the initial value of the temperature T 0 of the optical fiber is 1500 ° C. and the fictive temperature T f 0 of the glass constituting the core is 1560 ° C. as an initial value. It reaches the appropriate fictive temperature change (solid line) of the glass constituting the core, the set temperature of the slow cooling furnaces 121a, 121b, 121c, 121d (dashed line), and the inlet or outlet of the slow cooling furnaces 121a, 121b, 121c, 121d. The expected fictive temperature of the glass constituting the core in the slow cooling time until is shown. In the example shown in FIG. 9, it is assumed that each slow cooling furnace 121 has a length of 0.5 m and a drawing speed of 20 m / sec.
  • the slow cooling time is 0.000 sec.
  • the optimized virtual temperatures T f of the glass constituting the core at 025 seconds, 0.050 seconds, 0.075 seconds, and 0.100 seconds are 1560 ° C., 1517 ° C., 1493 ° C., 1477 ° C., and 1464, respectively. Calculated as ° C.
  • the set temperatures of the slow cooling furnaces 121a, 121b, 121c, and 121d are set as shown by a one-dot chain line in FIG.
  • each slow cooling furnace 121 is set to a temperature that is 70 ° C. lower than the optimized fictive temperature Tf of the glass constituting the core in the slow cooling time when it reaches the inlet of each slow cooling furnace 121.
  • Tf the temperature difference between the virtual glass temperature and the temperature of the optical fiber at that time
  • the actual virtual temperature is slightly higher than the ideal virtual temperature indicated by the triangle ( ⁇ ) and is higher than the virtual temperature indicated by the circle ( ⁇ ). Slightly lower, but acceptable error.
  • the difference between the fictive temperature of the glass after the fictive temperature history after slow cooling for 0.100 seconds and the optimized fictive temperature is 1.1 ° C., and the scattering loss is 0.8. It must be less than 001 dB / km.
  • the temperature difference between the temperature of the optical fiber and the fictive temperature of the glass constituting the core is controlled to a more appropriate range, that is, from the viewpoint of easily satisfying the above formula (2), the following formula ( It is preferable that 4) holds.
  • the effect of promoting the structural relaxation of the glass constituting the core included in the optical fiber is easily increased, and the transmission loss of the optical fiber is reduced. It becomes easy.
  • the slow cooling furnace 121 provided on the downstream side has a smaller difference between the set temperature and the fictive temperature of the glass constituting the core at the inlet than the slow cooling furnace 121 provided on the upstream side. For example, as shown by the solid line in FIG.
  • the temperature of the glass at the slow cooling time of 0.025 seconds, 0.050 seconds, 0.075 seconds, 0.100 seconds and the appropriateness of the glass constituting the core
  • the difference from the converted virtual temperature is 55 ° C., 54 ° C., 53 ° C., and 52 ° C., respectively, and it is preferable that the difference in temperature is smaller toward the downstream.
  • the temperature of the slow cooling furnace is set so that the temperature difference between the set temperature and the fictive temperature of the glass constituting the core at the inlet is smaller in the slow cooling furnace provided in the downstream side than in the slow cooling furnace provided in the upstream side.
  • the structural relaxation of the glass constituting the core can be promoted efficiently. As a result, the transmission loss of the optical fiber is easily reduced.
  • the relationship between the temperature T of the optical fiber and the fictive temperature T f of the glass constituting the core depends only on the slow cooling time t if the composition of the optical fiber is the same, the slow cooling time t, and the length of the slow cooling furnace.
  • L and the drawing speed v can be linked by the relationship of the following formula (10).
  • the required length L of the slow cooling furnace can be obtained by setting the target virtual temperature T f of the glass constituting the core included in the manufactured optical fiber and determining the drawing speed v in consideration of productivity. .
  • the slow cooling time t is required to be about 0.1 seconds in order to set the fictive temperature Tf to 1500 ° C.
  • the length L of the slow cooling furnace must be 2 m. I understand.
  • the slow cooling time t is required to be about 0.4 seconds in order to set the virtual temperature Tf to 1400 ° C., when the drawing speed v is set to 10 m / second, the length L of the slow cooling furnace is 4 m.
  • the drawing speed v is preferably selected in the range of about 10 m / sec to 50 m / sec
  • the slow cooling furnace length L is preferably selected in the range of about 1 m to 10 m
  • the slow cooling time t is 1 second or less. It is preferable to do.
  • ⁇ Rapid cooling process P4> After the slow cooling step P3, the optical fiber is covered with a coating layer in order to enhance the damage resistance and the like.
  • This coating layer is usually made of an ultraviolet curable resin.
  • the optical fiber In order to form such a coating layer, the optical fiber needs to be cooled to a sufficiently low temperature in order to prevent burning of the coating layer.
  • the temperature of the optical fiber affects the viscosity of the resin to be applied, and consequently the thickness of the coating layer.
  • the appropriate temperature of the optical fiber when forming the coating layer is appropriately determined according to the properties of the resin constituting the coating layer.
  • the slow cooling furnace 121 is provided between the drawing furnace 110 and the coating apparatus 131, so that the section for sufficiently cooling the optical fiber is shortened.
  • the optical fiber manufacturing method of the present embodiment also includes the pre-cooling step P2, the section for sufficiently cooling the optical fiber is further shortened. Therefore, the optical fiber manufacturing method of the present embodiment includes a rapid cooling process P4 in which the optical fiber exiting the slow cooling furnace 121 is rapidly cooled by the cooling device 122. In the rapid cooling process P4, the optical fiber is cooled more rapidly than in the slow cooling process P3. By providing such a rapid cooling process P4, the temperature of the optical fiber can be sufficiently lowered in a short section, and thus it becomes easy to form a coating layer.
  • the temperature of the optical fiber when leaving the cooling device 122 is, for example, 40 ° C. to 50 ° C.
  • the optical fiber cooled to a predetermined temperature through the cooling device 122 as described above passes through the coating device 131 containing the ultraviolet curable resin serving as a coating layer covering the optical fiber, and is coated with the ultraviolet curable resin. Is done. Further, when passing through the ultraviolet irradiation device 132 and being irradiated with ultraviolet rays, the ultraviolet curable resin is cured and a coating layer is formed, whereby the optical fiber 1 is obtained.
  • the covering layer is usually composed of two layers. When two coating layers are formed, two coating layers can be formed by coating the optical fiber with the ultraviolet curable resin constituting each layer and then curing the ultraviolet curable resin at a time. Alternatively, the second coating layer may be formed after the first coating layer is formed. Then, the direction of the optical fiber 1 is changed by the turn pulley 141 and is taken up by the reel 142.
  • the optical fiber manufacturing method of the present invention only needs to include the drawing step and the slow cooling step described above, and the precooling step and the rapid cooling step are not essential components.
  • the manufacturing method of the optical fiber of this invention is applicable to manufacture of all kinds of optical fibers.
  • the optical fiber manufacturing method of the present invention includes not only an optical fiber mainly composed of silica glass but also a method for manufacturing an optical fiber mainly composed of other materials such as chalcogenide glass and fluorine-based glass.
  • the present invention is applicable if the constant A and the activation energy E act in Equation (5) are obtained.
  • an optical fiber manufacturing method capable of manufacturing an optical fiber with reduced transmission loss is provided and can be used in the field of optical fiber communication. It can also be used to manufacture optical fibers used in fiber laser devices and other devices using optical fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

光ファイバ用母材1Pを線引炉110において線引きする線引工程P1と、線引工程P1において引き出された光ファイバを徐冷する徐冷工程P3と、を備え、徐冷工程P3において、光ファイバは複数の徐冷炉121に通され、光ファイバに含まれるコアを構成するガラスの構造緩和の時定数をτ(T)、徐冷工程において上流側からn番目の徐冷炉に入線する時点での光ファイバの温度をT、入線する時点でのコアを構成するガラスの仮想温度をTfn、入線する時点から時間Δt経過後のコアを構成するガラスの仮想温度をTとしたとき、徐冷工程の任意の期間において下記式(1)が成り立つことを特徴とすることを特徴とする。

Description

光ファイバの製造方法
 本発明は、光ファイバの製造方法に関する。
 光ファイバ通信システムにおいて光伝送距離の長距離化や光伝送速度の高速化を図るためには、光信号ノイズ比が高められなければない。そのため、光ファイバの伝送損失の低減が求められている。光ファイバの製造方法が高度に洗練されている現在では、光ファイバに含まれる不純物による伝送損失はほぼ限界まで低下していると考えられている。残る伝送損失の主な原因は、光ファイバを構成するガラスの構造や組成の揺らぎに伴う散乱損失である。これは光ファイバがガラスで構成されているが故に不可避なものである。
 ガラスの構造の揺らぎを低減する方法としては、溶融したガラスを冷却する際に緩やかに冷却することが知られている。このように溶融したガラスを緩やかに冷却する方法として、線引炉から線引きされた直後の光ファイバを徐冷することが試みられている。具体的には、線引炉から線引きした光ファイバを徐冷炉で加熱したり、線引きした直後の光ファイバを断熱材で囲んだりして、光ファイバの冷却速度を低下させることが検討されている。
 下記特許文献1には、シリカガラスを主成分とするコア及びクラッドを有する光ファイバの外径が最終外径の500%より小さくなる位置から光ファイバの温度が1400℃になる位置までのうちの70%以上の領域において、漸化式で求められる目標温度に対して±100℃以下となるように加熱炉(徐冷炉)の温度を設定することが開示されている。このように光ファイバの温度履歴が制御されることによって、光ファイバを構成するガラスの仮想温度が低下して伝送損失が低減されるとしている。
特開2014-62021号公報
 しかし、上記特許文献1に開示されている技術では、漸化式で求められる理想的な温度変化に光ファイバの温度を合わせるために複雑な計算を繰り返すことが求められる。また、特許文献1に開示されている技術では、光ファイバの温度が漸化式で求められる目標温度に対して±50℃~100℃もずれることを許容している。このような広い範囲で光ファイバの温度のずれが許容されると、温度履歴が十分に適正化されているとは言い難い。例えば、徐冷される光ファイバの温度が±100℃の範囲で変化し、光ファイバを構成するガラスの仮想温度も同様の範囲で変化し、漸化式で求められる目標温度で到達できる仮想温度よりも100℃高い仮想温度の光ファイバしか得られなかったとすると、得られる光ファイバの光散乱による伝送損失は0.007dB/km程度も増加することになる。このような光ファイバの温度履歴が十分に適正化されていない従来の製造方法では、徐冷炉を必要以上に長くする過剰な設備投資が行われたり、線引速度を必要以上に低下させて生産性が損なわれたりする。
 本発明者は、徐冷炉の温度を適切に設定し、光ファイバを構成するガラスの仮想温度と光ファイバの温度との温度差が適切に制御されることによって、光ファイバを構成するガラスの構造緩和が促進され、光ファイバの光散乱による伝送損失が低減され易くなることを見出した。
 そこで、本発明は、光ファイバの伝送損失を低減させることが容易な光ファイバの製造方法を提供しようとするものである。
 上記課題を解決するため、本発明の光ファイバの製造方法は、光ファイバ用母材を線引炉において線引きする線引工程と、前記線引工程において引き出された光ファイバを徐冷する徐冷工程と、を備え、前記徐冷工程において、前記光ファイバは複数の徐冷炉に通され、前記光ファイバに含まれるコアを構成するガラスの構造緩和の時定数をτ(T)、前記徐冷工程において上流側からn番目の前記徐冷炉に入線する時点での前記光ファイバの温度をT、前記入線する時点での前記コアを構成するガラスの仮想温度をTfn、前記入線する時点から時間Δt経過後の前記コアを構成するガラスの仮想温度をTとしたとき、前記徐冷工程の任意の期間において下記式(1)が成り立つことを特徴とする。
Figure JPOXMLDOC01-appb-I000005
 本発明者らは、光ファイバの温度と光ファイバに含まれるコアを構成するガラスの仮想温度との温度差が上記所定の範囲に制御された状態で光ファイバが徐冷されることによって、コアを構成するガラスの構造緩和が促進されることを見出した。コアを構成するガラスの構造緩和が促進されることによって、コアに光が伝送される際にコアを構成するガラスの構造の揺らぎに起因する散乱損失が低減されるので、光ファイバの伝送損失が低減される。また、上記のように徐冷工程において複数の徐冷炉が用いられ、各徐冷炉の設定温度が適切に制御されることによって、光ファイバの温度と光ファイバに含まれるコアを構成するガラスの仮想温度との温度差が上記所定の範囲に制御され易くなる。その結果、コアを構成するガラスの構造緩和が促進され、光ファイバの伝送損失が低減され易くなる。
 また、本発明の光ファイバの製造方法は、前記徐冷工程の任意の期間において下記式(2)が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000006
 このように徐冷工程において光ファイバの温度Tと当該光ファイバに含まれるコアを構成するガラスの仮想温度Tとの温度差(T-T)がより適した範囲に制御されることによって、当該光ファイバに含まれるコアを構成するガラスの構造緩和がより促進され易くなり、光ファイバの伝送損失がより低減され易くなる。
 また、本発明の光ファイバの製造方法は、前記n番目の徐冷炉の設定温度をTsnとするとき、下記式(3)の関係が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000007
 上記のように徐冷工程において複数の徐冷炉が用いられ、各徐冷炉の設定温度が各徐冷炉の入り口におけるコアを構成するガラスの仮想温度に対して所定の範囲に制御されることによって、光ファイバの温度と光ファイバに含まれるコアを構成するガラスの仮想温度との温度差が所定の範囲に制御され易くなる。その結果、コアを構成するガラスの構造緩和が促進され、光ファイバの伝送損失が低減され易くなる。
 また、本発明の光ファイバの製造方法は、下記式(4)が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000008
 このように複数の徐冷炉の設定温度がそれぞれより適切な範囲に制御されることによって、光ファイバに含まれるコアを構成するガラスの構造緩和の促進効果がより増大され易くなり、光ファイバの伝送損失がより低減され易くなる。
 また、本発明の光ファイバの製造方法は、上流側に備えられる前記徐冷炉よりも下流側に備えられる前記徐冷炉の方が、設定温度と入り口における前記コアを構成するガラスの仮想温度との温度差が小さいことが好ましい。
 本発明者らは、ガラスの温度が低くなるとガラスの仮想温度とガラスの温度との温度差を小さくした方がガラスの構造緩和が促進されやすいことを見出した。従って、上流側に備えられる徐冷炉よりも下流側に備えられる徐冷炉の方が設定温度と入り口におけるコアを構成するガラスの仮想温度との温度差が小さくなるように徐冷炉の温度を設定することによって、効率良くコアを構成するガラスの構造緩和を促進させることができる。その結果、光ファイバの伝送損失がより低減され易くなる。
 また、前記光ファイバの温度が1300℃以上1500℃以下の範囲にあるときの少なくとも一時期に前記光ファイバが前記複数の徐冷炉のいずれかに滞在することが好ましい。
 光ファイバの温度がこの範囲にあるときに光ファイバが徐冷されることによって、光ファイバに含まれるコアを構成するガラスの仮想温度が短時間で低下され易くなり、光ファイバの伝送損失が低減され易くなる。
 以上のように、本発明によれば、光ファイバの伝送損失を低減させることが容易な光ファイバの製造方法が提供される。
本発明の光ファイバの製造方法の工程を示すフローチャートである。 本発明の光ファイバの製造方法に用いる装置の構成を概略的に示す図である。 ガラスの温度及び当該ガラスの仮想温度と徐冷時間との関係を示すグラフである。 ガラスの仮想温度とガラスの温度との温度差(T -T)と、ガラスの仮想温度の単位時間当たりの低下速度((T-T )/Δt)と、の関係を模式的に示すグラフである。 ガラスの仮想温度とガラスの温度との温度差の時間変化を示すグラフである。 図5とは異なる初期条件におけるガラスの仮想温度とガラスの温度との温度差の時間変化を示すグラフである。 図5および図6とは異なる初期条件におけるガラスの温度の時間変化を示すグラフである。 図6に実線で示す適正化された温度差(T-T)と、散乱による伝送損失が0.001dB/km以上損失増加しない温度差(T-T)の経時変化の上限及び下限とを示すグラフである。 各徐冷炉の設定温度、各徐冷炉の入口における適正化されたガラスの仮想温度、及び、仮想的な温度履歴を経るガラスの各徐冷炉の入口における仮想温度を示すグラフである。
 以下、本発明に係る光ファイバの製造方法の好適な実施形態について図面を参照しながら詳細に説明する。
 図1は、一つの実施形態に係る本発明の光ファイバの製造方法の工程を示すフローチャートである。図1に示すように、本実施形態の光ファイバの製造方法は、線引工程P1と、予冷工程P2と、徐冷工程P3と、急冷工程P4と、を備える。以下、これらの各工程について説明する。なお、図2は本実施形態の光ファイバの製造方法に用いる装置の構成を概略的に示す図である。
 <線引工程P1>
 線引工程P1は、線引炉110において光ファイバ用母材1Pの一端を線引きする工程である。まず、所望の光ファイバ1を構成するコア及びクラッドと同じ屈折率分布を持つガラスで構成される光ファイバ用母材1Pを準備する。光ファイバ1は、1つ又は複数のコア及びコアの外周面を隙間なく囲むクラッドを有する。また、コア及びクラッドはそれぞれシリカガラスからなり、コアの屈折率はクラッドの屈折率よりも高くされる。例えば、コアが屈折率を高くするゲルマニウム等のドーパントが添加されたシリカガラスから成る場合、クラッドは純粋なシリカガラスで構成される。また、例えば、コアが純粋なシリカガラスから成る場合、クラッドは屈折率を低くするフッ素等のドーパントが添加されたシリカガラスで構成される。
 次に、光ファイバ用母材1Pを長手方向が垂直となるように懸架する。そして、光ファイバ用母材1Pを線引炉110に配置し、加熱部111を発熱させて光ファイバ用母材1Pの下端部を加熱する。このとき光ファイバ用母材1Pの下端部は、例えば2000℃に加熱されて溶融状態となる。そして、加熱された光ファイバ用母材1Pの下端部から溶融したガラスを所定の線引速度で線引炉110から引き出す。
 <予冷工程P2>
 予冷工程P2は、線引工程P1で線引炉110から引き出された光ファイバが後述する徐冷炉121へ送られるのに適した所定の温度になるように冷却する工程である。徐冷炉121へ送られるのに適した光ファイバの所定の温度については、後に詳述する。
 本実施形態の光ファイバの製造方法において、予冷工程P2は線引炉110の直下に設けられた筒状体120の中空部に線引工程P1で線引きされた光ファイバが通されることによって行われる。線引炉110の直下に筒状体120を設けることによって、筒状体120の中空部内の雰囲気は線引炉110内の雰囲気とほぼ同じになる。そのため、線引きされた直後の光ファイバの周囲の雰囲気や温度が急激に変化することが抑制される。
 徐冷炉121へ送られる光ファイバの温度は、主に線引速度と線引炉110内の雰囲気によって決められる。予冷工程P2を備えることによって、光ファイバの冷却速度を更に微調整し、徐冷炉121への光ファイバの入線温度を適切な範囲に調整し易くなる。線引炉110から引き出される光ファイバの温度と徐冷炉121へ送られるのに適した光ファイバの温度とに基づいて、徐冷炉121と線引炉110との距離や筒状体120の長さを適宜選択することができる。筒状体120は、例えば金属管等によって構成される。当該金属管を空冷したり、当該金属管の周囲に断熱材を配したりして、光ファイバの冷却速度を調整しても良い。
 <徐冷工程P3>
 徐冷工程P3は、線引工程P1において引き出された光ファイバを徐冷する工程である。本実施形態の光ファイバの製造方法では、光ファイバは予冷工程P2を経て温度調整され、徐冷工程P3において徐冷される。徐冷工程P3において、光ファイバは複数の徐冷炉121a,121b,121c,121dに通される。本実施形態の光ファイバの製造方法の説明では、これら全ての徐冷炉を包括する場合や各徐冷炉を区別する必要がない場合は単に「徐冷炉121」という場合がある。なお、図2には、4つの徐冷炉121a,121b,121c,121dを示しているが、本発明において徐冷炉の数は複数であれば特に限定されない。徐冷炉が複数あるというのは、互いに異なる温度に設定することできる発熱部が複数あるという意味である。例えば、1つの筐体内に収められているとしても、互いに異なる温度に設定することができる発熱部が複数備えられていれば、徐冷炉が複数あるといえる。
 徐冷炉121内は入線する光ファイバの温度とは異なる所定の温度とされており、徐冷炉121に入線した光ファイバの周囲の温度により、光ファイバの冷却速度が低下させられる。徐冷炉121において光ファイバの冷却速度が低下させられることによって、以下に説明するように、光ファイバに含まれるコアを構成するガラスの構造が緩和され、散乱損失が低減した光ファイバ1が得られる。
 従来の徐冷工程を有する光ファイバの製造方法では、徐冷炉への入線時の光ファイバの温度が十分に適正化されていない。具体的には、光ファイバの温度が高すぎたり低すぎたりする状態で徐冷炉に入線される場合がある。徐冷炉に入線する光ファイバの温度が高過ぎると、光ファイバを構成するガラスの構造が緩和する速度が非常に速いため、光ファイバを徐冷することによる効果を得ることがほとんど期待できない。一方、徐冷炉に入線する光ファイバの温度が低すぎると光ファイバを構成するガラスの構造が緩和する速度が遅くなるため、徐冷炉にて光ファイバを再加熱する必要等が生じることがある。このように従来の徐冷工程では、光ファイバを構成するガラスの構造緩和が効率よく行われているとは言い難い。そのため、徐冷炉を必要以上に長くする過剰な設備投資が行われたり、線引速度を必要以上に遅くして生産性が損ねられたりする虞がある。
 本実施形態の光ファイバの製造方法によれば、以下に説明するように徐冷工程P3において、徐冷炉121の温度を適切に設定し、光ファイバに含まれるコアを構成するガラスの仮想温度と光ファイバの温度との温度差が適切に制御されることによって、コアを構成するガラスの構造緩和が促進される。その結果、過剰な設備投資を必要とせず、且つ、生産性良く、伝送損失が低減された光ファイバ1を得ることができる。また、本実施形態の光ファイバの製造方法によれば、上述した引用文献1に開示された技術のような複雑な計算を製造時に必要としない。
 いわゆるストロングガラスに分類されるシリカガラスでは、ガラスの粘性流動によると考えられる構造緩和の時定数τ(T)はArrheniusの式に従う。そのため、時定数τ(T)はガラスの組成によって決まる定数A及び活性化エネルギーEactを用いて、ガラスの温度Tの関数として下記式(5)のように表される。なお、kはBoltzmann定数である。
Figure JPOXMLDOC01-appb-I000009
(ここでは、Tはガラスの絶対温度である。)
 上記式(5)より、ガラスの温度が高いほど速くガラスの構造が緩和し、その温度における平衡状態に速く達することがわかる。すなわち、ガラスの温度が高いほどガラスの仮想温度がガラスの温度に近づくのが速くなる。
 ガラスを徐冷するときのガラスの温度及び当該ガラスの仮想温度と時間との関係を図3に示す。図3に示すグラフにおいて、横軸は時間、縦軸は温度を示している。図3において、実線はある徐冷条件でのガラスの温度推移を示しており、破線はそのときのガラスの仮想温度の推移を示している。また、点線は実線で示す徐冷条件よりも冷却速度を緩やかにした場合のガラスの温度推移を示しており、一点鎖線はそのときのガラスの仮想温度の推移を示している。
 図3に実線及び破線で示すように、高温域でガラスの温度が時間の経過と共に低下するときはガラスの仮想温度も同様に低下する。このようにガラスの温度が十分に高い状態では、ガラスの構造緩和の速度が非常に速い。しかし、ガラスの温度が低下するにつれてガラスの構造緩和の速度は遅くなる。やがてガラスの仮想温度の低下はガラスの温度の低下に追従できなくなる。そして、ガラスの温度とガラスの仮想温度との温度差が大きくなる。ここで、ガラスの冷却速度を緩やかにすると、冷却速度が速い場合に比べてガラスは相対的に温度の高い状態に長時間保持されることになる。そのため、図3に点線及び一点鎖線で示すように、ガラスの温度とガラスの仮想温度との温度差は小さくなり、ガラスの仮想温度は先に説明した例よりも低くなる。すなわち、ガラスの冷却速度を緩やかにすると、ガラスの構造緩和が促進されやすくなる。
 上記のように、ガラスの温度が高いときはガラスの構造が速く緩和する。ただし、ガラスの仮想温度はガラスの温度よりも低くなることはないので、ガラスの温度が高いときはそのガラスの仮想温度も高いままとなる。すなわち、ガラスの温度が高すぎると徐冷することによる効果が少ない。かかる観点から、徐冷炉121に滞在させる光ファイバの温度は1600℃以下であることが好ましく、1500℃以下であることがより好ましい。一方、ガラスの温度が低い場合は仮想温度がより低い温度まで低下するが、仮想温度の低下速度は遅くなる。すなわち、ガラスの温度が低すぎると仮想温度を十分に低下させるための徐冷に時間を要する。かかる観点から、徐冷炉121に滞在させる光ファイバの温度は1300℃以上であることが好ましく、1400℃以上であることがより好ましい。よって、光ファイバの温度が1300℃以上1500℃以下の範囲にあるときの少なくとも一時期に光ファイバが徐冷炉121に滞在することが好ましい。このように、徐冷工程P3において光ファイバの温度が所定の範囲にあるときに光ファイバが徐冷されることによって、光ファイバに含まれるコアを構成するガラスの仮想温度が短時間で低下され易くなり、光ファイバの伝送損失が低減され易くなる。
 次に、ガラスの温度とガラスの仮想温度との関係から、光ファイバをどのように徐冷することによってコアを構成するガラスの構造緩和を効率良く促進し、光ファイバの伝送損失を低減できるのか説明する。
 光ファイバに含まれるコアを構成するガラスの構造緩和の時定数をτ(T)、徐冷工程P3におけるある時点での光ファイバの温度をT、当該ある時点でのコアを構成するガラスの仮想温度をT としたとき、当該ある時点から時間Δt経過後のコアを構成するガラスの仮想温度Tは、上記式(5)から下記式(6)のように表される。なお、Δtは微小時間であって、その間のTは一定であると仮定している。
Figure JPOXMLDOC01-appb-I000010
 上記式(6)によれば、コアを構成するガラスの仮想温度Tが構造緩和の時定数τ(T)に依存するだけではなく、コアを構成するガラスの仮想温度Tと光ファイバの温度Tとの温度差(T-T)が、ある時点におけるコアを構成するガラスの仮想温度T と光ファイバの温度Tとの温度差(T -T)に依存することがわかる。構造緩和の時定数τ(T)は、仮想温度がT であるガラスの温度がTであるときに、ガラスの仮想温度Tとガラスの温度Tとの温度差(T-T)が1/eになるまでの時間として定義されており、温度差(T -T)がある程度大きいほど単位時間当たりの仮想温度Tの変化が大きくなる。
 仮想温度がT であるガラスで構成されるコアを含む光ファイバの温度をTにしたときの温度差(T -T)と、仮想温度Tの単位時間当たりの変化((T-T )/Δt)と、の関係を図4に模式的に示す。図4に示すように、コアを構成するガラスの仮想温度T と光ファイバの温度Tとが一致している条件(T =T)では、コアを構成するガラスの構造緩和は起こらず、仮想温度の単位時間当たりの変化は0である((T-T )/Δt=0)。ここから光ファイバの温度Tを低下させ、コアを構成するガラスの仮想温度T と光ファイバの温度Tとの温度差(T -T)が大きくなる条件を考えると、コアを構成するガラスの構造緩和の時定数τ(T)は大きくなるものの単位時間当たりの仮想温度Tの変化率((T-T )/Δt)は負に大きくなる。しかし、さらに光ファイバの温度Tを低下させてコアを構成するガラスの仮想温度T と光ファイバの温度Tとの温度差(T -T)がさらに大きくなる条件を考えると、今度は次第にコアを構成するガラスの構造緩和の時定数τ(T)が大きくなるとともに単位時間当たりの仮想温度Tの変化((T-T )/Δt)の絶対値が小さくなる。すなわち、図4のグラフに表れている下向きのピークのように、コアを構成するガラスの仮想温度T と光ファイバの温度Tとの温度差(T -T)がある値のときに仮想温度の単位時間当たりの変化((T-T )/Δt)が極小値をとることがわかる。
 ここで上記式(6)を解くと、ガラスの仮想温度Tの低下速度が最大になるときのガラスの温度Tと仮想温度Tとの間に下記式(7)の関係が成り立つことがわかる。
Figure JPOXMLDOC01-appb-I000011
 さらに上記式(7)を下記式(8)のようにTについて解くと、ガラスの仮想温度Tを最も効率良く低下させることができるときのガラスの温度Tを求めることができる。以下、ガラスの仮想温度Tを最も効率良く低下させることができるときのガラスの温度を「適正化されたガラスの温度」ということがあり、最も効率良く低下させられた仮想温度を「適正化された仮想温度」ということがある。
Figure JPOXMLDOC01-appb-I000012
 これまでに説明したように、ある時点におけるガラスの仮想温度T とガラスの温度Tとの温度差(T -T)が所定の値のときにガラスの仮想温度Tの単位時間当たりの変化が最も大きくなる。すなわち、仮想温度T のガラスの一定時間Δt経過後の仮想温度Tを考えるとき、仮想温度Tを最低値にすることができるガラスの温度Tが存在することになる。
 コアにGをドープした汎用的なシングルモード光ファイバについて、上記式(6)から求められるコアを構成するガラスの仮想温度Tが最低値になるときの値と、そのときの光ファイバの温度Tとの温度差(T-T)の経時変化を求める。ここで、線引工程P1において光ファイバ用母材を加熱溶融した直後から徐冷工程P3を行う場合を仮定する。徐冷初期(徐冷時間が0秒のとき)における光ファイバの温度Tが1800℃であると仮定すると、この温度におけるコアを構成するガラスの構造緩和時間は0.001秒未満と非常に短い。従って、コアを構成するガラスの徐冷初期の仮想温度T も同じく1800℃であると考えてよい。すなわち、T -T=0℃と初期値が仮定される。また、上記式(5)及び(7)における定数A及び活性化エネルギーEactは、非特許文献1(K. Saito, et al., Journal of the American Ceramic Society, Vol.89, pp.65-69 (2006))、および非特許文献2(K. Saito, et al., Applied Physics Letters, Vol.83, pp.5175-5177 (2003))に記載されている値を採用し、Δtを0.0005秒として計算した結果を図5に示す。図5のグラフにおいて、縦軸は、コアを構成するガラスの仮想温度Tとそのときの光ファイバの温度Tとの温度差(T-T)、横軸は光ファイバの徐冷時間である。図5において、実線は非特許文献1に記載の定数A及び活性化エネルギーEactを用いた結果を示しており、破線は非特許文献2に記載の定数A及び活性化エネルギーEactを用いた結果を示している。これらの条件において、徐冷時間0.5秒の時のコアを構成するガラスの仮想温度は、それぞれ1390℃、1322℃と求められる。
 上記の仮定により求められる、コアを構成するガラスの仮想温度と光ファイバの温度との温度差(T-T)の経時変化を見ると、徐冷開始から概ね0.01秒までの時間領域では温度差(T-T)を徐々に大きくすれば良く、徐冷開始から概ね0.01秒以降の時間領域では温度差(T-T)を徐々に小さくすれば良いことがわかる。また、全ての時間領域において温度差(T-T)を概ね60℃未満となるようにすると良く、ほとんどの時間領域において温度差(T-T)を概ね40℃より高く概ね60℃未満に保つように光ファイバの温度Tを制御することによって、コアを構成するガラスの仮想温度Tが効率良く低下することがわかる。また、図5に示す温度差(T-T)が極大となる時間は、上記式(5)における定数A及び活性化エネルギーEact並びに徐冷初期(徐冷時間が0秒のとき)における光ファイバの温度T及びコアを構成するガラスの仮想温度T によって多少前後するが、概ね0.01秒となる。
 ここで見られた温度差(T-T)が概ね60℃に達するまでの徐冷開始から0.01秒後までは、図4のグラフに示す仮想温度の単位時間当たりの変化((T-T )/Δt)の極小値よりも左側で示される温度条件にある。従って、上記のようにT -T=0℃で徐冷を開始する場合は、徐冷による構造緩和が効率的に行われないと考えられる。そこで、徐冷工程P3の前に予冷工程P2を設け、予冷工程P2において温度差(T-T)が概ね60℃となるよう予冷を行ってから徐冷工程P3を行うことを想定した。
 そこで、T -T=60℃となる初期値を仮定してさらに検証する。すなわち、徐冷初期(徐冷時間が0秒のとき)における光ファイバの温度Tが1500℃、このときのコアを構成するガラスの仮想温度T が1560℃という初期値を仮定する。そして、図5に示す結果と同様に、コアを構成するガラスの仮想温度Tが最低値になるときの値と、そのときの光ファイバの温度Tとの温度差(T-T)の経時変化を図6に示す。図6のグラフにおいて、縦軸は、コアを構成するガラスの仮想温度Tが最低値になるときの値とそのときの光ファイバの温度Tとの温度差(T-T)、横軸は光ファイバの徐冷時間である。実線は非特許文献1に記載の定数A及び活性化エネルギーEactを用いた結果を示しており、破線は非特許文献2に記載の定数A及び活性化エネルギーEactを用いた結果を示している。図6に示すように、全ての時間領域で温度差(T-T)は単調に減少し続けており、光ファイバの温度Tがコアを構成するガラスの仮想温度Tの低下に適した範囲に保たれていることがわかる。この条件において、徐冷時間0.5秒の時のコアを構成するガラスの仮想温度は、それぞれ1387℃、1321℃と求められ、図5に示す条件の場合よりもコアを構成するガラスの仮想温度をさらに低下させることができる。
 次に、T -T=120℃として、コアを構成するガラスの仮想温度Tと光ファイバの温度Tとの温度差が大きな初期値を仮定してさらに検証する。すなわち、徐冷初期(徐冷時間が0秒のとき)における光ファイバの温度Tが1500℃、このときのコアを構成するガラスの仮想温度T が1620℃という初期値を仮定する。そして、コアを構成するガラスの仮想温度Tが最低値になるときの、光ファイバの温度Tの経時変化を図7に示す。定数A及び活性化エネルギーEactは、非特許文献1に記載の値を用いた。初期の温度差(T-T)が大きい場合、図4のグラフに示す仮想温度の単位時間当たりの変化((T-T )/Δt)の極小値よりも右側で示される温度条件にある。すなわち、コアを構成するガラスの仮想温度Tが光ファイバの温度Tに対して高い場合、光ファイバの温度Tを高くして仮想温度Tに近づけて温度差(T-T)が小さい方が構造緩和が速くなる。そのため、図7からわかるように、光ファイバの温度Tは徐冷開始から概ね0.01秒までは一旦上昇する。そして、温度差(T-T)が適切になった後、光ファイバの温度Tは図6と同様に単調に低下する。このように徐冷初期の温度差(T-T)が大きい場合、一度冷めてしまった光ファイバを徐冷炉に入線した後に再加熱することが必要となる。従って、無駄な加熱をすることになり、光ファイバが徐冷炉内に滞在する時間内において効率良く徐冷を行うことができなくなる。この条件において、徐冷時間0.5秒の時のコアを構成するガラスの仮想温度は1389℃と求められ、コアを構成するガラスの仮想温度は図5に示す条件の場合よりは低下することができるものの、図6に示す条件の場合には及ばない。
 上記仮定からわかることは、コアを構成するガラスの仮想温度と光ファイバの温度との温度差(T-T)が適切になるよう、線引工程P1に引き続いて予冷工程P2を設けたのちに徐冷工程P3を行えば、光ファイバが徐冷炉内に滞在する時間を有効に利用してコアを構成するガラスの構造緩和を効率良く行うことができるということである。すなわち、コアを構成するガラスの仮想温度と光ファイバの温度との温度差(T-T)が概ね60℃程度になるまで予冷工程P2を行い、その後徐冷工程P3を開始すれば、光ファイバが徐冷炉内に滞在する時間を有効に利用できる。
 また、図5および図6に示す結果から以下のことがわかる。すなわち、ガラスの組成に基づいて決定される定数A及び活性化エネルギーEactの値に多少の違いがあったとしても、徐冷工程P3が開始される時点においてガラスの仮想温度とガラスの温度との温度差(T-T)が概ね60℃であれば、ガラスの仮想温度を効率良く低下させられることがわかる。よって、いわゆるドーパントの濃度が低く主成分がシリカガラスである一般的な光ファイバであれば、光ファイバを構成するガラスの仮想温度と光ファイバの温度との温度差(T-T)が概ね60℃の条件で光ファイバの徐冷が開始されることで、光ファイバを構成するガラスの仮想温度は効率良く低下させられる。例えば、G等のドーパントがドープされたシリカガラスから成るコアや、実質的に純粋なシリカガラスから成るクラッドのいずれにおいても、あるいは実質的に純粋なシリカガラスから成るコアや、フッ素等のドーパントがドープされたシリカガラスから成るクラッドのいずれにおいても、仮想温度を効率良く低下させられる。
 本実施形態の光ファイバの製造方法によれば、徐冷工程P3を開始してから終了するまでに複数の徐冷炉121が用られ、光ファイバは温度Tが徐々に低下しながら順次各徐冷炉121に入線する。図5および図6に示す結果から、徐冷により効率よく構造緩和を引き起こすときの光ファイバの温度と光ファイバに含まれるコアを構成するガラスの仮想温度との温度差(T-T)は、徐冷時間の経過につれて単調に小さくなる。すなわち、コアを構成するガラスの構造緩和の時定数をτ(T)、徐冷工程P3におけるある時点での光ファイバの温度をT、当該ある時点でのコアを構成するガラスの仮想温度をT 、当該ある時点から時間Δt経過後のコアを構成するガラスの仮想温度をTとしたとき、下記式(2’)が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000013
 したがって、徐冷工程P3において上流側からn番目の徐冷炉121に入線する時点での光ファイバの温度をT、その徐冷炉に入線する時点でのコアを構成するガラスの仮想温度をTfn、その徐冷炉に入線する時点から時間Δt経過後のコアを構成するガラスの仮想温度をTとしたとき、下記式(2)が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000014
 このように徐冷工程P3において複数の徐冷炉121を用いる場合、各徐冷炉121の設定温度が適切に制御されることによって、それぞれの徐冷炉121に入線する時の光ファイバの温度Tと当該光ファイバに含まれるコアを構成するガラスの仮想温度Tとの温度差(T-T)が上記所定の範囲に制御され、当該光ファイバに含まれるコアを構成するガラスの構造緩和がより促進され易くなる。従って、光ファイバの伝送損失が低減され易くなる。
 なお、コアを構成するガラスの仮想温度Tを最も効率良く低下させるための、光ファイバの温度Tと当該光ファイバに含まれるコアを構成するガラスの仮想温度Tとの温度差(T-T)の条件は上述の通りであるが、以下に説明する条件でも光ファイバの伝送損失を十分に低減させることができる。
 光ファイバに含まれるコアを構成するガラスの仮想温度Tと光ファイバの伝送損失とは、次のような関係式で結び付けられる。Rayleigh散乱係数Rはコアを構成するガラスの仮想温度Tに比例し、Rayleigh散乱による伝送損失αは伝送させる光の波長をλ[μm]とする下記式(9)で表される。
α=R/λ=BT/λ・・・(9)
 ここで、上記非特許文献2によると、B=4.0×10-4dB/km/μm/Kである。波長λ=1.55μmにおける伝送損失を考えると、コアを構成するガラスの仮想温度Tが14℃上昇すると、Rayleigh散乱による伝送損失αが概ね0.001dB/km増加する。すなわち、適正化された仮想温度Tからの誤差を14℃未満に抑制することができれば、Rayleigh散乱による伝送損失αの増加を0.001dB/km未満に抑えることができる。
 上記のように、最も効率良く低下させられるときのコアを構成するガラスの仮想温度Tから許容し得る誤差を考慮する場合、以下に説明するように、コアを構成するガラスの仮想温度Tと光ファイバの温度との温度差(T-T)が概ね20℃より高く概ね100℃未満という温度条件で、光ファイバを徐冷炉121に入線させれば良い。
 図6に実線で示す温度差(T-T)で0.5秒徐冷したときのコアを構成するガラスの仮想温度Tから予想される散乱損失に対する増加を0.001dB/km未満に抑えられるときの温度差(T-T)は、上記漸化式(6)から予測することができる。図6に示す仮定と同様に、徐冷初期(徐冷時間が0秒のとき)における光ファイバのコアを構成するガラスの仮想温度T を1560℃、温度差(T-T)を徐冷工程P3中においてほぼ一定となるよう仮定する。そして、定数A及び活性化エネルギーEactとして上記非特許文献1に示されている値を用いて漸化式(6)を解くと、図8のグラフが得られる。図8には、図6に実線で示す温度差(T-T)で0.5秒徐冷したときのコアを構成するガラスの仮想温度Tから予想される伝送損失に対して増加量が0.001dB/km以下となる場合の温度差(T-T)の経時変化の上限を破線で示し、下限を一点鎖線で示している。さらに、図8には図6に実線で示す温度差(T-T)を実線で再掲している。
 図8に示す結果から以下のことがわかる。徐冷工程P3中、上記温度差(T-T)が概ね20℃より高く概ね100℃未満の範囲になるように光ファイバの温度履歴を制御すべく徐冷炉121の温度が設定されれば、適正化された仮想温度Tに対して、コアを構成するガラスの仮想温度は14℃程度以上上昇しない範囲に抑えられる。その結果、伝送損失は最も低下させられる適正化された条件のときの値に対して0.001dB/km以下の増加に抑えることができる。
 よって、徐冷工程P3を開始してから終了するまでの任意の期間においても光ファイバの温度Tと当該光ファイバに含まれるコアを構成するガラスの仮想温度Tとの温度差(T-T)が概ね20℃より高く概ね100℃未満の範囲に維持されることによって、当該光ファイバに含まれるコアを構成するガラスの構造緩和が促進され易くなり、光ファイバの伝送損失が低減され易くなる。すなわち、下記式(1’)が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000015
 したがって、徐冷工程P3における上流側からn番目の徐冷炉に入線する時点での光ファイバの温度をT、その徐冷炉に入線する時点でのコアを構成するガラスの仮想温度をTfn、その徐冷炉に入線する時点から時間Δt経過後のコアを構成するガラスの仮想温度をTとしたとき、下記式(1)が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000016
 すなわち、コアを構成するガラスの仮想温度Tと光ファイバの温度との温度差(T-T)が概ね20℃より高く概ね100℃未満という温度条件で、光ファイバを徐冷炉121に入線させれば良い。
 次に、上記式(2)や式(1)の条件を満たしやすくするための具体例について説明する。本実施形態の光ファイバの製造方法では、徐冷工程P3において4つの徐冷炉121a,121b,121c,121dを用いる。このように複数の徐冷炉121を用いることによって、光ファイバの温度とコアを構成するガラスの仮想温度との温度差を所定の範囲に制御し易くなる。すなわち、徐冷工程P3において光ファイバを複数の徐冷炉121に通し、上流側からn番目の徐冷炉121の設定温度をTsnとしたとき、下記式(3)の関係が成り立つようにする。
Figure JPOXMLDOC01-appb-I000017
 上述したように、光ファイバの温度と光ファイバに含まれるコアを構成するガラスの仮想温度との温度差(T-T)が所定の範囲に制御された状態で光ファイバが徐冷されることによって、コアを構成するガラスの構造緩和が促進される。コアを構成するガラスの構造緩和が促進されることによって、コアに光が伝送される際にコアを構成するガラスの構造の揺らぎに起因する散乱損失が低減されるので、光ファイバの伝送損失が低減される。上記のように徐冷工程P3において複数の徐冷炉121が用いられ、各徐冷炉121の設定温度が各徐冷炉121の入口に到達するまでの徐冷時間におけるコアを構成するガラスの仮想温度に対して所定の範囲に制御されることによって、光ファイバの温度と光ファイバに含まれるコアを構成するガラスの仮想温度との温度差が所定の範囲に制御され易くなる。その結果、コアを構成するガラスの構造緩和が促進され、光ファイバの伝送損失が低減される。図9を参照しつつ以下に具体的に説明する。
 図9は、初期値として光ファイバの温度Tが1500℃、このときのコアを構成するガラスの仮想温度T が1560℃という初期値を仮定したときに式(5)より計算した、コアを構成するガラスの適正化された仮想温度変化(実線)と、徐冷炉121a,121b,121c,121dの設定温度(一点鎖線)と、徐冷炉121a,121b,121c,121dの入口あるいは出口に到達するまでの徐冷時間におけるコアを構成するガラスの期待される仮想温度を示している。図9に示す例において、各徐冷炉121の夫々の長さは0.5mであり、線引速度は20m/秒と仮定している。
 図9に三角形(▲)で示す通り、各徐冷炉121に光ファイバが入線するとき、および最下流の徐冷炉121dから光ファイバが出線するとき、すなわち、徐冷時間が0.000秒、0.025秒、0.050秒、0.075秒、0.100秒のときのコアを構成するガラスの適正化された仮想温度Tは、それぞれ1560℃、1517℃、1493℃、1477℃,1464℃と計算される。そして、徐冷炉121a,121b,121c,121dの設定温度は図9に一点鎖線で示すように設定される。すなわち、各徐冷炉121の入口に到達したときの徐冷時間におけるコアを構成するガラスの適正化された仮想温度Tより70℃低い温度に各徐冷炉121の温度を設定する。その結果、各徐冷炉121の出口付近では光ファイバの温度が各徐冷炉121の設定温度に近づくので、各徐冷炉121の出口付近ではガラスの仮想温度とそのときの光ファイバの温度との温度差(T-T)はより小さくなる。そして各徐冷炉121に入線したガラスの温度が直ちに各徐冷炉121の設定温度に一致するという急激な変化を伴い一時的には式(1)の条件を外れてしまう仮想的な温度履歴を経たガラスは、図9に円形(●)で示す仮想温度を有することが期待される。
 実際のガラスの温度はより緩やかに低下して徐冷炉の設定温度に近づくので、実際の仮想温度は三角形(▲)で示す理想的な仮想温度よりはやや高く、円形(●)で示す仮想温度よりはやや低くなるが、許容できる範囲の誤差となる。図9に示す例では、0.100秒徐冷した後の仮想的な温度履歴を経たガラスの仮想温度と適正化された仮想温度との差は1.1℃であり、散乱損失は0.001dB/km未満の差しかない。
 上述した観点から、光ファイバの温度とコアを構成するガラスの仮想温度との温度差をより適正な範囲に制御する、すなわち、上記式(2)を満たしやすくするという観点からは、下記式(4)が成り立つことが好ましい。
Figure JPOXMLDOC01-appb-I000018
 このように徐冷炉121の設定温度がより適切な範囲に制御されることによって、光ファイバに含まれるコアを構成するガラスの構造緩和の促進効果が増大され易くなり、光ファイバの伝送損失が低減され易くなる。
 また、図5および図6に示すように、ガラスの温度が低くなるとガラスの仮想温度とガラスの温度との温度差を小さくした方がガラスの構造緩和が促進されやすい。従って、上流側に備えられた徐冷炉121よりも下流側に備えられた徐冷炉121の方が、設定温度と入口におけるコアを構成するガラスの仮想温度との差が小さいことが好ましい。例えば図6に実線で示したように、徐冷時間が0.025秒、0.050秒、0.075秒、0.100秒における適正化されたガラスの温度とコアを構成するガラスの適正化された仮想温度との差は、それぞれ55℃、54℃、53℃、52℃であり、温度の差は下流になるほど小さいことが好ましい。このように、上流側に備えられる徐冷炉よりも下流側に備えられる徐冷炉の方が設定温度と入口におけるコアを構成するガラスの仮想温度との温度差が小さくなるように徐冷炉の温度を設定することによって、効率良くコアを構成するガラスの構造緩和を促進させることができる。その結果、光ファイバの伝送損失がより低減され易くなる。
 なお、光ファイバの温度Tとコアを構成するガラスの仮想温度Tとの関係は、光ファイバの組成が同じであれば徐冷時間tのみに依存し、徐冷時間t、徐冷炉の長さL及び線引速度vは、下記式(10)の関係で結び付けることができる。
Figure JPOXMLDOC01-appb-I000019
 従って、製造される光ファイバに含まれるコアを構成するガラスの目標とする仮想温度Tを設定し、生産性を考慮した線引速度vを決定すれば必要な徐冷炉の長さLが求められる。例えば、仮想温度Tを1500℃とするために徐冷時間tが0.1秒程度必要なので、線引速度vを20m/秒に設定する場合、徐冷炉の長さLは2m必要であることがわかる。また、例えば、仮想温度Tを1400℃とするために徐冷時間tが0.4秒程度必要なので、線引速度vを10m/秒に設定する場合、徐冷炉の長さLは4m必要であることがわかる。一方、徐冷炉の長さLが2mしかなければ、線引速度vを5m/秒とする必要があることがわかる。ただし、生産性等の観点から、線引速度vは10m/秒~50m/秒程度、徐冷炉長Lは1m~10m程度の範囲で選択されることが好ましく、徐冷時間tは1秒以下とすることが好ましい。
 <急冷工程P4>
 徐冷工程P3後、光ファイバは耐外傷性などを高めるために被覆層で覆われる。この被覆層は通常、紫外線硬化性樹脂で構成される。このような被覆層を形成するためには、被覆層の焼損などが起こらないようにするため、光ファイバが十分に低い温度に冷却されている必要がある。光ファイバの温度は塗布される樹脂の粘度に影響を与え、結果として被覆層の厚さに影響を与える。被覆層を形成する際の適切な光ファイバの温度は、被覆層を構成する樹脂の性質に応じて適宜決定される。
 本実施形態の光ファイバの製造方法では、線引炉110とコーティング装置131の間に徐冷炉121が設けられることによって、光ファイバを十分に冷却させるための区間が短くなる。特に本実施形態の光ファイバの製造方法では予冷工程P2も備えるため、光ファイバを十分に冷却させるための区間が更に短くなる。従って、本実施形態の光ファイバの製造方法では、徐冷炉121を出た光ファイバを冷却装置122によって急冷させる急冷工程P4を備える。急冷工程P4では、徐冷工程P3よりも急速に光ファイバが冷却される。このような急冷工程P4を備えることによって、短い区間で光ファイバの温度を十分に低下させることができるので、被覆層を形成し易くなる。冷却装置122を出るときの光ファイバの温度は、例えば40℃~50℃となる。
 上記のようにして冷却装置122を経て所定の温度まで冷却された光ファイバは、光ファイバを覆う被覆層となる紫外線硬化性樹脂が入ったコーティング装置131を通過し、この紫外線硬化性樹脂で被覆される。更に紫外線照射装置132を通過し、紫外線が照射されることで、紫外線硬化性樹脂が硬化して被覆層が形成され、光ファイバ1となる。なお、被覆層は通常は2層からなる。2層の被覆層を形成する場合、各層を構成する紫外線硬化性樹脂で光ファイバを被覆した後にそれらの紫外線硬化性樹脂を一度に硬化させて2層の被覆層を形成することができる。また、1層目の被覆層を形成した後に2層目の被覆層を形成しても良い。そして、光ファイバ1は、ターンプーリ141により方向が変換され、リール142により巻取られる。
 以上、本発明について好適な実施形態を例に説明したが、本発明はこれに限定されるものではない。つまり、本発明の光ファイバの製造方法は、上述した線引工程及び徐冷工程を備えていれば良く、予冷工程や急冷工程は必須の構成要素ではない。また、本発明の光ファイバの製造方法はあらゆる種類の光ファイバの製造に適用可能である。例えば、本発明の光ファイバの製造方法は、シリカガラスを主成分とする光ファイバだけではなく、カルコゲナイドガラス、フッ素系ガラスなど、他の材料を主成分とする光ファイバの製造方法にも、上記式(5)における定数A、および活性化エネルギーEactが求められれば適用可能である。
 本発明によれば、伝送損失が低減された光ファイバを製造可能な光ファイバの製造方法が提供され、光ファイバ通信の分野に利用することができる。また、ファイバレーザ装置やその他光ファイバを利用したデバイスに用いられる光ファイバの製造にも利用することができる。
1・・・光ファイバ
1P・・・光ファイバ用母材
110・・・線引炉
111・・・加熱部
120・・・筒状体
121・・・徐冷炉
122・・・冷却装置
131・・・コーティング装置
132・・・紫外線照射装置
141・・・ターンプーリ
142・・・リール
P1・・・線引工程
P2・・・予冷工程
P3・・・徐冷工程
P4・・・急冷工程

Claims (6)

  1.  光ファイバ用母材を線引炉において線引きする線引工程と、
     前記線引工程において引き出された光ファイバを徐冷する徐冷工程と、
    を備え、
     前記徐冷工程において、前記光ファイバは複数の徐冷炉に通され、
     前記光ファイバに含まれるコアを構成するガラスの構造緩和の時定数をτ(T)、前記徐冷工程において上流側からn番目の前記徐冷炉に入線する時点での前記光ファイバの温度をT、前記入線する時点での前記コアを構成するガラスの仮想温度をTfn、前記入線する時点から時間Δt経過後の前記コアを構成するガラスの仮想温度をTとしたとき、前記徐冷工程の任意の期間において下記式(1)が成り立つ
    ことを特徴とする光ファイバの製造方法。
    Figure JPOXMLDOC01-appb-I000001
  2.  前記徐冷工程の任意の期間において下記式(2)が成り立つ
    ことを特徴とする請求項1に記載の光ファイバの製造方法。
    Figure JPOXMLDOC01-appb-I000002
  3.  前記n番目の徐冷炉の設定温度をTsnとするとき、下記式(3)の関係が成り立つ
    ことを特徴とする請求項1または2に記載の光ファイバの製造方法。
    Figure JPOXMLDOC01-appb-I000003
  4.  下記式(4)が成り立つ
    ことを特徴とする請求項3に記載の光ファイバの製造方法。
    Figure JPOXMLDOC01-appb-I000004
  5.  上流側に備えられる前記徐冷炉よりも下流側に備えられる前記徐冷炉の方が、設定温度と入り口における前記コアを構成するガラスの仮想温度との温度差が小さい
    ことを特徴とする請求項1から4のいずれか1項に記載の光ファイバの製造方法。
  6.  前記光ファイバの温度が1300℃以上1500℃以下の範囲にあるときの少なくとも一時期に前記光ファイバが前記複数の徐冷炉のいずれかに滞在する
    ことを特徴とする請求項1から5のいずれか1項に記載の光ファイバの製造方法。
PCT/JP2016/085178 2016-03-16 2016-11-28 光ファイバの製造方法 WO2017158940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/740,246 US10927033B2 (en) 2016-03-16 2016-11-28 Optical fiber production method
EP16894557.4A EP3305735B1 (en) 2016-03-16 2016-11-28 Optical fiber production method
CN201680013038.XA CN107406298A (zh) 2016-03-16 2016-11-28 光纤的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016052314A JP6254628B2 (ja) 2016-03-16 2016-03-16 光ファイバの製造方法
JP2016-052314 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017158940A1 true WO2017158940A1 (ja) 2017-09-21

Family

ID=59850651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085178 WO2017158940A1 (ja) 2016-03-16 2016-11-28 光ファイバの製造方法

Country Status (5)

Country Link
US (1) US10927033B2 (ja)
EP (1) EP3305735B1 (ja)
JP (1) JP6254628B2 (ja)
CN (1) CN107406298A (ja)
WO (1) WO2017158940A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081796A (ja) * 2015-10-29 2017-05-18 株式会社フジクラ 光ファイバの製造方法
JP2023513758A (ja) 2020-02-14 2023-04-03 コーニング インコーポレイテッド 光ファイバを処理するシステムおよびその方法
CN115515909A (zh) 2020-05-08 2022-12-23 康宁股份有限公司 具有卤素掺杂纤芯的光纤的缓慢冷却
US11774695B2 (en) * 2021-01-22 2023-10-03 Macleon, LLC Optical fiber cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624775A (ja) * 1992-07-02 1994-02-01 Nippon Sheet Glass Co Ltd 熱収縮率が小さいガラス基板を製造する方法
JP2006058494A (ja) * 2004-08-18 2006-03-02 Fujikura Ltd 光ファイバ素線及びその製造方法
JP2007238354A (ja) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの製造方法および線引き炉
JP2014062021A (ja) * 2012-09-24 2014-04-10 Sumitomo Electric Ind Ltd 光ファイバ製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803287B1 (fr) * 1999-12-30 2002-05-31 Cit Alcatel Procede de refroidissement d'une fibre optique en cours de fibrage
AU773229B2 (en) * 2000-08-28 2004-05-20 Sumitomo Electric Industries, Ltd. Optical fiber and method of making the same
JP4244925B2 (ja) * 2002-07-10 2009-03-25 住友電気工業株式会社 光ファイバの製造方法
JP4558368B2 (ja) * 2004-04-09 2010-10-06 古河電気工業株式会社 光ファイバの製造方法
US8263511B2 (en) * 2008-12-31 2012-09-11 Corning Incorporated High purity fused silica with low absolute refractive index
JP5621194B2 (ja) 2009-01-22 2014-11-05 住友電気工業株式会社 光ファイバの製造方法及び光ファイバの製造装置
US8596094B2 (en) * 2009-10-21 2013-12-03 Corning Incorporated Synthetic silica glass with uniform fictive temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624775A (ja) * 1992-07-02 1994-02-01 Nippon Sheet Glass Co Ltd 熱収縮率が小さいガラス基板を製造する方法
JP2006058494A (ja) * 2004-08-18 2006-03-02 Fujikura Ltd 光ファイバ素線及びその製造方法
JP2007238354A (ja) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの製造方法および線引き炉
JP2014062021A (ja) * 2012-09-24 2014-04-10 Sumitomo Electric Ind Ltd 光ファイバ製造方法

Also Published As

Publication number Publication date
EP3305735A1 (en) 2018-04-11
JP2017165614A (ja) 2017-09-21
US10927033B2 (en) 2021-02-23
EP3305735A4 (en) 2019-02-27
EP3305735B1 (en) 2020-09-02
CN107406298A (zh) 2017-11-28
JP6254628B2 (ja) 2017-12-27
US20180186682A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6340390B2 (ja) 光ファイバの製造方法
WO2017073203A1 (ja) 光ファイバの製造方法
WO2017158940A1 (ja) 光ファイバの製造方法
US20050281521A1 (en) Optical fiber, apparatus and method for manufacturing optical fiber
US11008245B2 (en) Optical fiber production method
JP2007197273A (ja) 光ファイバ素線及びその製造方法
WO2017022290A1 (ja) 光ファイバの製造方法
JP2006058494A (ja) 光ファイバ素線及びその製造方法
JP4482954B2 (ja) 光ファイバの製造方法
JP6397109B2 (ja) 光ファイバの製造方法
JP2000335935A (ja) 光ファイバの製造装置及び製造方法
US20200308043A1 (en) Optical fiber drawing furnace heating element, optical fiber drawing furnace, and method for manufacturing optical fiber
JP4389409B2 (ja) 光ファイバの製造方法
JP5942630B2 (ja) 光ファイバ製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE