WO2017158938A1 - Heat exchange system and scale suppression method for heat exchange system - Google Patents

Heat exchange system and scale suppression method for heat exchange system Download PDF

Info

Publication number
WO2017158938A1
WO2017158938A1 PCT/JP2016/085106 JP2016085106W WO2017158938A1 WO 2017158938 A1 WO2017158938 A1 WO 2017158938A1 JP 2016085106 W JP2016085106 W JP 2016085106W WO 2017158938 A1 WO2017158938 A1 WO 2017158938A1
Authority
WO
WIPO (PCT)
Prior art keywords
shear stress
heat exchanger
liquid
stress pulse
opening
Prior art date
Application number
PCT/JP2016/085106
Other languages
French (fr)
Japanese (ja)
Inventor
執行 和浩
隆文 中井
一普 宮
修平 内藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017524492A priority Critical patent/JP6239199B1/en
Priority to EP16894555.8A priority patent/EP3412991B1/en
Publication of WO2017158938A1 publication Critical patent/WO2017158938A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • B08B9/0325Control mechanisms therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/0042Cleaning arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00

Definitions

  • the present invention relates to a heat exchange system for heating a liquid to be heated such as water used for a shower or the like, and a scale suppression method for the heat exchange system.
  • Water heaters that supply hot water to bathrooms and kitchens are broadly classified into, for example, electric water heaters, gas water heaters such as gas boilers, and oil water heaters.
  • a heat exchanger is provided in such water heaters.
  • heat pump water heaters which are heat pump heat exchange type electric water heaters, are attracting attention from among the electric water heaters, particularly from the viewpoint of reducing carbon dioxide for energy saving and global warming countermeasures.
  • Such a heat pump water heater transfers atmospheric heat to a heat medium and uses the heat to boil hot water. More specifically, the principle of the heat pump water heater is that the heat generated when the heat medium is compressed into a gaseous state is transferred to water by the heat exchanger, and the heat medium is generated by the cold air generated when the heat medium is expanded. This is due to the cooling cycle that returns the temperature to the atmospheric temperature again.
  • the heat exchanger performs heat exchange between a heat medium flowing inside and a fluid such as water flowing on the surface. Therefore, it is important to always keep the surface of the heat exchanger that is the heat transfer surface clean. This is because if the surface of the heat exchanger becomes dirty, the effective heat transfer surface decreases and the heat transfer performance deteriorates. Moreover, when such dirt accumulates, there is a possibility that the flow path of water or the like may be blocked. In particular, when water containing scale components, which are crystalline products containing hardness components, sulfates, silicic acid components, metal ions, etc., is supplied to the water heater, the scale adheres to the heat exchanger, hot water tank or piping. There is a problem that the heat exchange rate is lowered or the flow path is blocked.
  • Patent Literature 1 and Patent Literature 2 describe that the generation of scale is suppressed by using a pulsating flow whose flow rate changes, which is generated by applying a pulsation to the pressure of hot water supply water.
  • the heat pump type water heater described in Patent Document 1 and Patent Document 2 is a hot water storage tank, a heating circulation path that takes hot water from the lower part of the hot water storage tank and returns it to the upper part of the hot water storage tank, and heating that heats the hot water in the heating circulation path.
  • a controller for controlling the circulation means.
  • control unit operates the pulsation generating means during heating by the heating heat exchanger to generate a pulsating flow, and controls the circulating means so that the flow rate in the heating circulation path becomes equal to or higher than a predetermined value set in advance.
  • Patent Document 3 describes that the shear stress at the time of pulsation of water is larger than the shear stress at a constant flow rate, and by applying the pulsation, the adhesion of scale can be efficiently suppressed.
  • the amount of scale-causing substances such as calcium ions that contact the heat exchanger per unit time before the flow rate of water reaches the flow rate that exerts the scale-inhibiting effect is compared with the case of a constant flow rate. Will increase. For this reason, the adhesion of the scale is promoted, and the scale suppression effect by applying the pulsation is reduced.
  • the present invention has been made in view of the above-described problems in the prior art, and is capable of more efficiently and surely suppressing the generation and growth of scale for the heat exchanger and the heat exchange system.
  • An object of the present invention is to provide a method for suppressing the scale.
  • the heat exchange system of the present invention includes an annular first circulation circuit in which a first liquid circulates, an annular second circulation circuit in which a second liquid circulates, the first liquid, and the second liquid.
  • a heat exchanger that exchanges heat with the liquid
  • a pressure holding unit that pressurizes and holds part of the second liquid, and an inflow side of the second liquid of the heat exchanger
  • An opening / closing mechanism for switching the second liquid flowing into the heat exchanger between the second circulation circuit and the pressure holding unit, and an addition to the second liquid held by the pressure holding unit
  • a control unit for controlling switching of the pressure amount and the opening / closing mechanism unit.
  • a secondary liquid to which a preset pressure is applied is supplied to the heat exchanger at a preset timing, thereby generating a scale for the heat exchanger. And it becomes possible to suppress growth more efficiently and reliably.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a heat exchange system according to Embodiment 1.
  • FIG. It is the schematic which shows an example of a structure of the pressure holding
  • FIG. 6 is a graph for explaining the amount of scale attached to a heat exchanger when a first shear stress pulse to a third shear stress pulse are applied.
  • 6 is a block diagram illustrating an example of a configuration of a heat exchange system according to Embodiment 3.
  • FIG. 6 is a graph for explaining the amount of scale attached to the heat exchanger 2 when a first shear stress pulse to a third shear stress pulse are applied.
  • Embodiment 1 FIG.
  • This heat exchange system heats or cools a secondary liquid such as water by the heat of the primary liquid heated or cooled by a heat pump. Further, in this heat exchange system, when the secondary liquid is heated or cooled, the adhesion of the scale generated on the contact surface with the secondary liquid in the heat exchanger is suppressed.
  • a heat exchange system that generates hot water by heating a heated liquid such as water used for a shower or the like by heat of the heated liquid heated by a heat pump will be described as an example.
  • FIG. 1 is a block diagram showing an example of the configuration of the heat exchange system 1 according to Embodiment 1 of the present invention.
  • the heat exchange system 1 includes a primary circuit 10 as a first circuit, a secondary circuit 20 as a second circuit, and primary circuits 10 and 2.
  • the heat exchanger 2 is provided between the secondary circuit 20 and the secondary circulation circuit 20.
  • the heat exchange system 1 includes a heat-exchanger 2 as a primary heated liquid as a first liquid that circulates in the primary side circulation circuit 10 and a second liquid that circulates in the secondary side circulation circuit 20. Heat exchange with the secondary heated liquid. Then, the heat exchange system 1 heats the secondary heated liquid by the heat of the primary heated liquid.
  • control is performed such that the temperature of the primary heated liquid flowing in the primary side circulation circuit 10 is 60 ° C. and the outlet side temperature of the heat pump 11 is 65 ° C.
  • the temperature of the secondary heated liquid in the secondary circulation circuit 20 is 57 ° C. at the outlet side of the heat exchanger 2.
  • the outlet side temperature of the secondary side heated liquid in the heat exchanger 2 is set to 65 ° C. for the purpose of removing bacteria in the secondary side heated liquid.
  • the sterilization operation for raising the temperature to 1 hour is performed for only 1 hour.
  • the primary circulation circuit 10 includes a heat pump 11, a heater 12, a flow path switching device 13, a first pump 14, a radiator 15, an expansion vessel 16, and the heat exchanger 2.
  • the heat pump 11, the heater 12, the expansion container 16, the flow path switching device 13, the heat exchanger 2, and the first pump 14 are connected in a ring shape by a pipe 17.
  • the radiator 15 is connected by a pipe 18 that is provided between the flow path switching device 13 and the first pump 14 and is different from the pipe 17.
  • the pipe 17 and the pipe 18 are branched by the flow path switching device 13 and connected so as to merge between the heat exchanger 2 and the first pump 14.
  • the heat pump 11 has a refrigeration cycle formed therein, and heats the primary heated liquid supplied by the first pump 14.
  • the heater 12 is provided to further heat the primary heated liquid supplied from the heat pump 11.
  • the heater 12 heats the primary heated liquid supplied from the heat pump 11 and supplies the heated liquid to the flow path switching device 13.
  • the flow path switching device 13 is, for example, an electromagnetic three-way valve, and has one inflow port and two outflow ports.
  • the flow path switching device 13 has an outlet selected to supply the primary heated liquid supplied from the heat pump 11 via the heater 12 to either the heat exchanger 2 or the radiator 15, Switch.
  • the first pump 14 is driven by a motor (not shown), and supplies the primary heated liquid from the heat exchanger 2 or the radiator 15 to the heat pump 11.
  • the radiator 15 is a heat exchanger, for example, and performs heat exchange between the primary side heated liquid flowing through the pipe 18 and the indoor air that is the air-conditioning target space, and the indoor side is heated by the heat of the primary side heated liquid. Heat the air.
  • the heat exchanger 2 exchanges heat between the primary heated liquid flowing in the primary circulation circuit 10 and the secondary heated liquid flowing in the secondary circulation circuit 20, and the primary heated The secondary heated liquid is heated by the heat of the liquid.
  • the expansion container 16 is provided to temporarily store the primary heated liquid flowing out from the heater 12.
  • the secondary circulation circuit 20 includes a tank 21, a second pump 22, a scale trap 23, a pressure application unit 30, and the heat exchanger 2.
  • the tank 21, the second pump 22, the heat exchanger 2, and the scale trap 23 are annularly connected by a pipe 24 and a pipe 25.
  • the pressure application unit 30 is formed by a pipe 36 and a pipe 37 that are different from the flow path formed by the pipe 24 and the pipe 25 between the tank 21 and the second pump 22 and the heat exchanger 2. Provided in a flow path as a bypass circuit.
  • the tank 21 is supplied with the secondary heated liquid heated by the heat exchanger 2 and stores the secondary heated liquid. Further, the tank 21 is supplied with tap water or the like from the outside through the water supply pipe 21 a, and flows the supplied tap water or the like as the secondary heated liquid to be supplied to the second pump 22. The heated secondary heated liquid stored in the tank 21 is discharged to the outside through the hot water pipe 21b and used as hot water for a shower or the like.
  • the second pump 22 is driven by a motor (not shown), and supplies water, which is a secondary heated liquid, from the tank 21 to the heat exchanger 2.
  • the second pump 22 can change the flow rate of the secondary heated liquid supplied to the heat exchanger 2 according to the number of rotations of the motor. For example, the second pump 22 can increase the flow rate of the secondary heated liquid supplied to the heat exchanger 2 by increasing the number of rotations of the motor.
  • the scale trap 23 is provided to capture the scale attached and removed from the contact surface of the heat exchanger 2 with the secondary heated liquid. Note that the scale trapping effect of the scale trap 23 increases as the number of circulations of the secondary heated liquid increases. Therefore, in the case of the boiling system with one circulation, the scale trapping effect can hardly be expected, so the scale trap 23 does not have to be installed.
  • the pressure application unit 30 is supplied with the secondary heated liquid from the tank 21.
  • the pressure application unit 30 applies a preset pressure to the supplied secondary heated liquid, and then supplies the secondary heated liquid to the heat exchanger 2.
  • the pressure application unit 30 includes a third pump 31, a pressure holding unit 32, an opening / closing mechanism unit 33, and an opening / closing control unit 34.
  • the third pump 31 is driven by a motor (not shown) and supplies the liquid to be heated from the tank 21 to the pressure holding unit 32.
  • the pressure holding unit 32 is supplied with the secondary heated liquid from the tank 21 via the third pump 31.
  • the inside of the pressure holding unit 32 is always filled with the secondary side heated liquid, and a higher pressure is applied than the secondary side heated liquid flowing through the piping in the secondary side circulation circuit 20. .
  • FIG. 2 is a schematic diagram illustrating an example of the configuration of the pressure holding unit 32 of FIG.
  • the pressure holding part 32 is provided with a solenoid valve 32b, a solenoid valve 32c, a water amount sensor 32d, a pressure sensor 32e, and a pressurizing part 32f in a cylinder structure part 32a formed in a hollow cylinder shape.
  • the electromagnetic valve 32b to the pressurizing unit 32f are connected to the open / close control unit 34 via a signal line 35.
  • the pressure holding unit 32 applies a preset pressure to the secondary heated liquid that has flowed into the cylinder structure 32 a via the pipe 36. Then, the pressure holding unit 32 causes the secondary heated liquid to which pressure is applied to flow out to the opening / closing mechanism unit 33 described later via the pipe 37.
  • the electromagnetic valve 32 b is provided at the inlet through which the secondary heated liquid that flows through the pipe 36 via the third pump 31 flows.
  • the electromagnetic valve 32b supplies information indicating the opening / closing state of the valve to the opening / closing control unit 34 via the signal line 35, and based on a control signal supplied from the opening / closing control unit 34 via the signal line 35, The open / close state is controlled.
  • the electromagnetic valve 32c is provided, for example, at the upper part of the pressure holding unit 32.
  • the electromagnetic valve 32c supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 35, and based on the control signal supplied from the open / close control unit 34 via the signal line 35, The open / close state is controlled.
  • the electromagnetic valve 32b and the electromagnetic valve 32c are normally in an “open” state, and the open / close control unit 34 controls the open / closed state of the valve based on the detection result of a water amount sensor 32d described later.
  • the water amount sensor 32d detects that the cylinder structure portion 32a is filled with the secondary heated liquid
  • the electromagnetic valve 32b and the electromagnetic valve 32c are in the “closed” state based on the control of the opening / closing control unit 34. To be controlled.
  • the water amount sensor 32 d detects the amount of water of the secondary heated liquid accumulated in the cylinder structure portion 32 a and supplies the obtained detection result to the open / close control unit 34 via the signal line 35.
  • the pressure sensor 32 e detects the pressure of the secondary heated liquid accumulated in the cylinder structure portion 32 a and supplies the obtained detection result to the open / close control unit 34 via the signal line 35.
  • the pressurizing portion 32f is formed in a rod shape.
  • the pressurizing portion 32f is pushed into the cylinder structure portion 32a based on a control signal supplied from the open / close control portion 34 via the signal line 35, thereby turning the secondary heated liquid accumulated in the cylinder structure portion 32a into A pressure set in advance is applied.
  • the pressure sensor 32e detects that the pressure of the secondary heated liquid in the cylinder structure portion 32a has reached a preset pressure
  • the cylinder structure portion 32a is controlled based on the control of the opening / closing control portion 34.
  • the state where pressure is applied to the secondary heated liquid is maintained.
  • the secondary side liquid to be heated in the cylinder structure portion 32a is in a state of maintaining the current pressure.
  • the opening / closing mechanism 33 is, for example, a three-way valve, and the secondary heated liquid that flows through the pipe 37 on the pressure holding unit 32 side and the secondary that flows through the pipe 24 on the second pump 22 side. Either one of the side heated liquids is selected as the secondary heated liquid, and flows out to the heat exchanger 2 side.
  • the opening / closing mechanism unit 33 is configured to maintain a state where the pressure application unit 30 and the tank 21 side in the secondary circulation circuit 20 are pressure-insulated.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of the opening / closing mechanism 33 in FIG. 1. As shown in FIG. 3, the opening / closing mechanism 33 has an electromagnetic valve 33a and an electromagnetic valve 33b.
  • the electromagnetic valve 33 a is provided in a pipe 37 connected to the pressure holding unit 32.
  • the electromagnetic valve 33a supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 38, and based on the control signal supplied from the open / close control unit 34 via the signal line 38, The open / close state is controlled.
  • the electromagnetic valve 33a is provided with a metal shutter 33c.
  • the metal shutter 33c operates based on the control of the open / close control unit 34, and determines the open / close state of the electromagnetic valve 33a.
  • the metal shutter 33c has a through hole in the vicinity of the center, and the electromagnetic valve 33a is in an “open” state by matching the through hole with the pipe 37.
  • the electromagnetic valve 33 b is provided in the pipe 24 connected to the second pump 22.
  • the electromagnetic valve 33b supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 38, and based on a control signal supplied from the open / close control unit 34 via the signal line 38, The open / close state is controlled.
  • the electromagnetic valve 33b is provided with a metal shutter 33d.
  • the metal shutter 33d operates based on the control of the open / close control unit 34, and determines the open / close state of the electromagnetic valve 33b.
  • the metal shutter 33d is provided with a through hole in the vicinity of the center, and the electromagnetic valve 33b is in an “open” state by matching the through hole with the pipe 24.
  • the opening / closing mechanism 33 operates based on the control of the opening / closing controller 34 so that the electromagnetic valve 33a and the electromagnetic valve 33b are interlocked with each other.
  • the metal shutter 33c is moved and the electromagnetic valve 33a is in the “open” state
  • the metal shutter 33d is moved and the electromagnetic valve 33b is in the “closed” state.
  • the solenoid valve 33a and the solenoid valve 33b By operating the solenoid valve 33a and the solenoid valve 33b in this way, it is possible to prevent the two secondary heated liquids flowing through the pipe 37 and the pipe 24 from flowing out simultaneously. Further, it is possible to prevent the pressure applied to the secondary heated liquid on the pressure holding unit 32 side from being applied in the direction of the tank 21.
  • the reason why the electromagnetic valve 33a and the electromagnetic valve 33b have such a structure is to speed up the response to the control by the opening / closing control unit 34.
  • the opening / closing control unit 34 controls each part of the pressure holding unit 32 and the opening / closing mechanism unit 33.
  • the open / close control unit 34 receives the detection result of the water amount sensor 32d of the pressure holding unit 32 shown in FIG. 2, and generates a control signal for controlling the opening / closing of the electromagnetic valve 32b and the electromagnetic valve 32c based on the information indicated by the result. , And supplied to the pressure holding unit 32 via the signal line 35. Further, the open / close control unit 34 receives the detection result of the pressure sensor 32e of FIG. 2 from the pressure holding unit 32, and based on the information indicated by the result, a control signal for controlling the operation of the pressurizing unit 32f is a signal.
  • the pressure is supplied to the pressure holding unit 32 via the line 35. Further, the opening / closing control unit 34 sends a control signal for controlling the opening / closing of the electromagnetic valve 33a and the electromagnetic valve 33b of the opening / closing mechanism unit 33 shown in FIG. 3 through a signal line 38 at a preset timing. To the unit 33.
  • the primary heated liquid is supplied to the heat pump 11 by the first pump 14 and heated.
  • the heated primary heated liquid is heated again by the heater 12 and then flows into the flow path switching device 13.
  • the primary heated liquid flows out from the outlet on the radiator 15 side.
  • the primary heated liquid that has flowed out of the flow path switching device 13 flows into the radiator 15 and heats the indoor air by exchanging heat with the indoor air. Then, the primary heated liquid that has flowed out of the radiator 15 flows into the first pump 14.
  • the primary heated liquid flows out from the outlet on the heat exchanger 2 side.
  • the primary heated liquid that has flowed out of the flow path switching device 13 flows into the heat exchanger 2 and heats the secondary heated liquid by exchanging heat with the secondary heated liquid. Then, the primary heated liquid that has flowed out of the heat exchanger 2 flows into the first pump 14.
  • the secondary heated liquid such as water supplied to the tank 21 flows out of the tank 21 and flows into the heat exchanger 2 through the pressure application unit 30 by the second pump 22.
  • the secondary heated liquid flowing into the heat exchanger 2 is heated by exchanging heat with the primary heated liquid and flows out of the heat exchanger 2.
  • the secondary heated liquid flowing out from the heat exchanger 2 flows into the tank 21 through the scale trap 23 and is stored in the tank 21.
  • the secondary heated liquid stored in the tank 21 is used as hot water for a shower or the like by being mixed with, for example, water.
  • the secondary heated liquid stored in the tank 21 is supplied to the pressure application unit 30.
  • the secondary heated liquid supplied to the pressure application unit 30 flows into the pressure holding unit 32 by the third pump 31 of the pressure application unit 30.
  • the secondary heated liquid that has flowed into the pressure holding unit 32 is applied with a preset pressure based on the control of the opening / closing control unit 34, and flows out of the pressure holding unit 32.
  • the secondary heated liquid flowing out from the pressure holding unit 32 flows into the opening / closing mechanism unit 33.
  • the secondary heated liquid that has flowed into the opening / closing mechanism 33 flows out of the opening / closing mechanism 33 when the electromagnetic valve 33a that performs an opening / closing operation based on the control of the opening / closing controller 34 is in an “open” state, It flows into the exchanger 2.
  • the electromagnetic valve 33a on the pressure holding unit 32 side and the electromagnetic valve 33b on the second pump 22 side are interlocked with each other, and one of the electromagnetic valve 33a and the electromagnetic valve 33b is “open”. ”Is controlled. Therefore, when the electromagnetic valve 33 a is in the “open” state, only the secondary heated liquid that has flowed out of the pressure holding unit 32 flows into the heat exchanger 2. And the secondary side heated liquid which flows out from the pressure holding part 32 is controlled by controlling the pressure applied to the secondary side heated liquid in the pressure holding part 32 and the opening / closing operation of the electromagnetic valve 33a at this time. The heat exchanger 2 is caused to flow at a preset timing and pressure.
  • FIG. 4 is a flowchart for explaining the operation of the pressure application unit 30 of FIG. Referring to FIG. 4, the operation until the secondary heated liquid is supplied from the tank 21 to the pressure applying unit 30 and the secondary heated liquid held in the pressure applying unit 30 flows into the heat exchanger 2. Will be described.
  • the electromagnetic valve 32c is set to the “open” state, and the electromagnetic valve 32b is set to the “open” state (steps S1 and S2). Then, the secondary heated liquid stored in the tank 21 is supplied to the pressure holding unit 32 by the third pump 31 (step S3).
  • the electromagnetic valve 32c is set to the “closed” state and the electromagnetic valve 32b is set to the “closed” state based on the control of the opening / closing control unit 34. (Steps S4 and S5).
  • the set pressure is applied to the secondary heated liquid in the pressure holding unit 32 by the pressurizing unit 32f based on the control of the opening / closing control unit 34 (step S6). And the pressurization with respect to the secondary side to-be-heated liquid in the pressure holding
  • a control signal is transmitted from the opening / closing controller 34 to the electromagnetic valve 33b of the opening / closing mechanism 33 (step S8).
  • the metal shutter 33d slides based on the control signal, and the electromagnetic valve 33b is brought into a “closed” state (step S9).
  • a control signal is transmitted from the opening / closing control unit 34 to the electromagnetic valve 33a of the opening / closing mechanism unit 33 (step S10).
  • the metal shutter 33c slides based on the control signal, and the electromagnetic valve 33a is set to the “open” state (step S11). Thereby, the secondary side heated liquid in the pressure holding unit 32 flows out of the pressure holding unit 32 and flows into the heat exchanger 2 (step S12).
  • a control signal is transmitted from the opening / closing control unit 34 to the electromagnetic valve 33a of the opening / closing mechanism unit 33 (step S13).
  • the metal shutter 33c slides based on the control signal, and the electromagnetic valve 33a is brought into a “closed” state (step S14).
  • a control signal is transmitted from the opening / closing control unit 34 to the electromagnetic valve 33b of the opening / closing mechanism unit 33 (step S15).
  • the metal shutter 33d slides based on the control signal, and the electromagnetic valve 33b is set to the “open” state (step S16).
  • FIG. 5 is a graph showing an example of the temporal change in shear stress when the number of rotations of the motor in the conventional pump is increased.
  • tap water or the like is used as the secondary heated liquid stored in the tank 21, for example.
  • Such secondary heated liquid contains scale components such as metal ion oxides and carbonates typified by calcium.
  • the scale component contained in the secondary heated liquid causes the secondary heated liquid in the heat exchanger 2 to be heated. Deposits and adheres to the contact surface with the liquid. When the deposited scale adheres to the heat exchanger 2, the scale closes the flow path, so that the heat exchange efficiency is lowered.
  • FIG. 6 is a schematic diagram for explaining the relationship between bubbles adhering to the contact surface of the heat exchanger 2 of FIG. 1 and the depositing scale.
  • FIG. 7 is a schematic view showing an example of a scale deposited on the contact surface of the heat exchanger 2 of FIG.
  • a micro layer 41 is formed in which ion concentration occurs about 1.5 times as much as the region other than the interface.
  • a larger number of scale nuclei that become the starting point of the scale are deposited as compared with the portion where the bubbles 40 are not attached.
  • scale nuclei are deposited at the interface between the bubble 40 and the contact surface of the heat exchanger 2 so as to correspond to the shape of the bubble 40.
  • the scale thus deposited can be removed by applying a shear stress. At this time, in the case of adhering to the contact surface of the heat exchanger 2 in the state of ungrown nuclei, it can generally be removed with a lower shear stress than the grown scale.
  • the scale nucleus is very small compared to the grown scale, there is no possibility that it will reattach to the heat exchanger 2 and the surface of the pipe or settle on the stagnation part of the pipe. Therefore, when the scale is removed in the state of the scale nucleus, it can be efficiently removed with a low flow rate and a low shear stress as compared with the case where the grown scale is removed.
  • FIG. 8 is a graph showing an example of the relationship between the bubble detachment diameter and the shear stress when the bubble 40 detaches from the heat exchanger 2 of FIG.
  • the diameter of the bubbles 40 that separate from the contact surface with the secondary heated liquid in the heat exchanger 2 decreases.
  • the bubbles 40 having a diameter of about 100 [ ⁇ m] can be separated from the contact surface of the heat exchanger 2.
  • FIG. 9 is a graph showing an example of temporal change in shear stress when shear stress is applied to the secondary heated liquid in the heat exchange system 1 of FIG.
  • the time change of the shear stress indicated by the dotted line indicates the time change of the shear stress in FIG.
  • a pulsed shear stress hereinafter referred to as “shear stress pulse” is applied to the secondary heated liquid.
  • the applied shear stress has a sharp rise, and the target shear stress is applied to the bubbles 40 and the scale nuclei attached to the heat exchanger 2 in a short time. be able to. Therefore, compared with the case shown in FIG. 5, scale nuclei can be efficiently removed and scale growth can be suppressed.
  • the bubbles 40 attached to the contact surface with the secondary heated liquid in the heat exchanger 2 move according to the applied shear stress.
  • the bubble 40 having a bubble diameter of about 100 [ ⁇ m] is formed. Can be moved.
  • FIG. 10 is a graph showing an example of the relationship between the number of times the shear stress pulse is applied and the average diameter of the bubbles 40.
  • FIG. 10 shows an example in which a shear stress having an application time of 0.5 [seconds] and a size of 50 [Pa] is applied to the secondary heated liquid at intervals of 0.5 seconds. Show.
  • the average diameter of the bubbles 40 attached to the contact surface with the secondary heated liquid in the heat exchanger 2 increases.
  • the average diameter of the bubbles 40 is 1000 [ ⁇ m] or more. This is because a plurality of bubbles 40 are aggregated to form one large bubble 40 by applying the shear stress pulse a plurality of times.
  • a shear stress pulse of 3.3 [Pa] it is possible to remove the bubbles 40 assembled so that the bubble diameter is about 1000 [ ⁇ m].
  • a large shear stress pulse that causes the shear stress to become the target shear stress is applied a plurality of times, and the bubbles 40 are moved and assembled to form a large bubble, and then smaller than the shear stress. Apply a shear stress pulse of shear stress. Thereby, the bubble 40 and the scale nucleus adhering to the heat exchanger 2 can be efficiently removed, and the growth of the scale can be suppressed.
  • FIG. 11 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the application timing of the shear stress pulse is changed.
  • a first shear stress pulse having a preset shear stress and a first shear stress pulse for a secondary heated liquid of 1 [Pa] which is a shear stress at a normal flow rate
  • a shear stress pulse cycle combined with a second shear stress pulse whose shear stress is smaller than the shear stress pulse is applied under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the period for applying the shear stress pulse cycle was changed was measured.
  • the amount of scale adhesion when no shear stress pulse is applied is 100%, and the period during which the shear stress pulse cycle is applied is 3 [minutes], 5 [minutes], and 7 [minutes], respectively.
  • the scale adhesion amount ratio of is shown.
  • a result in the case of a pulsation operation in which pulsation is generated by increasing the number of rotations of a motor in a conventional pump is also shown.
  • the shear stress pulse cycle was applied at a period of 3 minutes, the amount of scale attached to the heat exchanger 2 was 50% of the case where no shear stress pulse was applied.
  • the amount of scale attached to the heat exchanger 2 was 61% of the case where no shear stress pulse was applied. Furthermore, when a shear stress pulse cycle was applied at a period of 7 minutes, the amount of scale attached to the heat exchanger 2 was 65% of the case where no shear stress pulse was applied. In the conventional pulsation operation, the amount of scale attached to the heat exchanger 2 was 73% of the case where no shear stress pulse was applied.
  • FIG. 12 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the shear stress of the shear stress pulse is changed.
  • a shear stress pulse cycle is applied to the secondary heated liquid of 1 [Pa], which is a shear stress at a normal flow rate, under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the shear stress pulse cycle was applied once every 5 minutes was measured.
  • the scale adhesion amount when the shear stress pulse is not applied is “100”, and the scale when the magnitude of the first shear stress pulse is changed from 0 [Pa] to 70 [Pa]. Indicates the amount of adhesion.
  • the magnitude of the first shear stress pulse is 5 Pa or more, the amount of scale attached to the heat exchanger 2 is suppressed compared to the case where no shear stress pulse is applied. It was.
  • the magnitude of the first shear stress pulse was 50 [Pa] or more, the scale adhesion amount did not change and the scale suppression effect tended to be saturated.
  • the scale suppression effect can be obtained when the magnitude of the first shear stress pulse is 5 [Pa] or more, and the scale inhibition effect is saturated when the magnitude of the first shear stress pulse is 50 [Pa] or more.
  • the magnitude of the first shear stress pulse applied to the secondary heated liquid is preferably set in the range of 5 [Pa] to 50 [Pa].
  • the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “5: 3.3. ] To “50: 3.3” is more preferable.
  • FIG. 13 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the pulse width of the shear stress pulse is changed.
  • a shear stress pulse cycle is applied to the secondary heated liquid of 1 [Pa], which is a shear stress at a normal flow rate, under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the shear stress pulse cycle was applied once every 5 minutes was measured.
  • the scale adhesion amount when no shear stress pulse is applied is “100”, and the pulse width, which is the application time of the first shear stress pulse, is 0 [seconds] to 5.0 [seconds].
  • the amount of scale attached when changed is shown.
  • the heat exchanger 2 is compared with the case where the pulse width of the first shear stress pulse is 0 [seconds] to 5.0 [seconds] and no shear stress pulse is applied. The amount of scale adhesion with respect to was suppressed.
  • the pulse width of the first shear stress pulse is in the range of 0.1 [sec] to 1.0 [sec]
  • the amount of scale adhesion is 70% or less of the case where no shear stress pulse is applied, and the scale suppression effect is obtained. The trend was higher.
  • the pulse width of the first shear stress pulse is set in the range of 0 [seconds] to 5.0 [seconds]
  • the scale suppression effect is improved as compared with the case where no shear stress pulse is applied.
  • the pulse width is set in the range of 0.1 [second] to 1.0 [second]
  • a higher scale suppression effect can be obtained.
  • the pulse width of the shear stress pulse is set in this way, the time required for suppressing the scale by controlling the pump as described above is about 2 seconds, but short. Scale can be suppressed over time.
  • FIG. 14 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the shear stress and the pulse width of the shear stress pulse are changed.
  • a shear stress pulse cycle is applied to the secondary heated liquid of 1 [Pa], which is a shear stress at a normal flow rate, under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the shear stress pulse cycle was applied once every 5 minutes was measured.
  • Ratio of magnitude of first and second shear stress pulses “3: 1” to “30: 1”
  • Pulse width of first and second shear stress pulses 0.1 [second] to 2.0 [second]
  • Pulse pause time of the first and second shear stress pulses 0.5 [second]
  • the example shown in FIG. 14 shows the result of the scale suppression effect when the amount of scale adhesion when no shear stress pulse is applied is “100”.
  • the result when the scale suppression effect is 20% or more, that is, the scale adhesion amount is 80% or less is described as “ ⁇ ”, and the scale suppression effect is less than 20%, that is, the scale adhesion amount is The result when it exceeds 80% is described as “+”.
  • the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “5: 1” or more, and the pulse width of the shear stress pulse is 1.0 [ Second]
  • the scale suppression effect was 20% or more.
  • the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “10: 1” or more, and the pulse width of the shear stress pulse is within 1.5 [seconds]. In this case, the scale suppression effect was 20% or more.
  • the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “20: 1” or more, and the pulse width of the shear stress pulse is within 2.0 [seconds]. In this case, the scale suppression effect was 20% or more.
  • the annular primary side circulation circuit 10 in which the primary heated liquid circulates the annular secondary circulation circuit 20 in which the secondary heated liquid circulates, A heat exchanger 2 that exchanges heat between the primary heated liquid and the secondary heated liquid, a pressure holding unit 32 that pressurizes and holds a part of the secondary heated liquid, and heat exchange Opening and closing mechanism unit that is provided on the inflow side of the secondary heated liquid of the vessel 2 and switches the secondary heated liquid flowing into the heat exchanger 2 between the secondary circulation circuit 20 and the pressure holding unit 32 33, and an opening / closing control unit 34 for controlling the amount of pressure applied to the secondary heated liquid held in the pressure holding unit 32 and the switching of the opening / closing mechanism unit 33.
  • the open / close control unit 34 maintains the pressure so that the secondary heated liquid to which the shear stress pulse cycle in which a plurality of shear stress pulses having different pressure levels are combined is applied is supplied to the heat exchanger 2.
  • the unit 32 and the opening / closing mechanism unit 33 are controlled.
  • the shear stress pulse cycle is formed by a first shear stress pulse and a second shear stress pulse having a pressure smaller than that of the first shear stress pulse. Combined in order of shear stress pulses.
  • Embodiment 2 a heat exchange system according to Embodiment 2 of the present invention will be described.
  • the heat exchange system according to the second embodiment is different from the first embodiment described above in that it includes a second pressure application unit.
  • the secondary heated liquid is boiled by circulating a plurality of times between the tank 21 and the heat exchanger 2 (hereinafter referred to as “multiple boiling method” as appropriate).
  • FIG. 15 is a block diagram illustrating an example of the configuration of the heat exchange system 1 according to the second embodiment.
  • the heat exchange system 1 includes a primary side circulation circuit 10, a secondary side circulation circuit 20, and a heat exchanger 2.
  • the secondary side circulation circuit 20 is provided with a second pressure application unit 50.
  • the second pressure application unit 50 is connected to the second pressure holding unit 52 by the fourth pump 51, the second pressure holding unit 52 connected to the fourth pump 51 by the pipe 56, and the pipe 57.
  • the second opening / closing mechanism 53 is configured.
  • the fourth pump 51 has the same configuration and function as the third pump 31.
  • the second pressure holding unit 52 has the same configuration and function as the pressure holding unit 32.
  • FIG. 16 is a schematic diagram showing an example of the configuration of the second opening / closing mechanism 53 of FIG. As shown in FIG. 16, the 2nd opening-and-closing mechanism part 53 has the solenoid valve 53a and the solenoid valve 53b.
  • the electromagnetic valve 53 a is provided in the pipe 57 connected to the second pressure holding unit 52.
  • the electromagnetic valve 53a supplies information indicating the open / closed state of the valve to the open / close control unit 34 via the signal line 58, and based on the control signal supplied from the open / close control unit 34 via the signal line 58, The open / close state is controlled.
  • the electromagnetic valve 53a is provided with a metal shutter 53c.
  • the metal shutter 53c operates based on the control of the open / close control unit 34, and determines the open / closed state of the electromagnetic valve 53a.
  • the metal shutter 53c has, for example, a through hole in the vicinity of the central portion thereof, and the electromagnetic valve 53a is in an “open” state by matching the through hole with the pipe 57.
  • the electromagnetic valve 53 b is provided in the pipe 25 connected to the tank 21.
  • the electromagnetic valve 53b supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 58, and based on the control signal supplied from the open / close control unit 34 via the signal line 58, The open / close state is controlled.
  • the electromagnetic valve 53b is provided with a metal shutter 53d.
  • the metal shutter 53d operates based on the control of the open / close control unit 34, and determines the open / close state of the electromagnetic valve 53b.
  • the metal shutter 53d has, for example, a through hole in the vicinity of the center, and the electromagnetic valve 53b is in an “open” state by matching the through hole with the pipe 25.
  • the second opening / closing mechanism 53 operates based on the control of the opening / closing controller 34 so that the electromagnetic valve 53a and the electromagnetic valve 53b are interlocked with each other.
  • the metal shutter 53c moves and the electromagnetic valve 53a enters the “open” state
  • the metal shutter 53d moves and the electromagnetic valve 53b enters the “closed” state.
  • the opening / closing control unit 34 controls each part in the second pressure holding unit 52 and the second opening / closing mechanism unit 53 in addition to the same control as in the first embodiment.
  • the open / close control unit 34 supplies a control signal for controlling the operation of the second pressure holding unit 52 to the second pressure holding unit 52 via the signal line 55.
  • the opening / closing control unit 34 sends a control signal for controlling the opening / closing of the electromagnetic valve 53a and the electromagnetic valve 53b of the second opening / closing mechanism unit 53 shown in FIG. To the second opening / closing mechanism 53.
  • the open / close control unit 34 is configured independently of the pressure application unit 30, but this is not limited to this example.
  • the opening / closing control unit 34 may be included in the pressure application unit 30 or may be included in the second pressure application unit 50.
  • the secondary heated liquid stored in the tank 21 is supplied to the second pressure application unit 50.
  • the secondary heated liquid supplied to the second pressure application unit 50 flows into the second pressure holding unit 52 by the fourth pump 51 of the second pressure application unit 50.
  • the secondary heated liquid that has flowed into the second pressure holding unit 52 is applied with a pressure set in advance based on the control of the opening / closing control unit 34, and flows out of the second pressure holding unit 52.
  • the secondary heated liquid flowing out from the second pressure holding unit 52 flows into the second opening / closing mechanism unit 53.
  • the secondary heated liquid that has flowed into the second opening / closing mechanism 53 is supplied to the second opening / closing mechanism when the electromagnetic valve 53a that opens / closes based on the control of the opening / closing controller 34 is in the “open” state. It flows out from 53 and flows into the heat exchanger 2.
  • the secondary side flowing out from the second pressure holding unit 52 is controlled by controlling the opening / closing operation of the electromagnetic valve 53a and the pressure applied to the secondary heated liquid in the second pressure holding unit 52.
  • the liquid to be heated is caused to flow into the heat exchanger 2 at a preset timing and pressure.
  • the secondary heated liquid flowing into the heat exchanger 2 from the second pressure holding unit 52 flows into the heat exchanger 2 from the pressure holding unit 32 in the direction of the shear stress pulse inside the heat exchanger 2.
  • the direction is opposite to the secondary heated liquid.
  • the shear stress pulse in the reverse direction is used as the third shear stress pulse, and the first shear stress pulse shown in the first embodiment and the first shear stress pulse smaller than the first shear stress pulse are used. Between two shear stress pulses. In this case, the third shear stress pulse is equivalent to the first shear stress pulse except for the application direction.
  • the bubbles are moved and assembled by applying the first shear stress pulse in the direction of pushing out into the heat exchanger 2, and the third shear stress pulse in the direction of pulling back from the heat exchanger 2 is applied. .
  • generation efficiency of the big bubble formed by moving and gathering by the 1st shear stress pulse can be improved.
  • the bubbles 40 and the scale nuclei attached to the contact surface with the secondary heated liquid in the heat exchanger 2 are more efficiently removed than when only the first and second shear stress pulses are applied. Is done.
  • the suppression effect of the scale adhering to the heat exchanger 2 will be verified.
  • the application direction of the stress to the heat exchanger 2 is the first and second shear stress pulses.
  • a shear stress pulse cycle composed of a third shear stress pulse in the reverse direction is applied to the heat exchanger 2.
  • FIG. 17 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the first shear stress pulse to the third shear stress pulse are applied.
  • a first shear stress pulse having a preset shear stress and a first shear stress pulse for a secondary heated liquid of 1 [Pa] which is a shear stress at a normal flow rate
  • a second shear stress pulse having a shear stress smaller than that of the first shear stress pulse
  • a third shear stress having the same magnitude as that of the first shear stress pulse and the direction of application of stress being opposite to the heat exchanger 2
  • a shear stress pulse cycle combined with a pulse is applied under the following conditions.
  • the amount of scale adhered to the heat exchanger 2 when the period for applying the shear stress pulse cycle was changed was measured.
  • the shear stress pulse is applied in the order of the first shear stress pulse, the third shear stress pulse, and the second shear stress pulse.
  • the example shown in FIG. 17 shows the ratio of scale adhesion when the amount of scale adhesion when no shear stress pulse is applied is 100% and the period when the shear stress pulse cycle is applied is 3 [minutes].
  • an example in which no shear stress pulse is applied is “Comparative Example 1”
  • Example 1 an example in the case of a shear stress pulse cycle in which shear stress pulses are applied in the order of the first and second shear stress pulses is shown as “Comparative Example 2”.
  • FIG. 1 an example in the case of a shear stress pulse cycle in which shear stress pulses are applied in the order of the first and second shear stress pulses
  • the secondary heated liquid to which the shear stress pulse cycle combined in the order of the first, third, and second shear stress pulses is applied to the heat exchanger 2.
  • Supply thereby, generation
  • Embodiment 3 FIG. Next, a heat exchange system according to Embodiment 3 of the present invention will be described.
  • the heat exchange system according to the third embodiment is different from the second embodiment in that the scale trap 23 provided in the secondary side circulation circuit 20 is removed.
  • the secondary heated liquid is boiled by circulating once between the tank 21 and the heat exchanger 2 (hereinafter, referred to as a “single boiling method” as appropriate).
  • the scale trapping effect by the scale trap 23 shown in FIG. 15 is compared with the case where the circulation number is plural. It is low, and the effect of suppressing scale adhesion to the heat exchanger 2 can hardly be expected. Therefore, the amount of scale adhering to the heat exchanger 2 is increased as compared with the case where the same amount of the secondary heated liquid is circulated a plurality of times and boiled. Therefore, in the third embodiment, the same shear stress pulse cycle as that in the second embodiment is applied even in the case of the one-time boiling system, and scale adhesion to the heat exchanger 2 is suppressed.
  • the number of circulations required when boiling the secondary heated liquid depends on, for example, the energy characteristics depending on the type of refrigerant used in the heat pump. For example, when the liquid to be heated on the secondary side is a fluorocarbon gas such as R410, the energy efficiency is high when it is circulated a plurality of times and boiled. In addition, when the secondary heated liquid is a natural refrigerant such as CO 2 (carbon dioxide), the energy efficiency is higher when it is circulated once and boiled.
  • a fluorocarbon gas such as R410
  • CO 2 carbon dioxide
  • FIG. 18 is a block diagram showing an example of the configuration of the heat exchange system 1 according to Embodiment 3 of the present invention.
  • the heat exchange system 1 includes a primary side circulation circuit 10, a secondary side circulation circuit 20, and a heat exchanger 2.
  • the scale trap 23 is removed as compared with the heat exchange system 1 according to Embodiment 2 shown in FIG.
  • FIG. 19 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the first to third shear stress pulses are applied.
  • a first shear stress pulse having a preset shear stress and a first shear stress pulse for a secondary heated liquid of 1 [Pa] which is a shear stress at a normal flow rate
  • a second shear stress pulse having a shear stress smaller than that of the first shear stress pulse
  • a third shear stress having the same magnitude as that of the first shear stress pulse and the direction of application of stress being opposite to the heat exchanger 2
  • a shear stress pulse cycle combined with a pulse is applied under the following conditions.
  • the shear stress pulse is applied in the order of the first shear stress pulse, the third shear stress pulse, and the second shear stress pulse.
  • the amount of scale attached to the heat exchanger 2 was measured when the secondary heated liquid was boiled up to 2000 L (liter). This is because, for example, when 200 L which is the capacity of one tank 21 is boiled, the amount of scale attached to the heat exchanger 2 is not sufficient. This is because it was necessary to boil.
  • the example shown in FIG. 19 has the scale trap 23 as shown in the second embodiment, and is the “Comparative Example 1” described above in which the shear stress pulse is not applied by the multiple-boiling method.
  • the amount of scale attached to the vessel 2 was 100%.
  • the number of circulations between the tank 21 and the heat exchanger 2 is 100 times.
  • Example 2 an example in the case of a shear stress pulse cycle in which the shear trap pulse is applied in the order of the first, third and second shear stress pulses in a state where the scale trap 23 is removed and in a single boiling method. This is shown as “Example 2”.
  • Example 1 an example in the case of the shear stress pulse cycle in which the shear stress pulse is applied in the order of the first, third, and second shear stress pulses by the multiple boiling method is described above.
  • Example 1 is shown.
  • Example 3 an example in which no shear stress pulse is applied is shown as “Comparative Example 3”.
  • the amount of scale adhesion based on Comparative Example 1 is 215% compared to the case where the shear stress pulse is not applied. It can be greatly reduced to 58%. Further, in the multiple boiling system, the amount of scale adhesion is reduced from 100% to 35% by applying a shear stress pulse, so that there is a 65% reduction effect. On the other hand, in the single boiling method, by applying a shear stress pulse, the amount of scale adhesion is reduced from 215% in Comparative Example 3 to 58% in Example 2, and there is a reduction effect of 157%. A reduction effect higher than the multiple boiling method can be achieved.
  • the secondary heated liquid to which the shear stress pulse cycle combined in the order of the first, third, and second shear stress pulses is applied. Is supplied to the heat exchanger 2.
  • production and growth of a scale can be suppressed more efficiently and reliably.
  • the effect of suppressing the generation and growth of scale by supplying such a shear stress pulse cycle to the heat exchanger 2 is that the number of circulations in the secondary-side circulation circuit 20 is the same as in the first and second embodiments. It can be obtained not only in the case of multiple times but also in the case of one time, for example.
  • the heat exchange system 1 that heats the secondary heated liquid by the heat of the primary heated liquid heated by the heat pump 11 has been described as an example. Not limited to.
  • the heat exchange system 1 may cool the secondary liquid by the heat of the primary liquid cooled by the heat pump 11.
  • the heat exchange system 1 may not include the tank 21.
  • a path branched from a path through which the secondary-side heated liquid circulates in the secondary-side circulation circuit 20 is provided.
  • the pressure application unit 30 is supplied with the secondary heated liquid flowing through the branch path. Thereby, the bubble 40 and the scale nucleus adhering to the contact surface of the heat exchanger 2 can be efficiently removed as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Details Of Fluid Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Provided is a heat exchange system comprising: an annular first circulation circuit through which a first liquid circulates; an annular second circulation circuit through which a second liquid circulates; a heat exchanger for exchanging heat between the first liquid and the second liquid; a pressure holding unit for pressurizing a part of the second liquid and holding the part of the second liquid in the pressurized state; an opening and closing mechanism provided on the side of the heat exchanger, into which the second liquid flows, and switching, between the second circulation circuit and the pressure holding unit, the flow of the second liquid flowing into the heat exchanger; and a control unit for controlling the pressurization amount of the second liquid held by the pressure holding unit, the control unit also controlling the switching performed by the opening and closing mechanism.

Description

熱交換システムおよび熱交換システムのスケール抑制方法Heat exchange system and method for suppressing scale of heat exchange system
 本発明は、シャワー等に利用される水などの被加熱液体を加熱する熱交換システムおよび熱交換システムのスケール抑制方法に関するものである。 The present invention relates to a heat exchange system for heating a liquid to be heated such as water used for a shower or the like, and a scale suppression method for the heat exchange system.
 浴室や台所に温水を供給する給湯器は、例えば、電気給湯器、ガスボイラー等のガス給湯器、石油給湯器などに大別され、このような給湯器においては、熱を水に伝えるための熱交換器が設けられている。最近では、特に、省エネルギー性および地球温暖化対策のために二酸化炭素を削減する観点から、電気給湯器の中でも、ヒートポンプ熱交換式の電気給湯器であるヒートポンプ給湯器が注目されている。 Water heaters that supply hot water to bathrooms and kitchens are broadly classified into, for example, electric water heaters, gas water heaters such as gas boilers, and oil water heaters. In such water heaters, A heat exchanger is provided. Recently, heat pump water heaters, which are heat pump heat exchange type electric water heaters, are attracting attention from among the electric water heaters, particularly from the viewpoint of reducing carbon dioxide for energy saving and global warming countermeasures.
 このようなヒートポンプ給湯器は、大気の熱を熱媒体に移し、その熱を用いることでお湯を沸かすものである。より具体的に、ヒートポンプ給湯器の原理は、熱媒体を気体状に圧縮した際に発生する熱を熱交換器によって水に移し、その熱媒体を膨張させた際に発生する冷気により、熱媒体の温度を再び大気温まで戻す冷熱サイクルによるものである。 Such a heat pump water heater transfers atmospheric heat to a heat medium and uses the heat to boil hot water. More specifically, the principle of the heat pump water heater is that the heat generated when the heat medium is compressed into a gaseous state is transferred to water by the heat exchanger, and the heat medium is generated by the cold air generated when the heat medium is expanded. This is due to the cooling cycle that returns the temperature to the atmospheric temperature again.
 ここで、理論上は、給湯器を運転させるために投入されたエネルギー以上の熱エネルギーを取り出すことはできない。しかしながら、このような冷熱サイクルを利用したヒートポンプ給湯器は、大気の熱を利用する仕組みであるため、給湯器の運転に要するエネルギーよりも多くの熱エネルギーを利用することができる。 Here, in theory, it is not possible to extract more heat energy than the energy input to operate the water heater. However, since the heat pump water heater that uses such a cold cycle is a mechanism that uses the heat of the atmosphere, it can use more heat energy than the energy required to operate the water heater.
 ところで、熱交換器は、内部を流れる熱媒体と表面を流れる水などの流体との間で熱交換を行う。そのため、伝熱面である熱交換器の表面を常に清浄な状態に保つことが重要となる。これは、熱交換器の表面が汚れると、有効な伝熱面が減少し、熱伝達性能が低下してしまうためである。また、このような汚れが蓄積した場合には、水などの流路が閉塞してしまう虞がある。
 特に、硬度成分、硫酸塩、ケイ酸成分、金属イオンなどを含む結晶状の生成物であるスケール成分を含む水を給湯器に供給すると、スケールが熱交換器、給湯タンクまたは配管内に付着し、熱交換率が低下したり、流路が閉塞したりしてしまうという問題点があった。
By the way, the heat exchanger performs heat exchange between a heat medium flowing inside and a fluid such as water flowing on the surface. Therefore, it is important to always keep the surface of the heat exchanger that is the heat transfer surface clean. This is because if the surface of the heat exchanger becomes dirty, the effective heat transfer surface decreases and the heat transfer performance deteriorates. Moreover, when such dirt accumulates, there is a possibility that the flow path of water or the like may be blocked.
In particular, when water containing scale components, which are crystalline products containing hardness components, sulfates, silicic acid components, metal ions, etc., is supplied to the water heater, the scale adheres to the heat exchanger, hot water tank or piping. There is a problem that the heat exchange rate is lowered or the flow path is blocked.
 そこで、最近では、スケールの付着により発生するこのような問題点を解決するための様々な方法が提案されている。例えば、特許文献1および特許文献2には、給湯用水の圧力に脈動を印加することによって発生する、流量が変化する脈流を用いてスケールの発生を抑制することが記載されている。 Therefore, recently, various methods for solving such problems caused by the adhesion of scale have been proposed. For example, Patent Literature 1 and Patent Literature 2 describe that the generation of scale is suppressed by using a pulsating flow whose flow rate changes, which is generated by applying a pulsation to the pressure of hot water supply water.
 特許文献1および特許文献2に記載されたヒートポンプ式給湯器は、貯湯タンクと、貯湯タンク下部から湯水を取り出し、貯湯タンクの上部に戻す加熱循環経路と、加熱循環経路内の湯水を加熱する加熱用熱交換器と、加熱循環経路の加熱用交換機の上流に設けられ、加熱循環経路内の湯水を脈流させる脈動発生手段と、加熱循環経路内の湯水を循環させる循環手段と、脈動発生手段および循環手段を制御する制御部とを備えている。
 また、制御部は、脈動発生手段を加熱用熱交換器による加熱中に動作させ脈流を発生させるとともに、加熱循環経路内の流量が予め設定した所定値以上となるように循環手段を制御する。
The heat pump type water heater described in Patent Document 1 and Patent Document 2 is a hot water storage tank, a heating circulation path that takes hot water from the lower part of the hot water storage tank and returns it to the upper part of the hot water storage tank, and heating that heats the hot water in the heating circulation path. Heat exchanger, upstream of heating exchanger of heating circulation path, pulsation generating means for pulsating hot water in heating circulation path, circulating means for circulating hot water in heating circulation path, and pulsation generating means And a controller for controlling the circulation means.
Further, the control unit operates the pulsation generating means during heating by the heating heat exchanger to generate a pulsating flow, and controls the circulating means so that the flow rate in the heating circulation path becomes equal to or higher than a predetermined value set in advance. .
 このようなヒートポンプ式給湯器では、硬度成分が高い水を用いてお湯を沸かした場合でも、加熱用熱交換器内でのスケールの堆積を抑制することができ、スケールによる配管閉塞の速度を緩和し、ヒートポンプ式給湯器の長寿命化を図ることができる。 In such a heat pump type water heater, even when hot water is boiled using water with a high hardness component, it is possible to suppress the accumulation of scale in the heat exchanger for heating, and the speed of pipe clogging by the scale is reduced. In addition, the life of the heat pump type water heater can be extended.
 また、特許文献3には、水の脈動時におけるせん断応力が一定流量のせん断応力よりも大きく、脈動を印加することにより、スケールの付着を効率的に抑制できることが記載されている。 Patent Document 3 describes that the shear stress at the time of pulsation of water is larger than the shear stress at a constant flow rate, and by applying the pulsation, the adhesion of scale can be efficiently suppressed.
 そして、特許文献1~特許文献3に記載のヒートポンプ式給湯器においては、熱交換システム内で水を循環させるためのポンプを駆動するモータの回転数を制御することによって水に脈動を印加している。 In the heat pump water heaters described in Patent Documents 1 to 3, pulsation is applied to water by controlling the number of revolutions of a motor that drives a pump for circulating water in the heat exchange system. Yes.
特開2010-145037号公報JP 2010-145037 A 特開2012-117776号公報JP 2012-117776 A 特開2014-16098号公報JP 2014-16098 A
 しかしながら、特許文献1~特許文献3に記載されているように、モータの回転数によって脈動の印加を制御する場合には、モータの回転数が瞬時に上昇しない。そのため、スケール抑制効果を発揮するポンプ流量を実現するモータ回転数に達するまでに時間を要するという問題点があった。 However, as described in Patent Documents 1 to 3, when the application of pulsation is controlled by the rotational speed of the motor, the rotational speed of the motor does not increase instantaneously. Therefore, there has been a problem that it takes time to reach the motor rotation number that realizes the pump flow rate that exhibits the scale suppression effect.
 その結果、水の流量がスケール抑制効果を発揮する流量に到達する前に、熱交換器に対して単位時間あたりに接触するカルシウムイオン等のスケール原因物質の量が、一定流量の場合と比較して増えてしまう。そのため、スケールの付着が促進されることになり、脈動を印加することによるスケール抑制効果が低減してしまう。 As a result, the amount of scale-causing substances such as calcium ions that contact the heat exchanger per unit time before the flow rate of water reaches the flow rate that exerts the scale-inhibiting effect is compared with the case of a constant flow rate. Will increase. For this reason, the adhesion of the scale is promoted, and the scale suppression effect by applying the pulsation is reduced.
 本発明は、上記従来の技術における問題点に鑑みてなされたものであって、熱交換器に対するスケールの発生および成長をより効率的かつ確実に抑制することが可能な熱交換システムおよび熱交換システムのスケール抑制方法を提供することを目的とする。 The present invention has been made in view of the above-described problems in the prior art, and is capable of more efficiently and surely suppressing the generation and growth of scale for the heat exchanger and the heat exchange system. An object of the present invention is to provide a method for suppressing the scale.
 本発明の熱交換システムは、第1の液体が循環する環状の第1の循環回路と、第2の液体が循環する環状の第2の循環回路と、前記第1の液体と前記第2の液体との間で熱交換を行う熱交換器と、前記第2の液体の一部を加圧して保持する圧力保持部と、前記熱交換器の前記第2の液体の流入側に設けられ、前記熱交換器に流入する前記第2の液体を、前記第2の循環回路と前記圧力保持部との間で切り替える開閉機構部と、前記圧力保持部に保持された前記第2の液体に対する加圧量、および前記開閉機構部の切り替えを制御する制御部とを備えるものである。 The heat exchange system of the present invention includes an annular first circulation circuit in which a first liquid circulates, an annular second circulation circuit in which a second liquid circulates, the first liquid, and the second liquid. A heat exchanger that exchanges heat with the liquid, a pressure holding unit that pressurizes and holds part of the second liquid, and an inflow side of the second liquid of the heat exchanger, An opening / closing mechanism for switching the second liquid flowing into the heat exchanger between the second circulation circuit and the pressure holding unit, and an addition to the second liquid held by the pressure holding unit And a control unit for controlling switching of the pressure amount and the opening / closing mechanism unit.
 以上のように、本発明によれば、予め設定された圧力が印加された2次側液体を、予め設定されたタイミングで熱交換器に対して供給することにより、熱交換器に対するスケールの発生および成長をより効率的かつ確実に抑制することが可能になる。 As described above, according to the present invention, a secondary liquid to which a preset pressure is applied is supplied to the heat exchanger at a preset timing, thereby generating a scale for the heat exchanger. And it becomes possible to suppress growth more efficiently and reliably.
実施の形態1に係る熱交換システムの構成の一例を示すブロック図である。1 is a block diagram illustrating an example of a configuration of a heat exchange system according to Embodiment 1. FIG. 図1の圧力保持部の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the pressure holding | maintenance part of FIG. 図1の開閉機構部の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the opening-and-closing mechanism part of FIG. 図1の圧力印加部の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the pressure application part of FIG. 従来のポンプにおけるモータの回転数を増加させた場合のせん断応力の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of the shear stress at the time of making the rotation speed of the motor in the conventional pump increase. 図1の熱交換器の接触面に付着する気泡と析出するスケールとの関係について説明するための概略図である。It is the schematic for demonstrating the relationship between the bubble adhering to the contact surface of the heat exchanger of FIG. 1, and the depositing scale. 図1の熱交換器の接触面に析出したスケールの一例を示す概略図である。It is the schematic which shows an example of the scale deposited on the contact surface of the heat exchanger of FIG. 図1の熱交換器から気泡が離脱する際の気泡離脱径とせん断応力との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the bubble detachment diameter and the shear stress when the bubbles detach from the heat exchanger of FIG. 図1の熱交換システムにおいて、2次側被加熱液体にせん断応力を印加した場合のせん断応力の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of a shear stress at the time of applying a shear stress to the secondary side to-be-heated liquid in the heat exchange system of FIG. せん断応力パルスの印加回数と気泡の平均径との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the frequency | count of application of a shear stress pulse, and the average diameter of a bubble. せん断応力パルスの印加タイミングを変化させた場合の熱交換器に対するスケールの付着量について説明するためのグラフである。It is a graph for demonstrating the adhesion amount of the scale with respect to a heat exchanger at the time of changing the application timing of a shear stress pulse. せん断応力パルスのせん断応力を変化させた場合の熱交換器に対するスケールの付着量について説明するためのグラフである。It is a graph for demonstrating the adhesion amount of the scale with respect to a heat exchanger at the time of changing the shear stress of a shear stress pulse. せん断応力パルスのパルス幅を変化させた場合の熱交換器に対するスケールの付着量について説明するためのグラフである。It is a graph for demonstrating the adhesion amount of the scale with respect to a heat exchanger at the time of changing the pulse width of a shear stress pulse. せん断応力パルスのせん断応力およびパルス幅を変化させた場合の熱交換器に対するスケールの付着量について説明するためのグラフである。It is a graph for demonstrating the adhesion amount of the scale with respect to a heat exchanger at the time of changing the shear stress and pulse width of a shear stress pulse. 実施の形態2に係る熱交換システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the heat exchange system which concerns on Embodiment 2. FIG. 図15の第2の開閉機構部の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the 2nd opening-and-closing mechanism part of FIG. 第1のせん断応力パルス~第3のせん断応力パルスを印加した場合の熱交換器に対するスケールの付着量について説明するためのグラフである。7 is a graph for explaining the amount of scale attached to a heat exchanger when a first shear stress pulse to a third shear stress pulse are applied. 実施の形態3に係る熱交換システムの構成の一例を示すブロック図である。6 is a block diagram illustrating an example of a configuration of a heat exchange system according to Embodiment 3. FIG. 第1のせん断応力パルス~第3のせん断応力パルスを印加した場合の熱交換器2に対するスケールの付着量について説明するためのグラフである。6 is a graph for explaining the amount of scale attached to the heat exchanger 2 when a first shear stress pulse to a third shear stress pulse are applied.
実施の形態1.
 以下、本発明の実施の形態1に係る熱交換システムについて説明する。
 この熱交換システムは、ヒートポンプによって加熱または冷却された1次側の液体の熱により、水などの2次側の液体を加熱または冷却するものである。また、この熱交換システムでは、2次側液体を加熱または冷却する際に、熱交換器における2次側液体との接触面に発生するスケールの付着を抑制する。
 なお、以下では、ヒートポンプによって加熱された被加熱液体の熱により、シャワー等に利用される水などの被加熱液体を加熱して温水を生成する熱交換システムを例にとって説明する。
Embodiment 1 FIG.
Hereinafter, the heat exchange system according to Embodiment 1 of the present invention will be described.
This heat exchange system heats or cools a secondary liquid such as water by the heat of the primary liquid heated or cooled by a heat pump. Further, in this heat exchange system, when the secondary liquid is heated or cooled, the adhesion of the scale generated on the contact surface with the secondary liquid in the heat exchanger is suppressed.
Hereinafter, a heat exchange system that generates hot water by heating a heated liquid such as water used for a shower or the like by heat of the heated liquid heated by a heat pump will be described as an example.
[熱交換システムの構成]
 図1は、本発明の実施の形態1に係る熱交換システム1の構成の一例を示すブロック図である。
 図1に示すように、熱交換システム1は、第1の循環回路としての1次側循環回路10、第2の循環回路としての2次側循環回路20、および1次側循環回路10と2次側循環回路20との間に設けられた熱交換器2で構成されている。この熱交換システム1は、熱交換器2により、1次側循環回路10を循環する第1の液体としての1次側被加熱液体と、2次側循環回路20を循環する第2の液体としての2次側被加熱液体との間で熱交換を行う。そして、熱交換システム1は、1次側被加熱液体の熱によって2次側被加熱液体を加熱する。
[Configuration of heat exchange system]
FIG. 1 is a block diagram showing an example of the configuration of the heat exchange system 1 according to Embodiment 1 of the present invention.
As shown in FIG. 1, the heat exchange system 1 includes a primary circuit 10 as a first circuit, a secondary circuit 20 as a second circuit, and primary circuits 10 and 2. The heat exchanger 2 is provided between the secondary circuit 20 and the secondary circulation circuit 20. The heat exchange system 1 includes a heat-exchanger 2 as a primary heated liquid as a first liquid that circulates in the primary side circulation circuit 10 and a second liquid that circulates in the secondary side circulation circuit 20. Heat exchange with the secondary heated liquid. Then, the heat exchange system 1 heats the secondary heated liquid by the heat of the primary heated liquid.
 ここで、本実施の形態1では、例えば、1次側循環回路10を流れる1次側被加熱液体の温度が60℃となり、ヒートポンプ11の出口側温度が65℃となるように制御を行う。また、2次側循環回路20の2次側被加熱液体の温度は、熱交換器2の出口側温度が57℃とする。なお、2次側循環回路20では、例えば2週に一度程度、2次側被加熱液体中の細菌の除去を目的として、熱交換器2における2次側被加熱液体の出口側温度を65℃まで昇温する滅菌運転を、1時間だけ行う。 Here, in the first embodiment, for example, control is performed such that the temperature of the primary heated liquid flowing in the primary side circulation circuit 10 is 60 ° C. and the outlet side temperature of the heat pump 11 is 65 ° C. The temperature of the secondary heated liquid in the secondary circulation circuit 20 is 57 ° C. at the outlet side of the heat exchanger 2. In the secondary side circulation circuit 20, for example, about once every two weeks, the outlet side temperature of the secondary side heated liquid in the heat exchanger 2 is set to 65 ° C. for the purpose of removing bacteria in the secondary side heated liquid. The sterilization operation for raising the temperature to 1 hour is performed for only 1 hour.
 1次側循環回路10は、ヒートポンプ11、ヒータ12、流路切替装置13、第1のポンプ14、ラジエータ15、膨張容器16、および熱交換器2を備えている。
 1次側循環回路10において、ヒートポンプ11、ヒータ12、膨張容器16、流路切替装置13、熱交換器2、および第1のポンプ14は、配管17によって環状に接続されている。また、ラジエータ15は、流路切替装置13と第1のポンプ14との間に設けられた、配管17とは異なる配管18によって接続されている。配管17および配管18は、流路切替装置13によって分岐し、熱交換器2と第1のポンプ14との間で合流するようにして接続されている。
The primary circulation circuit 10 includes a heat pump 11, a heater 12, a flow path switching device 13, a first pump 14, a radiator 15, an expansion vessel 16, and the heat exchanger 2.
In the primary side circulation circuit 10, the heat pump 11, the heater 12, the expansion container 16, the flow path switching device 13, the heat exchanger 2, and the first pump 14 are connected in a ring shape by a pipe 17. Further, the radiator 15 is connected by a pipe 18 that is provided between the flow path switching device 13 and the first pump 14 and is different from the pipe 17. The pipe 17 and the pipe 18 are branched by the flow path switching device 13 and connected so as to merge between the heat exchanger 2 and the first pump 14.
 ヒートポンプ11は、例えば、内部に冷凍サイクルが形成され、第1のポンプ14によって供給された1次側被加熱液体を加熱する。
 ヒータ12は、ヒートポンプ11から供給された1次側被加熱液体をさらに加熱するために設けられている。ヒータ12は、ヒートポンプ11から供給された1次側被加熱液体を加熱し、流路切替装置13に供給する。
For example, the heat pump 11 has a refrigeration cycle formed therein, and heats the primary heated liquid supplied by the first pump 14.
The heater 12 is provided to further heat the primary heated liquid supplied from the heat pump 11. The heater 12 heats the primary heated liquid supplied from the heat pump 11 and supplies the heated liquid to the flow path switching device 13.
 流路切替装置13は、例えば電磁式の三方弁であり、1つの流入口と、2つの流出口とを有している。流路切替装置13は、ヒータ12を介してヒートポンプ11から供給された1次側被加熱液体を、熱交換器2およびラジエータ15のいずれか一方へ供給するために流出口が選択され、流路を切り替える。 The flow path switching device 13 is, for example, an electromagnetic three-way valve, and has one inflow port and two outflow ports. The flow path switching device 13 has an outlet selected to supply the primary heated liquid supplied from the heat pump 11 via the heater 12 to either the heat exchanger 2 or the radiator 15, Switch.
 第1のポンプ14は、図示しないモータによって駆動され、熱交換器2またはラジエータ15からヒートポンプ11へ1次側被加熱液体を供給する。
 ラジエータ15は、例えば熱交換器であり、配管18を流れる1次側被加熱液体と空調対象空間である室内の空気との間で熱交換を行い、1次側被加熱液体の熱によって室内の空気を加熱する。
The first pump 14 is driven by a motor (not shown), and supplies the primary heated liquid from the heat exchanger 2 or the radiator 15 to the heat pump 11.
The radiator 15 is a heat exchanger, for example, and performs heat exchange between the primary side heated liquid flowing through the pipe 18 and the indoor air that is the air-conditioning target space, and the indoor side is heated by the heat of the primary side heated liquid. Heat the air.
 熱交換器2は、1次側循環回路10を流れる1次側被加熱液体と、2次側循環回路20を流れる2次側被加熱液体との間で熱交換を行い、1次側被加熱液体の熱によって2次側被加熱液体を加熱する。
 膨張容器16は、ヒータ12から流出する1次側被加熱液体を一時的に貯留するために設けられている。
The heat exchanger 2 exchanges heat between the primary heated liquid flowing in the primary circulation circuit 10 and the secondary heated liquid flowing in the secondary circulation circuit 20, and the primary heated The secondary heated liquid is heated by the heat of the liquid.
The expansion container 16 is provided to temporarily store the primary heated liquid flowing out from the heater 12.
 2次側循環回路20は、タンク21、第2のポンプ22、スケールトラップ23、圧力印加部30、および熱交換器2を備えている。2次側循環回路20において、タンク21、第2のポンプ22、熱交換器2、およびスケールトラップ23は、配管24および配管25によって環状に接続されている。
 また、圧力印加部30は、タンク21と、第2のポンプ22および熱交換器2の間とに、配管24および配管25によって形成される流路とは異なる、配管36および配管37によって形成されるバイパス回路としての流路に設けられている。
The secondary circulation circuit 20 includes a tank 21, a second pump 22, a scale trap 23, a pressure application unit 30, and the heat exchanger 2. In the secondary side circulation circuit 20, the tank 21, the second pump 22, the heat exchanger 2, and the scale trap 23 are annularly connected by a pipe 24 and a pipe 25.
The pressure application unit 30 is formed by a pipe 36 and a pipe 37 that are different from the flow path formed by the pipe 24 and the pipe 25 between the tank 21 and the second pump 22 and the heat exchanger 2. Provided in a flow path as a bypass circuit.
 タンク21は、熱交換器2で加熱された2次側被加熱液体が供給され、この2次側被加熱液体を蓄える。また、タンク21は、給水配管21aを介して外部から水道水等が供給され、供給された水道水等を2次側被加熱液体として流出させて第2のポンプ22に供給する。タンク21に蓄えられた、加熱された2次側被加熱液体は、温水配管21bを介して外部に放出され、シャワー等の温水として利用される。 The tank 21 is supplied with the secondary heated liquid heated by the heat exchanger 2 and stores the secondary heated liquid. Further, the tank 21 is supplied with tap water or the like from the outside through the water supply pipe 21 a, and flows the supplied tap water or the like as the secondary heated liquid to be supplied to the second pump 22. The heated secondary heated liquid stored in the tank 21 is discharged to the outside through the hot water pipe 21b and used as hot water for a shower or the like.
 第2のポンプ22は、図示しないモータによって駆動され、タンク21から熱交換器2へ2次側被加熱液体である水を供給する。第2のポンプ22は、モータの回転数によって熱交換器2へ供給する2次側被加熱液体の流速を変化させることができる。例えば、第2のポンプ22は、モータの回転数を上昇させることにより、熱交換器2へ供給する2次側被加熱液体の流速を増加させることができる。 The second pump 22 is driven by a motor (not shown), and supplies water, which is a secondary heated liquid, from the tank 21 to the heat exchanger 2. The second pump 22 can change the flow rate of the secondary heated liquid supplied to the heat exchanger 2 according to the number of rotations of the motor. For example, the second pump 22 can increase the flow rate of the secondary heated liquid supplied to the heat exchanger 2 by increasing the number of rotations of the motor.
 スケールトラップ23は、熱交換器2の2次側被加熱液体との接触面に付着し除去されたスケールを捕捉するために設けられている。なお、スケールトラップ23のスケール捕捉効果は、2次側被加熱液体の循環回数が多いほど大きい。そのため、循環回数が1回の沸き上げ方式の場合には、スケール捕捉効果がほとんど期待できないため、スケールトラップ23は設置しなくてもよい。 The scale trap 23 is provided to capture the scale attached and removed from the contact surface of the heat exchanger 2 with the secondary heated liquid. Note that the scale trapping effect of the scale trap 23 increases as the number of circulations of the secondary heated liquid increases. Therefore, in the case of the boiling system with one circulation, the scale trapping effect can hardly be expected, so the scale trap 23 does not have to be installed.
 圧力印加部30は、タンク21から2次側被加熱液体が供給される。圧力印加部30は、供給された2次側被加熱液体に対して予め設定された圧力を印加した後、この2次側被加熱液体を熱交換器2に対して供給する。
 圧力印加部30は、第3のポンプ31、圧力保持部32、開閉機構部33、および開閉制御部34で構成されている。
The pressure application unit 30 is supplied with the secondary heated liquid from the tank 21. The pressure application unit 30 applies a preset pressure to the supplied secondary heated liquid, and then supplies the secondary heated liquid to the heat exchanger 2.
The pressure application unit 30 includes a third pump 31, a pressure holding unit 32, an opening / closing mechanism unit 33, and an opening / closing control unit 34.
 第3のポンプ31は、図示しないモータによって駆動され、タンク21から圧力保持部32へ被加熱液体を供給する。 The third pump 31 is driven by a motor (not shown) and supplies the liquid to be heated from the tank 21 to the pressure holding unit 32.
 圧力保持部32は、第3のポンプ31を介してタンク21から2次側被加熱液体が供給される。圧力保持部32の内部は、2次側被加熱液体によって常に満たされるとともに、2次側循環回路20内の配管を流れる2次側被加熱液体よりも高い圧力が印加された状態となっている。 The pressure holding unit 32 is supplied with the secondary heated liquid from the tank 21 via the third pump 31. The inside of the pressure holding unit 32 is always filled with the secondary side heated liquid, and a higher pressure is applied than the secondary side heated liquid flowing through the piping in the secondary side circulation circuit 20. .
 図2は、図1の圧力保持部32の構成の一例を示す概略図である。
 図2に示すように、圧力保持部32は、中空のシリンダー状に形成されたシリンダー構造部32aに、電磁弁32bおよび電磁弁32c、水量センサ32d、圧力センサ32e、加圧力部32fが設けられている。これら電磁弁32b~加圧力部32fは、信号線35を介して開閉制御部34に接続されている。
 圧力保持部32は、配管36を介してシリンダー構造部32aに流入した2次側被加熱液体に対して予め設定された圧力を印加する。そして、圧力保持部32は、圧力が印加された2次側被加熱液体を、配管37を介して後述する開閉機構部33に対して流出させる。
FIG. 2 is a schematic diagram illustrating an example of the configuration of the pressure holding unit 32 of FIG.
As shown in FIG. 2, the pressure holding part 32 is provided with a solenoid valve 32b, a solenoid valve 32c, a water amount sensor 32d, a pressure sensor 32e, and a pressurizing part 32f in a cylinder structure part 32a formed in a hollow cylinder shape. ing. The electromagnetic valve 32b to the pressurizing unit 32f are connected to the open / close control unit 34 via a signal line 35.
The pressure holding unit 32 applies a preset pressure to the secondary heated liquid that has flowed into the cylinder structure 32 a via the pipe 36. Then, the pressure holding unit 32 causes the secondary heated liquid to which pressure is applied to flow out to the opening / closing mechanism unit 33 described later via the pipe 37.
 電磁弁32bは、第3のポンプ31を介して配管36を流れる2次側被加熱液体が流入する流入口に設けられている。電磁弁32bは、弁の開閉状態を示す情報を、信号線35を介して開閉制御部34に供給するとともに、信号線35を介して開閉制御部34から供給される制御信号に基づき、弁の開閉状態が制御される。
 電磁弁32cは、例えば圧力保持部32の上部に設けられている。電磁弁32cは、弁の開閉状態を示す情報を、信号線35を介して開閉制御部34に供給するとともに、信号線35を介して開閉制御部34から供給される制御信号に基づき、弁の開閉状態が制御される。
 これら電磁弁32bおよび電磁弁32cは、通常時には「開」状態とされており、後述する水量センサ32dの検出結果に基づき、開閉制御部34によって弁の開閉状態が制御される。そして、シリンダー構造部32a内が2次側被加熱液体によって満たされたことを水量センサ32dが検出すると、電磁弁32bおよび電磁弁32cは、開閉制御部34の制御に基づき「閉」状態となるように制御される。
The electromagnetic valve 32 b is provided at the inlet through which the secondary heated liquid that flows through the pipe 36 via the third pump 31 flows. The electromagnetic valve 32b supplies information indicating the opening / closing state of the valve to the opening / closing control unit 34 via the signal line 35, and based on a control signal supplied from the opening / closing control unit 34 via the signal line 35, The open / close state is controlled.
The electromagnetic valve 32c is provided, for example, at the upper part of the pressure holding unit 32. The electromagnetic valve 32c supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 35, and based on the control signal supplied from the open / close control unit 34 via the signal line 35, The open / close state is controlled.
The electromagnetic valve 32b and the electromagnetic valve 32c are normally in an “open” state, and the open / close control unit 34 controls the open / closed state of the valve based on the detection result of a water amount sensor 32d described later. When the water amount sensor 32d detects that the cylinder structure portion 32a is filled with the secondary heated liquid, the electromagnetic valve 32b and the electromagnetic valve 32c are in the “closed” state based on the control of the opening / closing control unit 34. To be controlled.
 水量センサ32dは、シリンダー構造部32a内に蓄積された2次側被加熱液体の水量を検出し、得られた検出結果を、信号線35を介して開閉制御部34に供給する。
 圧力センサ32eは、シリンダー構造部32a内に蓄積された2次側被加熱液体の圧力を検出し、得られた検出結果を、信号線35を介して開閉制御部34に供給する。
The water amount sensor 32 d detects the amount of water of the secondary heated liquid accumulated in the cylinder structure portion 32 a and supplies the obtained detection result to the open / close control unit 34 via the signal line 35.
The pressure sensor 32 e detects the pressure of the secondary heated liquid accumulated in the cylinder structure portion 32 a and supplies the obtained detection result to the open / close control unit 34 via the signal line 35.
 加圧力部32fは、棒状に形成されている。加圧力部32fは、信号線35を介して開閉制御部34から供給される制御信号に基づきシリンダー構造部32aに押し込まれることにより、シリンダー構造部32a内に蓄積された2次側被加熱液体に対して予め設定された圧力を印加する。
 そして、シリンダー構造部32a内の2次側被加熱液体の圧力が予め設定された圧力に達したことを圧力センサ32eが検出すると、シリンダー構造部32aは、開閉制御部34の制御に基づき、2次側被加熱液体に対して圧力を印加した状態を保持する。これにより、シリンダー構造部32a内の2次側被加熱液体は、現在の圧力を保持した状態となる。
The pressurizing portion 32f is formed in a rod shape. The pressurizing portion 32f is pushed into the cylinder structure portion 32a based on a control signal supplied from the open / close control portion 34 via the signal line 35, thereby turning the secondary heated liquid accumulated in the cylinder structure portion 32a into A pressure set in advance is applied.
Then, when the pressure sensor 32e detects that the pressure of the secondary heated liquid in the cylinder structure portion 32a has reached a preset pressure, the cylinder structure portion 32a is controlled based on the control of the opening / closing control portion 34. The state where pressure is applied to the secondary heated liquid is maintained. Thereby, the secondary side liquid to be heated in the cylinder structure portion 32a is in a state of maintaining the current pressure.
 説明は図1に戻り、開閉機構部33は、例えば三方弁であり、圧力保持部32側の配管37を流れる2次側被加熱液体と、第2のポンプ22側の配管24を流れる2次側被加熱液体とのうちいずれか一方の2次側被加熱液体を選択し、熱交換器2側に流出させる。
 なお、通常時において、開閉機構部33は、圧力印加部30と2次側循環回路20におけるタンク21側とが圧力的に絶縁された状態を保持するようにされている。
Returning to FIG. 1, the opening / closing mechanism 33 is, for example, a three-way valve, and the secondary heated liquid that flows through the pipe 37 on the pressure holding unit 32 side and the secondary that flows through the pipe 24 on the second pump 22 side. Either one of the side heated liquids is selected as the secondary heated liquid, and flows out to the heat exchanger 2 side.
In the normal state, the opening / closing mechanism unit 33 is configured to maintain a state where the pressure application unit 30 and the tank 21 side in the secondary circulation circuit 20 are pressure-insulated.
 図3は、図1の開閉機構部33の構成の一例を示す概略図である。
 図3に示すように、開閉機構部33は、電磁弁33aおよび電磁弁33bを有している。
FIG. 3 is a schematic diagram illustrating an example of the configuration of the opening / closing mechanism 33 in FIG. 1.
As shown in FIG. 3, the opening / closing mechanism 33 has an electromagnetic valve 33a and an electromagnetic valve 33b.
 電磁弁33aは、圧力保持部32に接続された配管37に設けられている。電磁弁33aは、弁の開閉状態を示す情報を、信号線38を介して開閉制御部34に供給するとともに、信号線38を介して開閉制御部34から供給される制御信号に基づき、弁の開閉状態が制御される。
 電磁弁33aには、金属シャッター33cが設けられている。金属シャッター33cは、開閉制御部34の制御に基づき動作し、電磁弁33aの開閉状態を決定する。金属シャッター33cは、例えば、中央部近傍に貫通孔が設けられており、この貫通孔を配管37と一致させることにより、電磁弁33aが「開」状態となる。
The electromagnetic valve 33 a is provided in a pipe 37 connected to the pressure holding unit 32. The electromagnetic valve 33a supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 38, and based on the control signal supplied from the open / close control unit 34 via the signal line 38, The open / close state is controlled.
The electromagnetic valve 33a is provided with a metal shutter 33c. The metal shutter 33c operates based on the control of the open / close control unit 34, and determines the open / close state of the electromagnetic valve 33a. For example, the metal shutter 33c has a through hole in the vicinity of the center, and the electromagnetic valve 33a is in an “open” state by matching the through hole with the pipe 37.
 電磁弁33bは、第2のポンプ22に接続された配管24に設けられている。電磁弁33bは、弁の開閉状態を示す情報を、信号線38を介して開閉制御部34に供給するとともに、信号線38を介して開閉制御部34から供給される制御信号に基づき、弁の開閉状態が制御される。
 電磁弁33bには、金属シャッター33dが設けられている。金属シャッター33dは、開閉制御部34の制御に基づき動作し、電磁弁33bの開閉状態を決定する。金属シャッター33dは、例えば、中央部近傍に貫通孔が設けられており、この貫通孔を配管24と一致させることにより、電磁弁33bが「開」状態となる。
The electromagnetic valve 33 b is provided in the pipe 24 connected to the second pump 22. The electromagnetic valve 33b supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 38, and based on a control signal supplied from the open / close control unit 34 via the signal line 38, The open / close state is controlled.
The electromagnetic valve 33b is provided with a metal shutter 33d. The metal shutter 33d operates based on the control of the open / close control unit 34, and determines the open / close state of the electromagnetic valve 33b. For example, the metal shutter 33d is provided with a through hole in the vicinity of the center, and the electromagnetic valve 33b is in an “open” state by matching the through hole with the pipe 24.
 開閉機構部33は、開閉制御部34の制御に基づき、電磁弁33aおよび電磁弁33bが互いに連動するように動作する。
 開閉機構部33では、例えば、金属シャッター33cが移動して電磁弁33aが「開」状態となると同時に、金属シャッター33dが移動して電磁弁33bが「閉」状態となる。
The opening / closing mechanism 33 operates based on the control of the opening / closing controller 34 so that the electromagnetic valve 33a and the electromagnetic valve 33b are interlocked with each other.
In the opening / closing mechanism 33, for example, the metal shutter 33c is moved and the electromagnetic valve 33a is in the “open” state, and at the same time, the metal shutter 33d is moved and the electromagnetic valve 33b is in the “closed” state.
 このように電磁弁33aおよび電磁弁33bが動作することにより、配管37および配管24を流れる2つの2次側被加熱液体が同時に流出するのを防ぐことができる。また、圧力保持部32側の2次側被加熱液体に印加された圧力がタンク21の方向に印加されるのを防ぐことができる。
 なお、電磁弁33aおよび電磁弁33bをこのような構造とするのは、開閉制御部34による制御に対する応答を速くするためである。
By operating the solenoid valve 33a and the solenoid valve 33b in this way, it is possible to prevent the two secondary heated liquids flowing through the pipe 37 and the pipe 24 from flowing out simultaneously. Further, it is possible to prevent the pressure applied to the secondary heated liquid on the pressure holding unit 32 side from being applied in the direction of the tank 21.
The reason why the electromagnetic valve 33a and the electromagnetic valve 33b have such a structure is to speed up the response to the control by the opening / closing control unit 34.
 説明は図1に戻り、開閉制御部34は、圧力保持部32および開閉機構部33における各部を制御する。
 開閉制御部34は、図2に示す圧力保持部32の水量センサ32dの検出結果を受信し、この結果が示す情報に基づき、電磁弁32bおよび電磁弁32cの開閉を制御するための制御信号を、信号線35を介して圧力保持部32に供給する。
 また、開閉制御部34は、図2の圧力センサ32eの検出結果を圧力保持部32から受信し、この結果が示す情報に基づき、加圧力部32fの動作を制御するための制御信号を、信号線35を介して圧力保持部32に供給する。
 さらに、開閉制御部34は、予め設定されたタイミングで、図3に示す開閉機構部33の電磁弁33aおよび電磁弁33bの開閉を制御するための制御信号を、信号線38を介して開閉機構部33に供給する。
Returning to FIG. 1, the opening / closing control unit 34 controls each part of the pressure holding unit 32 and the opening / closing mechanism unit 33.
The open / close control unit 34 receives the detection result of the water amount sensor 32d of the pressure holding unit 32 shown in FIG. 2, and generates a control signal for controlling the opening / closing of the electromagnetic valve 32b and the electromagnetic valve 32c based on the information indicated by the result. , And supplied to the pressure holding unit 32 via the signal line 35.
Further, the open / close control unit 34 receives the detection result of the pressure sensor 32e of FIG. 2 from the pressure holding unit 32, and based on the information indicated by the result, a control signal for controlling the operation of the pressurizing unit 32f is a signal. The pressure is supplied to the pressure holding unit 32 via the line 35.
Further, the opening / closing control unit 34 sends a control signal for controlling the opening / closing of the electromagnetic valve 33a and the electromagnetic valve 33b of the opening / closing mechanism unit 33 shown in FIG. 3 through a signal line 38 at a preset timing. To the unit 33.
[熱交換システムの動作]
 1次側被加熱液体は、第1のポンプ14によってヒートポンプ11に供給され、加熱される。加熱された1次側被加熱液体は、ヒータ12によって再度加熱された後、流路切替装置13に流入する。
[Operation of heat exchange system]
The primary heated liquid is supplied to the heat pump 11 by the first pump 14 and heated. The heated primary heated liquid is heated again by the heater 12 and then flows into the flow path switching device 13.
 流路切替装置13において、ラジエータ15側の流出口が選択されている場合、1次側被加熱液体は、ラジエータ15側の流出口から流出する。流路切替装置13から流出した1次側被加熱液体は、ラジエータ15に流入し、室内の空気との間で熱交換を行うことによって室内の空気を加熱する。そして、ラジエータ15から流出した1次側被加熱液体は、第1のポンプ14に流入する。 When the outlet on the radiator 15 side is selected in the flow path switching device 13, the primary heated liquid flows out from the outlet on the radiator 15 side. The primary heated liquid that has flowed out of the flow path switching device 13 flows into the radiator 15 and heats the indoor air by exchanging heat with the indoor air. Then, the primary heated liquid that has flowed out of the radiator 15 flows into the first pump 14.
 また、流路切替装置13において、熱交換器2側の流出口が選択されている場合、1次側被加熱液体は、熱交換器2側の流出口から流出する。流路切替装置13から流出した1次側被加熱液体は、熱交換器2に流入し、2次側被加熱液体との間で熱交換を行うことによって2次側被加熱液体を加熱する。そして、熱交換器2から流出した1次側被加熱液体は、第1のポンプ14に流入する。 Also, in the flow path switching device 13, when the outlet on the heat exchanger 2 side is selected, the primary heated liquid flows out from the outlet on the heat exchanger 2 side. The primary heated liquid that has flowed out of the flow path switching device 13 flows into the heat exchanger 2 and heats the secondary heated liquid by exchanging heat with the secondary heated liquid. Then, the primary heated liquid that has flowed out of the heat exchanger 2 flows into the first pump 14.
 一方、タンク21に供給された水などの2次側被加熱液体は、タンク21から流出し、第2のポンプ22によって圧力印加部30を介して熱交換器2に流入する。熱交換器2に流入した2次側被加熱液体は、1次側被加熱液体との間で熱交換を行うことによって加熱され、熱交換器2から流出する。 On the other hand, the secondary heated liquid such as water supplied to the tank 21 flows out of the tank 21 and flows into the heat exchanger 2 through the pressure application unit 30 by the second pump 22. The secondary heated liquid flowing into the heat exchanger 2 is heated by exchanging heat with the primary heated liquid and flows out of the heat exchanger 2.
 熱交換器2から流出した2次側被加熱液体は、スケールトラップ23を介してタンク21に流入し、タンク21内に蓄えられる。タンク21に蓄えられた2次側被加熱液体は、例えば水などと混合されることにより、シャワー等の温水として利用される。 The secondary heated liquid flowing out from the heat exchanger 2 flows into the tank 21 through the scale trap 23 and is stored in the tank 21. The secondary heated liquid stored in the tank 21 is used as hot water for a shower or the like by being mixed with, for example, water.
 また、タンク21に蓄えられた2次側被加熱液体は、圧力印加部30に供給される。圧力印加部30に供給された2次側被加熱液体は、圧力印加部30の第3のポンプ31によって圧力保持部32に流入する。 Also, the secondary heated liquid stored in the tank 21 is supplied to the pressure application unit 30. The secondary heated liquid supplied to the pressure application unit 30 flows into the pressure holding unit 32 by the third pump 31 of the pressure application unit 30.
 圧力保持部32に流入した2次側被加熱液体は、開閉制御部34の制御に基づき予め設定された圧力が印加され、圧力保持部32から流出する。圧力保持部32から流出した2次側被加熱液体は、開閉機構部33に流入する。
 開閉機構部33に流入した2次側被加熱液体は、開閉制御部34の制御に基づき開閉動作を行う電磁弁33aが「開」状態となった際に、開閉機構部33から流出し、熱交換器2に流入する。
The secondary heated liquid that has flowed into the pressure holding unit 32 is applied with a preset pressure based on the control of the opening / closing control unit 34, and flows out of the pressure holding unit 32. The secondary heated liquid flowing out from the pressure holding unit 32 flows into the opening / closing mechanism unit 33.
The secondary heated liquid that has flowed into the opening / closing mechanism 33 flows out of the opening / closing mechanism 33 when the electromagnetic valve 33a that performs an opening / closing operation based on the control of the opening / closing controller 34 is in an “open” state, It flows into the exchanger 2.
 このとき、開閉機構部33では、圧力保持部32側の電磁弁33aと、第2のポンプ22側の電磁弁33bとが互いに連動し、電磁弁33aおよび電磁弁33bのいずれか一方が「開」状態となるように制御されている。そのため、電磁弁33aが「開」状態とされている場合には、圧力保持部32から流出した2次側被加熱液体のみが熱交換器2に流入する。そして、このときの電磁弁33aの開閉動作と、圧力保持部32における2次側被加熱液体に対して印加する圧力を制御することにより、圧力保持部32から流出する2次側被加熱液体を予め設定されたタイミングおよび圧力で熱交換器2に流入させる。 At this time, in the opening / closing mechanism 33, the electromagnetic valve 33a on the pressure holding unit 32 side and the electromagnetic valve 33b on the second pump 22 side are interlocked with each other, and one of the electromagnetic valve 33a and the electromagnetic valve 33b is “open”. ”Is controlled. Therefore, when the electromagnetic valve 33 a is in the “open” state, only the secondary heated liquid that has flowed out of the pressure holding unit 32 flows into the heat exchanger 2. And the secondary side heated liquid which flows out from the pressure holding part 32 is controlled by controlling the pressure applied to the secondary side heated liquid in the pressure holding part 32 and the opening / closing operation of the electromagnetic valve 33a at this time. The heat exchanger 2 is caused to flow at a preset timing and pressure.
 図4は、図1の圧力印加部30の動作について説明するためのフローチャートである。
 図4を参照して、タンク21から2次側被加熱液体が圧力印加部30に供給され、圧力印加部30に保持された2次側被加熱液体が熱交換器2に流入するまでの動作について説明する。
FIG. 4 is a flowchart for explaining the operation of the pressure application unit 30 of FIG.
Referring to FIG. 4, the operation until the secondary heated liquid is supplied from the tank 21 to the pressure applying unit 30 and the secondary heated liquid held in the pressure applying unit 30 flows into the heat exchanger 2. Will be described.
 まず、開閉制御部34の制御に基づき、電磁弁32cが「開」状態とされるとともに、電磁弁32bが「開」状態とされる(ステップS1、S2)。そして、第3のポンプ31により、タンク21に蓄えられた2次側被加熱液体が圧力保持部32に供給される(ステップS3)。2次側被加熱液体が圧力保持部32に供給されると、開閉制御部34の制御に基づき、電磁弁32cが「閉」状態とされるとともに、電磁弁32bが「閉」状態とされる(ステップS4、S5)。
 圧力保持部32では、開閉制御部34の制御に基づき、圧力保持部32内の2次側被加熱液体に対して設定圧力が加圧力部32fによって印加される(ステップS6)。そして、圧力保持部32内の2次側被加熱液体に対する加圧が保持される(ステップS7)。
First, based on the control of the opening / closing control unit 34, the electromagnetic valve 32c is set to the “open” state, and the electromagnetic valve 32b is set to the “open” state (steps S1 and S2). Then, the secondary heated liquid stored in the tank 21 is supplied to the pressure holding unit 32 by the third pump 31 (step S3). When the secondary heated liquid is supplied to the pressure holding unit 32, the electromagnetic valve 32c is set to the “closed” state and the electromagnetic valve 32b is set to the “closed” state based on the control of the opening / closing control unit 34. (Steps S4 and S5).
In the pressure holding unit 32, the set pressure is applied to the secondary heated liquid in the pressure holding unit 32 by the pressurizing unit 32f based on the control of the opening / closing control unit 34 (step S6). And the pressurization with respect to the secondary side to-be-heated liquid in the pressure holding | maintenance part 32 is hold | maintained (step S7).
 次に、開閉制御部34から開閉機構部33の電磁弁33bに対して制御信号が発信される(ステップS8)。開閉機構部33では、当該制御信号に基づき、金属シャッター33dがスライドし、電磁弁33bが「閉」状態とされる(ステップS9)。
 また、開閉制御部34から開閉機構部33の電磁弁33aに対して制御信号が発信される(ステップS10)。開閉機構部33では、当該制御信号に基づき、金属シャッター33cがスライドし、電磁弁33aが「開」状態とされる(ステップS11)。
 これにより、圧力保持部32内の2次側被加熱液体が圧力保持部32から流出し、熱交換器2に流入する(ステップS12)。
Next, a control signal is transmitted from the opening / closing controller 34 to the electromagnetic valve 33b of the opening / closing mechanism 33 (step S8). In the opening / closing mechanism 33, the metal shutter 33d slides based on the control signal, and the electromagnetic valve 33b is brought into a “closed” state (step S9).
Further, a control signal is transmitted from the opening / closing control unit 34 to the electromagnetic valve 33a of the opening / closing mechanism unit 33 (step S10). In the opening / closing mechanism 33, the metal shutter 33c slides based on the control signal, and the electromagnetic valve 33a is set to the “open” state (step S11).
Thereby, the secondary side heated liquid in the pressure holding unit 32 flows out of the pressure holding unit 32 and flows into the heat exchanger 2 (step S12).
 次に、開閉制御部34から開閉機構部33の電磁弁33aに対して制御信号が発信される(ステップS13)。開閉機構部33では、当該制御信号に基づき、金属シャッター33cがスライドし、電磁弁33aが「閉」状態とされる(ステップS14)。
 また、開閉制御部34から開閉機構部33の電磁弁33bに対して制御信号が発信される(ステップS15)。開閉機構部33では、当該制御信号に基づき、金属シャッター33dがスライドし、電磁弁33bが「開」状態とされる(ステップS16)。
Next, a control signal is transmitted from the opening / closing control unit 34 to the electromagnetic valve 33a of the opening / closing mechanism unit 33 (step S13). In the opening / closing mechanism 33, the metal shutter 33c slides based on the control signal, and the electromagnetic valve 33a is brought into a “closed” state (step S14).
Further, a control signal is transmitted from the opening / closing control unit 34 to the electromagnetic valve 33b of the opening / closing mechanism unit 33 (step S15). In the opening / closing mechanism 33, the metal shutter 33d slides based on the control signal, and the electromagnetic valve 33b is set to the “open” state (step S16).
[熱交換器に対して発生するスケールの抑制]
 次に、熱交換器2に対して発生するスケールの抑制について説明する。
 図5は、従来のポンプにおけるモータの回転数を増加させた場合のせん断応力の時間変化の一例を示すグラフである。
[Suppression of scale generated for heat exchanger]
Next, the suppression of the scale generated with respect to the heat exchanger 2 will be described.
FIG. 5 is a graph showing an example of the temporal change in shear stress when the number of rotations of the motor in the conventional pump is increased.
 本実施の形態1においては、タンク21に蓄えられる2次側被加熱液体として、例えば水道水などが用いられている。このような2次側被加熱液体には、例えば、カルシウムに代表される金属イオンの酸化物、炭酸化合物などのスケール成分が含まれている。そのため、熱交換器2によって2次側被加熱液体を1次側被加熱液体と熱交換する際には、2次側被加熱液体に含まれるスケール成分が熱交換器2における2次側被加熱液体との接触面に析出し、付着する。そして、析出したスケールが熱交換器2に付着すると、このスケールが流路を閉塞するため、熱交換効率が低下する。 In the first embodiment, tap water or the like is used as the secondary heated liquid stored in the tank 21, for example. Such secondary heated liquid contains scale components such as metal ion oxides and carbonates typified by calcium. For this reason, when the heat exchanger 2 exchanges the secondary heated liquid with the primary heated liquid, the scale component contained in the secondary heated liquid causes the secondary heated liquid in the heat exchanger 2 to be heated. Deposits and adheres to the contact surface with the liquid. When the deposited scale adheres to the heat exchanger 2, the scale closes the flow path, so that the heat exchange efficiency is lowered.
 そこで、背景技術の項でも説明したように、従来は、被加熱液体に対して脈流を発生させたり、被加熱液体が熱交換器を通過する際の通過速度を増加させたりすることにより、被加熱液体と熱交換器における被加熱液体との接触面との間にせん断応力を発生させる。そして、従来は、このせん断応力によって、熱交換器の接触面に析出したスケールを剥離することにより、スケールの成長を抑制するようにしている。 Therefore, as described in the background art section, conventionally, by generating a pulsating flow with respect to the liquid to be heated, or by increasing the passing speed when the liquid to be heated passes through the heat exchanger, Shear stress is generated between the heated liquid and the contact surface between the heated liquid in the heat exchanger. And conventionally, the growth of the scale is suppressed by peeling off the scale deposited on the contact surface of the heat exchanger by this shear stress.
 ここで、例えば、被加熱液体の速度を増加させる場合は、通常、被加熱液体を送り出すポンプを駆動するモータの回転数を上昇させることによって行う。しかしながら、ポンプを駆動するモータは、その回転数が目標とする回転数に到達するまでには時間を要する。そのため、モータの回転数を上昇させることによって目標とするせん断応力を得ようとする場合には、図5に示すように、例えば2秒間の時間が必要となる。 Here, for example, when the speed of the liquid to be heated is increased, it is usually performed by increasing the number of rotations of a motor that drives a pump that delivers the liquid to be heated. However, it takes time for the motor that drives the pump to reach the target rotational speed. Therefore, in order to obtain the target shear stress by increasing the rotation speed of the motor, for example, a time of 2 seconds is required as shown in FIG.
 すなわち、従来の方法では、被加熱液体の流量がスケール抑制効果を発揮する流量に到達するまでの時間を要し、スケールの成長が促進されるため、スケール抑制効果が低減してしまう。
 本実施の形態1では、スケールの成長を抑制するように、予め設定された圧力を付与した2次側被加熱液体を予め設定されたタイミングで熱交換器2に流入させることにより、熱交換器2における2次側被加熱液体との接触面に析出したスケールを除去可能なせん断応力を与えるようにする。
That is, in the conventional method, it takes time until the flow rate of the liquid to be heated reaches a flow rate at which the scale suppression effect is exhibited, and the scale growth is promoted, so the scale suppression effect is reduced.
In this Embodiment 1, in order to suppress the growth of scale, a secondary side heated liquid to which a preset pressure is applied is caused to flow into the heat exchanger 2 at a preset timing. 2. A shear stress capable of removing the scale deposited on the contact surface with the secondary heated liquid in 2 is applied.
(スケールの析出)
 図6は、図1の熱交換器2の接触面に付着する気泡と析出するスケールとの関係について説明するための概略図である。
 図7は、図1の熱交換器2の接触面に析出したスケールの一例を示す概略図である。
(Scale deposition)
FIG. 6 is a schematic diagram for explaining the relationship between bubbles adhering to the contact surface of the heat exchanger 2 of FIG. 1 and the depositing scale.
FIG. 7 is a schematic view showing an example of a scale deposited on the contact surface of the heat exchanger 2 of FIG.
 図6に示すように、2次側被加熱液体に含まれる気泡40が熱交換器2における2次側被加熱液体との接触面に付着した場合、気泡40と熱交換器2の接触面との界面には、界面以外の領域の1.5倍程度のイオン濃縮が発生するマイクロ層41が形成される。このマイクロ層41では、気泡40が付着していない部分と比較して、スケールの起点となるスケール核が多く析出される。そして、図7に示すように、気泡40と熱交換器2の接触面との界面には、気泡40の形状に対応するようにしてスケール核が析出される。 As shown in FIG. 6, when the bubble 40 contained in the secondary side heated liquid adheres to the contact surface of the heat exchanger 2 with the secondary heated liquid, the contact surface between the bubble 40 and the heat exchanger 2 At the interface, a micro layer 41 is formed in which ion concentration occurs about 1.5 times as much as the region other than the interface. In the microlayer 41, a larger number of scale nuclei that become the starting point of the scale are deposited as compared with the portion where the bubbles 40 are not attached. As shown in FIG. 7, scale nuclei are deposited at the interface between the bubble 40 and the contact surface of the heat exchanger 2 so as to correspond to the shape of the bubble 40.
 このようにして析出されたスケールは、せん断応力を印加することによって除去することができる。このとき、成長していない核の状態で熱交換器2の接触面に付着している場合には、一般的に、成長したスケールと比較して低いせん断応力で除去することができる。 The scale thus deposited can be removed by applying a shear stress. At this time, in the case of adhering to the contact surface of the heat exchanger 2 in the state of ungrown nuclei, it can generally be removed with a lower shear stress than the grown scale.
 また、スケール核は、成長したスケールと比較して微少であるため、熱交換器2および配管の表面などへ再付着したり、配管の澱み部に沈殿したりする虞がない。そのため、スケール核の状態でスケールを除去する場合には、成長したスケールを除去する場合と比較して低流量、低せん断応力で効率的に除去することができる。 Also, since the scale nucleus is very small compared to the grown scale, there is no possibility that it will reattach to the heat exchanger 2 and the surface of the pipe or settle on the stagnation part of the pipe. Therefore, when the scale is removed in the state of the scale nucleus, it can be efficiently removed with a low flow rate and a low shear stress as compared with the case where the grown scale is removed.
(せん断応力と気泡離脱径との関係)
 図8は、図1の熱交換器2から気泡40が離脱する際の気泡離脱径とせん断応力との関係の一例を示すグラフである。
 図8に示すように、2次側被加熱液体に印加されるせん断応力が大きくなるにしたがって、熱交換器2における2次側被加熱液体との接触面から離脱する気泡40の径が小さくなることがわかる。例えば、2次側被加熱液体に対して50[Pa]のせん断応力を印加した場合には、100[μm]程度の径の気泡40を熱交換器2の接触面から離脱させることができる。
(Relationship between shear stress and bubble detachment diameter)
FIG. 8 is a graph showing an example of the relationship between the bubble detachment diameter and the shear stress when the bubble 40 detaches from the heat exchanger 2 of FIG.
As shown in FIG. 8, as the shear stress applied to the secondary heated liquid increases, the diameter of the bubbles 40 that separate from the contact surface with the secondary heated liquid in the heat exchanger 2 decreases. I understand that. For example, when a shear stress of 50 [Pa] is applied to the secondary heated liquid, the bubbles 40 having a diameter of about 100 [μm] can be separated from the contact surface of the heat exchanger 2.
 図9は、図1の熱交換システム1において、2次側被加熱液体にせん断応力を印加した場合のせん断応力の時間変化の一例を示すグラフである。なお、図9において、点線で示すせん断応力の時間変化は、図5のせん断応力の時間変化を示す。
 図9に示すように、本実施の形態1では、2次側被加熱液体に対してパルス状のせん断応力(以下、「せん断応力パルス」とここでは定義する)を印加する。この場合、印加されたせん断応力は、図5に示す場合と比較して立ち上がりが急峻となり、熱交換器2に付着した気泡40およびスケール核に対して短時間で目標となるせん断応力を印加することができる。そのため、図5に示す場合と比較して、スケール核を効率的に除去できるとともに、スケールの成長を抑制することができる。
FIG. 9 is a graph showing an example of temporal change in shear stress when shear stress is applied to the secondary heated liquid in the heat exchange system 1 of FIG. In FIG. 9, the time change of the shear stress indicated by the dotted line indicates the time change of the shear stress in FIG.
As shown in FIG. 9, in the first embodiment, a pulsed shear stress (hereinafter referred to as “shear stress pulse”) is applied to the secondary heated liquid. In this case, compared to the case shown in FIG. 5, the applied shear stress has a sharp rise, and the target shear stress is applied to the bubbles 40 and the scale nuclei attached to the heat exchanger 2 in a short time. be able to. Therefore, compared with the case shown in FIG. 5, scale nuclei can be efficiently removed and scale growth can be suppressed.
 ここで、図9に示すせん断応力パルスを印加すると、上述したように、印加されたせん断応力に応じて熱交換器2における2次側被加熱液体との接触面に付着した気泡40が移動する。例えば、図8に示す例では、印加時間が0.5[秒]であり、大きさが50[Pa]のせん断応力を印加した場合には、気泡径が100[μm]程度の気泡40を移動させることができる。 Here, when the shear stress pulse shown in FIG. 9 is applied, as described above, the bubbles 40 attached to the contact surface with the secondary heated liquid in the heat exchanger 2 move according to the applied shear stress. . For example, in the example shown in FIG. 8, when the application time is 0.5 [second] and a shear stress having a size of 50 [Pa] is applied, the bubble 40 having a bubble diameter of about 100 [μm] is formed. Can be moved.
 図10は、せん断応力パルスの印加回数と気泡40の平均径との関係の一例を示すグラフである。なお、図10は、印加時間が0.5[秒]であり、大きさが50[Pa]であるせん断応力を、0.5秒間隔で2次側被加熱液体に印加した場合の例を示す。
 図10に示すように、印加するせん断応力パルスの回数が増加するにしたがって、熱交換器2における2次側被加熱液体との接触面に付着した気泡40の平均径が増加する。例えば、せん断応力パルスを3回印加した場合、気泡40の平均径は、1000[μm]以上となっている。これは、せん断応力パルスを複数回印加することにより、複数の気泡40が集合して大きな1つの気泡40が形成されるためである。
FIG. 10 is a graph showing an example of the relationship between the number of times the shear stress pulse is applied and the average diameter of the bubbles 40. FIG. 10 shows an example in which a shear stress having an application time of 0.5 [seconds] and a size of 50 [Pa] is applied to the secondary heated liquid at intervals of 0.5 seconds. Show.
As shown in FIG. 10, as the number of applied shear stress pulses increases, the average diameter of the bubbles 40 attached to the contact surface with the secondary heated liquid in the heat exchanger 2 increases. For example, when the shear stress pulse is applied three times, the average diameter of the bubbles 40 is 1000 [μm] or more. This is because a plurality of bubbles 40 are aggregated to form one large bubble 40 by applying the shear stress pulse a plurality of times.
 また、図8に示すように、気泡40の気泡径が大きいほど、小さいせん断応力で気泡を除去することができる。例えば、3.3[Pa]のせん断応力パルスを印加することにより、気泡径が1000[μm]程度となるように集合させた気泡40を除去することができる。 Also, as shown in FIG. 8, the larger the bubble diameter of the bubble 40 is, the more the bubble can be removed with a smaller shear stress. For example, by applying a shear stress pulse of 3.3 [Pa], it is possible to remove the bubbles 40 assembled so that the bubble diameter is about 1000 [μm].
 すなわち、本実施の形態1では、せん断応力が目標せん断応力となるような大きいせん断応力パルスを複数回印加し、気泡40を移動および集合させて大きな気泡を形成した後、当該せん断応力よりも小さいせん断応力のせん断応力パルスを印加する。これにより、熱交換器2に付着した気泡40およびスケール核を効率的に除去し、スケールの成長を抑制することができる。 That is, in the first embodiment, a large shear stress pulse that causes the shear stress to become the target shear stress is applied a plurality of times, and the bubbles 40 are moved and assembled to form a large bubble, and then smaller than the shear stress. Apply a shear stress pulse of shear stress. Thereby, the bubble 40 and the scale nucleus adhering to the heat exchanger 2 can be efficiently removed, and the growth of the scale can be suppressed.
[スケール抑制効果の検証]
 次に、熱交換器2に付着するスケールの抑制効果について検証する。
 ここでは、せん断応力パルスの印加タイミングを変化させた場合、せん断応力パルスのせん断応力を変化させた場合、せん断応力パルスの印加時間であるパルス幅を変化させた場合、ならびに、せん断応力パルスのせん断応力およびパルス幅を変化させた場合のそれぞれにおけるスケール抑制効果について検証する。
[Verification of scale suppression effect]
Next, the suppression effect of the scale adhering to the heat exchanger 2 will be verified.
Here, when the application timing of the shear stress pulse is changed, when the shear stress of the shear stress pulse is changed, when the pulse width which is the application time of the shear stress pulse is changed, and when the shear stress pulse is sheared The scale suppression effect when the stress and the pulse width are changed will be verified.
(第1の検証:せん断応力パルスの印加タイミングを変化させた場合)
 まず、第1の検証として、せん断応力パルスの印加タイミングを変化させた場合の熱交換器2に対するスケールの付着量について説明する。
(First verification: When the application timing of the shear stress pulse is changed)
First, as a first verification, the amount of scale attached to the heat exchanger 2 when the application timing of the shear stress pulse is changed will be described.
 図11は、せん断応力パルスの印加タイミングを変化させた場合の熱交換器2に対するスケールの付着量について説明するためのグラフである。
 この例では、通常状態の流量でのせん断応力である1[Pa]の2次側被加熱液体に対して、予め設定された大きさのせん断応力を有する第1のせん断応力パルスと、第1のせん断応力パルスよりもせん断応力が小さい第2のせん断応力パルスとを組み合わせたせん断応力パルスサイクルを、以下の条件で印加する。そして、熱交換システム1を100時間運転したときに、せん断応力パルスサイクルを印加する周期を変化させた場合の、熱交換器2に対するスケール付着量を計測した。
 (a)第1のせん断応力パルス
    せん断応力     :50[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :3回
 (b)第2のせん断応力パルス
    せん断応力     :3.3[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :1回
FIG. 11 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the application timing of the shear stress pulse is changed.
In this example, a first shear stress pulse having a preset shear stress and a first shear stress pulse for a secondary heated liquid of 1 [Pa] which is a shear stress at a normal flow rate, A shear stress pulse cycle combined with a second shear stress pulse whose shear stress is smaller than the shear stress pulse is applied under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the period for applying the shear stress pulse cycle was changed was measured.
(A) First shear stress pulse Shear stress: 50 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of times of application: 3 times (b) Second shear stress pulse Shear stress: 3.3 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of applications: 1 time
 図11に示す例は、せん断応力パルスを印加しない場合のスケール付着量を100%とし、せん断応力パルスサイクルを印加する周期をそれぞれ3[分]、5[分]および7[分]とした場合のスケール付着量比を示す。また、参考として、従来のポンプにおけるモータの回転数を増加させて脈動を発生させた脈動運転の場合の結果も併せて示す。
 図11に示すように、3分周期でせん断応力パルスサイクルを印加した場合には、熱交換器2に対するスケール付着量がせん断応力パルスを印加しない場合の50%となった。また、5分周期でせん断応力パルスサイクルを印加した場合には、熱交換器2に対するスケール付着量がせん断応力パルスを印加しない場合の61%となった。さらに、7分周期でせん断応力パルスサイクルを印加した場合には、熱交換器2に対するスケール付着量がせん断応力パルスを印加しない場合の65%となった。なお、従来の脈動運転では、熱交換器2に対するスケール付着量がせん断応力パルスを印加しない場合の73%となった。
In the example shown in FIG. 11, the amount of scale adhesion when no shear stress pulse is applied is 100%, and the period during which the shear stress pulse cycle is applied is 3 [minutes], 5 [minutes], and 7 [minutes], respectively. The scale adhesion amount ratio of is shown. Further, as a reference, a result in the case of a pulsation operation in which pulsation is generated by increasing the number of rotations of a motor in a conventional pump is also shown.
As shown in FIG. 11, when the shear stress pulse cycle was applied at a period of 3 minutes, the amount of scale attached to the heat exchanger 2 was 50% of the case where no shear stress pulse was applied. Further, when the shear stress pulse cycle was applied at a cycle of 5 minutes, the amount of scale attached to the heat exchanger 2 was 61% of the case where no shear stress pulse was applied. Furthermore, when a shear stress pulse cycle was applied at a period of 7 minutes, the amount of scale attached to the heat exchanger 2 was 65% of the case where no shear stress pulse was applied. In the conventional pulsation operation, the amount of scale attached to the heat exchanger 2 was 73% of the case where no shear stress pulse was applied.
 この結果から、3分周期でせん断応力パルスサイクルを印加した場合のスケール付着量が最も小さくなり、他の周期でせん断応力パルスサイクルを印加した場合と比較して、スケール抑制効果が最も大きくなっている。
 すなわち、せん断応力パルスサイクルを印加する周期が短いほど、熱交換器2に対するスケール付着量が少なくなり、スケール抑制効果が高くなる。
From this result, the amount of scale adhesion when applying a shear stress pulse cycle with a period of 3 minutes becomes the smallest, and the effect of suppressing the scale becomes the greatest compared with when applying a shear stress pulse cycle with another period. Yes.
That is, the shorter the period for applying the shear stress pulse cycle, the smaller the amount of scale attached to the heat exchanger 2, and the higher the scale suppression effect.
 なお、大きいせん断応力パルスである第1のせん断応力パルスを印加する回数が多い、または時間が長いほど熱交換器2の表面温度が低下し、熱交換効率が低下することが知られている。そのため、熱交換器2表面のスケール付着量に応じて、熱交換効率がより向上するように、せん断応力パルスサイクルにおける第1のせん断応力パルスの印加回数および印加時間を設定する必要がある。 It is known that the surface temperature of the heat exchanger 2 is lowered and the heat exchange efficiency is lowered as the number of times of applying the first shear stress pulse, which is a large shear stress pulse, is increased or the time is longer. Therefore, it is necessary to set the application frequency and application time of the first shear stress pulse in the shear stress pulse cycle so that the heat exchange efficiency is further improved according to the amount of scale attached to the surface of the heat exchanger 2.
(第2の検証:せん断応力パルスのせん断応力を変化させた場合)
 次に、第2の検証として、せん断応力パルスのせん断応力を変化させた場合の熱交換器2に対するスケールの付着量について説明する。
(Second verification: When the shear stress of the shear stress pulse is changed)
Next, as a second verification, the amount of scale attached to the heat exchanger 2 when the shear stress of the shear stress pulse is changed will be described.
 図12は、せん断応力パルスのせん断応力を変化させた場合の熱交換器2に対するスケールの付着量について説明するためのグラフである。
 この例では、通常状態の流量でのせん断応力である1[Pa]の2次側被加熱液体に対して、せん断応力パルスサイクルを以下の条件で印加する。そして、熱交換システム1を100時間運転したときに、せん断応力パルスサイクルを5分毎に1回印加する周期で印加した場合の、熱交換器2に対するスケール付着量を計測した。
 (a)第1のせん断応力パルス
    せん断応力     :0[Pa]~70[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :3回
 (b)第2のせん断応力パルス
    せん断応力     :3.3[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :1回
FIG. 12 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the shear stress of the shear stress pulse is changed.
In this example, a shear stress pulse cycle is applied to the secondary heated liquid of 1 [Pa], which is a shear stress at a normal flow rate, under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the shear stress pulse cycle was applied once every 5 minutes was measured.
(A) First shear stress pulse Shear stress: 0 [Pa] to 70 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of times of application: 3 times (b) Second shear stress pulse Shear stress: 3.3 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of applications: 1 time
 図12に示す例は、せん断応力パルスを印加しない場合のスケール付着量を「100」とし、第1のせん断応力パルスの大きさを0[Pa]~70[Pa]まで変化させた場合のスケール付着量を示す。
 図12に示すように、第1のせん断応力パルスの大きさが5[Pa]以上の場合には、せん断応力パルスを印加しない場合と比較して、熱交換器2に対するスケール付着量が抑制された。一方、第1のせん断応力パルスの大きさが50[Pa]以上の場合には、スケール付着量が変化せず、スケール抑制効果が飽和する傾向となった。
In the example shown in FIG. 12, the scale adhesion amount when the shear stress pulse is not applied is “100”, and the scale when the magnitude of the first shear stress pulse is changed from 0 [Pa] to 70 [Pa]. Indicates the amount of adhesion.
As shown in FIG. 12, when the magnitude of the first shear stress pulse is 5 Pa or more, the amount of scale attached to the heat exchanger 2 is suppressed compared to the case where no shear stress pulse is applied. It was. On the other hand, when the magnitude of the first shear stress pulse was 50 [Pa] or more, the scale adhesion amount did not change and the scale suppression effect tended to be saturated.
 このように、第1のせん断応力パルスの大きさが5[Pa]以上でスケール抑制効果を得ることができ、第1のせん断応力パルスの大きさが50[Pa]以上でスケール抑制効果が飽和する。すなわち、2次側被加熱液体に印加する第1のせん断応力パルスの大きさは、5[Pa]~50[Pa]の範囲で設定すると好ましい。 Thus, the scale suppression effect can be obtained when the magnitude of the first shear stress pulse is 5 [Pa] or more, and the scale inhibition effect is saturated when the magnitude of the first shear stress pulse is 50 [Pa] or more. To do. That is, the magnitude of the first shear stress pulse applied to the secondary heated liquid is preferably set in the range of 5 [Pa] to 50 [Pa].
 また、第2のせん断応力パルスの大きさが3.3[Pa]であるため、第1のせん断応力パルスの大きさと第2のせん断応力パルスの大きさの比率は、「5:3.3」~「50:3.3」の範囲で設定するとより好ましい。 Further, since the magnitude of the second shear stress pulse is 3.3 [Pa], the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “5: 3.3. ] To “50: 3.3” is more preferable.
(第3の検証:せん断応力パルスのパルス幅を変化させた場合)
 次に、第3の検証として、せん断応力パルスのパルス幅を変化させた場合の熱交換器2に対するスケールの付着量について説明する。
(Third verification: When the pulse width of the shear stress pulse is changed)
Next, as a third verification, the amount of scale attached to the heat exchanger 2 when the pulse width of the shear stress pulse is changed will be described.
 図13は、せん断応力パルスのパルス幅を変化させた場合の熱交換器2に対するスケールの付着量について説明するためのグラフである。
 この例では、通常状態の流量でのせん断応力である1[Pa]の2次側被加熱液体に対して、せん断応力パルスサイクルを以下の条件で印加する。そして、熱交換システム1を100時間運転したときに、せん断応力パルスサイクルを5分毎に1回印加する周期で印加した場合の、熱交換器2に対するスケール付着量を計測した。
 (a)第1のせん断応力パルス
    せん断応力     :30[Pa]
    印加時間(パルス幅):0[秒]~5.0[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :1回
 (b)第2のせん断応力パルス
    せん断応力     :3.3[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :1回
FIG. 13 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the pulse width of the shear stress pulse is changed.
In this example, a shear stress pulse cycle is applied to the secondary heated liquid of 1 [Pa], which is a shear stress at a normal flow rate, under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the shear stress pulse cycle was applied once every 5 minutes was measured.
(A) First shear stress pulse Shear stress: 30 [Pa]
Application time (pulse width): 0 [seconds] to 5.0 [seconds]
Pulse pause time: 0.5 [seconds]
Number of times of application: 1 time (b) Second shear stress pulse Shear stress: 3.3 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of applications: 1 time
 図13に示す例は、せん断応力パルスを印加しない場合のスケール付着量を「100」とし、第1のせん断応力パルスの印加時間であるパルス幅を0[秒]~5.0[秒]まで変化させた場合のスケール付着量を示す。
 図13に示すように、第1のせん断応力パルスのパルス幅が0[秒]~5.0[秒]のすべての範囲において、せん断応力パルスを印加しない場合と比較して、熱交換器2に対するスケール付着量が抑制された。
 特に、第1のせん断応力パルスのパルス幅が0.1[秒]~1.0[秒]の範囲では、スケール付着量がせん断応力パルスを印加しない場合の70%以下となり、スケール抑制効果がより高い傾向となった。
In the example shown in FIG. 13, the scale adhesion amount when no shear stress pulse is applied is “100”, and the pulse width, which is the application time of the first shear stress pulse, is 0 [seconds] to 5.0 [seconds]. The amount of scale attached when changed is shown.
As shown in FIG. 13, the heat exchanger 2 is compared with the case where the pulse width of the first shear stress pulse is 0 [seconds] to 5.0 [seconds] and no shear stress pulse is applied. The amount of scale adhesion with respect to was suppressed.
In particular, when the pulse width of the first shear stress pulse is in the range of 0.1 [sec] to 1.0 [sec], the amount of scale adhesion is 70% or less of the case where no shear stress pulse is applied, and the scale suppression effect is obtained. The trend was higher.
 このように、第1のせん断応力パルスのパルス幅を0[秒]~5.0[秒]の範囲で設定した場合には、せん断応力パルスを印加しない場合と比較して、スケール抑制効果を得ることができる。特に、パルス幅を0.1[秒]~1.0[秒]の範囲で設定した場合には、より高いスケール抑制効果を得ることができる。
 また、このようにせん断応力パルスのパルス幅を設定した場合には、上述したようなポンプの制御によってスケールを抑制する際に必要とされる時間は、2秒程度であるのに対して、短い時間でスケールを抑制することができる。
As described above, when the pulse width of the first shear stress pulse is set in the range of 0 [seconds] to 5.0 [seconds], the scale suppression effect is improved as compared with the case where no shear stress pulse is applied. Obtainable. In particular, when the pulse width is set in the range of 0.1 [second] to 1.0 [second], a higher scale suppression effect can be obtained.
Further, when the pulse width of the shear stress pulse is set in this way, the time required for suppressing the scale by controlling the pump as described above is about 2 seconds, but short. Scale can be suppressed over time.
(第4の検証:せん断応力パルスのせん断応力およびパルス幅を変化させた場合)
 次に、第4の検証として、せん断応力パルスのせん断応力およびパルス幅を変化させた場合の熱交換器2に対するスケールの付着量について説明する。この第4の検証は、上述した第2の検証および第3の検証を組み合わせたものである。
(Fourth verification: When the shear stress and pulse width of the shear stress pulse are changed)
Next, as a fourth verification, the amount of scale attached to the heat exchanger 2 when the shear stress and the pulse width of the shear stress pulse are changed will be described. The fourth verification is a combination of the second verification and the third verification described above.
 図14は、せん断応力パルスのせん断応力およびパルス幅を変化させた場合の熱交換器2に対するスケールの付着量について説明するためのグラフである。
 この例では、通常状態の流量でのせん断応力である1[Pa]の2次側被加熱液体に対して、せん断応力パルスサイクルを以下の条件で印加する。そして、熱交換システム1を100時間運転したときに、せん断応力パルスサイクルを5分毎に1回印加する周期で印加した場合の、熱交換器2に対するスケール付着量を計測した。
  第1および第2のせん断応力パルスの大きさの比率 :「3:1」~「30:1」
  第1および第2のせん断応力パルスのパルス幅   :0.1[秒]~2.0[秒]
  第1および第2のせん断応力パルスのパルス休止時間:0.5[秒]
 (a)第1のせん断応力パルスの印加回数      :3回
 (b)第2のせん断応力パルスの印加回数      :1回
FIG. 14 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the shear stress and the pulse width of the shear stress pulse are changed.
In this example, a shear stress pulse cycle is applied to the secondary heated liquid of 1 [Pa], which is a shear stress at a normal flow rate, under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the shear stress pulse cycle was applied once every 5 minutes was measured.
Ratio of magnitude of first and second shear stress pulses: “3: 1” to “30: 1”
Pulse width of first and second shear stress pulses: 0.1 [second] to 2.0 [second]
Pulse pause time of the first and second shear stress pulses: 0.5 [second]
(A) Number of times of application of first shear stress pulse: 3 times (b) Number of times of application of second shear stress pulse: 1 time
 図14に示す例は、せん断応力パルスを印加しない場合のスケール付着量を「100」とした場合のスケール抑制効果の結果を示す。なお、同図においては、スケール抑制効果が20%以上、すなわちスケール付着量が80%以下となった場合の結果を「-」と記載し、スケール抑制効果が20%未満、すなわちスケール付着量が80%を超える場合の結果を「+」と記載している。 The example shown in FIG. 14 shows the result of the scale suppression effect when the amount of scale adhesion when no shear stress pulse is applied is “100”. In the figure, the result when the scale suppression effect is 20% or more, that is, the scale adhesion amount is 80% or less is described as “−”, and the scale suppression effect is less than 20%, that is, the scale adhesion amount is The result when it exceeds 80% is described as “+”.
 図14に示すように、第1のせん断応力パルスの大きさと第2のせん断応力パルスの大きさとの比率が「5:1」以上であり、かつ、せん断応力パルスのパルス幅が1.0[秒]以内である場合には、スケール抑制効果が20%以上となった。
 また、第1のせん断応力パルスの大きさと第2のせん断応力パルスの大きさとの比率が「10:1」以上であり、かつ、せん断応力パルスのパルス幅が1.5[秒]以内である場合には、スケール抑制効果が20%以上となった。
 さらに、第1のせん断応力パルスの大きさと第2のせん断応力パルスの大きさとの比率が「20:1」以上であり、かつ、せん断応力パルスのパルス幅が2.0[秒]以内である場合には、スケール抑制効果が20%以上となった。
As shown in FIG. 14, the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “5: 1” or more, and the pulse width of the shear stress pulse is 1.0 [ Second], the scale suppression effect was 20% or more.
The ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “10: 1” or more, and the pulse width of the shear stress pulse is within 1.5 [seconds]. In this case, the scale suppression effect was 20% or more.
Furthermore, the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse is “20: 1” or more, and the pulse width of the shear stress pulse is within 2.0 [seconds]. In this case, the scale suppression effect was 20% or more.
 この結果から、第1のせん断応力パルスの大きさと第2のせん断応力パルスの大きさとの比率が大きいほど、せん断応力パルスのパルス幅を短くしても、熱交換器2に対するスケール抑制効果を得られることがわかる。 From this result, the larger the ratio between the magnitude of the first shear stress pulse and the magnitude of the second shear stress pulse, the more the scale suppression effect on the heat exchanger 2 is obtained even if the pulse width of the shear stress pulse is shortened. I understand that
 以上のように、本実施の形態1では、1次側被加熱液体が循環する環状の1次側循環回路10と、2次側被加熱液体が循環する環状の2次側循環回路20と、1次側被加熱液体と2次側被加熱液体との間で熱交換を行う熱交換器2と、2次側被加熱液体の一部を加圧して保持する圧力保持部32と、熱交換器2の2次側被加熱液体の流入側に設けられ、熱交換器2に流入する2次側被加熱液体を、2次側循環回路20と圧力保持部32との間で切り替える開閉機構部33と、圧力保持部32に保持された2次側被加熱液体に対する加圧量、および開閉機構部33の切り替えを制御する開閉制御部34とを備える。
 このように、加圧された2次側被加熱液体を熱交換器2に対して供給することにより、より効率的かつ確実にスケールの発生および成長を抑制することができる。
As described above, in the first embodiment, the annular primary side circulation circuit 10 in which the primary heated liquid circulates, the annular secondary circulation circuit 20 in which the secondary heated liquid circulates, A heat exchanger 2 that exchanges heat between the primary heated liquid and the secondary heated liquid, a pressure holding unit 32 that pressurizes and holds a part of the secondary heated liquid, and heat exchange Opening and closing mechanism unit that is provided on the inflow side of the secondary heated liquid of the vessel 2 and switches the secondary heated liquid flowing into the heat exchanger 2 between the secondary circulation circuit 20 and the pressure holding unit 32 33, and an opening / closing control unit 34 for controlling the amount of pressure applied to the secondary heated liquid held in the pressure holding unit 32 and the switching of the opening / closing mechanism unit 33.
In this way, by supplying the pressurized secondary heated liquid to the heat exchanger 2, generation and growth of scale can be suppressed more efficiently and reliably.
 また、開閉制御部34は、圧力の大きさが異なる複数のせん断応力パルスを組み合わせたせん断応力パルスサイクルを印加した2次側被加熱液体を熱交換器2に対して供給するように、圧力保持部32および開閉機構部33を制御する。
 さらに、せん断応力パルスサイクルは、第1のせん断応力パルスと、第1のせん断応力パルスよりも圧力の大きさが小さい第2のせん断応力パルスとによって形成され、第1のせん断応力パルスおよび第2のせん断応力パルスの順序で組み合わせられる。
 これにより、熱交換器2の接触面に付着した気泡40を第1のせん断応力パルスによって移動および集合させて大きな気泡が形成された後、第2のせん断応力パルスによって大きな気泡を除去することができる。そのため、熱交換器2における2次側被加熱液体との接触面に付着した気泡40およびスケール核を効率的に除去することができる。
Further, the open / close control unit 34 maintains the pressure so that the secondary heated liquid to which the shear stress pulse cycle in which a plurality of shear stress pulses having different pressure levels are combined is applied is supplied to the heat exchanger 2. The unit 32 and the opening / closing mechanism unit 33 are controlled.
Further, the shear stress pulse cycle is formed by a first shear stress pulse and a second shear stress pulse having a pressure smaller than that of the first shear stress pulse. Combined in order of shear stress pulses.
Thus, after the bubbles 40 attached to the contact surface of the heat exchanger 2 are moved and gathered by the first shear stress pulse to form large bubbles, the large bubbles can be removed by the second shear stress pulse. it can. Therefore, the bubble 40 and the scale nucleus adhering to the contact surface with the secondary side heated liquid in the heat exchanger 2 can be efficiently removed.
実施の形態2.
 次に、本発明の実施の形態2に係る熱交換システムについて説明する。
 本実施の形態2に係る熱交換システムは、第2の圧力印加部を備える点で、上述した実施の形態1と相違する。本実施の形態2において、2次側被加熱液体は、タンク21と熱交換器2との間を複数回循環することによって沸き上げられる(以下、「複数回沸き上げ方式」と適宜称する)。
Embodiment 2. FIG.
Next, a heat exchange system according to Embodiment 2 of the present invention will be described.
The heat exchange system according to the second embodiment is different from the first embodiment described above in that it includes a second pressure application unit. In the second embodiment, the secondary heated liquid is boiled by circulating a plurality of times between the tank 21 and the heat exchanger 2 (hereinafter referred to as “multiple boiling method” as appropriate).
[熱交換システムの構成]
 図15は、本実施の形態2に係る熱交換システム1の構成の一例を示すブロック図である。なお、以下の説明において、上述した実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
 図15に示すように、熱交換システム1は、1次側循環回路10、2次側循環回路20および熱交換器2で構成されている。2次側循環回路20には、実施の形態1と同様の構成に加えて、第2の圧力印加部50が設けられている。
[Configuration of heat exchange system]
FIG. 15 is a block diagram illustrating an example of the configuration of the heat exchange system 1 according to the second embodiment. In the following description, parts common to those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted.
As shown in FIG. 15, the heat exchange system 1 includes a primary side circulation circuit 10, a secondary side circulation circuit 20, and a heat exchanger 2. In addition to the same configuration as that of the first embodiment, the secondary side circulation circuit 20 is provided with a second pressure application unit 50.
 第2の圧力印加部50は、第4のポンプ51、配管56によって第4のポンプ51に接続された第2の圧力保持部52、および配管57によって第2の圧力保持部52に接続された第2の開閉機構部53で構成されている。第4のポンプ51は、第3のポンプ31と同様の構成および機能を有している。また、第2の圧力保持部52は、圧力保持部32と同様の構成および機能を有している。 The second pressure application unit 50 is connected to the second pressure holding unit 52 by the fourth pump 51, the second pressure holding unit 52 connected to the fourth pump 51 by the pipe 56, and the pipe 57. The second opening / closing mechanism 53 is configured. The fourth pump 51 has the same configuration and function as the third pump 31. Further, the second pressure holding unit 52 has the same configuration and function as the pressure holding unit 32.
 図16は、図15の第2の開閉機構部53の構成の一例を示す概略図である。
 図16に示すように、第2の開閉機構部53は、電磁弁53aおよび電磁弁53bを有している。
FIG. 16 is a schematic diagram showing an example of the configuration of the second opening / closing mechanism 53 of FIG.
As shown in FIG. 16, the 2nd opening-and-closing mechanism part 53 has the solenoid valve 53a and the solenoid valve 53b.
 電磁弁53aは、第2の圧力保持部52に接続された配管57に設けられている。電磁弁53aは、弁の開閉状態を示す情報を、信号線58を介して開閉制御部34に供給するとともに、信号線58を介して開閉制御部34から供給される制御信号に基づき、弁の開閉状態が制御される。
 電磁弁53aには、金属シャッター53cが設けられている。金属シャッター53cは、開閉制御部34の制御に基づき動作し、電磁弁53aの開閉状態を決定する。金属シャッター53cは、例えば、中央部近傍に貫通孔が設けられており、この貫通孔を配管57と一致させることにより、電磁弁53aが「開」状態となる。
The electromagnetic valve 53 a is provided in the pipe 57 connected to the second pressure holding unit 52. The electromagnetic valve 53a supplies information indicating the open / closed state of the valve to the open / close control unit 34 via the signal line 58, and based on the control signal supplied from the open / close control unit 34 via the signal line 58, The open / close state is controlled.
The electromagnetic valve 53a is provided with a metal shutter 53c. The metal shutter 53c operates based on the control of the open / close control unit 34, and determines the open / closed state of the electromagnetic valve 53a. The metal shutter 53c has, for example, a through hole in the vicinity of the central portion thereof, and the electromagnetic valve 53a is in an “open” state by matching the through hole with the pipe 57.
 電磁弁53bは、タンク21に接続された配管25に設けられている。電磁弁53bは、弁の開閉状態を示す情報を、信号線58を介して開閉制御部34に供給するとともに、信号線58を介して開閉制御部34から供給される制御信号に基づき、弁の開閉状態が制御される。
 電磁弁53bには、金属シャッター53dが設けられている。金属シャッター53dは、開閉制御部34の制御に基づき動作し、電磁弁53bの開閉状態を決定する。金属シャッター53dは、例えば、中央部近傍に貫通孔が設けられており、この貫通孔を配管25と一致させることにより、電磁弁53bが「開」状態となる。
The electromagnetic valve 53 b is provided in the pipe 25 connected to the tank 21. The electromagnetic valve 53b supplies information indicating the open / close state of the valve to the open / close control unit 34 via the signal line 58, and based on the control signal supplied from the open / close control unit 34 via the signal line 58, The open / close state is controlled.
The electromagnetic valve 53b is provided with a metal shutter 53d. The metal shutter 53d operates based on the control of the open / close control unit 34, and determines the open / close state of the electromagnetic valve 53b. The metal shutter 53d has, for example, a through hole in the vicinity of the center, and the electromagnetic valve 53b is in an “open” state by matching the through hole with the pipe 25.
 第2の開閉機構部53は、開閉制御部34の制御に基づき、電磁弁53aおよび電磁弁53bが互いに連動するように動作する。
 第2の開閉機構部53では、例えば、金属シャッター53cが移動して電磁弁53aが「開」状態となると同時に、金属シャッター53dが移動して電磁弁53bが「閉」状態となる。
The second opening / closing mechanism 53 operates based on the control of the opening / closing controller 34 so that the electromagnetic valve 53a and the electromagnetic valve 53b are interlocked with each other.
In the second opening / closing mechanism 53, for example, the metal shutter 53c moves and the electromagnetic valve 53a enters the “open” state, and at the same time, the metal shutter 53d moves and the electromagnetic valve 53b enters the “closed” state.
 このように電磁弁53aおよび電磁弁53bが動作することにより、配管57を介して第2の圧力保持部52から流出した2次側被加熱液体がタンク21の方向へ流れるのを防ぐことができる。なお、電磁弁53aおよび電磁弁53bをこのような構造とするのは、開閉制御部34による制御に対する応答を速くするためである。 Thus, by operating the solenoid valve 53a and the solenoid valve 53b, it is possible to prevent the secondary heated liquid flowing out from the second pressure holding unit 52 from flowing through the pipe 57 in the direction of the tank 21. . The reason why the solenoid valve 53a and the solenoid valve 53b have such a structure is to speed up the response to the control by the opening / closing control unit 34.
 説明は図15に戻り、開閉制御部34は、実施の形態1と同様の制御に加えて、第2の圧力保持部52および第2の開閉機構部53における各部を制御する。
 例えば、開閉制御部34は、第2の圧力保持部52の動作を制御するための制御信号を、信号線55を介して第2の圧力保持部52に供給する。また、開閉制御部34は、予め設定されたタイミングで、図16に示す第2の開閉機構部53の電磁弁53aおよび電磁弁53bの開閉を制御するための制御信号を、信号線58を介して第2の開閉機構部53に供給する。
The description returns to FIG. 15, and the opening / closing control unit 34 controls each part in the second pressure holding unit 52 and the second opening / closing mechanism unit 53 in addition to the same control as in the first embodiment.
For example, the open / close control unit 34 supplies a control signal for controlling the operation of the second pressure holding unit 52 to the second pressure holding unit 52 via the signal line 55. In addition, the opening / closing control unit 34 sends a control signal for controlling the opening / closing of the electromagnetic valve 53a and the electromagnetic valve 53b of the second opening / closing mechanism unit 53 shown in FIG. To the second opening / closing mechanism 53.
 なお、この例では、実施の形態1と異なり、開閉制御部34が圧力印加部30から独立して構成されているが、これはこの例に限られない。例えば、実施の形態1と同様に、開閉制御部34が圧力印加部30に含まれていてもよいし、第2の圧力印加部50に含まれるようにしてもよい。 In this example, unlike the first embodiment, the open / close control unit 34 is configured independently of the pressure application unit 30, but this is not limited to this example. For example, as in the first embodiment, the opening / closing control unit 34 may be included in the pressure application unit 30 or may be included in the second pressure application unit 50.
[熱交換システムの動作]
 本実施の形態2に係る熱交換システム1における、1次側循環回路10を流れる1次側被加熱液体の流れ、および2次側循環回路20を流れる2次側被加熱液体の流れについては、実施の形態1と同様である。また、圧力印加部30の動作についても、実施の形態1と同様である。
[Operation of heat exchange system]
Regarding the flow of the primary heated liquid flowing through the primary circulation circuit 10 and the flow of the secondary heated liquid flowing through the secondary circulation circuit 20 in the heat exchange system 1 according to the second embodiment, The same as in the first embodiment. The operation of the pressure application unit 30 is also the same as in the first embodiment.
 タンク21に蓄えられた2次側被加熱液体は、第2の圧力印加部50に供給される。第2の圧力印加部50に供給された2次側被加熱液体は、第2の圧力印加部50の第4のポンプ51によって第2の圧力保持部52に流入する。 The secondary heated liquid stored in the tank 21 is supplied to the second pressure application unit 50. The secondary heated liquid supplied to the second pressure application unit 50 flows into the second pressure holding unit 52 by the fourth pump 51 of the second pressure application unit 50.
 第2の圧力保持部52に流入した2次側被加熱液体は、開閉制御部34の制御に基づき予め設定された圧力が印加され、第2の圧力保持部52から流出する。第2の圧力保持部52から流出した2次側被加熱液体は、第2の開閉機構部53に流入する。
 第2の開閉機構部53に流入した2次側被加熱液体は、開閉制御部34の制御に基づき開閉動作を行う電磁弁53aが「開」状態となった際に、第2の開閉機構部53から流出し、熱交換器2に流入する。
The secondary heated liquid that has flowed into the second pressure holding unit 52 is applied with a pressure set in advance based on the control of the opening / closing control unit 34, and flows out of the second pressure holding unit 52. The secondary heated liquid flowing out from the second pressure holding unit 52 flows into the second opening / closing mechanism unit 53.
The secondary heated liquid that has flowed into the second opening / closing mechanism 53 is supplied to the second opening / closing mechanism when the electromagnetic valve 53a that opens / closes based on the control of the opening / closing controller 34 is in the “open” state. It flows out from 53 and flows into the heat exchanger 2.
 このとき、電磁弁53aの開閉動作と、第2の圧力保持部52における2次側被加熱液体に対して印加する圧力を制御することにより、第2の圧力保持部52から流出する2次側被加熱液体を予め設定されたタイミングおよび圧力で熱交換器2に流入させる。 At this time, the secondary side flowing out from the second pressure holding unit 52 is controlled by controlling the opening / closing operation of the electromagnetic valve 53a and the pressure applied to the secondary heated liquid in the second pressure holding unit 52. The liquid to be heated is caused to flow into the heat exchanger 2 at a preset timing and pressure.
 ここで、第2の圧力保持部52から熱交換器2に流入する2次側被加熱液体は、熱交換器2内部におけるせん断応力パルスの方向が、圧力保持部32から熱交換器2に流入する2次側被加熱液体と逆方向になる。本実施の形態3では、このような逆方向のせん断応力パルスを第3のせん断応力パルスとして、実施の形態1で示した第1のせん断応力パルスと、第1のせん断応力パルスよりも小さい第2のせん断応力パルスとの間に加える。なお、この場合の第3のせん断応力パルスは、印加方向を除いて第1のせん断応力パルスと同等とする。 Here, the secondary heated liquid flowing into the heat exchanger 2 from the second pressure holding unit 52 flows into the heat exchanger 2 from the pressure holding unit 32 in the direction of the shear stress pulse inside the heat exchanger 2. The direction is opposite to the secondary heated liquid. In the third embodiment, the shear stress pulse in the reverse direction is used as the third shear stress pulse, and the first shear stress pulse shown in the first embodiment and the first shear stress pulse smaller than the first shear stress pulse are used. Between two shear stress pulses. In this case, the third shear stress pulse is equivalent to the first shear stress pulse except for the application direction.
 このように、熱交換器2内へ押し出す方向の第1のせん断応力パルスを印加することによって気泡の移動および集合を行い、熱交換器2内から引き戻す方向の第3のせん断応力パルスを印加する。これにより、第1のせん断応力パルスによって移動および集合して形成される大きな気泡の生成効率を高めることができる。
 この場合、第1および第2のせん断応力パルスのみを印加した場合よりも、熱交換器2における2次側被加熱液体との接触面に付着した気泡40およびスケール核が、より効率的に除去される。
In this manner, the bubbles are moved and assembled by applying the first shear stress pulse in the direction of pushing out into the heat exchanger 2, and the third shear stress pulse in the direction of pulling back from the heat exchanger 2 is applied. . Thereby, the production | generation efficiency of the big bubble formed by moving and gathering by the 1st shear stress pulse can be improved.
In this case, the bubbles 40 and the scale nuclei attached to the contact surface with the secondary heated liquid in the heat exchanger 2 are more efficiently removed than when only the first and second shear stress pulses are applied. Is done.
[スケール抑制効果の検証]
 次に、熱交換器2に付着するスケールの抑制効果について検証する。
 本実施の形態2では、実施の形態1における第1のせん断応力パルスおよび第2のせん断応力パルスに加えて、熱交換器2に対する応力の印加方向が第1および第2のせん断応力パルスとは逆方向となる第3のせん断応力パルスからなるせん断応力パルスサイクルを、熱交換器2に対して印加する。
[Verification of scale suppression effect]
Next, the suppression effect of the scale adhering to the heat exchanger 2 will be verified.
In the second embodiment, in addition to the first shear stress pulse and the second shear stress pulse in the first embodiment, the application direction of the stress to the heat exchanger 2 is the first and second shear stress pulses. A shear stress pulse cycle composed of a third shear stress pulse in the reverse direction is applied to the heat exchanger 2.
 図17は、第1のせん断応力パルス~第3のせん断応力パルスを印加した場合の熱交換器2に対するスケールの付着量について説明するためのグラフである。
 この例では、通常状態の流量でのせん断応力である1[Pa]の2次側被加熱液体に対して、予め設定された大きさのせん断応力を有する第1のせん断応力パルスと、第1のせん断応力パルスよりもせん断応力が小さい第2のせん断応力パルスと、第1のせん断応力パルスと同じ大きさで応力の印加方向が熱交換器2に対して逆方向となる第3のせん断応力パルスとを組み合わせたせん断応力パルスサイクルを、以下の条件で印加する。そして、熱交換システム1を100時間運転したときに、せん断応力パルスサイクルを印加する周期を変化させた場合の、熱交換器2に対するスケール付着量を計測した。なお、せん断応力パルスは、第1のせん断応力パルス、第3のせん断応力パルス、第2のせん断応力パルスの順序で印加する。
FIG. 17 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the first shear stress pulse to the third shear stress pulse are applied.
In this example, a first shear stress pulse having a preset shear stress and a first shear stress pulse for a secondary heated liquid of 1 [Pa] which is a shear stress at a normal flow rate, A second shear stress pulse having a shear stress smaller than that of the first shear stress pulse, and a third shear stress having the same magnitude as that of the first shear stress pulse and the direction of application of stress being opposite to the heat exchanger 2 A shear stress pulse cycle combined with a pulse is applied under the following conditions. Then, when the heat exchange system 1 was operated for 100 hours, the amount of scale adhered to the heat exchanger 2 when the period for applying the shear stress pulse cycle was changed was measured. The shear stress pulse is applied in the order of the first shear stress pulse, the third shear stress pulse, and the second shear stress pulse.
 (a)第1のせん断応力パルス
    せん断応力     :50[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :3回
 (b)第3のせん断応力パルス
    せん断応力     :50[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :3回
 (c)第2のせん断応力パルス
    せん断応力     :3.3[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :1回
(A) First shear stress pulse Shear stress: 50 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of times of application: 3 times (b) Third shear stress pulse Shear stress: 50 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of times of application: 3 times (c) Second shear stress pulse Shear stress: 3.3 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of applications: 1 time
 図17に示す例は、せん断応力パルスを印加しない場合のスケール付着量を100%とし、せん断応力パルスサイクルを印加する周期を3[分]とした場合のスケール付着量比を示す。ここでは、せん断応力パルスを印加しない場合の例を「比較例1」とし、第1、第3、第2のせん断応力パルスの順序でせん断応力パルスを印加するせん断応力パルスサイクルの場合の例を「実施例1」として示している。また、実施の形態1と同様に、第1、第2のせん断応力パルスの順序でせん断応力パルスを印加するせん断応力パルスサイクルの場合の例を「比較例2」として示している。
 図17に示すように、第1、第2のせん断応力パルスの順序でせん断応力パルスサイクルを印加した比較例2では、熱交換器2に対するスケール付着量がせん断応力パルスを印加しない比較例1の50%となった。また、第1、第3、第2のせん断応力パルスの順序でせん断応力パルスサイクルを印加した実施例1では、熱交換器2に対するスケール付着量が比較例1の35%となった。
The example shown in FIG. 17 shows the ratio of scale adhesion when the amount of scale adhesion when no shear stress pulse is applied is 100% and the period when the shear stress pulse cycle is applied is 3 [minutes]. Here, an example in which no shear stress pulse is applied is “Comparative Example 1”, and an example in the case of a shear stress pulse cycle in which shear stress pulses are applied in the order of the first, third, and second shear stress pulses. This is shown as “Example 1”. As in the first embodiment, an example in the case of a shear stress pulse cycle in which shear stress pulses are applied in the order of the first and second shear stress pulses is shown as “Comparative Example 2”.
As shown in FIG. 17, in Comparative Example 2 in which the shear stress pulse cycle is applied in the order of the first and second shear stress pulses, the amount of scale attached to the heat exchanger 2 is that of Comparative Example 1 in which no shear stress pulse is applied. It became 50%. In Example 1 in which the shear stress pulse cycle was applied in the order of the first, third, and second shear stress pulses, the amount of scale attached to the heat exchanger 2 was 35% of that in Comparative Example 1.
 この結果から、第1、第3、第2のせん断応力パルスの順序でせん断応力パルスサイクルを印加した場合には、第1、第2のせん断応力パルスの順序でせん断応力パルスサイクルを印加した場合と比較して、熱交換器2に対するスケール付着量が少なくなり、スケール抑制効果がより高くなる。 From this result, when the shear stress pulse cycle is applied in the order of the first, third, and second shear stress pulses, the shear stress pulse cycle is applied in the order of the first and second shear stress pulses. Compared with, the scale adhesion amount with respect to the heat exchanger 2 decreases, and the scale suppression effect becomes higher.
 以上のように、本実施の形態2では、第1、第3、第2のせん断応力パルスの順序で組み合わせたせん断応力パルスサイクルを印加した2次側被加熱液体を、熱交換器2に対して供給する。これにより、より効率的かつ確実にスケールの発生および成長を抑制することができる。 As described above, in the second embodiment, the secondary heated liquid to which the shear stress pulse cycle combined in the order of the first, third, and second shear stress pulses is applied to the heat exchanger 2. Supply. Thereby, generation | occurrence | production and growth of a scale can be suppressed more efficiently and reliably.
実施の形態3.
 次に、本発明の実施の形態3に係る熱交換システムについて説明する。
 本実施の形態3に係る熱交換システムは、2次側循環回路20に設けられたスケールトラップ23を取り除いた点で、実施の形態2と相違する。本実施の形態3において、2次側被加熱液体は、タンク21と熱交換器2との間を1回循環することによって沸き上げられる(以下、「1回沸き上げ方式」と適宜称する)。
Embodiment 3 FIG.
Next, a heat exchange system according to Embodiment 3 of the present invention will be described.
The heat exchange system according to the third embodiment is different from the second embodiment in that the scale trap 23 provided in the secondary side circulation circuit 20 is removed. In the third embodiment, the secondary heated liquid is boiled by circulating once between the tank 21 and the heat exchanger 2 (hereinafter, referred to as a “single boiling method” as appropriate).
 2次側被加熱液体のタンク21と熱交換器2との間の循環回数が1回の場合、図15に示すスケールトラップ23によるスケール捕捉効果は、循環回数が複数回の場合と比較して低く、熱交換器2に対するスケール付着の抑制効果がほとんど期待できない。そのため、熱交換器2へのスケール付着量は、同量の2次側被加熱液体を複数回循環させて沸き上げた場合と比較して多くなる。そこで、本実施の形態3では、1回沸き上げ方式の場合においても、実施の形態2と同様のせん断応力パルスサイクルを印加し、熱交換器2へのスケール付着を抑制する。 When the circulation number of the secondary heated liquid tank 21 and the heat exchanger 2 is one, the scale trapping effect by the scale trap 23 shown in FIG. 15 is compared with the case where the circulation number is plural. It is low, and the effect of suppressing scale adhesion to the heat exchanger 2 can hardly be expected. Therefore, the amount of scale adhering to the heat exchanger 2 is increased as compared with the case where the same amount of the secondary heated liquid is circulated a plurality of times and boiled. Therefore, in the third embodiment, the same shear stress pulse cycle as that in the second embodiment is applied even in the case of the one-time boiling system, and scale adhesion to the heat exchanger 2 is suppressed.
 2次側被加熱液体を沸き上げる際に必要な循環回数は、例えば、ヒートポンプに使用される冷媒の種類によるエネルギー特性に依存する。例えば、2次側被加熱液体がR410等のフロン系ガスの場合は、複数回循環させて沸き上げる際のエネルギー効率が高い。また、2次側被加熱液体がCO(二酸化炭素)等の自然冷媒の場合は、1回循環させて沸き上げる際の方が、エネルギー効率が高い。 The number of circulations required when boiling the secondary heated liquid depends on, for example, the energy characteristics depending on the type of refrigerant used in the heat pump. For example, when the liquid to be heated on the secondary side is a fluorocarbon gas such as R410, the energy efficiency is high when it is circulated a plurality of times and boiled. In addition, when the secondary heated liquid is a natural refrigerant such as CO 2 (carbon dioxide), the energy efficiency is higher when it is circulated once and boiled.
[熱交換システムの構成]
 図18は、本発明の実施の形態3に係る熱交換システム1の構成の一例を示すブロック図である。なお、以下の説明において、上述した実施の形態1および2と共通する部分には同一の符号を付し、詳細な説明を省略する。
 図18に示すように、熱交換システム1は、1次側循環回路10、2次側循環回路20および熱交換器2で構成されている。ただし、図15に示す実施の形態2に係る熱交換システム1と比較して、スケールトラップ23が取り除かれている。
[Configuration of heat exchange system]
FIG. 18 is a block diagram showing an example of the configuration of the heat exchange system 1 according to Embodiment 3 of the present invention. In the following description, parts common to those in the first and second embodiments described above are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIG. 18, the heat exchange system 1 includes a primary side circulation circuit 10, a secondary side circulation circuit 20, and a heat exchanger 2. However, the scale trap 23 is removed as compared with the heat exchange system 1 according to Embodiment 2 shown in FIG.
[スケール抑制効果の検証]
 次に、熱交換器2に付着するスケールの抑制効果について検証する。
 本実施の形態3では、実施の形態2と同様に、第1~第3のせん断応力パルスからなるせん断応力パルスサイクルを、熱交換器2に対して印加する。
[Verification of scale suppression effect]
Next, the suppression effect of the scale adhering to the heat exchanger 2 will be verified.
In the third embodiment, as in the second embodiment, a shear stress pulse cycle composed of first to third shear stress pulses is applied to the heat exchanger 2.
 図19は、第1のせん断応力パルス~第3のせん断応力パルスを印加した場合の熱交換器2に対するスケールの付着量について説明するためのグラフである。
 この例では、通常状態の流量でのせん断応力である1[Pa]の2次側被加熱液体に対して、予め設定された大きさのせん断応力を有する第1のせん断応力パルスと、第1のせん断応力パルスよりもせん断応力が小さい第2のせん断応力パルスと、第1のせん断応力パルスと同じ大きさで応力の印加方向が熱交換器2に対して逆方向となる第3のせん断応力パルスとを組み合わせたせん断応力パルスサイクルを、以下の条件で印加する。なお、せん断応力パルスは、第1のせん断応力パルス、第3のせん断応力パルス、第2のせん断応力パルスの順序で印加する。
FIG. 19 is a graph for explaining the amount of scale attached to the heat exchanger 2 when the first to third shear stress pulses are applied.
In this example, a first shear stress pulse having a preset shear stress and a first shear stress pulse for a secondary heated liquid of 1 [Pa] which is a shear stress at a normal flow rate, A second shear stress pulse having a shear stress smaller than that of the first shear stress pulse, and a third shear stress having the same magnitude as that of the first shear stress pulse and the direction of application of stress being opposite to the heat exchanger 2 A shear stress pulse cycle combined with a pulse is applied under the following conditions. The shear stress pulse is applied in the order of the first shear stress pulse, the third shear stress pulse, and the second shear stress pulse.
 熱交換器2に対するスケール付着量は、2次側被加熱液体を2000L(リットル)沸き上げた時点の付着量を計測した。これは、例えばタンク21の1個分の容量である200Lを沸き上げた時点では、熱交換器2へのスケール付着量が十分でないためであり、評価に際しては、タンク21の10個分の容量の沸き上げが必要であったためである。 The amount of scale attached to the heat exchanger 2 was measured when the secondary heated liquid was boiled up to 2000 L (liter). This is because, for example, when 200 L which is the capacity of one tank 21 is boiled, the amount of scale attached to the heat exchanger 2 is not sufficient. This is because it was necessary to boil.
 (a)第1のせん断応力パルス
    せん断応力     :50[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :3回
 (b)第3のせん断応力パルス
    せん断応力     :50[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :3回
 (c)第2のせん断応力パルス
    せん断応力     :3.3[Pa]
    印加時間(パルス幅):0.5[秒]
    パルス休止時間   :0.5[秒]
    印加回数      :1回
(A) First shear stress pulse Shear stress: 50 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of times of application: 3 times (b) Third shear stress pulse Shear stress: 50 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of times of application: 3 times (c) Second shear stress pulse Shear stress: 3.3 [Pa]
Application time (pulse width): 0.5 [seconds]
Pulse pause time: 0.5 [seconds]
Number of applications: 1 time
 図19に示す例は、実施の形態2に示すようにスケールトラップ23を有し、複数回沸き上げ方式で、せん断応力パルスを印加しない場合の例を上述した「比較例1」とし、熱交換器2に付着したスケール付着量を100%とした。このときのタンク21と熱交換器2との間の循環回数は、100回である。
 ここでは、スケールトラップ23を取り除いた状態で、かつ1回沸き上げ方式で、第1、第3、第2のせん断応力パルスの順序でせん断応力パルスを印加するせん断応力パルスサイクルの場合の例を「実施例2」として示している。また、実施の形態2と同様に、複数回沸き上げ方式で、第1、第3、第2のせん断応力パルスの順序でせん断応力パルスを印加するせん断応力パルスサイクルの場合の例を上述した「実施例1」として示している。さらに、本実施の形態3のように1回沸き上げ方式であるものの、せん断応力パルスを印加しない場合の例を「比較例3」として示している。
The example shown in FIG. 19 has the scale trap 23 as shown in the second embodiment, and is the “Comparative Example 1” described above in which the shear stress pulse is not applied by the multiple-boiling method. The amount of scale attached to the vessel 2 was 100%. At this time, the number of circulations between the tank 21 and the heat exchanger 2 is 100 times.
Here, an example in the case of a shear stress pulse cycle in which the shear trap pulse is applied in the order of the first, third and second shear stress pulses in a state where the scale trap 23 is removed and in a single boiling method. This is shown as “Example 2”. Further, as in the second embodiment, an example in the case of the shear stress pulse cycle in which the shear stress pulse is applied in the order of the first, third, and second shear stress pulses by the multiple boiling method is described above. Example 1 ”is shown. Furthermore, although it is a one-time boiling system as in the third embodiment, an example in which no shear stress pulse is applied is shown as “Comparative Example 3”.
 図19に示すように、スケールトラップ23がなく、かつ1回沸き上げ方式で、せん断応力パルスを印加しない比較例3では、熱交換器2へのスケール付着量が比較例1の215%に増加した。また、スケールトラップ23がなく、かつ1回沸き上げ方式で、第1、第3、第2のせん断応力パルスの順序でせん断応力パルスを印加する実施例2では、熱交換器2へのスケール付着量が比較例1の58%となった。 As shown in FIG. 19, in Comparative Example 3 where there is no scale trap 23 and a single boiling method and no shear stress pulse is applied, the amount of scale attached to the heat exchanger 2 is increased to 215% of Comparative Example 1. did. Further, in the second embodiment in which the shear stress pulse is applied in the order of the first, third, and second shear stress pulses without the scale trap 23 and by the one-time boiling method, the scale adheres to the heat exchanger 2. The amount was 58% of Comparative Example 1.
 以上の結果から、1回沸き上げ方式において、せん断応力パルスを印加した場合には、せん断応力パルスを印加しない場合と比較して、比較例1を基準とした場合のスケール付着量が215%から58%に大幅に低減することができる。また、複数回沸き上げ方式では、せん断応力パルスを印加することにより、スケール付着量が100%から35%に低減するため、65%の低減効果がある。これに対して、1回沸き上げ方式では、せん断応力パルスを印加することにより、スケール付着量が比較例3の215%から実施例2の58%に低減し、157%の低減効果があり、複数回沸き上げ方式よりも高い低減効果を奏することができる。 From the above results, when the shear stress pulse is applied in the once-boiling method, the amount of scale adhesion based on Comparative Example 1 is 215% compared to the case where the shear stress pulse is not applied. It can be greatly reduced to 58%. Further, in the multiple boiling system, the amount of scale adhesion is reduced from 100% to 35% by applying a shear stress pulse, so that there is a 65% reduction effect. On the other hand, in the single boiling method, by applying a shear stress pulse, the amount of scale adhesion is reduced from 215% in Comparative Example 3 to 58% in Example 2, and there is a reduction effect of 157%. A reduction effect higher than the multiple boiling method can be achieved.
 以上のように、本実施の形態3では、実施の形態2と同様に、第1、第3、第2のせん断応力パルスの順序で組み合わせたせん断応力パルスサイクルを印加した2次側被加熱液体を、熱交換器2に対して供給する。これにより、実施の形態2と同様に、より効率的かつ確実にスケールの発生および成長を抑制することができる。 As described above, in the third embodiment, similarly to the second embodiment, the secondary heated liquid to which the shear stress pulse cycle combined in the order of the first, third, and second shear stress pulses is applied. Is supplied to the heat exchanger 2. Thereby, similarly to Embodiment 2, generation | occurrence | production and growth of a scale can be suppressed more efficiently and reliably.
 すなわち、このようなせん断応力パルスサイクルを熱交換器2に供給することによってスケールの発生および成長を抑制するという効果は、2次側循環回路20における循環回数が実施の形態1および2のような複数回の場合だけでなく、例えば1回の場合であっても得ることができる。 That is, the effect of suppressing the generation and growth of scale by supplying such a shear stress pulse cycle to the heat exchanger 2 is that the number of circulations in the secondary-side circulation circuit 20 is the same as in the first and second embodiments. It can be obtained not only in the case of multiple times but also in the case of one time, for example.
 以上、本発明の実施の形態1~3について説明したが、本発明は、上述した本発明の実施の形態1~3に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 While the first to third embodiments of the present invention have been described above, the present invention is not limited to the above-described first to third embodiments of the present invention, and various modifications can be made without departing from the scope of the present invention. Various modifications and applications are possible.
 例えば、本実施の形態1~3では、ヒートポンプ11によって加熱された1次側被加熱液体の熱によって2次側被加熱液体を加熱する熱交換システム1を例にとって説明したが、これはこの例に限られない。例えば、熱交換システム1は、ヒートポンプ11によって冷却された1次側液体の熱によって2次側液体を冷却するものであってもよい。 For example, in the first to third embodiments, the heat exchange system 1 that heats the secondary heated liquid by the heat of the primary heated liquid heated by the heat pump 11 has been described as an example. Not limited to. For example, the heat exchange system 1 may cool the secondary liquid by the heat of the primary liquid cooled by the heat pump 11.
 また、例えば、熱交換システム1は、タンク21を備えていなくてもよい。この場合には、例えば、2次側循環回路20における2次側被加熱液体が循環する経路から分岐した経路を設ける。そして、圧力印加部30には、この分岐経路を流れる2次側被加熱液体を供給する。これにより、上述した説明と同様に、熱交換器2の接触面に付着した気泡40およびスケール核を効率的に除去することができる。 For example, the heat exchange system 1 may not include the tank 21. In this case, for example, a path branched from a path through which the secondary-side heated liquid circulates in the secondary-side circulation circuit 20 is provided. The pressure application unit 30 is supplied with the secondary heated liquid flowing through the branch path. Thereby, the bubble 40 and the scale nucleus adhering to the contact surface of the heat exchanger 2 can be efficiently removed as described above.
 1 熱交換システム、2 熱交換器、10 1次側循環回路、11 ヒートポンプ、12 ヒータ、13 流路切替装置、14 第1のポンプ、15 ラジエータ、16 膨張容器、17、18 配管、20 2次側循環回路、21 タンク、21a 給水配管、21b 温水配管、22 第2のポンプ、23 スケールトラップ、24、25 配管、30 圧力印加部、31 第3のポンプ、32 圧力保持部、32a シリンダー構造部、32b、32c 電磁弁、32d 水量センサ、32e 圧力センサ、32f 加圧力部、33 開閉機構部、33a、33b、53a、53b 電磁弁、33c、33d、53c、53d 金属シャッター、34 開閉制御部、35、38、55、58 信号線、36、37、56、57 配管、40 気泡、41 マイクロ層、50 第2の圧力印加部、51 第4のポンプ、52 第2の圧力保持部、53 第2の開閉機構部。 1 heat exchange system, 2 heat exchanger, 10 primary side circulation circuit, 11 heat pump, 12 heater, 13 flow path switching device, 14 first pump, 15 radiator, 16 expansion vessel, 17, 18 piping, 20 secondary Side circulation circuit, 21 tank, 21a water supply piping, 21b hot water piping, 22 second pump, 23 scale trap, 24, 25 piping, 30 pressure application unit, 31 3rd pump, 32 pressure holding unit, 32a cylinder structure 32b, 32c Solenoid valve, 32d Water volume sensor, 32e Pressure sensor, 32f Pressurizing part, 33 Opening / closing mechanism part, 33a, 33b, 53a, 53b Solenoid valve, 33c, 33d, 53c, 53d Metal shutter, 34 Opening / closing control part, 35, 38, 55, 58 Signal line, 36, 37, 56, 57 Piping 40 bubbles, 41 micro layer, 50 second pressure applying part, 51 a fourth pump, 52 second pressure holding portion, 53 the second switching mechanism.

Claims (10)

  1.  第1の液体が循環する環状の第1の循環回路と、
     第2の液体が循環する環状の第2の循環回路と、
     前記第1の液体と前記第2の液体との間で熱交換を行う熱交換器と、
     前記第2の液体の一部を加圧して保持する圧力保持部と、
     前記熱交換器の前記第2の液体の流入側に設けられ、前記熱交換器に流入する前記第2の液体を、前記第2の循環回路と前記圧力保持部との間で切り替える開閉機構部と、
     前記圧力保持部に保持された前記第2の液体に対する加圧量、および前記開閉機構部の切り替えを制御する制御部と
    を備える
    熱交換システム。
    An annular first circulation circuit through which the first liquid circulates;
    An annular second circulation circuit through which the second liquid circulates;
    A heat exchanger for exchanging heat between the first liquid and the second liquid;
    A pressure holding unit that pressurizes and holds part of the second liquid;
    An opening / closing mechanism unit provided on the inflow side of the second liquid of the heat exchanger and switching the second liquid flowing into the heat exchanger between the second circulation circuit and the pressure holding unit. When,
    A heat exchange system comprising: a pressurizing amount for the second liquid held in the pressure holding unit; and a control unit that controls switching of the opening / closing mechanism unit.
  2.  前記開閉機構部と前記第2の循環回路との間にバイパス回路が設けられ、
     前記バイパス回路に前記圧力保持部が設けられている
    請求項1に記載の熱交換システム。
    A bypass circuit is provided between the opening / closing mechanism and the second circulation circuit;
    The heat exchange system according to claim 1, wherein the pressure holding unit is provided in the bypass circuit.
  3.  前記第2の循環回路に前記第2の液体を蓄えるタンクが設けられ、
     前記開閉機構部と前記タンクとの間に前記バイパス回路が設けられている
    請求項2に記載の熱交換システム。
    A tank for storing the second liquid is provided in the second circulation circuit;
    The heat exchange system according to claim 2, wherein the bypass circuit is provided between the opening / closing mechanism and the tank.
  4.  前記制御部は、
     圧力の大きさが異なる複数のせん断応力パルスを組み合わせたせん断応力パルスサイクルを印加した第2の液体を前記熱交換器に対して供給するように、前記圧力保持部および前記開閉機構部を制御する
    請求項1~3のいずれか一項に記載の熱交換システム。
    The controller is
    The pressure holding unit and the opening / closing mechanism unit are controlled so that a second liquid to which a shear stress pulse cycle in which a plurality of shear stress pulses having different pressure levels are combined is applied is supplied to the heat exchanger. The heat exchange system according to any one of claims 1 to 3.
  5.  前記せん断応力パルスサイクルは、
     第1のせん断応力パルスと、該第1のせん断応力パルスよりも圧力の大きさが小さい第2のせん断応力パルスとによって形成され、
     前記第1のせん断応力パルスおよび前記第2のせん断応力パルスの順序で組み合わせられる
    請求項4に記載の熱交換システム。
    The shear stress pulse cycle is:
    Formed by a first shear stress pulse and a second shear stress pulse having a pressure magnitude smaller than that of the first shear stress pulse;
    The heat exchange system according to claim 4, wherein the heat exchange system is combined in the order of the first shear stress pulse and the second shear stress pulse.
  6.  前記開閉機構部は、
     前記圧力保持部から前記第2の循環回路に合流する流路に設けられた第1の弁と、
     前記第2の循環回路における前記流路との合流地点の上流側に設けられた第2の弁と
    を有し、
     前記制御部の制御に基づき、前記第2の弁を閉じるとともに前記第1の弁を開き、
     前記圧力保持部で加圧された前記第2の流体を前記第1のせん断応力パルスまたは前記第2のせん断応力パルスとして前記熱交換器に対して流入させ、
     前記制御部の制御に基づき、前記第1の弁を閉じるとともに前記第2の弁を開く
    請求項5に記載の熱交換システム。
    The opening / closing mechanism is
    A first valve provided in a flow path that joins the second circulation circuit from the pressure holding unit;
    A second valve provided on the upstream side of the junction with the flow path in the second circulation circuit,
    Based on the control of the control unit, the second valve is closed and the first valve is opened,
    Causing the second fluid pressurized by the pressure holding unit to flow into the heat exchanger as the first shear stress pulse or the second shear stress pulse,
    The heat exchange system according to claim 5, wherein the first valve is closed and the second valve is opened based on the control of the control unit.
  7.  前記第2の液体の位置を加圧して保持する第2の圧力保持部と、
     前記熱交換器の前記第2の流体の流出側に設けられ、前記第2の圧力保持部に保持された前記第2の液体を、前記熱交換器に流入させるようにして、前記熱交換器の流出側に対する前記第2の液体の流入出を切り替える第2の開閉機構部と
    をさらに備え、
     前記制御部は、
     前記熱交換器に対して供給する方向が異なる複数のせん断応力パルスを組み合わせたせん断応力パルスサイクルを印加した第2の液体を前記熱交換器に対して供給するように、前記圧力保持部および前記開閉機構部、ならびに前記第2の圧力保持部および前記第2の開閉機構部を制御する
    請求項1~3のいずれか一項に記載の熱交換システム。
    A second pressure holding unit that pressurizes and holds the position of the second liquid;
    The heat exchanger is provided on the outflow side of the second fluid of the heat exchanger, and the second liquid held in the second pressure holding unit is caused to flow into the heat exchanger, so that the heat exchanger A second opening / closing mechanism for switching inflow / outflow of the second liquid with respect to the outflow side of
    The controller is
    The pressure holding unit and the second liquid are supplied to the heat exchanger with a second liquid to which a shear stress pulse cycle in which a plurality of shear stress pulses with different directions to be supplied to the heat exchanger are combined is applied to the heat exchanger. The heat exchanging system according to any one of claims 1 to 3, which controls an opening / closing mechanism section, and the second pressure holding section and the second opening / closing mechanism section.
  8.  前記せん断応力パルスサイクルは、
     第1のせん断応力パルスと、該第1のせん断応力パルスよりも圧力の大きさが小さい第2のせん断応力パルスと、前記第1のせん断応力パルスと同等の圧力で、印加方向が逆方向となる第3のせん断応力パルスとによって形成され、
     前記第1のせん断応力パルス、前記第3のせん断応力パルス、および前記第2のせん断応力パルスの順序で組み合わせられる
    請求項7に記載の熱交換システム。
    The shear stress pulse cycle is:
    The first shear stress pulse, the second shear stress pulse having a pressure smaller than that of the first shear stress pulse, the pressure equivalent to the first shear stress pulse, and the application direction is opposite. Formed by a third shear stress pulse,
    The heat exchange system according to claim 7, wherein the first shear stress pulse, the third shear stress pulse, and the second shear stress pulse are combined in this order.
  9.  前記開閉機構部は、
     前記圧力保持部から前記第2の循環回路に合流する第1の流路に設けられた第1の弁と、
     前記第2の循環回路における前記第1の流路との合流地点の上流側に設けられた第2の弁と
    を有し、
     前記第2の開閉機構部は、
     前記第2の圧力保持部から前記第2の循環回路に合流する第2の流路に設けられた第3の弁と、
     前記第2の循環回路における前記第2の流路との合流地点の下流側に設けられた第4の弁と
    を有し、
     前記開閉機構部は、
     前記制御部の制御に基づき、前記第2の弁を閉じるとともに前記第1の弁を開き、
     前記圧力保持部で加圧された前記第2の流体を前記第1のせん断応力パルスまたは前記第2のせん断応力パルスとして前記熱交換器に対して流入させ、
     前記制御部の制御に基づき、前記第1の弁を閉じるとともに前記第2の弁を開き、
     前記第2の開閉機構部は、
     前記制御部の制御に基づき、前記第4の弁を閉じるとともに前記第3の弁を開き、
     前記第2の圧力保持部で加圧された前記第2の流体を前記第3のせん断応力パルスとして前記熱交換器に対して流入させ、
     前記制御部の制御に基づき、前記第3の弁を閉じるとともに前記第4の弁を開く
    請求項8に記載の熱交換システム。
    The opening / closing mechanism is
    A first valve provided in a first flow path that merges from the pressure holding section into the second circulation circuit;
    A second valve provided on the upstream side of a junction with the first flow path in the second circulation circuit,
    The second opening / closing mechanism is
    A third valve provided in a second flow path joining the second circulation circuit from the second pressure holding unit;
    A fourth valve provided on the downstream side of the junction with the second flow path in the second circulation circuit,
    The opening / closing mechanism is
    Based on the control of the control unit, the second valve is closed and the first valve is opened,
    Causing the second fluid pressurized by the pressure holding unit to flow into the heat exchanger as the first shear stress pulse or the second shear stress pulse,
    Based on the control of the control unit, the first valve is closed and the second valve is opened,
    The second opening / closing mechanism is
    Based on the control of the control unit, the fourth valve is closed and the third valve is opened,
    Causing the second fluid pressurized by the second pressure holding unit to flow into the heat exchanger as the third shear stress pulse,
    The heat exchange system according to claim 8, wherein the third valve is closed and the fourth valve is opened based on the control of the control unit.
  10.  第1の液体が循環する環状の第1の循環回路と、第2の液体が循環する環状の第2の循環回路と、前記第1の液体と前記第2の液体との間で熱交換を行う熱交換器とを備えた熱交換システムにおいて、前記熱交換器における前記第2の液体との接触面に析出するスケールを抑制するスケール抑制方法であって、
     前記第2の液体の一部を加圧して保持するステップと、
     前記熱交換器に流入する前記第2の液体を、前記第2の循環回路と前記圧力保持部との間で切り替えるステップと
    を有する
    ことを特徴とするスケール抑制方法。
    Heat exchange is performed between the annular first circulation circuit in which the first liquid circulates, the annular second circulation circuit in which the second liquid circulates, and the first liquid and the second liquid. In a heat exchange system including a heat exchanger to perform, a scale suppression method for suppressing scales deposited on a contact surface with the second liquid in the heat exchanger,
    Pressurizing and holding a portion of the second liquid;
    And a step of switching the second liquid flowing into the heat exchanger between the second circulation circuit and the pressure holding unit.
PCT/JP2016/085106 2016-03-16 2016-11-28 Heat exchange system and scale suppression method for heat exchange system WO2017158938A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017524492A JP6239199B1 (en) 2016-03-16 2016-11-28 Heat exchange system and method for suppressing scale of heat exchange system
EP16894555.8A EP3412991B1 (en) 2016-03-16 2016-11-28 Heat exchange system and scale suppression method for heat exchange system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016052875 2016-03-16
JP2016-052875 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017158938A1 true WO2017158938A1 (en) 2017-09-21

Family

ID=59852082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085106 WO2017158938A1 (en) 2016-03-16 2016-11-28 Heat exchange system and scale suppression method for heat exchange system

Country Status (3)

Country Link
EP (1) EP3412991B1 (en)
JP (1) JP6239199B1 (en)
WO (1) WO2017158938A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107952760A (en) * 2017-12-28 2018-04-24 辽宁三三工业有限公司 Mud channel sediment pulse cleaning system
EP3754284A1 (en) 2019-05-31 2020-12-23 Panasonic Intellectual Property Management Co., Ltd. Heat exchanger and refrigeration cycle device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165900A (en) * 1980-05-24 1981-12-19 Shinko Kawada Removal of scale from heat exchanger and condenser and pulsative vibration generator used therefor
JPS57139701U (en) * 1981-02-26 1982-09-01
JPH0753268B2 (en) * 1985-07-22 1995-06-07 スンドホルム,ゲラン Equipment for cleaning plumbing systems
JP2005221109A (en) * 2004-02-04 2005-08-18 Hitachi Engineering & Services Co Ltd Cleaning method and device of plate-type heat exchanger
US20080087749A1 (en) * 2006-10-10 2008-04-17 Rodney Ruskin Irrigation flushing system
JP2010145037A (en) 2008-12-19 2010-07-01 Mitsubishi Electric Corp Hot water supply system
JP2012117776A (en) 2010-12-02 2012-06-21 Mitsubishi Electric Corp Heat pump type water heater
WO2012137281A1 (en) * 2011-04-01 2012-10-11 三菱電機株式会社 Hot water supply device and flow volumen control method
JP2013253745A (en) * 2012-06-07 2013-12-19 Mitsubishi Electric Corp Storage type water heater
JP2014016098A (en) 2012-07-09 2014-01-30 Mitsubishi Electric Corp Heat exchanger and operating method thereof
JP2014156992A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Water heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731849A4 (en) * 2003-12-10 2013-09-18 Panasonic Corp Heat exchanger and cleaning device with the same
JP5465208B2 (en) * 2011-03-29 2014-04-09 三菱電機株式会社 Water heater
JP6029744B2 (en) * 2013-03-29 2016-11-24 三菱電機株式会社 Water quality diagnostic method, water quality diagnostic device and water heater system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165900A (en) * 1980-05-24 1981-12-19 Shinko Kawada Removal of scale from heat exchanger and condenser and pulsative vibration generator used therefor
JPS57139701U (en) * 1981-02-26 1982-09-01
JPH0753268B2 (en) * 1985-07-22 1995-06-07 スンドホルム,ゲラン Equipment for cleaning plumbing systems
JP2005221109A (en) * 2004-02-04 2005-08-18 Hitachi Engineering & Services Co Ltd Cleaning method and device of plate-type heat exchanger
US20080087749A1 (en) * 2006-10-10 2008-04-17 Rodney Ruskin Irrigation flushing system
JP2010145037A (en) 2008-12-19 2010-07-01 Mitsubishi Electric Corp Hot water supply system
JP2012117776A (en) 2010-12-02 2012-06-21 Mitsubishi Electric Corp Heat pump type water heater
WO2012137281A1 (en) * 2011-04-01 2012-10-11 三菱電機株式会社 Hot water supply device and flow volumen control method
JP2013253745A (en) * 2012-06-07 2013-12-19 Mitsubishi Electric Corp Storage type water heater
JP2014016098A (en) 2012-07-09 2014-01-30 Mitsubishi Electric Corp Heat exchanger and operating method thereof
JP2014156992A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107952760A (en) * 2017-12-28 2018-04-24 辽宁三三工业有限公司 Mud channel sediment pulse cleaning system
CN107952760B (en) * 2017-12-28 2023-10-13 辽宁三三工业有限公司 Mud pipeline sediment pulse cleaning system
EP3754284A1 (en) 2019-05-31 2020-12-23 Panasonic Intellectual Property Management Co., Ltd. Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2017158938A1 (en) 2018-03-22
EP3412991A1 (en) 2018-12-12
EP3412991A4 (en) 2019-03-20
EP3412991B1 (en) 2020-04-22
JP6239199B1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US9021993B2 (en) Water heater and flow rate control method
CN100554826C (en) Freezing cycle device
JP6239199B1 (en) Heat exchange system and method for suppressing scale of heat exchange system
JP2007298226A (en) Heat pump type water heater and its hot water supply method
JP5971149B2 (en) Water heater
JP2012117776A (en) Heat pump type water heater
KR20220090706A (en) Tankless Type Water Purifier and Heating Control Method Thereof
CN106308508A (en) Water dispenser
JP2011226697A (en) Water heater
JP2006038362A (en) Freezing device
KR20180036577A (en) System and method of cleaning condenser for binary power generation
CN102297505A (en) Hot-water feeder and hot-water supply system
JP6207381B2 (en) Water heater
JP5811053B2 (en) Heat exchanger and operation method thereof
JP2010190466A (en) Water heater
JP5885551B2 (en) Seawater desalination equipment
JP2012237492A (en) Storage type water heater
KR20190065033A (en) Separate cooling apparatus and ice water purifier including the same
WO2017145298A1 (en) Storage type hot water supplying device
JP2011226695A (en) Storage type water heater
JP2014231931A (en) Water heater
JP2010078166A (en) Storage type water heater
JP2013130356A (en) Storage water heater
KR102717383B1 (en) Water cooler having circulation pump and controling method thereof
JP5556696B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017524492

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016894555

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016894555

Country of ref document: EP

Effective date: 20180904

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894555

Country of ref document: EP

Kind code of ref document: A1