JP2011226695A - Storage type water heater - Google Patents

Storage type water heater Download PDF

Info

Publication number
JP2011226695A
JP2011226695A JP2010095882A JP2010095882A JP2011226695A JP 2011226695 A JP2011226695 A JP 2011226695A JP 2010095882 A JP2010095882 A JP 2010095882A JP 2010095882 A JP2010095882 A JP 2010095882A JP 2011226695 A JP2011226695 A JP 2011226695A
Authority
JP
Japan
Prior art keywords
flow path
hot water
boiling
heat exchanger
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010095882A
Other languages
Japanese (ja)
Other versions
JP5423558B2 (en
Inventor
Toshiyuki Sakuma
利幸 佐久間
Masayuki Sudo
真行 須藤
Kei Yanagimoto
圭 柳本
Takaaki Akaishi
貴昭 赤石
Kensuke Matsuo
謙介 松尾
Kazuki Ikeda
一樹 池田
Toshinori Sugiki
稔則 杉木
Yasunari Matsumura
泰成 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010095882A priority Critical patent/JP5423558B2/en
Publication of JP2011226695A publication Critical patent/JP2011226695A/en
Application granted granted Critical
Publication of JP5423558B2 publication Critical patent/JP5423558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage type water heater that can efficiently operate at the simultaneous operation of boiling of water within a hot water storage tank and heating of water to be heated by using one circulation pump.SOLUTION: A first flow passage changeover unit 31 is a unit capable of selecting a first flow passage form wherein a first lower side of a hot water storage tank 10 and a boiling heat exchanger 60 are communicated with each other via a boiled-water circulation circuit and a second flow passage form wherein a heat source side flow passage and a boiling heat exchanger 60 are communicated with each other via the boiled-water circulation circuit. A second flow passage changeover unit 32 is a unit capable of selecting a first flow passage form wherein the boiling heat exchanger 60 and the upper side of the hot water storage tank 10 are communicated with each other via the boiled-water circulation circuit, a second flow passage form wherein the boiling heat exchanger 60 and a lower return flow passage are communicated with each other via the boiled-water circulation circuit, and a third flow passage form wherein the boiling heat exchanger 60 and a heating heat exchanger 22 are communicated with each other via the boiled-water circulation circuit, a bypass flow passage 47 and heat source side flow passages 45 and 46.

Description

この発明は、貯湯式給湯機に関する。   The present invention relates to a hot water storage type water heater.

貯湯式給湯機として、1つの循環ポンプを用いて、貯湯タンク内の水を沸き上げる沸き上げ運転と加熱対象水(浴槽循環水や暖房用循環水)を加熱する加熱運転とを行うシステムが提案されている(例えば、特許文献1参照)。   As a hot-water storage hot water supply system, a system that uses a single circulation pump to perform a heating operation to boil water in a hot water storage tank and a heating operation to heat water to be heated (tub water circulating water or circulating water for heating) is proposed. (For example, refer to Patent Document 1).

特開2004−218907号公報JP 2004-218907 A

しかしながら、特許文献1の構成では、浴槽水の追焚き運転や暖房ユニットでの暖房運転と沸き上げ運転を同時に行っているときに給湯先へ出湯された場合、沸き上げ用熱交換器に流入する温水は浴槽水の追焚き運転実施後の中温水(湯温は一般に40〜50℃程度)となる。特に自然冷媒を用いたヒートポンプ式の熱源装置においては、沸き上げ用熱交換器に導かれる温水の温度と沸上げ目標温度(一般的に90℃程度)との温度差が少ないほど運転効率(沸き上げなどのヒートポンプによる加熱運転に用いたエネルギーに対するヒートポンプによる加熱能力から算出される効率)は低下するため、中温水を沸き上げ用熱交換器で加熱した場合には、運転効率が低下するという課題がある。   However, in the configuration of Patent Document 1, when the hot water is discharged to the hot water supply destination when the bath water reheating operation or the heating operation in the heating unit and the boiling operation are performed simultaneously, the water flows into the heating heat exchanger. The hot water is medium-temperature water (the hot water temperature is generally about 40 to 50 ° C.) after the bath water reheating operation is performed. In particular, in a heat pump type heat source device using a natural refrigerant, the smaller the temperature difference between the temperature of hot water led to the heating heat exchanger and the target boiling temperature (generally about 90 ° C.), the more efficient the operation (boiling). The efficiency calculated from the heating capacity of the heat pump with respect to the energy used for the heating operation of the heat pump such as raising) is reduced, so when medium-temperature water is heated with a heat exchanger for boiling, the operating efficiency is reduced. There is.

この発明は、上述のような課題を解決するためになされたもので、1つの循環ポンプを用いて、貯湯タンク内の水の沸き上げ運転と加熱対象水の加熱運転の同時運転を行えるようにするとともに、沸き上げ運転と加熱対象水の加熱運転の同時運転中に出湯が行われた際にも運転効率の低下を生じない貯湯式給湯機を提供することを目的とする。   This invention was made in order to solve the above-mentioned subject, and can perform the simultaneous operation of the boiling operation of the water in a hot water storage tank, and the heating operation of the heating object water using one circulation pump. In addition, an object of the present invention is to provide a hot water storage type water heater that does not cause a decrease in operation efficiency even when hot water is discharged during the simultaneous operation of the heating operation and the heating operation of the water to be heated.

貯湯タンクと、ヒートポンプによる加熱手段を利用して貯湯タンク内の水を加熱して高温水とする沸き上げ用熱交換器と、貯湯タンク内の温水と所定の加熱対象水とを熱交換させる利用側熱交換器と、一端が貯湯タンクの上部に接続され、途中に沸き上げ用熱交換器が設置され、他端が貯湯タンクの第1下部に接続された沸き上げ水循環回路と、一端が沸き上げ水循環回路における貯湯タンクの上部と沸き上げ用熱交換器との間に接続され、途中に利用側熱交換器が設置され、他端が沸き上げ水循環回路における貯湯タンクの第1下部と沸き上げ用熱交換器との間に第1流路切替手段を介して接続され、利用側熱交換器の熱源側となる流路を構成する熱源側流路と、沸き上げ水循環回路における熱源側流路の一端との接続部と沸き上げ用熱交換器との間に設置された第2流路切替手段と、第2流路切替手段と貯湯タンクの第2下部とを接続する下部戻し流路と、沸き上げ水循環回路における第1流路切替手段と沸き上げ用熱交換器との間に設置された循環ポンプと、一端が熱源側流路の前記利用側熱交換器と第1流路切替手段との間に接続され、他端が第2流路切替手段に接続されたバイパス流路と、一端が沸き上げ水循環回路における第2流路切替手段と貯湯タンクの上部との間に接続され、他端を貯湯タンク内の湯水の出湯先に接続された給湯配管と、を備え、第1流路切替手段は、貯湯タンクの第1下部と沸き上げ用熱交換器とが沸き上げ水循環回路を介して連通する第1流路形態と、熱源側流路と沸き上げ用熱交換器とが沸き上げ水循環回路を介して連通する第2流路形態とを選択可能な手段であって、第2流路切替手段は、沸き上げ用熱交換器と貯湯タンクの上部とが沸き上げ水循環回路を介して連通する第1流路形態と、沸き上げ用熱交換器と下部戻し流路とが沸き上げ水循環回路を介して連通する第2流路形態と、沸き上げ用熱交換器と加熱用熱交換器が沸き上げ水循環回路と、バイパス流路、熱源側流路を介して連通する第3流路形態とを選択可能な手段であるものである。   Use of a hot water storage tank, a heat exchanger for boiling water that heats the water in the hot water tank using heating means by a heat pump, and heat exchange between the hot water in the hot water tank and the predetermined heating target water Side heat exchanger, one end is connected to the upper part of the hot water storage tank, a heat exchanger for boiling is installed on the way, and the other end is connected to the first lower part of the hot water storage tank, and one end is boiled Connected between the upper part of the hot water storage tank in the raising water circulation circuit and the heat exchanger for boiling, the use side heat exchanger is installed in the middle, and the other end is heated up with the first lower part of the hot water tank in the boiling water circulation circuit A heat source side flow path that is connected to the heat exchanger for heat using the first flow path switching means and constitutes a flow path on the heat source side of the use side heat exchanger, and a heat source side flow path in the boiling water circulation circuit Heat exchange for heating up the connection with one end of the A second flow path switching means installed between the container, a lower return flow path connecting the second flow path switching means and the second lower part of the hot water storage tank, and a first flow path switching means in the boiling water circulation circuit And a circulating pump installed between the heating heat exchanger for boiling and one end of the circulation pump connected between the use side heat exchanger of the heat source side flow path and the first flow path switching means, and the other end of the circulation pump. The bypass flow path connected to the flow path switching means, one end is connected between the second flow path switching means in the boiling water circulation circuit and the upper part of the hot water storage tank, and the other end to the hot water outlet in the hot water storage tank And a first flow path switching means comprising: a first flow path configuration in which the first lower portion of the hot water storage tank and the heating heat exchanger communicate with each other via a boiling water circulation circuit; and a heat source A second flow path configuration in which the side flow path and the heating heat exchanger communicate with each other via a boiling water circulation circuit The second flow path switching means includes a first flow path configuration in which the boiling heat exchanger and the upper part of the hot water storage tank communicate with each other via a boiling water circulation circuit, and heating heat. The second flow path configuration in which the exchanger and the lower return flow path communicate with each other through the boiling water circulation circuit, the boiling heat exchanger and the heating heat exchanger are the boiling water circulation circuit, the bypass flow path, and the heat source side This is a means capable of selecting a third flow path form communicating through the flow path.

この発明によれば、1つの循環ポンプを用いて、貯湯タンク内の水の沸き上げ運転と加熱対象水の加熱運転の同時運転を行えるようにするとともに、沸き上げ運転と加熱対象水の加熱運転の同時運転中に出湯が行われた際にも運転効率の低下を生じない貯湯式給湯機を提供することができる。   According to the present invention, using one circulating pump, it is possible to simultaneously perform a heating operation of water in a hot water storage tank and a heating operation of heating target water, and a heating operation and a heating operation of heating target water. It is possible to provide a hot water storage type water heater that does not cause a decrease in operation efficiency even when hot water is discharged during the simultaneous operation.

本発明の実施の形態1を示す貯湯式給湯機の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the hot water storage type water heater which shows Embodiment 1 of this invention. 実施の形態1の貯湯式給湯機の待機状態を示す図である。It is a figure which shows the standby state of the hot water storage type water heater of Embodiment 1. FIG. 実施の形態1の貯湯式給湯機の沸き上げ単独運転時を示す図である。It is a figure which shows the time of the boiling independent operation | movement of the hot water storage type water heater of Embodiment 1. FIG. 実施の形態1の貯湯式給湯機の沸き上げ運転と給湯動作の同時運転中の状態を示す図である。It is a figure which shows the state in the simultaneous operation | movement of the boiling operation and hot-water supply operation | movement of the hot water storage type water heater of Embodiment 1. FIG. 実施の形態1の貯湯式給湯機の沸上追焚同時運転時を示す図である。It is a figure which shows the time of the boiling top chasing simultaneous operation of the hot water storage type water heater of Embodiment 1. FIG. 実施の形態1の貯湯式給湯機の沸上追焚同時運転と給湯動作の同時運転中の状態を示す図である。It is a figure which shows the state during the simultaneous driving | operation of the boiling chasing simultaneous operation and hot-water supply operation | movement of the hot water storage type water heater of Embodiment 1. FIG.

以下、図面を参照して、本発明の実施の形態について説明する。尚、各図において説明の中心となる流路を太線で示すとともに、湯水の流れ方向を補助的に矢印を付記して示している。また、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, while the flow path used as the center of description is shown with the thick line, the flow direction of hot water is supplementarily shown with the arrow. Moreover, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1における貯湯式給湯機100の構成図である。図1に示す貯湯式給湯機100は、貯湯タンクユニット1と、ヒートポンプサイクルを利用するように構成されたヒートポンプユニット60とを備えている。2つのユニット1、60は、ヒートポンプ入口配管41とヒートポンプ出口配管42とによって接続されている。また、貯湯タンクユニット1には、制御部70が内蔵されている。貯湯タンクユニット1およびヒートポンプユニット60が備える各種の弁類、ポンプ類等の作動は、これらと電気的に接続された制御部70により制御される。以下、貯湯式給湯機100の各構成要素について説明する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a hot water storage type water heater 100 according to Embodiment 1 of the present invention. A hot water storage type water heater 100 shown in FIG. 1 includes a hot water storage tank unit 1 and a heat pump unit 60 configured to use a heat pump cycle. The two units 1 and 60 are connected by a heat pump inlet pipe 41 and a heat pump outlet pipe 42. The hot water storage tank unit 1 has a control unit 70 built therein. Operations of various valves, pumps and the like provided in the hot water storage tank unit 1 and the heat pump unit 60 are controlled by a control unit 70 electrically connected thereto. Hereinafter, each component of the hot water storage type water heater 100 will be described.

ヒートポンプユニット60は、貯湯タンクユニット1から導かれた低温水を加熱する(沸き上げる)ための加熱手段として機能するものである。ヒートポンプユニット60は、圧縮機61、沸き上げ用熱交換器62、膨張弁63、空気熱交換器64を冷媒循環配管65にて環状に接続し、冷凍サイクル(ヒートポンプサイクル)を構成している。沸き上げ用熱交換器62は、ヒートポンプサイクルを構成する冷媒循環配管65を流れる冷媒と貯湯タンクユニット1から導かれた低温水との間で熱交換を行うためのものである。また、HP出口側サーミスタ66は、沸き上げ用熱交換器62で加熱した高温水の温度を検知するための温度センサーであり、ヒートポンプ出口配管42に設けられている。ヒートポンプユニット60で高温水を得るためには、ヒートポンプサイクルは、冷媒として自然冷媒の一種である二酸化炭素を用い、臨界圧を越える圧力で運転することが好ましい。   The heat pump unit 60 functions as a heating means for heating (boiling) the low temperature water led from the hot water storage tank unit 1. The heat pump unit 60 includes a compressor 61, a heating heat exchanger 62, an expansion valve 63, and an air heat exchanger 64 connected in a ring shape with a refrigerant circulation pipe 65 to constitute a refrigeration cycle (heat pump cycle). The boiling heat exchanger 62 is for exchanging heat between the refrigerant flowing through the refrigerant circulation pipe 65 constituting the heat pump cycle and the low-temperature water led from the hot water storage tank unit 1. The HP outlet side thermistor 66 is a temperature sensor for detecting the temperature of the high-temperature water heated by the boiling heat exchanger 62, and is provided in the heat pump outlet pipe 42. In order to obtain high-temperature water by the heat pump unit 60, it is preferable that the heat pump cycle is operated at a pressure exceeding the critical pressure using carbon dioxide, which is a kind of natural refrigerant, as the refrigerant.

一方、貯湯タンクユニット1には、以下の各種部品や配管などが内蔵されている。貯湯タンク10は、湯水を貯留するためのものである。貯湯タンク10の下部には、市水を供給するための給水配管2が接続されており、貯湯タンク10の上部には、貯留した湯水を給湯機外部の出湯先へ供給するための給湯配管3がタンク上部配管43から分岐されて接続されている。尚、貯湯タンク10には、ヒートポンプユニット60を用いて加熱された高温水がタンク上部から流入されるとともに、給水配管2を介して低温水をタンク下部から流入させることにより、貯湯タンク10内の上部と下部で温度差が生じるように湯水が貯留される。また、貯湯タンク10の表面には、取付高さを変えて貯湯タンク10内の湯水の温度分布を検知するための残湯サーミスタ11、12が取り付けられている。これらの残湯サーミスタ11、12により取得された温度分布に基づいて、貯湯タンク10内の残湯量が把握され、ヒートポンプユニット60による貯湯タンク10内の湯水の沸き上げ運転の開始および停止などが制御される。   On the other hand, the hot water storage tank unit 1 incorporates the following various parts and piping. The hot water storage tank 10 is for storing hot water. A water supply pipe 2 for supplying city water is connected to the lower part of the hot water storage tank 10, and a hot water supply pipe 3 for supplying the stored hot water to a hot water outlet outside the water heater is connected to the upper part of the hot water storage tank 10. Is branched from the tank upper pipe 43 and connected thereto. The hot water tank 10 is supplied with hot water heated by the heat pump unit 60 from the upper part of the tank, and low temperature water is supplied from the lower part of the tank through the water supply pipe 2 to thereby store the hot water in the hot water storage tank 10. Hot water is stored so that there is a temperature difference between the upper part and the lower part. Further, the remaining hot water thermistors 11 and 12 for detecting the temperature distribution of hot water in the hot water storage tank 10 by changing the mounting height are attached to the surface of the hot water storage tank 10. Based on the temperature distribution acquired by the remaining hot water thermistors 11 and 12, the amount of hot water in the hot water storage tank 10 is grasped, and the start and stop of the hot water boiling operation in the hot water storage tank 10 by the heat pump unit 60 is controlled. Is done.

また、貯湯タンクユニット1内には、循環ポンプ21および利用側熱交換器22が内蔵されている。循環ポンプ21は、貯湯タンクユニット1内の後述する各種配管に湯水を循環させるためのポンプである。利用側熱交換器22は、貯湯タンク10やヒートポンプユニット60から供給される高温水を利用して、2次側の加熱対象水(浴槽循環水や暖房用循環水など)を加熱するための熱交換器である。尚、本実施形態では、利用側熱交換器22の2次側の構成として、浴槽50内の湯水を循環させる浴槽水循環回路51を例に挙げて説明する。上記利用側熱交換器22は、浴槽水循環回路51の途中に設置されている。また、浴槽水循環回路51の途中には、浴槽水を循環させるための2次側循環ポンプ52と、浴槽50から出た浴槽水の温度を検知するための浴槽出口側サーミスタ53とが設置されている。   The hot water storage tank unit 1 includes a circulation pump 21 and a use side heat exchanger 22. The circulation pump 21 is a pump for circulating hot water through various pipes to be described later in the hot water storage tank unit 1. The use-side heat exchanger 22 uses the high-temperature water supplied from the hot water storage tank 10 and the heat pump unit 60 to heat the secondary-side heating target water (tub circulation water, heating circulation water, etc.). It is an exchanger. In the present embodiment, as a secondary side configuration of the use side heat exchanger 22, a bathtub water circulation circuit 51 that circulates hot water in the bathtub 50 will be described as an example. The use side heat exchanger 22 is installed in the middle of the bathtub water circulation circuit 51. Further, a secondary circulation pump 52 for circulating the bathtub water and a bathtub outlet side thermistor 53 for detecting the temperature of the bathtub water discharged from the bathtub 50 are installed in the middle of the bathtub water circulation circuit 51. Yes.

次に、貯湯タンクユニット1が備える弁類および配管類について説明する。貯湯タンクユニット1は、三方弁31、四方弁32を有している。三方弁31は、湯水が流入する2つの入口(aポート、bポート)と、湯水が流出する1つの出口(cポート)とを有する流路切替手段であり、aポートもしくはbポートのどちらかから湯水が流入するように湯水の経路を切り替え可能に構成されている。四方弁32は、湯水が流入する1つの入口(aポート)と、湯水が流出する3つの出口(bポート、cポート、dポート)とを有する流路切替手段であり、3つの経路、すなわち、a−b経路、a−c経路、a−d経路の間で流路形態を切り替え可能に構成されている。   Next, the valves and piping included in the hot water storage tank unit 1 will be described. The hot water storage tank unit 1 has a three-way valve 31 and a four-way valve 32. The three-way valve 31 is a flow path switching means having two inlets (a port and b port) through which hot water flows and one outlet (c port) through which hot water flows out. Either the a port or the b port The hot water path can be switched so that hot water flows in from the water. The four-way valve 32 is a flow path switching means having one inlet (a port) through which hot water flows in and three outlets (b port, c port, d port) through which hot water flows out. , A-b route, a-c route, and a-d route are configured to be able to switch the flow path form.

また、貯湯タンクユニット1は、タンク下部配管40、上記ヒートポンプ入口配管41、上記ヒートポンプ出口配管42、タンク上部配管43、タンク戻し配管44、利用側熱交換器1次側(熱源側)入口配管45、利用側熱交換器1次側出口配管46およびバイパス配管47を有している。   The hot water storage tank unit 1 includes a tank lower pipe 40, the heat pump inlet pipe 41, the heat pump outlet pipe 42, a tank upper pipe 43, a tank return pipe 44, and a use side heat exchanger primary side (heat source side) inlet pipe 45. The use side heat exchanger has a primary side outlet pipe 46 and a bypass pipe 47.

より具体的には、タンク下部配管40は、貯湯タンク10の第1下部と三方弁31のaポートとを接続する流路である。ヒートポンプ入口配管41は、三方弁31のcポートとヒートポンプユニット60の入口側とを接続する流路であり、ヒートポンプ出口配管42は、ヒートポンプユニット60の出口側と四方弁32のaポートとを接続する流路であり、タンク上部配管43は、四方弁32のbポートと貯湯タンク10上部とを接続する流路であり、タンク戻し配管44は、四方弁32のcポートと貯湯タンク10の中央部から下部の間に設けられた戻し口(第2下部)とを接続する流路である。また、利用側熱交換器1次側入口配管45は、タンク上部配管43における貯湯タンク上部と四方弁32との間から分岐し、利用側熱交換器22の1次側入口に接続される流路であり、利用側熱交換器1次側出口配管46は、利用側熱交換器22の1次側出口と三方弁31のbポートとを接続する流路である。更に、バイパス配管47は、利用側熱交換器1次側出口配管46の途中から分岐して四方弁32のdポートと接続される流路である。   More specifically, the tank lower pipe 40 is a flow path that connects the first lower part of the hot water storage tank 10 and the a port of the three-way valve 31. The heat pump inlet pipe 41 is a flow path that connects the c port of the three-way valve 31 and the inlet side of the heat pump unit 60, and the heat pump outlet pipe 42 connects the outlet side of the heat pump unit 60 and the a port of the four-way valve 32. The tank upper pipe 43 is a flow path connecting the b port of the four-way valve 32 and the upper part of the hot water storage tank 10, and the tank return pipe 44 is the center of the c port of the four way valve 32 and the hot water storage tank 10. It is the flow path which connects the return port (2nd lower part) provided between the part and the lower part. The use side heat exchanger primary side inlet pipe 45 branches from between the hot water storage tank upper part of the tank upper pipe 43 and the four-way valve 32 and is connected to the primary side inlet of the use side heat exchanger 22. The use side heat exchanger primary side outlet pipe 46 is a flow path that connects the primary side outlet of the use side heat exchanger 22 and the b port of the three-way valve 31. Further, the bypass pipe 47 is a flow path that branches from the middle of the use side heat exchanger primary side outlet pipe 46 and is connected to the d port of the four-way valve 32.

さらに貯湯タンクユニット1は、給水配管2、給湯配管3、給水分岐管4、給湯混合弁33、ふろ混合弁34、混合水給湯管33a、浴槽水給湯管34aを有している。   The hot water storage tank unit 1 further includes a water supply pipe 2, a hot water supply pipe 3, a water supply branch pipe 4, a hot water supply mixing valve 33, a bath mixing valve 34, a mixed water hot water supply pipe 33a, and a bathtub water hot water supply pipe 34a.

より具体的には、給水分岐管4は給水配管2の途中から分岐して、給湯混合弁33とふろ混合弁34の水側配管を構成している。給湯配管3はタンク上部配管43から分岐して給湯混合弁33とふろ混合弁34の湯側配管を構成している。給湯混合弁33とふろ混合弁34は、給湯配管3から供給される高温水と給水分岐管4から流れる水の流量比を調整して、ユーザーが設定可能なリモコン(図示しない)にて設定された設定温度に調整する弁である。給湯混合弁33で温度調整された温水は、混合水給湯管33aから、ユーザーが使用するシャワーやカラン等の蛇口(図示しない)に供給される。ふろ混合弁34で設定温度に調整された温水は、浴槽水給湯管34aから浴槽水循環回路51を経て浴槽50に供給される。   More specifically, the water supply branch pipe 4 is branched from the middle of the water supply pipe 2 to constitute a water side pipe of the hot water supply mixing valve 33 and the bath mixing valve 34. The hot water supply pipe 3 branches off from the tank upper pipe 43 and constitutes a hot water side pipe of the hot water supply mixing valve 33 and the bath mixing valve 34. The hot water mixing valve 33 and the bath mixing valve 34 are set by a remote controller (not shown) that can be set by the user by adjusting the flow rate ratio of the high-temperature water supplied from the hot water supply pipe 3 and the water flowing from the water supply branch pipe 4. It is a valve that adjusts to the set temperature. The hot water whose temperature has been adjusted by the hot water supply mixing valve 33 is supplied from the mixed water hot water supply pipe 33a to a faucet (not shown) such as a shower or currant used by the user. The hot water adjusted to the set temperature by the bath mixing valve 34 is supplied to the bathtub 50 via the bathtub water circulation circuit 51 from the bathtub water supply pipe 34a.

本実施形態の貯湯式給湯機100では、以下の図2〜6に示す運転状態に応じて上記三方弁31を制御して、次の第1および第2の2つの流路形態の間で、貯湯タンクユニット1内の湯水の流路を切り替えて使用するようになっている。より具体的には、三方弁31により選択可能な「第1流路形態」とは、貯湯タンク10の第1下部と沸き上げ用熱交換器62とがタンク下部配管40およびヒートポンプ入口配管41を介して連通する流路形態のことであり、「第2流路形態」とは、利用側熱交換器1次側出口配管46と沸き上げ用熱交換器62とがヒートポンプ入口配管41を介して連通する流路形態のことである。   In the hot water storage type water heater 100 of the present embodiment, the three-way valve 31 is controlled according to the operation state shown in FIGS. 2 to 6 below, and between the following first and second flow path configurations, The hot water flow path in the hot water storage tank unit 1 is switched and used. More specifically, the “first flow path configuration” that can be selected by the three-way valve 31 means that the first lower part of the hot water storage tank 10 and the heating heat exchanger 62 connect the tank lower pipe 40 and the heat pump inlet pipe 41. The “second flow path configuration” means that the use side heat exchanger primary side outlet pipe 46 and the heating heat exchanger 62 are connected via the heat pump inlet pipe 41. It is a flow path form that communicates.

更に、本実施形態の貯湯式給湯機100では、以下の図2〜6に示す運転状態に応じて上記四方弁32を制御して、次の第1〜第3の3つの流路形態の間で、貯湯タンクユニット1内の湯水の流路を切り替えて使用するようになっている。より具体的には、四方弁32により選択可能な「第1流路形態」とは、沸き上げ用熱交換器62と貯湯タンク10の上部とがヒートポンプ出口配管42およびタンク上部配管43を介して連通する流路形態のことであり、「第2流路形態」とは、沸き上げ用熱交換器62とタンク戻し配管44とがヒートポンプ出口配管42を介して連通する流路形態であり、「第3流路形態」とは、
沸き上げ用熱交換器62とバイパス配管47とがヒートポンプ出口配管42を介して連通する流路形態のことである。
Furthermore, in the hot water storage type water heater 100 of the present embodiment, the four-way valve 32 is controlled according to the operation state shown in FIGS. Thus, the hot water flow path in the hot water storage tank unit 1 is switched and used. More specifically, the “first flow path configuration” that can be selected by the four-way valve 32 means that the heating heat exchanger 62 and the upper part of the hot water storage tank 10 are connected via the heat pump outlet pipe 42 and the tank upper pipe 43. The “second flow path configuration” is a flow channel configuration in which the boiling heat exchanger 62 and the tank return pipe 44 communicate with each other via the heat pump outlet pipe 42. The “third flow path configuration”
The boiling heat exchanger 62 and the bypass pipe 47 are in the form of a flow path communicating with each other via the heat pump outlet pipe 42.

図2は、本発明の実施の形態1における貯湯式給湯機100の待機状態での回路構成図である。この待機状態とは、後述する沸き上げ運転や浴槽水追焚き運転などのいずれの運転も行っていない状態のことである。待機状態では、三方弁31は、aポートとcポートとが連通し、bポートが閉状態となるように(すなわち、三方弁31の上記第1流路形態が選択されるように)制御される。これにより、タンク下部配管40とヒートポンプ入口配管41とが連通するとともに、利用側熱交換器1次側出口配管46側を閉として利用側熱交換器22からの流路が遮断される。また、待機状態では、四方弁32は、aポートとcポートとが連通し、bポートとdポートとが閉状態となるように(すなわち、四方弁32の上記第2流路形態が選択されるように)制御される。これにより、ヒートポンプ出口配管42とタンク戻し配管44とが連通するとともに、タンク上部配管43側の流路が閉状態となる。尚、この待機状態では、循環ポンプ21、ヒートポンプユニット60および2次側循環ポンプ52のいずれも停止状態である。   FIG. 2 is a circuit configuration diagram in the standby state of hot water storage type water heater 100 according to Embodiment 1 of the present invention. This standby state is a state in which any operation such as a heating operation and bath water replenishment operation described later is not performed. In the standby state, the three-way valve 31 is controlled so that the a port communicates with the c port and the b port is closed (that is, the first flow path configuration of the three-way valve 31 is selected). The Accordingly, the tank lower pipe 40 and the heat pump inlet pipe 41 communicate with each other, and the flow path from the usage side heat exchanger 22 is blocked by closing the usage side heat exchanger primary side outlet pipe 46 side. In the standby state, the four-way valve 32 is selected such that the port a and the port c communicate with each other and the port b and the port d are closed (that is, the second flow path configuration of the four-way valve 32 is selected). Controlled). Thereby, the heat pump outlet pipe 42 and the tank return pipe 44 communicate with each other, and the flow path on the tank upper pipe 43 side is closed. In this standby state, all of the circulation pump 21, the heat pump unit 60, and the secondary side circulation pump 52 are in a stopped state.

次に、図3は、本発明の実施の形態1における貯湯式給湯機100の沸き上げ単独運転時の回路構成図である。ここでいう沸き上げ単独運転とは、ヒートポンプユニット60を利用して貯湯タンク10内の水を沸き上げる沸き上げ運転が単独で行われるもののことである。この沸き上げ単独運転時には、三方弁31は、aポートとcポートとが連通し、bポートが閉状態となるように(すなわち、三方弁31の上記第1流路形態が選択されるように)制御される。これにより、タンク下部配管40とヒートポンプ入口配管41とが連通するとともに、利用側熱交換器1次側出口配管46側を閉として利用側熱交換器22からの流路が遮断される。また、沸き上げ単独運転時には、四方弁32は、aポートとbポートとが連通し、cポートとdポートとが閉状態となるように(すなわち、四方弁32の上記第1流路形態が選択されるように)制御される。これにより、ヒートポンプ出口配管42とタンク上部配管43とが連通するとともに、タンク戻し配管44側を閉として貯湯タンク10の第2下部への流路が遮断される。   Next, FIG. 3 is a circuit configuration diagram of the hot water storage type water heater 100 according to Embodiment 1 of the present invention at the time of a single heating operation. The boiling-up single operation referred to here is one in which the heating-up operation of boiling the water in the hot water storage tank 10 using the heat pump unit 60 is performed independently. During this boiling-only operation, the three-way valve 31 communicates with the a-port and the c-port, and the b-port is closed (that is, the first flow path configuration of the three-way valve 31 is selected. Controlled). Accordingly, the tank lower pipe 40 and the heat pump inlet pipe 41 communicate with each other, and the flow path from the usage side heat exchanger 22 is blocked by closing the usage side heat exchanger primary side outlet pipe 46 side. Further, during the boiling-only operation, the four-way valve 32 is configured such that the a port and the b port communicate with each other and the c port and the d port are closed (that is, the first flow path configuration of the four-way valve 32 is To be controlled). Thereby, the heat pump outlet pipe 42 and the tank upper pipe 43 communicate with each other, and the flow path to the second lower part of the hot water storage tank 10 is blocked by closing the tank return pipe 44 side.

沸き上げ単独運転は、上記のように三方弁31および四方弁32が制御された状態で、循環ポンプ21とヒートポンプユニット60の運転を開始することにより実行される。その結果、貯湯タンク10の第1下部から流出する低温水は、タンク下部配管40、三方弁31、循環ポンプ21およびヒートポンプ入口配管41を経由してヒートポンプユニット60に導かれ、沸き上げ用熱交換器62において加熱された後、高温水となってヒートポンプ出口配管42、四方弁32およびタンク上部配管43を経由して、貯湯タンク10の上部から当該貯湯タンク10内に流入し貯えられる。このような沸き上げ単独運転が実行されることで、貯湯タンク10の内部では、上層部から高温水が貯えられていき、この高温水層が徐々に厚くなる。   The boiling-up single operation is executed by starting the operation of the circulation pump 21 and the heat pump unit 60 in a state where the three-way valve 31 and the four-way valve 32 are controlled as described above. As a result, the low-temperature water flowing out from the first lower part of the hot water storage tank 10 is guided to the heat pump unit 60 via the tank lower pipe 40, the three-way valve 31, the circulation pump 21 and the heat pump inlet pipe 41, and heat exchange for boiling is performed. After being heated in the vessel 62, it becomes hot water and flows into the hot water storage tank 10 from the upper part of the hot water storage tank 10 through the heat pump outlet pipe 42, the four-way valve 32 and the tank upper pipe 43. By performing such boiling-up single operation, high temperature water is stored from the upper layer inside the hot water storage tank 10, and this high temperature water layer gradually becomes thicker.

図4は本発明の実施の形態1における貯湯式給湯機100の沸き上げ単独運転中に給湯動作が発生した場合の運転回路構成図である。ユーザーが蛇口等を開状態にした際には、貯湯タンク10上部に貯湯された高温水と給水分岐管4から供給される低温水が給湯混合弁33にて設定された温度になるよう流量比を調節して、混合水給湯管33aを経由して蛇口等へ給湯される。沸き上げで加熱された高温水は上部配管43から分岐された給湯配管3を経由して給湯混合弁33へ供給される。このため、貯湯タンク10には貯湯されることなく、直接蛇口へ給湯されるために、高温水を貯湯タンク10に貯湯すると生じる放熱により発生するエネルギーロスを低減することが可能となる。なお、上述では蛇口等への給湯の場合について説明したが、浴槽50への給湯の場合も同様であり、高温水を貯湯タンク10に貯湯すると生じる放熱により発生するエネルギーロスを低減することが可能となる。   FIG. 4 is an operation circuit configuration diagram in the case where a hot water supply operation occurs during the boiling-only operation of hot water storage type water heater 100 according to Embodiment 1 of the present invention. When the user opens the faucet or the like, the flow rate ratio is set so that the hot water stored in the upper part of the hot water storage tank 10 and the low temperature water supplied from the water supply branch pipe 4 become the temperature set by the hot water supply mixing valve 33. The hot water is supplied to the faucet or the like via the mixed water hot water supply pipe 33a. The high-temperature water heated by boiling is supplied to the hot water mixing valve 33 via the hot water supply pipe 3 branched from the upper pipe 43. For this reason, since hot water is directly stored in the faucet without being stored in the hot water storage tank 10, it is possible to reduce energy loss caused by heat dissipation generated when hot water is stored in the hot water storage tank 10. In addition, although the case of hot water supply to a faucet etc. was demonstrated above, it is the same also in the case of hot water supply to the bathtub 50, and it is possible to reduce the energy loss which generate | occur | produces by the heat radiation which arises when hot water is stored in the hot water storage tank 10. It becomes.

次に、図5は、本発明の実施の形態1における貯湯式給湯機100の沸上追焚同時運転時の回路構成図である。ここでいう沸上追焚同時運転とは、ヒートポンプユニット60によって貯湯タンク10内の湯水を沸き上げるための沸き上げ運転と浴槽水追焚き運転とを同時に行う複合運転のことである。具体的には、この沸上追焚同時運転は、例えば図3に示す沸き上げ単独運転の実行中において、浴槽水追焚き運転を行う際に実行される。この沸上追焚同時運転時には、図3に示す沸き上げ単独運転状態に対し、三方弁31のbポートとcポートとが連通するように(すなわち、三方弁31の第2流路形態が選択されるように)三方弁31が制御される。これにより、利用側熱交換器1次側出口配管46から導かれた湯水が三方弁31を経由してヒートポンプ入口配管41へと流れる経路が設けられる。一方、四方弁32の制御については、沸き上げ単独運転状態から変更が無く、aポートとbポートとが連通し、cポートとdポートとが閉状態とする制御が維持される。   Next, FIG. 5 is a circuit configuration diagram of the hot water storage water heater 100 according to Embodiment 1 of the present invention during simultaneous boiling-up chasing operation. Here, the simultaneous boiling-up operation is a combined operation in which a heating operation for boiling hot water in the hot water storage tank 10 by the heat pump unit 60 and a bath water tracking operation are performed simultaneously. Specifically, this boiling-up chasing simultaneous operation is executed when the bathtub water chasing operation is performed, for example, during the boiling-only operation shown in FIG. At the time of this boiling-up simultaneous operation, the b-port and c-port of the three-way valve 31 communicate with the boiling-only operation state shown in FIG. 3 (that is, the second flow path configuration of the three-way valve 31 is selected. The three-way valve 31 is controlled. Accordingly, a path is provided in which hot water led from the use side heat exchanger primary side outlet pipe 46 flows to the heat pump inlet pipe 41 via the three-way valve 31. On the other hand, with respect to the control of the four-way valve 32, there is no change from the single heating operation state, the control in which the a port and the b port are communicated and the c port and the d port are closed is maintained.

この沸上追焚同時運転は、上記のように三方弁31および四方弁32が制御された状態で、既に運転されている循環ポンプ21とヒートポンプユニット60に加え、2次側循環ポンプ52の運転を開始することにより実行される。その結果、利用側熱交換器22から流出する熱交換後の温水は、利用側熱交換器1次側出口配管46、三方弁31および循環ポンプ21を経由してヒートポンプユニット60に導かれ、沸き上げ用熱交換器62において加熱された後、高温水となってヒートポンプ出口配管42、四方弁32、タンク上部配管43および利用側熱交換器1次側入口配管45を経由して利用側熱交換器22に戻される。また、この場合には、貯湯タンク10の上部への温水の循環が遮断されるようになる。一方、浴槽50側の経路では、2次側循環ポンプ52を運転することで、浴槽50に張られた湯水が浴槽水循環回路51内を循環する。その結果、利用側熱交換器22の1次側を流れる高温水の熱が、利用側熱交換器22の2次側を流れる湯水に伝わり、浴槽50内に張られた湯水が温められる。   In this simultaneous boiling-up operation, the secondary-side circulation pump 52 is operated in addition to the circulation pump 21 and the heat pump unit 60 that are already operated in a state where the three-way valve 31 and the four-way valve 32 are controlled as described above. It is executed by starting. As a result, the hot water after the heat exchange flowing out from the use side heat exchanger 22 is guided to the heat pump unit 60 via the use side heat exchanger primary side outlet pipe 46, the three-way valve 31, and the circulation pump 21, and boiled. After being heated in the raising heat exchanger 62, it becomes high-temperature water and is used side heat exchange via the heat pump outlet pipe 42, the four-way valve 32, the tank upper pipe 43, and the usage side heat exchanger primary side inlet pipe 45. Returned to vessel 22. In this case, the circulation of hot water to the upper part of the hot water storage tank 10 is interrupted. On the other hand, in the path on the bathtub 50 side, the hot water stretched on the bathtub 50 circulates in the bathtub water circulation circuit 51 by operating the secondary circulation pump 52. As a result, the heat of the high-temperature water flowing through the primary side of the use side heat exchanger 22 is transferred to the hot water flowing through the secondary side of the use side heat exchanger 22, and the hot water stretched in the bathtub 50 is warmed.

次に図6は本発明の実施の形態1における貯湯式給湯機の沸上追焚同時運転と給湯動作の同時運転時の回路構成図である。ここでいう沸上追焚同時運転と給湯動作の同時運転とは、図5に示した沸上追焚同時運転中に給湯動作が発生した場合に最も効率が向上する沸上追焚同時運転方法である。ユーザーが蛇口等を開状態にした際には、貯湯タンク10上部に貯湯された高温水と給水分岐管4から供給される低温水が給湯混合弁33にて設定された温度になるよう流量比を調節して、混合水給湯管33aを経由して蛇口へ給湯される。図5に示す沸上追焚同時運転状態から、三方弁31のaポートとcポートとが連通するように(すなわち、三方弁31の第1流路形態が選択されるように)三方弁31が制御される。さらに四方弁32はaポートとdポートが連通し、bポートとcポートとが閉状態となるように(すなわち四方弁32の上記第3流路形態が選択されるように)制御される。なお、この制御は、図示しない出湯検知手段により制御部70が出湯が行われたことを検知することによって行われる。   Next, FIG. 6 is a circuit configuration diagram of the hot water storage type hot water heater according to Embodiment 1 of the present invention at the time of simultaneous boiling up operation and hot water supply operation. The simultaneous boiling hot water supply operation and the simultaneous hot water supply operation are the boiling hot water simultaneous operation method that improves the efficiency most when the hot water supply operation occurs during the simultaneous boiling hot water operation shown in FIG. It is. When the user opens the faucet or the like, the flow rate ratio is set so that the hot water stored in the upper part of the hot water storage tank 10 and the low temperature water supplied from the water supply branch pipe 4 become the temperature set by the hot water supply mixing valve 33. The hot water is supplied to the faucet via the mixed water hot water supply pipe 33a. The three-way valve 31 is configured so that the a-port and the c-port of the three-way valve 31 communicate with each other (that is, the first flow path configuration of the three-way valve 31 is selected) from the boiling-up chasing simultaneous operation state shown in FIG. Is controlled. Further, the four-way valve 32 is controlled so that the a port and the d port communicate with each other and the b port and the c port are closed (that is, the third flow path configuration of the four-way valve 32 is selected). This control is performed when the controller 70 detects that the hot water has been discharged by hot water detection means (not shown).

この結果、貯湯タンク10の第1下部から流出する低温水は、タンク下部配管40、三方弁31、循環ポンプ21およびヒートポンプ入口配管41を経由してヒートポンプユニット60に導かれ、沸き上げ用熱交換器62において加熱された後、高温水となってヒートポンプ出口配管42、四方弁32、バイパス配管47、利用側熱交換器1次側出口配管46を経由して利用側熱交換器22を通過し、利用側熱交換器22で熱を奪われて中温水となった後に、利用側熱交換器1次側入口配管45、上部配管43、給湯配管3を経由し、給湯混合弁33で設定温度に調整され、混合水給湯管33aから蛇口に給湯が行われる。   As a result, the low temperature water flowing out from the first lower part of the hot water storage tank 10 is guided to the heat pump unit 60 via the tank lower pipe 40, the three-way valve 31, the circulation pump 21 and the heat pump inlet pipe 41, and heat exchange for boiling is performed. After being heated in the vessel 62, it becomes high-temperature water and passes through the use side heat exchanger 22 via the heat pump outlet pipe 42, the four-way valve 32, the bypass pipe 47, and the use side heat exchanger primary side outlet pipe 46. After the heat is deprived by the use side heat exchanger 22 and becomes warm water, the temperature is set by the hot water supply mixing valve 33 via the use side heat exchanger primary side inlet pipe 45, the upper pipe 43 and the hot water supply pipe 3. The hot water is supplied from the mixed water hot water supply pipe 33a to the faucet.

三方弁31と四方弁32の流路切替の順序としては、もし四方弁32を先に流路切替した場合(上記第3流路形態が選択)、沸き上げ用熱交換器62において湯水が加熱された後、高温水はヒートポンプ出口配管42、四方弁32、バイパス配管47、利用側熱交換器1次側出口配管46、三方弁31、循環ポンプ21およびヒートポンプ入口配管41を経由し再び沸き上げ用熱交換器62に供給されるため、沸き上げた湯水の利用ができず沸き上げ効率が低下する。したがってこれを防止し効率的な運転を行うために、三方弁31を四方弁32よりも先に上記第1流路形態への流路切替を実施する。このような順序とすることで、三方弁31の切替完了時点から四方弁32の切替完了までの間でも、貯湯タンク10の第1下部から流出する低温水が、タンク下部配管40、三方弁31、循環ポンプ21およびヒートポンプ入口配管41を経由してヒートポンプユニット60に導かれ、沸き上げ用熱交換器62において加熱された後、高温水となってヒートポンプ出口配管42、四方弁32、タンク上部配管43を経由して沸き上げた湯や各配管に残留していた湯は給湯に使用される。さらに四方弁32の切替完了により、利用側熱交換器22での湯の利用も行える。このように構成し制御することで沸き上げ用熱交換器62に流入する水は、貯湯タンク10の下部の低温水を利用可能となり、ヒートポンプ沸き上げ効率も高く、さらに貯湯によるエネルギーロスを低減することが可能となり効率のよい運転が可能となる。なお、上述では蛇口等への給湯の場合について説明したが、浴槽50への給湯の場合でも同様の制御がなされ、同様の効果を奏する。   As the order of switching the flow paths of the three-way valve 31 and the four-way valve 32, if the four-way valve 32 is switched first (the third flow path configuration is selected), the hot water is heated in the boiling heat exchanger 62. Then, the high-temperature water is boiled again through the heat pump outlet pipe 42, the four-way valve 32, the bypass pipe 47, the use side heat exchanger primary side outlet pipe 46, the three-way valve 31, the circulation pump 21 and the heat pump inlet pipe 41. Since it is supplied to the heat exchanger 62, the boiling water cannot be used, and the boiling efficiency is lowered. Therefore, in order to prevent this and perform an efficient operation, the three-way valve 31 is switched to the first channel form before the four-way valve 32. By adopting such an order, the low temperature water flowing out from the first lower portion of the hot water storage tank 10 can flow between the tank lower pipe 40 and the three-way valve 31 even from the time when the three-way valve 31 is switched to the time when the four-way valve 32 is switched. Then, after being led to the heat pump unit 60 via the circulation pump 21 and the heat pump inlet pipe 41 and heated in the heating heat exchanger 62, it becomes high-temperature water and the heat pump outlet pipe 42, the four-way valve 32, and the tank upper pipe. Hot water boiled through 43 and hot water remaining in each pipe are used for hot water supply. Furthermore, use of hot water in the use-side heat exchanger 22 can be performed by completing the switching of the four-way valve 32. By configuring and controlling in this way, the water flowing into the boiling heat exchanger 62 can use the low-temperature water at the lower part of the hot water storage tank 10, the heat pump boiling efficiency is high, and energy loss due to hot water storage is further reduced. And efficient operation becomes possible. In addition, although the case of hot water supply to a faucet etc. was demonstrated above, the same control is made also in the case of hot water supply to the bathtub 50, and there exists the same effect.

上記のような本実施の形態の貯湯式給湯機100によれば、1つの循環ポンプ21を用いて、沸上追焚同時運転と給湯動作の同時運転時には、ヒートポンプユニット60へは低温水が供給され、さらに、追焚き後の中温水は給湯に直接利用することが可能となり、追焚き後の中温水を貯湯タンク10に貯湯することで沸き上げ効率を低下することなく、効率の高い運転をすることが可能となる。   According to the hot water storage type water heater 100 of the present embodiment as described above, low-temperature water is supplied to the heat pump unit 60 using the single circulation pump 21 during the simultaneous boiling-up chasing operation and the hot-water supply operation. In addition, the medium temperature water after reheating can be used directly for hot water supply, and by storing the medium temperature water after reheating in the hot water storage tank 10, it is possible to operate with high efficiency without reducing the boiling efficiency. It becomes possible to do.

ところで、上述した実施の形態1においては、加熱対象水を加熱させる加熱運転の一例として、浴槽水を追い焚きする浴槽水追焚き運転について説明した。しかしながら、本発明の加熱運転はこれに限定されるものではなく、例えば、暖房用循環水を加熱対象水とする暖房運転であってもよい。   By the way, in Embodiment 1 mentioned above, the bathtub water reheating operation which retreats bathtub water was demonstrated as an example of the heating operation which heats heating object water. However, the heating operation of the present invention is not limited to this, and may be, for example, a heating operation using heating circulation water as heating target water.

また、上述した実施の形態1においては、ヒートポンプサイクルを、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。またこの場合、冷媒としてはフロンガス、アンモニアなどを用いても良い。   In Embodiment 1 described above, the heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, but may be a heat pump cycle that is equal to or lower than a general critical pressure. In this case, chlorofluorocarbon, ammonia, or the like may be used as the refrigerant.

1 貯湯タンクユニット
3 給湯配管
10 貯湯タンク
21 循環ポンプ
22 利用側熱交換器
31 三方弁(第1流路切替手段)
32 四方弁(第2流路切替手段)
40 タンク下部配管(沸き上げ水循環回路)
41 ヒートポンプ入口配管(沸き上げ水循環回路)
42 ヒートポンプ出口配管(沸き上げ水循環回路)
43 タンク上部配管(沸き上げ水循環回路)
44 タンク戻し配管(下部戻し流路)
45 利用側熱交換器1次側入口配管(熱源側流路)
46 利用側熱交換器1次側出口配管(熱源側流路)
47 バイパス配管(バイパス流路)
50 浴槽
51 浴槽水循環回路
52 2次側循環ポンプ
60 ヒートポンプユニット
61 圧縮機
62 沸き上げ用熱交換器
63 膨張弁
64 空気熱交換器
70 制御部
100 貯湯式給湯機
DESCRIPTION OF SYMBOLS 1 Hot water storage tank unit 3 Hot water supply pipe 10 Hot water storage tank 21 Circulation pump 22 Use side heat exchanger 31 Three-way valve (1st flow-path switching means)
32 Four-way valve (second flow path switching means)
40 Tank lower piping (boiling water circulation circuit)
41 Heat pump inlet piping (boiling water circulation circuit)
42 Heat pump outlet piping (boiling water circulation circuit)
43 Tank upper piping (boiling water circulation circuit)
44 Tank return piping (lower return flow path)
45 Use side heat exchanger primary side inlet piping (heat source side flow path)
46 Use side heat exchanger primary side outlet piping (heat source side flow path)
47 Bypass piping (bypass flow path)
50 Bathtub 51 Bathwater Circulation Circuit 52 Secondary Circulation Pump 60 Heat Pump Unit 61 Compressor 62 Boiling Heat Exchanger 63 Expansion Valve 64 Air Heat Exchanger 70 Control Unit 100 Hot Water Storage Water Heater

Claims (4)

貯湯タンクと、ヒートポンプによる加熱手段を利用して前記貯湯タンク内の水を加熱して高温水とする沸き上げ用熱交換器と、
前記貯湯タンク内の温水と、所定の加熱対象水とを熱交換させる利用側熱交換器と、
一端が前記貯湯タンクの上部に接続され、途中に前記沸き上げ用熱交換器が設置され、他端が前記貯湯タンクの第1下部に接続された沸き上げ水循環回路と、
一端が前記沸き上げ水循環回路における前記貯湯タンクの前記上部と前記沸き上げ用熱交換器との間に接続され、途中に前記利用側熱交換器が設置され、他端が前記沸き上げ水循環回路における前記貯湯タンクの前記第1下部と前記沸き上げ用熱交換器との間に第1流路切替手段を介して接続され、前記利用側熱交換器の熱源側となる流路を構成する熱源側流路と、
前記沸き上げ水循環回路における前記熱源側流路の前記一端との接続部と前記沸き上げ用熱交換器との間に設置された第2流路切替手段と、
前記第2流路切替手段と前記貯湯タンクの第2下部とを接続する下部戻し流路と、
前記沸き上げ水循環回路における前記第1流路切替手段と前記沸き上げ用熱交換器との間に設置された循環ポンプと、
一端が前記熱源側流路の前記利用側熱交換器と前記第1流路切替手段との間に接続され、
他端が前記第2流路切替手段に接続されたバイパス流路と、
一端が前記沸き上げ水循環回路における前記第2流路切替手段と前記貯湯タンクの上部との間に接続され、他端を前記貯湯タンク内の湯水の出湯先に接続された給湯配管と、
を備え、
前記第1流路切替手段は、前記貯湯タンクの前記第1下部と前記沸き上げ用熱交換器とが前記沸き上げ水循環回路を介して連通する第1流路形態と、前記熱源側流路と前記沸き上げ用熱交換器とが前記沸き上げ水循環回路を介して連通する第2流路形態とを選択可能な手段であって、
前記第2流路切替手段は、前記沸き上げ用熱交換器と前記貯湯タンクの前記上部とが前記沸き上げ水循環回路を介して連通する第1流路形態と、前記沸き上げ用熱交換器と前記下部戻し流路とが前記沸き上げ水循環回路を介して連通する第2流路形態と、前記沸き上げ用熱交換器と前記加熱用熱交換器が前記沸き上げ水循環回路と、前記バイパス流路、前記熱源側流路を介して連通する第3流路形態とを選択可能な手段であることを特徴とする貯湯式給湯機。
A hot water storage tank, a heat exchanger for boiling that heats the water in the hot water storage tank using heating means by a heat pump to form high temperature water,
A use side heat exchanger for exchanging heat between the hot water in the hot water storage tank and a predetermined water to be heated;
A boiling water circulation circuit in which one end is connected to the upper part of the hot water storage tank, the boiling heat exchanger is installed in the middle, and the other end is connected to the first lower part of the hot water storage tank;
One end is connected between the upper part of the hot water storage tank in the boiling water circulation circuit and the heat exchanger for boiling, the use side heat exchanger is installed in the middle, and the other end in the boiling water circulation circuit A heat source side that constitutes a flow path that is connected between the first lower portion of the hot water storage tank and the boiling heat exchanger via a first flow path switching means and that serves as a heat source side of the use side heat exchanger. A flow path;
A second flow path switching means installed between the connection portion with the one end of the heat source side flow path in the boiling water circulation circuit and the heating heat exchanger;
A lower return flow path connecting the second flow path switching means and the second lower portion of the hot water storage tank;
A circulation pump installed between the first flow path switching means and the boiling heat exchanger in the boiling water circulation circuit;
One end is connected between the use side heat exchanger of the heat source side flow path and the first flow path switching means,
A bypass flow path whose other end is connected to the second flow path switching means;
A hot water supply pipe having one end connected between the second flow path switching means and the upper part of the hot water storage tank in the boiling water circulation circuit, and the other end connected to a hot water outlet in the hot water storage tank;
With
The first flow path switching means includes a first flow path configuration in which the first lower portion of the hot water storage tank and the boiling heat exchanger communicate with each other via the boiling water circulation circuit, the heat source side flow path, A means capable of selecting a second flow path configuration in which the boiling heat exchanger communicates with the boiling water circulation circuit;
The second flow path switching means includes a first flow path configuration in which the boiling heat exchanger and the upper part of the hot water storage tank communicate with each other via the boiling water circulation circuit, the boiling heat exchanger, A second flow path configuration in which the lower return flow path communicates with the boiling water circulation circuit, the boiling heat exchanger and the heating heat exchanger include the boiling water circulation circuit, and the bypass flow path. The hot water storage type hot water heater is a means capable of selecting a third flow path form communicating with the heat source side flow path.
前記貯湯タンク内の水を沸き上げる沸き上げ運転時に、
前記第1流路形態が選択されるように前記第1流路切替手段を制御し、前記第1流路形態が選択されるように前記第2流路切替手段を制御し、かつ、前記循環ポンプが作動するように制御する沸き上げ運転時制御手段と、
前記沸き上げ運転時制御手段を用いた前記沸き上げ運転中において前記利用側熱交換器による加熱運転を行う場合に、
前記第1流路切替手段により選択される流路形態を前記第1流路形態から前記第2流路形態に切り替える沸上加熱同時制御手段と、
を備えることを特徴とする、請求項1に記載の貯湯式給湯機。
During boiling operation to boil water in the hot water storage tank,
The first flow path switching means is controlled so that the first flow path form is selected, the second flow path switching means is controlled so that the first flow path form is selected, and the circulation A boiling operation control means for controlling the pump to operate;
When performing the heating operation by the use side heat exchanger during the boiling operation using the control means during the boiling operation,
Boiling heating simultaneous control means for switching the flow path form selected by the first flow path switching means from the first flow path form to the second flow path form;
The hot water storage type water heater according to claim 1, comprising:
前記沸上加熱同時制御手段の動作中に給湯が行われた場合、
前記第1流路形態が選択されるように前記第1流路切替手段を制御し、前記第3流路形態が選択されるように前記第2流路切替手段を制御する給湯時沸上加熱同時制御手段を、
備えたことを特徴とする、請求項2に記載の貯湯式給湯機。
When hot water is supplied during the operation of the boiling heating simultaneous control means,
Boiling hot water heating that controls the first flow path switching means so that the first flow path configuration is selected and controls the second flow path switching means so that the third flow path configuration is selected. Simultaneous control means
The hot water storage type water heater according to claim 2, wherein the hot water storage type water heater is provided.
前記給湯時沸上加熱同時制御手段は、
前記第2流路切替手段による流路切替よりも先に前記第1流路切替手段による流路切替を行うことを特徴とする、請求項3に記載の貯湯式給湯機。
The hot water boiling boiling simultaneous control means is
The hot water storage type hot water supply apparatus according to claim 3, wherein the flow path switching by the first flow path switching means is performed prior to the flow path switching by the second flow path switching means.
JP2010095882A 2010-04-19 2010-04-19 Hot water storage water heater Active JP5423558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095882A JP5423558B2 (en) 2010-04-19 2010-04-19 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095882A JP5423558B2 (en) 2010-04-19 2010-04-19 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2011226695A true JP2011226695A (en) 2011-11-10
JP5423558B2 JP5423558B2 (en) 2014-02-19

Family

ID=45042243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095882A Active JP5423558B2 (en) 2010-04-19 2010-04-19 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP5423558B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155911A (en) * 2012-01-30 2013-08-15 Mitsubishi Electric Corp Heat source unit control system
JP2013174379A (en) * 2012-02-24 2013-09-05 Panasonic Corp Hot water supply device
JP2014020615A (en) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp Hot water storage type water heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019477A (en) * 2008-07-10 2010-01-28 Corona Corp Storage type hot water supplying and heating apparatus
JP2010019518A (en) * 2008-07-14 2010-01-28 Panasonic Corp Water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019477A (en) * 2008-07-10 2010-01-28 Corona Corp Storage type hot water supplying and heating apparatus
JP2010019518A (en) * 2008-07-14 2010-01-28 Panasonic Corp Water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155911A (en) * 2012-01-30 2013-08-15 Mitsubishi Electric Corp Heat source unit control system
JP2013174379A (en) * 2012-02-24 2013-09-05 Panasonic Corp Hot water supply device
JP2014020615A (en) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp Hot water storage type water heater

Also Published As

Publication number Publication date
JP5423558B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5838914B2 (en) Hot water storage water heater
JP5419504B2 (en) Hot water storage water heater
JP5423514B2 (en) Hot water storage water heater
JP5585358B2 (en) Hot water storage water heater
JP4715439B2 (en) Heat pump water heater
JP5831375B2 (en) Hot water storage water heater
JP5423558B2 (en) Hot water storage water heater
JP5655695B2 (en) Hot water storage water heater
JP5553059B2 (en) Hot water storage water heater
JP5434955B2 (en) Heat pump water heater
JP5664345B2 (en) Hot water storage water heater
JP5549645B2 (en) Hot water storage water heater
JP2010112648A (en) Heat pump water heater
JP5831383B2 (en) Hot water storage water heater
JP2015078773A (en) Hot water storage type water heater
JP2013079752A (en) Heat pump water heater
JP6036579B2 (en) Water heater
JP6119499B2 (en) Hot water storage water heater
JP2012242012A (en) Hot water storage type water heater
JP2016183838A (en) Hot water storage type heat pump water heater
JP5556696B2 (en) Hot water storage water heater
JP5803828B2 (en) Hot water storage water heater
JP2012132628A (en) Hot water storage type water heater
JP2004251621A (en) Hot water storage device
JP2005055094A (en) Heat pump hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250