WO2017158842A1 - 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 - Google Patents

電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 Download PDF

Info

Publication number
WO2017158842A1
WO2017158842A1 PCT/JP2016/058823 JP2016058823W WO2017158842A1 WO 2017158842 A1 WO2017158842 A1 WO 2017158842A1 JP 2016058823 W JP2016058823 W JP 2016058823W WO 2017158842 A1 WO2017158842 A1 WO 2017158842A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarity
voltage
output voltage
electrode
power supplies
Prior art date
Application number
PCT/JP2016/058823
Other languages
English (en)
French (fr)
Inventor
朝是 大城
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to EP16894460.1A priority Critical patent/EP3432340A4/en
Priority to CN201680083763.4A priority patent/CN108885965B/zh
Priority to US16/085,186 priority patent/US10475635B2/en
Priority to PCT/JP2016/058823 priority patent/WO2017158842A1/ja
Priority to JP2018505209A priority patent/JP6485590B2/ja
Publication of WO2017158842A1 publication Critical patent/WO2017158842A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/401Time-of-flight spectrometers characterised by orthogonal acceleration, e.g. focusing or selecting the ions, pusher electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/18Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to reversal of direct current

Definitions

  • the present invention relates to a voltage application technique for applying a predetermined voltage to a plurality of electrodes using a plurality of power supplies.
  • the present invention relates to a voltage application technique that can be suitably used when a predetermined voltage is applied to each of a plurality of electrodes and a potential for flying ions is formed in an ion flight space in a time-of-flight mass spectrometer.
  • Time-of-Flight Mass Spectrometer Time-of-Flight Mass Spectrometer, hereinafter also referred to as “TOF-MS”
  • TOF-MS Time-of-Flight Mass Spectrometer
  • One of the methods for imparting kinetic energy to ions in a time-of-flight mass spectrometer is an orthogonal acceleration (also called “vertical acceleration” or “orthogonal extraction”) method.
  • orthogonal acceleration type TOF-MS ions that have entered the ion acceleration region (orthogonal acceleration part) are accelerated in a direction perpendicular to the direction of the entry and introduced into the flight space for flight. Therefore, ions can be analyzed with high mass resolution without being affected by variations in flight speed (energy) of ions introduced into the orthogonal acceleration unit (for example, Patent Document 1).
  • FIG. 1A shows an example of a schematic configuration of a mass separation unit 100 of an orthogonal acceleration type reflectron type TOF-MS.
  • Ions emitted from the front stage (lower side of the figure) of the mass separation unit 100 enter the ion acceleration region of the orthogonal acceleration electrode 102 (a pair of electrodes 102A and 102B arranged opposite to each other, and the electrode 102B is a grid electrode).
  • the electrode 102B is a grid electrode.
  • the ions that have passed through the grid electrode 102B are further accelerated by acceleration electrodes (second acceleration electrodes) 103 arranged on both sides of the ion trajectory, and are incident on a flight space whose outer edge is defined by the flight tube 104.
  • the ions incident on the flight space are gradually decelerated when entering the space formed by the reflectron electrode 105 and the back plate 106, and the flight path is turned back and incident on the detector 107.
  • an appropriate voltage is applied to the second acceleration electrode 103, the flight tube 104, the reflectron electrode 105, and the back plate 106. Then, as shown in FIG. 1B, a potential having a gradient that decreases from the second acceleration electrode 103 toward the flight tube 104 and increases from the flight tube 104 toward the reflectron electrode 105 and the back plate 106 is formed. To do.
  • FIG. 2 is an example of an electrode circuit of a voltage application device for applying a voltage to the second acceleration electrode 103, the flight tube 104, the reflectron electrode 105, and the back plate 106.
  • this electrode circuit a plurality of resistors are connected in series between the power sources P1 and P4 at both ends, an electrode connection portion is provided between the resistors, and one power source P2 is provided at each of two intermediate positions. P3 is connected.
  • the second acceleration electrode 103 is connected to the three electrode connecting portions from the side near the power source P1, and the flight tube 104 is connected to the side near the power source P2.
  • the front-side reflectron electrode 105a is connected to the three electrode connecting portions.
  • four resistors Re and four electrode connection portions are alternately arranged.
  • a rear-stage reflectron electrode 105b is connected to the three electrode connecting portions from the side close to the power supply P3, and a back plate 106 is connected to the side close to the power supply P4.
  • the power source P3 is connected to the electrode circuit via the resistor Rd.
  • the power supplies P1 to P4 each output a voltage corresponding to the polarity of the ion to be measured (same polarity or opposite polarity as the ion) and the potential formed in each part.
  • voltages V1 for example, ⁇ 3 kV
  • V2 for example ⁇ 7 kV
  • V3 for example +2 kV
  • V4 for example +2 kV
  • the polarity of the output voltage of each of the power supplies P1 to P4 is reversed (second state).
  • Patent Document 2 describes a power supply in which the polarity of an output voltage is switched while being connected to an electrode circuit.
  • the switching time of the polarity of the output voltage can be shortened.
  • the polarity of the output voltage of the power sources P1 to P4 is sequentially changed while being connected to the electrode circuit.
  • the current (reverse current) in the direction opposite to the polarity of the output voltage of the power supply flows to some power supplies until the switching between the states is completed, and the power supply may be damaged. There was a problem that there was.
  • a voltage application device of a time-of-flight mass spectrometer that uses a plurality of electrodes to form a predetermined potential in the ion flight space has been described as an example. Similarly, a voltage from a plurality of power sources is applied to a plurality of electrodes. Other voltage application devices that apply the above have the same problem as described above.
  • the problem to be solved by the present invention is to reduce the risk of reverse current flowing through the power supply when switching the polarity of the output voltage of the power supply in a voltage application device that applies a predetermined voltage to a plurality of electrodes using a plurality of power supplies. It is to be.
  • an electrode circuit in which a plurality of electrode connection portions are connected in series between adjacent electrode connection portions via a resistor, and both ends of the electrode circuit
  • a method of applying a voltage to the electrode connected to the electrode connecting portion using a voltage applying device connected to at least one intermediate position and having a power source that outputs a voltage of both positive and negative polarities a) determining the polarity and magnitude of each output voltage of the plurality of power sources so that a voltage of a predetermined polarity and magnitude is applied to the electrodes; b) Based on the polarity of the output voltage of the plurality of power sources, the polarity of the output voltage of at least one power source among the plurality of power sources is maintained different from the others, and the polarity of the output voltage of the plurality of power sources is one.
  • the polarity of the output voltage of all the power supplies is switched by switching each time.
  • the state in which the polarity of the output voltage of at least one power source among the plurality of power sources is different from the other is maintained, and the current flows mainly between the power sources having different polarities.
  • the possibility of reverse current flowing through the power supply can be reduced, and the risk of power supply damage can be reduced.
  • a voltage application device which has been made to solve the above problems, a) an electrode circuit in which a plurality of electrode connection portions are connected in series via resistors between adjacent electrode connection portions; b) a power supply that outputs positive and negative voltage voltages respectively connected to both ends of the electrode circuit and at least one intermediate position; c) Output voltage information, which is information related to the polarity and magnitude of the output voltages of the plurality of power supplies, and the polarity of the output voltage of at least one of the plurality of power supplies determined based on the output voltage information.
  • a storage unit storing polarity switching order information, which is information regarding the order of switching the polarity of the output voltages of all the power supplies by switching the polarity of the output voltages of the plurality of power supplies one by one while maintaining a different state from the others
  • polarity switching order information which is information regarding the order of switching the polarity of the output voltages of all the power supplies by switching the polarity of the output voltages of the plurality of power supplies one by one while maintaining a different state from the others
  • a power supply control unit that outputs a voltage having a polarity and a magnitude based on the output voltage information from the plurality of power supplies, and sequentially switches the polarity of the output voltage of the plurality of power supplies based on the polarity switching order information at a predetermined timing. It is characterized by including these.
  • the predetermined timing is, for example, a timing at which the polarity of the measurement target ion is switched in a time-of-flight mass spectrometer.
  • the power supply control unit receives the input signal from the measurement control unit that controls the measurement, It can be configured to switch polarity.
  • the order in which the polarities of the output voltages of the plurality of power supplies are switched is preferably the order in which the total number of power supplies through which a reverse current flows is minimized among all switching orders.
  • the total number of power supplies through which the reverse current flows can be defined from the number of times the reverse current flows through any of the power supplies and the number of power supplies through which the reverse current flows. For example, the number of statements when the reverse current flows through two power supplies in one stage until the switching of the polarity of the output voltage of all the power supplies is completed and the reverse current flows through one power supply in another stage is “3”. " As described above, the power source that can flow a reverse current depends on the configuration parameter and cannot be defined uniformly. However, after the configuration parameter is determined, it can be determined by simulation or the like.
  • an ideal situation is that no reverse current flows through any of the power supplies while the polarity of the output voltages of the plurality of power supplies is sequentially switched.
  • a reverse current flows to at least one power source depending on the configuration parameters, for example, when a V-shaped potential is formed in the ion flight space.
  • a resistor is connected in parallel with the power supply through which a reverse current flows while the power supply control unit switches the polarity of the output voltage of the plurality of power supplies.
  • the amount of current flowing from the power supply is larger than when there is no resistance, and the reverse current is more likely to go to the circuit on the resistance side, so that the reverse current flows through the power supply. Can be prevented.
  • the schematic block diagram of the ion flight space of the conventional time-of-flight mass spectrometer The block diagram of the electrode circuit and power supply in the conventional time-of-flight mass spectrometer.
  • the schematic block diagram of the time-of-flight mass spectrometer provided with the voltage application apparatus which concerns on this invention.
  • the voltage application method and apparatus sends ions to a flight space by applying a pulse voltage to a set of electrodes arranged in an orthogonal acceleration unit at a predetermined cycle, and ions are generated based on the flight time in the flight space.
  • ions are generated based on the flight time in the flight space.
  • TOF-MS time-of-flight mass spectrometer
  • FIG. 3 shows a schematic configuration of the TOF-MS 1 of this embodiment.
  • the TOF-MS 1 of the present embodiment roughly includes a mass analyzing unit 2, a voltage applying unit 3, and a control unit 4 that controls these operations.
  • the mass analysis unit 2 includes a first intermediate chamber whose degree of vacuum is increased stepwise between an ionization chamber 20 that is substantially atmospheric pressure and a high-vacuum analysis chamber 24 that is evacuated by a vacuum pump (not shown). 21, the second intermediate chamber 22, and the third intermediate chamber 23.
  • the ionization chamber 20 is provided with an electrospray ionization probe (ESI probe) 201 that sprays while applying a charge to a liquid sample.
  • ESI probe electrospray ionization probe
  • the ionization chamber 20 and the first intermediate chamber 21 communicate with each other through a small heating capillary 202.
  • the first intermediate chamber 21 and the second intermediate chamber 22 are separated by a skimmer 212 having a small hole at the top, and each of the first intermediate chamber 21 and the second intermediate chamber 22 is used for transporting ions to the subsequent stage while converging.
  • Ion guides 211 and 221 are arranged.
  • a quadrupole mass filter 231 that separates ions according to a mass-to-charge ratio
  • a collision cell 232 having a multipole ion guide 233 therein, and ions discharged from the collision cell 232 are transported.
  • An ion guide 234 is arranged for this purpose.
  • a CID gas such as argon or nitrogen is supplied into the collision cell 232 as necessary.
  • the acceleration electrodes second acceleration electrodes
  • the ions incident on the ion flight space are incident on the folded portion composed of the reflectron electrode 244 and the back plate 247 and are gradually decelerated by the potential described later formed in the space, and the flight path is folded and detected. Incident on the vessel 245.
  • the voltage application unit 3 applies a predetermined voltage to the electrodes of each part of the mass analysis unit 2, and is particularly characterized in the operation of applying a predetermined voltage to each electrode arranged in the ion flight space of the analysis chamber 24. Have. This operation will be described later.
  • the control unit 4 includes a storage unit 41 and includes a power supply control unit 42 and a measurement execution unit 43 as functional blocks.
  • the entity of the control unit 4 is a personal computer, and the functional blocks operate by executing a program installed in advance in the computer.
  • An input unit 6 and a display unit 7 are connected to the control unit 4.
  • the storage unit 41 includes output voltage information regarding the polarity and magnitude of the voltage output from each power source connected to the electrode circuit of the voltage application unit 3, and polarity switching of each power source determined based on the output voltage information.
  • the polarity switching order information on is stored.
  • output voltage information and polarity switching order information shown in FIG. 4 are stored.
  • measurement conditions created by the user and measurement results obtained by using the measurement conditions are appropriately stored.
  • FIG. 5 shows an electrode circuit for applying a voltage to the second acceleration electrode 243, the flight tube 246, the reflectron electrodes 244A, 244B, and the back plate 247.
  • Each component shown in FIG. 5 and the control unit 4 correspond to the voltage applying device according to the present invention.
  • the second acceleration electrode 243 is connected to the three electrode connecting portions from the side near the power source P1, and the flight tube 246 is connected to the side near the power source P2.
  • three electrode connection portions and two resistors R3 are alternately arranged, and the front-side reflectron electrode 244A is provided in the three electrode connection portions. It is connected.
  • four resistors R5 total resistance 700 M ⁇ and four electrode connection portions are alternately arranged.
  • a rear-stage reflectron electrode 244B is connected to the three electrode connecting portions from the side close to the power source P3, and a back plate 247 is connected to the side close to the power source P4.
  • the power source P1 is connected to a 100 M ⁇ resistor R10 in parallel with the power source P1, and the power source P3 is connected to the electrode circuit via a 700 M ⁇ resistor R4.
  • the operation of the voltage application apparatus of the present embodiment will be described by taking as an example a case where positive ions are first measured and then negative ions are measured.
  • the characteristic voltage applying device in this embodiment will be described in detail, and the description of other operations will be omitted.
  • the measurement execution unit 43 reads the measurement conditions (including output voltage application information and polarity switching order information) from the storage unit 41, shifts each unit to the measurement state, Output voltage application information and polarity switching information are transmitted to the control unit 42.
  • the power supply control unit 42 outputs voltages of ⁇ 3 kV, ⁇ 7 kV, +2 kV, and +2 kV from the power supplies P1 to P4. As a result, the potential shown in FIG. 6 is formed in the ion flight space.
  • the measurement execution unit 43 switches the measurement target ions to negative ions and transmits a synchronization signal to the power supply control unit 42.
  • the power supply control unit 42 switches the polarity of the output voltages of the power supplies P1 to P4 one by one based on the polarity switching order information.
  • the polarity of the output voltage is switched one by one in the order of the power sources P3, P1, P2, and P4.
  • the TOF-MS1 of the present embodiment is configured so that the reverse current does not flow through any of the power supplies when the polarity of the output voltage of the power supplies P1 to P4 is switched when the ions to be measured are switched. Damage to the power supply can be prevented.
  • each electrode is connected by a resistor, and by setting the resistance value and the output voltage from each power source (P1 to P4), it is suitable for the flight of ions.
  • An appropriate potential can be formed.
  • an arbitrary circuit network Z that minimizes the number of resistors to be used while realizing a desired function can be used.
  • TOF-MS requires high mass accuracy on the order of ppm. Therefore, it is necessary to use an expensive resistor having high withstand voltage characteristics and high accuracy as a resistor connected to an electrode arranged in a flight space.
  • an arbitrary network Z as shown in FIG. 9 with the minimum number of resistors, a desired potential can be formed in the ion flight space while suppressing the cost related to the resistors.
  • the voltage application device can be used in a device other than TOF-MS as well.
  • a parallel resistor is used because it is inevitable that a reverse current flows through the power supply P1, but an output is performed so that no reverse current flows through any power supply depending on the configuration of the electrode circuit, the arrangement of the power supply, and the output voltage.
  • the switching order of the polarity of the voltage can be determined. In such a case, it is not necessary to provide a parallel resistor for any power supply.
  • all the power supplies P1 to P4 may be provided with parallel resistors R10 to R40 (Rn).
  • Rn parallel resistors
  • the parallel resistance Rn is provided in the power supply Pn
  • the resistance Rn is small, the current that constantly flows from Pn increases and the risk of reverse current decreases, but on the other hand, the capacity of the power supply Pn needs to be increased. Problems such as an increase in size, an increase in cost, and an increase in power consumption occur. Therefore, it is desirable to make Rn as large as possible.
  • the output impedance of each of the power supplies P1 to P4 is 0, and if a resistor Rn having such a magnitude that the current as much as the output current of each of the power supplies P1 to P4 flows is used, a reverse current is generated in the power supplies P1 to P4. There is no flow.
  • In_inv-max is the maximum value of the reverse current that flows from all the power sources other than the one power source Pn of interest to the target power source Pn
  • the maximum value of Rn is obtained by Vn / In_inv-max.
  • the value of the resistor Rn can be made slightly larger than the value calculated as the ideal power supply.
  • Time-of-flight mass spectrometer DESCRIPTION OF SYMBOLS 2 ... Mass spectrometry part 20 ... Ionization chamber 21 ... 1st intermediate chamber 22 ... 2nd intermediate chamber 23 ... 3rd intermediate chamber 24 ... Analysis chamber 241 ... Ion transport electrode 242 ... Orthogonal acceleration electrode (1st acceleration electrode) 243 ... Second acceleration electrode 244 ... Reflectron electrode 245 ... Detector 246 ... Flight tube 247 ... Back plate 3 ... Voltage application unit 4 ... Control unit 41 ... Storage unit 42 ... Power supply control unit 43 ... Measurement execution unit 6 ... Input unit 7: Display P ... Power supply R ... Resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

複数の電極接続部が隣接する電極接続部間に抵抗(R1,R3,R5)を介して直列に接続された電極回路と、前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源(P1、P2,P3,P4)とを有する電圧印加装置を用いて前記電極接続部に接続された電極(243,246,244A,244B、247)に電圧を印加する際に、前記電極に所定の極性及び大きさの電圧が印加されるように、複数の前記電源のそれぞれの出力電圧の極性及び大きさを決定し、前記複数の電源の出力電圧の極性に基づき、該複数の電源のうち少なくとも1つの電源Pの出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える。

Description

電圧印加方法、電圧印加装置及び飛行時間型質量分析装置
 本発明は、複数の電源を用いて複数の電極に所定の電圧を印加する電圧印加技術に関する。特に、飛行時間型質量分析装置において、複数の電極にそれぞれ所定の電圧を印加し、イオンを飛行させるためのポテンシャルをイオン飛行空間に形成する際に好適に用いることができる電圧印加技術に関する。
 飛行時間型質量分析装置(Time-of-Flight Mass Spectrometer。以下、「TOF-MS」とも呼ぶ。)では、質量分離部の入口に位置するイオン加速領域に進入した試料成分由来のイオンに一定の運動エネルギーを付与して一定距離の飛行空間を飛行させ、その飛行時間からイオンの質量電荷比を求める。
 飛行時間型質量分析装置においてイオンに運動エネルギーを付与する方式の1つに、直交加速(「垂直加速」や「直交引出し」等とも呼ばれる。)方式がある。直交加速方式のTOF-MSでは、イオン加速領域(直交加速部)に進入したイオンを、その進入方向と直交する方向に加速して飛行空間に導入し、飛行させる。そのため、直交加速部に導入されるイオンの飛行速度(エネルギー)のばらつきに影響されることなく高い質量分解能でイオンを分析することができる(例えば特許文献1)。
 図1(a)に、直交加速方式のリフレクトロン型TOF-MSの質量分離部100の概略構成の一例を示す。
 質量分離部100の前段(図の下方)から放出されたイオンは、直交加速電極102(対向配置された1組の電極102A、102Bからなり、電極102Bはグリッド電極)のイオン加速領域に進入し、該進入方向と直交する方向(グリッド電極102Bの側)に加速される。グリッド電極102Bを通過したイオンは、さらにイオン軌道の両側に配置された加速電極(第2加速電極)103によって加速され、フライトチューブ104により外縁が規定された飛行空間に入射される。飛行空間に入射されたイオンは、リフレクトロン電極105とバックプレート106により形成される空間に入射すると徐々に減速し、飛行経路が折り返されて検出器107に入射する。
 直交加速電極102から飛行空間に向かうイオンを上記のような軌道で飛行させるために、第2加速電極103、フライトチューブ104、リフレクトロン電極105、及びバックプレート106に適宜の大きさの電圧を印加し、図1(b)に示すような、第2加速電極103からフライトチューブ104に向かって低くなり、フライトチューブ104からリフレクトロン電極105、バックプレート106に向かって高くなる勾配を持つポテンシャルを形成する。
 図2は、第2加速電極103、フライトチューブ104、リフレクトロン電極105、及びバックプレート106に電圧を印加するための電圧印加装置の電極回路の一例である。この電極回路は、両端の電源P1、P4の間に複数の抵抗を直列に接続し、各抵抗の間に電極接続部を設けるとともに、中間位置の2箇所にも各1個ずつの電源P2、P3を接続したものである。
 電源P1と電源P2の間には4個の電極接続部と3個の抵抗Raが交互に配置されている。電源P1に近い側から3個の電極接続部には第2加速電極103が、電源P2に近い側にはフライトチューブ104が、それぞれ接続されている。
 電源P2と電源P3の間には3個の電極接続部と2個の抵抗Rcが交互に配置されており、該3個の電極接続部には前段側リフレクトロン電極105aが接続されている。
 電源P3と電源P4の間には4個の抵抗Reと4個の電極接続部が交互に配置されている。電源P3に近い側から3個の電極接続部には後段側リフレクトロン電極105bが、電源P4に近い側にはバックプレート106が、それぞれ接続されている。
 なお、電源P3は抵抗Rdを介して電極回路に接続されている。
 上記電源P1~P4からは、それぞれ、測定対象のイオンの極性に応じた極性(イオンと同極性又は逆極性)及び各部に形成するポテンシャルに応じた大きさの電圧を出力する。例えば、正イオンの分析時には、例えば、電源P1~P4からそれぞれV1(例えば-3kV)、V2(例えば-7kV)、V3(例えば+2kV)、V4(例えば+2kV)の電圧を出力する(第1状態)。そして、負イオンの分析時には各電源P1~P4の出力電圧の極性を反転する(第2状態)。ある試料について、該試料から生成される正イオンと負イオンを順に測定する場合には、まず第1状態で正イオンを測定し、続いて第2状態に切り替えて負イオンを測定する。
国際公開第2012/132550号 国際公開第2007/029327号
 一般的には、電源を電極回路から切り離し又は出力電圧をニュートラルに移行してから出力電圧の極性を切り替える。これに対して、特許文献2には、電極回路に接続したままで出力電圧の極性を切り替えるようにした電源が記載されている。この電圧出力装置では、電極回路の遮断やニュートラルへの移行が不要であるため、出力電圧の極性の切り替え時間を短縮することができる。ところが、上述のように複数の電源P1~P4を備える電圧印加装置において上記第1状態と第2状態を切り替える際に、電極回路に接続したままで電源P1~P4の出力電圧の極性を順番に切り替えていくと、状態間の切り替えを完了するまでの間に、一部の電源に対して該電源の出力電圧の極性と反対向きの電流(逆電流)が流れ、その電源が破損することがあるという問題があった。
 ここでは、イオン飛行空間に所定のポテンシャルを形成するために複数の電極を用いる飛行時間型質量分析装置の電圧印加装置を例に挙げて説明したが、同様に複数の電極に複数の電源から電圧を印加する他の電圧印加装置においても上記同様の問題があった。
 本発明が解決しようとする課題は、複数の電源を用いて複数の電極に所定の電圧を印加する電圧印加装置において、電源の出力電圧の極性を切り替える際に電源に逆電流が流れるリスクを低減することである。
 上記課題を解決するために成された本発明の第1の態様は、複数の電極接続部が隣接する電極接続部間に抵抗を介して直列に接続された電極回路と、前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源とを有する電圧印加装置を用いて前記電極接続部に接続された電極に電圧を印加する方法であって、
 a) 前記電極に所定の極性及び大きさの電圧が印加されるように、複数の前記電源のそれぞれの出力電圧の極性及び大きさを決定し、
 b) 前記複数の電源の出力電圧の極性に基づき、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える
 ことを特徴とする。
 上記電圧印加装置において、複数の電源の出力電圧の極性を順に切り替える際にいずれかの電源に逆電流が流れるかどうかは、使用する抵抗の大きさ及び数、電源の数とその電源の接続位置、及び出力電圧の極性や大きさといった構成パラメータに依存する。しかし、全ての電源の出力電圧の極性が同じになると、それらの出力電圧の大きさに差がある場合、構成パラメータに関係なくいずれかの電源には必ず逆電流が流れる。本発明に係る電圧印加方法では、複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態が維持されており電流は主にこれら極性の異なる電源間を流れることになるため、電源に逆電流が流れる可能性を低減して電源の破損リスクを低減することができる。
 また、上記課題を解決するために成された本発明の第2の態様である電圧印加装置は、
 a) 複数の電極接続部が隣接電極接続部間に抵抗を介して直列に接続された電極回路と、
 b) 前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源と、
 c) 複数の前記電源の出力電圧の極性及び大きさに関する情報である出力電圧情報と、前記出力電圧情報に基づいて決められた、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える順番に関する情報である極性切替順情報が保存された記憶部と、
 d) 前記複数の電源から前記出力電圧情報に基づく極性及び大きさの電圧を出力させ、所定のタイミングで前記極性切替順情報に基づいて前記複数の電源の出力電圧の極性を順に切り替える電源制御部と
 を備えることを特徴とする。
 前記所定のタイミングは、例えば飛行時間型質量分析装置において測定対象イオンの極性が切り替わるタイミングであり、この場合には測定を制御する測定制御部からの入力信号を受けて電源制御部が出力電圧の極性を切り替えるように構成することができる。
 前記複数の電源の出力電圧の極性を切り替える順番は、全通りの切り替え順のうち、逆電流が流れる電源の延べ数が最小になる順番であることが好ましい。前記逆電流が流れる電源の延べ数は、いずれかの電源に逆電流が流れる回数と、逆電流が流れる電源の数から定義することができる。例えば、全ての電源の出力電圧の極性の切り替えを終えるまでの1つの段階で2つの電源に逆電流が流れ、別の1つの段階で1つの電源に逆電流が流れる場合の述べ数は「3」となる。上述のとおり、逆電流が流れる可能性のある電源は構成パラメータに依存するため一律に規定することはできないものの、構成パラメータを決定した後にはシミュレーション等により決めることができる。
 本発明に係る電圧印加装置において理想的な状況は、複数の電源の出力電圧の極性を順に切り替える間、いずれの電源にも逆電流が流れないことである。しかし、例えばイオンの飛行空間にV字形状のポテンシャルを形成する場合のように、構成パラメータによっては少なくとも1つの電源に逆電流が流れる事が避けられない場合がある。
 そこで、本発明に係る電圧印加装置では、さらに、
 前記電源制御部が前記複数の電源の出力電圧の極性を切り替える間に逆電流が流れる電源と並列に抵抗が接続されている
 ことが好ましい。
 電源と並列に抵抗を設けると、抵抗がない場合に比べてその電源から流れる電流量が大きくなり、また逆電流が当該抵抗側の回路に向かいやすくなるため、該電源に逆電流が流れることを防止できる。
 本発明に係る電圧印加技術を用いることにより、電圧印加装置の複数の電源の出力電圧の極性を切り替える際に、電源に逆電流が流れるリスクを低減することができる。
従来の飛行時間型質量分析装置のイオン飛行空間の概略構成図。 従来の飛行時間型質量分析装置における電極回路及び電源の構成図。 本発明に係る電圧印加装置を備えた飛行時間型質量分析装置の概略構成図。 本実施例における出力電圧情報及び極性切替順情報の例。 本実施例の飛行時間型質量分析装置における電極回路及び電源の構成図。 本実施例の飛行時間型質量分析装置のイオン飛行空間に形成されるポテンシャルを説明する図。 本実施例における出力電圧の極性切替順と電流の流れる方向を説明する図。 本実施例において使用可能な別の電極回路における抵抗の配置例を説明する図。 本実施例において使用可能な電極回路における抵抗の配置を任意の回路網として示した図。
 本発明に係る電圧印加方法及び装置の一実施例について、以下図面を参照して説明する。本実施例の電圧印加方法及び装置は、直交加速部に配置した1組の電極に所定の周期でパルス電圧を印加することによりイオンを飛行空間に送出し、該飛行空間における飛行時間に基づきイオンの質量電荷比を決定する、直交加速方式の飛行時間型質量分析装置(TOF-MS)において、イオンの飛行空間に後述のポテンシャルを形成するために用いられる。
 図3に、本実施例のTOF-MS1の概略構成を示す。本実施例のTOF-MS1は、大別して質量分析部2、電圧印加部3、及びこれらの動作を制御する制御部4を有する。
 質量分析部2は、略大気圧であるイオン化室20と真空ポンプ(図示なし)により真空排気された高真空の分析室24との間に、段階的に真空度が高められた第1中間室21、第2中間室22、及び第3中間室23を備えた多段差動排気系の構成を有している。イオン化室20には液体試料に電荷を付与しながら噴霧するエレクトロスプレイイオン化用プローブ(ESIプローブ)201が設置されている。
 イオン化室20と第1中間室21は細径の加熱キャピラリ202を通して連通している。第1中間室21と第2中間室22は頂部に小孔を有するスキマー212で隔てられ、第1中間室21と第2中間室22にはそれぞれ、イオンを収束させつつ後段へ輸送するためのイオンガイド211、221が配置されている。第3中間室23には、イオンを質量電荷比に応じて分離する四重極マスフィルタ231、多重極イオンガイド233を内部に備えたコリジョンセル232、及びコリジョンセル232から放出されたイオンを輸送するためのイオンガイド234が配置されている。コリジョンセル232の内部には、アルゴン、窒素などのCIDガスが必要に応じて供給される。
 第3中間室23に位置するコリジョンセル232から放出されたイオンは、直交加速電極242(対向配置された1組の電極242A、242Bからなり、電極242Bはグリッド電極)のイオン加速領域に進入し、該進入方向と直交する方向(グリッド電極242Bの側)に加速される。グリッド電極242Bを通過したイオンは、さらにイオン軌道の両側に配置された加速電極(第2加速電極)243によって加速されてイオン飛行空間に入射される。イオン飛行空間に入射されたイオンは、該空間内に形成された後述のポテンシャルにより、リフレクトロン電極244とバックプレート247からなる折り返し部に入射して徐々に減速し、飛行経路が折り返されて検出器245に入射する。
 電圧印加部3は、質量分析部2の各部の電極に所定の電圧を印加するものであり、特に分析室24のイオン飛行空間に配置された各電極に所定の電圧を印加する動作に特徴を有している。この動作については後述する。
 制御部4は、記憶部41を有するとともに、機能ブロックとして電源制御部42及び測定実行部43を備えている。制御部4の実体はパーソナルコンピュータであり、該コンピュータに予めインストールされたプログラムを実行することにより上記機能ブロックが動作する。また、制御部4には、入力部6、表示部7が接続されている。
 記憶部41には、電圧印加部3の電極回路に接続されている各電源から出力する電圧の極性及び大きさに関する出力電圧情報と、該出力電圧情報に基づいて決められた各電源の極性切替に関する極性切替順情報が保存されている。本実施例では、図4に示す出力電圧情報及び極性切替順情報が保存されている。また、使用者により作成される測定条件や該測定条件を用いることにより得られる測定結果が適宜に保存される。
 次に、電圧印加部3のうち、本実施例において特徴的な構成及び動作を説明する。
 図5は、第2加速電極243、フライトチューブ246、リフレクトロン電極244A、244B、及びバックプレート247に電圧を印加するための電極回路である。図5に示す各構成要素と制御部4が、本発明に係る電圧印加装置に対応する。
 電源P1と電源P2の間には4個の電極接続部と3個の抵抗R1(合計抵抗200MΩ)が交互に配置されている。電源P1に近い側から3個の電極接続部には第2加速電極243が、電源P2に近い側にはフライトチューブ246が、それぞれ接続されている。
 電源P2と電源P3の間には3個の電極接続部と2個の抵抗R3(合計抵抗900MΩ)が交互に配置されており、該3個の電極接続部には前段側リフレクトロン電極244Aが接続されている。
 電源P3と電源P4の間には4個の抵抗R5(合計抵抗700MΩ)と4個の電極接続部が交互に配置されている。電源P3に近い側から3個の電極接続部には後段側リフレクトロン電極244Bが、電源P4に近い側にはバックプレート247が、それぞれ接続されている。
 なお、電源P1には該電源P1と並列に100MΩの抵抗R10が接続されており、電源P3は700MΩの抵抗R4を介して電極回路に接続されている。
 ここで、まず正イオンを測定し、続いて負イオンを測定する場合を例に挙げて、本実施例の電圧印加装置の動作を説明する。ただし、本実施例において特徴的な電圧印加装置の動作についてのみ詳しく説明し、他の動作は説明を省略する。
 使用者が入力部6を通じて測定開始を指示すると、測定実行部43は記憶部41から測定条件(出力電圧印加情報及び極性切替順情報を含む)を読み出し、各部を測定状態に移行させるとともに、電源制御部42に出力電圧印加情報及び極性切り替え情報を送信する。電源制御部42は電源P1~P4から-3kV、-7kV、+2kV、+2kVの電圧を出力させる。これにより、イオン飛行空間には図6に示すポテンシャルが形成される。
 所定時間、正イオンを測定した後、測定実行部43は測定対象イオンを負イオンに切り替えるとともに電源制御部42に同期信号を送信する。電源制御部42は、これを受け、極性切替順情報に基づいて電源P1~P4の出力電圧の極性を1つずつ切り替える。本実施例では、図7(a)に示すように、電源P3、P1、P2、P4の順に1つずつ出力電圧の極性が切り替えられる。図7(a)から分かるように、本実施例では、測定対象イオンの極性に応じて電源P1~P4の出力電圧の極性を順次切り替える際、いずれの電源にも逆電流が流れないように予め決められた極性切替順が作成され記憶部41に保存されている。
 図7(b)に示す比較例のように、電源P1~P4の順に出力電圧の極性を切り替えると、電源P2の出力電圧の極性を切り替えた時点で全ての電源からの出力電圧が同一極性になる。このように全ての出力電圧の極性が同じになると、電極回路の構成に関係なく少なくとも1つの電源に逆電流が流れてしまい電源が破損するリスクがあった。図7(b)に示す例では、電源P2の出力電圧を切り替えた時点で電源P3及びP4に、また電源P3の出力電圧の極性を切り替えた時点で電源P4に逆電流が流れてしまう。
 これに対し、本実施例のTOF-MS1では、測定対象イオンの切替時に電源P1~P4の出力電圧の極性を切り替える際、いずれの電源にも逆電流が流れないように構成されているため、電源の破損を防止することができる。
 本実施例のようにイオン飛行空間にV字状のポテンシャルを形成する場合、電源P1についてはイオンの測定中に逆電流が流れてしまうことが避けられないため、該電源P1と並列に抵抗R10を接続している。これにより電源P1から出力する電流を大きくする必要が生じるものの、並列抵抗を接続した回路側に電流を流すことで電源P1に逆電流が流れるのを防止することができる。
 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。上記実施例における具体的な数値や電源及び抵抗の配置は1つの具体例に過ぎず、各電極に印加される電圧値を決定する抵抗回路網として任意の構成を採ることができる。例えば、図8(電極の図示略)に示すように各電極間を抵抗で接続し、これらの抵抗値と各電源(P1~P4)からの出力電圧を設定することにより、イオンの飛行に適した適宜のポテンシャルを形成することができる。
 また、図9(電極の図示略)に示すように、所望の機能を実現しつつ使用する抵抗の数を最小化した、任意の回路網Zを用いることもできる。一般に、TOF-MSではppmオーダーの高い質量精度が求められるため、飛行空間に配置される電極に接続される抵抗として、高耐電圧特性を有し、かつ高精度である高価な抵抗を用いる必要がある。図9に示すような任意の回路網Zを必要最小限の抵抗の数で構成することにより、抵抗に係るコストを抑えつつ所望のポテンシャルをイオン飛行空間に形成することができる。
 本発明に係る電圧印加装置は、TOF-MS以外の装置においても同様に用いることもできる。
 上記実施例では電源P1に逆電流が流れることが避けられないため並列抵抗を用いたが、電極回路の構成と電源の配置及び出力電圧によってはいずれの電源にも逆電流が流れないように出力電圧の極性の切替順を決定することができる場合もある。こうした場合にはいずれの電源にも並列抵抗を設ける必要がない。
 あるいは、逆に全ての電源P1~P4(Pn)に並列抵抗R10~R40(Rn)を設けるようにしてもよい。これにより、電源制御部42が誤作動したり、記憶部41に保存されている極性切替順情報に誤りがあったりする場合でも各電源P1~P4に逆電流が流れるのを防ぐことができる。また、各電源P1~P4に並列抵抗が接続されることで各電源P1~P4のそれぞれが流す電流量が安定したり、放電のリスクを回避できたりするという効果も得られる。
 なお、電源Pnに並列抵抗Rnを設ける際、抵抗Rnが小さいとPnから定常的に流れる電流が大きくなり逆電流のリスクは低下するが、その一方、電源Pnの容量を大きくする必要があるため大型化、コストアップ、あるいは消費電力の増大といった問題が生じる。従って、Rnはできるだけ大きくすることが望ましい。理想的には各電源P1~P4の出力インピーダンスは0であり、各電源P1~P4の出力電流と同じだけの電流が流れるような大きさの抵抗Rnを用いれば電源P1~P4に逆電流が流れることはない。着目する1つの電源Pn以外の全ての電源が着目電源Pnに流す逆電流の最大値をIn_inv-maxとするとRnの最大値はVn/In_inv-maxで求められる。ただし、実際の電源には出力インピーダンスが存在するため、抵抗Rnの値は理想電源として計算した値よりも多少大きくすることができる。
1…飛行時間型質量分析装置(TOF-MS)
2…質量分析部
 20…イオン化室
 21…第1中間室
 22…第2中間室
 23…第3中間室
 24…分析室
  241…イオン輸送電極
  242…直交加速電極(第1加速電極)
  243…第2加速電極
  244…リフレクトロン電極
  245…検出器
  246…フライトチューブ
  247…バックプレート
3…電圧印加部
4…制御部
 41…記憶部
 42…電源制御部
 43…測定実行部
6…入力部
7…表示部
P…電源
R…抵抗

Claims (6)

  1.  複数の電極接続部が隣接する電極接続部間に抵抗を介して直列に接続された電極回路と、前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源とを有する電圧印加装置を用いて前記電極接続部に接続された電極に電圧を印加する方法であって、
     a) 前記電極に所定の極性及び大きさの電圧が印加されるように、複数の前記電源のそれぞれの出力電圧の極性及び大きさを決定し、
     b) 前記複数の電源の出力電圧の極性に基づき、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える
     ことを特徴とする電圧印加方法。
  2.  a) 複数の電極接続部が隣接電極接続部間に抵抗を介して直列に接続された電極回路と、
     b) 前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源と、
     c) 複数の前記電源の出力電圧の極性及び大きさに関する情報である出力電圧情報と、前記出力電圧情報に基づいて決められた、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える順番に関する情報である極性切替順情報が保存された記憶部と、
     d) 前記複数の電源から前記出力電圧情報に基づく極性及び大きさの電圧を出力させ、所定のタイミングで前記極性切替順情報に基づいて前記複数の電源の出力電圧の極性を順に切り替える電源制御部と
     を備えることを特徴とする電圧印加装置。
  3.  前記複数の電源の出力電圧の極性を切り替える順番が、逆電流が流れる電源の延べ数が最小になる順番であることを特徴とする請求項2に記載の電圧印加装置。
  4.  前記複数の電源のうちの一部の電源に該電源と並行に抵抗が接続されていることを特徴とする請求項2に記載の電圧印加装置。
  5.  前記電源制御部が前記複数の電源の出力電圧の極性を切り替える間に逆電流が流れる電源に該電源と並行に抵抗が接続されていることを特徴とする請求項2に記載の電圧印加装置。
  6.  請求項2に記載の電圧印加装置を有する飛行時間型質量分析装置。
PCT/JP2016/058823 2016-03-18 2016-03-18 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 WO2017158842A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16894460.1A EP3432340A4 (en) 2016-03-18 2016-03-18 VOLTAGE APPLICATION METHOD, VOLTAGE APPLICATION DEVICE AND AIR-TIME SPECTROMETER
CN201680083763.4A CN108885965B (zh) 2016-03-18 2016-03-18 电压施加方法、电压施加装置以及飞行时间质谱分析装置
US16/085,186 US10475635B2 (en) 2016-03-18 2016-03-18 Voltage application method, voltage application device, and time-of-flight mass spectrometer
PCT/JP2016/058823 WO2017158842A1 (ja) 2016-03-18 2016-03-18 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置
JP2018505209A JP6485590B2 (ja) 2016-03-18 2016-03-18 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058823 WO2017158842A1 (ja) 2016-03-18 2016-03-18 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置

Publications (1)

Publication Number Publication Date
WO2017158842A1 true WO2017158842A1 (ja) 2017-09-21

Family

ID=59850145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058823 WO2017158842A1 (ja) 2016-03-18 2016-03-18 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置

Country Status (5)

Country Link
US (1) US10475635B2 (ja)
EP (1) EP3432340A4 (ja)
JP (1) JP6485590B2 (ja)
CN (1) CN108885965B (ja)
WO (1) WO2017158842A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229804A1 (ja) * 2018-05-28 2019-12-05 株式会社島津製作所 分析装置
WO2019229803A1 (ja) * 2018-05-28 2019-12-05 株式会社島津製作所 分析装置
US11244817B2 (en) 2018-05-31 2022-02-08 Shimadzu Corporation Analytical device, analysis method and program
US11270875B2 (en) 2018-07-20 2022-03-08 Shimadzu Corporation Mass spectrometer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107667B1 (en) * 2020-08-07 2021-08-31 Thermo Fisher Scientific Dual polarity ion management
EP4354487A4 (en) * 2021-06-09 2024-09-25 Shimadzu Corp TIME-OF-FLIGHT MASS SPECTROMETER AND TIME-OF-FLIGHT MASS SPECTROMETRY
CN118039450B (zh) * 2024-04-11 2024-06-25 西安聚能医工科技有限公司 一种增强离子束流聚焦的反射式飞行时间质谱仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349853A (ja) * 2000-04-06 2001-12-21 Seiko Instruments Inc 可搬型蛍光x線分析計
JP2006156259A (ja) * 2004-11-30 2006-06-15 Sumitomo Eaton Noba Kk ビーム照射装置及びビーム照射精度高度化方法
WO2007029327A1 (ja) 2005-09-08 2007-03-15 Shimadzu Corporation 高電圧電源装置及び該電源装置を用いた質量分析装置
JP2009037936A (ja) * 2007-08-03 2009-02-19 Hitachi Medical Corp 高電圧スイッチ制御回路とそれを用いたx線装置
JP2011522365A (ja) * 2008-05-30 2011-07-28 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー 質量分析計
WO2012132550A1 (ja) 2011-03-25 2012-10-04 株式会社島津製作所 飛行時間型質量分析装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9802115D0 (en) * 1998-01-30 1998-04-01 Shimadzu Res Lab Europe Ltd Time-of-flight mass spectrometer
US6469296B1 (en) * 2000-01-14 2002-10-22 Agilent Technologies, Inc. Ion acceleration apparatus and method
JP3797200B2 (ja) * 2001-11-09 2006-07-12 株式会社島津製作所 飛行時間型質量分析装置
GB0624535D0 (en) * 2006-12-08 2007-01-17 Micromass Ltd Mass spectrometer
US7564026B2 (en) * 2007-05-01 2009-07-21 Virgin Instruments Corporation Linear TOF geometry for high sensitivity at high mass
JP4922900B2 (ja) * 2007-11-13 2012-04-25 日本電子株式会社 垂直加速型飛行時間型質量分析装置
US8653452B2 (en) * 2010-05-07 2014-02-18 DH Technologies Developmenty Pte. Ltd. Triple switch topology for delivery ultrafast pulser polarity switching for mass spectrometry
GB2491305B (en) * 2010-06-08 2014-05-21 Micromass Ltd Mass spectrometer with beam expander
WO2013051321A1 (ja) * 2011-10-03 2013-04-11 株式会社島津製作所 飛行時間型質量分析装置
GB201119059D0 (en) * 2011-11-04 2011-12-21 Micromass Ltd Improvements to tof mass spectrometers using linear accelerator devices
US9373487B2 (en) * 2013-05-08 2016-06-21 Shimadzu Corporation Mass spectrometer
US9728386B1 (en) * 2014-12-08 2017-08-08 Flir Detection, Inc. Mass analysis instruments and methods
US9984864B2 (en) * 2015-11-03 2018-05-29 Bruker Daltonik Gmbh Spatial zoom mode for accumulative trapped ion mobility spectrometry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349853A (ja) * 2000-04-06 2001-12-21 Seiko Instruments Inc 可搬型蛍光x線分析計
JP2006156259A (ja) * 2004-11-30 2006-06-15 Sumitomo Eaton Noba Kk ビーム照射装置及びビーム照射精度高度化方法
WO2007029327A1 (ja) 2005-09-08 2007-03-15 Shimadzu Corporation 高電圧電源装置及び該電源装置を用いた質量分析装置
JP2009037936A (ja) * 2007-08-03 2009-02-19 Hitachi Medical Corp 高電圧スイッチ制御回路とそれを用いたx線装置
JP2011522365A (ja) * 2008-05-30 2011-07-28 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー 質量分析計
WO2012132550A1 (ja) 2011-03-25 2012-10-04 株式会社島津製作所 飛行時間型質量分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432340A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229804A1 (ja) * 2018-05-28 2019-12-05 株式会社島津製作所 分析装置
WO2019229803A1 (ja) * 2018-05-28 2019-12-05 株式会社島津製作所 分析装置
JPWO2019229803A1 (ja) * 2018-05-28 2021-05-13 株式会社島津製作所 分析装置
JPWO2019229804A1 (ja) * 2018-05-28 2021-05-13 株式会社島津製作所 分析装置
US11244817B2 (en) 2018-05-31 2022-02-08 Shimadzu Corporation Analytical device, analysis method and program
US11270875B2 (en) 2018-07-20 2022-03-08 Shimadzu Corporation Mass spectrometer

Also Published As

Publication number Publication date
CN108885965B (zh) 2020-02-11
JP6485590B2 (ja) 2019-03-20
EP3432340A1 (en) 2019-01-23
US10475635B2 (en) 2019-11-12
EP3432340A4 (en) 2019-03-27
US20190088460A1 (en) 2019-03-21
CN108885965A (zh) 2018-11-23
JPWO2017158842A1 (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6485590B2 (ja) 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置
JP6287419B2 (ja) 飛行時間型質量分析装置
US20160225602A1 (en) Time-of-flight mass spectrometry using multi-channel detectors
US10566179B2 (en) Time-of-flight mass spectrometer
US7491931B2 (en) Power supply regulation using a feedback circuit comprising an AC and DC component
JP5686566B2 (ja) 質量分析装置
US9607817B1 (en) Systems and methods for ion separation
US9455132B2 (en) Ion mobility spectrometry-mass spectrometry (IMS-MS) with improved ion transmission and IMS resolution
JP6237896B2 (ja) 質量分析装置
WO2019030475A1 (en) MASS SPECTROMETER WITH MULTIPASSAGE
WO2005083742A3 (en) A tandem ion-trap time-of-flight mass spectrometer
US10984998B2 (en) Mass spectrometer
US20200278318A1 (en) Systems and methods for ion separation
WO2015151160A1 (ja) 質量分析方法及び質量分析装置
US10186413B2 (en) Time-of-flight mass spectrometer
JPWO2015151160A6 (ja) 質量分析方法及び質量分析装置
JP5673848B2 (ja) 質量分析装置
WO2006098230A1 (ja) 質量分析装置
EP2798665A1 (en) High voltage power supply filter
GB2617229A (en) High resolution multi-reflection time-of-flight mass analyser
US11367609B2 (en) Mass spectrometer
US9536723B1 (en) Thin field terminator for linear quadrupole ion guides, and related systems and methods
US20230290629A1 (en) High resolution multi-reflection time-of-flight mass analyser
US10147593B2 (en) Ion sorter
JP2023016583A (ja) 直交加速飛行時間型質量分析装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016894460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016894460

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894460

Country of ref document: EP

Kind code of ref document: A1