WO2017158842A1 - 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 - Google Patents
電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 Download PDFInfo
- Publication number
- WO2017158842A1 WO2017158842A1 PCT/JP2016/058823 JP2016058823W WO2017158842A1 WO 2017158842 A1 WO2017158842 A1 WO 2017158842A1 JP 2016058823 W JP2016058823 W JP 2016058823W WO 2017158842 A1 WO2017158842 A1 WO 2017158842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarity
- voltage
- output voltage
- electrode
- power supplies
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/40—Time-of-flight spectrometers
- H01J49/401—Time-of-flight spectrometers characterised by orthogonal acceleration, e.g. focusing or selecting the ions, pusher electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/022—Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/06—Electron- or ion-optical arrangements
- H01J49/067—Ion lenses, apertures, skimmers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/40—Time-of-flight spectrometers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/18—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to reversal of direct current
Definitions
- the present invention relates to a voltage application technique for applying a predetermined voltage to a plurality of electrodes using a plurality of power supplies.
- the present invention relates to a voltage application technique that can be suitably used when a predetermined voltage is applied to each of a plurality of electrodes and a potential for flying ions is formed in an ion flight space in a time-of-flight mass spectrometer.
- Time-of-Flight Mass Spectrometer Time-of-Flight Mass Spectrometer, hereinafter also referred to as “TOF-MS”
- TOF-MS Time-of-Flight Mass Spectrometer
- One of the methods for imparting kinetic energy to ions in a time-of-flight mass spectrometer is an orthogonal acceleration (also called “vertical acceleration” or “orthogonal extraction”) method.
- orthogonal acceleration type TOF-MS ions that have entered the ion acceleration region (orthogonal acceleration part) are accelerated in a direction perpendicular to the direction of the entry and introduced into the flight space for flight. Therefore, ions can be analyzed with high mass resolution without being affected by variations in flight speed (energy) of ions introduced into the orthogonal acceleration unit (for example, Patent Document 1).
- FIG. 1A shows an example of a schematic configuration of a mass separation unit 100 of an orthogonal acceleration type reflectron type TOF-MS.
- Ions emitted from the front stage (lower side of the figure) of the mass separation unit 100 enter the ion acceleration region of the orthogonal acceleration electrode 102 (a pair of electrodes 102A and 102B arranged opposite to each other, and the electrode 102B is a grid electrode).
- the electrode 102B is a grid electrode.
- the ions that have passed through the grid electrode 102B are further accelerated by acceleration electrodes (second acceleration electrodes) 103 arranged on both sides of the ion trajectory, and are incident on a flight space whose outer edge is defined by the flight tube 104.
- the ions incident on the flight space are gradually decelerated when entering the space formed by the reflectron electrode 105 and the back plate 106, and the flight path is turned back and incident on the detector 107.
- an appropriate voltage is applied to the second acceleration electrode 103, the flight tube 104, the reflectron electrode 105, and the back plate 106. Then, as shown in FIG. 1B, a potential having a gradient that decreases from the second acceleration electrode 103 toward the flight tube 104 and increases from the flight tube 104 toward the reflectron electrode 105 and the back plate 106 is formed. To do.
- FIG. 2 is an example of an electrode circuit of a voltage application device for applying a voltage to the second acceleration electrode 103, the flight tube 104, the reflectron electrode 105, and the back plate 106.
- this electrode circuit a plurality of resistors are connected in series between the power sources P1 and P4 at both ends, an electrode connection portion is provided between the resistors, and one power source P2 is provided at each of two intermediate positions. P3 is connected.
- the second acceleration electrode 103 is connected to the three electrode connecting portions from the side near the power source P1, and the flight tube 104 is connected to the side near the power source P2.
- the front-side reflectron electrode 105a is connected to the three electrode connecting portions.
- four resistors Re and four electrode connection portions are alternately arranged.
- a rear-stage reflectron electrode 105b is connected to the three electrode connecting portions from the side close to the power supply P3, and a back plate 106 is connected to the side close to the power supply P4.
- the power source P3 is connected to the electrode circuit via the resistor Rd.
- the power supplies P1 to P4 each output a voltage corresponding to the polarity of the ion to be measured (same polarity or opposite polarity as the ion) and the potential formed in each part.
- voltages V1 for example, ⁇ 3 kV
- V2 for example ⁇ 7 kV
- V3 for example +2 kV
- V4 for example +2 kV
- the polarity of the output voltage of each of the power supplies P1 to P4 is reversed (second state).
- Patent Document 2 describes a power supply in which the polarity of an output voltage is switched while being connected to an electrode circuit.
- the switching time of the polarity of the output voltage can be shortened.
- the polarity of the output voltage of the power sources P1 to P4 is sequentially changed while being connected to the electrode circuit.
- the current (reverse current) in the direction opposite to the polarity of the output voltage of the power supply flows to some power supplies until the switching between the states is completed, and the power supply may be damaged. There was a problem that there was.
- a voltage application device of a time-of-flight mass spectrometer that uses a plurality of electrodes to form a predetermined potential in the ion flight space has been described as an example. Similarly, a voltage from a plurality of power sources is applied to a plurality of electrodes. Other voltage application devices that apply the above have the same problem as described above.
- the problem to be solved by the present invention is to reduce the risk of reverse current flowing through the power supply when switching the polarity of the output voltage of the power supply in a voltage application device that applies a predetermined voltage to a plurality of electrodes using a plurality of power supplies. It is to be.
- an electrode circuit in which a plurality of electrode connection portions are connected in series between adjacent electrode connection portions via a resistor, and both ends of the electrode circuit
- a method of applying a voltage to the electrode connected to the electrode connecting portion using a voltage applying device connected to at least one intermediate position and having a power source that outputs a voltage of both positive and negative polarities a) determining the polarity and magnitude of each output voltage of the plurality of power sources so that a voltage of a predetermined polarity and magnitude is applied to the electrodes; b) Based on the polarity of the output voltage of the plurality of power sources, the polarity of the output voltage of at least one power source among the plurality of power sources is maintained different from the others, and the polarity of the output voltage of the plurality of power sources is one.
- the polarity of the output voltage of all the power supplies is switched by switching each time.
- the state in which the polarity of the output voltage of at least one power source among the plurality of power sources is different from the other is maintained, and the current flows mainly between the power sources having different polarities.
- the possibility of reverse current flowing through the power supply can be reduced, and the risk of power supply damage can be reduced.
- a voltage application device which has been made to solve the above problems, a) an electrode circuit in which a plurality of electrode connection portions are connected in series via resistors between adjacent electrode connection portions; b) a power supply that outputs positive and negative voltage voltages respectively connected to both ends of the electrode circuit and at least one intermediate position; c) Output voltage information, which is information related to the polarity and magnitude of the output voltages of the plurality of power supplies, and the polarity of the output voltage of at least one of the plurality of power supplies determined based on the output voltage information.
- a storage unit storing polarity switching order information, which is information regarding the order of switching the polarity of the output voltages of all the power supplies by switching the polarity of the output voltages of the plurality of power supplies one by one while maintaining a different state from the others
- polarity switching order information which is information regarding the order of switching the polarity of the output voltages of all the power supplies by switching the polarity of the output voltages of the plurality of power supplies one by one while maintaining a different state from the others
- a power supply control unit that outputs a voltage having a polarity and a magnitude based on the output voltage information from the plurality of power supplies, and sequentially switches the polarity of the output voltage of the plurality of power supplies based on the polarity switching order information at a predetermined timing. It is characterized by including these.
- the predetermined timing is, for example, a timing at which the polarity of the measurement target ion is switched in a time-of-flight mass spectrometer.
- the power supply control unit receives the input signal from the measurement control unit that controls the measurement, It can be configured to switch polarity.
- the order in which the polarities of the output voltages of the plurality of power supplies are switched is preferably the order in which the total number of power supplies through which a reverse current flows is minimized among all switching orders.
- the total number of power supplies through which the reverse current flows can be defined from the number of times the reverse current flows through any of the power supplies and the number of power supplies through which the reverse current flows. For example, the number of statements when the reverse current flows through two power supplies in one stage until the switching of the polarity of the output voltage of all the power supplies is completed and the reverse current flows through one power supply in another stage is “3”. " As described above, the power source that can flow a reverse current depends on the configuration parameter and cannot be defined uniformly. However, after the configuration parameter is determined, it can be determined by simulation or the like.
- an ideal situation is that no reverse current flows through any of the power supplies while the polarity of the output voltages of the plurality of power supplies is sequentially switched.
- a reverse current flows to at least one power source depending on the configuration parameters, for example, when a V-shaped potential is formed in the ion flight space.
- a resistor is connected in parallel with the power supply through which a reverse current flows while the power supply control unit switches the polarity of the output voltage of the plurality of power supplies.
- the amount of current flowing from the power supply is larger than when there is no resistance, and the reverse current is more likely to go to the circuit on the resistance side, so that the reverse current flows through the power supply. Can be prevented.
- the schematic block diagram of the ion flight space of the conventional time-of-flight mass spectrometer The block diagram of the electrode circuit and power supply in the conventional time-of-flight mass spectrometer.
- the schematic block diagram of the time-of-flight mass spectrometer provided with the voltage application apparatus which concerns on this invention.
- the voltage application method and apparatus sends ions to a flight space by applying a pulse voltage to a set of electrodes arranged in an orthogonal acceleration unit at a predetermined cycle, and ions are generated based on the flight time in the flight space.
- ions are generated based on the flight time in the flight space.
- TOF-MS time-of-flight mass spectrometer
- FIG. 3 shows a schematic configuration of the TOF-MS 1 of this embodiment.
- the TOF-MS 1 of the present embodiment roughly includes a mass analyzing unit 2, a voltage applying unit 3, and a control unit 4 that controls these operations.
- the mass analysis unit 2 includes a first intermediate chamber whose degree of vacuum is increased stepwise between an ionization chamber 20 that is substantially atmospheric pressure and a high-vacuum analysis chamber 24 that is evacuated by a vacuum pump (not shown). 21, the second intermediate chamber 22, and the third intermediate chamber 23.
- the ionization chamber 20 is provided with an electrospray ionization probe (ESI probe) 201 that sprays while applying a charge to a liquid sample.
- ESI probe electrospray ionization probe
- the ionization chamber 20 and the first intermediate chamber 21 communicate with each other through a small heating capillary 202.
- the first intermediate chamber 21 and the second intermediate chamber 22 are separated by a skimmer 212 having a small hole at the top, and each of the first intermediate chamber 21 and the second intermediate chamber 22 is used for transporting ions to the subsequent stage while converging.
- Ion guides 211 and 221 are arranged.
- a quadrupole mass filter 231 that separates ions according to a mass-to-charge ratio
- a collision cell 232 having a multipole ion guide 233 therein, and ions discharged from the collision cell 232 are transported.
- An ion guide 234 is arranged for this purpose.
- a CID gas such as argon or nitrogen is supplied into the collision cell 232 as necessary.
- the acceleration electrodes second acceleration electrodes
- the ions incident on the ion flight space are incident on the folded portion composed of the reflectron electrode 244 and the back plate 247 and are gradually decelerated by the potential described later formed in the space, and the flight path is folded and detected. Incident on the vessel 245.
- the voltage application unit 3 applies a predetermined voltage to the electrodes of each part of the mass analysis unit 2, and is particularly characterized in the operation of applying a predetermined voltage to each electrode arranged in the ion flight space of the analysis chamber 24. Have. This operation will be described later.
- the control unit 4 includes a storage unit 41 and includes a power supply control unit 42 and a measurement execution unit 43 as functional blocks.
- the entity of the control unit 4 is a personal computer, and the functional blocks operate by executing a program installed in advance in the computer.
- An input unit 6 and a display unit 7 are connected to the control unit 4.
- the storage unit 41 includes output voltage information regarding the polarity and magnitude of the voltage output from each power source connected to the electrode circuit of the voltage application unit 3, and polarity switching of each power source determined based on the output voltage information.
- the polarity switching order information on is stored.
- output voltage information and polarity switching order information shown in FIG. 4 are stored.
- measurement conditions created by the user and measurement results obtained by using the measurement conditions are appropriately stored.
- FIG. 5 shows an electrode circuit for applying a voltage to the second acceleration electrode 243, the flight tube 246, the reflectron electrodes 244A, 244B, and the back plate 247.
- Each component shown in FIG. 5 and the control unit 4 correspond to the voltage applying device according to the present invention.
- the second acceleration electrode 243 is connected to the three electrode connecting portions from the side near the power source P1, and the flight tube 246 is connected to the side near the power source P2.
- three electrode connection portions and two resistors R3 are alternately arranged, and the front-side reflectron electrode 244A is provided in the three electrode connection portions. It is connected.
- four resistors R5 total resistance 700 M ⁇ and four electrode connection portions are alternately arranged.
- a rear-stage reflectron electrode 244B is connected to the three electrode connecting portions from the side close to the power source P3, and a back plate 247 is connected to the side close to the power source P4.
- the power source P1 is connected to a 100 M ⁇ resistor R10 in parallel with the power source P1, and the power source P3 is connected to the electrode circuit via a 700 M ⁇ resistor R4.
- the operation of the voltage application apparatus of the present embodiment will be described by taking as an example a case where positive ions are first measured and then negative ions are measured.
- the characteristic voltage applying device in this embodiment will be described in detail, and the description of other operations will be omitted.
- the measurement execution unit 43 reads the measurement conditions (including output voltage application information and polarity switching order information) from the storage unit 41, shifts each unit to the measurement state, Output voltage application information and polarity switching information are transmitted to the control unit 42.
- the power supply control unit 42 outputs voltages of ⁇ 3 kV, ⁇ 7 kV, +2 kV, and +2 kV from the power supplies P1 to P4. As a result, the potential shown in FIG. 6 is formed in the ion flight space.
- the measurement execution unit 43 switches the measurement target ions to negative ions and transmits a synchronization signal to the power supply control unit 42.
- the power supply control unit 42 switches the polarity of the output voltages of the power supplies P1 to P4 one by one based on the polarity switching order information.
- the polarity of the output voltage is switched one by one in the order of the power sources P3, P1, P2, and P4.
- the TOF-MS1 of the present embodiment is configured so that the reverse current does not flow through any of the power supplies when the polarity of the output voltage of the power supplies P1 to P4 is switched when the ions to be measured are switched. Damage to the power supply can be prevented.
- each electrode is connected by a resistor, and by setting the resistance value and the output voltage from each power source (P1 to P4), it is suitable for the flight of ions.
- An appropriate potential can be formed.
- an arbitrary circuit network Z that minimizes the number of resistors to be used while realizing a desired function can be used.
- TOF-MS requires high mass accuracy on the order of ppm. Therefore, it is necessary to use an expensive resistor having high withstand voltage characteristics and high accuracy as a resistor connected to an electrode arranged in a flight space.
- an arbitrary network Z as shown in FIG. 9 with the minimum number of resistors, a desired potential can be formed in the ion flight space while suppressing the cost related to the resistors.
- the voltage application device can be used in a device other than TOF-MS as well.
- a parallel resistor is used because it is inevitable that a reverse current flows through the power supply P1, but an output is performed so that no reverse current flows through any power supply depending on the configuration of the electrode circuit, the arrangement of the power supply, and the output voltage.
- the switching order of the polarity of the voltage can be determined. In such a case, it is not necessary to provide a parallel resistor for any power supply.
- all the power supplies P1 to P4 may be provided with parallel resistors R10 to R40 (Rn).
- Rn parallel resistors
- the parallel resistance Rn is provided in the power supply Pn
- the resistance Rn is small, the current that constantly flows from Pn increases and the risk of reverse current decreases, but on the other hand, the capacity of the power supply Pn needs to be increased. Problems such as an increase in size, an increase in cost, and an increase in power consumption occur. Therefore, it is desirable to make Rn as large as possible.
- the output impedance of each of the power supplies P1 to P4 is 0, and if a resistor Rn having such a magnitude that the current as much as the output current of each of the power supplies P1 to P4 flows is used, a reverse current is generated in the power supplies P1 to P4. There is no flow.
- In_inv-max is the maximum value of the reverse current that flows from all the power sources other than the one power source Pn of interest to the target power source Pn
- the maximum value of Rn is obtained by Vn / In_inv-max.
- the value of the resistor Rn can be made slightly larger than the value calculated as the ideal power supply.
- Time-of-flight mass spectrometer DESCRIPTION OF SYMBOLS 2 ... Mass spectrometry part 20 ... Ionization chamber 21 ... 1st intermediate chamber 22 ... 2nd intermediate chamber 23 ... 3rd intermediate chamber 24 ... Analysis chamber 241 ... Ion transport electrode 242 ... Orthogonal acceleration electrode (1st acceleration electrode) 243 ... Second acceleration electrode 244 ... Reflectron electrode 245 ... Detector 246 ... Flight tube 247 ... Back plate 3 ... Voltage application unit 4 ... Control unit 41 ... Storage unit 42 ... Power supply control unit 43 ... Measurement execution unit 6 ... Input unit 7: Display P ... Power supply R ... Resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
質量分離部100の前段(図の下方)から放出されたイオンは、直交加速電極102(対向配置された1組の電極102A、102Bからなり、電極102Bはグリッド電極)のイオン加速領域に進入し、該進入方向と直交する方向(グリッド電極102Bの側)に加速される。グリッド電極102Bを通過したイオンは、さらにイオン軌道の両側に配置された加速電極(第2加速電極)103によって加速され、フライトチューブ104により外縁が規定された飛行空間に入射される。飛行空間に入射されたイオンは、リフレクトロン電極105とバックプレート106により形成される空間に入射すると徐々に減速し、飛行経路が折り返されて検出器107に入射する。
電源P2と電源P3の間には3個の電極接続部と2個の抵抗Rcが交互に配置されており、該3個の電極接続部には前段側リフレクトロン電極105aが接続されている。
電源P3と電源P4の間には4個の抵抗Reと4個の電極接続部が交互に配置されている。電源P3に近い側から3個の電極接続部には後段側リフレクトロン電極105bが、電源P4に近い側にはバックプレート106が、それぞれ接続されている。
なお、電源P3は抵抗Rdを介して電極回路に接続されている。
a) 前記電極に所定の極性及び大きさの電圧が印加されるように、複数の前記電源のそれぞれの出力電圧の極性及び大きさを決定し、
b) 前記複数の電源の出力電圧の極性に基づき、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える
ことを特徴とする。
a) 複数の電極接続部が隣接電極接続部間に抵抗を介して直列に接続された電極回路と、
b) 前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源と、
c) 複数の前記電源の出力電圧の極性及び大きさに関する情報である出力電圧情報と、前記出力電圧情報に基づいて決められた、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える順番に関する情報である極性切替順情報が保存された記憶部と、
d) 前記複数の電源から前記出力電圧情報に基づく極性及び大きさの電圧を出力させ、所定のタイミングで前記極性切替順情報に基づいて前記複数の電源の出力電圧の極性を順に切り替える電源制御部と
を備えることを特徴とする。
前記電源制御部が前記複数の電源の出力電圧の極性を切り替える間に逆電流が流れる電源と並列に抵抗が接続されている
ことが好ましい。
電源P2と電源P3の間には3個の電極接続部と2個の抵抗R3(合計抵抗900MΩ)が交互に配置されており、該3個の電極接続部には前段側リフレクトロン電極244Aが接続されている。
電源P3と電源P4の間には4個の抵抗R5(合計抵抗700MΩ)と4個の電極接続部が交互に配置されている。電源P3に近い側から3個の電極接続部には後段側リフレクトロン電極244Bが、電源P4に近い側にはバックプレート247が、それぞれ接続されている。
なお、電源P1には該電源P1と並列に100MΩの抵抗R10が接続されており、電源P3は700MΩの抵抗R4を介して電極回路に接続されている。
上記実施例では電源P1に逆電流が流れることが避けられないため並列抵抗を用いたが、電極回路の構成と電源の配置及び出力電圧によってはいずれの電源にも逆電流が流れないように出力電圧の極性の切替順を決定することができる場合もある。こうした場合にはいずれの電源にも並列抵抗を設ける必要がない。
2…質量分析部
20…イオン化室
21…第1中間室
22…第2中間室
23…第3中間室
24…分析室
241…イオン輸送電極
242…直交加速電極(第1加速電極)
243…第2加速電極
244…リフレクトロン電極
245…検出器
246…フライトチューブ
247…バックプレート
3…電圧印加部
4…制御部
41…記憶部
42…電源制御部
43…測定実行部
6…入力部
7…表示部
P…電源
R…抵抗
Claims (6)
- 複数の電極接続部が隣接する電極接続部間に抵抗を介して直列に接続された電極回路と、前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源とを有する電圧印加装置を用いて前記電極接続部に接続された電極に電圧を印加する方法であって、
a) 前記電極に所定の極性及び大きさの電圧が印加されるように、複数の前記電源のそれぞれの出力電圧の極性及び大きさを決定し、
b) 前記複数の電源の出力電圧の極性に基づき、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える
ことを特徴とする電圧印加方法。 - a) 複数の電極接続部が隣接電極接続部間に抵抗を介して直列に接続された電極回路と、
b) 前記電極回路の両端及び少なくとも1つの中間位置にそれぞれ接続された、正負両極性の電圧を出力する電源と、
c) 複数の前記電源の出力電圧の極性及び大きさに関する情報である出力電圧情報と、前記出力電圧情報に基づいて決められた、該複数の電源のうち少なくとも1つの電源の出力電圧の極性が他と異なる状態を維持して前記複数の電源の出力電圧の極性を1つずつ切り替えることにより全ての前記電源の出力電圧の極性を切り替える順番に関する情報である極性切替順情報が保存された記憶部と、
d) 前記複数の電源から前記出力電圧情報に基づく極性及び大きさの電圧を出力させ、所定のタイミングで前記極性切替順情報に基づいて前記複数の電源の出力電圧の極性を順に切り替える電源制御部と
を備えることを特徴とする電圧印加装置。 - 前記複数の電源の出力電圧の極性を切り替える順番が、逆電流が流れる電源の延べ数が最小になる順番であることを特徴とする請求項2に記載の電圧印加装置。
- 前記複数の電源のうちの一部の電源に該電源と並行に抵抗が接続されていることを特徴とする請求項2に記載の電圧印加装置。
- 前記電源制御部が前記複数の電源の出力電圧の極性を切り替える間に逆電流が流れる電源に該電源と並行に抵抗が接続されていることを特徴とする請求項2に記載の電圧印加装置。
- 請求項2に記載の電圧印加装置を有する飛行時間型質量分析装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16894460.1A EP3432340A4 (en) | 2016-03-18 | 2016-03-18 | VOLTAGE APPLICATION METHOD, VOLTAGE APPLICATION DEVICE AND AIR-TIME SPECTROMETER |
CN201680083763.4A CN108885965B (zh) | 2016-03-18 | 2016-03-18 | 电压施加方法、电压施加装置以及飞行时间质谱分析装置 |
US16/085,186 US10475635B2 (en) | 2016-03-18 | 2016-03-18 | Voltage application method, voltage application device, and time-of-flight mass spectrometer |
PCT/JP2016/058823 WO2017158842A1 (ja) | 2016-03-18 | 2016-03-18 | 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 |
JP2018505209A JP6485590B2 (ja) | 2016-03-18 | 2016-03-18 | 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/058823 WO2017158842A1 (ja) | 2016-03-18 | 2016-03-18 | 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017158842A1 true WO2017158842A1 (ja) | 2017-09-21 |
Family
ID=59850145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058823 WO2017158842A1 (ja) | 2016-03-18 | 2016-03-18 | 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10475635B2 (ja) |
EP (1) | EP3432340A4 (ja) |
JP (1) | JP6485590B2 (ja) |
CN (1) | CN108885965B (ja) |
WO (1) | WO2017158842A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019229804A1 (ja) * | 2018-05-28 | 2019-12-05 | 株式会社島津製作所 | 分析装置 |
WO2019229803A1 (ja) * | 2018-05-28 | 2019-12-05 | 株式会社島津製作所 | 分析装置 |
US11244817B2 (en) | 2018-05-31 | 2022-02-08 | Shimadzu Corporation | Analytical device, analysis method and program |
US11270875B2 (en) | 2018-07-20 | 2022-03-08 | Shimadzu Corporation | Mass spectrometer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11107667B1 (en) * | 2020-08-07 | 2021-08-31 | Thermo Fisher Scientific | Dual polarity ion management |
EP4354487A4 (en) * | 2021-06-09 | 2024-09-25 | Shimadzu Corp | TIME-OF-FLIGHT MASS SPECTROMETER AND TIME-OF-FLIGHT MASS SPECTROMETRY |
CN118039450B (zh) * | 2024-04-11 | 2024-06-25 | 西安聚能医工科技有限公司 | 一种增强离子束流聚焦的反射式飞行时间质谱仪 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001349853A (ja) * | 2000-04-06 | 2001-12-21 | Seiko Instruments Inc | 可搬型蛍光x線分析計 |
JP2006156259A (ja) * | 2004-11-30 | 2006-06-15 | Sumitomo Eaton Noba Kk | ビーム照射装置及びビーム照射精度高度化方法 |
WO2007029327A1 (ja) | 2005-09-08 | 2007-03-15 | Shimadzu Corporation | 高電圧電源装置及び該電源装置を用いた質量分析装置 |
JP2009037936A (ja) * | 2007-08-03 | 2009-02-19 | Hitachi Medical Corp | 高電圧スイッチ制御回路とそれを用いたx線装置 |
JP2011522365A (ja) * | 2008-05-30 | 2011-07-28 | サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー | 質量分析計 |
WO2012132550A1 (ja) | 2011-03-25 | 2012-10-04 | 株式会社島津製作所 | 飛行時間型質量分析装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9802115D0 (en) * | 1998-01-30 | 1998-04-01 | Shimadzu Res Lab Europe Ltd | Time-of-flight mass spectrometer |
US6469296B1 (en) * | 2000-01-14 | 2002-10-22 | Agilent Technologies, Inc. | Ion acceleration apparatus and method |
JP3797200B2 (ja) * | 2001-11-09 | 2006-07-12 | 株式会社島津製作所 | 飛行時間型質量分析装置 |
GB0624535D0 (en) * | 2006-12-08 | 2007-01-17 | Micromass Ltd | Mass spectrometer |
US7564026B2 (en) * | 2007-05-01 | 2009-07-21 | Virgin Instruments Corporation | Linear TOF geometry for high sensitivity at high mass |
JP4922900B2 (ja) * | 2007-11-13 | 2012-04-25 | 日本電子株式会社 | 垂直加速型飛行時間型質量分析装置 |
US8653452B2 (en) * | 2010-05-07 | 2014-02-18 | DH Technologies Developmenty Pte. Ltd. | Triple switch topology for delivery ultrafast pulser polarity switching for mass spectrometry |
GB2491305B (en) * | 2010-06-08 | 2014-05-21 | Micromass Ltd | Mass spectrometer with beam expander |
WO2013051321A1 (ja) * | 2011-10-03 | 2013-04-11 | 株式会社島津製作所 | 飛行時間型質量分析装置 |
GB201119059D0 (en) * | 2011-11-04 | 2011-12-21 | Micromass Ltd | Improvements to tof mass spectrometers using linear accelerator devices |
US9373487B2 (en) * | 2013-05-08 | 2016-06-21 | Shimadzu Corporation | Mass spectrometer |
US9728386B1 (en) * | 2014-12-08 | 2017-08-08 | Flir Detection, Inc. | Mass analysis instruments and methods |
US9984864B2 (en) * | 2015-11-03 | 2018-05-29 | Bruker Daltonik Gmbh | Spatial zoom mode for accumulative trapped ion mobility spectrometry |
-
2016
- 2016-03-18 US US16/085,186 patent/US10475635B2/en active Active
- 2016-03-18 EP EP16894460.1A patent/EP3432340A4/en not_active Withdrawn
- 2016-03-18 WO PCT/JP2016/058823 patent/WO2017158842A1/ja active Application Filing
- 2016-03-18 JP JP2018505209A patent/JP6485590B2/ja active Active
- 2016-03-18 CN CN201680083763.4A patent/CN108885965B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001349853A (ja) * | 2000-04-06 | 2001-12-21 | Seiko Instruments Inc | 可搬型蛍光x線分析計 |
JP2006156259A (ja) * | 2004-11-30 | 2006-06-15 | Sumitomo Eaton Noba Kk | ビーム照射装置及びビーム照射精度高度化方法 |
WO2007029327A1 (ja) | 2005-09-08 | 2007-03-15 | Shimadzu Corporation | 高電圧電源装置及び該電源装置を用いた質量分析装置 |
JP2009037936A (ja) * | 2007-08-03 | 2009-02-19 | Hitachi Medical Corp | 高電圧スイッチ制御回路とそれを用いたx線装置 |
JP2011522365A (ja) * | 2008-05-30 | 2011-07-28 | サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー | 質量分析計 |
WO2012132550A1 (ja) | 2011-03-25 | 2012-10-04 | 株式会社島津製作所 | 飛行時間型質量分析装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3432340A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019229804A1 (ja) * | 2018-05-28 | 2019-12-05 | 株式会社島津製作所 | 分析装置 |
WO2019229803A1 (ja) * | 2018-05-28 | 2019-12-05 | 株式会社島津製作所 | 分析装置 |
JPWO2019229803A1 (ja) * | 2018-05-28 | 2021-05-13 | 株式会社島津製作所 | 分析装置 |
JPWO2019229804A1 (ja) * | 2018-05-28 | 2021-05-13 | 株式会社島津製作所 | 分析装置 |
US11244817B2 (en) | 2018-05-31 | 2022-02-08 | Shimadzu Corporation | Analytical device, analysis method and program |
US11270875B2 (en) | 2018-07-20 | 2022-03-08 | Shimadzu Corporation | Mass spectrometer |
Also Published As
Publication number | Publication date |
---|---|
CN108885965B (zh) | 2020-02-11 |
JP6485590B2 (ja) | 2019-03-20 |
EP3432340A1 (en) | 2019-01-23 |
US10475635B2 (en) | 2019-11-12 |
EP3432340A4 (en) | 2019-03-27 |
US20190088460A1 (en) | 2019-03-21 |
CN108885965A (zh) | 2018-11-23 |
JPWO2017158842A1 (ja) | 2018-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6485590B2 (ja) | 電圧印加方法、電圧印加装置及び飛行時間型質量分析装置 | |
JP6287419B2 (ja) | 飛行時間型質量分析装置 | |
US20160225602A1 (en) | Time-of-flight mass spectrometry using multi-channel detectors | |
US10566179B2 (en) | Time-of-flight mass spectrometer | |
US7491931B2 (en) | Power supply regulation using a feedback circuit comprising an AC and DC component | |
JP5686566B2 (ja) | 質量分析装置 | |
US9607817B1 (en) | Systems and methods for ion separation | |
US9455132B2 (en) | Ion mobility spectrometry-mass spectrometry (IMS-MS) with improved ion transmission and IMS resolution | |
JP6237896B2 (ja) | 質量分析装置 | |
WO2019030475A1 (en) | MASS SPECTROMETER WITH MULTIPASSAGE | |
WO2005083742A3 (en) | A tandem ion-trap time-of-flight mass spectrometer | |
US10984998B2 (en) | Mass spectrometer | |
US20200278318A1 (en) | Systems and methods for ion separation | |
WO2015151160A1 (ja) | 質量分析方法及び質量分析装置 | |
US10186413B2 (en) | Time-of-flight mass spectrometer | |
JPWO2015151160A6 (ja) | 質量分析方法及び質量分析装置 | |
JP5673848B2 (ja) | 質量分析装置 | |
WO2006098230A1 (ja) | 質量分析装置 | |
EP2798665A1 (en) | High voltage power supply filter | |
GB2617229A (en) | High resolution multi-reflection time-of-flight mass analyser | |
US11367609B2 (en) | Mass spectrometer | |
US9536723B1 (en) | Thin field terminator for linear quadrupole ion guides, and related systems and methods | |
US20230290629A1 (en) | High resolution multi-reflection time-of-flight mass analyser | |
US10147593B2 (en) | Ion sorter | |
JP2023016583A (ja) | 直交加速飛行時間型質量分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018505209 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016894460 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016894460 Country of ref document: EP Effective date: 20181018 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16894460 Country of ref document: EP Kind code of ref document: A1 |