WO2017157257A1 - 用于f型钢轨的连接接头 - Google Patents

用于f型钢轨的连接接头 Download PDF

Info

Publication number
WO2017157257A1
WO2017157257A1 PCT/CN2017/076407 CN2017076407W WO2017157257A1 WO 2017157257 A1 WO2017157257 A1 WO 2017157257A1 CN 2017076407 W CN2017076407 W CN 2017076407W WO 2017157257 A1 WO2017157257 A1 WO 2017157257A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
rail
joint
boss
groove
Prior art date
Application number
PCT/CN2017/076407
Other languages
English (en)
French (fr)
Inventor
全顺喜
孙立
郭志勇
靖仕元
李伟强
娄会彬
王森荣
李秋义
郜永杰
杨艳丽
Original Assignee
中铁第四勘察设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610142586.4A external-priority patent/CN105603835B/zh
Priority claimed from CN201610145010.3A external-priority patent/CN105603836B/zh
Priority claimed from CN201610145008.6A external-priority patent/CN105625114B/zh
Priority claimed from CN201610142725.3A external-priority patent/CN105625113B/zh
Application filed by 中铁第四勘察设计院集团有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2017157257A1 publication Critical patent/WO2017157257A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B11/00Rail joints
    • E01B11/02Dismountable rail joints
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B11/00Rail joints
    • E01B11/02Dismountable rail joints
    • E01B11/20Dismountable rail joints with gap-bridging
    • E01B11/28Dismountable rail joints with gap-bridging by parts of the joining members
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles

Definitions

  • the invention belongs to the technical field of medium and low speed maglev track structure, and particularly relates to a joint for an F-shaped rail, which is suitable for connection between rail rows of medium and low speed maglev tracks.
  • the medium and low speed maglev rail transit adopts the constant conduction magnet suction type suspension and guiding technology to realize the suspension and guidance of the vehicle through the electromagnetic attraction between the U-shaped electromagnet and the F-shaped rail on the vehicle suspension frame.
  • the medium and low-speed maglev track structure mainly adopts the steel sleeper type.
  • the track mainly includes the induction plate, the F-shaped rail (also called the F rail), the expansion joint, the connecting piece and the fastener, the steel sleeper, the fastener system, and the bearing.
  • the track and other parts are composed of the rails as a unit.
  • F-shaped rails, steel sleepers and induction panels are assembled into rails at the factory or on-site assembly base, and the rails are connected by F-rail joints.
  • the rail F-shaped rails are provided with expansion joints, the joints are arranged at the expansion joint positions between adjacent F-shaped rails, and the joint structure of the F-shaped rails It is necessary to adapt to the thermal expansion and contraction characteristics of the maglev track, the smoothness of the F-track, the stability of the vehicle, and the operation and maintenance.
  • the connection strength, stability and reliability are essential for the safe, smooth and fast operation of the train.
  • the existing under-wing joint structure at home and abroad generally includes a lower wing connecting plate and a connecting bolt, and the connecting structure is embedded in a limiting groove provided on the bottom surface of the wing plate by inserting the convex block disposed on the lower connecting plate of the wing plate to limit the lateral misalignment between the rail rows, the stability of the train through the expansion joint in the rescue mode is improved by setting the wing of the F-shaped rail to a "step" type.
  • the patent document CN104499385A discloses a F-type rail connecting structure of a medium-low speed maglev system, as shown in FIG. 1-2, which includes a flap lower connecting plate 1, a splint and an outer leg side connecting plate 3,
  • the bottom surface of the wing plate is provided with a limiting groove extending along the longitudinal direction of the line, and the lower connecting plate of the wing plate is provided with a convex block matched with the limiting groove, and the two wings can be a "step" type connection.
  • the rail rows can be better adapted to the expansion and contraction deformation of the expansion joint, and at the same time, the stepped arrangement of the wing plates can strengthen the lateral limit energy and improve the stability of the wheel through the expansion joint in the rescue mode.
  • the above-mentioned connecting structure still has limited lateral limit lifting on the rail row, especially in which the wing plate is arranged in a "step" type so that some parts of the wheel will still be located in the gap portion, resulting in insufficient wheel stability, and the above-mentioned step type
  • the structure needs to machine the complex shape of the end face of the track, and the contact surface size of the two ends of the guide rail must be accurately matched. The processing is difficult, the cost is high, and the installation efficiency is low. It is not suitable for the large rail joint to significantly improve the F-shaped rail. The difficulty of processing will also cause huge waste of materials.
  • the present invention provides a joint for an F-shaped rail, which may be an I-shaped, semi-slotted, chute or buffer type, which passes through the joint structure and with F
  • the assembly method of the type of rail wing is improved, and the wing joints of the F-shaped rail are optimized accordingly, so as to achieve precise matching and limitation of the connected rails in the horizontal and vertical directions, and fully adapted in the longitudinal direction.
  • the expansion and contraction of the rail row can ensure that the wheel does not leave the wing at all times, and the impact of the rail seam on the walking wheel can be completely avoided, and there is no need for additional difficult machining and weakening of strength or performance of the F-shaped steel wing structure.
  • an I-shaped joint for an F-shaped rail for connecting wings of an F-shaped rail at opposite end ends of two adjacent rail rows, thereby realizing A connection between two adjacent rail rows provided with expansion joints, characterized in that the connection joint comprises:
  • a lower connecting plate disposed on a lower surface of the wing plate, wherein a plurality of through holes are disposed as connecting holes connected to the wing plates; and a limiting boss protruding from the lower connecting plate for On the side surface of the joint to be connected, the strip is elongated, the length direction is along the track line direction, and both ends of the rail are convex on both sides of the rail, so that the limit boss is integrally in the shape of the I-shaped;
  • the opposite ends of the two F-shaped rail flaps to be connected are respectively provided with connecting grooves matched with one end of the limiting boss, wherein the connecting groove is laterally oriented along the track at the inner end of the wing Extending on both sides, the above-mentioned connecting groove between the oppositely disposed two wings and the gap formed between the two connecting grooves are formed for the insertion of the limiting boss, and the connecting member passes through the connecting
  • the hole can fix the lower connecting plate and the wing plate, so that the limiting boss can pass through the I-shaped gap and make the protruding end surface flush with the surface of the wing plate, and at the same time make the side surface completely Contact with the inner wall of the connecting groove on the wing plate, thereby achieving reliable limiting and smooth transition connection to the adjacent rail row.
  • the width of the limiting boss in the lateral direction of the track matches the width of the I-shaped gap such that it can limit the F-shaped rail in that direction.
  • the groove formed by the two ends of the connecting groove extending in the lateral direction does not penetrate the lower surface of the wing plate, and correspondingly, the height of the portion of the end portion of the limiting bracket which is laterally convex is lower than The height of the middle portion of the limit boss.
  • the limit boss and the I-shaped void coincide in a center line in the longitudinal direction, and preferably coincide with a train support wheel center line.
  • the width of the limiting boss in the lateral direction of the rail is smaller than the width of the support wheel of the train.
  • the end surface of the protruding end of the limiting protrusion is a plane which is flush with the plane of the wing after being connected in position, so that the supporting wheel can pass through the gap between the two rail rows.
  • the support of the limit boss smoothly passes through to reduce the impact on the support wheel.
  • the connecting holes are distributed at two ends of the lower connecting plate in the direction of the track line, preferably two at each end, and corresponding holes are also opened corresponding to the wings to be connected for respectively connecting
  • the piece implements the connection between the two.
  • the connecting groove on the flap is a slot extending inwardly from the end of the flap and extending through the lower surface of the flap, and the slot is on both sides of the rail in the inwardly facing end.
  • the extension is such that the connecting groove on the two wings and the gap between the two wings form an I-shaped aperture for accommodating the limiting boss.
  • a semi-slotted joint for an F-shaped rail for connecting wings of an F-shaped rail at opposite end ends of two adjacent rails.
  • the connection joint comprises:
  • a lower connecting plate disposed on a lower surface of the wing plate, wherein a plurality of through holes are disposed thereon as a connecting hole connected to the wing plate;
  • a limiting boss protrudingly disposed on a side surface of the lower connecting plate for contacting the blade to be connected, which is elongated and longitudinally along a track line direction, and the limiting boss a cross-section of a right-angled trapezoid having a narrow upper and a lower width;
  • the opposite ends of the two F-shaped rail flaps to be connected are respectively provided with upper and lower through grooves matching with one end of the limiting boss, wherein one of the two sides of the through groove is a bevel
  • the width of the upper slot of the slot is smaller than the width of the lower slot
  • An elongated gap in the direction of the track line formed by the above-mentioned through groove between the oppositely disposed two wing plates and the gap between the two through grooves is used for the insertion of the limiting boss, and the through-piece is passed through the connector
  • the connecting hole can fix the lower connecting plate and the wing plate, so that the limiting boss can pass through the elongated space and the convex end surface thereof is flush with the surface of the wing plate, and at the same time
  • the sides are completely in contact with the inner walls of the through-grooves on the wing plates respectively, so that the reliable limit and the smooth transition connection of the adjacent rail rows can be realized.
  • the length of the limiting boss in the direction of the track line is smaller than the length of the elongated gap so that it can accommodate the telescopic deformation of the rail in this direction.
  • the width of the limiting boss in the lateral direction of the track is matched with the width of the elongated gap, so that the two sides of the limiting boss in the lateral direction of the track can correspond to the through slot.
  • the two walls match the contact to achieve a limit on the F-shaped rail in this direction.
  • the through groove is a semi-inclined groove whose cross section corresponds to a right-angled trapezoid.
  • the limit boss and the elongated gap coincide in a center line in the longitudinal direction, and preferably coincide with a train support wheel center line.
  • the width of the convex end surface of the limiting boss in the lateral direction of the rail is smaller than the width of the train support wheel.
  • the end surface of the protruding end of the limiting protrusion is a plane which is flush with the plane of the wing after being connected in position, so that the supporting wheel can pass through the gap between the two rail rows.
  • the support of the limit boss smoothly passes through to reduce the impact on the support wheel.
  • the connecting hole is preferably an oblong hole, and the longitudinal direction is along the track line direction.
  • the through groove on the flap is a long slot through hole extending from the end of the flap toward the inside and penetrating through the lower surface of the flap, the through slot on the flap, and the gap between the flaps An aperture is formed for receiving the limit boss.
  • a lower connecting plate disposed on a lower surface of the wing plate, wherein a plurality of through holes are disposed thereon as a connecting hole connected to the wing plate;
  • a limiting boss protrudingly disposed on a side surface of the lower connecting plate for contacting the blade to be connected, which is elongated and longitudinally along a track line direction, and the limiting boss a trapezoid having a narrow cross section and a wide width;
  • the opposite ends of the two F-shaped rail flaps to be connected are respectively provided with upper and lower through grooves matching with one end of the limiting boss, wherein the two side walls of the through groove are inclined surfaces, and the upper part of the through groove
  • the slot width is smaller than the lower slot width
  • An elongated gap in the direction of the track line formed by the above-mentioned through groove between the oppositely disposed two wing plates and the gap between the two through grooves is used for the insertion of the limiting boss, and the through-piece is passed through the connector
  • the connecting hole can fix the lower connecting plate and the wing plate, so that the limiting boss can pass through the elongated space and the protruding end surface thereof is flush with the surface of the wing plate while making the side surface thereof It is completely in contact with the inner wall of the slot on the wing plate, so that the reliable limit and the smooth transition connection of the adjacent rail row can be realized.
  • the width of the limiting boss in the lateral direction of the track is matched with the width of the elongated gap, so that the two sides of the limiting boss in the lateral direction of the track can correspond to the through slot.
  • the two walls match the contact to achieve a limit on the F-shaped rail in this direction.
  • the limiting boss has a cross section of an isosceles trapezoid.
  • the limit boss and the elongated gap coincide in a center line in the longitudinal direction, and preferably coincide with a train support wheel center line.
  • the width of the convex end surface of the limiting boss in the lateral direction of the rail is smaller than the width of the train support wheel.
  • the connecting holes are distributed along the track line direction on the lower connecting plate
  • the two ends, preferably two at each end, are correspondingly opened with corresponding positions of the flaps to be connected, for respectively connecting the two through the connecting member.
  • the connecting hole is preferably an oblong hole, and the longitudinal direction is along the track line direction.
  • the through groove on the wing plate is a long slot through hole extending from the end portion of the blade toward the inner side and penetrating through the lower surface of the wing plate, and the two side wall surfaces are opposite to the side surface of the limiting boss.
  • the matching bevels, the through slots on the two wings, and the gap between the two wings form apertures for receiving the limiting bosses.
  • a buffer type joint for an F-shaped rail for connecting wings of an F-shaped rail at opposite end ends of two adjacent rail rows.
  • a lower connecting plate disposed on a bottom surface of the F-shaped rail wing plate, wherein a plurality of through holes are disposed thereon as a connecting hole connected to the wing plate;
  • a limiting boss protrudingly disposed on a side surface of the lower connecting plate for contacting the bottom surface of the wing to be connected, which is elongated and longitudinally along the track line direction;
  • a pre-tightening buffer member for being disposed at a groove end of the F-shaped rail wing
  • An elongated gap formed by the above-mentioned through slot between the two wings and the gap between the two through slots is used for the insertion of the limiting boss, and the lower connecting plate can be passed through the connecting hole through the connecting member Attached to the two wings, so that the limiting boss can pass through the elongated space and make the protruding end surface flush with the surface of the wing plate, and the two ends of the length direction can be combined with the two-way groove
  • the pre-tightening cushioning element of the inner wall of the end abuts while its side is in contact with the inner wall of the through-groove, thereby achieving reliable limiting and smooth transitional connection to the adjacent rail.
  • the cushioning member is preferably a spring that passes the buffer limit. The movement of the boss in the longitudinal direction, thereby achieving a smooth telescopic deformation of the rail in this direction.
  • the width of the limiting boss in the transverse direction of the track matches the width of the elongated gap so that it can limit the F-shaped rail in this direction.
  • the limiting boss has a trapezoidal cross section, preferably an isosceles trapezoid or a right angle trapezoid, and the through grooves correspond to matching trapezoidal grooves.
  • the limit boss and the elongated gap coincide in a center line in the longitudinal direction, and preferably coincide with a train support wheel center line.
  • the width of the limiting boss in the lateral direction of the rail is smaller than the width of the support wheel of the train.
  • the end surface of the protruding end of the limiting protrusion is a plane which is flush with the plane of the wing after being connected in position, so that the supporting wheel can pass through the gap between the two rail rows.
  • the support of the limit boss smoothly passes through to reduce the impact on the support wheel.
  • the connecting holes are distributed at two ends of the lower connecting plate in the direction of the track line, preferably two at each end, and corresponding holes are also opened corresponding to the wings to be connected for respectively connecting
  • the piece implements the connection between the two.
  • the connecting hole is preferably an oblong hole, and the longitudinal direction is along the track line direction.
  • the through groove on the flap is a long slot through hole extending from the end of the flap toward the inside and penetrating through the lower surface of the flap, the through slot on the flap, and the gap between the flaps
  • An aperture is formed for receiving the limit boss and the pretensioning cushioning element.
  • a track for a medium and low speed maglev system is provided, wherein each of the track rows of the track is connected by the above-described connection joint.
  • the I-shaped joint of the present invention is completely embedded in the I-shaped slot of the F-shaped steel end by inserting the I-shaped limiting boss of the lower plate of the flap; the half-slotted joint is passed through the wing
  • the limiting boss of the lower plate of the plate is completely embedded in the long slot of the end of the F-shaped steel, and the side surface of the limiting boss and the wall surface of the groove adopt a wedge surface contact fit manner;
  • the chute connector connects the lower plate of the wing plate
  • the limiting boss is completely embedded in the long slot of the end of the F-shaped steel, and the side surface of the limiting boss and the wall surface of the groove adopt a wedge surface contact fit manner;
  • the buffer connection joint passes the limiting boss of the lower connecting plate of the wing plate Fully embedded in the long slot of the end of the F-shaped steel.
  • the I-shaped joint of the present invention "bridges" the F-shaped steel wings at both ends of the expansion joint through the limit boss of the lower joint plate of the wing, wherein the end face of the boss can be completely flush with the plane of the wing It can ensure that the support wheel is always in contact when passing through the expansion joint, which improves the stability of the train in the rescue mode and the service life of the support wheel; by connecting the connection slots on the end faces of the two wings to be connected, and both The gap between the rails forms an I-shaped gap, so that the limiting boss can be embedded therein and there is a hole in the length direction, so that it can perfectly adapt to the telescopic deformation of the gap between the rail rows;
  • the semi-slotted joint of the present invention "bridges" the F-shaped steel wings at both ends of the expansion joint through the limit boss of the lower joint plate of the wing, wherein the end face of the boss can be completely flat with the plane of the wing Qi can ensure that the support wheel is always in contact when passing through the expansion joint, which improves the stability of the train in the rescue mode and the service life of the support wheel; the joint of the present invention is opened half by the end faces of the two wings to be connected
  • the trough-shaped through groove forms a long gap between the gap between the rails and the gap between the two, so that the limit boss with a right-angled trapezoidal cross section can be embedded therein and there is a hole in the length direction, which can perfectly fit the rail Telescopic deformation of the gap between the rows;
  • the chute type joint of the present invention "bridges" the F-shaped steel wings at both ends of the expansion joint through the limit boss of the lower flap of the flap, wherein the end surface of the boss can be completely flush with the plane of the flap , It can ensure that the support wheel is always in contact state when passing through the expansion joint, which improves the stability of the train in the rescue mode and the service life of the support wheel; the through grooves are respectively formed on the end faces of the two wings to be connected, and the two walls of the inner wall are The inclined surface forms a long gap with the gap between the rails of the two, so that the limiting boss with the long trapezoidal shape can be embedded therein and there is a hole in the longitudinal direction, so that the gap between the rail rows can be perfectly adapted.
  • the connecting joint of the present invention only needs to simply process the corresponding connecting groove and connecting hole on the wing plate, without complicated machining and precision matching, and avoiding the "step" type setting of the existing connecting joint wing plate, not only
  • the connection is more stable and reliable, and it reduces the processing and installation, and also reduces the overall cost of the rails, while reducing waste and facilitating maintenance.
  • FIG. 1 is a schematic view showing the connection of an F-shaped rail connecting joint in the prior art
  • Figure 2 is a schematic view showing the connection of the connector of Figure 1 from another perspective;
  • FIG. 3 is a schematic exploded view showing the structure of a connection junction according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of the connecting junction of the first embodiment of FIG. 3 at another viewing angle;
  • Figure 6 is a cross-sectional view taken along line A-A of the first embodiment of Figure 5;
  • Figure 7 is a cross-sectional view taken along line B-B of the first embodiment of Figure 5;
  • Figure 8 is a cross-sectional view taken along line C-C of the first embodiment of Figure 5;
  • Figure 9 is a schematic exploded view showing the structure of a joint knot according to a second embodiment of the present invention.
  • Figure 10 is a schematic view showing the connection of the connecting knot of the second embodiment of Figure 9 when connecting the wings of the two F-shaped rails;
  • Figure 11 is a cross-sectional view taken along line A-A of the second embodiment of Figure 10;
  • Figure 12 is a cross-sectional view taken along line B-B of the second embodiment of Figure 10;
  • Figure 13 is a cross-sectional view of the second embodiment of Figure 10 taken along the line C-C;
  • Figure 14 is a schematic exploded view showing the structure of a joint junction according to a third embodiment of the present invention.
  • Figure 15 is a schematic view showing the connection of the connecting knot of the third embodiment of Figure 14 when connecting the wings of the two F-shaped rails;
  • Figure 16 is a cross-sectional view of the third embodiment of Figure 15 taken along the A-A section;
  • Figure 17 is a cross-sectional view taken along line B-B of the third embodiment of Figure 15;
  • Figure 18 is a cross-sectional view of the third embodiment of Figure 15 taken along the line C-C;
  • Figure 19 is a schematic exploded view showing the structure of a connection junction according to a fourth embodiment of the present invention.
  • Figure 20 is a schematic view showing the connection of the connecting knot of the fourth embodiment of Figure 19 when connecting the wings of the two F-shaped rails;
  • Figure 21 is a cross-sectional view of the fourth embodiment of Figure 20 taken along the A-A section;
  • Figure 22 is a cross-sectional view of the fourth embodiment of Figure 20 taken along line B-B;
  • Figure 23 is a cross-sectional view of the fourth embodiment of Figure 20 taken along the line C-C.
  • the expansion rails are arranged between the F-type rails of the rails, and the joints are arranged at the expansion joints between the adjacent F-shaped rails for connecting the two F-types.
  • the rails as shown in Fig. 3, are connected by connecting the two F-shaped rails 3a through the joint joints to the respective flaps.
  • the wing plates of the two F-shaped rails 3a are respectively provided with connecting grooves 32a at the portions to be connected, and the connecting grooves 32a are from the wing end in the direction of the track line.
  • a strip-shaped groove extending into the wing in particular, the strip-shaped groove extends in a lateral direction of the rail at an end portion of the inner portion of the wing, that is, the width of the strip-shaped groove at the end portion is larger than the width of the non-end portion, preferably
  • the portion of the connecting groove end does not penetrate the lower surface of the wing plate, and the other portion of the connecting groove penetrates the lower surface of the wing plate.
  • the one end of the connecting groove 32a located in the inner side of the wing may be formed in a rectangular shape with a certain width extending in the lateral direction of the rail, so that the strip connecting groove becomes a T-shaped slot.
  • the portion in which the connecting groove 32a extends laterally toward the rail is not limited to a rectangular shape, and may have other shapes such as a circular shape, a sector shape, a waist shape, etc., but the connecting groove should be T-shaped as a whole or T-like.
  • the joint portion on the flap is provided on the outer circumference of the joint groove 32a, and a joint hole for connection is provided for attaching and fixing the joint joint to the flap 31a.
  • the connecting hole is a circular hole, preferably a stepped circular hole, and two connecting holes on each of the flaps 31a are disposed on both sides of the elongated connecting groove 32a in the lateral direction of the rail.
  • the shape and the number of the connecting holes are not limited, and may be specifically selected according to actual needs, but are preferably distributed laterally on both sides of the elongated connecting groove along the track.
  • the connection joint includes a lower connecting plate 1a, which is preferably a plate structure, and is connected One side surface (upper surface in the drawing) of the web 1a is provided with a boss 11a which is fixedly connected to the upper surface of the lower web 1a, preferably integrally.
  • the boss 11a has an elongated shape, and the longitudinal direction thereof is along the track line direction, and both end portions thereof are convex toward both sides in the lateral direction of the track, so that the limit boss has an I-shaped structure as a whole.
  • the shape of the I-shaped boss 11a matches the I-shaped gap formed along the track line direction formed by the joint groove 32a on the two flaps 3a and the gap between the two F-shaped rails 3a, preferably, the both ends are convex.
  • the portion of the portion is lower than the rest of the boss so that it can be engaged with the corresponding portion of the connecting groove.
  • the boss 11a is for inserting into the I-shaped space in the direction of the track line which is formed by the connection groove 32a on the two flaps 3a and the gap between the two F-shaped rails 3a.
  • the boss 11a is used to achieve the lateral and vertical direction of the rail or F-rail 3a and to accommodate the telescopic deformation along the track line, while ensuring the impact on the vehicle support wheel. It may be small, and the size and shape of the boss 11a have certain requirements. Specifically, the length of the boss 11a in the track line direction must be smaller than the length of the I-shaped gap formed by the connection groove 32a on the opposite wing plates 31a and the gap between the two in the track line direction, preferably convex.
  • the width of the protruding portions at both ends of the table 11a in the direction of the track line is smaller than the width of the I-shaped gap, so that the boss 11a can relatively move in the gap in the direction of the track line, and the telescopic deformation of the track row is accommodated.
  • the width of the boss 11a in the lateral direction of the rail matches the width of the connecting groove 32a in the wing 31a in the direction, so that the boss 11a can limit the F-shaped rail 3a in the lateral direction, and the transverse force surface thereof
  • the utility model has greatly improved, and the limit capability and the limit reliability are greatly improved, and the dislocation of the F-shaped rail 3a in the lateral direction can be effectively prevented.
  • the width of the laterally convex portions of the bosses 11a in the lateral direction matches the width of the extending portions of the both ends of the connecting groove, and the width of the intermediate portion of the boss 11a matches the width of the intermediate portion of the connecting groove.
  • the center line of the boss 11a in the direction along the track line can be maintained in the same vertical plane as the center line of the I-shaped gap, and the center line of the vehicle support wheel along the track line is also located. on flat surface.
  • the end surface of the convex end of the boss 11a should coincide with the upper surface of the flap 31a, for example, both are flat, and the height of the projection should ensure that the boss 11a is inserted into the gap and After passing through the gap, the end surface of the convex end is flush with the surface of the flap 31a, so that the vehicle support wheel can smoothly contact the end surface of the boss 11a and pass smoothly, thereby minimizing the impact caused by the existence of the gap between the rail rows or Unstable.
  • the width of the boss 11a in the lateral direction of the rail can be made smaller than the width of the support wheel of the vehicle.
  • the shape of the end faces of the limiting bosses 11a in the longitudinal direction is matched with the end faces of the I-shaped grooves of the corresponding ends, and the end faces of the limiting bosses 11a are convex rectangles, and the extending portions of the end portions of the connecting grooves are also rectangular, so that The two can be matched, but the shape of the convex portion of the end surface of the boss 11a is not limited in the present invention, and may be, for example, a circular shape, a waist shape or the like.
  • the connecting joint of the present invention can make the F-shaped rail 3a of the rail row member through the arrangement of the above-mentioned limiting boss 11a and the opening of the corresponding connecting groove 32a on the corresponding flap 31a, combined with the corresponding size combination and assembly relationship. It can realize stable and reliable connection, reliable limit in the horizontal and vertical directions, adapt to the telescopic deformation between the rail rows in the direction of the track line, and its support to the support wheels of the vehicle is stable, greatly reducing the contact between the wheel and the gap. , greatly reducing the impact on the wheel, so that the stability of the train in the rescue mode has been increased.
  • the expansion rails are arranged between the F-type rails of the rails, and the joints are arranged at the expansion joints between the adjacent F-shaped rails for connecting the two F-types.
  • the rails as shown in Fig. 9, are connected by connecting the two F-shaped rails 3b through the joint joints to the respective flaps.
  • One end of the connecting joint elongated groove 32b located inside the wing may be curved, so that the elongated through groove is called a semi-waisted chute hole.
  • the connecting groove 32b is not limited to the half waist, and may have other shapes, for example, one end located inside the flap is a flat surface, and an elongated square hole or other shaped hole is formed.
  • the joint portion on the flap is provided on the outer circumference of the elongated groove 32b, and a connection hole for connection is provided for attaching and fixing the joint to the flap 31b.
  • the connecting hole is a circular hole, preferably a stepped circular hole, and two connecting holes on each of the wings 31b are disposed on both sides of the elongated through groove 32b in the lateral direction of the track.
  • the shape and the number of the connecting holes are not limited, and may be specifically selected according to actual needs, but are preferably distributed laterally on both sides of the elongated through grooves along the track.
  • the connecting joint includes a lower connecting plate 1b, which is preferably a plate body structure, and one side surface (upper surface in the drawing) of the lower connecting plate 1b is provided with an elongated boss 11b. It is fixedly connected to the upper surface of the lower connecting plate 1b, preferably integrally. Boss 11b for inserting two wings The long strip-shaped groove 32b on the 3b and the slit between the two F-shaped rails 3b are formed in an elongated space in the direction of the track line.
  • the boss 11b is used to achieve the lateral and vertical direction of the rail or F-rail 3b and to accommodate the telescopic deformation along the track line, while ensuring the impact on the vehicle support wheel. It may be small, and the size and shape of the boss 11b have certain requirements.
  • the boss 11b is an elongated strip having a right-angled trapezoidal cross section, that is, one side is a sloped surface, and the other side is a plane perpendicular to the upper and lower surfaces, wherein the protruding end surface away from the lower connecting plate is laterally of the track.
  • the width is smaller than the width of the opposite end surface.
  • the beveled surface of the two side walls may be any one of them, but it should be able to ensure a corresponding matching with the inner wall surface of the through groove so that the boss can be fitted and fitted thereto.
  • the length of the boss 11b in the direction of the track line must be smaller than the length of the elongated groove 32b on the opposite wing plates 31b and the length of the long gap formed by the gap between the two in the direction of the track line, so that the convex
  • the table 11b is relatively movable in the gap in the direction of the track line, and is adapted to the need for the rail row to be deformed.
  • the width of the boss 11b in the lateral direction of the rail is matched with the width of the through groove 32b in the wing 31b in the direction, for example, both sides of the boss and the inner wall of the through groove Matching the contact, so that the boss 11b can limit the F-shaped rail 3b in the lateral direction, and the lateral force receiving surface is greatly improved, so that the limiting capability and the limit reliability are greatly improved, and the F-shaped rail 3b can be effectively prevented from being Dislocation in the horizontal direction.
  • the center line of the boss 11b in the direction of the track line can be kept in the same vertical plane as the center line of the long-shaped gap, and the center line of the vehicle support wheel along the track line is also located in the plane. on.
  • the end surface of the convex end of the boss 11b should coincide with the upper surface of the wing 31b, for example, both of them are flat, and the height of the protrusion should ensure that the boss 11b is inserted into the gap and passes through the gap, and the end face and the wing of the convex end
  • the surface of the plate 31b is flush, so that the vehicle support wheel can smoothly contact the end surface of the boss 11b and pass smoothly, minimizing the impact or instability caused by the existence of the gap between the rail rows.
  • the width of the protruding end surface of the boss 11b in the lateral direction of the rail can be made small The width of the vehicle support wheel.
  • the lower connecting plate 1b of the connecting joint is located on the same side of the limiting boss 11b (upper surface shown in FIG. 9).
  • a plurality of through holes 12b are provided on the outer periphery of the limiting boss 11b as mounting connecting holes. It corresponds to the mounting hole 33b on the flap 31b for passing the connector to securely connect the joint to the flap 31b.
  • the upper surface of the flap lower connecting plate 1b is provided with four mounting connecting holes 12b located around, and each mounting connecting hole 12b is preferably a lumbar hole.
  • the connector for connecting the joint to the flap is a bolt 2b.
  • the shape of the end faces of the limiting boss 11b in the longitudinal direction is preferably matched with the end faces of the elongated grooves of the corresponding ends, as shown in FIG. 9 as curved faces, and may be flat or other shapes. After the limiting boss 11b is connected to the position, there is a certain gap between the end surface and the corresponding groove end surface for adapting the telescopic deformation of the expansion joint between the rail rows.
  • the connecting joint of the present invention can make the F-shaped rail 3b of the rail row member through the arrangement of the above-mentioned limiting boss 11b and the opening of the corresponding through groove 32b on the corresponding flap 31b, combined with the corresponding size combination and assembly relationship. It can realize stable and reliable connection, reliable limit in the horizontal and vertical directions, adapt to the telescopic deformation between the rail rows in the direction of the track line, and its support to the support wheels of the vehicle is stable, greatly reducing the contact between the wheel and the gap. , greatly reducing the impact on the wheel, so that the stability of the train in the rescue mode has been increased.
  • the expansion rails are arranged between the F-type rails of the rails, and the joints are arranged at the expansion joints between the adjacent F-shaped rails for connecting the two F-types.
  • the rails, as shown in Fig. 14, are connected by connecting the two F-shaped rails 3c through the joint joints to the respective flaps.
  • the flanges of the two F-shaped rails 3c are respectively provided with connecting grooves 32c at the portions to be connected, and the connecting grooves 32c are from the ends of the wings to the wings in the direction of the track line.
  • An elongated groove extending in the plate penetrates the lower surface of the upper plate to form a through groove.
  • the two side wall surfaces of the elongated groove are inclined surfaces, so that the elongated groove forms a chute having an upper notch width smaller than a width of the lower notch.
  • the one end of the elongated groove 32c located inside the flap may be curved such that the elongated groove is referred to as a semi-waisted chute hole.
  • the connecting groove 32c is not limited to the half waist, and may have other shapes, for example, one end located inside the flap is a flat surface, and an elongated square hole or other shaped hole is formed.
  • the connecting joint includes a lower connecting plate 1c which is preferably a plate body structure, and one side surface (upper surface in the drawing) of the lower connecting plate 1c is provided with an elongated boss 11c. It is fixedly connected to the upper surface of the lower connecting plate 1c, preferably integrally.
  • the boss 11c is for inserting into the elongated groove in the direction of the track line formed by the elongated groove 32c on the two flaps 3c and the slit between the two F-shaped rails 3.
  • the boss 11c is used to achieve the lateral and vertical direction of the rail or F-rail 3c and to accommodate the telescopic deformation along the track line, while ensuring the impact on the vehicle support wheel. It may be small, and the size and shape of the boss 11c have certain requirements. Specifically, the boss 11c is an elongated shape having a trapezoidal cross section such as an isosceles trapezoid, wherein the width of the protruding end surface away from the lower connecting plate in the lateral direction of the track is smaller than the width of the opposite other end surface. In addition, the length of the boss 11c in the direction of the track line must be smaller than the elongated slot on the opposite wing plates 31c.
  • the width of the boss 11c in the lateral direction of the rail is matched with the width of the through groove 32c in the wing 31c in the direction, for example, both sides of the boss and the inner wall of the through groove Matching the contact, so that the boss 11c can limit the F-shaped rail 3c in the lateral direction, and the lateral force receiving surface is greatly improved, so that the limiting capability and the limit reliability are greatly improved, and the F-shaped rail 3c can be effectively prevented from being Dislocation in the horizontal direction.
  • the center line of the boss 11c in the direction of the track line and the center line of the long gap can be maintained in the same vertical plane, and the center line of the vehicle support wheel along the track line is also located in the plane. on.
  • the end surface of the convex end of the boss 11c should coincide with the upper surface of the wing 31c, for example, both of them are flat, and the height of the protrusion should ensure that the boss 11c is inserted into the gap and passes through the gap, and the end face and the wing of the convex end
  • the surface of the plate 31c is flush, so that the vehicle support wheel can smoothly contact the end surface of the boss 11c and pass smoothly, minimizing the impact or instability caused by the existence of the gap between the rail rows.
  • the width of the projecting end surface of the boss 11c in the lateral direction of the rail can be made smaller than the width of the support wheel of the vehicle.
  • the shape of the end faces of the limiting bosses 11c in the longitudinal direction is preferably matched with the end faces of the elongated grooves of the corresponding ends, as shown in FIG. 14 as curved faces, and may be flat or other shapes. After the limiting boss 11c is connected to the position, there is a certain gap between the end surface and the corresponding groove end surface for adapting the telescopic deformation of the expansion joint between the rail rows.
  • the connecting joint of the present invention can make the F-shaped rail 3c of the rail row member through the arrangement of the above-mentioned limiting boss 11c and the opening of the corresponding through groove 32c on the corresponding wing plate 31c, combined with the corresponding size combination and assembly relationship. It can realize stable and reliable connection, reliable limit in the horizontal and vertical directions, adapt to the telescopic deformation between the rail rows in the direction of the track line, and its support to the support wheels of the vehicle is stable, greatly reducing the contact between the wheel and the gap. , greatly reducing the impact on the wheel, so that the stability of the train in the rescue mode has been increased.
  • the above-mentioned connecting joint does not have special requirements for the processing and precision of the F-shaped rail 3c, and the processing and installation are simple, no complicated machining and precision matching are required, and the structural strength is not effectively reduced, and can be large. To reduce material waste.
  • the expansion rails are arranged between the F-type rails of the rails, and the joints are arranged at the expansion joints between the adjacent F-shaped rails for connecting the two F-types.
  • the rails as shown in Fig. 19, are connected by connecting the two F-shaped rails 3d through the joint joints to the respective flaps.
  • the wings of the two F-shaped rails 3d are respectively provided with connecting grooves 32d at the portions to be connected, and the connecting grooves 32d are from the ends of the wings to the wings in the direction of the track line.
  • An elongated groove extending in the plate penetrates the lower surface of the upper plate to form a through groove.
  • the elongated connecting groove 32d is arcuate at one end inside the flap, so that the elongated connecting groove is called a semi-waist hole.
  • the connecting groove 32d is not limited to the semi-waist hole, and may have other shapes, for example, one end located inside the flap is a flat surface, and an elongated square hole or other shaped hole is formed.
  • the joint portion on the flap is provided on the outer circumference of the elongated connecting groove 32d, and a connecting hole for connection is provided for attaching and fixing the joint to the flap 31d.
  • the connecting hole is a circular hole, preferably a stepped circular hole, and two connecting holes on each of the wings 31d are disposed on both sides of the elongated connecting groove 32d in the lateral direction of the track.
  • the shape and the number of the connecting holes are not limited, and may be specifically selected according to actual needs, but preferably distributed along the transverse direction of the track. On both sides of the long strip groove.
  • the joint joint includes a lower joint plate 1d which is preferably a plate body structure, and one side surface (upper surface in the drawing) of the lower joint plate 1d is provided with an elongated boss 11d which is provided. It is fixedly connected to the upper surface of the lower connecting plate 1d, preferably integrally.
  • the boss 11d is for inserting into the elongated gap in the direction of the track line which is formed by the long connecting groove 32d on the two flaps 3d and the slit between the two F-shaped rails 3d.
  • the boss 11d is used to achieve the lateral and vertical direction of the rail or F-rail 3d and to accommodate the telescopic deformation along the track line, while ensuring the impact on the vehicle support wheel. It may be small, and the size and shape of the boss 11d have certain requirements. Specifically, the length of the boss 11d in the direction of the track line must be smaller than the length of the long-shaped connecting groove 32d on the opposite wing plates 31d and the gap between the two in the direction of the track line. The boss 11d is relatively movable in the gap direction in the direction of the track line, and is adapted to the need for the rail row to be deformed.
  • a pre-tightening buffer member such as a spring, an elastic piece or other elastic member, as a pre-tensioning cushioning member
  • one end is disposed on the inner wall of the end portion of the flap connecting groove 32d, and One end is for abutting against the end of the boss 11d which projects into the coupling groove 32d. That is, after the boss protrudes into the long gap, the pre-tightening buffer is disposed in the gap between the two ends of the longitudinal direction and the two ends of the gap, so that both ends of the boss pass through the pre-tightening buffer and the connecting groove 32d. Abut.
  • the position of the boss 11d in the longitudinal direction is further defined, and on the other hand, the movement of the boss 11d can be buffered when the boss 11d is telescopically deformed between the rail rows, so that the telescopic expansion is performed.
  • the deformation is smooth and the track is unstable.
  • the width of the boss 11d in the lateral direction of the rail and the connecting groove 32d on the flap 31d are The width matching in the direction enables the boss 11d to limit the F-shaped rail 3d in the lateral direction, and the lateral force-receiving surface is greatly improved, so that the limit capability and the limit reliability are greatly improved, and the F-shaped rail can be effectively prevented.
  • the center line of the boss 11d in the direction along the track line is maintained in the same vertical plane as the center line of the elongated gap, while the center line of the vehicle support wheel in the direction of the track line is also located on the plane.
  • the end surface of the convex end of the boss 11d should coincide with the upper surface of the wing 31d, for example, both of them are flat, and the height of the protrusion should ensure that the boss 11d is inserted into the gap and passes through the gap, and the end face and the wing of the convex end
  • the surface of the plate 31d is flush, so that the vehicle support wheel can smoothly contact the end surface of the boss 11d and pass smoothly, minimizing the impact or instability caused by the existence of the gap between the rail rows.
  • the width of the boss 11d in the lateral direction of the rail can be made smaller than the width of the support wheel of the vehicle.
  • the lower connecting plate 1d of the connecting joint is located on the surface on the same side of the limiting boss 11d (the upper surface shown in FIG. 19).
  • a plurality of through holes 12d are provided on the outer periphery of the limiting boss 11d as mounting connecting holes. It corresponds to the mounting hole 33d on the flap 31d for passing the connector to securely connect the joint to the flap 31d.
  • the upper surface of the flap lower connecting plate 1d is provided with four mounting connecting holes 12d located around, and each mounting connecting hole 12d is preferably a lumbar hole.
  • the connector for connecting the joint to the flap is a bolt 2d.
  • the shape of the end faces of the limiting boss 11d in the longitudinal direction is preferably matched with the end faces of the elongated grooves of the corresponding ends, as shown in FIG. 19 as curved faces, or may be flat or other shapes. After the limiting boss 11d is connected, there is a certain gap between the end surface and the corresponding groove end surface for adapting the telescopic deformation of the expansion joint between the rail rows.
  • the connecting joint of the present invention can make the F-shaped rail 3d of the rail row member through the arrangement of the above-mentioned limiting boss 11d and the opening of the corresponding connecting groove 32d on the corresponding wing 31d, combined with the corresponding size combination and assembly relationship. It can realize stable and reliable connection, reliable limit in the horizontal and vertical directions, adapt to the telescopic deformation between the rail rows in the direction of the track line, and its support to the support wheels of the vehicle is stable, greatly reducing the contact between the wheel and the gap. , greatly reducing the impact on the wheel, so that The stability of the train in the rescue mode has been increased.
  • the above-mentioned connecting joints do not have special requirements for the processing and precision of the F-shaped rail 3d, and the processing and installation are simple, no complicated machining and precision matching are required, and the structural strength is not effectively reduced, and can be large. To reduce material waste.

Abstract

用于F型钢轨(3a,3b,3c,3d)的连接接头,其为工字型、半斜槽式、斜槽式或缓冲式,结构包括用于设置于翼板(31a,31b,31c,31d)下表面的下连接板(1a,1b,1c,1d)以及限位凸台(11a,11b,11c,11d),其凸出设置在下连接板(1a,1b,1c,1d)的一侧面上,凸出端表面为平面;F型钢轨翼板(31a,31b,31c,31d)分别对应设置有与限位凸台(11a,11b,11c,11d)一端匹配的上下贯通的通槽(32a,32b,32c,32d),相对两翼板(31a,31b,31c,31d)之间的通槽(32a,32b,32c,32d)以及两者之间的缝隙所共同形成的长条形空隙用于下连接板(1a,1b,1c,1d)上的限位凸台(11a,11b,11c,11d)插入,通过连接件穿过连接孔(12a,12b,12c,12d)将下连接板(1a,1b,1c,1d)与翼板(31a,31b,31c,31d)连接固定,可使得该限位凸台(11a,11b,11c,11d)穿过长条形空隙且其凸出端表面与翼板(31a,31b,31c,31d)上表面平齐,并使侧面完全与翼板(31a,31b,31c,31d)上的通槽(32a,32b,32c,32d)内壁接触,进而实现对F型钢轨(3a,3b,3c,3d)的连接。该连接接头能够保证车轮始终不脱离翼板(31a,31b,31c,31d),可避免轨缝对行走轮的冲击。

Description

用于F型钢轨的连接接头 【技术领域】
本发明属于中低速磁浮轨道结构技术领域,具体涉及用于F型钢轨的连接接头,适用于中低速磁浮轨道轨排间的连接。
【背景技术】
中低速磁浮轨道交通采用常导电磁铁吸力型悬浮和导向技术,通过车辆悬浮架上的U型电磁铁与F型钢轨之间的电磁吸引力,实现车辆的悬浮和导向。目前中低速磁浮轨道结构主要采用钢轨枕型式,轨道自上而下主要包括感应板、F型钢轨(也称F轨)、伸缩节、连接件及紧固件、钢轨枕、扣件系统、承轨台等部分组成,以轨排为单元整体铺装。F型钢轨、钢轨枕和感应板在工厂或现场组装基地组装成轨排,轨排通过F轨连接接头连接。
为适应轨排与下部基础在温度变化下引起的伸缩变形,轨排F型钢轨之间均设置有伸缩缝,连接接头设置在相邻F型钢轨间的伸缩缝位置,F型钢轨的接头结构需要适应磁浮轨道的热胀冷缩特性、F轨平顺、行车稳定性以及运营维护等方面的需求,其连接强度、稳定性和可靠性对列车安全、平稳和快速运行至关重要。
F型钢轨接头在连接相连轨排时,为保证轨道垂向、横向对中,以及在纵向(沿轨道方向)上足够的温差伸缩位移调节量,连接接头都在F型钢轨翼板下设置了下连接结构。目前,国内外既有的翼板下连接结构一般包括翼板下连接板和连接螺栓,该连接结构通过将设置在翼板下连接板的凸型块嵌入设置在翼板底面的限位凹槽来限制轨排间的横向错位,通过将F型钢轨的翼板设置成“阶梯”型来提高列车在救援模式下通过伸缩缝的平稳性。
例如专利文献CN104499385A中公开了一种中低速磁浮系统F型钢轨连接结构,如图1-2所示,其包括翼板下连接板1、夹板和外腿侧连接板3, 翼板的底面设有沿线路纵向延伸的限位凹槽,翼板下连接板上设有与限位凹槽相配合的凸型块,同时两个翼板可以为“阶梯”型连接。通过上述方式,可以使得轨排之间能够较好地适应伸缩缝的伸缩变形,同时通过翼板的阶梯型布置使得其能够强化横向限位能量并提升列车在救援模式下车轮通过伸缩缝的平稳性。但是,上述连接结构对轨排的横向限位提升仍然有限,特别是其中翼板设置成“阶梯”型使得车轮仍然有部分会位于缝隙部位,导致车轮稳定性仍有不足,而且上述阶梯”型结构需要对轨道端面进行复杂形状的机加工,且必须保证两端导轨的接触面尺寸精确配合,其加工难度大、成本高、安装效率低,不适用于大轨缝会显著提高F型钢轨的加工难度,还会造成材料的巨大浪费。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了用于F型钢轨的连接接头,可以为工字型、半斜槽式、斜槽式或缓冲式,其通过对接头结构和与F型钢轨翼板的装配方式进行改进,并对F型钢轨的翼板连接部位进行相应优化,从而实现对连接的轨排在横向和垂直方向的精确匹配和限位,并在纵向上完全适应于轨排的伸缩变形,而且能够保证车轮始终不脱离翼板,可以完全避免轨缝对行走轮的冲击,同时也无需对F型钢翼板结构进行额外的高难度机械加工以及强度或性能的减弱。
为实现上述目的,按照本发明的一个方面,提供一种用于F型钢轨的工字形连接接头,用于对两相邻轨排相对端端部的F型钢轨的翼板进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
用于设置于翼板下表面的下连接板,其上设置有多个通孔作为与翼板连接的连接孔;以及限位凸台,其凸出设置在所述下连接板的用于与待连接的翼板接触的一侧表面上,其为长条状,长度方向沿轨道线方向且其两端部均轨道横向两侧凸出,使得限位凸台整体呈工字型;
待连接的两个所述F型钢轨翼板相对的端部分别对应设置有与所述限位凸台一端匹配的连接槽,其中所述连接槽在翼板内部的端部沿轨道横向上向两侧延伸,相对布置的两翼板之间的上述连接槽以及位于两连接槽之间的缝隙所共同形成的工字型空隙用于所述限位凸台插入,通过连接件穿过所述连接孔可将所述下连接板与翼板连接固定,从而可使得该限位凸台穿过所述工字型空隙且使得其凸出端表面与翼板上表面平齐,同时使其侧面完全与翼板上的连接槽内壁接触,进而即可实现对相邻轨排的可靠限位和平稳过渡地连接。
作为本发明的进一步优选,所述限位凸台在沿轨道线方向的长度小于所述工字型空隙的长度,使得该限位凸台可适应轨排在该方向上的伸缩形变。
作为本发明的进一步优选,所述限位凸台在轨道横向上的宽度与所述工字型空隙的宽度匹配,使得其可以在该方向上对F型钢轨进行限位。
作为本发明的进一步优选,所述连接槽两端部向横向延伸形成的凹槽不贯通翼板上下表面,对应地,与其匹配的限位凸台两端部横向凸出的部位的高度低于限位凸台中间部分的高度。
作为本发明的进一步优选,所述限位凸台和工字型空隙在长度方向上的中心线重合,并优选与列车支撑轮中心线重合。
作为本发明的进一步优选,所述限位凸台在轨道横向上的宽度小于列车支撑轮的宽度。
作为本发明的进一步优选,所述限位凸起的凸出端端面为平面,其在连接到位后与翼板平面平齐,使得所述支撑轮在通过两轨排间的缝隙时可通过该限位凸台的支撑而平稳通过从而减小对支撑轮的冲击。
作为本发明的进一步优选,所述连接孔沿轨道线方向分布在下连接板的两端,优选每端为两个,与待连接的翼板对应位置也相应开有孔,以用于分别通过连接件实现两者的连接。
作为本发明的进一步优选,所述连接孔优选为长圆孔,长度方向沿轨道线方向。
作为本发明的进一步优选,翼板上的所述连接槽为从翼板端部朝里延伸一定长度并贯穿翼板上下表面的槽孔,且槽孔在朝里的端部沿轨道横向上的两侧延伸,使得两翼板上的连接槽以及两翼板间的缝隙形成用于容纳所述限位凸台的工字型孔隙。
为实现上述目的,按照本发明的另一个方面,提供一种用于F型钢轨的半斜槽式连接接头,用于对两相邻轨排相对端端部的F型钢轨的翼板进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
用于设置于翼板下表面的下连接板,其上设置有多个通孔作为与翼板连接的连接孔;
限位凸台,其凸出设置在所述下连接板的用于与待连接的翼板接触的一侧表面上,其呈长条状且长度方向沿轨道线方向,该限位凸台的横截面呈上窄下宽的直角梯形;
待连接的两个所述F型钢轨翼板相对的端部分别对应设置有与所述限位凸台一端匹配的上下贯通的通槽,其中所述通槽两侧面其中之一为斜面,通槽上部槽口宽度小于下部槽口宽度;
相对布置的两翼板之间的上述通槽以及位于两通槽之间的缝隙所共同形成的沿轨道线方向的长条形空隙用于所述限位凸台插入,通过连接件穿过所述连接孔可将所述下连接板与翼板连接固定,从而可使得该限位凸台穿过所述长条形空隙且使得其凸出端表面与翼板上表面平齐,同时使其两侧面完全与翼板上的通槽两内壁分别接触,进而即可实现对相邻轨排的可靠限位和平稳过渡地连接。
作为本发明的进一步优选,所述限位凸台在沿轨道线方向的长度小于所述长条形空隙的长度,使得其可适应轨排在该方向上的伸缩形变。
作为本发明的进一步优选,所述限位凸台在轨道横向上的宽度与所述长条形空隙的宽度对应匹配,使得所述限位凸台在轨道横向上的两侧面可与通槽相应的两壁面匹配接触,实现在该方向上对F型钢轨的限位。
作为本发明的进一步优选,所述通槽为半斜槽,其横截面对应为直角梯形。
作为本发明的进一步优选,所述限位凸台和长条形空隙在长度方向上的中心线重合,并优选与列车支撑轮中心线重合。
作为本发明的进一步优选,所述限位凸台的凸出端表面在轨道横向上的宽度小于列车支撑轮的宽度。
作为本发明的进一步优选,所述限位凸起的凸出端端面为平面,其在连接到位后与翼板平面平齐,使得所述支撑轮在通过两轨排间的缝隙时可通过该限位凸台的支撑而平稳通过从而减小对支撑轮的冲击。
作为本发明的进一步优选,所述连接孔沿轨道线方向分布在下连接板的两端,优选每端为两个,与待连接的翼板对应位置也相应开有孔,以用于分别通过连接件实现两者的连接。
作为本发明的进一步优选,所述连接孔优选为长圆孔,长度方向沿轨道线方向。
作为本发明的进一步优选,翼板上的所述通槽为从翼板端部朝里沿伸一定长度且贯穿翼板上下表面的长槽通孔,两翼板上的通槽以及两翼板间的缝隙形成用于容纳所述限位凸台的孔隙。
为实现上述目的,按照本发明的另一个方面,提供一种用于F型钢轨的斜槽式连接接头,用于对两相邻轨排相对端端部的F型钢轨的翼板进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
用于设置于翼板下表面的下连接板,其上设置有多个通孔作为与翼板连接的连接孔;
限位凸台,其凸出设置在所述下连接板的用于与待连接的翼板接触的一侧表面上,其呈长条状且长度方向沿轨道线方向,该限位凸台的横截面呈上窄下宽的梯形;
待连接的两个所述F型钢轨翼板相对的端部分别对应设置有与所述限位凸台一端匹配的上下贯通的通槽,其中所述通槽两侧壁面为斜面,通槽上部槽口宽度小于下部槽口宽度;
相对布置的两翼板之间的上述通槽以及位于两通槽之间的缝隙所共同形成的沿轨道线方向的长条形空隙用于所述限位凸台插入,通过连接件穿过所述连接孔可将所述下连接板与翼板连接固定,从而可使得该限位凸台穿过所述长条形空隙且使得其凸出端表面与翼板上表面平齐,同时使其侧面完全与翼板上的通槽内壁接触,进而即可实现对相邻轨排的可靠限位和平稳过渡地连接。
作为本发明的进一步优选,所述限位凸台在沿轨道线方向的长度小于所述长条形空隙的长度,使得其可适应轨排在该方向上的伸缩形变。
作为本发明的进一步优选,所述限位凸台在轨道横向上的宽度与所述长条形空隙的宽度对应匹配,使得所述限位凸台在轨道横向上的两侧面可与通槽相应的两壁面匹配接触,实现在该方向上对F型钢轨的限位。
作为本发明的进一步优选,所述限位凸台的横截面为等腰梯形。
作为本发明的进一步优选,所述限位凸台和长条形空隙在长度方向上的中心线重合,并优选与列车支撑轮中心线重合。
作为本发明的进一步优选,所述限位凸台的凸出端表面在轨道横向上的宽度小于列车支撑轮的宽度。
作为本发明的进一步优选,所述限位凸起的凸出端端面为平面,其在连接到位后与翼板平面平齐,使得所述支撑轮在通过两轨排间的缝隙时可通过该限位凸台的支撑而平稳通过从而减小对支撑轮的冲击。
作为本发明的进一步优选,所述连接孔沿轨道线方向分布在下连接板 的两端,优选每端为两个,与待连接的翼板对应位置也相应开有孔,以用于分别通过连接件实现两者的连接。
作为本发明的进一步优选,所述连接孔优选为长圆孔,长度方向沿轨道线方向。
作为本发明的进一步优选,翼板上的所述通槽为从翼板端部朝里沿伸一定长度且贯穿翼板上下表面的长槽通孔,其两侧壁面为与限位凸台侧面相匹配的斜面,两翼板上的通槽以及两翼板间的缝隙形成用于容纳所述限位凸台的孔隙。
为实现上述目的,按照本发明的另一个方面,提供一种用于F型钢轨的缓冲式连接接头,用于对两相邻轨排相对端端部的F型钢轨的翼板进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
用于设置于F型钢轨翼板底面的下连接板,其上设置有多个通孔作为与所述翼板连接的连接孔;
限位凸台,其凸出设置在所述下连接板的用于与待连接的翼板底面接触的一侧面上,其呈长条状且长度方向沿轨道线方向;
待连接的两个所述F型钢轨翼板相对的端部分别对应设置的与所述限位凸台一端匹配的上下贯通的通槽;以及
预紧缓冲件,其用于设置在所述F型钢轨翼板的通槽端部;
相对两翼板之间的上述通槽以及位于两通槽之间的缝隙所共同形成的长条形空隙用于所述限位凸台插入,通过连接件穿过所述连接孔可将下连接板与两翼板连接固定,从而可使得该限位凸台穿过所述长条形空隙并使得其凸出端表面与翼板上表面平齐,且其沿长度方向的两端可与两通槽端部内壁的所述预紧缓冲元件抵接,同时其侧面与通槽内壁接触,进而实现对相邻轨排的可靠限位和平稳过渡地连接。
作为本发明的进一步优选,所述缓冲件优选为弹簧,其通过缓冲限位 凸台在长度方向上的移动,从而实现轨排在该方向上平稳的伸缩形变。
作为本发明的进一步优选,所述限位凸台在轨道横向上的宽度与所述长条形空隙的宽度匹配,使得其可以在该方向上对F型钢轨进行限位。
作为本发明的进一步优选,所述限位凸台的横截面呈梯形,优选是等腰梯形或直角梯形,所述通槽相应呈匹配的梯形槽。
作为本发明的进一步优选,所述限位凸台的端部沿横向两侧凸出,使得整体呈工字型或T字型,所述通槽截面相应呈匹配的工字型槽或T字型槽。
作为本发明的进一步优选,所述限位凸台和长条形空隙在长度方向上的中心线重合,并优选与列车支撑轮中心线重合。
作为本发明的进一步优选,所述限位凸台在轨道横向上的宽度小于列车支撑轮的宽度。
作为本发明的进一步优选,所述限位凸起的凸出端端面为平面,其在连接到位后与翼板平面平齐,使得所述支撑轮在通过两轨排间的缝隙时可通过该限位凸台的支撑而平稳通过从而减小对支撑轮的冲击。
作为本发明的进一步优选,所述连接孔沿轨道线方向分布在下连接板的两端,优选每端为两个,与待连接的翼板对应位置也相应开有孔,以用于分别通过连接件实现两者的连接。
作为本发明的进一步优选,所述连接孔优选为长圆孔,长度方向沿轨道线方向。
作为本发明的进一步优选,翼板上的所述通槽为从翼板端部朝里沿伸一定长度且贯穿翼板上下表面的长槽通孔,两翼板上的通槽以及两翼板间的缝隙形成用于容纳所述限位凸台和预紧缓冲元件的孔隙。
按照本发明的另一个方面,提供一种用于中低速磁浮系统的轨道,其中,所述轨道的各轨排之间通过上述连接接头进行连接。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有 以下优点和有益效果:
(1)本发明的工字型连接接头是通过将翼板下连接板的工字型限位凸台完全嵌入F型钢端部的工字型槽孔内;半斜槽式连接接头通过将翼板下连接板的限位凸台完全嵌入F型钢端部的长槽孔内,且限位凸台侧面与通槽壁面采用楔面接触配合方式;斜槽式连接接头通过将翼板下连接板的限位凸台完全嵌入F型钢端部的长槽孔内,且限位凸台侧面与通槽壁面采用楔面接触配合方式;缓冲式连接接头通过将翼板下连接板的限位凸台完全嵌入F型钢端部的长槽孔内。上述几种连接接头均能够使得其在轨道横向上的受力面大幅提高,从而极大提高了其横向限位能力,能有效防止相邻两F型钢的横向错位;
(2)本发明的工字型连接接头通过翼板下连接板的限位凸台将伸缩缝两端F型钢的翼板进行了“桥接”,其中凸台端面可与翼板平面完全平齐,可以保证支撑轮通过伸缩缝时始终处于接触状态,提高了列车在救援模式下行车的平稳性和支撑轮的使用寿命;通过在两待连接的翼板端面分别开设连接槽,并与两者之间的轨排缝隙形成工字型的空隙,使得限位凸台可以嵌入其中且在长度方向上存在孔隙,使得其可以完美适应轨排间缝隙的伸缩变形;
(3)本发明的半斜槽式连接接头通过翼板下连接板的限位凸台将伸缩缝两端F型钢的翼板进行了“桥接”,其中凸台端面可与翼板平面完全平齐,可以保证支撑轮通过伸缩缝时始终处于接触状态,提高了列车在救援模式下行车的平稳性和支撑轮的使用寿命;本发明的连接接头通过在两待连接的翼板端面分别开设半斜槽式通槽,并与两者之间的轨排缝隙形成长条形的空隙,使得横截面为直角梯形的限位凸台可以嵌入其中且在长度方向上存在孔隙,其可以完美适应轨排间缝隙的伸缩变形;
(4)本发明的斜槽式连接接头通过翼板下连接板的限位凸台将伸缩缝两端F型钢的翼板进行了“桥接”,其中凸台端面可与翼板平面完全平齐, 可以保证支撑轮通过伸缩缝时始终处于接触状态,提高了列车在救援模式下行车的平稳性和支撑轮的使用寿命;通过在两待连接的翼板端面分别开设通槽,且内壁两壁面为斜面,并与两者之间的轨排缝隙形成长条形的空隙,使得呈长条梯形的限位凸台可以嵌入其中且在长度方向上存在孔隙,从而可完美适应轨排间缝隙的伸缩变形;
(5)本发明的缓冲式连接接头通过翼板下连接板的限位凸台将伸缩缝两端F型钢的翼板进行了“桥接”,其中凸台端面可与翼板平面完全平齐,可以保证支撑轮通过伸缩缝时始终处于接触状态,提高了列车在救援模式下行车的平稳性和支撑轮的使用寿命;通过在两待连接的翼板端面分别开设通槽,并与两者之间的轨排缝隙形成长条形的空隙,使得限位凸台可以嵌入其中且在长度方向上存在孔隙,使得其可以完美适应轨排间缝隙的伸缩变形;本发明在形成的长条形空隙两端部设置预紧缓冲件,使得限位凸台两端分别通过预紧缓冲件与长条形空隙两端内壁抵接,从而可以使得连接件的伸缩均匀,同时保证伸缩过程中的平稳;
(6)本发明的连接接头仅是需要在翼板上简单加工相应的连接槽和连接孔,无需进行复杂的机加工以及精度匹配,避免现有连接接头翼板的“阶梯”型设置,不但连接更为稳定可靠,而且降低加工和安装难道,也降低来轨排的整体造价,同时减少浪费,也便于维修养护。
【附图说明】
图1为现有技术中的一种F型钢轨连接结头的连接示意图;
图2为图1中的连接接头在另一个视角下的连接示意图;
图3为按照本发明实施例一的连接结头的结构分解示意图;
图4为图3中实施例一的连接结头在另一个视角下的结构示意图;
图5为图3中实施例一的连接结头在连接两F型钢轨的翼板时的连接示意图;
图6为图5中实施例一沿A-A断面处的剖面示意图;
图7为图5中实施例一沿B-B断面处的剖面示意图;
图8为图5中实施例一沿C-C断面处的剖面示意图;
图9为按照本发明实施例二的连接结头的结构分解示意图;
图10为图9中实施例二的连接结头在连接两F型钢轨的翼板时的连接示意图;
图11为图10中实施例二沿A-A断面处的剖面示意图;
图12为图10中实施例二沿B-B断面处的剖面示意图;
图13为图10中实施例二沿C-C断面处的剖面示意图;
图14为按照本发明实施例三的连接结头的结构分解示意图;
图15为图14中实施例三的连接结头在连接两F型钢轨的翼板时的连接示意图;
图16为图15中实施例三沿A-A断面处的剖面示意图;
图17为图15中实施例三沿B-B断面处的剖面示意图;
图18为图15中实施例三沿C-C断面处的剖面示意图;
图19为按照本发明实施例四的连接结头的结构分解示意图;
图20为图19中实施例四的连接结头在连接两F型钢轨的翼板时的连接示意图;
图21为图20中实施例四沿A-A断面处的剖面示意图;
图22为图20中实施例四沿B-B断面处的剖面示意图;
图23为图20中实施例四沿C-C断面处的剖面示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为更好地解释本发明,以下分别就用于F型钢轨间的工字型连接接头、半斜槽式连接接头、斜槽式连接接头和缓冲式连接接头分别给出具体实施例:
实施例一
一种用于F型钢轨的工字形连接接头,其用于中低速磁浮系统相邻轨排的连接,尤其是两轨排上的F型钢轨的连接。为适应轨排与下部基础在温度变化下引起的伸缩变形,轨排F型钢轨之间设置有伸缩缝,连接接头即设置在相邻F型钢轨间的伸缩缝位置,用于连接两F型钢轨,如图3所示,两F型钢轨3a的连接通过该连接接头连接各自翼板实现。
如图3、图4、图5、图6和图7所示,两F型钢轨3a的翼板上在待连接部位分别开设有连接槽32a,连接槽32a为沿轨道线方向从翼板端部向翼板内延伸的条形槽,特别是该条形槽在翼板里部的端部向轨道横向方向上延伸,即该条形槽在端部的宽度大于非端部的宽度,优选连接槽端部延伸的部分不贯通翼板上下表面,而连接槽其他部位贯通翼板上下表面。在该连接接头中,可以使连接槽32a位于翼板内部的一端向轨道横向上延伸凸出的槽孔呈一定宽度的矩形,使得该条形连接槽成为T形槽孔。但本发明中对连接槽32a向轨道横向上延伸凸出的部分并不限于矩形,也可以为其他形状,例如圆形、扇形、腰形等,但该连接槽从整体上应呈T形或类T形。
另外,在翼板上的连接部位在位于连接槽32a的外周,设置有用于连接的连接孔,以用于将连接接头与翼板31a连接固定。如图3所示,连接孔为圆孔,优选是台阶圆孔,每个翼板31a上的连接孔为两个,沿轨道横向分别布置于长条形连接槽32a的两侧。但本发明中对连接孔的形状和数量并不做限定,可根据实际需求具体选择,但优选是沿轨道横向分布于长条形连接槽两侧。
如图3-5所示,连接接头包括下连接板1a,其优选是板体结构,下连 接板1a的一侧表面(在图中为上表面)上设置有凸台11a,其与下连接板1a的上表面固定连接,优选是一体连接。凸台11a为长条状,长度方向沿轨道线方向,且其两端部均沿轨道横向方向向两侧凸出,使得限位凸台整体呈工字型结构。工字型的凸台11a形状与两翼板3a上的连接槽32a以及两F型钢轨3a之间的缝隙所共同形成的沿轨道线方向的工字型空隙相匹配,优选地,两端凸出的部分其高度低于凸台其他部位,使得其可以与连接槽对应部位配合。该凸台11a用于插入两翼板3a上的连接槽32a以及两F型钢轨3a之间的缝隙所共同形成的沿轨道线方向的工字型空隙中。
作为本连接件中的关键部件,凸台11a用于实现对轨排或F型钢轨3a在横向和垂直方向的限位以及适应沿轨道线方向的伸缩变形,同时保证对车辆支撑轮的冲击尽可能小,凸台11a的尺寸和形状具有一定的要求。具体来说,凸台11a沿轨道线方向的长度必须小于相对的两翼板31a上的连接槽32a以及两者之间的缝隙沿轨道线方向所共同形成的工字型空隙的长度,优选是凸台11a两端凸出部分在沿轨道线方向的宽度小于所述工字型空隙的宽度,使得凸台11a在轨道线方向上可在该空隙内相对移动,适应轨排伸缩变形的需要。
同时,凸台11a在轨道横向上的宽度与翼板31a上的连接槽32a在该方向上的宽度匹配,使得凸台11a在横向上能够对F型钢轨3a进行限位,其横受力面大大提高,使其限位能力和限位可靠性大大提高,可以有效防止F型钢轨3a在横向上的错位。优选地,凸台11a的两端横向凸起部位在横向上的宽度与连接槽两端延伸部分的宽度匹配,凸台11a中间部位的宽度与连接槽中间部位的宽度匹配。
在工字型连接接头中,凸台11a在沿轨道线方向上的中心线可以与工字型空隙的中心线保持在同一垂直平面上,同时车辆支撑轮沿轨道线方向的中心线也位于该平面上。特别是,凸台11a的凸起端的端面应与翼板31a上表面一致,例如均为平面,同时凸起高度应保证凸台11a插入空隙中并 穿过该空隙后,凸起端的端面与翼板31a表面平齐,使得车辆支撑轮可以平稳地接触凸台11a端面并顺利通过,尽可能减少因为轨排之间缝隙的存在而造成的冲击或不稳定。
在工字型连接接头中,可以使凸台11a在轨道横向上的宽度小于车辆支撑轮的宽度。
连接接头的下连接板1a位于限位凸台11a同侧的表面上(图3中所示为上表面)在位于限位凸台11a外周设置有多个通孔12a,其作为安装连接孔,其与翼板31a上的安装孔33a对应,用于使连接件穿过以将接头与翼板31a固定连接。翼板下连接板1a的上表面在位于位于四周设置有四个安装连接孔12a,各安装连接孔12a优选是腰性孔。用于连接接头与翼板的连接件是螺栓2a。
限位凸台11a在长度方向上两端面的形状与对应端的工字型槽端面匹配,限位凸台11a两端面为凸出的矩形,相应地连接槽端部的延伸部分也为矩形,使得两者能够匹配,但本发明中对于凸台11a端面凸出部分的形状不作限定,可以为例如圆形、腰形或其他形状。限位凸台11a在连接到位后其端面与对应的槽端面存在一定间隙,以用于适应轨排间伸缩缝的伸缩变形。
本发明中的连接接头通过上述限位凸台11a的设置、以及对应翼板31a上相应连接槽32a的开设,并结合相应的尺寸结合和装配关系,可以使得轨排件的F型钢轨3a之间可以实现稳定可靠的连接,在横向和垂直方向上进行可靠限位,在轨道线方向上适应轨排间伸缩变形,而且其对车辆支撑轮的支撑稳定,极大减小车轮与缝隙的接触,大大降低对车轮的冲击,使得列车在救援模式下的平稳性得到加大提升。上述连接接头在实现上述功能的同时,没有对对F型钢轨3a的加工和精度提出特殊要求,加工和安装简单,无需复杂的机加工和精度配合,而且结构强度并没有有效降低,并可大为减少材料浪费。
实施例二
一种用于F型钢轨的半斜槽式连接接头,其用于中低速磁浮系统相邻轨排的连接,尤其是两轨排上的F型钢轨的连接。为适应轨排与下部基础在温度变化下引起的伸缩变形,轨排F型钢轨之间设置有伸缩缝,连接接头即设置在相邻F型钢轨间的伸缩缝位置,用于连接两F型钢轨,如图9所示,两F型钢轨3b的连接通过该连接接头连接各自翼板实现。
如图9、图10、图11和图12所示,两F型钢轨3b的翼板上在待连接部位分别开设有连接槽32b,连接槽32b为沿轨道线方向从翼板端部向翼板内延伸的长条形槽,且贯通翼板上下表面,形成通槽。其中,长条形通槽的两侧壁面中,其中一侧壁面为倾斜面,另一侧壁面为与上下表面垂直的直面,使得该长条形槽形成上部槽口宽度小于下部槽口宽度的斜槽(半斜槽),其横截面呈直角梯形。其中长条形通槽的两侧壁面中呈斜面的侧面可以是其中任一侧的壁面。
该连接接头长条形通槽32b位于翼板内部的一端可以为弧形,使得该长条形通槽称为半腰性斜槽孔。但本发明中对连接槽32b并不限于半腰性,可以为其他形状,例如位于翼板内部的一端为平面,形成长条形方孔,或者其他形状的孔。
另外,在翼板上的连接部位在位于长条形通槽32b的外周,设置有用于连接的连接孔,以用于将连接接头与翼板31b连接固定。如图9所示,连接孔为圆孔,优选是台阶圆孔,每个翼板31b上的连接孔为两个,沿轨道横向分别布置于长条形通槽32b的两侧。但本发明中对连接孔的形状和数量并不做限定,可根据实际需求具体选择,但优选是沿轨道横向分布于长条形通槽两侧。
如图9-11所示,连接接头包括下连接板1b,其优选是板体结构,下连接板1b的一侧表面(在图中为上表面)上设置有长条形凸台11b,其与下连接板1b的上表面固定连接,优选是一体连接。凸台11b用于插入两翼板 3b上的长条形通槽32b以及两F型钢轨3b之间的缝隙所共同形成的沿轨道线方向的长条形空隙中。
作为本连接件中的关键部件,凸台11b用于实现对轨排或F型钢轨3b在横向和垂直方向的限位以及适应沿轨道线方向的伸缩变形,同时保证对车辆支撑轮的冲击尽可能小,凸台11b的尺寸和形状具有一定的要求。具体来说,凸台11b为横截面为直角梯形的长条形,即其中一侧面为斜面,另一侧面为与上下表面垂直的平面,其中远离下连接板的突出端表面在轨道横向上的宽度小于相对的另一端表面宽度。两侧壁面中为斜面的可以是其中的任一侧面,但是应该能够保证与通槽的内壁面对应匹配,使得凸台能够与其安装配合。
另外,凸台11b沿轨道线方向的长度必须小于相对的两翼板31b上的长条形通槽32b以及两者之间的缝隙沿轨道线方向所共同形成的长条形空隙的长度,使得凸台11b在轨道线方向上可在该空隙内相对移动,适应轨排伸缩变形的需要。同时,为了与长条形斜槽装配,凸台11b在轨道横向上的宽度与翼板31b上的通槽32b在该方向上的宽度对应匹配,例如是凸台两侧面与通槽两内壁面匹配接触,从而使得凸台11b在横向上能够对F型钢轨3b进行限位,其横受力面大大提高,使其限位能力和限位可靠性大大提高,可以有效防止F型钢轨3b在横向上的错位。
在该连接接头中,可以使凸台11b在沿轨道线方向上的中心线与长条形空隙的中心线保持在同一垂直平面上,同时车辆支撑轮沿轨道线方向的中心线也位于该平面上。特别是,凸台11b的凸起端的端面应与翼板31b上表面一致,例如均为平面,同时凸起高度应保证凸台11b插入空隙中并穿过该空隙后,凸起端的端面与翼板31b表面平齐,使得车辆支撑轮可以平稳地接触凸台11b端面并顺利通过,尽可能减少因为轨排之间缝隙的存在而造成的冲击或不稳定。
在该连接接头中,可以使凸台11b突出端表面在轨道横向上的宽度小 于车辆支撑轮的宽度。
连接接头的下连接板1b位于限位凸台11b同侧的表面上(图9中所示为上表面)在位于限位凸台11b外周设置有多个通孔12b,其作为安装连接孔,其与翼板31b上的安装孔33b对应,用于使连接件穿过以将接头与翼板31b固定连接。翼板下连接板1b的上表面在位于位于四周设置有四个安装连接孔12b,各安装连接孔12b优选是腰性孔。用于连接接头与翼板的连接件是螺栓2b。
限位凸台11b在长度方向上两端面的形状优选是与对应端的长条形槽端面匹配,如图9所示为弧形面,也可以为平面或其他形状。限位凸台11b在连接到位后其端面与对应的槽端面存在一定间隙,以用于适应轨排间伸缩缝的伸缩变形。
本发明中的连接接头通过上述限位凸台11b的设置、以及对应翼板31b上相应通槽32b的开设,并结合相应的尺寸结合和装配关系,可以使得轨排件的F型钢轨3b之间可以实现稳定可靠的连接,在横向和垂直方向上进行可靠限位,在轨道线方向上适应轨排间伸缩变形,而且其对车辆支撑轮的支撑稳定,极大减小车轮与缝隙的接触,大大降低对车轮的冲击,使得列车在救援模式下的平稳性得到加大提升。上述连接接头在实现上述功能的同时,没有对对F型钢轨3b的加工和精度提出特殊要求,加工和安装简单,无需复杂的机加工和精度配合,而且结构强度并没有有效降低,并可大为减少材料浪费。
实施例三
一种用于F型钢轨的斜槽式连接接头,其用于中低速磁浮系统相邻轨排的连接,尤其是两轨排上的F型钢轨的连接。为适应轨排与下部基础在温度变化下引起的伸缩变形,轨排F型钢轨之间设置有伸缩缝,连接接头即设置在相邻F型钢轨间的伸缩缝位置,用于连接两F型钢轨,如图14所示,两F型钢轨3c的连接通过该连接接头连接各自翼板实现。
如图14、图15、图16和图17所示,两F型钢轨3c的翼板上在待连接部位分别开设有连接槽32c,连接槽32c为沿轨道线方向从翼板端部向翼板内延伸的长条形槽,且贯通翼板上下表面,形成通槽。其中,长条形通槽的两侧壁面为斜面,使得该长条形槽形成上部槽口宽度小于下部槽口宽度的斜槽。
在该连接接头中,可以使长条形通槽32c位于翼板内部的一端为弧形,使得该长条形通槽称为半腰性斜槽孔。但本发明中对连接槽32c并不限于半腰性,可以为其他形状,例如位于翼板内部的一端为平面,形成长条形方孔,或者其他形状的孔。
另外,在翼板上的连接部位在位于长条形通槽32c的外周,设置有用于连接的连接孔,以用于将连接接头与翼板31c连接固定。如图14所示,连接孔为圆孔,优选是台阶圆孔,每个翼板31c上的连接孔为两个,沿轨道横向分别布置于长条形通槽32c的两侧。但本发明中对连接孔的形状和数量并不做限定,可根据实际需求具体选择,但优选是沿轨道横向分布于长条形通槽两侧。
如图14-16所示,连接接头包括下连接板1c,其优选是板体结构,下连接板1c的一侧表面(在图中为上表面)上设置有长条形凸台11c,其与下连接板1c的上表面固定连接,优选是一体连接。凸台11c用于插入两翼板3c上的长条形通槽32c以及两F型钢轨3之间的缝隙所共同形成的沿轨道线方向的长条形空隙中。
作为本连接件中的关键部件,凸台11c用于实现对轨排或F型钢轨3c在横向和垂直方向的限位以及适应沿轨道线方向的伸缩变形,同时保证对车辆支撑轮的冲击尽可能小,凸台11c的尺寸和形状具有一定的要求。具体来说,凸台11c为横截面为梯形例如等腰梯形的长条形,其中远离下连接板的突出端表面在轨道横向上的宽度小于相对的另一端表面宽度。另外,凸台11c沿轨道线方向的长度必须小于相对的两翼板31c上的长条形通槽 32c以及两者之间的缝隙沿轨道线方向所共同形成的长条形空隙的长度,使得凸台11c在轨道线方向上可在该空隙内相对移动,适应轨排伸缩变形的需要。同时,为了与长条形斜槽装配,凸台11c在轨道横向上的宽度与翼板31c上的通槽32c在该方向上的宽度对应匹配,例如是凸台两侧面与通槽两内壁面匹配接触,从而使得凸台11c在横向上能够对F型钢轨3c进行限位,其横受力面大大提高,使其限位能力和限位可靠性大大提高,可以有效防止F型钢轨3c在横向上的错位。
在该连接接头中,可以使凸台11c在沿轨道线方向上的中心线与长条形空隙的中心线保持在同一垂直平面上,同时车辆支撑轮沿轨道线方向的中心线也位于该平面上。特别是,凸台11c的凸起端的端面应与翼板31c上表面一致,例如均为平面,同时凸起高度应保证凸台11c插入空隙中并穿过该空隙后,凸起端的端面与翼板31c表面平齐,使得车辆支撑轮可以平稳地接触凸台11c端面并顺利通过,尽可能减少因为轨排之间缝隙的存在而造成的冲击或不稳定。
在该连接接头中,可以使凸台11c突出端表面在轨道横向上的宽度小于车辆支撑轮的宽度。
连接接头的下连接板1位于限位凸台11c同侧的表面上(图14中所示为上表面)在位于限位凸台11c外周设置有多个通孔12c,其作为安装连接孔,其与翼板31c上的安装孔33c对应,用于使连接件穿过以将接头与翼板31c固定连接。翼板下连接板1c的上表面在位于位于四周设置有四个安装连接孔12c,各安装连接孔12c优选是腰性孔。用于连接接头与翼板的连接件是螺栓2c。
限位凸台11c在长度方向上两端面的形状优选是与对应端的长条形槽端面匹配,如图14所示为弧形面,也可以为平面或其他形状。限位凸台11c在连接到位后其端面与对应的槽端面存在一定间隙,以用于适应轨排间伸缩缝的伸缩变形。
本发明中的连接接头通过上述限位凸台11c的设置、以及对应翼板31c上相应通槽32c的开设,并结合相应的尺寸结合和装配关系,可以使得轨排件的F型钢轨3c之间可以实现稳定可靠的连接,在横向和垂直方向上进行可靠限位,在轨道线方向上适应轨排间伸缩变形,而且其对车辆支撑轮的支撑稳定,极大减小车轮与缝隙的接触,大大降低对车轮的冲击,使得列车在救援模式下的平稳性得到加大提升。上述连接接头在实现上述功能的同时,没有对对F型钢轨3c的加工和精度提出特殊要求,加工和安装简单,无需复杂的机加工和精度配合,而且结构强度并没有有效降低,并可大为减少材料浪费。
实施例四
一种用于F型钢轨的缓冲式连接接头,其用于中低速磁浮系统相邻轨排的连接,尤其是两轨排上的F型钢轨的连接。为适应轨排与下部基础在温度变化下引起的伸缩变形,轨排F型钢轨之间设置有伸缩缝,连接接头即设置在相邻F型钢轨间的伸缩缝位置,用于连接两F型钢轨,如图19所示,两F型钢轨3d的连接通过该连接接头连接各自翼板实现。
如图19、图20、图21和图22所示,两F型钢轨3d的翼板上在待连接部位分别开设有连接槽32d,连接槽32d为沿轨道线方向从翼板端部向翼板内延伸的长条形槽,且贯通翼板上下表面,形成通槽。长条形连接槽32d位于翼板内部的一端为弧形,使得该长条形连接槽称为半腰性孔。但本发明中对连接槽32d并不限于半腰性孔,可以为其他形状,例如位于翼板内部的一端为平面,形成长条形方孔,或者其他形状的孔。
另外,在翼板上的连接部位在位于长条形连接槽32d的外周,设置有用于连接的连接孔,以用于将连接接头与翼板31d连接固定。如图19所示,连接孔为圆孔,优选是台阶圆孔,每个翼板31d上的连接孔为两个,沿轨道横向分别布置于长条形连接槽32d的两侧。但本发明中对连接孔的形状和数量并不做限定,可根据实际需求具体选择,但优选是沿轨道横向分布 于长条形通槽两侧。
如图19-21所示,连接接头包括下连接板1d,其优选是板体结构,下连接板1d的一侧表面(在图中为上表面)上设置有长条形凸台11d,其与下连接板1d的上表面固定连接,优选是一体连接。凸台11d用于插入两翼板3d上的长条形连接槽32d以及两F型钢轨3d之间的缝隙所共同形成的沿轨道线方向的长条形空隙中。
作为本连接件中的关键部件,凸台11d用于实现对轨排或F型钢轨3d在横向和垂直方向的限位以及适应沿轨道线方向的伸缩变形,同时保证对车辆支撑轮的冲击尽可能小,凸台11d的尺寸和形状具有一定的要求。具体来说,凸台11d沿轨道线方向的长度必须小于相对的两翼板31d上的长条形连接槽32d以及两者之间的缝隙沿轨道线方向所共同形成的长条形空隙的长度,使得凸台11d在轨道线方向上可在该空隙内相对移动,适应轨排伸缩变形的需要。另外,凸台11d横截面(横向方向上的截面)形状可以是矩形(优选四角倒圆角)、梯形(例如等腰梯形或直角梯形)、长条圆形或其他形状,通槽相应呈匹配的矩形槽、梯形槽、长条圆形槽或其他相应形状槽;或凸台11d的至少一端端部沿横向向两侧凸出,整体呈T字型或工字型,通槽相应呈匹配的T字槽、工字槽。
相应地,本实施例中,还包括预紧缓冲件,例如弹簧、弹性片或其他具有一定弹性的元件,其作为预紧缓冲元件,一端设置在翼板连接槽32d的端部的内壁,另一端用于与伸入该连接槽32d中的凸台11d的端部抵接。即在凸台伸入长条形空隙中后,其长度方向两端与空隙两端之间的间隙中设置该预紧缓冲件,使得凸台两端通过预紧缓冲件与连接槽32d两端抵接。通过该预紧缓冲件一方面使得进一步限定凸台11d在长度方向上的位置,另一方面是可以使得凸台11d在轨排之间伸缩变形时可以对凸台11d的移动进行缓冲,使得伸缩变形平稳进行,减小轨排不稳定。
同时,凸台11d在轨道横向上的宽度与翼板31d上的连接槽32d在该 方向上的宽度匹配,使得凸台11d在横向上能够对F型钢轨3d进行限位,其横受力面大大提高,使其限位能力和限位可靠性大大提高,可以有效防止F型钢轨3d在横向上的错位。在一个实施例中,凸台11d在沿轨道线方向上的中心线与长条形空隙的中心线保持在同一垂直平面上,同时车辆支撑轮沿轨道线方向的中心线也位于该平面上。特别是,凸台11d的凸起端的端面应与翼板31d上表面一致,例如均为平面,同时凸起高度应保证凸台11d插入空隙中并穿过该空隙后,凸起端的端面与翼板31d表面平齐,使得车辆支撑轮可以平稳地接触凸台11d端面并顺利通过,尽可能减少因为轨排之间缝隙的存在而造成的冲击或不稳定。
在该连接接头中,可以使凸台11d在轨道横向上的宽度小于车辆支撑轮的宽度。
连接接头的下连接板1d位于限位凸台11d同侧的表面上(图19中所示为上表面)在位于限位凸台11d外周设置有多个通孔12d,其作为安装连接孔,其与翼板31d上的安装孔33d对应,用于使连接件穿过以将接头与翼板31d固定连接。翼板下连接板1d的上表面在位于位于四周设置有四个安装连接孔12d,各安装连接孔12d优选是腰性孔。用于连接接头与翼板的连接件是螺栓2d。
限位凸台11d在长度方向上两端面的形状优选是与对应端的长条形槽端面匹配,如图19所示为弧形面,也可以为平面或其他形状。限位凸台11d在连接到位后其端面与对应的槽端面存在一定间隙,以用于适应轨排间伸缩缝的伸缩变形。
本发明中的连接接头通过上述限位凸台11d的设置、以及对应翼板31d上相应连接槽32d的开设,并结合相应的尺寸结合和装配关系,可以使得轨排件的F型钢轨3d之间可以实现稳定可靠的连接,在横向和垂直方向上进行可靠限位,在轨道线方向上适应轨排间伸缩变形,而且其对车辆支撑轮的支撑稳定,极大减小车轮与缝隙的接触,大大降低对车轮的冲击,使 得列车在救援模式下的平稳性得到加大提升。上述连接接头在实现上述功能的同时,没有对对F型钢轨3d的加工和精度提出特殊要求,加工和安装简单,无需复杂的机加工和精度配合,而且结构强度并没有有效降低,并可大为减少材料浪费。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (40)

  1. 一种用于F型钢轨的工字形连接接头,用于对两相邻轨排的相对端端部的F型钢轨的翼板(31a)进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
    用于设置于F型钢轨翼板(31a)底面的下连接板(1a),其上设置有多个通孔作为与所述翼板(31a)连接的连接孔(12a);
    限位凸台(11a),其凸出设置在所述下连接板(1a)的用于与待连接的翼板(31a)底面接触的一侧面上,其为长条状,长度方向沿轨道线方向且其两端部均轨道横向两侧凸出,使得限位凸台整体呈工字型;
    待连接的两个所述F型钢轨翼板(31a)相对的端部分别对应设置有与所述限位凸台一端匹配的连接槽(32a),其中所述连接槽在翼板内部的端部沿轨道横向上向两侧延伸,相对布置的两翼板(31a)之间的上述连接槽(32a)以及位于两连接槽(32a)之间的缝隙所共同形成的工字型空隙用于所述限位凸台(11a)插入,通过连接件穿过所述连接孔(12a)可将下连接板(1a)与两翼板(31a)连接固定,从而可使得该限位凸台(11a)穿过所述工字型空隙并使得其凸出端表面与翼板(31a)上表面平齐,同时使其侧面与翼板(31a)上的连接槽(32a)内壁接触,进而实现对相邻轨排的可靠限位和平稳过渡地连接。
  2. 根据权利要求1所述的一种用于F型钢轨的工字形连接接头,其中,所述限位凸台(11a)在沿轨道线方向的长度小于所述工字型空隙的长度,使得该限位凸台可适应轨排在该方向上的伸缩形变。
  3. 根据权利要求1或2所述的一种用于F型钢轨的工字形连接接头,其中,所述限位凸台(11a)在轨道横向上的宽度与所述工字型空隙的宽度对应匹配,使得其可以在该方向上对F型钢轨进行限位。
  4. 根据权利要求1-3中任一项所述的一种用于F型钢轨的工字形连接 接头,其中,所述连接槽两端部向横向延伸形成的凹槽不贯通翼板上下表面,对应地,与其匹配的限位凸台两端部横向凸出的部位的高度低于限位凸台中间部分的高度。
  5. 根据权利要求1-4中任一项所述的一种用于F型钢轨的工字形连接接头,其中,所述限位凸台(11a)和工字型空隙在长度方向上的中心线重合,并优选与列车支撑轮中心线重合。
  6. 根据权利要求1-5中任一项所述的一种用于F型钢轨的工字形连接接头,其中,所述限位凸台(11a)在轨道横向上的宽度小于列车支撑轮的宽度。
  7. 根据权利要求1-6中任一项所述的一种用于F型钢轨的工字形连接接头,其中,所述限位凸台(11a)的凸出端端面为平面,其在连接到位后与翼板(31a)平面平齐,使得所述支撑轮在通过两轨排间的伸缩缝隙时可通过该限位凸台(11a)的支撑而平稳通过从而减小对支撑轮的冲击。
  8. 根据权利要求1-7中任一项所述的一种用于F型钢轨的工字形连接接头,其中,所述连接孔(12a)沿轨道线方向分布在下连接板(1a)的两端,优选每端为两个,待连接的翼板(31a)对应位置也相应开有孔(33a),以用于分别通过连接件实现两者的连接。
  9. 根据权利要求1-8中任一项所述的一种用于F型钢轨的工字形连接接头,其中,翼板(31a)上的所述连接槽(32a)为从翼板(31a)端部朝里沿伸一定长度的长槽通孔,其中槽孔在朝里的端部沿轨道横向上的两侧延伸部分不贯通翼板上下表面,其余部分贯通翼板上下表面,使得两翼板(31a)上的连接槽(32a)以及两翼板间的缝隙形成所述用于容纳所述限位凸台(11a)的工字型孔隙。
  10. 一种用于中低速磁浮系统的轨道,其中,所述轨道的各轨排之间通过权利要求1-9中任一项所述的工字形连接接头进行连接。
  11. 一种用于F型钢轨的半斜槽式连接接头,用于对两相邻轨排的相对 端端部的F型钢轨的翼板(31b)进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
    用于设置于F型钢轨翼板(31b)底面的下连接板(1b),其上设置有多个通孔作为与所述翼板(31b)连接的连接孔(12b);
    限位凸台(11b),其凸出设置在所述下连接板(1b)的用于与待连接的翼板(31b)底面接触的一侧面上,其呈长条状且长度方向沿轨道线方向,该限位凸台的横截面呈上窄下宽的直角梯形;
    待连接的两个所述F型钢轨翼板(31b)相对的端部分别对应设置有与所述限位凸台一端匹配的上下贯通的通槽(32b),其中所述通槽两侧面其中之一为斜面,通槽上部槽口宽度小于下部槽口宽度;
    相对布置的两翼板(31b)之间的上述通槽(32b)以及位于两通槽(32b)之间的缝隙所共同形成的长条形空隙用于所述限位凸台(11b)插入,通过连接件穿过所述连接孔(12b)可将下连接板(1b)与两翼板(31b)连接固定,从而可使得该限位凸台(11b)穿过所述长条形空隙并使得其凸出端表面与翼板(31b)上表面平齐,同时使其两侧面完全与翼板(31b)上的通槽(32b)两内壁面分别接触,进而实现对相邻轨排的可靠限位和平稳过渡地连接。
  12. 根据权利要求11所述的一种用于F型钢轨的半斜槽式连接接头,其中,所述限位凸台(11b)在沿轨道线方向的长度小于所述长条形空隙的长度,使得其可适用轨排在该方向上的伸缩形变。
  13. 根据权利要求11或12所述的一种用于F型钢轨的半斜槽式连接接头,其中,所述限位凸台(11b)在轨道横向上的宽度与所述长条形空隙的宽度匹配,使得其可以在该方向上对F型钢轨(3b)进行限位。
  14. 根据权利要求11-13中任一项所述的一种用于F型钢轨的半斜槽式连接接头,其中,所述通槽(32b)为半斜槽,其横截面对应为直角梯形。
  15. 根据权利要求11-14中任一项所述的一种用于F型钢轨的半斜槽式 连接接头,其中,所述限位凸台(11b)在轨道横向上的宽度小于列车支撑轮的宽度。
  16. 根据权利要求11-15中任一项所述的一种用于F型钢轨的半斜槽式连接接头,其中,所述限位凸台(11b)的凸出端端面为平面,其在连接到位后与翼板(31b)平面平齐,使得所述支撑轮在通过两轨排间的伸缩缝隙时可通过该限位凸台(11b)的支撑而平稳通过从而减小对支撑轮的冲击。
  17. 根据权利要求11-16中任一项所述的一种用于F型钢轨的半斜槽式连接接头,其中,所述连接孔(12b)沿轨道线方向分布在下连接板(1b)的两端,优选每端为两个,待连接的翼板(31b)对应位置也相应开有孔(33b),以用于分别通过连接件实现两者的连接。
  18. 根据权利要求17所述的一种用于F型钢轨的半斜槽式连接接头,其中,所述连接孔(12b)优选为长圆孔,长度方向沿轨道线方向。
  19. 根据权利要求11-18中任一项所述的一种用于F型钢轨的半斜槽式连接接头,其中,翼板(31b)上的所述通槽(32b)为从翼板(31b)端部朝里沿伸一定长度且贯穿翼板(31b)上下表面的长槽通孔,两翼板(31b)上的通槽(32b)以及两翼板间的缝隙形成所述用于容纳所述限位凸台(11b)的孔隙。
  20. 一种用于中低速磁浮系统的轨道,其中,所述轨道的各轨排之间通过权利要求11-19中任一项所述的半斜槽式连接接头进行连接。
  21. 一种用于F型钢轨的斜槽式连接接头,用于对两相邻轨排的相对端端部的F型钢轨的翼板(31c)进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
    用于设置于F型钢轨翼板(31c)底面的下连接板(1c),其上设置有多个通孔作为与所述翼板(31c)连接的连接孔(12c);
    限位凸台(11c),其凸出设置在所述下连接板(1c)的用于与待连接的翼板(31c)底面接触的一侧面上,其呈长条状且长度方向沿轨道线方向, 该限位凸台的横截面呈上窄下宽的梯形;
    待连接的两个所述F型钢轨翼板(31c)相对的端部分别对应设置有与所述限位凸台一端匹配的上下贯通的通槽(32c),其中所述通槽两侧壁面为斜面,通槽上部槽口宽度小于下部槽口宽度;
    相对布置的两翼板(31c)之间的上述通槽(32c)以及位于两通槽(32c)之间的缝隙所共同形成的长条形空隙用于所述限位凸台(11c)插入,通过连接件穿过所述连接孔(12c)可将下连接板(1c)与两翼板(31c)连接固定,从而可使得该限位凸台(11c)穿过所述长条形空隙并使得其凸出端表面与翼板(31c)上表面平齐,同时使其两侧面与翼板(31c)上的通槽(32c)内壁接触,进而实现对相邻轨排的可靠限位和平稳过渡地连接。
  22. 根据权利要求21所述的一种用于F型钢轨的斜槽式连接接头,其中,所述限位凸台(11c)在沿轨道线方向的长度小于所述长条形空隙的长度,使得其可适用轨排在该方向上的伸缩形变。
  23. 根据权利要求21或22所述的一种用于F型钢轨的斜槽式连接接头,其中,所述限位凸台(11c)在轨道横向上的宽度与所述长条形空隙的宽度匹配,使得其可以在该方向上对F型钢轨(3c)进行限位。
  24. 根据权利要求21-23中任一项所述的一种用于F型钢轨的斜槽式连接接头,其中,所述限位凸台的横截面为等腰梯形。
  25. 根据权利要求21-24中任一项所述的一种用于F型钢轨的斜槽式连接接头,其中,所述限位凸台和长条形空隙在长度方向上的中心线重合,并优选与列车支撑轮中心线重合。
  26. 根据权利要求21-25中任一项所述的一种用于F型钢轨的斜槽式连接接头,其中,所述限位凸台(11c)在轨道横向上的宽度小于列车支撑轮的宽度。
  27. 根据权利要求21-26中任一项所述的一种用于F型钢轨的斜槽式连接接头,其中,所述限位凸台(11c)的凸出端端面为平面,其在连接到位 后与翼板(31c)平面平齐,使得所述支撑轮在通过两轨排间的伸缩缝隙时可通过该限位凸台(11c)的支撑而平稳通过从而减小对支撑轮的冲击。
  28. 根据权利要求21-27中任一项所述的一种用于F型钢轨的斜槽式连接接头,其中,所述连接孔(12c)沿轨道线方向分布在下连接板(1c)的两端,优选每端为两个,待连接的翼板(31c)对应位置也相应开有孔(33c),以用于分别通过连接件实现两者的连接。
  29. 根据权利要求21-28中任一项所述的一种用于F型钢轨的斜槽式连接接头,其中,翼板(31c)上的所述通槽(32c)为从翼板(31c)端部朝里沿伸一定长度且贯穿翼板(31c)上下表面的长槽通孔,两翼板(31c)上的通槽(32c)以及两翼板间的缝隙形成所述用于容纳所述限位凸台(11c)的孔隙。
  30. 一种用于中低速磁浮系统的轨道,其中,所述轨道的各轨排之间通过权利要求21-29中任一项所述的斜槽式连接接头进行连接。
  31. 一种用于F型钢轨的缓冲式连接接头,用于对两相邻轨排的相对端端部的F型钢轨的翼板(31d)进行连接,实现对之间设置有伸缩缝的两相邻轨排的连接,其特征在于,该连接接头包括:
    用于设置于F型钢轨翼板(31d)底面的下连接板(1d),其上设置有多个通孔作为与所述翼板(31d)连接的连接孔(12d);
    限位凸台(11d),其凸出设置在所述下连接板(1d)的用于与待连接的翼板(31d)底面接触的一侧面上,其呈长条状且长度方向沿轨道线方向;
    待连接的两个所述F型钢轨翼板(31d)相对的端部分别对应设置有与所述限位凸台一端匹配的上下贯通的通槽(32d);以及
    预紧缓冲件(4d),其用于设置在所述F型钢轨翼板的通槽端部;
    相对布置的两翼板(31d)之间的上述通槽(32d)以及位于两通槽(32d)之间的缝隙所共同形成的长条形空隙用于所述限位凸台(11d)插入,通过连接件穿过所述连接孔(12d)可将下连接板(1d)与两翼板(31d)连接 固定,从而可使得该限位凸台(11d)穿过所述长条形空隙并使得其凸出端表面与翼板(31d)上表面平齐,且其沿长度方向的两端可与两通槽端部内壁的所述预紧缓冲元件抵接,同时其侧面与通槽(32d)内壁接触,进而实现对相邻轨排的可靠限位和平稳过渡地连接。
  32. 根据权利要求31所述的一种用于F型钢轨的缓冲式连接接头,其中,所述缓冲件优选为弹簧,其通过缓冲限位凸台(11d)在长度方向上的移动,从而实现轨排在该方向上平稳的伸缩形变。
  33. 根据权利要求31或32所述的一种用于F型钢轨的缓冲式连接接头,其中,所述限位凸台(11d)在轨道横向上的宽度与所述长条形空隙的宽度匹配,使得其可以在该方向上对F型钢轨(3d)进行限位。
  34. 根据权利要求31-33中任一项所述的一种用于F型钢轨的缓冲式连接接头,其中,所述限位凸台的横截面呈梯形,优选是等腰梯形或直角梯形,所述通槽相应呈匹配的梯形槽。
  35. 根据权利要求31-34中任一项所述的一种用于F型钢轨的缓冲式连接接头,其中,所述限位凸台的端部沿横向两侧凸出,使得整体呈工字型或T字型,所述通槽截面相应呈匹配的工字型槽或T字型槽。
  36. 根据权利要求31-35中任一项所述的一种用于F型钢轨的缓冲式连接接头,其中,所述限位凸台和长条形空隙在长度方向上的中心线重合,并优选与列车支撑轮中心线重合。
  37. 根据权利要求31-36中任一项所述的一种用于F型钢轨的缓冲式连接接头,其中,所述限位凸台(11d)在轨道横向上的宽度小于列车支撑轮的宽度。
  38. 根据权利要求31-37中任一项所述的一种用于F型钢轨的缓冲式连接接头,其中,所述限位凸台(11d)的凸出端端面为平面,其在连接到位后与翼板(31d)平面平齐,使得所述支撑轮在通过两轨排间的伸缩缝隙时可通过该限位凸台(11d)的支撑而平稳通过从而减小对支撑轮的冲击。
  39. 根据权利要求31-38中任一项所述的一种用于F型钢轨的缓冲式连接接头,其中,翼板(31d)上的所述通槽(32d)为从翼板(31d)端部朝里沿伸一定长度且贯穿翼板(31d)上下表面的长槽通孔,两翼板(31d)上的通槽(32d)以及两翼板间的缝隙形成所述用于容纳所述限位凸台(11d)和预紧缓冲元件(4d)的孔隙。
  40. 一种用于中低速磁浮系统的轨道,其中,所述轨道的各轨排之间通过权利要求31-39中任一项所述的缓冲式连接接头进行连接。
PCT/CN2017/076407 2016-03-14 2017-03-13 用于f型钢轨的连接接头 WO2017157257A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610142586.4A CN105603835B (zh) 2016-03-14 2016-03-14 用于f型钢轨的工字型连接接头
CN201610142725.3 2016-03-14
CN201610145010.3A CN105603836B (zh) 2016-03-14 2016-03-14 用于f型钢轨的斜槽式连接接头
CN201610142586.4 2016-03-14
CN201610145010.3 2016-03-14
CN201610145008.6A CN105625114B (zh) 2016-03-14 2016-03-14 用于f型钢轨的缓冲式连接接头
CN201610145008.6 2016-03-14
CN201610142725.3A CN105625113B (zh) 2016-03-14 2016-03-14 用于f型钢轨的半斜槽式连接接头

Publications (1)

Publication Number Publication Date
WO2017157257A1 true WO2017157257A1 (zh) 2017-09-21

Family

ID=59851317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076407 WO2017157257A1 (zh) 2016-03-14 2017-03-13 用于f型钢轨的连接接头

Country Status (1)

Country Link
WO (1) WO2017157257A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740313A (zh) * 2017-10-13 2018-02-27 北京控股磁悬浮技术发展有限公司 一种磁浮列车的轨道及其轨道用接头
CN108560334A (zh) * 2018-06-06 2018-09-21 河北彪悍运动器械有限公司 轨道固定连接结构
CN109518549A (zh) * 2018-12-28 2019-03-26 泉州市海恩德机电科技发展有限公司 一种矿用轨道及其校正制造方法
CN114308487A (zh) * 2022-01-05 2022-04-12 上海拔山自动化技术有限公司 一种多功能喷漆机器人轨道装置及其控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184007A (ja) * 2001-12-13 2003-07-03 Topy Ind Ltd 磁気浮上式リニアモーターカー用軌道
CN103966928A (zh) * 2014-05-14 2014-08-06 中铁二院工程集团有限责任公司 一种中低速磁浮系统轨道f轨接头结构
CN204849496U (zh) * 2015-06-17 2015-12-09 南车株洲电力机车有限公司 一种磁浮列车轨道轨排接头
CN105603835A (zh) * 2016-03-14 2016-05-25 中铁第四勘察设计院集团有限公司 用于f型钢轨的工字型连接接头
CN105603836A (zh) * 2016-03-14 2016-05-25 中铁第四勘察设计院集团有限公司 用于f型钢轨的斜槽式连接接头
CN105625114A (zh) * 2016-03-14 2016-06-01 中铁第四勘察设计院集团有限公司 用于f型钢轨的缓冲式连接接头
CN105625113A (zh) * 2016-03-14 2016-06-01 中铁第四勘察设计院集团有限公司 用于f型钢轨的半斜槽式连接接头
CN205557202U (zh) * 2016-03-14 2016-09-07 中铁第四勘察设计院集团有限公司 用于f型钢轨的工字型连接接头
CN205603981U (zh) * 2016-03-14 2016-09-28 中铁第四勘察设计院集团有限公司 用于f型钢轨的缓冲式连接接头
CN205603983U (zh) * 2016-03-14 2016-09-28 中铁第四勘察设计院集团有限公司 用于f型钢轨的斜槽式连接接头
CN205603982U (zh) * 2016-03-14 2016-09-28 中铁第四勘察设计院集团有限公司 用于f型钢轨的半斜槽式连接接头

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184007A (ja) * 2001-12-13 2003-07-03 Topy Ind Ltd 磁気浮上式リニアモーターカー用軌道
CN103966928A (zh) * 2014-05-14 2014-08-06 中铁二院工程集团有限责任公司 一种中低速磁浮系统轨道f轨接头结构
CN204849496U (zh) * 2015-06-17 2015-12-09 南车株洲电力机车有限公司 一种磁浮列车轨道轨排接头
CN105603835A (zh) * 2016-03-14 2016-05-25 中铁第四勘察设计院集团有限公司 用于f型钢轨的工字型连接接头
CN105603836A (zh) * 2016-03-14 2016-05-25 中铁第四勘察设计院集团有限公司 用于f型钢轨的斜槽式连接接头
CN105625114A (zh) * 2016-03-14 2016-06-01 中铁第四勘察设计院集团有限公司 用于f型钢轨的缓冲式连接接头
CN105625113A (zh) * 2016-03-14 2016-06-01 中铁第四勘察设计院集团有限公司 用于f型钢轨的半斜槽式连接接头
CN205557202U (zh) * 2016-03-14 2016-09-07 中铁第四勘察设计院集团有限公司 用于f型钢轨的工字型连接接头
CN205603981U (zh) * 2016-03-14 2016-09-28 中铁第四勘察设计院集团有限公司 用于f型钢轨的缓冲式连接接头
CN205603983U (zh) * 2016-03-14 2016-09-28 中铁第四勘察设计院集团有限公司 用于f型钢轨的斜槽式连接接头
CN205603982U (zh) * 2016-03-14 2016-09-28 中铁第四勘察设计院集团有限公司 用于f型钢轨的半斜槽式连接接头

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740313A (zh) * 2017-10-13 2018-02-27 北京控股磁悬浮技术发展有限公司 一种磁浮列车的轨道及其轨道用接头
CN107740313B (zh) * 2017-10-13 2023-09-12 北京控股磁悬浮技术发展有限公司 一种磁浮列车的轨道及其轨道用接头
CN108560334A (zh) * 2018-06-06 2018-09-21 河北彪悍运动器械有限公司 轨道固定连接结构
CN109518549A (zh) * 2018-12-28 2019-03-26 泉州市海恩德机电科技发展有限公司 一种矿用轨道及其校正制造方法
CN109518549B (zh) * 2018-12-28 2024-02-27 泉州市海恩德机电科技发展有限公司 一种矿用轨道及其校正制造方法
CN114308487A (zh) * 2022-01-05 2022-04-12 上海拔山自动化技术有限公司 一种多功能喷漆机器人轨道装置及其控制方法

Similar Documents

Publication Publication Date Title
WO2017157257A1 (zh) 用于f型钢轨的连接接头
CN108951316B (zh) 一种减振型磁浮系统轨道伸缩调节结构
CN102359036B (zh) 一种滑槽安装式悬浮钢轨减振扣件
CN105625113B (zh) 用于f型钢轨的半斜槽式连接接头
CN205603983U (zh) 用于f型钢轨的斜槽式连接接头
CN205557202U (zh) 用于f型钢轨的工字型连接接头
US3971537A (en) Adjustable track mounting device in rail system for magnetic-suspension vehicles
CN205603982U (zh) 用于f型钢轨的半斜槽式连接接头
CN105625114B (zh) 用于f型钢轨的缓冲式连接接头
CN205603981U (zh) 用于f型钢轨的缓冲式连接接头
WO2018006622A1 (zh) 悬浮间隙信号可连续采集的轨排连接装置
KR101669437B1 (ko) 침목매립형 거더 및 그 시공방법
CN105603836B (zh) 用于f型钢轨的斜槽式连接接头
US3937149A (en) Rail system for magnetic-suspension vehicles
CN105603835B (zh) 用于f型钢轨的工字型连接接头
JP6204169B2 (ja) 軌道用レール締結装置
CN105507090A (zh) 用于f型钢轨的连接接头
CN215862369U (zh) 适于多尺寸安装的燃料电池发动机底座
CN202380367U (zh) 一种滑槽安装式悬浮钢轨减振扣件
CN205443820U (zh) 用于f型钢轨的连接接头
KR101187964B1 (ko) 자기부상열차용 침목의 위치조정 및 체결장치
WO2022126535A1 (zh) 重载铁路无螺栓扣件系统
CN111979849A (zh) 一种用于铁路轨道的预埋式扣件
CN217266650U (zh) 一种铁路牵引力用连接结构
CN113265910B (zh) 轨道隔振器及地铁轨道

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765799

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17765799

Country of ref document: EP

Kind code of ref document: A1