WO2017157169A1 - 一种逆变器系统运行方法和装置、及逆变器系统 - Google Patents

一种逆变器系统运行方法和装置、及逆变器系统 Download PDF

Info

Publication number
WO2017157169A1
WO2017157169A1 PCT/CN2017/075203 CN2017075203W WO2017157169A1 WO 2017157169 A1 WO2017157169 A1 WO 2017157169A1 CN 2017075203 W CN2017075203 W CN 2017075203W WO 2017157169 A1 WO2017157169 A1 WO 2017157169A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
combination mode
input power
conversion efficiency
unit
Prior art date
Application number
PCT/CN2017/075203
Other languages
English (en)
French (fr)
Inventor
阎建法
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017157169A1 publication Critical patent/WO2017157169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/383
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to, but is not limited to, the field of energy generation, and more particularly to an inverter system operation method and device, and an inverter system.
  • Coal, oil, etc. are non-renewable energy sources, and will one day be replaced by other energy sources.
  • the energy of solar energy is inexhaustible, and the proportion of photovoltaic power generation technology in the energy layout will gradually increase. It is beginning to develop from the remote rural areas and special applications to the grid-connected power generation.
  • photovoltaic grid-connected power generation will be a large photovoltaic power generation market.
  • Solar panel arrays and inverters are the two most important components in photovoltaic grid-connected power generation systems.
  • the solar panel array converts the solar light energy into electrical energy and outputs direct current. Civil power is mainly based on AC power supply, so solar energy must be converted into AC power through the inverter before it can be integrated into the power grid.
  • Inverters play an important role in solar grid-connected power generation systems.
  • FIG. 1 is a schematic diagram of the conversion efficiency of an exemplary inverter
  • FIG. 2 is an exemplary inverter.
  • the conditions vary with the light intensity and other times during the day.
  • the inverter output power is different.
  • the MPPT Maximum Power Point Tracking
  • This paper proposes an inverter system operation method and device, and an inverter system, which can reduce the energy loss of the inverter system under different input powers.
  • An embodiment of the present invention provides an inverter system operation method for controlling an operation process of an inverter system, where the inverter system includes N inverter units; N is an integer greater than or equal to 2;
  • the operating method of the inverter system includes:
  • the inverter unit that needs to be turned on is set to an operating state, and the inverter unit that does not need to be turned on is set to an off state.
  • the determining, according to the input power, the corresponding first combination mode of the inverter unit that needs to be turned on includes:
  • the conversion efficiency corresponding to each combination mode selected by the calculation includes:
  • the conversion efficiency corresponding to the combined mode is obtained according to the conversion efficiency of each of the turned-on inverter units.
  • the operating method of the inverter system further includes:
  • the efficiency curve of each inverter unit is updated at predetermined time intervals.
  • each inverter unit in a case where the output power of each inverter unit is the same and each inverter unit has the same efficiency curve
  • selecting all combination modes that satisfy the input power includes:
  • the selected combination mode includes a combination mode in which M inverter units are turned on, where M is each integer greater than or equal to Z and less than or equal to N;
  • the conversion efficiency corresponding to each combination mode selected by the calculation includes:
  • the method before the determining the corresponding first combination mode according to the input power, the method further includes:
  • the input power of the inverter system is monitored, and when the input power changes, the step of determining the corresponding first combination mode according to the input power is performed.
  • the embodiment of the invention further provides an inverter system operation device, the device comprising:
  • a combined mode determining unit configured to determine a first combined mode of the corresponding inverter unit according to the input power, the first combined mode being a combined mode having a maximum conversion efficiency at the input power;
  • a combination mode switch unit configured to be opened according to the determined first combination mode
  • the inverter unit of the start is set to the running state, and the inverter unit that does not need to be turned on is set to the off state.
  • the combined mode determining unit includes:
  • a first selection module configured to select all combination modes that satisfy the input power according to the input power
  • a conversion efficiency calculation module configured to calculate a conversion efficiency corresponding to each selected combination mode
  • a second selection module configured to compare conversion efficiency corresponding to each combination mode, and select a combination mode with the largest conversion efficiency as the first combination mode
  • the conversion efficiency calculation module is configured to:
  • the inverter system operating device further includes: a monitoring unit,
  • the monitoring unit updates the efficiency curve of each inverter unit at predetermined time intervals.
  • each inverter unit in a case where the output power of each inverter unit is the same and each inverter unit has the same efficiency curve
  • the first selection module is further configured to: determine, according to the input power, a minimum number Z of the corresponding inverter units to be turned on; the selected combination mode includes a combination mode in which M inverter units are turned on, where M is greater than Or each integer equal to Z and less than or equal to N;
  • the conversion efficiency calculation module is further configured to: respectively calculate a conversion efficiency corresponding to the combination mode when M is a different value; wherein, for the combination mode of turning on the M inverter units, calculate one inverse of the M inverter units
  • the output power of the converter unit determines the conversion efficiency V of the inverter unit at the input power and the output power according to the efficiency curve of the inverter unit.
  • the apparatus further includes an input power monitoring unit configured to monitor an input power of the inverter system, and notify the combined mode determining unit when the input power changes. Determining a corresponding first combination mode according to the new input power, and the combination mode switch unit sets a part of the inverter unit to be turned on to an operating state according to the new first combination mode, and sets the remaining inverter units to be off. status.
  • An embodiment of the present invention further provides an inverter system, where the inverter system includes N inverter units; N is an integer greater than or equal to 2; the inverter system further includes any of the above-mentioned inverses Transformer system operating device.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the above-described inverter system operation method.
  • the technical solution provided by the embodiment of the present invention includes: determining, according to an input power, a first combination mode of a corresponding inverter unit, where the first combination mode is a combination mode having a maximum conversion efficiency under the input power;
  • the first combination mode determines an inverter unit that needs to be turned on, sets an inverter unit that needs to be turned on to an operating state, and sets an inverter unit that does not need to be turned on to an off state.
  • different combination modes are adopted in the case of different input powers of the inverter system, that is, in the inverter system, the operating state of each inverter unit varies with the input power. Differently, by turning on some or all of the inverter units, the inverter unit in the working state can work under the maximum conversion efficiency, thereby maximizing the output power, reducing unnecessary energy loss, and improving The performance of the inverter system.
  • 1 is a schematic diagram of conversion efficiency of an exemplary inverter
  • 3A and 3B are respectively a flowchart of a method for operating an inverter system according to an embodiment of the present invention.
  • 4A is a structural diagram of a 500KW photovoltaic inverter system
  • FIG. 4B is a schematic diagram showing an efficiency curve of an inverter unit in the inverter system shown in FIG. 4A;
  • FIG. 4C is a flowchart of a method of operating an inverter system based on the inverter system illustrated in FIG. 4A;
  • FIG. 5 is a schematic structural diagram of an operating device of an inverter system according to an embodiment of the present invention.
  • an embodiment of the present invention provides an inverter system operation method for controlling an operation process of an inverter system, where the inverter system includes N inverter units; Or an integer equal to 2;
  • the operating method of the inverter system includes:
  • Step 100 Determine, according to the input power, a first combination mode of the corresponding inverter unit, where the first combination mode is a combination mode having a maximum conversion efficiency under the input power;
  • Step 200 According to the determined first combination mode, the inverter unit that needs to be turned on is set to an operating state, and the inverter unit that does not need to be turned on is set to a closed state.
  • the combination mode may be an inverter unit that needs to be turned on, or an inverter unit that needs to be turned off, or in a case where the configuration parameters of the inverter unit are the same, the combination mode may be an inverter unit that needs to be turned on. number. Therefore, the inverter unit that needs to be turned on can be determined according to the first combination mode.
  • the determining the first combination mode of the corresponding inverter unit includes: determining a first combination mode of the corresponding inverter unit that needs to be turned on, that is, a specific part of all the inverter units is set to an operation state, and the rest is set. Is off state.
  • step 100 the determining, according to the input power, the corresponding first combination mode of the inverter unit that needs to be turned on includes:
  • Step 110 Select all combination modes that meet the input power according to the input power
  • Step 120 Calculate a conversion efficiency corresponding to each selected combination mode
  • Step 130 Compare conversion efficiency corresponding to each combination mode, and select a combination mode with the largest conversion efficiency as the first combination mode;
  • step 120 the calculating the conversion efficiency corresponding to each combination mode includes:
  • Step 121 Acquire an efficiency curve of each inverter unit that is turned on in the second combination mode for any one of the combination modes;
  • the conversion efficiency corresponding to the second combination mode is obtained according to the conversion efficiency of each of the turned-on inverter units.
  • Step 122 Calculate the conversion efficiency of each combination mode in all combination modes according to the method in step 121.
  • the operating method of the inverter system further includes:
  • the efficiency curve of each inverter unit is updated at predetermined time intervals.
  • the conversion curve for each combined mode can be calculated from the updated efficiency curve.
  • selecting all combinations of modes that meet the input power according to the input power includes: determining a minimum number Z of corresponding inverter units to be turned on according to the input power; and all the combination modes include turning on M inverter units.
  • M is an integer sequence greater than or equal to Z and less than or equal to N.
  • the minimum number Z of inverter units that need to be turned on is 2 when the input power is 200 KW.
  • step 120 calculating conversion efficiency corresponding to each combination mode includes:
  • the conversion efficiency corresponding to the inverter unit of each value in the integer sequence is calculated respectively.
  • the inverter units that are turned on are 2, 3, and 4, respectively, and the corresponding conversion efficiency when two inverter units are turned on are respectively calculated, and the corresponding conversion efficiency when three inverter units are turned on. And the corresponding conversion efficiency when four inverter units are turned on.
  • the input power of one of the inverter units can be determined according to the input efficiency/M, the output power is determined by the output power, and the output power is divided by the rated power to obtain the output power percentage.
  • the corresponding conversion efficiency V can be obtained on the efficiency curve by the output power percentage. Since the conversion efficiency of each inverter unit is the same, the conversion efficiency of one inverter unit is the conversion efficiency corresponding to the combined mode.
  • the minimum number Z of inverter units that need to be turned on is 2 when the input power is 200 KW.
  • the input power of one of the inverter units can be 100KW
  • the output power is about 98KW
  • the output power is 98KW divided by the rated power of 125KW
  • the corresponding conversion efficiency V can be obtained on the efficiency curve. Taking the efficiency curve shown in FIG. 4B as an example, the corresponding conversion efficiency is about 98.3, that is, the conversion efficiency corresponding to the combined mode is 98.3.
  • ⁇ MEPT is the MEPT efficiency of the inverter system
  • P O (t) is the instantaneous value of the inverter output power
  • P DC (t) is the instantaneous value of the inverter DC input power.
  • Step 1 at a certain moment, the DC input power of the inverter system is X;
  • Step 2 X/125 is rounded up to Y;
  • Step 3 In order to complete the conversion of power X, the number of inverter units to work is between Y and 4, and M is an integer sequence between Y and 4; that is, N ⁇ working The number of inverter units M ⁇ Z;
  • Step 4 When M takes different values, according to the method in step 120, the number of inverter units working at the highest efficiency point of the inverter unit is determined, and the result is Z; that is, in the first combination mode, There are Z inverter units in working state;
  • Step 5 turn off (4-Z) inverter units, and keep Z inverter units working
  • Step 6 if the condition changes cause the DC input power X to change, repeat steps 1 to 5;
  • the corresponding first combination mode is determined according to the new input power, and part of the inverter units that need to be turned on are set according to the new first combination mode. For the operating state, set the remaining inverter units to the off state.
  • the embodiment of the present invention provides a more accurate method to achieve the highest power generation target.
  • Using the preset efficiency curve method as the real-time power (or output power) provided by the PV is different, according to the different number of inverter units working, look at the comparison of the efficiency point and the efficiency curve to find the inverter that works at the highest efficiency point. The number of units, the excess inverter unit is turned off, to achieve the remaining efficiency of the remaining inverter units, to meet the maximum power generation requirements;
  • a single-machine system can only passively generate electricity. It cannot actively acquire the highest efficiency point of the system by changing the first combination mode; therefore, the MEPT efficiency is meaningless to a single-type inverter (or a single-type inverter). MEPT efficiency is for a modular inverter system or a combination of multiple inverters;
  • the efficiency curve can be preset not only at the factory, but also in real time during the operation of the inverter system
  • the photovoltaic power generation system can vary from 0 to 100% to 0 in one day depending on the light intensity and other conditions.
  • UPS Uninterruptible Power System/Uninterruptible Power Supply
  • communication power supply and other load outputs are basically determined within a certain period of time.
  • MEPT is essentially tracking DC input
  • the output power is determined by factors such as the power and MPPT efficiency that the PV cell can provide, and system efficiency.
  • the MPPT efficiency is generally above 99%. Therefore, at the root, the MEPT maximum efficiency point tracking implementation is based on tracking the PV real-time output (inverter DC input).
  • the PV output power is different from the light intensity and other conditions, and will experience 0-100% ⁇ 0 in one day, which is the essential difference from the traditional modular UPS and modular communication power supply.
  • the traditional modular UPS and The module sleep of the modular communication power supply is determined according to the output load, and the output load is basically determined over a period of time.
  • the output of a PV cell is not only related to the light intensity but also to various factors such as the ambient temperature.
  • the efficiency of the inverter system is related to various factors such as input voltage, temperature, and output power. Embodiments of the present invention describe efficiency curves under various conditions in consideration of various factors.
  • the monitoring unit samples various information and determines the maximum power output (the system MEPT is the most efficient).
  • the inverter unit may be identical in output power or the like, and may be different. The description is mainly based on the inverter unit of the same power, but the protection is not limited thereto.
  • Each unit can be installed inside a cabinet, or can be installed in different cabinets.
  • Each unit can be a single cabinet, and the form is not limited;
  • the inverter unit has no limitation on the topology, and may be two levels, three levels, multiple levels, etc.; there may be no isolation or isolation; it may be a first-order transformation, or a two-level or multi-level transformation. ;
  • the communication method can be wired or wireless, and the form is not limited. Through communication, information and control can be exchanged.
  • the embodiment of the present invention further provides an inverter system operating device, which is disposed on an inverter system.
  • an inverter system according to an embodiment of the present invention is provided.
  • the operating device includes:
  • the combined mode determining unit 10 is configured to determine a first combined mode of the corresponding inverter unit according to the input power, the first combined mode being a combined mode having a maximum conversion efficiency under the input power;
  • the combination mode switching unit 20 is configured to set the inverter unit that needs to be turned on to an operating state according to the determined first combination mode, and to set an inverter unit that does not need to be turned on to a closed state.
  • the combination mode determining unit 10 includes:
  • the first selecting module 11 is configured to select all combination modes that satisfy the input power according to the input power
  • the conversion efficiency calculation module 12 is configured to calculate a conversion efficiency corresponding to each selected combination mode
  • the second selecting module 13 is configured to compare the conversion efficiency corresponding to each combined mode, and select the combined mode with the largest conversion efficiency as the first combined mode;
  • the conversion efficiency calculation module 12 is configured to:
  • the inverter system operating device further includes: a monitoring unit 30,
  • the monitoring unit updates the efficiency curve of each inverter unit at predetermined time intervals.
  • each inverter unit when the output power of each inverter unit is the same, and each inverter unit has the same efficiency curve,
  • the first selection module is configured to: determine a minimum number Z of corresponding inverter units to be turned on according to the input power; the selected combination mode includes a combination mode of turning on M inverter units, where M is greater than or Each integer equal to Z and less than or equal to N;
  • the conversion efficiency calculation module is configured to: respectively calculate a conversion efficiency corresponding to the combination mode when M is a different value; wherein, for the combination mode of turning on the M inverter units, calculate one of the M inverter units The output power of the unit is determined according to the efficiency curve of the inverter unit, and the conversion efficiency V of the inverter unit at the input power and the output power is determined.
  • the device further includes an input power monitoring unit 40 configured to monitor an input power of the inverter system.
  • the notification combination mode determining unit determines the corresponding first according to the new input power.
  • a combined mode, and the combined mode switching unit sets the partial inverter unit that needs to be turned on to the operating state according to the new first combined mode, and sets the remaining inverter units to the closed state.
  • the embodiment of the present invention further provides an inverter system, where the inverter system includes N inverter units; N is an integer greater than or equal to 2;
  • the transformer system further includes any of the inverter system operating devices provided by the embodiments of the present invention.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the above-described inverter system operation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本文公布一种逆变器系统运行方法和装置、及逆变器系统,该方法包括:根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;根据确定的所述第一组合模式确定需要开启的逆变器单元,将需要开启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。

Description

一种逆变器系统运行方法和装置、及逆变器系统 技术领域
本申请涉及但不限于能源发电领域,尤指一种逆变器系统运行方法和装置、及逆变器系统。
背景技术
煤炭、石油等是不可再生的能源,将来总有一天会被其他的能源替代。太阳能的能量取之不尽,光伏发电技术在能源版图的比例会逐渐增大,正开始由边远农村和特殊应用,向并网发电方向发展。光伏并网发电作为其进入电力规模应用的必然结果,将会是很大的光伏发电市场。太阳能电池板阵列和逆变器是光伏并网发电系统中两个最重要的部件。太阳能电池板阵列将太阳的光能转化为电能,输出直流电。民用电力以交流供电为主,因此由太阳能必须通过逆变器转换为交流电后方可并入电网。逆变器在太阳能并网发电系统中具有重要作用。
尽管太阳能资源取之不尽,但由于太阳光辐射密度较低,以及其他因素,导致太阳能电池(PV电池)的转换效率非常低。目前,大多数太阳能电池的转换效率仅为11%~20%左右。在这种情况下,提升光伏逆变器的效率,对于提升太阳能并网发电系统的整体效率显得至关重要。参见图1,为示例性的逆变器的转换效率的示意图,从图1中可以看出,随着输入功率的变化,逆变器的转换效率有所不同,图2为示例性的逆变器一天的输出功率变化曲线,其中,横轴为时间,代表一天中的不同时刻,纵轴为功率,单位为KW,从图2可以看出,一天中随着光照强度等条件不同,不同时刻的逆变器输出功率是不同的。
如果在某时刻,PV电池所能够提供的最大功率是确定的,也就是说逆变器系统的输入功率一定的情况下,MPPT(Maximum Power Point Tracking,最大功率点跟踪)效率基本上各家都差不多,基本在99%左右。那么,影响发电量最重要的因素就是逆变器效率。从图2可以看出,一天内,因为光照强度等因素不同,逆变器的输出功率是变化的。而从图1可 以看出不同输出功率的时候,逆变器的效率是不同的。而且不同型号,不同厂家的逆变器的效率曲线也是不同的。目前的逆变器只是被动发电,在不同输出功率的时候,逆变器不一定能够在最大效率点附近工作,也就是说,在不同的输入功率的情况下,不能够保证最大的发电输出,会造成能量不必要的能量损耗。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提出了一种逆变器系统运行方法和装置、及逆变器系统,能够减小逆变器系统在不同的输入功率下的能量损耗。
本发明实施例提出了一种逆变器系统运行方法,用于控制逆变器系统的运行过程,所述逆变器系统包括N个逆变器单元;N为大于或等于2的整数;
所述逆变器系统运行方法包括:
根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;
根据确定的所述第一组合模式,将需要开启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。
在一实施方式中,所述根据输入功率,确定对应的需要开启的逆变器单元的第一组合模式包括:
根据输入功率,选取满足所述输入功率的全部组合模式;
计算所选取的每个组合模式对应的转换效率;
比较每个组合模式对应的转换效率,并选取转换效率最大的组合模式作为第一组合模式;
在一实施方式中,所述计算所选取的每个组合模式对应的转换效率包括:
针对所选取的每一个组合模式分别进行以下操作:
获取该组合模式中开启的逆变器单元的效率曲线;
根据每个开启的逆变器单元的效率曲线,确定每个开启的逆变器单元在所述输入功率下的转换效率;
根据每个开启的逆变器单元的转换效率,获取该组合模式对应的转换效率。
在一实施方式中,所述逆变器系统运行方法还包括:
按照预定的时间间隔,更新每个逆变器单元的效率曲线。
在一实施方式中,在每个逆变器单元的输出功率相同,且每个逆变器单元具有相同的效率曲线相同的情况下,
所述根据输入功率,选取满足所述输入功率的全部组合模式包括:
根据输入功率确定对应的需要开启的逆变器单元的最小数目Z;
所选取的组合模式包括开启M个逆变器单元的组合模式,其中,M为大于或等于Z、并且小于或等于N的每一个整数;
所述计算所选取的每个组合模式对应的转换效率包括:
计算M个逆变器单元中一个逆变器单元的输出功率,根据逆变器单元的效率曲线,确定逆变器单元在所述输入功率和输出功率下的转换效率V。
在一实施方式中,在所述根据输入功率,确定对应的第一组合模式之前还包括:
监测逆变器系统的输入功率,当输入功率发生变化时,执行所述根据输入功率,确定对应的第一组合模式的步骤。
本发明实施例还提出了一种逆变器系统运行装置,所述装置包括:
组合模式确定单元,设置为根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;
组合模式开关单元,设置为根据确定的所述第一组合模式,将需要开 启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。
在一实施方式中,所述组合模式确定单元包括:
第一选取模块,设置为根据输入功率,选取满足所述输入功率的全部组合模式;
转换效率计算模块,设置为计算所选取的每个组合模式对应的转换效率;
第二选取模块,设置为比较每个组合模式对应的转换效率,并选取转换效率最大的组合模式作为第一组合模式;
在一实施方式中,所述转换效率计算模块设置为:
针对所选取的组合模式中的每一个组合模式,获取该组合模式中开启的逆变器单元的效率曲线;根据每个开启的逆变器单元的效率曲线,确定每个开启的逆变器单元在所述输入功率下的转换效率;根据每个开启的逆变器单元的转换效率,获取该组合模式对应的转换效率。
在一实施方式中,逆变器系统运行装置还包括:监控单元,
所述监控单元按照预定的时间间隔,更新每个逆变器单元的效率曲线。
在一实施方式中,在每个逆变器单元的输出功率相同,且每个逆变器单元具有相同的效率曲线相同的情况下,
所述第一选取模块还设置为:根据输入功率确定对应的需要开启的逆变器单元的最小数目Z;所选取的组合模式包括开启M个逆变器单元的组合模式,其中,M为大于或等于Z、并且小于或等于N的每一个整数;
所述转换效率计算模块还设置为:分别计算M为不同取值时的组合模式对应的转换效率;其中,针对开启M个逆变器单元的组合模式,计算M个逆变器单元中一个逆变器单元的输出功率,根据逆变器单元的效率曲线,确定逆变器单元在所述输入功率和输出功率下的转换效率V。
在一实施方式中,所述装置还包括,输入功率监测单元,设置为监测逆变器系统的输入功率,当输入功率发生变化时,通知组合模式确定单元 根据新的输入功率确定对应的第一组合模式,以及组合模式开关单元根据新的第一组合模式,将需要开启的部分逆变器单元设置为运行状态,将其余的逆变器单元设置为关闭状态。
本发明实施例还提出了一种逆变器系统,所述逆变器系统包括N个逆变器单元;N为大于或等于2的整数;所述逆变器系统还包括上述任一种逆变器系统运行装置。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述逆变器系统运行方法。
本发明实施例提供的技术方案包括:根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;根据确定的所述第一组合模式确定需要开启的逆变器单元,将需要开启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。通过本发明实施例的方案,在逆变器系统不同的输入功率的情况下,采取不同的组合模式,也就是逆变器系统中,每个逆变器单元的运行状态随输入功率的不同而不同,通过开启部分或全部逆变器单元,使得处在工作状态下的逆变器单元能够在最大的转换效率下工作,从而使得输出功率最大化,减小了不必要的能量损耗,改善了逆变器系统的工作性能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
下面对本发明实施例中的附图进行说明,实施例中的附图是用于对本申请的进一步理解,与说明书一起用于解释本申请,并不构成对本申请保护范围的限制。
图1为示例性的逆变器的转换效率的示意图;
图2为示例性的逆变器一天的输出功率变化曲线;
图3A和图3B分别为本发明实施例提供了一种逆变器系统运行方法的流程图;
图4A为一个500KW光伏逆变器系统的构成图;
图4B为图4A所示的逆变器系统中逆变器单元的效率曲线示意图;
图4C为基于图4A所示的逆变器系统的逆变器系统运行方法的流程图;
图5为本发明实施例提出的一种逆变器系统运行装置的结构组成示意图。
详述
下面结合附图对本申请作进一步的描述,并不能用来限制本申请的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
参见图3A和图3B,本发明实施例提供了一种逆变器系统运行方法,用于控制逆变器系统的运行过程,所述逆变器系统包括N个逆变器单元;N为大于或等于2的整数;
如图3A所示,所述逆变器系统运行方法包括:
步骤100,根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;
步骤200,根据确定的所述第一组合模式,将需要开启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。
其中,组合模式可以是需要开启的逆变器单元,或者是需要关闭的逆变器单元、或者在逆变器单元配置参数相同的情况下,组合模式可以是需要开启的逆变器单元的个数。因此根据第一组合模式可以确定需要开启的逆变器单元。其中,确定对应的逆变器单元的第一组合模式包括:确定对应的需要开启的逆变器单元的第一组合模式,即全部逆变器单元中的特定部分设置为运行状态,其余部分设置为关闭状态。
其中,如图3B所示,步骤100中,所述根据输入功率,确定对应的需要开启的逆变器单元的第一组合模式包括:
步骤110,根据输入功率,选取满足所述输入功率的全部组合模式;
步骤120,计算所选取的每个组合模式对应的转换效率;
步骤130,比较每个组合模式对应的转换效率,并选取转换效率最大的组合模式作为第一组合模式;
其中,步骤120中,所述计算每个组合模式对应的转换效率包括:
步骤121,针对全部组合模式中的任一个第二组合模式,获取第二组合模式中开启的每个逆变器单元的效率曲线;
根据每个开启的逆变器单元的效率曲线,确定每个开启的逆变器单元在当前输入功率下的转换效率;
根据每个开启的逆变器单元的转换效率,获取所述第二组合模式对应的转换效率。
步骤122,按照步骤121中的方法,计算全部组合模式中每一个组合模式的转换效率。
本发明实施例中,所述逆变器系统运行方法还包括:
按照预定的时间间隔,更新每个逆变器单元的效率曲线。
在更新每个逆变器单元的效率曲线之后,在步骤120中,可以根据更新的效率曲线来计算每个组合模式的转换曲线。
下面以逆变系统中每个逆变器单元的输出功率相同,且每个逆变器单元具有相同的效率曲线的应用场景进行说明。
在每个逆变器单元的输出功率相同,且每个逆变器单元具有相同的效率曲线相同的情况下,
步骤110中,根据输入功率,选取满足所述输入功率的全部组合模式包括:根据输入功率确定对应的需要开启的逆变器单元的最小数目Z;则全部组合模式包括开启M个逆变器单元,其中,M为大于或等于Z、并且小于或等于N的整数序列。
例如,对于由4个125KW的逆变器单元组成的500KW,当输入功率为200KW时,需要开启的逆变器单元的最小数目Z为2。
步骤120中,计算每个组合模式对应的转换效率包括:
根据逆变器单元的效率曲线,分别计算开启整数序列中每个取值个数的逆变器单元对应的转换效率。
例如,有三种组合模式,其中开启的逆变器单元分别为2、3、4,则分别计算开启2个逆变器单元时对应的转换效率,开启3个逆变器单元时对应的转换效率,以及开启4个逆变器单元时对应的转换效率。
其中,对于开启M个逆变器单元的组合模式,可以根据输入效率/M确定其中一个逆变器单元的输入功率,通过输出功率确定输出功率,通过输出功率除以额定功率,得到输出功率百分比,通过输出功率百分比可以在效率曲线上获取对应的转换效率V。由于每个逆变器单元的转换效率相同,因此一个逆变器单元的转换效率即为该组合模式对应的转换效率。
例如,对于由4个125KW的逆变器单元组成的500KW,当输入功率为200KW时,需要开启的逆变器单元的最小数目Z为2。对于开启数目为2的组合模式来说,可以其中一个逆变器单元的输入功率为100KW,输出功率大约为98KW,通过输出功率98KW除以额定功率125KW,得到输出功率百分比98/125=78.4%,通过输出功率百分比78.4%,可以在效率曲线上获取对应的转换效率V,以图4B所示的效率曲线为例,对应的转换效率大约为98.3,即该组合模式对应的转换效率为98.3。
下面对逆变器系统MEPT效率进行说明:
Figure PCTCN2017075203-appb-000001
其中,ηMEPT为逆变器系统MEPT效率,PO(t)为逆变器输出功率的瞬时值,PDC(t)为逆变器直流输入功率的瞬时值。
下面结合一个示例进行说明。
参见图4A,为一个500KW光伏逆变器系统的构成图,该光伏逆变器系统由4个(即N=4)125KW的逆变器单元组成的500KW逆变器系统,其直流输入连接在一起,每个逆变器单元的效率曲线相同,效率曲线如图4B所示。
下面对基于该光伏逆变器系统的运行方法进行说明,参见图4C,基于 该光伏逆变器系统的运行方法包括:
步骤1,在某一时刻,逆变器系统的的直流输入功率为X;
步骤2,X/125向上取整为Y;
步骤3,为完成功率为X的变换,逆变器单元需要工作的数目介于Y和4之间,设定M为介于Y和4之间的整数数列;也就是说,N≥工作的逆变单元数M≥Z;
步骤4,M取不同值时,根据步骤120中的方法,确定逆变器单元的最高效率点的工作的逆变器单元数目,获取结果为Z;也就是说,在第一组合模式下,有Z个逆变器单元处于工作状态;
步骤5,关闭(4-Z)个逆变单元,保留Z个逆变器单元工作;
此时500KVA逆变器系统工作于最大MEPT效率点,其输出功率最大;
步骤6,如果条件变更造成直流输入功率X变化,则重复步骤1~5;
本发明实施例中,在逆变器系统的输入功率发生变化时,根据新的输入功率确定对应的第一组合模式,并根据新的第一组合模式,将需要开启的部分逆变器单元设置为运行状态,将其余的逆变器单元设置为关闭状态。
本发明实施例的技术方案包括如下有益效果:
1、精确性
随着工程人员设计不同,效率可能不是随着输出功率的增大而增大;。简单的随输出功率减少就减少逆变单元数,带来不一定是输出功率(发电量)最高。
本发明实施例就提供了一个较为精确的方法,来达到发电量最高的目标。利用预设效率曲线的方法,随着PV提供的实时功率(或输出功率)不同,根据不同数目的逆变单元工作,看效率点和效率曲线的比较,找到工作在最高效率点时的逆变单元数,关闭多余的逆变器单元,来达到剩余的逆变单元都工作在最高效率点,满足最高发电量的要求;
2、主动性
单机系统只能被动发电,不能通过改变第一组合模式来主动获取系统最高效率点发电;所以MEPT效率对单机型逆变器(或单个单机型逆变器)无意义。MEPT效率针对的是模块化逆变器系统或多个逆变器的组合;
3、实时性
效率曲线不仅仅能够在出厂前预设,还可以在逆变器系统运行过程中实时更新;
4、宽范围适应
我们知道,光伏发电系统随着光照强度等条件的不同,在一天中的输出功率可以从0~100%~0。而不像UPS(Uninterruptible Power System/Uninterruptible Power Supply,不间断电源)、通信电源等负载输出在一定时间内基本是确定的。
5、MEPT实质是跟踪直流输入
输出功率是由PV电池能够提供的功率和MPPT效率、系统效率等因素决定的。而MPPT效率一般在99%以上,所以说,从根本来说,MEPT最大效率点跟踪的实现是跟踪PV实时输出(逆变器的直流输入)而定的。而PV输出功率的大小是随着光照强度等条件不同,一天内会经历0~100%~0的过程,而这是和传统模块化UPS以及模块化通信电源的本质区别,传统模块化UPS以及模块化通信电源的模块休眠是根据输出负载决定,而输出负载在一段时间内基本是确定的。
6、多维度
PV电池的输出不仅仅跟光照强度、而且跟环境温度等多种因素有关。而逆变器系统效率,和输入电压、温度、输出功率等多种因素有关。本发明实施例考虑多种因素,描绘出各种条件下的效率曲线。通过监控单元采样各种信息,并判断最大功率输出(系统MEPT效率最高)。
7、适应广
逆变器单元可以是输出功率等完全相同的,也可以是不同的,本文主要根据相同功率的逆变器单元来描述,但保护不限于此。
实现MEPT逆变器系统每个单元可以安装一个机柜内部,也可分别安装在不同的机柜内部,每个单元可以单独就是一个机柜,形式不限;
逆变器单元对拓扑没有限制,可以是两电平,也可以是三电平、多电平等;可以无隔离,也可有隔离;可以是一级变换,也可以是两级或多级变换;
逆变器单元和监控单元之间有通讯,通讯方式可以是有线的,也可以是无线的,形式不限;通过通讯,可以互通信息和控制。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种逆变器系统运行装置,设置在逆变器系统上,参见图5,本发明实施例提出的一种逆变器系统运行装置包括:
组合模式确定单元10,设置为根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;
组合模式开关单元20,设置为根据确定的所述第一组合模式,将需要开启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。
本发明实施例中,所述组合模式确定单元10包括:
第一选取模块11,设置为根据输入功率,选取满足所述输入功率的全部组合模式;
转换效率计算模块12,设置为计算所选取的每个组合模式对应的转换效率;
第二选取模块13,设置为比较每个组合模式对应的转换效率,并选取转换效率最大的组合模式作为第一组合模式;
本发明实施例中,所述转换效率计算模块12设置为:
针对所选取的组合模式中的每一个组合模式,获取该组合模式中开启的逆变器单元的效率曲线;根据每个开启的逆变器单元的效率曲线,确定每个开启的逆变器单元在所述输入功率下的转换效率;根据每个开启的逆变器单元的转换效率,获取该组合模式对应的转换效率。
本发明实施例中,逆变器系统运行装置还包括:监控单元30,
所述监控单元按照预定的时间间隔,更新每个逆变器单元的效率曲线。
本发明实施例中,在每个逆变器单元的输出功率相同,且每个逆变器单元具有相同的效率曲线相同的情况下,
所述第一选取模块设置为:根据输入功率确定对应的需要开启的逆变器单元的最小数目Z;所选取的组合模式包括开启M个逆变器单元的组合模式,其中,M为大于或等于Z、并且小于或等于N的每一个整数;
所述转换效率计算模块设置为:分别计算M为不同取值时的组合模式对应的转换效率;其中,针对开启M个逆变器单元的组合模式,计算M个逆变器单元中一个逆变器单元的输出功率,根据逆变器单元的效率曲线,确定逆变器单元在所述输入功率和输出功率下的转换效率V。
本发明实施例中,所述装置还包括,输入功率监测单元40,设置为监测逆变器系统的输入功率,当输入功率发生变化时,通知组合模式确定单元根据新的输入功率确定对应的第一组合模式,以及组合模式开关单元根据新的第一组合模式,将需要开启的部分逆变器单元设置为运行状态,将其余的逆变器单元设置为关闭状态。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种逆变器系统,所述逆变器系统包括N个逆变器单元;N为大于或等于2的整数;所述逆变器系统还包括本发明实施例提供的任一逆变器系统运行装置。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述逆变器系统运行方法。
需要说明的是,以上所述的实施例仅是为了便于本领域的技术人员理解而已,并不用于限制本申请的保护范围,在不脱离本申请的发明构思的前提下,本领域技术人员对本申请所做出的任何显而易见的替换和改进等均在本申请的保护范围之内。
工业实用性
通过本发明实施例的方案,在逆变器系统不同的输入功率的情况下,采取不同的组合模式,也就是逆变器系统中,每个逆变器单元的运行状态随输入功率的不同而不同,通过开启部分或全部逆变器单元,使得处在工作状态下的逆变器单元能够在最大的转换效率下工作,从而使得输出功率最大化,减小了不必要的能量损耗,改善了逆变器系统的工作性能。

Claims (13)

  1. 一种逆变器系统运行方法,用于控制逆变器系统的运行过程,所述逆变器系统包括N个逆变器单元;N为大于或等于2的整数;
    所述逆变器系统运行方法包括:
    根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;
    根据确定的所述第一组合模式,将需要开启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。
  2. 根据权利要求1所述的逆变器系统运行方法,其中,所述根据输入功率,确定对应的需要开启的逆变器单元的第一组合模式包括:
    根据输入功率,选取满足所述输入功率的全部组合模式;
    计算所选取的每个组合模式对应的转换效率;
    比较每个组合模式对应的转换效率,并选取转换效率最大的组合模式作为第一组合模式。
  3. 根据权利要求2所述的逆变器系统运行方法,其中,所述计算所选取的每个组合模式对应的转换效率包括:
    针对所选取的每一个组合模式分别进行以下操作:
    获取该组合模式中开启的逆变器单元的效率曲线;
    根据每个开启的逆变器单元的效率曲线,确定每个开启的逆变器单元在所述输入功率下的转换效率;
    根据每个开启的逆变器单元的转换效率,获取该组合模式对应的转换效率。
  4. 根据权利要求3所述的逆变器系统运行方法,所述逆变器系统运行方法还包括:
    按照预定的时间间隔,更新每个逆变器单元的效率曲线。
  5. 根据权利要求2所述的逆变器系统运行方法,其中,
    在每个逆变器单元的输出功率相同,且每个逆变器单元具有相同的效率曲线相同的情况下,
    所述根据输入功率,选取满足所述输入功率的全部组合模式包括:
    根据输入功率确定对应的需要开启的逆变器单元的最小数目Z;
    所选取的组合模式包括开启M个逆变器单元的组合模式,其中,M为大于或等于Z、并且小于或等于N的每一个整数;
    所述计算所选取的每个组合模式对应的转换效率包括:
    计算M个逆变器单元中一个逆变器单元的输出功率,根据逆变器单元的效率曲线,确定逆变器单元在所述输入功率和输出功率下的转换效率V。
  6. 根据权利要求1所述的逆变器系统运行方法,其中,在所述根据输入功率,确定对应的第一组合模式之前还包括:
    监测逆变器系统的输入功率,当输入功率发生变化时,执行所述根据输入功率,确定对应的第一组合模式的步骤。
  7. 一种逆变器系统运行装置,所述装置包括:
    组合模式确定单元,设置为根据输入功率,确定对应的逆变器单元的第一组合模式,所述第一组合模式是所述输入功率下具有最大的转换效率的组合模式;
    组合模式开关单元,设置为根据确定的所述第一组合模式,将需要开启的逆变器单元设置为运行状态,将不需要开启的逆变器单元设置为关闭状态。
  8. 根据权利要求7所述的逆变器系统运行装置,其中,所述组合模式确定单元包括:
    第一选取模块,设置为根据输入功率,选取满足所述输入功率的全部组合模式;
    转换效率计算模块,设置为计算所选取的每个组合模式对应的转换效率;
    第二选取模块,设置为比较每个组合模式对应的转换效率,并选取转换效率最大的组合模式作为第一组合模式。
  9. 根据权利要求8所述的逆变器系统运行装置,其中,所述转换效率计算模块设置为:
    针对所选取的组合模式中的每一个组合模式,获取该组合模式中开启的逆变器单元的效率曲线;根据每个开启的逆变器单元的效率曲线,确定每个开启的逆变器单元在所述输入功率下的转换效率;根据每个开启的逆变器单元的转换效率,获取该组合模式对应的转换效率。
  10. 根据权利要求8所述的逆变器系统运行装置,逆变器系统运行装置还包括:监控单元,
    所述监控单元按照预定的时间间隔,更新每个逆变器单元的效率曲线。
  11. 根据权利要求8所述的逆变器系统运行装置,其中,
    在每个逆变器单元的输出功率相同,且每个逆变器单元具有相同的效率曲线相同的情况下,
    所述第一选取模块设置为:根据输入功率确定对应的需要开启的逆变器单元的最小数目Z;所选取的组合模式包括开启M个逆变器单元的组合模式,其中,M为大于或等于Z、并且小于或等于N的每一个整数;
    所述转换效率计算模块设置为:分别计算M为不同取值时的组合模式对应的转换效率;其中,针对开启M个逆变器单元的组合模式,计算M个逆变器单元中一个逆变器单元的输出功率,根据逆变器单元的效率曲线,确定逆变器单元在所述输入功率和输出功率下的转换效率V。
  12. 根据权利要求7所述的逆变器系统运行装置,所述装置还包括,输入功率监测单元,设置为监测逆变器系统的输入功率,当输入功率发生变化时,通知组合模式确定单元根据新的输入功率确定对应的第一组合模式,以及组合模式开关单元根据新的第一组合模式,将需要开启的部分逆变器单元设置为运行状态,将其余的逆变器单元设置为关闭状态。
  13. 一种逆变器系统,所述逆变器系统包括N个逆变器单元;N为大 于或等于2的整数;所述逆变器系统还包括权利要求7~12中任一项提供的逆变器系统运行装置。
PCT/CN2017/075203 2016-03-16 2017-02-28 一种逆变器系统运行方法和装置、及逆变器系统 WO2017157169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610149541.X 2016-03-16
CN201610149541.XA CN107204627A (zh) 2016-03-16 2016-03-16 一种逆变器系统运行方法和装置、及逆变器系统

Publications (1)

Publication Number Publication Date
WO2017157169A1 true WO2017157169A1 (zh) 2017-09-21

Family

ID=59850600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075203 WO2017157169A1 (zh) 2016-03-16 2017-02-28 一种逆变器系统运行方法和装置、及逆变器系统

Country Status (2)

Country Link
CN (1) CN107204627A (zh)
WO (1) WO2017157169A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787291B (zh) * 2019-03-26 2021-06-11 阳光电源股份有限公司 模块化级联多电平变换器及其模块切换方法和控制器
CN111682603B (zh) * 2020-05-21 2021-12-28 深圳市德兰明海科技有限公司 一种电池充放电的方法、装置以及电子设备
DE102020122066A1 (de) * 2020-08-24 2022-02-24 Saurer Spinning Solutions Gmbh & Co. Kg Textilmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841235A (zh) * 2010-04-02 2010-09-22 艾默生网络能源有限公司 一种光伏逆变器智能轮换休眠控制方法及系统
CN103107557A (zh) * 2013-01-25 2013-05-15 华北电力大学 一种光伏电站群控组合优化方法
CN103178544A (zh) * 2013-03-15 2013-06-26 特变电工新疆新能源股份有限公司 并联型多单元光伏并网逆变器系统的启停控制方法
CN104821773A (zh) * 2015-05-05 2015-08-05 无锡联动太阳能科技有限公司 新型的太阳能发电系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2748916B1 (en) * 2011-08-22 2016-04-13 Franklin Electric Company Inc. Power conversion system
JP2013192382A (ja) * 2012-03-14 2013-09-26 Denso Corp ソーラーパワーコンディショナ
CN103020766B (zh) * 2012-12-10 2016-09-28 上海电力设计院有限公司 用于光伏发电系统的光伏发电量计划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841235A (zh) * 2010-04-02 2010-09-22 艾默生网络能源有限公司 一种光伏逆变器智能轮换休眠控制方法及系统
CN103107557A (zh) * 2013-01-25 2013-05-15 华北电力大学 一种光伏电站群控组合优化方法
CN103178544A (zh) * 2013-03-15 2013-06-26 特变电工新疆新能源股份有限公司 并联型多单元光伏并网逆变器系统的启停控制方法
CN104821773A (zh) * 2015-05-05 2015-08-05 无锡联动太阳能科技有限公司 新型的太阳能发电系统

Also Published As

Publication number Publication date
CN107204627A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
Basaran et al. Energy management for on‐grid and off‐grid wind/PV and battery hybrid systems
Fathabadi Novel standalone hybrid solar/wind/fuel cell/battery power generation system
Fathabadi Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems
Ayub et al. The impact of grid-connected PV systems on Harmonic Distortion
US10978876B2 (en) Maximum power point tracking hybrid control of an energy storage system
Krishnamurthy et al. Power electronic converter configurations integration with hybrid energy sources–a comprehensive review for state-of the-art in research
WO2017157169A1 (zh) 一种逆变器系统运行方法和装置、及逆变器系统
Arcos-Aviles et al. Improved fuzzy controller design for battery energy management in a grid connected microgrid
Varghese et al. Energy storage management of hybrid solar/wind standalone system using adaptive neuro‐fuzzy inference system
Argyrou et al. A grid-connected photovoltaic system: Mathematical modeling using MATLAB/Simulink
Gorji et al. Techno-economic and environmental base approach for optimal energy management of microgrids using crow search algorithm
US20150168980A1 (en) Method and apparatus for maximum power point tracking for multi-input power converter
Vinod et al. A comparative analysis of PID and fuzzy logic controller in an autonomous PV-FC microgrid
CN108418245A (zh) 一种简化的直流微电网联络线恒功率控制方法
KR20160059335A (ko) 하이브리드 발전용 실시간 최대전력 탐색추적방법
Zheng et al. AC distribution system with small photovoltaic cells for the windows of buildings
JP2014103844A (ja) ハイブリッド電力システムの電力制御装置
de Lima et al. Design and modeling of a transformerless hybrid inverter system using a fuel cell as energy storage element for microgrids with sensitive loads
Yang et al. Control Algorithms for Energy Storage Systems to Reduce Distribution Power Loss of Microgrids
Thanigaivel et al. A hybrid DMO-RERNN based UPFC controller for transient stability analysis in grid connected wind-diesel-PV hybrid system
Hua et al. Stochastic optimal control scheme for operation cost management in energy Internet
Das et al. Analysis and control of boost inverter for fuel cell applications
Dwari et al. Advanced techniques for integration of energy storage and photovoltaic generator in renewable energy systems
Srivishnupriya et al. Automatic generation control of three area hybrid power system by sine cosine optimized dual mode fractional order controller
Li et al. Research on optimization of wind and PV hybrid power systems

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765711

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17765711

Country of ref document: EP

Kind code of ref document: A1